xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 #define NUM_IB_PORTS 1
71 
72 uint kdeth_qp;
73 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
74 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
75 
76 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
77 module_param(num_vls, uint, S_IRUGO);
78 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
79 
80 /*
81  * Default time to aggregate two 10K packets from the idle state
82  * (timer not running). The timer starts at the end of the first packet,
83  * so only the time for one 10K packet and header plus a bit extra is needed.
84  * 10 * 1024 + 64 header byte = 10304 byte
85  * 10304 byte / 12.5 GB/s = 824.32ns
86  */
87 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
88 module_param(rcv_intr_timeout, uint, S_IRUGO);
89 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
90 
91 uint rcv_intr_count = 16; /* same as qib */
92 module_param(rcv_intr_count, uint, S_IRUGO);
93 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
94 
95 ushort link_crc_mask = SUPPORTED_CRCS;
96 module_param(link_crc_mask, ushort, S_IRUGO);
97 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
98 
99 uint loopback;
100 module_param_named(loopback, loopback, uint, S_IRUGO);
101 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
102 
103 /* Other driver tunables */
104 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
105 static ushort crc_14b_sideband = 1;
106 static uint use_flr = 1;
107 uint quick_linkup; /* skip LNI */
108 
109 struct flag_table {
110 	u64 flag;	/* the flag */
111 	char *str;	/* description string */
112 	u16 extra;	/* extra information */
113 	u16 unused0;
114 	u32 unused1;
115 };
116 
117 /* str must be a string constant */
118 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
119 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
120 
121 /* Send Error Consequences */
122 #define SEC_WRITE_DROPPED	0x1
123 #define SEC_PACKET_DROPPED	0x2
124 #define SEC_SC_HALTED		0x4	/* per-context only */
125 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
126 
127 #define DEFAULT_KRCVQS		  2
128 #define MIN_KERNEL_KCTXTS         2
129 #define FIRST_KERNEL_KCTXT        1
130 
131 /*
132  * RSM instance allocation
133  *   0 - Verbs
134  *   1 - User Fecn Handling
135  *   2 - Vnic
136  */
137 #define RSM_INS_VERBS             0
138 #define RSM_INS_FECN              1
139 #define RSM_INS_VNIC              2
140 
141 /* Bit offset into the GUID which carries HFI id information */
142 #define GUID_HFI_INDEX_SHIFT     39
143 
144 /* extract the emulation revision */
145 #define emulator_rev(dd) ((dd)->irev >> 8)
146 /* parallel and serial emulation versions are 3 and 4 respectively */
147 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
148 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
149 
150 /* RSM fields for Verbs */
151 /* packet type */
152 #define IB_PACKET_TYPE         2ull
153 #define QW_SHIFT               6ull
154 /* QPN[7..1] */
155 #define QPN_WIDTH              7ull
156 
157 /* LRH.BTH: QW 0, OFFSET 48 - for match */
158 #define LRH_BTH_QW             0ull
159 #define LRH_BTH_BIT_OFFSET     48ull
160 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
161 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
162 #define LRH_BTH_SELECT
163 #define LRH_BTH_MASK           3ull
164 #define LRH_BTH_VALUE          2ull
165 
166 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
167 #define LRH_SC_QW              0ull
168 #define LRH_SC_BIT_OFFSET      56ull
169 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
170 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
171 #define LRH_SC_MASK            128ull
172 #define LRH_SC_VALUE           0ull
173 
174 /* SC[n..0] QW 0, OFFSET 60 - for select */
175 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
176 
177 /* QPN[m+n:1] QW 1, OFFSET 1 */
178 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
179 
180 /* RSM fields for Vnic */
181 /* L2_TYPE: QW 0, OFFSET 61 - for match */
182 #define L2_TYPE_QW             0ull
183 #define L2_TYPE_BIT_OFFSET     61ull
184 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
185 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
186 #define L2_TYPE_MASK           3ull
187 #define L2_16B_VALUE           2ull
188 
189 /* L4_TYPE QW 1, OFFSET 0 - for match */
190 #define L4_TYPE_QW              1ull
191 #define L4_TYPE_BIT_OFFSET      0ull
192 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
193 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
194 #define L4_16B_TYPE_MASK        0xFFull
195 #define L4_16B_ETH_VALUE        0x78ull
196 
197 /* 16B VESWID - for select */
198 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
199 /* 16B ENTROPY - for select */
200 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
201 
202 /* defines to build power on SC2VL table */
203 #define SC2VL_VAL( \
204 	num, \
205 	sc0, sc0val, \
206 	sc1, sc1val, \
207 	sc2, sc2val, \
208 	sc3, sc3val, \
209 	sc4, sc4val, \
210 	sc5, sc5val, \
211 	sc6, sc6val, \
212 	sc7, sc7val) \
213 ( \
214 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
215 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
216 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
217 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
218 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
219 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
220 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
221 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
222 )
223 
224 #define DC_SC_VL_VAL( \
225 	range, \
226 	e0, e0val, \
227 	e1, e1val, \
228 	e2, e2val, \
229 	e3, e3val, \
230 	e4, e4val, \
231 	e5, e5val, \
232 	e6, e6val, \
233 	e7, e7val, \
234 	e8, e8val, \
235 	e9, e9val, \
236 	e10, e10val, \
237 	e11, e11val, \
238 	e12, e12val, \
239 	e13, e13val, \
240 	e14, e14val, \
241 	e15, e15val) \
242 ( \
243 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
244 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
245 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
246 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
247 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
248 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
249 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
250 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
251 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
252 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
253 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
254 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
255 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
256 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
257 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
258 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
259 )
260 
261 /* all CceStatus sub-block freeze bits */
262 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
263 			| CCE_STATUS_RXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_FROZE_SMASK \
265 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
266 /* all CceStatus sub-block TXE pause bits */
267 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
268 			| CCE_STATUS_TXE_PAUSED_SMASK \
269 			| CCE_STATUS_SDMA_PAUSED_SMASK)
270 /* all CceStatus sub-block RXE pause bits */
271 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
272 
273 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
274 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
275 
276 /*
277  * CCE Error flags.
278  */
279 static struct flag_table cce_err_status_flags[] = {
280 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
281 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
282 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
284 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
285 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
286 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
288 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
289 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
290 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
291 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
292 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
293 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
294 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
295 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
296 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
297 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
298 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
300 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
302 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
303 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
304 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
305 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
306 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
308 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
309 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
310 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
312 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
314 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
316 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
317 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
318 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
320 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
321 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
322 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
324 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
325 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
326 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
328 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
329 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
330 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
332 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
333 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
334 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
336 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
337 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
338 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
339 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
340 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
341 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
342 /*31*/	FLAG_ENTRY0("LATriggered",
343 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
344 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
346 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
347 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
348 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
350 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
351 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
352 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
354 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
355 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
356 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
358 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
359 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
360 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
361 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
362 /*41-63 reserved*/
363 };
364 
365 /*
366  * Misc Error flags
367  */
368 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
369 static struct flag_table misc_err_status_flags[] = {
370 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
371 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
372 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
373 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
374 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
375 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
376 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
377 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
378 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
379 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
380 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
381 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
382 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
383 };
384 
385 /*
386  * TXE PIO Error flags and consequences
387  */
388 static struct flag_table pio_err_status_flags[] = {
389 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
390 	SEC_WRITE_DROPPED,
391 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
392 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
393 	SEC_SPC_FREEZE,
394 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
395 /* 2*/	FLAG_ENTRY("PioCsrParity",
396 	SEC_SPC_FREEZE,
397 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
398 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
399 	SEC_SPC_FREEZE,
400 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
401 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
402 	SEC_SPC_FREEZE,
403 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
404 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
405 	SEC_SPC_FREEZE,
406 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
407 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
408 	SEC_SPC_FREEZE,
409 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
410 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
411 	SEC_SPC_FREEZE,
412 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
413 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
414 	SEC_SPC_FREEZE,
415 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
416 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
417 	SEC_SPC_FREEZE,
418 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
419 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
420 	SEC_SPC_FREEZE,
421 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
422 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
423 	SEC_SPC_FREEZE,
424 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
425 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
426 	SEC_SPC_FREEZE,
427 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
428 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
429 	0,
430 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
431 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
432 	0,
433 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
434 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
435 	SEC_SPC_FREEZE,
436 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
437 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
438 	SEC_SPC_FREEZE,
439 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
440 /*17*/	FLAG_ENTRY("PioInitSmIn",
441 	0,
442 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
443 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
444 	SEC_SPC_FREEZE,
445 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
446 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
447 	SEC_SPC_FREEZE,
448 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
449 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
450 	0,
451 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
452 /*21*/	FLAG_ENTRY("PioWriteDataParity",
453 	SEC_SPC_FREEZE,
454 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
455 /*22*/	FLAG_ENTRY("PioStateMachine",
456 	SEC_SPC_FREEZE,
457 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
458 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
459 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
460 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
461 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
462 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
463 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
464 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
465 	SEC_SPC_FREEZE,
466 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
467 /*26*/	FLAG_ENTRY("PioVlfSopParity",
468 	SEC_SPC_FREEZE,
469 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
470 /*27*/	FLAG_ENTRY("PioVlFifoParity",
471 	SEC_SPC_FREEZE,
472 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
473 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
474 	SEC_SPC_FREEZE,
475 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
476 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
477 	SEC_SPC_FREEZE,
478 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
479 /*30-31 reserved*/
480 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
481 	SEC_SPC_FREEZE,
482 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
483 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
484 	SEC_SPC_FREEZE,
485 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
486 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
487 	SEC_SPC_FREEZE,
488 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
489 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
490 	SEC_SPC_FREEZE,
491 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
492 /*36-63 reserved*/
493 };
494 
495 /* TXE PIO errors that cause an SPC freeze */
496 #define ALL_PIO_FREEZE_ERR \
497 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
525 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
526 
527 /*
528  * TXE SDMA Error flags
529  */
530 static struct flag_table sdma_err_status_flags[] = {
531 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
532 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
533 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
534 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
535 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
537 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
538 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
539 /*04-63 reserved*/
540 };
541 
542 /* TXE SDMA errors that cause an SPC freeze */
543 #define ALL_SDMA_FREEZE_ERR  \
544 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
546 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
547 
548 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
549 #define PORT_DISCARD_EGRESS_ERRS \
550 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
552 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
553 
554 /*
555  * TXE Egress Error flags
556  */
557 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
558 static struct flag_table egress_err_status_flags[] = {
559 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
560 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
561 /* 2 reserved */
562 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
563 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
564 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
565 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
566 /* 6 reserved */
567 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
568 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
569 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
570 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
571 /* 9-10 reserved */
572 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
573 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
574 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
575 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
576 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
577 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
578 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
579 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
580 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
581 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
582 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
583 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
584 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
585 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
586 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
587 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
588 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
589 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
590 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
591 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
592 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
593 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
594 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
595 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
596 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
597 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
598 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
599 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
600 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
601 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
602 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
603 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
604 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
605 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
606 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
607 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
608 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
609 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
610 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
612 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
614 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
616 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
618 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
620 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
622 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
624 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
626 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
627 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
628 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
629 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
630 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
631 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
632 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
633 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
634 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
635 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
636 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
637 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
638 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
639 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
640 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
641 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
642 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
643 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
644 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
645 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
646 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
647 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
648 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
649 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
650 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
651 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
652 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
653 };
654 
655 /*
656  * TXE Egress Error Info flags
657  */
658 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
659 static struct flag_table egress_err_info_flags[] = {
660 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
661 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
662 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
664 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
665 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
666 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
667 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
668 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
669 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
670 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
671 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
672 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
673 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
674 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
675 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
676 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
677 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
678 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
679 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
680 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
681 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
682 };
683 
684 /* TXE Egress errors that cause an SPC freeze */
685 #define ALL_TXE_EGRESS_FREEZE_ERR \
686 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
687 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
689 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
690 	| SEES(TX_LAUNCH_CSR_PARITY) \
691 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
692 	| SEES(TX_CONFIG_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
701 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
702 	| SEES(TX_CREDIT_RETURN_PARITY))
703 
704 /*
705  * TXE Send error flags
706  */
707 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
708 static struct flag_table send_err_status_flags[] = {
709 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
710 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
711 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
712 };
713 
714 /*
715  * TXE Send Context Error flags and consequences
716  */
717 static struct flag_table sc_err_status_flags[] = {
718 /* 0*/	FLAG_ENTRY("InconsistentSop",
719 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
720 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
721 /* 1*/	FLAG_ENTRY("DisallowedPacket",
722 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
723 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
724 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
725 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
726 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
727 /* 3*/	FLAG_ENTRY("WriteOverflow",
728 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
729 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
730 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
731 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
732 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
733 /* 5-63 reserved*/
734 };
735 
736 /*
737  * RXE Receive Error flags
738  */
739 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
740 static struct flag_table rxe_err_status_flags[] = {
741 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
742 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
743 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
744 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
745 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
746 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
747 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
748 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
749 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
750 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
751 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
752 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
753 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
754 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
755 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
756 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
757 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
758 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
759 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
760 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
761 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
762 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
763 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
764 		RXES(RBUF_BLOCK_LIST_READ_COR)),
765 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
766 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
767 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
768 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
769 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
770 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
771 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
772 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
773 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
774 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
775 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
776 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
777 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
778 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
779 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
780 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
781 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
782 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
783 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
784 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
785 		RXES(RBUF_FL_INITDONE_PARITY)),
786 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
787 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
788 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
789 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
790 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
791 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
792 		RXES(LOOKUP_DES_PART1_UNC_COR)),
793 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
794 		RXES(LOOKUP_DES_PART2_PARITY)),
795 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
796 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
797 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
798 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
799 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
800 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
801 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
802 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
803 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
804 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
805 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
806 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
807 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
808 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
809 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
810 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
811 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
812 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
813 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
814 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
815 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
816 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
817 };
818 
819 /* RXE errors that will trigger an SPC freeze */
820 #define ALL_RXE_FREEZE_ERR  \
821 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
864 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
865 
866 #define RXE_FREEZE_ABORT_MASK \
867 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
869 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
870 
871 /*
872  * DCC Error Flags
873  */
874 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
875 static struct flag_table dcc_err_flags[] = {
876 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
877 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
878 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
879 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
881 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
882 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
883 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
884 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
885 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
886 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
887 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
888 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
889 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
890 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
892 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
893 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
895 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
896 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
897 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
898 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
899 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
900 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
901 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
902 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
903 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
904 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
905 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
906 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
907 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
909 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
910 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
911 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
912 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
913 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
915 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
916 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
917 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
918 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
920 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
921 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
922 };
923 
924 /*
925  * LCB error flags
926  */
927 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
928 static struct flag_table lcb_err_flags[] = {
929 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
930 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
931 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
932 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
933 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
934 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
935 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
936 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
937 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
938 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
939 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
940 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
941 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
942 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
943 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
944 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
945 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
946 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
947 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
948 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
949 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
950 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
951 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
952 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
953 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
954 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
955 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
956 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
957 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
958 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
959 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
960 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
961 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
962 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
963 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
964 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
965 };
966 
967 /*
968  * DC8051 Error Flags
969  */
970 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
971 static struct flag_table dc8051_err_flags[] = {
972 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
973 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
974 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
975 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
976 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
977 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
978 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
979 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
980 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
981 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
982 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
983 };
984 
985 /*
986  * DC8051 Information Error flags
987  *
988  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
989  */
990 static struct flag_table dc8051_info_err_flags[] = {
991 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
992 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
993 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
994 	FLAG_ENTRY0("Serdes internal loopback failure",
995 		    FAILED_SERDES_INTERNAL_LOOPBACK),
996 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
997 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
998 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
999 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
1000 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1002 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1003 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1004 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1005 	FLAG_ENTRY0("External Device Request Timeout",
1006 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1007 };
1008 
1009 /*
1010  * DC8051 Information Host Information flags
1011  *
1012  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1013  */
1014 static struct flag_table dc8051_info_host_msg_flags[] = {
1015 	FLAG_ENTRY0("Host request done", 0x0001),
1016 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1017 	FLAG_ENTRY0("BC SMA message", 0x0004),
1018 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1019 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1020 	FLAG_ENTRY0("External device config request", 0x0020),
1021 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1022 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1023 	FLAG_ENTRY0("Link going down", 0x0100),
1024 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1025 };
1026 
1027 static u32 encoded_size(u32 size);
1028 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1029 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1030 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1031 			       u8 *continuous);
1032 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1033 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1034 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1035 				      u8 *remote_tx_rate, u16 *link_widths);
1036 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1037 				    u8 *flag_bits, u16 *link_widths);
1038 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1039 				  u8 *device_rev);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 			    u8 *tx_polarity_inversion,
1043 			    u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 				unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050 			   unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 					  u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 			   u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067 
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1070 					    int msecs);
1071 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1072 				  int msecs);
1073 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1074 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1075 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1076 				   int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 
4105 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4110 			CNTR_NORMAL),
4111 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4112 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4113 			CNTR_NORMAL),
4114 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4115 			CNTR_NORMAL),
4116 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4117 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4119 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4120 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4131 			CNTR_NORMAL),
4132 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4133 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4134 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4135 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4136 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4137 			      CNTR_SYNTH),
4138 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4139 			    access_dc_rcv_err_cnt),
4140 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4141 				 CNTR_SYNTH),
4142 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4145 				  CNTR_SYNTH),
4146 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4147 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4148 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4149 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4150 				  CNTR_SYNTH),
4151 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4152 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4153 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4154 			       CNTR_SYNTH),
4155 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4156 			      CNTR_SYNTH),
4157 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4158 			       CNTR_SYNTH),
4159 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4160 				 CNTR_SYNTH),
4161 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4164 				CNTR_SYNTH),
4165 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4166 			       CNTR_SYNTH),
4167 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4168 				 CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4170 				CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4173 				 CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4175 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4176 				 CNTR_SYNTH | CNTR_VL),
4177 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4178 			      CNTR_SYNTH),
4179 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4180 				 CNTR_SYNTH | CNTR_VL),
4181 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4182 				CNTR_SYNTH),
4183 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4184 				   CNTR_SYNTH | CNTR_VL),
4185 [C_DC_TOTAL_CRC] =
4186 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4187 			 CNTR_SYNTH),
4188 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4195 				  CNTR_SYNTH),
4196 [C_DC_CRC_MULT_LN] =
4197 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4198 			 CNTR_SYNTH),
4199 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4202 				    CNTR_SYNTH),
4203 [C_DC_SEQ_CRC_CNT] =
4204 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_ESC0_ONLY_CNT] =
4207 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS1_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_ESC0_PLUS2_CNT] =
4213 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_REINIT_FROM_PEER_CNT] =
4216 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4219 				  CNTR_SYNTH),
4220 [C_DC_MISC_FLG_CNT] =
4221 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4222 			 CNTR_SYNTH),
4223 [C_DC_PRF_GOOD_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4225 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4226 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PRF_RX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_TX_FLIT_CNT] =
4231 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4232 [C_DC_PRF_CLK_CNTR] =
4233 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4234 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4235 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4236 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4237 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4238 			 CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_SBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4241 [C_DC_PG_STS_TX_MBE_CNT] =
4242 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4243 			 CNTR_SYNTH),
4244 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_intr),
4246 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4247 			    access_sw_cpu_rcv_limit),
4248 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_vtx_wait),
4250 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_wait),
4252 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4253 			    access_sw_pio_drain),
4254 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4255 			    access_sw_kmem_wait),
4256 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4257 			    access_sw_send_schedule),
4258 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4259 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4260 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 				      dev_access_u32_csr),
4262 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4263 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 			     access_sde_int_cnt),
4265 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4266 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 			     access_sde_err_cnt),
4268 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4269 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 				  access_sde_idle_int_cnt),
4271 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4272 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4273 				      access_sde_progress_int_cnt),
4274 /* MISC_ERR_STATUS */
4275 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_misc_pll_lock_fail_err_cnt),
4278 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_misc_mbist_fail_err_cnt),
4281 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_invalid_eep_cmd_err_cnt),
4284 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_misc_efuse_done_parity_err_cnt),
4287 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_misc_efuse_write_err_cnt),
4290 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4291 				0, CNTR_NORMAL,
4292 				access_misc_efuse_read_bad_addr_err_cnt),
4293 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_efuse_csr_parity_err_cnt),
4296 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_misc_fw_auth_failed_err_cnt),
4299 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_key_mismatch_err_cnt),
4302 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_sbus_write_failed_err_cnt),
4305 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_csr_write_bad_addr_err_cnt),
4308 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_misc_csr_read_bad_addr_err_cnt),
4311 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_misc_csr_parity_err_cnt),
4314 /* CceErrStatus */
4315 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_sw_cce_err_status_aggregated_cnt),
4318 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4319 				CNTR_NORMAL,
4320 				access_cce_msix_csr_parity_err_cnt),
4321 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_int_map_unc_err_cnt),
4324 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_int_map_cor_err_cnt),
4327 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4328 				CNTR_NORMAL,
4329 				access_cce_msix_table_unc_err_cnt),
4330 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4331 				CNTR_NORMAL,
4332 				access_cce_msix_table_cor_err_cnt),
4333 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4334 				0, CNTR_NORMAL,
4335 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4336 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4337 				0, CNTR_NORMAL,
4338 				access_cce_rcpl_async_fifo_parity_err_cnt),
4339 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4340 				CNTR_NORMAL,
4341 				access_cce_seg_write_bad_addr_err_cnt),
4342 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4343 				CNTR_NORMAL,
4344 				access_cce_seg_read_bad_addr_err_cnt),
4345 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_la_triggered_cnt),
4348 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_trgt_cpl_timeout_err_cnt),
4351 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4352 				CNTR_NORMAL,
4353 				access_pcic_receive_parity_err_cnt),
4354 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4355 				CNTR_NORMAL,
4356 				access_pcic_transmit_back_parity_err_cnt),
4357 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4358 				0, CNTR_NORMAL,
4359 				access_pcic_transmit_front_parity_err_cnt),
4360 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_cpl_dat_q_unc_err_cnt),
4363 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4364 				CNTR_NORMAL,
4365 				access_pcic_cpl_hd_q_unc_err_cnt),
4366 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_post_dat_q_unc_err_cnt),
4369 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_post_hd_q_unc_err_cnt),
4372 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_retry_sot_mem_unc_err_cnt),
4375 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_retry_mem_unc_err),
4378 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_n_post_dat_q_parity_err_cnt),
4381 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_n_post_h_q_parity_err_cnt),
4384 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_cpl_dat_q_cor_err_cnt),
4387 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_cpl_hd_q_cor_err_cnt),
4390 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_post_dat_q_cor_err_cnt),
4393 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_post_hd_q_cor_err_cnt),
4396 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_pcic_retry_sot_mem_cor_err_cnt),
4399 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4400 				CNTR_NORMAL,
4401 				access_pcic_retry_mem_cor_err_cnt),
4402 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4403 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4404 				CNTR_NORMAL,
4405 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4406 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4407 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4410 				),
4411 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4412 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4413 			CNTR_NORMAL,
4414 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4415 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4416 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4419 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4420 			0, CNTR_NORMAL,
4421 			access_cce_cli2_async_fifo_parity_err_cnt),
4422 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_cce_csr_cfg_bus_parity_err_cnt),
4425 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4426 			0, CNTR_NORMAL,
4427 			access_cce_cli0_async_fifo_parity_err_cnt),
4428 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4429 			CNTR_NORMAL,
4430 			access_cce_rspd_data_parity_err_cnt),
4431 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4432 			CNTR_NORMAL,
4433 			access_cce_trgt_access_err_cnt),
4434 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4435 			0, CNTR_NORMAL,
4436 			access_cce_trgt_async_fifo_parity_err_cnt),
4437 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_cce_csr_write_bad_addr_err_cnt),
4440 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_cce_csr_read_bad_addr_err_cnt),
4443 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4444 			CNTR_NORMAL,
4445 			access_ccs_csr_parity_err_cnt),
4446 
4447 /* RcvErrStatus */
4448 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_rx_csr_parity_err_cnt),
4451 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_csr_write_bad_addr_err_cnt),
4454 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_csr_read_bad_addr_err_cnt),
4457 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_dma_csr_unc_err_cnt),
4460 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_dma_dq_fsm_encoding_err_cnt),
4463 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_dma_eq_fsm_encoding_err_cnt),
4466 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_dma_csr_parity_err_cnt),
4469 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_rbuf_data_cor_err_cnt),
4472 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_rbuf_data_unc_err_cnt),
4475 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4478 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4481 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4484 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4487 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_desc_part2_cor_err_cnt),
4490 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_desc_part2_unc_err_cnt),
4493 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_rbuf_desc_part1_cor_err_cnt),
4496 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_rbuf_desc_part1_unc_err_cnt),
4499 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_hq_intr_fsm_err_cnt),
4502 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_hq_intr_csr_parity_err_cnt),
4505 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_lookup_csr_parity_err_cnt),
4508 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_lookup_rcv_array_cor_err_cnt),
4511 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_lookup_rcv_array_unc_err_cnt),
4514 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4515 			0, CNTR_NORMAL,
4516 			access_rx_lookup_des_part2_parity_err_cnt),
4517 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4518 			0, CNTR_NORMAL,
4519 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4520 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_lookup_des_part1_unc_err_cnt),
4523 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4526 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4529 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4530 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4531 			CNTR_NORMAL,
4532 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4533 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4534 			0, CNTR_NORMAL,
4535 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4536 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4537 			0, CNTR_NORMAL,
4538 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4539 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4542 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_empty_err_cnt),
4545 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_full_err_cnt),
4548 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rbuf_bad_lookup_err_cnt),
4551 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rbuf_ctx_id_parity_err_cnt),
4554 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rbuf_csr_qeopdw_parity_err_cnt),
4557 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4558 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4561 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4562 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4563 			CNTR_NORMAL,
4564 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4566 			0, CNTR_NORMAL,
4567 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4572 			0, 0, CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4577 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4578 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4581 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4582 			0, CNTR_NORMAL,
4583 			access_rx_rbuf_block_list_read_cor_err_cnt),
4584 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4585 			0, CNTR_NORMAL,
4586 			access_rx_rbuf_block_list_read_unc_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_cor_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_rx_rbuf_lookup_des_unc_err_cnt),
4593 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4594 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4597 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4600 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rbuf_free_list_cor_err_cnt),
4603 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_rbuf_free_list_unc_err_cnt),
4606 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_rcv_fsm_encoding_err_cnt),
4609 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_dma_flag_cor_err_cnt),
4612 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_dma_flag_unc_err_cnt),
4615 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_dc_sop_eop_parity_err_cnt),
4618 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_rcv_csr_parity_err_cnt),
4621 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_rcv_qp_map_table_cor_err_cnt),
4624 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_qp_map_table_unc_err_cnt),
4627 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_data_cor_err_cnt),
4630 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_data_unc_err_cnt),
4633 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_rcv_hdr_cor_err_cnt),
4636 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_rcv_hdr_unc_err_cnt),
4639 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_rx_dc_intf_parity_err_cnt),
4642 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_rx_dma_csr_cor_err_cnt),
4645 /* SendPioErrStatus */
4646 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4647 			CNTR_NORMAL,
4648 			access_pio_pec_sop_head_parity_err_cnt),
4649 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4650 			CNTR_NORMAL,
4651 			access_pio_pcc_sop_head_parity_err_cnt),
4652 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4653 			0, 0, CNTR_NORMAL,
4654 			access_pio_last_returned_cnt_parity_err_cnt),
4655 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4656 			0, CNTR_NORMAL,
4657 			access_pio_current_free_cnt_parity_err_cnt),
4658 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_reserved_31_err_cnt),
4661 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_reserved_30_err_cnt),
4664 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_ppmc_sop_len_err_cnt),
4667 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4670 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_vl_fifo_parity_err_cnt),
4673 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_vlf_sop_parity_err_cnt),
4676 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_vlf_v1_len_parity_err_cnt),
4679 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_block_qw_count_parity_err_cnt),
4682 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_write_qw_valid_parity_err_cnt),
4685 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_state_machine_err_cnt),
4688 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_write_data_parity_err_cnt),
4691 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_host_addr_mem_cor_err_cnt),
4694 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_host_addr_mem_unc_err_cnt),
4697 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4700 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4701 			CNTR_NORMAL,
4702 			access_pio_init_sm_in_err_cnt),
4703 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4704 			CNTR_NORMAL,
4705 			access_pio_ppmc_pbl_fifo_err_cnt),
4706 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4707 			0, CNTR_NORMAL,
4708 			access_pio_credit_ret_fifo_parity_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4713 			CNTR_NORMAL,
4714 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4718 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4721 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_sm_pkt_reset_parity_err_cnt),
4724 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_pkt_evict_fifo_parity_err_cnt),
4727 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4728 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4731 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_pio_sbrdctl_crrel_parity_err_cnt),
4734 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_pec_fifo_parity_err_cnt),
4737 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_pcc_fifo_parity_err_cnt),
4740 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_sb_mem_fifo1_err_cnt),
4743 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_sb_mem_fifo0_err_cnt),
4746 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_csr_parity_err_cnt),
4749 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_pio_write_addr_parity_err_cnt),
4752 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4753 			CNTR_NORMAL,
4754 			access_pio_write_bad_ctxt_err_cnt),
4755 /* SendDmaErrStatus */
4756 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4757 			0, CNTR_NORMAL,
4758 			access_sdma_pcie_req_tracking_cor_err_cnt),
4759 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4760 			0, CNTR_NORMAL,
4761 			access_sdma_pcie_req_tracking_unc_err_cnt),
4762 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_sdma_csr_parity_err_cnt),
4765 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4766 			CNTR_NORMAL,
4767 			access_sdma_rpy_tag_err_cnt),
4768 /* SendEgressErrStatus */
4769 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_tx_read_pio_memory_csr_unc_err_cnt),
4772 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4773 			0, CNTR_NORMAL,
4774 			access_tx_read_sdma_memory_csr_err_cnt),
4775 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_egress_fifo_cor_err_cnt),
4778 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_tx_read_pio_memory_cor_err_cnt),
4781 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_read_sdma_memory_cor_err_cnt),
4784 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_sb_hdr_cor_err_cnt),
4787 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_credit_overrun_err_cnt),
4790 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_launch_fifo8_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_launch_fifo7_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo6_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo5_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo4_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo3_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo2_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_launch_fifo1_cor_err_cnt),
4814 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_launch_fifo0_cor_err_cnt),
4817 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_credit_return_vl_err_cnt),
4820 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_hcrc_insertion_err_cnt),
4823 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_egress_fifo_unc_err_cnt),
4826 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_read_pio_memory_unc_err_cnt),
4829 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_read_sdma_memory_unc_err_cnt),
4832 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4833 			CNTR_NORMAL,
4834 			access_tx_sb_hdr_unc_err_cnt),
4835 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4836 			CNTR_NORMAL,
4837 			access_tx_credit_return_partiy_err_cnt),
4838 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4839 			0, 0, CNTR_NORMAL,
4840 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4842 			0, 0, CNTR_NORMAL,
4843 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4862 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4865 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_sdma15_disallowed_packet_err_cnt),
4868 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_sdma14_disallowed_packet_err_cnt),
4871 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma13_disallowed_packet_err_cnt),
4874 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma12_disallowed_packet_err_cnt),
4877 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma11_disallowed_packet_err_cnt),
4880 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma10_disallowed_packet_err_cnt),
4883 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma9_disallowed_packet_err_cnt),
4886 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma8_disallowed_packet_err_cnt),
4889 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma7_disallowed_packet_err_cnt),
4892 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma6_disallowed_packet_err_cnt),
4895 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma5_disallowed_packet_err_cnt),
4898 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma4_disallowed_packet_err_cnt),
4901 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma3_disallowed_packet_err_cnt),
4904 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma2_disallowed_packet_err_cnt),
4907 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4908 			0, 0, CNTR_NORMAL,
4909 			access_tx_sdma1_disallowed_packet_err_cnt),
4910 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4911 			0, 0, CNTR_NORMAL,
4912 			access_tx_sdma0_disallowed_packet_err_cnt),
4913 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_tx_config_parity_err_cnt),
4916 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4919 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_launch_csr_parity_err_cnt),
4922 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_tx_illegal_vl_err_cnt),
4925 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4926 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4929 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4930 			CNTR_NORMAL,
4931 			access_egress_reserved_10_err_cnt),
4932 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_egress_reserved_9_err_cnt),
4935 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4936 			0, 0, CNTR_NORMAL,
4937 			access_tx_sdma_launch_intf_parity_err_cnt),
4938 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_tx_pio_launch_intf_parity_err_cnt),
4941 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_egress_reserved_6_err_cnt),
4944 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_incorrect_link_state_err_cnt),
4947 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_tx_linkdown_err_cnt),
4950 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4951 			"EgressFifoUnderrunOrParityErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4954 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_egress_reserved_2_err_cnt),
4957 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_pkt_integrity_mem_unc_err_cnt),
4960 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_tx_pkt_integrity_mem_cor_err_cnt),
4963 /* SendErrStatus */
4964 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_send_csr_write_bad_addr_err_cnt),
4967 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_send_csr_read_bad_addr_err_cnt),
4970 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_send_csr_parity_cnt),
4973 /* SendCtxtErrStatus */
4974 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_pio_write_out_of_bounds_err_cnt),
4977 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_pio_write_overflow_err_cnt),
4980 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4981 			0, 0, CNTR_NORMAL,
4982 			access_pio_write_crosses_boundary_err_cnt),
4983 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_pio_disallowed_packet_err_cnt),
4986 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_pio_inconsistent_sop_err_cnt),
4989 /* SendDmaEngErrStatus */
4990 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4991 			0, 0, CNTR_NORMAL,
4992 			access_sdma_header_request_fifo_cor_err_cnt),
4993 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4994 			CNTR_NORMAL,
4995 			access_sdma_header_storage_cor_err_cnt),
4996 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4997 			CNTR_NORMAL,
4998 			access_sdma_packet_tracking_cor_err_cnt),
4999 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_sdma_assembly_cor_err_cnt),
5002 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_sdma_desc_table_cor_err_cnt),
5005 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5006 			0, 0, CNTR_NORMAL,
5007 			access_sdma_header_request_fifo_unc_err_cnt),
5008 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_header_storage_unc_err_cnt),
5011 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5012 			CNTR_NORMAL,
5013 			access_sdma_packet_tracking_unc_err_cnt),
5014 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_assembly_unc_err_cnt),
5017 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_desc_table_unc_err_cnt),
5020 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_timeout_err_cnt),
5023 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_header_length_err_cnt),
5026 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_header_address_err_cnt),
5029 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_header_select_err_cnt),
5032 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_reserved_9_err_cnt),
5035 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_packet_desc_overflow_err_cnt),
5038 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_length_mismatch_err_cnt),
5041 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_halt_err_cnt),
5044 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_mem_read_err_cnt),
5047 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_first_desc_err_cnt),
5050 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_tail_out_of_bounds_err_cnt),
5053 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_too_long_err_cnt),
5056 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5057 			CNTR_NORMAL,
5058 			access_sdma_gen_mismatch_err_cnt),
5059 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5060 			CNTR_NORMAL,
5061 			access_sdma_wrong_dw_err_cnt),
5062 };
5063 
5064 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5065 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5078 			CNTR_NORMAL),
5079 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5080 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5081 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5082 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5083 				      CNTR_SYNTH | CNTR_VL),
5084 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5085 				     CNTR_SYNTH | CNTR_VL),
5086 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5087 				      CNTR_SYNTH | CNTR_VL),
5088 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5089 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5090 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			     access_sw_link_dn_cnt),
5092 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5093 			   access_sw_link_up_cnt),
5094 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5095 				 access_sw_unknown_frame_cnt),
5096 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5097 			     access_sw_xmit_discards),
5098 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5099 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5100 				access_sw_xmit_discards),
5101 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5102 				 access_xmit_constraint_errs),
5103 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5104 				access_rcv_constraint_errs),
5105 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5106 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5107 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5108 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5109 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5110 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5111 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5112 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5113 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5114 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5115 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5116 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5117 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5118 			       access_sw_cpu_rc_acks),
5119 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5120 				access_sw_cpu_rc_qacks),
5121 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5122 				       access_sw_cpu_rc_delayed_comp),
5123 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5124 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5125 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5126 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5127 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5128 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5129 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5130 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5131 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5132 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5133 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5134 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5135 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5136 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5137 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5138 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5139 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5140 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5141 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5142 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5143 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5144 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5145 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5146 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5147 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5148 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5149 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5150 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5151 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5152 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5153 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5154 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5155 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5156 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5157 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5158 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5159 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5160 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5161 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5162 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5163 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5164 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5165 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5166 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5167 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5168 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5169 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5170 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5171 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5172 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5173 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5174 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5175 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5176 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5177 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5178 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5179 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5180 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5181 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5182 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5183 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5184 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5185 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5186 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5187 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5188 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5189 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5190 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5191 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5192 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5193 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5194 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5195 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5196 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5197 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5198 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5199 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5200 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5201 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5202 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5203 };
5204 
5205 /* ======================================================================== */
5206 
5207 /* return true if this is chip revision revision a */
5208 int is_ax(struct hfi1_devdata *dd)
5209 {
5210 	u8 chip_rev_minor =
5211 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5212 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5213 	return (chip_rev_minor & 0xf0) == 0;
5214 }
5215 
5216 /* return true if this is chip revision revision b */
5217 int is_bx(struct hfi1_devdata *dd)
5218 {
5219 	u8 chip_rev_minor =
5220 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5221 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5222 	return (chip_rev_minor & 0xF0) == 0x10;
5223 }
5224 
5225 /*
5226  * Append string s to buffer buf.  Arguments curp and len are the current
5227  * position and remaining length, respectively.
5228  *
5229  * return 0 on success, 1 on out of room
5230  */
5231 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5232 {
5233 	char *p = *curp;
5234 	int len = *lenp;
5235 	int result = 0; /* success */
5236 	char c;
5237 
5238 	/* add a comma, if first in the buffer */
5239 	if (p != buf) {
5240 		if (len == 0) {
5241 			result = 1; /* out of room */
5242 			goto done;
5243 		}
5244 		*p++ = ',';
5245 		len--;
5246 	}
5247 
5248 	/* copy the string */
5249 	while ((c = *s++) != 0) {
5250 		if (len == 0) {
5251 			result = 1; /* out of room */
5252 			goto done;
5253 		}
5254 		*p++ = c;
5255 		len--;
5256 	}
5257 
5258 done:
5259 	/* write return values */
5260 	*curp = p;
5261 	*lenp = len;
5262 
5263 	return result;
5264 }
5265 
5266 /*
5267  * Using the given flag table, print a comma separated string into
5268  * the buffer.  End in '*' if the buffer is too short.
5269  */
5270 static char *flag_string(char *buf, int buf_len, u64 flags,
5271 			 struct flag_table *table, int table_size)
5272 {
5273 	char extra[32];
5274 	char *p = buf;
5275 	int len = buf_len;
5276 	int no_room = 0;
5277 	int i;
5278 
5279 	/* make sure there is at least 2 so we can form "*" */
5280 	if (len < 2)
5281 		return "";
5282 
5283 	len--;	/* leave room for a nul */
5284 	for (i = 0; i < table_size; i++) {
5285 		if (flags & table[i].flag) {
5286 			no_room = append_str(buf, &p, &len, table[i].str);
5287 			if (no_room)
5288 				break;
5289 			flags &= ~table[i].flag;
5290 		}
5291 	}
5292 
5293 	/* any undocumented bits left? */
5294 	if (!no_room && flags) {
5295 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5296 		no_room = append_str(buf, &p, &len, extra);
5297 	}
5298 
5299 	/* add * if ran out of room */
5300 	if (no_room) {
5301 		/* may need to back up to add space for a '*' */
5302 		if (len == 0)
5303 			--p;
5304 		*p++ = '*';
5305 	}
5306 
5307 	/* add final nul - space already allocated above */
5308 	*p = 0;
5309 	return buf;
5310 }
5311 
5312 /* first 8 CCE error interrupt source names */
5313 static const char * const cce_misc_names[] = {
5314 	"CceErrInt",		/* 0 */
5315 	"RxeErrInt",		/* 1 */
5316 	"MiscErrInt",		/* 2 */
5317 	"Reserved3",		/* 3 */
5318 	"PioErrInt",		/* 4 */
5319 	"SDmaErrInt",		/* 5 */
5320 	"EgressErrInt",		/* 6 */
5321 	"TxeErrInt"		/* 7 */
5322 };
5323 
5324 /*
5325  * Return the miscellaneous error interrupt name.
5326  */
5327 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5328 {
5329 	if (source < ARRAY_SIZE(cce_misc_names))
5330 		strncpy(buf, cce_misc_names[source], bsize);
5331 	else
5332 		snprintf(buf, bsize, "Reserved%u",
5333 			 source + IS_GENERAL_ERR_START);
5334 
5335 	return buf;
5336 }
5337 
5338 /*
5339  * Return the SDMA engine error interrupt name.
5340  */
5341 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5342 {
5343 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5344 	return buf;
5345 }
5346 
5347 /*
5348  * Return the send context error interrupt name.
5349  */
5350 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5351 {
5352 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5353 	return buf;
5354 }
5355 
5356 static const char * const various_names[] = {
5357 	"PbcInt",
5358 	"GpioAssertInt",
5359 	"Qsfp1Int",
5360 	"Qsfp2Int",
5361 	"TCritInt"
5362 };
5363 
5364 /*
5365  * Return the various interrupt name.
5366  */
5367 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5368 {
5369 	if (source < ARRAY_SIZE(various_names))
5370 		strncpy(buf, various_names[source], bsize);
5371 	else
5372 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5373 	return buf;
5374 }
5375 
5376 /*
5377  * Return the DC interrupt name.
5378  */
5379 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5380 {
5381 	static const char * const dc_int_names[] = {
5382 		"common",
5383 		"lcb",
5384 		"8051",
5385 		"lbm"	/* local block merge */
5386 	};
5387 
5388 	if (source < ARRAY_SIZE(dc_int_names))
5389 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5390 	else
5391 		snprintf(buf, bsize, "DCInt%u", source);
5392 	return buf;
5393 }
5394 
5395 static const char * const sdma_int_names[] = {
5396 	"SDmaInt",
5397 	"SdmaIdleInt",
5398 	"SdmaProgressInt",
5399 };
5400 
5401 /*
5402  * Return the SDMA engine interrupt name.
5403  */
5404 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5405 {
5406 	/* what interrupt */
5407 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5408 	/* which engine */
5409 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5410 
5411 	if (likely(what < 3))
5412 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5413 	else
5414 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5415 	return buf;
5416 }
5417 
5418 /*
5419  * Return the receive available interrupt name.
5420  */
5421 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5422 {
5423 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5424 	return buf;
5425 }
5426 
5427 /*
5428  * Return the receive urgent interrupt name.
5429  */
5430 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5431 {
5432 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5433 	return buf;
5434 }
5435 
5436 /*
5437  * Return the send credit interrupt name.
5438  */
5439 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5440 {
5441 	snprintf(buf, bsize, "SendCreditInt%u", source);
5442 	return buf;
5443 }
5444 
5445 /*
5446  * Return the reserved interrupt name.
5447  */
5448 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5449 {
5450 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5451 	return buf;
5452 }
5453 
5454 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5455 {
5456 	return flag_string(buf, buf_len, flags,
5457 			   cce_err_status_flags,
5458 			   ARRAY_SIZE(cce_err_status_flags));
5459 }
5460 
5461 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5462 {
5463 	return flag_string(buf, buf_len, flags,
5464 			   rxe_err_status_flags,
5465 			   ARRAY_SIZE(rxe_err_status_flags));
5466 }
5467 
5468 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5469 {
5470 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5471 			   ARRAY_SIZE(misc_err_status_flags));
5472 }
5473 
5474 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5475 {
5476 	return flag_string(buf, buf_len, flags,
5477 			   pio_err_status_flags,
5478 			   ARRAY_SIZE(pio_err_status_flags));
5479 }
5480 
5481 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483 	return flag_string(buf, buf_len, flags,
5484 			   sdma_err_status_flags,
5485 			   ARRAY_SIZE(sdma_err_status_flags));
5486 }
5487 
5488 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5489 {
5490 	return flag_string(buf, buf_len, flags,
5491 			   egress_err_status_flags,
5492 			   ARRAY_SIZE(egress_err_status_flags));
5493 }
5494 
5495 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5496 {
5497 	return flag_string(buf, buf_len, flags,
5498 			   egress_err_info_flags,
5499 			   ARRAY_SIZE(egress_err_info_flags));
5500 }
5501 
5502 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5503 {
5504 	return flag_string(buf, buf_len, flags,
5505 			   send_err_status_flags,
5506 			   ARRAY_SIZE(send_err_status_flags));
5507 }
5508 
5509 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5510 {
5511 	char buf[96];
5512 	int i = 0;
5513 
5514 	/*
5515 	 * For most these errors, there is nothing that can be done except
5516 	 * report or record it.
5517 	 */
5518 	dd_dev_info(dd, "CCE Error: %s\n",
5519 		    cce_err_status_string(buf, sizeof(buf), reg));
5520 
5521 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5522 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5523 		/* this error requires a manual drop into SPC freeze mode */
5524 		/* then a fix up */
5525 		start_freeze_handling(dd->pport, FREEZE_SELF);
5526 	}
5527 
5528 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5529 		if (reg & (1ull << i)) {
5530 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5531 			/* maintain a counter over all cce_err_status errors */
5532 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5533 		}
5534 	}
5535 }
5536 
5537 /*
5538  * Check counters for receive errors that do not have an interrupt
5539  * associated with them.
5540  */
5541 #define RCVERR_CHECK_TIME 10
5542 static void update_rcverr_timer(struct timer_list *t)
5543 {
5544 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5545 	struct hfi1_pportdata *ppd = dd->pport;
5546 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5547 
5548 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5549 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5550 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5551 		set_link_down_reason(
5552 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5553 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5554 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5555 	}
5556 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5557 
5558 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5559 }
5560 
5561 static int init_rcverr(struct hfi1_devdata *dd)
5562 {
5563 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5564 	/* Assume the hardware counter has been reset */
5565 	dd->rcv_ovfl_cnt = 0;
5566 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5567 }
5568 
5569 static void free_rcverr(struct hfi1_devdata *dd)
5570 {
5571 	if (dd->rcverr_timer.function)
5572 		del_timer_sync(&dd->rcverr_timer);
5573 }
5574 
5575 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576 {
5577 	char buf[96];
5578 	int i = 0;
5579 
5580 	dd_dev_info(dd, "Receive Error: %s\n",
5581 		    rxe_err_status_string(buf, sizeof(buf), reg));
5582 
5583 	if (reg & ALL_RXE_FREEZE_ERR) {
5584 		int flags = 0;
5585 
5586 		/*
5587 		 * Freeze mode recovery is disabled for the errors
5588 		 * in RXE_FREEZE_ABORT_MASK
5589 		 */
5590 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591 			flags = FREEZE_ABORT;
5592 
5593 		start_freeze_handling(dd->pport, flags);
5594 	}
5595 
5596 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 		if (reg & (1ull << i))
5598 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 	}
5600 }
5601 
5602 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603 {
5604 	char buf[96];
5605 	int i = 0;
5606 
5607 	dd_dev_info(dd, "Misc Error: %s",
5608 		    misc_err_status_string(buf, sizeof(buf), reg));
5609 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 		if (reg & (1ull << i))
5611 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 	}
5613 }
5614 
5615 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617 	char buf[96];
5618 	int i = 0;
5619 
5620 	dd_dev_info(dd, "PIO Error: %s\n",
5621 		    pio_err_status_string(buf, sizeof(buf), reg));
5622 
5623 	if (reg & ALL_PIO_FREEZE_ERR)
5624 		start_freeze_handling(dd->pport, 0);
5625 
5626 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 		if (reg & (1ull << i))
5628 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 	}
5630 }
5631 
5632 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633 {
5634 	char buf[96];
5635 	int i = 0;
5636 
5637 	dd_dev_info(dd, "SDMA Error: %s\n",
5638 		    sdma_err_status_string(buf, sizeof(buf), reg));
5639 
5640 	if (reg & ALL_SDMA_FREEZE_ERR)
5641 		start_freeze_handling(dd->pport, 0);
5642 
5643 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 	}
5647 }
5648 
5649 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650 {
5651 	incr_cntr64(&ppd->port_xmit_discards);
5652 }
5653 
5654 static void count_port_inactive(struct hfi1_devdata *dd)
5655 {
5656 	__count_port_discards(dd->pport);
5657 }
5658 
5659 /*
5660  * We have had a "disallowed packet" error during egress. Determine the
5661  * integrity check which failed, and update relevant error counter, etc.
5662  *
5663  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664  * bit of state per integrity check, and so we can miss the reason for an
5665  * egress error if more than one packet fails the same integrity check
5666  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667  */
5668 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 					int vl)
5670 {
5671 	struct hfi1_pportdata *ppd = dd->pport;
5672 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 	char buf[96];
5675 
5676 	/* clear down all observed info as quickly as possible after read */
5677 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678 
5679 	dd_dev_info(dd,
5680 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5682 
5683 	/* Eventually add other counters for each bit */
5684 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 		int weight, i;
5686 
5687 		/*
5688 		 * Count all applicable bits as individual errors and
5689 		 * attribute them to the packet that triggered this handler.
5690 		 * This may not be completely accurate due to limitations
5691 		 * on the available hardware error information.  There is
5692 		 * a single information register and any number of error
5693 		 * packets may have occurred and contributed to it before
5694 		 * this routine is called.  This means that:
5695 		 * a) If multiple packets with the same error occur before
5696 		 *    this routine is called, earlier packets are missed.
5697 		 *    There is only a single bit for each error type.
5698 		 * b) Errors may not be attributed to the correct VL.
5699 		 *    The driver is attributing all bits in the info register
5700 		 *    to the packet that triggered this call, but bits
5701 		 *    could be an accumulation of different packets with
5702 		 *    different VLs.
5703 		 * c) A single error packet may have multiple counts attached
5704 		 *    to it.  There is no way for the driver to know if
5705 		 *    multiple bits set in the info register are due to a
5706 		 *    single packet or multiple packets.  The driver assumes
5707 		 *    multiple packets.
5708 		 */
5709 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710 		for (i = 0; i < weight; i++) {
5711 			__count_port_discards(ppd);
5712 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 			else if (vl == 15)
5715 				incr_cntr64(&ppd->port_xmit_discards_vl
5716 					    [C_VL_15]);
5717 		}
5718 	}
5719 }
5720 
5721 /*
5722  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723  * register. Does it represent a 'port inactive' error?
5724  */
5725 static inline int port_inactive_err(u64 posn)
5726 {
5727 	return (posn >= SEES(TX_LINKDOWN) &&
5728 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5729 }
5730 
5731 /*
5732  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733  * register. Does it represent a 'disallowed packet' error?
5734  */
5735 static inline int disallowed_pkt_err(int posn)
5736 {
5737 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739 }
5740 
5741 /*
5742  * Input value is a bit position of one of the SDMA engine disallowed
5743  * packet errors.  Return which engine.  Use of this must be guarded by
5744  * disallowed_pkt_err().
5745  */
5746 static inline int disallowed_pkt_engine(int posn)
5747 {
5748 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749 }
5750 
5751 /*
5752  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5753  * be done.
5754  */
5755 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756 {
5757 	struct sdma_vl_map *m;
5758 	int vl;
5759 
5760 	/* range check */
5761 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 		return -1;
5763 
5764 	rcu_read_lock();
5765 	m = rcu_dereference(dd->sdma_map);
5766 	vl = m->engine_to_vl[engine];
5767 	rcu_read_unlock();
5768 
5769 	return vl;
5770 }
5771 
5772 /*
5773  * Translate the send context (sofware index) into a VL.  Return -1 if the
5774  * translation cannot be done.
5775  */
5776 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777 {
5778 	struct send_context_info *sci;
5779 	struct send_context *sc;
5780 	int i;
5781 
5782 	sci = &dd->send_contexts[sw_index];
5783 
5784 	/* there is no information for user (PSM) and ack contexts */
5785 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786 		return -1;
5787 
5788 	sc = sci->sc;
5789 	if (!sc)
5790 		return -1;
5791 	if (dd->vld[15].sc == sc)
5792 		return 15;
5793 	for (i = 0; i < num_vls; i++)
5794 		if (dd->vld[i].sc == sc)
5795 			return i;
5796 
5797 	return -1;
5798 }
5799 
5800 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801 {
5802 	u64 reg_copy = reg, handled = 0;
5803 	char buf[96];
5804 	int i = 0;
5805 
5806 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 		start_freeze_handling(dd->pport, 0);
5808 	else if (is_ax(dd) &&
5809 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811 		start_freeze_handling(dd->pport, 0);
5812 
5813 	while (reg_copy) {
5814 		int posn = fls64(reg_copy);
5815 		/* fls64() returns a 1-based offset, we want it zero based */
5816 		int shift = posn - 1;
5817 		u64 mask = 1ULL << shift;
5818 
5819 		if (port_inactive_err(shift)) {
5820 			count_port_inactive(dd);
5821 			handled |= mask;
5822 		} else if (disallowed_pkt_err(shift)) {
5823 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824 
5825 			handle_send_egress_err_info(dd, vl);
5826 			handled |= mask;
5827 		}
5828 		reg_copy &= ~mask;
5829 	}
5830 
5831 	reg &= ~handled;
5832 
5833 	if (reg)
5834 		dd_dev_info(dd, "Egress Error: %s\n",
5835 			    egress_err_status_string(buf, sizeof(buf), reg));
5836 
5837 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 		if (reg & (1ull << i))
5839 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 	}
5841 }
5842 
5843 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844 {
5845 	char buf[96];
5846 	int i = 0;
5847 
5848 	dd_dev_info(dd, "Send Error: %s\n",
5849 		    send_err_status_string(buf, sizeof(buf), reg));
5850 
5851 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 		if (reg & (1ull << i))
5853 			incr_cntr64(&dd->send_err_status_cnt[i]);
5854 	}
5855 }
5856 
5857 /*
5858  * The maximum number of times the error clear down will loop before
5859  * blocking a repeating error.  This value is arbitrary.
5860  */
5861 #define MAX_CLEAR_COUNT 20
5862 
5863 /*
5864  * Clear and handle an error register.  All error interrupts are funneled
5865  * through here to have a central location to correctly handle single-
5866  * or multi-shot errors.
5867  *
5868  * For non per-context registers, call this routine with a context value
5869  * of 0 so the per-context offset is zero.
5870  *
5871  * If the handler loops too many times, assume that something is wrong
5872  * and can't be fixed, so mask the error bits.
5873  */
5874 static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 				 u32 context,
5876 				 const struct err_reg_info *eri)
5877 {
5878 	u64 reg;
5879 	u32 count;
5880 
5881 	/* read in a loop until no more errors are seen */
5882 	count = 0;
5883 	while (1) {
5884 		reg = read_kctxt_csr(dd, context, eri->status);
5885 		if (reg == 0)
5886 			break;
5887 		write_kctxt_csr(dd, context, eri->clear, reg);
5888 		if (likely(eri->handler))
5889 			eri->handler(dd, context, reg);
5890 		count++;
5891 		if (count > MAX_CLEAR_COUNT) {
5892 			u64 mask;
5893 
5894 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895 				   eri->desc, reg);
5896 			/*
5897 			 * Read-modify-write so any other masked bits
5898 			 * remain masked.
5899 			 */
5900 			mask = read_kctxt_csr(dd, context, eri->mask);
5901 			mask &= ~reg;
5902 			write_kctxt_csr(dd, context, eri->mask, mask);
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 /*
5909  * CCE block "misc" interrupt.  Source is < 16.
5910  */
5911 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912 {
5913 	const struct err_reg_info *eri = &misc_errs[source];
5914 
5915 	if (eri->handler) {
5916 		interrupt_clear_down(dd, 0, eri);
5917 	} else {
5918 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919 			   source);
5920 	}
5921 }
5922 
5923 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924 {
5925 	return flag_string(buf, buf_len, flags,
5926 			   sc_err_status_flags,
5927 			   ARRAY_SIZE(sc_err_status_flags));
5928 }
5929 
5930 /*
5931  * Send context error interrupt.  Source (hw_context) is < 160.
5932  *
5933  * All send context errors cause the send context to halt.  The normal
5934  * clear-down mechanism cannot be used because we cannot clear the
5935  * error bits until several other long-running items are done first.
5936  * This is OK because with the context halted, nothing else is going
5937  * to happen on it anyway.
5938  */
5939 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 				unsigned int hw_context)
5941 {
5942 	struct send_context_info *sci;
5943 	struct send_context *sc;
5944 	char flags[96];
5945 	u64 status;
5946 	u32 sw_index;
5947 	int i = 0;
5948 	unsigned long irq_flags;
5949 
5950 	sw_index = dd->hw_to_sw[hw_context];
5951 	if (sw_index >= dd->num_send_contexts) {
5952 		dd_dev_err(dd,
5953 			   "out of range sw index %u for send context %u\n",
5954 			   sw_index, hw_context);
5955 		return;
5956 	}
5957 	sci = &dd->send_contexts[sw_index];
5958 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5959 	sc = sci->sc;
5960 	if (!sc) {
5961 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5962 			   sw_index, hw_context);
5963 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5964 		return;
5965 	}
5966 
5967 	/* tell the software that a halt has begun */
5968 	sc_stop(sc, SCF_HALTED);
5969 
5970 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5971 
5972 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5973 		    send_context_err_status_string(flags, sizeof(flags),
5974 						   status));
5975 
5976 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5977 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5978 
5979 	/*
5980 	 * Automatically restart halted kernel contexts out of interrupt
5981 	 * context.  User contexts must ask the driver to restart the context.
5982 	 */
5983 	if (sc->type != SC_USER)
5984 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5985 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5986 
5987 	/*
5988 	 * Update the counters for the corresponding status bits.
5989 	 * Note that these particular counters are aggregated over all
5990 	 * 160 contexts.
5991 	 */
5992 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5993 		if (status & (1ull << i))
5994 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5995 	}
5996 }
5997 
5998 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5999 				unsigned int source, u64 status)
6000 {
6001 	struct sdma_engine *sde;
6002 	int i = 0;
6003 
6004 	sde = &dd->per_sdma[source];
6005 #ifdef CONFIG_SDMA_VERBOSITY
6006 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6007 		   slashstrip(__FILE__), __LINE__, __func__);
6008 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6009 		   sde->this_idx, source, (unsigned long long)status);
6010 #endif
6011 	sde->err_cnt++;
6012 	sdma_engine_error(sde, status);
6013 
6014 	/*
6015 	* Update the counters for the corresponding status bits.
6016 	* Note that these particular counters are aggregated over
6017 	* all 16 DMA engines.
6018 	*/
6019 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6020 		if (status & (1ull << i))
6021 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6022 	}
6023 }
6024 
6025 /*
6026  * CCE block SDMA error interrupt.  Source is < 16.
6027  */
6028 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6029 {
6030 #ifdef CONFIG_SDMA_VERBOSITY
6031 	struct sdma_engine *sde = &dd->per_sdma[source];
6032 
6033 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6034 		   slashstrip(__FILE__), __LINE__, __func__);
6035 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6036 		   source);
6037 	sdma_dumpstate(sde);
6038 #endif
6039 	interrupt_clear_down(dd, source, &sdma_eng_err);
6040 }
6041 
6042 /*
6043  * CCE block "various" interrupt.  Source is < 8.
6044  */
6045 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6046 {
6047 	const struct err_reg_info *eri = &various_err[source];
6048 
6049 	/*
6050 	 * TCritInt cannot go through interrupt_clear_down()
6051 	 * because it is not a second tier interrupt. The handler
6052 	 * should be called directly.
6053 	 */
6054 	if (source == TCRIT_INT_SOURCE)
6055 		handle_temp_err(dd);
6056 	else if (eri->handler)
6057 		interrupt_clear_down(dd, 0, eri);
6058 	else
6059 		dd_dev_info(dd,
6060 			    "%s: Unimplemented/reserved interrupt %d\n",
6061 			    __func__, source);
6062 }
6063 
6064 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6065 {
6066 	/* src_ctx is always zero */
6067 	struct hfi1_pportdata *ppd = dd->pport;
6068 	unsigned long flags;
6069 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6070 
6071 	if (reg & QSFP_HFI0_MODPRST_N) {
6072 		if (!qsfp_mod_present(ppd)) {
6073 			dd_dev_info(dd, "%s: QSFP module removed\n",
6074 				    __func__);
6075 
6076 			ppd->driver_link_ready = 0;
6077 			/*
6078 			 * Cable removed, reset all our information about the
6079 			 * cache and cable capabilities
6080 			 */
6081 
6082 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 			/*
6084 			 * We don't set cache_refresh_required here as we expect
6085 			 * an interrupt when a cable is inserted
6086 			 */
6087 			ppd->qsfp_info.cache_valid = 0;
6088 			ppd->qsfp_info.reset_needed = 0;
6089 			ppd->qsfp_info.limiting_active = 0;
6090 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6091 					       flags);
6092 			/* Invert the ModPresent pin now to detect plug-in */
6093 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6094 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6095 
6096 			if ((ppd->offline_disabled_reason >
6097 			  HFI1_ODR_MASK(
6098 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6099 			  (ppd->offline_disabled_reason ==
6100 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6101 				ppd->offline_disabled_reason =
6102 				HFI1_ODR_MASK(
6103 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6104 
6105 			if (ppd->host_link_state == HLS_DN_POLL) {
6106 				/*
6107 				 * The link is still in POLL. This means
6108 				 * that the normal link down processing
6109 				 * will not happen. We have to do it here
6110 				 * before turning the DC off.
6111 				 */
6112 				queue_work(ppd->link_wq, &ppd->link_down_work);
6113 			}
6114 		} else {
6115 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6116 				    __func__);
6117 
6118 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6119 			ppd->qsfp_info.cache_valid = 0;
6120 			ppd->qsfp_info.cache_refresh_required = 1;
6121 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6122 					       flags);
6123 
6124 			/*
6125 			 * Stop inversion of ModPresent pin to detect
6126 			 * removal of the cable
6127 			 */
6128 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6129 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6130 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6131 
6132 			ppd->offline_disabled_reason =
6133 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6134 		}
6135 	}
6136 
6137 	if (reg & QSFP_HFI0_INT_N) {
6138 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6139 			    __func__);
6140 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6141 		ppd->qsfp_info.check_interrupt_flags = 1;
6142 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6143 	}
6144 
6145 	/* Schedule the QSFP work only if there is a cable attached. */
6146 	if (qsfp_mod_present(ppd))
6147 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6148 }
6149 
6150 static int request_host_lcb_access(struct hfi1_devdata *dd)
6151 {
6152 	int ret;
6153 
6154 	ret = do_8051_command(dd, HCMD_MISC,
6155 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6156 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6157 	if (ret != HCMD_SUCCESS) {
6158 		dd_dev_err(dd, "%s: command failed with error %d\n",
6159 			   __func__, ret);
6160 	}
6161 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6162 }
6163 
6164 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6165 {
6166 	int ret;
6167 
6168 	ret = do_8051_command(dd, HCMD_MISC,
6169 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6170 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6171 	if (ret != HCMD_SUCCESS) {
6172 		dd_dev_err(dd, "%s: command failed with error %d\n",
6173 			   __func__, ret);
6174 	}
6175 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6176 }
6177 
6178 /*
6179  * Set the LCB selector - allow host access.  The DCC selector always
6180  * points to the host.
6181  */
6182 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6183 {
6184 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6185 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6186 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6187 }
6188 
6189 /*
6190  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6191  * points to the host.
6192  */
6193 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6194 {
6195 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6196 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6197 }
6198 
6199 /*
6200  * Acquire LCB access from the 8051.  If the host already has access,
6201  * just increment a counter.  Otherwise, inform the 8051 that the
6202  * host is taking access.
6203  *
6204  * Returns:
6205  *	0 on success
6206  *	-EBUSY if the 8051 has control and cannot be disturbed
6207  *	-errno if unable to acquire access from the 8051
6208  */
6209 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6210 {
6211 	struct hfi1_pportdata *ppd = dd->pport;
6212 	int ret = 0;
6213 
6214 	/*
6215 	 * Use the host link state lock so the operation of this routine
6216 	 * { link state check, selector change, count increment } can occur
6217 	 * as a unit against a link state change.  Otherwise there is a
6218 	 * race between the state change and the count increment.
6219 	 */
6220 	if (sleep_ok) {
6221 		mutex_lock(&ppd->hls_lock);
6222 	} else {
6223 		while (!mutex_trylock(&ppd->hls_lock))
6224 			udelay(1);
6225 	}
6226 
6227 	/* this access is valid only when the link is up */
6228 	if (ppd->host_link_state & HLS_DOWN) {
6229 		dd_dev_info(dd, "%s: link state %s not up\n",
6230 			    __func__, link_state_name(ppd->host_link_state));
6231 		ret = -EBUSY;
6232 		goto done;
6233 	}
6234 
6235 	if (dd->lcb_access_count == 0) {
6236 		ret = request_host_lcb_access(dd);
6237 		if (ret) {
6238 			dd_dev_err(dd,
6239 				   "%s: unable to acquire LCB access, err %d\n",
6240 				   __func__, ret);
6241 			goto done;
6242 		}
6243 		set_host_lcb_access(dd);
6244 	}
6245 	dd->lcb_access_count++;
6246 done:
6247 	mutex_unlock(&ppd->hls_lock);
6248 	return ret;
6249 }
6250 
6251 /*
6252  * Release LCB access by decrementing the use count.  If the count is moving
6253  * from 1 to 0, inform 8051 that it has control back.
6254  *
6255  * Returns:
6256  *	0 on success
6257  *	-errno if unable to release access to the 8051
6258  */
6259 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6260 {
6261 	int ret = 0;
6262 
6263 	/*
6264 	 * Use the host link state lock because the acquire needed it.
6265 	 * Here, we only need to keep { selector change, count decrement }
6266 	 * as a unit.
6267 	 */
6268 	if (sleep_ok) {
6269 		mutex_lock(&dd->pport->hls_lock);
6270 	} else {
6271 		while (!mutex_trylock(&dd->pport->hls_lock))
6272 			udelay(1);
6273 	}
6274 
6275 	if (dd->lcb_access_count == 0) {
6276 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6277 			   __func__);
6278 		goto done;
6279 	}
6280 
6281 	if (dd->lcb_access_count == 1) {
6282 		set_8051_lcb_access(dd);
6283 		ret = request_8051_lcb_access(dd);
6284 		if (ret) {
6285 			dd_dev_err(dd,
6286 				   "%s: unable to release LCB access, err %d\n",
6287 				   __func__, ret);
6288 			/* restore host access if the grant didn't work */
6289 			set_host_lcb_access(dd);
6290 			goto done;
6291 		}
6292 	}
6293 	dd->lcb_access_count--;
6294 done:
6295 	mutex_unlock(&dd->pport->hls_lock);
6296 	return ret;
6297 }
6298 
6299 /*
6300  * Initialize LCB access variables and state.  Called during driver load,
6301  * after most of the initialization is finished.
6302  *
6303  * The DC default is LCB access on for the host.  The driver defaults to
6304  * leaving access to the 8051.  Assign access now - this constrains the call
6305  * to this routine to be after all LCB set-up is done.  In particular, after
6306  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6307  */
6308 static void init_lcb_access(struct hfi1_devdata *dd)
6309 {
6310 	dd->lcb_access_count = 0;
6311 }
6312 
6313 /*
6314  * Write a response back to a 8051 request.
6315  */
6316 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6317 {
6318 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6319 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6320 		  (u64)return_code <<
6321 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6322 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6323 }
6324 
6325 /*
6326  * Handle host requests from the 8051.
6327  */
6328 static void handle_8051_request(struct hfi1_pportdata *ppd)
6329 {
6330 	struct hfi1_devdata *dd = ppd->dd;
6331 	u64 reg;
6332 	u16 data = 0;
6333 	u8 type;
6334 
6335 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6336 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6337 		return;	/* no request */
6338 
6339 	/* zero out COMPLETED so the response is seen */
6340 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6341 
6342 	/* extract request details */
6343 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6344 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6345 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6346 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6347 
6348 	switch (type) {
6349 	case HREQ_LOAD_CONFIG:
6350 	case HREQ_SAVE_CONFIG:
6351 	case HREQ_READ_CONFIG:
6352 	case HREQ_SET_TX_EQ_ABS:
6353 	case HREQ_SET_TX_EQ_REL:
6354 	case HREQ_ENABLE:
6355 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6356 			    type);
6357 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6358 		break;
6359 	case HREQ_LCB_RESET:
6360 		/* Put the LCB, RX FPE and TX FPE into reset */
6361 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6362 		/* Make sure the write completed */
6363 		(void)read_csr(dd, DCC_CFG_RESET);
6364 		/* Hold the reset long enough to take effect */
6365 		udelay(1);
6366 		/* Take the LCB, RX FPE and TX FPE out of reset */
6367 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6368 		hreq_response(dd, HREQ_SUCCESS, 0);
6369 
6370 		break;
6371 	case HREQ_CONFIG_DONE:
6372 		hreq_response(dd, HREQ_SUCCESS, 0);
6373 		break;
6374 
6375 	case HREQ_INTERFACE_TEST:
6376 		hreq_response(dd, HREQ_SUCCESS, data);
6377 		break;
6378 	default:
6379 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381 		break;
6382 	}
6383 }
6384 
6385 /*
6386  * Set up allocation unit vaulue.
6387  */
6388 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389 {
6390 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391 
6392 	/* do not modify other values in the register */
6393 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396 }
6397 
6398 /*
6399  * Set up initial VL15 credits of the remote.  Assumes the rest of
6400  * the CM credit registers are zero from a previous global or credit reset.
6401  * Shared limit for VL15 will always be 0.
6402  */
6403 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404 {
6405 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406 
6407 	/* set initial values for total and shared credit limit */
6408 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410 
6411 	/*
6412 	 * Set total limit to be equal to VL15 credits.
6413 	 * Leave shared limit at 0.
6414 	 */
6415 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417 
6418 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420 }
6421 
6422 /*
6423  * Zero all credit details from the previous connection and
6424  * reset the CM manager's internal counters.
6425  */
6426 void reset_link_credits(struct hfi1_devdata *dd)
6427 {
6428 	int i;
6429 
6430 	/* remove all previous VL credit limits */
6431 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435 	/* reset the CM block */
6436 	pio_send_control(dd, PSC_CM_RESET);
6437 	/* reset cached value */
6438 	dd->vl15buf_cached = 0;
6439 }
6440 
6441 /* convert a vCU to a CU */
6442 static u32 vcu_to_cu(u8 vcu)
6443 {
6444 	return 1 << vcu;
6445 }
6446 
6447 /* convert a CU to a vCU */
6448 static u8 cu_to_vcu(u32 cu)
6449 {
6450 	return ilog2(cu);
6451 }
6452 
6453 /* convert a vAU to an AU */
6454 static u32 vau_to_au(u8 vau)
6455 {
6456 	return 8 * (1 << vau);
6457 }
6458 
6459 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460 {
6461 	ppd->sm_trap_qp = 0x0;
6462 	ppd->sa_qp = 0x1;
6463 }
6464 
6465 /*
6466  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6467  */
6468 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469 {
6470 	u64 reg;
6471 
6472 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6474 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479 	reg = read_csr(dd, DCC_CFG_RESET);
6480 	write_csr(dd, DCC_CFG_RESET, reg |
6481 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6482 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6483 	if (!abort) {
6484 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6485 		write_csr(dd, DCC_CFG_RESET, reg);
6486 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6487 	}
6488 }
6489 
6490 /*
6491  * This routine should be called after the link has been transitioned to
6492  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6493  * reset).
6494  *
6495  * The expectation is that the caller of this routine would have taken
6496  * care of properly transitioning the link into the correct state.
6497  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6498  *       before calling this function.
6499  */
6500 static void _dc_shutdown(struct hfi1_devdata *dd)
6501 {
6502 	lockdep_assert_held(&dd->dc8051_lock);
6503 
6504 	if (dd->dc_shutdown)
6505 		return;
6506 
6507 	dd->dc_shutdown = 1;
6508 	/* Shutdown the LCB */
6509 	lcb_shutdown(dd, 1);
6510 	/*
6511 	 * Going to OFFLINE would have causes the 8051 to put the
6512 	 * SerDes into reset already. Just need to shut down the 8051,
6513 	 * itself.
6514 	 */
6515 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6516 }
6517 
6518 static void dc_shutdown(struct hfi1_devdata *dd)
6519 {
6520 	mutex_lock(&dd->dc8051_lock);
6521 	_dc_shutdown(dd);
6522 	mutex_unlock(&dd->dc8051_lock);
6523 }
6524 
6525 /*
6526  * Calling this after the DC has been brought out of reset should not
6527  * do any damage.
6528  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6529  *       before calling this function.
6530  */
6531 static void _dc_start(struct hfi1_devdata *dd)
6532 {
6533 	lockdep_assert_held(&dd->dc8051_lock);
6534 
6535 	if (!dd->dc_shutdown)
6536 		return;
6537 
6538 	/* Take the 8051 out of reset */
6539 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6540 	/* Wait until 8051 is ready */
6541 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6542 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6543 			   __func__);
6544 
6545 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6546 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6547 	/* lcb_shutdown() with abort=1 does not restore these */
6548 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6549 	dd->dc_shutdown = 0;
6550 }
6551 
6552 static void dc_start(struct hfi1_devdata *dd)
6553 {
6554 	mutex_lock(&dd->dc8051_lock);
6555 	_dc_start(dd);
6556 	mutex_unlock(&dd->dc8051_lock);
6557 }
6558 
6559 /*
6560  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6561  */
6562 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6563 {
6564 	u64 rx_radr, tx_radr;
6565 	u32 version;
6566 
6567 	if (dd->icode != ICODE_FPGA_EMULATION)
6568 		return;
6569 
6570 	/*
6571 	 * These LCB defaults on emulator _s are good, nothing to do here:
6572 	 *	LCB_CFG_TX_FIFOS_RADR
6573 	 *	LCB_CFG_RX_FIFOS_RADR
6574 	 *	LCB_CFG_LN_DCLK
6575 	 *	LCB_CFG_IGNORE_LOST_RCLK
6576 	 */
6577 	if (is_emulator_s(dd))
6578 		return;
6579 	/* else this is _p */
6580 
6581 	version = emulator_rev(dd);
6582 	if (!is_ax(dd))
6583 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6584 
6585 	if (version <= 0x12) {
6586 		/* release 0x12 and below */
6587 
6588 		/*
6589 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6590 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6591 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6592 		 */
6593 		rx_radr =
6594 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6595 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6596 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6597 		/*
6598 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6599 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6600 		 */
6601 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6602 	} else if (version <= 0x18) {
6603 		/* release 0x13 up to 0x18 */
6604 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6605 		rx_radr =
6606 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 	} else if (version == 0x19) {
6611 		/* release 0x19 */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6613 		rx_radr =
6614 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	} else if (version == 0x1a) {
6619 		/* release 0x1a */
6620 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6621 		rx_radr =
6622 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6627 	} else {
6628 		/* release 0x1b and higher */
6629 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6630 		rx_radr =
6631 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6632 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6633 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6634 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6635 	}
6636 
6637 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6638 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6639 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6640 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6641 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6642 }
6643 
6644 /*
6645  * Handle a SMA idle message
6646  *
6647  * This is a work-queue function outside of the interrupt.
6648  */
6649 void handle_sma_message(struct work_struct *work)
6650 {
6651 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6652 							sma_message_work);
6653 	struct hfi1_devdata *dd = ppd->dd;
6654 	u64 msg;
6655 	int ret;
6656 
6657 	/*
6658 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6659 	 * is stripped off
6660 	 */
6661 	ret = read_idle_sma(dd, &msg);
6662 	if (ret)
6663 		return;
6664 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6665 	/*
6666 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6667 	 */
6668 	switch (msg & 0xff) {
6669 	case SMA_IDLE_ARM:
6670 		/*
6671 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6672 		 * State Transitions
6673 		 *
6674 		 * Only expected in INIT or ARMED, discard otherwise.
6675 		 */
6676 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6677 			ppd->neighbor_normal = 1;
6678 		break;
6679 	case SMA_IDLE_ACTIVE:
6680 		/*
6681 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6682 		 * State Transitions
6683 		 *
6684 		 * Can activate the node.  Discard otherwise.
6685 		 */
6686 		if (ppd->host_link_state == HLS_UP_ARMED &&
6687 		    ppd->is_active_optimize_enabled) {
6688 			ppd->neighbor_normal = 1;
6689 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6690 			if (ret)
6691 				dd_dev_err(
6692 					dd,
6693 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6694 					__func__);
6695 		}
6696 		break;
6697 	default:
6698 		dd_dev_err(dd,
6699 			   "%s: received unexpected SMA idle message 0x%llx\n",
6700 			   __func__, msg);
6701 		break;
6702 	}
6703 }
6704 
6705 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6706 {
6707 	u64 rcvctrl;
6708 	unsigned long flags;
6709 
6710 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6711 	rcvctrl = read_csr(dd, RCV_CTRL);
6712 	rcvctrl |= add;
6713 	rcvctrl &= ~clear;
6714 	write_csr(dd, RCV_CTRL, rcvctrl);
6715 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6716 }
6717 
6718 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6719 {
6720 	adjust_rcvctrl(dd, add, 0);
6721 }
6722 
6723 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6724 {
6725 	adjust_rcvctrl(dd, 0, clear);
6726 }
6727 
6728 /*
6729  * Called from all interrupt handlers to start handling an SPC freeze.
6730  */
6731 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6732 {
6733 	struct hfi1_devdata *dd = ppd->dd;
6734 	struct send_context *sc;
6735 	int i;
6736 
6737 	if (flags & FREEZE_SELF)
6738 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6739 
6740 	/* enter frozen mode */
6741 	dd->flags |= HFI1_FROZEN;
6742 
6743 	/* notify all SDMA engines that they are going into a freeze */
6744 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6745 
6746 	/* do halt pre-handling on all enabled send contexts */
6747 	for (i = 0; i < dd->num_send_contexts; i++) {
6748 		sc = dd->send_contexts[i].sc;
6749 		if (sc && (sc->flags & SCF_ENABLED))
6750 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6751 	}
6752 
6753 	/* Send context are frozen. Notify user space */
6754 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6755 
6756 	if (flags & FREEZE_ABORT) {
6757 		dd_dev_err(dd,
6758 			   "Aborted freeze recovery. Please REBOOT system\n");
6759 		return;
6760 	}
6761 	/* queue non-interrupt handler */
6762 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6763 }
6764 
6765 /*
6766  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6767  * depending on the "freeze" parameter.
6768  *
6769  * No need to return an error if it times out, our only option
6770  * is to proceed anyway.
6771  */
6772 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6773 {
6774 	unsigned long timeout;
6775 	u64 reg;
6776 
6777 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6778 	while (1) {
6779 		reg = read_csr(dd, CCE_STATUS);
6780 		if (freeze) {
6781 			/* waiting until all indicators are set */
6782 			if ((reg & ALL_FROZE) == ALL_FROZE)
6783 				return;	/* all done */
6784 		} else {
6785 			/* waiting until all indicators are clear */
6786 			if ((reg & ALL_FROZE) == 0)
6787 				return; /* all done */
6788 		}
6789 
6790 		if (time_after(jiffies, timeout)) {
6791 			dd_dev_err(dd,
6792 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6793 				   freeze ? "" : "un", reg & ALL_FROZE,
6794 				   freeze ? ALL_FROZE : 0ull);
6795 			return;
6796 		}
6797 		usleep_range(80, 120);
6798 	}
6799 }
6800 
6801 /*
6802  * Do all freeze handling for the RXE block.
6803  */
6804 static void rxe_freeze(struct hfi1_devdata *dd)
6805 {
6806 	int i;
6807 	struct hfi1_ctxtdata *rcd;
6808 
6809 	/* disable port */
6810 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6811 
6812 	/* disable all receive contexts */
6813 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6814 		rcd = hfi1_rcd_get_by_index(dd, i);
6815 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6816 		hfi1_rcd_put(rcd);
6817 	}
6818 }
6819 
6820 /*
6821  * Unfreeze handling for the RXE block - kernel contexts only.
6822  * This will also enable the port.  User contexts will do unfreeze
6823  * handling on a per-context basis as they call into the driver.
6824  *
6825  */
6826 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6827 {
6828 	u32 rcvmask;
6829 	u16 i;
6830 	struct hfi1_ctxtdata *rcd;
6831 
6832 	/* enable all kernel contexts */
6833 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6834 		rcd = hfi1_rcd_get_by_index(dd, i);
6835 
6836 		/* Ensure all non-user contexts(including vnic) are enabled */
6837 		if (!rcd ||
6838 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6839 			hfi1_rcd_put(rcd);
6840 			continue;
6841 		}
6842 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6843 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6844 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6845 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6846 		hfi1_rcvctrl(dd, rcvmask, rcd);
6847 		hfi1_rcd_put(rcd);
6848 	}
6849 
6850 	/* enable port */
6851 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6852 }
6853 
6854 /*
6855  * Non-interrupt SPC freeze handling.
6856  *
6857  * This is a work-queue function outside of the triggering interrupt.
6858  */
6859 void handle_freeze(struct work_struct *work)
6860 {
6861 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6862 								freeze_work);
6863 	struct hfi1_devdata *dd = ppd->dd;
6864 
6865 	/* wait for freeze indicators on all affected blocks */
6866 	wait_for_freeze_status(dd, 1);
6867 
6868 	/* SPC is now frozen */
6869 
6870 	/* do send PIO freeze steps */
6871 	pio_freeze(dd);
6872 
6873 	/* do send DMA freeze steps */
6874 	sdma_freeze(dd);
6875 
6876 	/* do send egress freeze steps - nothing to do */
6877 
6878 	/* do receive freeze steps */
6879 	rxe_freeze(dd);
6880 
6881 	/*
6882 	 * Unfreeze the hardware - clear the freeze, wait for each
6883 	 * block's frozen bit to clear, then clear the frozen flag.
6884 	 */
6885 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6886 	wait_for_freeze_status(dd, 0);
6887 
6888 	if (is_ax(dd)) {
6889 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6890 		wait_for_freeze_status(dd, 1);
6891 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6892 		wait_for_freeze_status(dd, 0);
6893 	}
6894 
6895 	/* do send PIO unfreeze steps for kernel contexts */
6896 	pio_kernel_unfreeze(dd);
6897 
6898 	/* do send DMA unfreeze steps */
6899 	sdma_unfreeze(dd);
6900 
6901 	/* do send egress unfreeze steps - nothing to do */
6902 
6903 	/* do receive unfreeze steps for kernel contexts */
6904 	rxe_kernel_unfreeze(dd);
6905 
6906 	/*
6907 	 * The unfreeze procedure touches global device registers when
6908 	 * it disables and re-enables RXE. Mark the device unfrozen
6909 	 * after all that is done so other parts of the driver waiting
6910 	 * for the device to unfreeze don't do things out of order.
6911 	 *
6912 	 * The above implies that the meaning of HFI1_FROZEN flag is
6913 	 * "Device has gone into freeze mode and freeze mode handling
6914 	 * is still in progress."
6915 	 *
6916 	 * The flag will be removed when freeze mode processing has
6917 	 * completed.
6918 	 */
6919 	dd->flags &= ~HFI1_FROZEN;
6920 	wake_up(&dd->event_queue);
6921 
6922 	/* no longer frozen */
6923 }
6924 
6925 /**
6926  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6927  * counters.
6928  * @ppd: info of physical Hfi port
6929  * @link_width: new link width after link up or downgrade
6930  *
6931  * Update the PortXmitWait and PortVlXmitWait counters after
6932  * a link up or downgrade event to reflect a link width change.
6933  */
6934 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6935 {
6936 	int i;
6937 	u16 tx_width;
6938 	u16 link_speed;
6939 
6940 	tx_width = tx_link_width(link_width);
6941 	link_speed = get_link_speed(ppd->link_speed_active);
6942 
6943 	/*
6944 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6945 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6946 	 */
6947 	for (i = 0; i < C_VL_COUNT + 1; i++)
6948 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6949 }
6950 
6951 /*
6952  * Handle a link up interrupt from the 8051.
6953  *
6954  * This is a work-queue function outside of the interrupt.
6955  */
6956 void handle_link_up(struct work_struct *work)
6957 {
6958 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6959 						  link_up_work);
6960 	struct hfi1_devdata *dd = ppd->dd;
6961 
6962 	set_link_state(ppd, HLS_UP_INIT);
6963 
6964 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6965 	read_ltp_rtt(dd);
6966 	/*
6967 	 * OPA specifies that certain counters are cleared on a transition
6968 	 * to link up, so do that.
6969 	 */
6970 	clear_linkup_counters(dd);
6971 	/*
6972 	 * And (re)set link up default values.
6973 	 */
6974 	set_linkup_defaults(ppd);
6975 
6976 	/*
6977 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6978 	 * In case of quick linkup or simulator, vl15 value will be set by
6979 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6980 	 * called in those scenarios.
6981 	 */
6982 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6983 		set_up_vl15(dd, dd->vl15buf_cached);
6984 
6985 	/* enforce link speed enabled */
6986 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6987 		/* oops - current speed is not enabled, bounce */
6988 		dd_dev_err(dd,
6989 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6990 			   ppd->link_speed_active, ppd->link_speed_enabled);
6991 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6992 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6993 		set_link_state(ppd, HLS_DN_OFFLINE);
6994 		start_link(ppd);
6995 	}
6996 }
6997 
6998 /*
6999  * Several pieces of LNI information were cached for SMA in ppd.
7000  * Reset these on link down
7001  */
7002 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7003 {
7004 	ppd->neighbor_guid = 0;
7005 	ppd->neighbor_port_number = 0;
7006 	ppd->neighbor_type = 0;
7007 	ppd->neighbor_fm_security = 0;
7008 }
7009 
7010 static const char * const link_down_reason_strs[] = {
7011 	[OPA_LINKDOWN_REASON_NONE] = "None",
7012 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7013 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7014 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7015 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7016 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7017 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7018 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7019 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7020 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7021 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7022 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7023 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7024 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7025 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7026 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7027 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7028 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7029 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7030 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7031 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7032 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7033 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7034 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7035 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7036 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7037 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7038 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7039 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7040 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7042 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7043 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7044 					"Excessive buffer overrun",
7045 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7046 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7047 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7048 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7049 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7050 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7051 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7052 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7053 					"Local media not installed",
7054 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7055 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7056 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7057 					"End to end not installed",
7058 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7059 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7060 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7061 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7062 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7063 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7064 };
7065 
7066 /* return the neighbor link down reason string */
7067 static const char *link_down_reason_str(u8 reason)
7068 {
7069 	const char *str = NULL;
7070 
7071 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7072 		str = link_down_reason_strs[reason];
7073 	if (!str)
7074 		str = "(invalid)";
7075 
7076 	return str;
7077 }
7078 
7079 /*
7080  * Handle a link down interrupt from the 8051.
7081  *
7082  * This is a work-queue function outside of the interrupt.
7083  */
7084 void handle_link_down(struct work_struct *work)
7085 {
7086 	u8 lcl_reason, neigh_reason = 0;
7087 	u8 link_down_reason;
7088 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7089 						  link_down_work);
7090 	int was_up;
7091 	static const char ldr_str[] = "Link down reason: ";
7092 
7093 	if ((ppd->host_link_state &
7094 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7095 	     ppd->port_type == PORT_TYPE_FIXED)
7096 		ppd->offline_disabled_reason =
7097 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7098 
7099 	/* Go offline first, then deal with reading/writing through 8051 */
7100 	was_up = !!(ppd->host_link_state & HLS_UP);
7101 	set_link_state(ppd, HLS_DN_OFFLINE);
7102 	xchg(&ppd->is_link_down_queued, 0);
7103 
7104 	if (was_up) {
7105 		lcl_reason = 0;
7106 		/* link down reason is only valid if the link was up */
7107 		read_link_down_reason(ppd->dd, &link_down_reason);
7108 		switch (link_down_reason) {
7109 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7110 			/* the link went down, no idle message reason */
7111 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7112 				    ldr_str);
7113 			break;
7114 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7115 			/*
7116 			 * The neighbor reason is only valid if an idle message
7117 			 * was received for it.
7118 			 */
7119 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7120 			dd_dev_info(ppd->dd,
7121 				    "%sNeighbor link down message %d, %s\n",
7122 				    ldr_str, neigh_reason,
7123 				    link_down_reason_str(neigh_reason));
7124 			break;
7125 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7126 			dd_dev_info(ppd->dd,
7127 				    "%sHost requested link to go offline\n",
7128 				    ldr_str);
7129 			break;
7130 		default:
7131 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7132 				    ldr_str, link_down_reason);
7133 			break;
7134 		}
7135 
7136 		/*
7137 		 * If no reason, assume peer-initiated but missed
7138 		 * LinkGoingDown idle flits.
7139 		 */
7140 		if (neigh_reason == 0)
7141 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7142 	} else {
7143 		/* went down while polling or going up */
7144 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7145 	}
7146 
7147 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7148 
7149 	/* inform the SMA when the link transitions from up to down */
7150 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7151 	    ppd->neigh_link_down_reason.sma == 0) {
7152 		ppd->local_link_down_reason.sma =
7153 					ppd->local_link_down_reason.latest;
7154 		ppd->neigh_link_down_reason.sma =
7155 					ppd->neigh_link_down_reason.latest;
7156 	}
7157 
7158 	reset_neighbor_info(ppd);
7159 
7160 	/* disable the port */
7161 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7162 
7163 	/*
7164 	 * If there is no cable attached, turn the DC off. Otherwise,
7165 	 * start the link bring up.
7166 	 */
7167 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7168 		dc_shutdown(ppd->dd);
7169 	else
7170 		start_link(ppd);
7171 }
7172 
7173 void handle_link_bounce(struct work_struct *work)
7174 {
7175 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7176 							link_bounce_work);
7177 
7178 	/*
7179 	 * Only do something if the link is currently up.
7180 	 */
7181 	if (ppd->host_link_state & HLS_UP) {
7182 		set_link_state(ppd, HLS_DN_OFFLINE);
7183 		start_link(ppd);
7184 	} else {
7185 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7186 			    __func__, link_state_name(ppd->host_link_state));
7187 	}
7188 }
7189 
7190 /*
7191  * Mask conversion: Capability exchange to Port LTP.  The capability
7192  * exchange has an implicit 16b CRC that is mandatory.
7193  */
7194 static int cap_to_port_ltp(int cap)
7195 {
7196 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7197 
7198 	if (cap & CAP_CRC_14B)
7199 		port_ltp |= PORT_LTP_CRC_MODE_14;
7200 	if (cap & CAP_CRC_48B)
7201 		port_ltp |= PORT_LTP_CRC_MODE_48;
7202 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7203 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7204 
7205 	return port_ltp;
7206 }
7207 
7208 /*
7209  * Convert an OPA Port LTP mask to capability mask
7210  */
7211 int port_ltp_to_cap(int port_ltp)
7212 {
7213 	int cap_mask = 0;
7214 
7215 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7216 		cap_mask |= CAP_CRC_14B;
7217 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7218 		cap_mask |= CAP_CRC_48B;
7219 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7220 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7221 
7222 	return cap_mask;
7223 }
7224 
7225 /*
7226  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7227  */
7228 static int lcb_to_port_ltp(int lcb_crc)
7229 {
7230 	int port_ltp = 0;
7231 
7232 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7233 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7234 	else if (lcb_crc == LCB_CRC_48B)
7235 		port_ltp = PORT_LTP_CRC_MODE_48;
7236 	else if (lcb_crc == LCB_CRC_14B)
7237 		port_ltp = PORT_LTP_CRC_MODE_14;
7238 	else
7239 		port_ltp = PORT_LTP_CRC_MODE_16;
7240 
7241 	return port_ltp;
7242 }
7243 
7244 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7245 {
7246 	if (ppd->pkeys[2] != 0) {
7247 		ppd->pkeys[2] = 0;
7248 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7249 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7250 	}
7251 }
7252 
7253 /*
7254  * Convert the given link width to the OPA link width bitmask.
7255  */
7256 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7257 {
7258 	switch (width) {
7259 	case 0:
7260 		/*
7261 		 * Simulator and quick linkup do not set the width.
7262 		 * Just set it to 4x without complaint.
7263 		 */
7264 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7265 			return OPA_LINK_WIDTH_4X;
7266 		return 0; /* no lanes up */
7267 	case 1: return OPA_LINK_WIDTH_1X;
7268 	case 2: return OPA_LINK_WIDTH_2X;
7269 	case 3: return OPA_LINK_WIDTH_3X;
7270 	default:
7271 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7272 			    __func__, width);
7273 		/* fall through */
7274 	case 4: return OPA_LINK_WIDTH_4X;
7275 	}
7276 }
7277 
7278 /*
7279  * Do a population count on the bottom nibble.
7280  */
7281 static const u8 bit_counts[16] = {
7282 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7283 };
7284 
7285 static inline u8 nibble_to_count(u8 nibble)
7286 {
7287 	return bit_counts[nibble & 0xf];
7288 }
7289 
7290 /*
7291  * Read the active lane information from the 8051 registers and return
7292  * their widths.
7293  *
7294  * Active lane information is found in these 8051 registers:
7295  *	enable_lane_tx
7296  *	enable_lane_rx
7297  */
7298 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7299 			    u16 *rx_width)
7300 {
7301 	u16 tx, rx;
7302 	u8 enable_lane_rx;
7303 	u8 enable_lane_tx;
7304 	u8 tx_polarity_inversion;
7305 	u8 rx_polarity_inversion;
7306 	u8 max_rate;
7307 
7308 	/* read the active lanes */
7309 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7310 			 &rx_polarity_inversion, &max_rate);
7311 	read_local_lni(dd, &enable_lane_rx);
7312 
7313 	/* convert to counts */
7314 	tx = nibble_to_count(enable_lane_tx);
7315 	rx = nibble_to_count(enable_lane_rx);
7316 
7317 	/*
7318 	 * Set link_speed_active here, overriding what was set in
7319 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7320 	 * set the max_rate field in handle_verify_cap until v0.19.
7321 	 */
7322 	if ((dd->icode == ICODE_RTL_SILICON) &&
7323 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7324 		/* max_rate: 0 = 12.5G, 1 = 25G */
7325 		switch (max_rate) {
7326 		case 0:
7327 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7328 			break;
7329 		default:
7330 			dd_dev_err(dd,
7331 				   "%s: unexpected max rate %d, using 25Gb\n",
7332 				   __func__, (int)max_rate);
7333 			/* fall through */
7334 		case 1:
7335 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7336 			break;
7337 		}
7338 	}
7339 
7340 	dd_dev_info(dd,
7341 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7342 		    enable_lane_tx, tx, enable_lane_rx, rx);
7343 	*tx_width = link_width_to_bits(dd, tx);
7344 	*rx_width = link_width_to_bits(dd, rx);
7345 }
7346 
7347 /*
7348  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7349  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7350  * after link up.  I.e. look elsewhere for downgrade information.
7351  *
7352  * Bits are:
7353  *	+ bits [7:4] contain the number of active transmitters
7354  *	+ bits [3:0] contain the number of active receivers
7355  * These are numbers 1 through 4 and can be different values if the
7356  * link is asymmetric.
7357  *
7358  * verify_cap_local_fm_link_width[0] retains its original value.
7359  */
7360 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7361 			      u16 *rx_width)
7362 {
7363 	u16 widths, tx, rx;
7364 	u8 misc_bits, local_flags;
7365 	u16 active_tx, active_rx;
7366 
7367 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7368 	tx = widths >> 12;
7369 	rx = (widths >> 8) & 0xf;
7370 
7371 	*tx_width = link_width_to_bits(dd, tx);
7372 	*rx_width = link_width_to_bits(dd, rx);
7373 
7374 	/* print the active widths */
7375 	get_link_widths(dd, &active_tx, &active_rx);
7376 }
7377 
7378 /*
7379  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7380  * hardware information when the link first comes up.
7381  *
7382  * The link width is not available until after VerifyCap.AllFramesReceived
7383  * (the trigger for handle_verify_cap), so this is outside that routine
7384  * and should be called when the 8051 signals linkup.
7385  */
7386 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7387 {
7388 	u16 tx_width, rx_width;
7389 
7390 	/* get end-of-LNI link widths */
7391 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7392 
7393 	/* use tx_width as the link is supposed to be symmetric on link up */
7394 	ppd->link_width_active = tx_width;
7395 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7396 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7397 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7398 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7399 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7400 	/* cache the active egress rate (units {10^6 bits/sec]) */
7401 	ppd->current_egress_rate = active_egress_rate(ppd);
7402 }
7403 
7404 /*
7405  * Handle a verify capabilities interrupt from the 8051.
7406  *
7407  * This is a work-queue function outside of the interrupt.
7408  */
7409 void handle_verify_cap(struct work_struct *work)
7410 {
7411 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7412 								link_vc_work);
7413 	struct hfi1_devdata *dd = ppd->dd;
7414 	u64 reg;
7415 	u8 power_management;
7416 	u8 continuous;
7417 	u8 vcu;
7418 	u8 vau;
7419 	u8 z;
7420 	u16 vl15buf;
7421 	u16 link_widths;
7422 	u16 crc_mask;
7423 	u16 crc_val;
7424 	u16 device_id;
7425 	u16 active_tx, active_rx;
7426 	u8 partner_supported_crc;
7427 	u8 remote_tx_rate;
7428 	u8 device_rev;
7429 
7430 	set_link_state(ppd, HLS_VERIFY_CAP);
7431 
7432 	lcb_shutdown(dd, 0);
7433 	adjust_lcb_for_fpga_serdes(dd);
7434 
7435 	read_vc_remote_phy(dd, &power_management, &continuous);
7436 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7437 			      &partner_supported_crc);
7438 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7439 	read_remote_device_id(dd, &device_id, &device_rev);
7440 
7441 	/* print the active widths */
7442 	get_link_widths(dd, &active_tx, &active_rx);
7443 	dd_dev_info(dd,
7444 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7445 		    (int)power_management, (int)continuous);
7446 	dd_dev_info(dd,
7447 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7448 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7449 		    (int)partner_supported_crc);
7450 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7451 		    (u32)remote_tx_rate, (u32)link_widths);
7452 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7453 		    (u32)device_id, (u32)device_rev);
7454 	/*
7455 	 * The peer vAU value just read is the peer receiver value.  HFI does
7456 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7457 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7458 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7459 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7460 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7461 	 * subject to the Z value exception.
7462 	 */
7463 	if (vau == 0)
7464 		vau = 1;
7465 	set_up_vau(dd, vau);
7466 
7467 	/*
7468 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7469 	 * credits value and wait for link-up interrupt ot set it.
7470 	 */
7471 	set_up_vl15(dd, 0);
7472 	dd->vl15buf_cached = vl15buf;
7473 
7474 	/* set up the LCB CRC mode */
7475 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7476 
7477 	/* order is important: use the lowest bit in common */
7478 	if (crc_mask & CAP_CRC_14B)
7479 		crc_val = LCB_CRC_14B;
7480 	else if (crc_mask & CAP_CRC_48B)
7481 		crc_val = LCB_CRC_48B;
7482 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7483 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7484 	else
7485 		crc_val = LCB_CRC_16B;
7486 
7487 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7488 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7489 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7490 
7491 	/* set (14b only) or clear sideband credit */
7492 	reg = read_csr(dd, SEND_CM_CTRL);
7493 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7494 		write_csr(dd, SEND_CM_CTRL,
7495 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7496 	} else {
7497 		write_csr(dd, SEND_CM_CTRL,
7498 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7499 	}
7500 
7501 	ppd->link_speed_active = 0;	/* invalid value */
7502 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7503 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7504 		switch (remote_tx_rate) {
7505 		case 0:
7506 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7507 			break;
7508 		case 1:
7509 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7510 			break;
7511 		}
7512 	} else {
7513 		/* actual rate is highest bit of the ANDed rates */
7514 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7515 
7516 		if (rate & 2)
7517 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7518 		else if (rate & 1)
7519 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7520 	}
7521 	if (ppd->link_speed_active == 0) {
7522 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7523 			   __func__, (int)remote_tx_rate);
7524 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7525 	}
7526 
7527 	/*
7528 	 * Cache the values of the supported, enabled, and active
7529 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7530 	 * flags that are returned in the portinfo query differ from
7531 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7532 	 * variables. Convert these here.
7533 	 */
7534 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7535 		/* supported crc modes */
7536 	ppd->port_ltp_crc_mode |=
7537 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7538 		/* enabled crc modes */
7539 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7540 		/* active crc mode */
7541 
7542 	/* set up the remote credit return table */
7543 	assign_remote_cm_au_table(dd, vcu);
7544 
7545 	/*
7546 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7547 	 * be applied on every link up.
7548 	 *
7549 	 * Adjust LCB error kill enable to kill the link if
7550 	 * these RBUF errors are seen:
7551 	 *	REPLAY_BUF_MBE_SMASK
7552 	 *	FLIT_INPUT_BUF_MBE_SMASK
7553 	 */
7554 	if (is_ax(dd)) {			/* fixed in B0 */
7555 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7556 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7557 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7558 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7559 	}
7560 
7561 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7562 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7563 
7564 	/* give 8051 access to the LCB CSRs */
7565 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7566 	set_8051_lcb_access(dd);
7567 
7568 	/* tell the 8051 to go to LinkUp */
7569 	set_link_state(ppd, HLS_GOING_UP);
7570 }
7571 
7572 /**
7573  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7574  * policy against the current active link widths.
7575  * @ppd: info of physical Hfi port
7576  * @refresh_widths: True indicates link downgrade event
7577  * @return: True indicates a successful link downgrade. False indicates
7578  *	    link downgrade event failed and the link will bounce back to
7579  *	    default link width.
7580  *
7581  * Called when the enabled policy changes or the active link widths
7582  * change.
7583  * Refresh_widths indicates that a link downgrade occurred. The
7584  * link_downgraded variable is set by refresh_widths and
7585  * determines the success/failure of the policy application.
7586  */
7587 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7588 				 bool refresh_widths)
7589 {
7590 	int do_bounce = 0;
7591 	int tries;
7592 	u16 lwde;
7593 	u16 tx, rx;
7594 	bool link_downgraded = refresh_widths;
7595 
7596 	/* use the hls lock to avoid a race with actual link up */
7597 	tries = 0;
7598 retry:
7599 	mutex_lock(&ppd->hls_lock);
7600 	/* only apply if the link is up */
7601 	if (ppd->host_link_state & HLS_DOWN) {
7602 		/* still going up..wait and retry */
7603 		if (ppd->host_link_state & HLS_GOING_UP) {
7604 			if (++tries < 1000) {
7605 				mutex_unlock(&ppd->hls_lock);
7606 				usleep_range(100, 120); /* arbitrary */
7607 				goto retry;
7608 			}
7609 			dd_dev_err(ppd->dd,
7610 				   "%s: giving up waiting for link state change\n",
7611 				   __func__);
7612 		}
7613 		goto done;
7614 	}
7615 
7616 	lwde = ppd->link_width_downgrade_enabled;
7617 
7618 	if (refresh_widths) {
7619 		get_link_widths(ppd->dd, &tx, &rx);
7620 		ppd->link_width_downgrade_tx_active = tx;
7621 		ppd->link_width_downgrade_rx_active = rx;
7622 	}
7623 
7624 	if (ppd->link_width_downgrade_tx_active == 0 ||
7625 	    ppd->link_width_downgrade_rx_active == 0) {
7626 		/* the 8051 reported a dead link as a downgrade */
7627 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7628 		link_downgraded = false;
7629 	} else if (lwde == 0) {
7630 		/* downgrade is disabled */
7631 
7632 		/* bounce if not at starting active width */
7633 		if ((ppd->link_width_active !=
7634 		     ppd->link_width_downgrade_tx_active) ||
7635 		    (ppd->link_width_active !=
7636 		     ppd->link_width_downgrade_rx_active)) {
7637 			dd_dev_err(ppd->dd,
7638 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7639 			dd_dev_err(ppd->dd,
7640 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7641 				   ppd->link_width_active,
7642 				   ppd->link_width_downgrade_tx_active,
7643 				   ppd->link_width_downgrade_rx_active);
7644 			do_bounce = 1;
7645 			link_downgraded = false;
7646 		}
7647 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7648 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7649 		/* Tx or Rx is outside the enabled policy */
7650 		dd_dev_err(ppd->dd,
7651 			   "Link is outside of downgrade allowed, downing link\n");
7652 		dd_dev_err(ppd->dd,
7653 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7654 			   lwde, ppd->link_width_downgrade_tx_active,
7655 			   ppd->link_width_downgrade_rx_active);
7656 		do_bounce = 1;
7657 		link_downgraded = false;
7658 	}
7659 
7660 done:
7661 	mutex_unlock(&ppd->hls_lock);
7662 
7663 	if (do_bounce) {
7664 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7665 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7666 		set_link_state(ppd, HLS_DN_OFFLINE);
7667 		start_link(ppd);
7668 	}
7669 
7670 	return link_downgraded;
7671 }
7672 
7673 /*
7674  * Handle a link downgrade interrupt from the 8051.
7675  *
7676  * This is a work-queue function outside of the interrupt.
7677  */
7678 void handle_link_downgrade(struct work_struct *work)
7679 {
7680 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7681 							link_downgrade_work);
7682 
7683 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7684 	if (apply_link_downgrade_policy(ppd, true))
7685 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7686 }
7687 
7688 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7689 {
7690 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7691 		ARRAY_SIZE(dcc_err_flags));
7692 }
7693 
7694 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7695 {
7696 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7697 		ARRAY_SIZE(lcb_err_flags));
7698 }
7699 
7700 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7701 {
7702 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7703 		ARRAY_SIZE(dc8051_err_flags));
7704 }
7705 
7706 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7707 {
7708 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7709 		ARRAY_SIZE(dc8051_info_err_flags));
7710 }
7711 
7712 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7713 {
7714 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7715 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7716 }
7717 
7718 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7719 {
7720 	struct hfi1_pportdata *ppd = dd->pport;
7721 	u64 info, err, host_msg;
7722 	int queue_link_down = 0;
7723 	char buf[96];
7724 
7725 	/* look at the flags */
7726 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7727 		/* 8051 information set by firmware */
7728 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7729 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7730 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7731 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7732 		host_msg = (info >>
7733 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7734 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7735 
7736 		/*
7737 		 * Handle error flags.
7738 		 */
7739 		if (err & FAILED_LNI) {
7740 			/*
7741 			 * LNI error indications are cleared by the 8051
7742 			 * only when starting polling.  Only pay attention
7743 			 * to them when in the states that occur during
7744 			 * LNI.
7745 			 */
7746 			if (ppd->host_link_state
7747 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7748 				queue_link_down = 1;
7749 				dd_dev_info(dd, "Link error: %s\n",
7750 					    dc8051_info_err_string(buf,
7751 								   sizeof(buf),
7752 								   err &
7753 								   FAILED_LNI));
7754 			}
7755 			err &= ~(u64)FAILED_LNI;
7756 		}
7757 		/* unknown frames can happen durning LNI, just count */
7758 		if (err & UNKNOWN_FRAME) {
7759 			ppd->unknown_frame_count++;
7760 			err &= ~(u64)UNKNOWN_FRAME;
7761 		}
7762 		if (err) {
7763 			/* report remaining errors, but do not do anything */
7764 			dd_dev_err(dd, "8051 info error: %s\n",
7765 				   dc8051_info_err_string(buf, sizeof(buf),
7766 							  err));
7767 		}
7768 
7769 		/*
7770 		 * Handle host message flags.
7771 		 */
7772 		if (host_msg & HOST_REQ_DONE) {
7773 			/*
7774 			 * Presently, the driver does a busy wait for
7775 			 * host requests to complete.  This is only an
7776 			 * informational message.
7777 			 * NOTE: The 8051 clears the host message
7778 			 * information *on the next 8051 command*.
7779 			 * Therefore, when linkup is achieved,
7780 			 * this flag will still be set.
7781 			 */
7782 			host_msg &= ~(u64)HOST_REQ_DONE;
7783 		}
7784 		if (host_msg & BC_SMA_MSG) {
7785 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7786 			host_msg &= ~(u64)BC_SMA_MSG;
7787 		}
7788 		if (host_msg & LINKUP_ACHIEVED) {
7789 			dd_dev_info(dd, "8051: Link up\n");
7790 			queue_work(ppd->link_wq, &ppd->link_up_work);
7791 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7792 		}
7793 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7794 			handle_8051_request(ppd);
7795 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7796 		}
7797 		if (host_msg & VERIFY_CAP_FRAME) {
7798 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7799 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7800 		}
7801 		if (host_msg & LINK_GOING_DOWN) {
7802 			const char *extra = "";
7803 			/* no downgrade action needed if going down */
7804 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7805 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7806 				extra = " (ignoring downgrade)";
7807 			}
7808 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7809 			queue_link_down = 1;
7810 			host_msg &= ~(u64)LINK_GOING_DOWN;
7811 		}
7812 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7813 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7814 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7815 		}
7816 		if (host_msg) {
7817 			/* report remaining messages, but do not do anything */
7818 			dd_dev_info(dd, "8051 info host message: %s\n",
7819 				    dc8051_info_host_msg_string(buf,
7820 								sizeof(buf),
7821 								host_msg));
7822 		}
7823 
7824 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7825 	}
7826 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7827 		/*
7828 		 * Lost the 8051 heartbeat.  If this happens, we
7829 		 * receive constant interrupts about it.  Disable
7830 		 * the interrupt after the first.
7831 		 */
7832 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7833 		write_csr(dd, DC_DC8051_ERR_EN,
7834 			  read_csr(dd, DC_DC8051_ERR_EN) &
7835 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7836 
7837 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7838 	}
7839 	if (reg) {
7840 		/* report the error, but do not do anything */
7841 		dd_dev_err(dd, "8051 error: %s\n",
7842 			   dc8051_err_string(buf, sizeof(buf), reg));
7843 	}
7844 
7845 	if (queue_link_down) {
7846 		/*
7847 		 * if the link is already going down or disabled, do not
7848 		 * queue another. If there's a link down entry already
7849 		 * queued, don't queue another one.
7850 		 */
7851 		if ((ppd->host_link_state &
7852 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7853 		    ppd->link_enabled == 0) {
7854 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7855 				    __func__, ppd->host_link_state,
7856 				    ppd->link_enabled);
7857 		} else {
7858 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7859 				dd_dev_info(dd,
7860 					    "%s: link down request already queued\n",
7861 					    __func__);
7862 			else
7863 				queue_work(ppd->link_wq, &ppd->link_down_work);
7864 		}
7865 	}
7866 }
7867 
7868 static const char * const fm_config_txt[] = {
7869 [0] =
7870 	"BadHeadDist: Distance violation between two head flits",
7871 [1] =
7872 	"BadTailDist: Distance violation between two tail flits",
7873 [2] =
7874 	"BadCtrlDist: Distance violation between two credit control flits",
7875 [3] =
7876 	"BadCrdAck: Credits return for unsupported VL",
7877 [4] =
7878 	"UnsupportedVLMarker: Received VL Marker",
7879 [5] =
7880 	"BadPreempt: Exceeded the preemption nesting level",
7881 [6] =
7882 	"BadControlFlit: Received unsupported control flit",
7883 /* no 7 */
7884 [8] =
7885 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7886 };
7887 
7888 static const char * const port_rcv_txt[] = {
7889 [1] =
7890 	"BadPktLen: Illegal PktLen",
7891 [2] =
7892 	"PktLenTooLong: Packet longer than PktLen",
7893 [3] =
7894 	"PktLenTooShort: Packet shorter than PktLen",
7895 [4] =
7896 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7897 [5] =
7898 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7899 [6] =
7900 	"BadL2: Illegal L2 opcode",
7901 [7] =
7902 	"BadSC: Unsupported SC",
7903 [9] =
7904 	"BadRC: Illegal RC",
7905 [11] =
7906 	"PreemptError: Preempting with same VL",
7907 [12] =
7908 	"PreemptVL15: Preempting a VL15 packet",
7909 };
7910 
7911 #define OPA_LDR_FMCONFIG_OFFSET 16
7912 #define OPA_LDR_PORTRCV_OFFSET 0
7913 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7914 {
7915 	u64 info, hdr0, hdr1;
7916 	const char *extra;
7917 	char buf[96];
7918 	struct hfi1_pportdata *ppd = dd->pport;
7919 	u8 lcl_reason = 0;
7920 	int do_bounce = 0;
7921 
7922 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7923 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7924 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7925 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7926 			/* set status bit */
7927 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7928 		}
7929 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7930 	}
7931 
7932 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7933 		struct hfi1_pportdata *ppd = dd->pport;
7934 		/* this counter saturates at (2^32) - 1 */
7935 		if (ppd->link_downed < (u32)UINT_MAX)
7936 			ppd->link_downed++;
7937 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7938 	}
7939 
7940 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7941 		u8 reason_valid = 1;
7942 
7943 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7944 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7945 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7946 			/* set status bit */
7947 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7948 		}
7949 		switch (info) {
7950 		case 0:
7951 		case 1:
7952 		case 2:
7953 		case 3:
7954 		case 4:
7955 		case 5:
7956 		case 6:
7957 			extra = fm_config_txt[info];
7958 			break;
7959 		case 8:
7960 			extra = fm_config_txt[info];
7961 			if (ppd->port_error_action &
7962 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7963 				do_bounce = 1;
7964 				/*
7965 				 * lcl_reason cannot be derived from info
7966 				 * for this error
7967 				 */
7968 				lcl_reason =
7969 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7970 			}
7971 			break;
7972 		default:
7973 			reason_valid = 0;
7974 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7975 			extra = buf;
7976 			break;
7977 		}
7978 
7979 		if (reason_valid && !do_bounce) {
7980 			do_bounce = ppd->port_error_action &
7981 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7982 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7983 		}
7984 
7985 		/* just report this */
7986 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7987 					extra);
7988 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7989 	}
7990 
7991 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7992 		u8 reason_valid = 1;
7993 
7994 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7995 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7996 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7997 		if (!(dd->err_info_rcvport.status_and_code &
7998 		      OPA_EI_STATUS_SMASK)) {
7999 			dd->err_info_rcvport.status_and_code =
8000 				info & OPA_EI_CODE_SMASK;
8001 			/* set status bit */
8002 			dd->err_info_rcvport.status_and_code |=
8003 				OPA_EI_STATUS_SMASK;
8004 			/*
8005 			 * save first 2 flits in the packet that caused
8006 			 * the error
8007 			 */
8008 			dd->err_info_rcvport.packet_flit1 = hdr0;
8009 			dd->err_info_rcvport.packet_flit2 = hdr1;
8010 		}
8011 		switch (info) {
8012 		case 1:
8013 		case 2:
8014 		case 3:
8015 		case 4:
8016 		case 5:
8017 		case 6:
8018 		case 7:
8019 		case 9:
8020 		case 11:
8021 		case 12:
8022 			extra = port_rcv_txt[info];
8023 			break;
8024 		default:
8025 			reason_valid = 0;
8026 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8027 			extra = buf;
8028 			break;
8029 		}
8030 
8031 		if (reason_valid && !do_bounce) {
8032 			do_bounce = ppd->port_error_action &
8033 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8034 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8035 		}
8036 
8037 		/* just report this */
8038 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8039 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8040 					extra, hdr0, hdr1);
8041 
8042 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8043 	}
8044 
8045 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8046 		/* informative only */
8047 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8048 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8049 	}
8050 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8051 		/* informative only */
8052 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8053 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8054 	}
8055 
8056 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8057 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8058 
8059 	/* report any remaining errors */
8060 	if (reg)
8061 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8062 					dcc_err_string(buf, sizeof(buf), reg));
8063 
8064 	if (lcl_reason == 0)
8065 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8066 
8067 	if (do_bounce) {
8068 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8069 					__func__);
8070 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8071 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8072 	}
8073 }
8074 
8075 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8076 {
8077 	char buf[96];
8078 
8079 	dd_dev_info(dd, "LCB Error: %s\n",
8080 		    lcb_err_string(buf, sizeof(buf), reg));
8081 }
8082 
8083 /*
8084  * CCE block DC interrupt.  Source is < 8.
8085  */
8086 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8087 {
8088 	const struct err_reg_info *eri = &dc_errs[source];
8089 
8090 	if (eri->handler) {
8091 		interrupt_clear_down(dd, 0, eri);
8092 	} else if (source == 3 /* dc_lbm_int */) {
8093 		/*
8094 		 * This indicates that a parity error has occurred on the
8095 		 * address/control lines presented to the LBM.  The error
8096 		 * is a single pulse, there is no associated error flag,
8097 		 * and it is non-maskable.  This is because if a parity
8098 		 * error occurs on the request the request is dropped.
8099 		 * This should never occur, but it is nice to know if it
8100 		 * ever does.
8101 		 */
8102 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8103 	} else {
8104 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8105 	}
8106 }
8107 
8108 /*
8109  * TX block send credit interrupt.  Source is < 160.
8110  */
8111 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8112 {
8113 	sc_group_release_update(dd, source);
8114 }
8115 
8116 /*
8117  * TX block SDMA interrupt.  Source is < 48.
8118  *
8119  * SDMA interrupts are grouped by type:
8120  *
8121  *	 0 -  N-1 = SDma
8122  *	 N - 2N-1 = SDmaProgress
8123  *	2N - 3N-1 = SDmaIdle
8124  */
8125 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8126 {
8127 	/* what interrupt */
8128 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8129 	/* which engine */
8130 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8131 
8132 #ifdef CONFIG_SDMA_VERBOSITY
8133 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8134 		   slashstrip(__FILE__), __LINE__, __func__);
8135 	sdma_dumpstate(&dd->per_sdma[which]);
8136 #endif
8137 
8138 	if (likely(what < 3 && which < dd->num_sdma)) {
8139 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8140 	} else {
8141 		/* should not happen */
8142 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8143 	}
8144 }
8145 
8146 /**
8147  * is_rcv_avail_int() - User receive context available IRQ handler
8148  * @dd: valid dd
8149  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8150  *
8151  * RX block receive available interrupt.  Source is < 160.
8152  *
8153  * This is the general interrupt handler for user (PSM) receive contexts,
8154  * and can only be used for non-threaded IRQs.
8155  */
8156 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8157 {
8158 	struct hfi1_ctxtdata *rcd;
8159 	char *err_detail;
8160 
8161 	if (likely(source < dd->num_rcv_contexts)) {
8162 		rcd = hfi1_rcd_get_by_index(dd, source);
8163 		if (rcd) {
8164 			handle_user_interrupt(rcd);
8165 			hfi1_rcd_put(rcd);
8166 			return;	/* OK */
8167 		}
8168 		/* received an interrupt, but no rcd */
8169 		err_detail = "dataless";
8170 	} else {
8171 		/* received an interrupt, but are not using that context */
8172 		err_detail = "out of range";
8173 	}
8174 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8175 		   err_detail, source);
8176 }
8177 
8178 /**
8179  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8180  * @dd: valid dd
8181  * @source: logical IRQ source (ofse from IS_RCVURGENT_START)
8182  *
8183  * RX block receive urgent interrupt.  Source is < 160.
8184  *
8185  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8186  */
8187 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8188 {
8189 	struct hfi1_ctxtdata *rcd;
8190 	char *err_detail;
8191 
8192 	if (likely(source < dd->num_rcv_contexts)) {
8193 		rcd = hfi1_rcd_get_by_index(dd, source);
8194 		if (rcd) {
8195 			handle_user_interrupt(rcd);
8196 			hfi1_rcd_put(rcd);
8197 			return;	/* OK */
8198 		}
8199 		/* received an interrupt, but no rcd */
8200 		err_detail = "dataless";
8201 	} else {
8202 		/* received an interrupt, but are not using that context */
8203 		err_detail = "out of range";
8204 	}
8205 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8206 		   err_detail, source);
8207 }
8208 
8209 /*
8210  * Reserved range interrupt.  Should not be called in normal operation.
8211  */
8212 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8213 {
8214 	char name[64];
8215 
8216 	dd_dev_err(dd, "unexpected %s interrupt\n",
8217 		   is_reserved_name(name, sizeof(name), source));
8218 }
8219 
8220 static const struct is_table is_table[] = {
8221 /*
8222  * start		 end
8223  *				name func		interrupt func
8224  */
8225 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8226 				is_misc_err_name,	is_misc_err_int },
8227 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8228 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8229 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8230 				is_sendctxt_err_name,	is_sendctxt_err_int },
8231 { IS_SDMA_START,	     IS_SDMA_END,
8232 				is_sdma_eng_name,	is_sdma_eng_int },
8233 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8234 				is_various_name,	is_various_int },
8235 { IS_DC_START,	     IS_DC_END,
8236 				is_dc_name,		is_dc_int },
8237 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8238 				is_rcv_avail_name,	is_rcv_avail_int },
8239 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8240 				is_rcv_urgent_name,	is_rcv_urgent_int },
8241 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8242 				is_send_credit_name,	is_send_credit_int},
8243 { IS_RESERVED_START,     IS_RESERVED_END,
8244 				is_reserved_name,	is_reserved_int},
8245 };
8246 
8247 /*
8248  * Interrupt source interrupt - called when the given source has an interrupt.
8249  * Source is a bit index into an array of 64-bit integers.
8250  */
8251 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8252 {
8253 	const struct is_table *entry;
8254 
8255 	/* avoids a double compare by walking the table in-order */
8256 	for (entry = &is_table[0]; entry->is_name; entry++) {
8257 		if (source < entry->end) {
8258 			trace_hfi1_interrupt(dd, entry, source);
8259 			entry->is_int(dd, source - entry->start);
8260 			return;
8261 		}
8262 	}
8263 	/* fell off the end */
8264 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8265 }
8266 
8267 /**
8268  * gerneral_interrupt() -  General interrupt handler
8269  * @irq: MSIx IRQ vector
8270  * @data: hfi1 devdata
8271  *
8272  * This is able to correctly handle all non-threaded interrupts.  Receive
8273  * context DATA IRQs are threaded and are not supported by this handler.
8274  *
8275  */
8276 static irqreturn_t general_interrupt(int irq, void *data)
8277 {
8278 	struct hfi1_devdata *dd = data;
8279 	u64 regs[CCE_NUM_INT_CSRS];
8280 	u32 bit;
8281 	int i;
8282 	irqreturn_t handled = IRQ_NONE;
8283 
8284 	this_cpu_inc(*dd->int_counter);
8285 
8286 	/* phase 1: scan and clear all handled interrupts */
8287 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8288 		if (dd->gi_mask[i] == 0) {
8289 			regs[i] = 0;	/* used later */
8290 			continue;
8291 		}
8292 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8293 				dd->gi_mask[i];
8294 		/* only clear if anything is set */
8295 		if (regs[i])
8296 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8297 	}
8298 
8299 	/* phase 2: call the appropriate handler */
8300 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8301 			 CCE_NUM_INT_CSRS * 64) {
8302 		is_interrupt(dd, bit);
8303 		handled = IRQ_HANDLED;
8304 	}
8305 
8306 	return handled;
8307 }
8308 
8309 static irqreturn_t sdma_interrupt(int irq, void *data)
8310 {
8311 	struct sdma_engine *sde = data;
8312 	struct hfi1_devdata *dd = sde->dd;
8313 	u64 status;
8314 
8315 #ifdef CONFIG_SDMA_VERBOSITY
8316 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8317 		   slashstrip(__FILE__), __LINE__, __func__);
8318 	sdma_dumpstate(sde);
8319 #endif
8320 
8321 	this_cpu_inc(*dd->int_counter);
8322 
8323 	/* This read_csr is really bad in the hot path */
8324 	status = read_csr(dd,
8325 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8326 			  & sde->imask;
8327 	if (likely(status)) {
8328 		/* clear the interrupt(s) */
8329 		write_csr(dd,
8330 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8331 			  status);
8332 
8333 		/* handle the interrupt(s) */
8334 		sdma_engine_interrupt(sde, status);
8335 	} else {
8336 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8337 					sde->this_idx);
8338 	}
8339 	return IRQ_HANDLED;
8340 }
8341 
8342 /*
8343  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8344  * to insure that the write completed.  This does NOT guarantee that
8345  * queued DMA writes to memory from the chip are pushed.
8346  */
8347 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8348 {
8349 	struct hfi1_devdata *dd = rcd->dd;
8350 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8351 
8352 	mmiowb();	/* make sure everything before is written */
8353 	write_csr(dd, addr, rcd->imask);
8354 	/* force the above write on the chip and get a value back */
8355 	(void)read_csr(dd, addr);
8356 }
8357 
8358 /* force the receive interrupt */
8359 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8360 {
8361 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8362 }
8363 
8364 /*
8365  * Return non-zero if a packet is present.
8366  *
8367  * This routine is called when rechecking for packets after the RcvAvail
8368  * interrupt has been cleared down.  First, do a quick check of memory for
8369  * a packet present.  If not found, use an expensive CSR read of the context
8370  * tail to determine the actual tail.  The CSR read is necessary because there
8371  * is no method to push pending DMAs to memory other than an interrupt and we
8372  * are trying to determine if we need to force an interrupt.
8373  */
8374 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8375 {
8376 	u32 tail;
8377 	int present;
8378 
8379 	if (!rcd->rcvhdrtail_kvaddr)
8380 		present = (rcd->seq_cnt ==
8381 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8382 	else /* is RDMA rtail */
8383 		present = (rcd->head != get_rcvhdrtail(rcd));
8384 
8385 	if (present)
8386 		return 1;
8387 
8388 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8389 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8390 	return rcd->head != tail;
8391 }
8392 
8393 /*
8394  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8395  * This routine will try to handle packets immediately (latency), but if
8396  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8397  * chip receive interrupt is *not* cleared down until this or the thread (if
8398  * invoked) is finished.  The intent is to avoid extra interrupts while we
8399  * are processing packets anyway.
8400  */
8401 static irqreturn_t receive_context_interrupt(int irq, void *data)
8402 {
8403 	struct hfi1_ctxtdata *rcd = data;
8404 	struct hfi1_devdata *dd = rcd->dd;
8405 	int disposition;
8406 	int present;
8407 
8408 	trace_hfi1_receive_interrupt(dd, rcd);
8409 	this_cpu_inc(*dd->int_counter);
8410 	aspm_ctx_disable(rcd);
8411 
8412 	/* receive interrupt remains blocked while processing packets */
8413 	disposition = rcd->do_interrupt(rcd, 0);
8414 
8415 	/*
8416 	 * Too many packets were seen while processing packets in this
8417 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8418 	 * remains blocked.
8419 	 */
8420 	if (disposition == RCV_PKT_LIMIT)
8421 		return IRQ_WAKE_THREAD;
8422 
8423 	/*
8424 	 * The packet processor detected no more packets.  Clear the receive
8425 	 * interrupt and recheck for a packet packet that may have arrived
8426 	 * after the previous check and interrupt clear.  If a packet arrived,
8427 	 * force another interrupt.
8428 	 */
8429 	clear_recv_intr(rcd);
8430 	present = check_packet_present(rcd);
8431 	if (present)
8432 		force_recv_intr(rcd);
8433 
8434 	return IRQ_HANDLED;
8435 }
8436 
8437 /*
8438  * Receive packet thread handler.  This expects to be invoked with the
8439  * receive interrupt still blocked.
8440  */
8441 static irqreturn_t receive_context_thread(int irq, void *data)
8442 {
8443 	struct hfi1_ctxtdata *rcd = data;
8444 	int present;
8445 
8446 	/* receive interrupt is still blocked from the IRQ handler */
8447 	(void)rcd->do_interrupt(rcd, 1);
8448 
8449 	/*
8450 	 * The packet processor will only return if it detected no more
8451 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8452 	 * recheck for a packet that may have arrived after the previous
8453 	 * check and the interrupt clear.  If a packet arrived, force another
8454 	 * interrupt.
8455 	 */
8456 	local_irq_disable();
8457 	clear_recv_intr(rcd);
8458 	present = check_packet_present(rcd);
8459 	if (present)
8460 		force_recv_intr(rcd);
8461 	local_irq_enable();
8462 
8463 	return IRQ_HANDLED;
8464 }
8465 
8466 /* ========================================================================= */
8467 
8468 u32 read_physical_state(struct hfi1_devdata *dd)
8469 {
8470 	u64 reg;
8471 
8472 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8473 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8474 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8475 }
8476 
8477 u32 read_logical_state(struct hfi1_devdata *dd)
8478 {
8479 	u64 reg;
8480 
8481 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8482 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8483 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8484 }
8485 
8486 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8487 {
8488 	u64 reg;
8489 
8490 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8491 	/* clear current state, set new state */
8492 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8493 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8494 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8495 }
8496 
8497 /*
8498  * Use the 8051 to read a LCB CSR.
8499  */
8500 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8501 {
8502 	u32 regno;
8503 	int ret;
8504 
8505 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8506 		if (acquire_lcb_access(dd, 0) == 0) {
8507 			*data = read_csr(dd, addr);
8508 			release_lcb_access(dd, 0);
8509 			return 0;
8510 		}
8511 		return -EBUSY;
8512 	}
8513 
8514 	/* register is an index of LCB registers: (offset - base) / 8 */
8515 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8516 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8517 	if (ret != HCMD_SUCCESS)
8518 		return -EBUSY;
8519 	return 0;
8520 }
8521 
8522 /*
8523  * Provide a cache for some of the LCB registers in case the LCB is
8524  * unavailable.
8525  * (The LCB is unavailable in certain link states, for example.)
8526  */
8527 struct lcb_datum {
8528 	u32 off;
8529 	u64 val;
8530 };
8531 
8532 static struct lcb_datum lcb_cache[] = {
8533 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8534 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8535 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8536 };
8537 
8538 static void update_lcb_cache(struct hfi1_devdata *dd)
8539 {
8540 	int i;
8541 	int ret;
8542 	u64 val;
8543 
8544 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8545 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8546 
8547 		/* Update if we get good data */
8548 		if (likely(ret != -EBUSY))
8549 			lcb_cache[i].val = val;
8550 	}
8551 }
8552 
8553 static int read_lcb_cache(u32 off, u64 *val)
8554 {
8555 	int i;
8556 
8557 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8558 		if (lcb_cache[i].off == off) {
8559 			*val = lcb_cache[i].val;
8560 			return 0;
8561 		}
8562 	}
8563 
8564 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8565 	return -1;
8566 }
8567 
8568 /*
8569  * Read an LCB CSR.  Access may not be in host control, so check.
8570  * Return 0 on success, -EBUSY on failure.
8571  */
8572 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8573 {
8574 	struct hfi1_pportdata *ppd = dd->pport;
8575 
8576 	/* if up, go through the 8051 for the value */
8577 	if (ppd->host_link_state & HLS_UP)
8578 		return read_lcb_via_8051(dd, addr, data);
8579 	/* if going up or down, check the cache, otherwise, no access */
8580 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8581 		if (read_lcb_cache(addr, data))
8582 			return -EBUSY;
8583 		return 0;
8584 	}
8585 
8586 	/* otherwise, host has access */
8587 	*data = read_csr(dd, addr);
8588 	return 0;
8589 }
8590 
8591 /*
8592  * Use the 8051 to write a LCB CSR.
8593  */
8594 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8595 {
8596 	u32 regno;
8597 	int ret;
8598 
8599 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8600 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8601 		if (acquire_lcb_access(dd, 0) == 0) {
8602 			write_csr(dd, addr, data);
8603 			release_lcb_access(dd, 0);
8604 			return 0;
8605 		}
8606 		return -EBUSY;
8607 	}
8608 
8609 	/* register is an index of LCB registers: (offset - base) / 8 */
8610 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8611 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8612 	if (ret != HCMD_SUCCESS)
8613 		return -EBUSY;
8614 	return 0;
8615 }
8616 
8617 /*
8618  * Write an LCB CSR.  Access may not be in host control, so check.
8619  * Return 0 on success, -EBUSY on failure.
8620  */
8621 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8622 {
8623 	struct hfi1_pportdata *ppd = dd->pport;
8624 
8625 	/* if up, go through the 8051 for the value */
8626 	if (ppd->host_link_state & HLS_UP)
8627 		return write_lcb_via_8051(dd, addr, data);
8628 	/* if going up or down, no access */
8629 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8630 		return -EBUSY;
8631 	/* otherwise, host has access */
8632 	write_csr(dd, addr, data);
8633 	return 0;
8634 }
8635 
8636 /*
8637  * Returns:
8638  *	< 0 = Linux error, not able to get access
8639  *	> 0 = 8051 command RETURN_CODE
8640  */
8641 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8642 			   u64 *out_data)
8643 {
8644 	u64 reg, completed;
8645 	int return_code;
8646 	unsigned long timeout;
8647 
8648 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8649 
8650 	mutex_lock(&dd->dc8051_lock);
8651 
8652 	/* We can't send any commands to the 8051 if it's in reset */
8653 	if (dd->dc_shutdown) {
8654 		return_code = -ENODEV;
8655 		goto fail;
8656 	}
8657 
8658 	/*
8659 	 * If an 8051 host command timed out previously, then the 8051 is
8660 	 * stuck.
8661 	 *
8662 	 * On first timeout, attempt to reset and restart the entire DC
8663 	 * block (including 8051). (Is this too big of a hammer?)
8664 	 *
8665 	 * If the 8051 times out a second time, the reset did not bring it
8666 	 * back to healthy life. In that case, fail any subsequent commands.
8667 	 */
8668 	if (dd->dc8051_timed_out) {
8669 		if (dd->dc8051_timed_out > 1) {
8670 			dd_dev_err(dd,
8671 				   "Previous 8051 host command timed out, skipping command %u\n",
8672 				   type);
8673 			return_code = -ENXIO;
8674 			goto fail;
8675 		}
8676 		_dc_shutdown(dd);
8677 		_dc_start(dd);
8678 	}
8679 
8680 	/*
8681 	 * If there is no timeout, then the 8051 command interface is
8682 	 * waiting for a command.
8683 	 */
8684 
8685 	/*
8686 	 * When writing a LCB CSR, out_data contains the full value to
8687 	 * to be written, while in_data contains the relative LCB
8688 	 * address in 7:0.  Do the work here, rather than the caller,
8689 	 * of distrubting the write data to where it needs to go:
8690 	 *
8691 	 * Write data
8692 	 *   39:00 -> in_data[47:8]
8693 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8694 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8695 	 */
8696 	if (type == HCMD_WRITE_LCB_CSR) {
8697 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8698 		/* must preserve COMPLETED - it is tied to hardware */
8699 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8700 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8701 		reg |= ((((*out_data) >> 40) & 0xff) <<
8702 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8703 		      | ((((*out_data) >> 48) & 0xffff) <<
8704 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8705 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8706 	}
8707 
8708 	/*
8709 	 * Do two writes: the first to stabilize the type and req_data, the
8710 	 * second to activate.
8711 	 */
8712 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8713 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8714 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8715 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8716 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8717 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8718 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8719 
8720 	/* wait for completion, alternate: interrupt */
8721 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8722 	while (1) {
8723 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8724 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8725 		if (completed)
8726 			break;
8727 		if (time_after(jiffies, timeout)) {
8728 			dd->dc8051_timed_out++;
8729 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8730 			if (out_data)
8731 				*out_data = 0;
8732 			return_code = -ETIMEDOUT;
8733 			goto fail;
8734 		}
8735 		udelay(2);
8736 	}
8737 
8738 	if (out_data) {
8739 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8740 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8741 		if (type == HCMD_READ_LCB_CSR) {
8742 			/* top 16 bits are in a different register */
8743 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8744 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8745 				<< (48
8746 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8747 		}
8748 	}
8749 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8750 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8751 	dd->dc8051_timed_out = 0;
8752 	/*
8753 	 * Clear command for next user.
8754 	 */
8755 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8756 
8757 fail:
8758 	mutex_unlock(&dd->dc8051_lock);
8759 	return return_code;
8760 }
8761 
8762 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8763 {
8764 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8765 }
8766 
8767 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8768 		     u8 lane_id, u32 config_data)
8769 {
8770 	u64 data;
8771 	int ret;
8772 
8773 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8774 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8775 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8776 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8777 	if (ret != HCMD_SUCCESS) {
8778 		dd_dev_err(dd,
8779 			   "load 8051 config: field id %d, lane %d, err %d\n",
8780 			   (int)field_id, (int)lane_id, ret);
8781 	}
8782 	return ret;
8783 }
8784 
8785 /*
8786  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8787  * set the result, even on error.
8788  * Return 0 on success, -errno on failure
8789  */
8790 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8791 		     u32 *result)
8792 {
8793 	u64 big_data;
8794 	u32 addr;
8795 	int ret;
8796 
8797 	/* address start depends on the lane_id */
8798 	if (lane_id < 4)
8799 		addr = (4 * NUM_GENERAL_FIELDS)
8800 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8801 	else
8802 		addr = 0;
8803 	addr += field_id * 4;
8804 
8805 	/* read is in 8-byte chunks, hardware will truncate the address down */
8806 	ret = read_8051_data(dd, addr, 8, &big_data);
8807 
8808 	if (ret == 0) {
8809 		/* extract the 4 bytes we want */
8810 		if (addr & 0x4)
8811 			*result = (u32)(big_data >> 32);
8812 		else
8813 			*result = (u32)big_data;
8814 	} else {
8815 		*result = 0;
8816 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8817 			   __func__, lane_id, field_id);
8818 	}
8819 
8820 	return ret;
8821 }
8822 
8823 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8824 			      u8 continuous)
8825 {
8826 	u32 frame;
8827 
8828 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8829 		| power_management << POWER_MANAGEMENT_SHIFT;
8830 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8831 				GENERAL_CONFIG, frame);
8832 }
8833 
8834 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8835 				 u16 vl15buf, u8 crc_sizes)
8836 {
8837 	u32 frame;
8838 
8839 	frame = (u32)vau << VAU_SHIFT
8840 		| (u32)z << Z_SHIFT
8841 		| (u32)vcu << VCU_SHIFT
8842 		| (u32)vl15buf << VL15BUF_SHIFT
8843 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8844 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8845 				GENERAL_CONFIG, frame);
8846 }
8847 
8848 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8849 				    u8 *flag_bits, u16 *link_widths)
8850 {
8851 	u32 frame;
8852 
8853 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8854 			 &frame);
8855 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8856 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8857 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8858 }
8859 
8860 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8861 				    u8 misc_bits,
8862 				    u8 flag_bits,
8863 				    u16 link_widths)
8864 {
8865 	u32 frame;
8866 
8867 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8868 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8869 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8870 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8871 		     frame);
8872 }
8873 
8874 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8875 				 u8 device_rev)
8876 {
8877 	u32 frame;
8878 
8879 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8880 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8881 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8882 }
8883 
8884 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8885 				  u8 *device_rev)
8886 {
8887 	u32 frame;
8888 
8889 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8890 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8891 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8892 			& REMOTE_DEVICE_REV_MASK;
8893 }
8894 
8895 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8896 {
8897 	u32 frame;
8898 	u32 mask;
8899 
8900 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8901 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8902 	/* Clear, then set field */
8903 	frame &= ~mask;
8904 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8905 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8906 				frame);
8907 }
8908 
8909 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8910 		      u8 *ver_patch)
8911 {
8912 	u32 frame;
8913 
8914 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8915 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8916 		STS_FM_VERSION_MAJOR_MASK;
8917 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8918 		STS_FM_VERSION_MINOR_MASK;
8919 
8920 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8921 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8922 		STS_FM_VERSION_PATCH_MASK;
8923 }
8924 
8925 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8926 			       u8 *continuous)
8927 {
8928 	u32 frame;
8929 
8930 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8931 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8932 					& POWER_MANAGEMENT_MASK;
8933 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8934 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8935 }
8936 
8937 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8938 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8939 {
8940 	u32 frame;
8941 
8942 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8943 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8944 	*z = (frame >> Z_SHIFT) & Z_MASK;
8945 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8946 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8947 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8948 }
8949 
8950 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8951 				      u8 *remote_tx_rate,
8952 				      u16 *link_widths)
8953 {
8954 	u32 frame;
8955 
8956 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8957 			 &frame);
8958 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8959 				& REMOTE_TX_RATE_MASK;
8960 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8961 }
8962 
8963 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8964 {
8965 	u32 frame;
8966 
8967 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8968 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8969 }
8970 
8971 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8972 {
8973 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8974 }
8975 
8976 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8977 {
8978 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8979 }
8980 
8981 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8982 {
8983 	u32 frame;
8984 	int ret;
8985 
8986 	*link_quality = 0;
8987 	if (dd->pport->host_link_state & HLS_UP) {
8988 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8989 				       &frame);
8990 		if (ret == 0)
8991 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8992 						& LINK_QUALITY_MASK;
8993 	}
8994 }
8995 
8996 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8997 {
8998 	u32 frame;
8999 
9000 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9001 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9002 }
9003 
9004 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9005 {
9006 	u32 frame;
9007 
9008 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9009 	*ldr = (frame & 0xff);
9010 }
9011 
9012 static int read_tx_settings(struct hfi1_devdata *dd,
9013 			    u8 *enable_lane_tx,
9014 			    u8 *tx_polarity_inversion,
9015 			    u8 *rx_polarity_inversion,
9016 			    u8 *max_rate)
9017 {
9018 	u32 frame;
9019 	int ret;
9020 
9021 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9022 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9023 				& ENABLE_LANE_TX_MASK;
9024 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9025 				& TX_POLARITY_INVERSION_MASK;
9026 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9027 				& RX_POLARITY_INVERSION_MASK;
9028 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9029 	return ret;
9030 }
9031 
9032 static int write_tx_settings(struct hfi1_devdata *dd,
9033 			     u8 enable_lane_tx,
9034 			     u8 tx_polarity_inversion,
9035 			     u8 rx_polarity_inversion,
9036 			     u8 max_rate)
9037 {
9038 	u32 frame;
9039 
9040 	/* no need to mask, all variable sizes match field widths */
9041 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9042 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9043 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9044 		| max_rate << MAX_RATE_SHIFT;
9045 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9046 }
9047 
9048 /*
9049  * Read an idle LCB message.
9050  *
9051  * Returns 0 on success, -EINVAL on error
9052  */
9053 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9054 {
9055 	int ret;
9056 
9057 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9058 	if (ret != HCMD_SUCCESS) {
9059 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9060 			   (u32)type, ret);
9061 		return -EINVAL;
9062 	}
9063 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9064 	/* return only the payload as we already know the type */
9065 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9066 	return 0;
9067 }
9068 
9069 /*
9070  * Read an idle SMA message.  To be done in response to a notification from
9071  * the 8051.
9072  *
9073  * Returns 0 on success, -EINVAL on error
9074  */
9075 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9076 {
9077 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9078 				 data);
9079 }
9080 
9081 /*
9082  * Send an idle LCB message.
9083  *
9084  * Returns 0 on success, -EINVAL on error
9085  */
9086 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9087 {
9088 	int ret;
9089 
9090 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9091 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9092 	if (ret != HCMD_SUCCESS) {
9093 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9094 			   data, ret);
9095 		return -EINVAL;
9096 	}
9097 	return 0;
9098 }
9099 
9100 /*
9101  * Send an idle SMA message.
9102  *
9103  * Returns 0 on success, -EINVAL on error
9104  */
9105 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9106 {
9107 	u64 data;
9108 
9109 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9110 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9111 	return send_idle_message(dd, data);
9112 }
9113 
9114 /*
9115  * Initialize the LCB then do a quick link up.  This may or may not be
9116  * in loopback.
9117  *
9118  * return 0 on success, -errno on error
9119  */
9120 static int do_quick_linkup(struct hfi1_devdata *dd)
9121 {
9122 	int ret;
9123 
9124 	lcb_shutdown(dd, 0);
9125 
9126 	if (loopback) {
9127 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9128 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9129 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9130 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9131 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9132 	}
9133 
9134 	/* start the LCBs */
9135 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9136 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9137 
9138 	/* simulator only loopback steps */
9139 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9140 		/* LCB_CFG_RUN.EN = 1 */
9141 		write_csr(dd, DC_LCB_CFG_RUN,
9142 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9143 
9144 		ret = wait_link_transfer_active(dd, 10);
9145 		if (ret)
9146 			return ret;
9147 
9148 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9149 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9150 	}
9151 
9152 	if (!loopback) {
9153 		/*
9154 		 * When doing quick linkup and not in loopback, both
9155 		 * sides must be done with LCB set-up before either
9156 		 * starts the quick linkup.  Put a delay here so that
9157 		 * both sides can be started and have a chance to be
9158 		 * done with LCB set up before resuming.
9159 		 */
9160 		dd_dev_err(dd,
9161 			   "Pausing for peer to be finished with LCB set up\n");
9162 		msleep(5000);
9163 		dd_dev_err(dd, "Continuing with quick linkup\n");
9164 	}
9165 
9166 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9167 	set_8051_lcb_access(dd);
9168 
9169 	/*
9170 	 * State "quick" LinkUp request sets the physical link state to
9171 	 * LinkUp without a verify capability sequence.
9172 	 * This state is in simulator v37 and later.
9173 	 */
9174 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9175 	if (ret != HCMD_SUCCESS) {
9176 		dd_dev_err(dd,
9177 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9178 			   __func__, ret);
9179 
9180 		set_host_lcb_access(dd);
9181 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9182 
9183 		if (ret >= 0)
9184 			ret = -EINVAL;
9185 		return ret;
9186 	}
9187 
9188 	return 0; /* success */
9189 }
9190 
9191 /*
9192  * Do all special steps to set up loopback.
9193  */
9194 static int init_loopback(struct hfi1_devdata *dd)
9195 {
9196 	dd_dev_info(dd, "Entering loopback mode\n");
9197 
9198 	/* all loopbacks should disable self GUID check */
9199 	write_csr(dd, DC_DC8051_CFG_MODE,
9200 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9201 
9202 	/*
9203 	 * The simulator has only one loopback option - LCB.  Switch
9204 	 * to that option, which includes quick link up.
9205 	 *
9206 	 * Accept all valid loopback values.
9207 	 */
9208 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9209 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9210 	     loopback == LOOPBACK_CABLE)) {
9211 		loopback = LOOPBACK_LCB;
9212 		quick_linkup = 1;
9213 		return 0;
9214 	}
9215 
9216 	/*
9217 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9218 	 */
9219 	if (loopback == LOOPBACK_SERDES)
9220 		return 0;
9221 
9222 	/* LCB loopback - handled at poll time */
9223 	if (loopback == LOOPBACK_LCB) {
9224 		quick_linkup = 1; /* LCB is always quick linkup */
9225 
9226 		/* not supported in emulation due to emulation RTL changes */
9227 		if (dd->icode == ICODE_FPGA_EMULATION) {
9228 			dd_dev_err(dd,
9229 				   "LCB loopback not supported in emulation\n");
9230 			return -EINVAL;
9231 		}
9232 		return 0;
9233 	}
9234 
9235 	/* external cable loopback requires no extra steps */
9236 	if (loopback == LOOPBACK_CABLE)
9237 		return 0;
9238 
9239 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9240 	return -EINVAL;
9241 }
9242 
9243 /*
9244  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9245  * used in the Verify Capability link width attribute.
9246  */
9247 static u16 opa_to_vc_link_widths(u16 opa_widths)
9248 {
9249 	int i;
9250 	u16 result = 0;
9251 
9252 	static const struct link_bits {
9253 		u16 from;
9254 		u16 to;
9255 	} opa_link_xlate[] = {
9256 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9257 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9258 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9259 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9260 	};
9261 
9262 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9263 		if (opa_widths & opa_link_xlate[i].from)
9264 			result |= opa_link_xlate[i].to;
9265 	}
9266 	return result;
9267 }
9268 
9269 /*
9270  * Set link attributes before moving to polling.
9271  */
9272 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9273 {
9274 	struct hfi1_devdata *dd = ppd->dd;
9275 	u8 enable_lane_tx;
9276 	u8 tx_polarity_inversion;
9277 	u8 rx_polarity_inversion;
9278 	int ret;
9279 	u32 misc_bits = 0;
9280 	/* reset our fabric serdes to clear any lingering problems */
9281 	fabric_serdes_reset(dd);
9282 
9283 	/* set the local tx rate - need to read-modify-write */
9284 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9285 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9286 	if (ret)
9287 		goto set_local_link_attributes_fail;
9288 
9289 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9290 		/* set the tx rate to the fastest enabled */
9291 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9292 			ppd->local_tx_rate = 1;
9293 		else
9294 			ppd->local_tx_rate = 0;
9295 	} else {
9296 		/* set the tx rate to all enabled */
9297 		ppd->local_tx_rate = 0;
9298 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9299 			ppd->local_tx_rate |= 2;
9300 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9301 			ppd->local_tx_rate |= 1;
9302 	}
9303 
9304 	enable_lane_tx = 0xF; /* enable all four lanes */
9305 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9306 				rx_polarity_inversion, ppd->local_tx_rate);
9307 	if (ret != HCMD_SUCCESS)
9308 		goto set_local_link_attributes_fail;
9309 
9310 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9311 	if (ret != HCMD_SUCCESS) {
9312 		dd_dev_err(dd,
9313 			   "Failed to set host interface version, return 0x%x\n",
9314 			   ret);
9315 		goto set_local_link_attributes_fail;
9316 	}
9317 
9318 	/*
9319 	 * DC supports continuous updates.
9320 	 */
9321 	ret = write_vc_local_phy(dd,
9322 				 0 /* no power management */,
9323 				 1 /* continuous updates */);
9324 	if (ret != HCMD_SUCCESS)
9325 		goto set_local_link_attributes_fail;
9326 
9327 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9328 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9329 				    ppd->port_crc_mode_enabled);
9330 	if (ret != HCMD_SUCCESS)
9331 		goto set_local_link_attributes_fail;
9332 
9333 	/*
9334 	 * SerDes loopback init sequence requires
9335 	 * setting bit 0 of MISC_CONFIG_BITS
9336 	 */
9337 	if (loopback == LOOPBACK_SERDES)
9338 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9339 
9340 	/*
9341 	 * An external device configuration request is used to reset the LCB
9342 	 * to retry to obtain operational lanes when the first attempt is
9343 	 * unsuccesful.
9344 	 */
9345 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9346 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9347 
9348 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9349 				       opa_to_vc_link_widths(
9350 						ppd->link_width_enabled));
9351 	if (ret != HCMD_SUCCESS)
9352 		goto set_local_link_attributes_fail;
9353 
9354 	/* let peer know who we are */
9355 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9356 	if (ret == HCMD_SUCCESS)
9357 		return 0;
9358 
9359 set_local_link_attributes_fail:
9360 	dd_dev_err(dd,
9361 		   "Failed to set local link attributes, return 0x%x\n",
9362 		   ret);
9363 	return ret;
9364 }
9365 
9366 /*
9367  * Call this to start the link.
9368  * Do not do anything if the link is disabled.
9369  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9370  */
9371 int start_link(struct hfi1_pportdata *ppd)
9372 {
9373 	/*
9374 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9375 	 * error rate.  Needs to be done before starting the link.
9376 	 */
9377 	tune_serdes(ppd);
9378 
9379 	if (!ppd->driver_link_ready) {
9380 		dd_dev_info(ppd->dd,
9381 			    "%s: stopping link start because driver is not ready\n",
9382 			    __func__);
9383 		return 0;
9384 	}
9385 
9386 	/*
9387 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9388 	 * pkey table can be configured properly if the HFI unit is connected
9389 	 * to switch port with MgmtAllowed=NO
9390 	 */
9391 	clear_full_mgmt_pkey(ppd);
9392 
9393 	return set_link_state(ppd, HLS_DN_POLL);
9394 }
9395 
9396 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9397 {
9398 	struct hfi1_devdata *dd = ppd->dd;
9399 	u64 mask;
9400 	unsigned long timeout;
9401 
9402 	/*
9403 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9404 	 * effect of power up on plug-in. We ignore this false positive
9405 	 * interrupt until the module has finished powering up by waiting for
9406 	 * a minimum timeout of the module inrush initialization time of
9407 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9408 	 * module have stabilized.
9409 	 */
9410 	msleep(500);
9411 
9412 	/*
9413 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9414 	 */
9415 	timeout = jiffies + msecs_to_jiffies(2000);
9416 	while (1) {
9417 		mask = read_csr(dd, dd->hfi1_id ?
9418 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9419 		if (!(mask & QSFP_HFI0_INT_N))
9420 			break;
9421 		if (time_after(jiffies, timeout)) {
9422 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9423 				    __func__);
9424 			break;
9425 		}
9426 		udelay(2);
9427 	}
9428 }
9429 
9430 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9431 {
9432 	struct hfi1_devdata *dd = ppd->dd;
9433 	u64 mask;
9434 
9435 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9436 	if (enable) {
9437 		/*
9438 		 * Clear the status register to avoid an immediate interrupt
9439 		 * when we re-enable the IntN pin
9440 		 */
9441 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9442 			  QSFP_HFI0_INT_N);
9443 		mask |= (u64)QSFP_HFI0_INT_N;
9444 	} else {
9445 		mask &= ~(u64)QSFP_HFI0_INT_N;
9446 	}
9447 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9448 }
9449 
9450 int reset_qsfp(struct hfi1_pportdata *ppd)
9451 {
9452 	struct hfi1_devdata *dd = ppd->dd;
9453 	u64 mask, qsfp_mask;
9454 
9455 	/* Disable INT_N from triggering QSFP interrupts */
9456 	set_qsfp_int_n(ppd, 0);
9457 
9458 	/* Reset the QSFP */
9459 	mask = (u64)QSFP_HFI0_RESET_N;
9460 
9461 	qsfp_mask = read_csr(dd,
9462 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9463 	qsfp_mask &= ~mask;
9464 	write_csr(dd,
9465 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9466 
9467 	udelay(10);
9468 
9469 	qsfp_mask |= mask;
9470 	write_csr(dd,
9471 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9472 
9473 	wait_for_qsfp_init(ppd);
9474 
9475 	/*
9476 	 * Allow INT_N to trigger the QSFP interrupt to watch
9477 	 * for alarms and warnings
9478 	 */
9479 	set_qsfp_int_n(ppd, 1);
9480 
9481 	/*
9482 	 * After the reset, AOC transmitters are enabled by default. They need
9483 	 * to be turned off to complete the QSFP setup before they can be
9484 	 * enabled again.
9485 	 */
9486 	return set_qsfp_tx(ppd, 0);
9487 }
9488 
9489 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9490 					u8 *qsfp_interrupt_status)
9491 {
9492 	struct hfi1_devdata *dd = ppd->dd;
9493 
9494 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9495 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9496 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9497 			   __func__);
9498 
9499 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9500 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9501 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9502 			   __func__);
9503 
9504 	/*
9505 	 * The remaining alarms/warnings don't matter if the link is down.
9506 	 */
9507 	if (ppd->host_link_state & HLS_DOWN)
9508 		return 0;
9509 
9510 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9511 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9512 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9513 			   __func__);
9514 
9515 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9516 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9517 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9518 			   __func__);
9519 
9520 	/* Byte 2 is vendor specific */
9521 
9522 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9523 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9524 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9525 			   __func__);
9526 
9527 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9528 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9529 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9530 			   __func__);
9531 
9532 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9533 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9534 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9535 			   __func__);
9536 
9537 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9538 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9539 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9540 			   __func__);
9541 
9542 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9543 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9544 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9545 			   __func__);
9546 
9547 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9548 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9549 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9550 			   __func__);
9551 
9552 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9553 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9554 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9555 			   __func__);
9556 
9557 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9558 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9559 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9560 			   __func__);
9561 
9562 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9563 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9564 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9565 			   __func__);
9566 
9567 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9568 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9569 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9570 			   __func__);
9571 
9572 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9573 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9574 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9575 			   __func__);
9576 
9577 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9578 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9579 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9580 			   __func__);
9581 
9582 	/* Bytes 9-10 and 11-12 are reserved */
9583 	/* Bytes 13-15 are vendor specific */
9584 
9585 	return 0;
9586 }
9587 
9588 /* This routine will only be scheduled if the QSFP module present is asserted */
9589 void qsfp_event(struct work_struct *work)
9590 {
9591 	struct qsfp_data *qd;
9592 	struct hfi1_pportdata *ppd;
9593 	struct hfi1_devdata *dd;
9594 
9595 	qd = container_of(work, struct qsfp_data, qsfp_work);
9596 	ppd = qd->ppd;
9597 	dd = ppd->dd;
9598 
9599 	/* Sanity check */
9600 	if (!qsfp_mod_present(ppd))
9601 		return;
9602 
9603 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9604 		dd_dev_info(ppd->dd,
9605 			    "%s: stopping link start because link is disabled\n",
9606 			    __func__);
9607 		return;
9608 	}
9609 
9610 	/*
9611 	 * Turn DC back on after cable has been re-inserted. Up until
9612 	 * now, the DC has been in reset to save power.
9613 	 */
9614 	dc_start(dd);
9615 
9616 	if (qd->cache_refresh_required) {
9617 		set_qsfp_int_n(ppd, 0);
9618 
9619 		wait_for_qsfp_init(ppd);
9620 
9621 		/*
9622 		 * Allow INT_N to trigger the QSFP interrupt to watch
9623 		 * for alarms and warnings
9624 		 */
9625 		set_qsfp_int_n(ppd, 1);
9626 
9627 		start_link(ppd);
9628 	}
9629 
9630 	if (qd->check_interrupt_flags) {
9631 		u8 qsfp_interrupt_status[16] = {0,};
9632 
9633 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9634 				  &qsfp_interrupt_status[0], 16) != 16) {
9635 			dd_dev_info(dd,
9636 				    "%s: Failed to read status of QSFP module\n",
9637 				    __func__);
9638 		} else {
9639 			unsigned long flags;
9640 
9641 			handle_qsfp_error_conditions(
9642 					ppd, qsfp_interrupt_status);
9643 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9644 			ppd->qsfp_info.check_interrupt_flags = 0;
9645 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9646 					       flags);
9647 		}
9648 	}
9649 }
9650 
9651 static void init_qsfp_int(struct hfi1_devdata *dd)
9652 {
9653 	struct hfi1_pportdata *ppd = dd->pport;
9654 	u64 qsfp_mask, cce_int_mask;
9655 	const int qsfp1_int_smask = QSFP1_INT % 64;
9656 	const int qsfp2_int_smask = QSFP2_INT % 64;
9657 
9658 	/*
9659 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9660 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9661 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9662 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9663 	 */
9664 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9665 				(8 * (QSFP1_INT / 64)));
9666 	if (dd->hfi1_id) {
9667 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9668 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9669 			  cce_int_mask);
9670 	} else {
9671 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9672 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9673 			  cce_int_mask);
9674 	}
9675 
9676 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9677 	/* Clear current status to avoid spurious interrupts */
9678 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9679 		  qsfp_mask);
9680 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9681 		  qsfp_mask);
9682 
9683 	set_qsfp_int_n(ppd, 0);
9684 
9685 	/* Handle active low nature of INT_N and MODPRST_N pins */
9686 	if (qsfp_mod_present(ppd))
9687 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9688 	write_csr(dd,
9689 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9690 		  qsfp_mask);
9691 }
9692 
9693 /*
9694  * Do a one-time initialize of the LCB block.
9695  */
9696 static void init_lcb(struct hfi1_devdata *dd)
9697 {
9698 	/* simulator does not correctly handle LCB cclk loopback, skip */
9699 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9700 		return;
9701 
9702 	/* the DC has been reset earlier in the driver load */
9703 
9704 	/* set LCB for cclk loopback on the port */
9705 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9706 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9707 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9708 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9709 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9710 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9711 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9712 }
9713 
9714 /*
9715  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9716  * on error.
9717  */
9718 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9719 {
9720 	int ret;
9721 	u8 status;
9722 
9723 	/*
9724 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9725 	 * not present
9726 	 */
9727 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9728 		return 0;
9729 
9730 	/* read byte 2, the status byte */
9731 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9732 	if (ret < 0)
9733 		return ret;
9734 	if (ret != 1)
9735 		return -EIO;
9736 
9737 	return 0; /* success */
9738 }
9739 
9740 /*
9741  * Values for QSFP retry.
9742  *
9743  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9744  * arrived at from experience on a large cluster.
9745  */
9746 #define MAX_QSFP_RETRIES 20
9747 #define QSFP_RETRY_WAIT 500 /* msec */
9748 
9749 /*
9750  * Try a QSFP read.  If it fails, schedule a retry for later.
9751  * Called on first link activation after driver load.
9752  */
9753 static void try_start_link(struct hfi1_pportdata *ppd)
9754 {
9755 	if (test_qsfp_read(ppd)) {
9756 		/* read failed */
9757 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9758 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9759 			return;
9760 		}
9761 		dd_dev_info(ppd->dd,
9762 			    "QSFP not responding, waiting and retrying %d\n",
9763 			    (int)ppd->qsfp_retry_count);
9764 		ppd->qsfp_retry_count++;
9765 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9766 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9767 		return;
9768 	}
9769 	ppd->qsfp_retry_count = 0;
9770 
9771 	start_link(ppd);
9772 }
9773 
9774 /*
9775  * Workqueue function to start the link after a delay.
9776  */
9777 void handle_start_link(struct work_struct *work)
9778 {
9779 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9780 						  start_link_work.work);
9781 	try_start_link(ppd);
9782 }
9783 
9784 int bringup_serdes(struct hfi1_pportdata *ppd)
9785 {
9786 	struct hfi1_devdata *dd = ppd->dd;
9787 	u64 guid;
9788 	int ret;
9789 
9790 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9791 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9792 
9793 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9794 	if (!guid) {
9795 		if (dd->base_guid)
9796 			guid = dd->base_guid + ppd->port - 1;
9797 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9798 	}
9799 
9800 	/* Set linkinit_reason on power up per OPA spec */
9801 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9802 
9803 	/* one-time init of the LCB */
9804 	init_lcb(dd);
9805 
9806 	if (loopback) {
9807 		ret = init_loopback(dd);
9808 		if (ret < 0)
9809 			return ret;
9810 	}
9811 
9812 	get_port_type(ppd);
9813 	if (ppd->port_type == PORT_TYPE_QSFP) {
9814 		set_qsfp_int_n(ppd, 0);
9815 		wait_for_qsfp_init(ppd);
9816 		set_qsfp_int_n(ppd, 1);
9817 	}
9818 
9819 	try_start_link(ppd);
9820 	return 0;
9821 }
9822 
9823 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9824 {
9825 	struct hfi1_devdata *dd = ppd->dd;
9826 
9827 	/*
9828 	 * Shut down the link and keep it down.   First turn off that the
9829 	 * driver wants to allow the link to be up (driver_link_ready).
9830 	 * Then make sure the link is not automatically restarted
9831 	 * (link_enabled).  Cancel any pending restart.  And finally
9832 	 * go offline.
9833 	 */
9834 	ppd->driver_link_ready = 0;
9835 	ppd->link_enabled = 0;
9836 
9837 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9838 	flush_delayed_work(&ppd->start_link_work);
9839 	cancel_delayed_work_sync(&ppd->start_link_work);
9840 
9841 	ppd->offline_disabled_reason =
9842 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9843 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9844 			     OPA_LINKDOWN_REASON_REBOOT);
9845 	set_link_state(ppd, HLS_DN_OFFLINE);
9846 
9847 	/* disable the port */
9848 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9849 }
9850 
9851 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9852 {
9853 	struct hfi1_pportdata *ppd;
9854 	int i;
9855 
9856 	ppd = (struct hfi1_pportdata *)(dd + 1);
9857 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9858 		ppd->ibport_data.rvp.rc_acks = NULL;
9859 		ppd->ibport_data.rvp.rc_qacks = NULL;
9860 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9861 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9862 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9863 		if (!ppd->ibport_data.rvp.rc_acks ||
9864 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9865 		    !ppd->ibport_data.rvp.rc_qacks)
9866 			return -ENOMEM;
9867 	}
9868 
9869 	return 0;
9870 }
9871 
9872 /*
9873  * index is the index into the receive array
9874  */
9875 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9876 		  u32 type, unsigned long pa, u16 order)
9877 {
9878 	u64 reg;
9879 
9880 	if (!(dd->flags & HFI1_PRESENT))
9881 		goto done;
9882 
9883 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9884 		pa = 0;
9885 		order = 0;
9886 	} else if (type > PT_INVALID) {
9887 		dd_dev_err(dd,
9888 			   "unexpected receive array type %u for index %u, not handled\n",
9889 			   type, index);
9890 		goto done;
9891 	}
9892 	trace_hfi1_put_tid(dd, index, type, pa, order);
9893 
9894 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9895 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9896 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9897 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9898 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9899 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9900 	writeq(reg, dd->rcvarray_wc + (index * 8));
9901 
9902 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9903 		/*
9904 		 * Eager entries are written and flushed
9905 		 *
9906 		 * Expected entries are flushed every 4 writes
9907 		 */
9908 		flush_wc();
9909 done:
9910 	return;
9911 }
9912 
9913 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9914 {
9915 	struct hfi1_devdata *dd = rcd->dd;
9916 	u32 i;
9917 
9918 	/* this could be optimized */
9919 	for (i = rcd->eager_base; i < rcd->eager_base +
9920 		     rcd->egrbufs.alloced; i++)
9921 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9922 
9923 	for (i = rcd->expected_base;
9924 			i < rcd->expected_base + rcd->expected_count; i++)
9925 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9926 }
9927 
9928 static const char * const ib_cfg_name_strings[] = {
9929 	"HFI1_IB_CFG_LIDLMC",
9930 	"HFI1_IB_CFG_LWID_DG_ENB",
9931 	"HFI1_IB_CFG_LWID_ENB",
9932 	"HFI1_IB_CFG_LWID",
9933 	"HFI1_IB_CFG_SPD_ENB",
9934 	"HFI1_IB_CFG_SPD",
9935 	"HFI1_IB_CFG_RXPOL_ENB",
9936 	"HFI1_IB_CFG_LREV_ENB",
9937 	"HFI1_IB_CFG_LINKLATENCY",
9938 	"HFI1_IB_CFG_HRTBT",
9939 	"HFI1_IB_CFG_OP_VLS",
9940 	"HFI1_IB_CFG_VL_HIGH_CAP",
9941 	"HFI1_IB_CFG_VL_LOW_CAP",
9942 	"HFI1_IB_CFG_OVERRUN_THRESH",
9943 	"HFI1_IB_CFG_PHYERR_THRESH",
9944 	"HFI1_IB_CFG_LINKDEFAULT",
9945 	"HFI1_IB_CFG_PKEYS",
9946 	"HFI1_IB_CFG_MTU",
9947 	"HFI1_IB_CFG_LSTATE",
9948 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9949 	"HFI1_IB_CFG_PMA_TICKS",
9950 	"HFI1_IB_CFG_PORT"
9951 };
9952 
9953 static const char *ib_cfg_name(int which)
9954 {
9955 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9956 		return "invalid";
9957 	return ib_cfg_name_strings[which];
9958 }
9959 
9960 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9961 {
9962 	struct hfi1_devdata *dd = ppd->dd;
9963 	int val = 0;
9964 
9965 	switch (which) {
9966 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9967 		val = ppd->link_width_enabled;
9968 		break;
9969 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9970 		val = ppd->link_width_active;
9971 		break;
9972 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9973 		val = ppd->link_speed_enabled;
9974 		break;
9975 	case HFI1_IB_CFG_SPD: /* current Link speed */
9976 		val = ppd->link_speed_active;
9977 		break;
9978 
9979 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9980 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9981 	case HFI1_IB_CFG_LINKLATENCY:
9982 		goto unimplemented;
9983 
9984 	case HFI1_IB_CFG_OP_VLS:
9985 		val = ppd->actual_vls_operational;
9986 		break;
9987 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9988 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9989 		break;
9990 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9991 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9992 		break;
9993 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9994 		val = ppd->overrun_threshold;
9995 		break;
9996 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9997 		val = ppd->phy_error_threshold;
9998 		break;
9999 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10000 		val = HLS_DEFAULT;
10001 		break;
10002 
10003 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
10004 	case HFI1_IB_CFG_PMA_TICKS:
10005 	default:
10006 unimplemented:
10007 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10008 			dd_dev_info(
10009 				dd,
10010 				"%s: which %s: not implemented\n",
10011 				__func__,
10012 				ib_cfg_name(which));
10013 		break;
10014 	}
10015 
10016 	return val;
10017 }
10018 
10019 /*
10020  * The largest MAD packet size.
10021  */
10022 #define MAX_MAD_PACKET 2048
10023 
10024 /*
10025  * Return the maximum header bytes that can go on the _wire_
10026  * for this device. This count includes the ICRC which is
10027  * not part of the packet held in memory but it is appended
10028  * by the HW.
10029  * This is dependent on the device's receive header entry size.
10030  * HFI allows this to be set per-receive context, but the
10031  * driver presently enforces a global value.
10032  */
10033 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10034 {
10035 	/*
10036 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10037 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10038 	 * plus one DW for the ICRC appended by HW.
10039 	 *
10040 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10041 	 * We use rcd[0] as all context will have the same value. Also,
10042 	 * the first kernel context would have been allocated by now so
10043 	 * we are guaranteed a valid value.
10044 	 */
10045 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10046 }
10047 
10048 /*
10049  * Set Send Length
10050  * @ppd - per port data
10051  *
10052  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10053  * registers compare against LRH.PktLen, so use the max bytes included
10054  * in the LRH.
10055  *
10056  * This routine changes all VL values except VL15, which it maintains at
10057  * the same value.
10058  */
10059 static void set_send_length(struct hfi1_pportdata *ppd)
10060 {
10061 	struct hfi1_devdata *dd = ppd->dd;
10062 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10063 	u32 maxvlmtu = dd->vld[15].mtu;
10064 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10065 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10066 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10067 	int i, j;
10068 	u32 thres;
10069 
10070 	for (i = 0; i < ppd->vls_supported; i++) {
10071 		if (dd->vld[i].mtu > maxvlmtu)
10072 			maxvlmtu = dd->vld[i].mtu;
10073 		if (i <= 3)
10074 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10075 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10076 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10077 		else
10078 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10079 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10080 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10081 	}
10082 	write_csr(dd, SEND_LEN_CHECK0, len1);
10083 	write_csr(dd, SEND_LEN_CHECK1, len2);
10084 	/* adjust kernel credit return thresholds based on new MTUs */
10085 	/* all kernel receive contexts have the same hdrqentsize */
10086 	for (i = 0; i < ppd->vls_supported; i++) {
10087 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10088 			    sc_mtu_to_threshold(dd->vld[i].sc,
10089 						dd->vld[i].mtu,
10090 						dd->rcd[0]->rcvhdrqentsize));
10091 		for (j = 0; j < INIT_SC_PER_VL; j++)
10092 			sc_set_cr_threshold(
10093 					pio_select_send_context_vl(dd, j, i),
10094 					    thres);
10095 	}
10096 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10097 		    sc_mtu_to_threshold(dd->vld[15].sc,
10098 					dd->vld[15].mtu,
10099 					dd->rcd[0]->rcvhdrqentsize));
10100 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10101 
10102 	/* Adjust maximum MTU for the port in DC */
10103 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10104 		(ilog2(maxvlmtu >> 8) + 1);
10105 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10106 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10107 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10108 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10109 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10110 }
10111 
10112 static void set_lidlmc(struct hfi1_pportdata *ppd)
10113 {
10114 	int i;
10115 	u64 sreg = 0;
10116 	struct hfi1_devdata *dd = ppd->dd;
10117 	u32 mask = ~((1U << ppd->lmc) - 1);
10118 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10119 	u32 lid;
10120 
10121 	/*
10122 	 * Program 0 in CSR if port lid is extended. This prevents
10123 	 * 9B packets being sent out for large lids.
10124 	 */
10125 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10126 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10127 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10128 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10129 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10130 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10131 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10132 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10133 
10134 	/*
10135 	 * Iterate over all the send contexts and set their SLID check
10136 	 */
10137 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10138 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10139 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10140 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10141 
10142 	for (i = 0; i < chip_send_contexts(dd); i++) {
10143 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10144 			  i, (u32)sreg);
10145 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10146 	}
10147 
10148 	/* Now we have to do the same thing for the sdma engines */
10149 	sdma_update_lmc(dd, mask, lid);
10150 }
10151 
10152 static const char *state_completed_string(u32 completed)
10153 {
10154 	static const char * const state_completed[] = {
10155 		"EstablishComm",
10156 		"OptimizeEQ",
10157 		"VerifyCap"
10158 	};
10159 
10160 	if (completed < ARRAY_SIZE(state_completed))
10161 		return state_completed[completed];
10162 
10163 	return "unknown";
10164 }
10165 
10166 static const char all_lanes_dead_timeout_expired[] =
10167 	"All lanes were inactive – was the interconnect media removed?";
10168 static const char tx_out_of_policy[] =
10169 	"Passing lanes on local port do not meet the local link width policy";
10170 static const char no_state_complete[] =
10171 	"State timeout occurred before link partner completed the state";
10172 static const char * const state_complete_reasons[] = {
10173 	[0x00] = "Reason unknown",
10174 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10175 	[0x02] = "Link partner reported failure",
10176 	[0x10] = "Unable to achieve frame sync on any lane",
10177 	[0x11] =
10178 	  "Unable to find a common bit rate with the link partner",
10179 	[0x12] =
10180 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10181 	[0x13] =
10182 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10183 	[0x14] = no_state_complete,
10184 	[0x15] =
10185 	  "State timeout occurred before link partner identified equalization presets",
10186 	[0x16] =
10187 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10188 	[0x17] = tx_out_of_policy,
10189 	[0x20] = all_lanes_dead_timeout_expired,
10190 	[0x21] =
10191 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10192 	[0x22] = no_state_complete,
10193 	[0x23] =
10194 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10195 	[0x24] = tx_out_of_policy,
10196 	[0x30] = all_lanes_dead_timeout_expired,
10197 	[0x31] =
10198 	  "State timeout occurred waiting for host to process received frames",
10199 	[0x32] = no_state_complete,
10200 	[0x33] =
10201 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10202 	[0x34] = tx_out_of_policy,
10203 	[0x35] = "Negotiated link width is mutually exclusive",
10204 	[0x36] =
10205 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10206 	[0x37] = "Unable to resolve secure data exchange",
10207 };
10208 
10209 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10210 						     u32 code)
10211 {
10212 	const char *str = NULL;
10213 
10214 	if (code < ARRAY_SIZE(state_complete_reasons))
10215 		str = state_complete_reasons[code];
10216 
10217 	if (str)
10218 		return str;
10219 	return "Reserved";
10220 }
10221 
10222 /* describe the given last state complete frame */
10223 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10224 				  const char *prefix)
10225 {
10226 	struct hfi1_devdata *dd = ppd->dd;
10227 	u32 success;
10228 	u32 state;
10229 	u32 reason;
10230 	u32 lanes;
10231 
10232 	/*
10233 	 * Decode frame:
10234 	 *  [ 0: 0] - success
10235 	 *  [ 3: 1] - state
10236 	 *  [ 7: 4] - next state timeout
10237 	 *  [15: 8] - reason code
10238 	 *  [31:16] - lanes
10239 	 */
10240 	success = frame & 0x1;
10241 	state = (frame >> 1) & 0x7;
10242 	reason = (frame >> 8) & 0xff;
10243 	lanes = (frame >> 16) & 0xffff;
10244 
10245 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10246 		   prefix, frame);
10247 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10248 		   state_completed_string(state), state);
10249 	dd_dev_err(dd, "    state successfully completed: %s\n",
10250 		   success ? "yes" : "no");
10251 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10252 		   reason, state_complete_reason_code_string(ppd, reason));
10253 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10254 }
10255 
10256 /*
10257  * Read the last state complete frames and explain them.  This routine
10258  * expects to be called if the link went down during link negotiation
10259  * and initialization (LNI).  That is, anywhere between polling and link up.
10260  */
10261 static void check_lni_states(struct hfi1_pportdata *ppd)
10262 {
10263 	u32 last_local_state;
10264 	u32 last_remote_state;
10265 
10266 	read_last_local_state(ppd->dd, &last_local_state);
10267 	read_last_remote_state(ppd->dd, &last_remote_state);
10268 
10269 	/*
10270 	 * Don't report anything if there is nothing to report.  A value of
10271 	 * 0 means the link was taken down while polling and there was no
10272 	 * training in-process.
10273 	 */
10274 	if (last_local_state == 0 && last_remote_state == 0)
10275 		return;
10276 
10277 	decode_state_complete(ppd, last_local_state, "transmitted");
10278 	decode_state_complete(ppd, last_remote_state, "received");
10279 }
10280 
10281 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10282 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10283 {
10284 	u64 reg;
10285 	unsigned long timeout;
10286 
10287 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10288 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10289 	while (1) {
10290 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10291 		if (reg)
10292 			break;
10293 		if (time_after(jiffies, timeout)) {
10294 			dd_dev_err(dd,
10295 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10296 			return -ETIMEDOUT;
10297 		}
10298 		udelay(2);
10299 	}
10300 	return 0;
10301 }
10302 
10303 /* called when the logical link state is not down as it should be */
10304 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10305 {
10306 	struct hfi1_devdata *dd = ppd->dd;
10307 
10308 	/*
10309 	 * Bring link up in LCB loopback
10310 	 */
10311 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10312 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10313 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10314 
10315 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10316 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10317 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10318 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10319 
10320 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10321 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10322 	udelay(3);
10323 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10324 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10325 
10326 	wait_link_transfer_active(dd, 100);
10327 
10328 	/*
10329 	 * Bring the link down again.
10330 	 */
10331 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10332 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10333 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10334 
10335 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10336 }
10337 
10338 /*
10339  * Helper for set_link_state().  Do not call except from that routine.
10340  * Expects ppd->hls_mutex to be held.
10341  *
10342  * @rem_reason value to be sent to the neighbor
10343  *
10344  * LinkDownReasons only set if transition succeeds.
10345  */
10346 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10347 {
10348 	struct hfi1_devdata *dd = ppd->dd;
10349 	u32 previous_state;
10350 	int offline_state_ret;
10351 	int ret;
10352 
10353 	update_lcb_cache(dd);
10354 
10355 	previous_state = ppd->host_link_state;
10356 	ppd->host_link_state = HLS_GOING_OFFLINE;
10357 
10358 	/* start offline transition */
10359 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10360 
10361 	if (ret != HCMD_SUCCESS) {
10362 		dd_dev_err(dd,
10363 			   "Failed to transition to Offline link state, return %d\n",
10364 			   ret);
10365 		return -EINVAL;
10366 	}
10367 	if (ppd->offline_disabled_reason ==
10368 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10369 		ppd->offline_disabled_reason =
10370 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10371 
10372 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10373 	if (offline_state_ret < 0)
10374 		return offline_state_ret;
10375 
10376 	/* Disabling AOC transmitters */
10377 	if (ppd->port_type == PORT_TYPE_QSFP &&
10378 	    ppd->qsfp_info.limiting_active &&
10379 	    qsfp_mod_present(ppd)) {
10380 		int ret;
10381 
10382 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10383 		if (ret == 0) {
10384 			set_qsfp_tx(ppd, 0);
10385 			release_chip_resource(dd, qsfp_resource(dd));
10386 		} else {
10387 			/* not fatal, but should warn */
10388 			dd_dev_err(dd,
10389 				   "Unable to acquire lock to turn off QSFP TX\n");
10390 		}
10391 	}
10392 
10393 	/*
10394 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10395 	 * can take a while for the link to go down.
10396 	 */
10397 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10398 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10399 		if (ret < 0)
10400 			return ret;
10401 	}
10402 
10403 	/*
10404 	 * Now in charge of LCB - must be after the physical state is
10405 	 * offline.quiet and before host_link_state is changed.
10406 	 */
10407 	set_host_lcb_access(dd);
10408 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10409 
10410 	/* make sure the logical state is also down */
10411 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10412 	if (ret)
10413 		force_logical_link_state_down(ppd);
10414 
10415 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10416 	update_statusp(ppd, IB_PORT_DOWN);
10417 
10418 	/*
10419 	 * The LNI has a mandatory wait time after the physical state
10420 	 * moves to Offline.Quiet.  The wait time may be different
10421 	 * depending on how the link went down.  The 8051 firmware
10422 	 * will observe the needed wait time and only move to ready
10423 	 * when that is completed.  The largest of the quiet timeouts
10424 	 * is 6s, so wait that long and then at least 0.5s more for
10425 	 * other transitions, and another 0.5s for a buffer.
10426 	 */
10427 	ret = wait_fm_ready(dd, 7000);
10428 	if (ret) {
10429 		dd_dev_err(dd,
10430 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10431 		/* state is really offline, so make it so */
10432 		ppd->host_link_state = HLS_DN_OFFLINE;
10433 		return ret;
10434 	}
10435 
10436 	/*
10437 	 * The state is now offline and the 8051 is ready to accept host
10438 	 * requests.
10439 	 *	- change our state
10440 	 *	- notify others if we were previously in a linkup state
10441 	 */
10442 	ppd->host_link_state = HLS_DN_OFFLINE;
10443 	if (previous_state & HLS_UP) {
10444 		/* went down while link was up */
10445 		handle_linkup_change(dd, 0);
10446 	} else if (previous_state
10447 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10448 		/* went down while attempting link up */
10449 		check_lni_states(ppd);
10450 
10451 		/* The QSFP doesn't need to be reset on LNI failure */
10452 		ppd->qsfp_info.reset_needed = 0;
10453 	}
10454 
10455 	/* the active link width (downgrade) is 0 on link down */
10456 	ppd->link_width_active = 0;
10457 	ppd->link_width_downgrade_tx_active = 0;
10458 	ppd->link_width_downgrade_rx_active = 0;
10459 	ppd->current_egress_rate = 0;
10460 	return 0;
10461 }
10462 
10463 /* return the link state name */
10464 static const char *link_state_name(u32 state)
10465 {
10466 	const char *name;
10467 	int n = ilog2(state);
10468 	static const char * const names[] = {
10469 		[__HLS_UP_INIT_BP]	 = "INIT",
10470 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10471 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10472 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10473 		[__HLS_DN_POLL_BP]	 = "POLL",
10474 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10475 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10476 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10477 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10478 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10479 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10480 	};
10481 
10482 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10483 	return name ? name : "unknown";
10484 }
10485 
10486 /* return the link state reason name */
10487 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10488 {
10489 	if (state == HLS_UP_INIT) {
10490 		switch (ppd->linkinit_reason) {
10491 		case OPA_LINKINIT_REASON_LINKUP:
10492 			return "(LINKUP)";
10493 		case OPA_LINKINIT_REASON_FLAPPING:
10494 			return "(FLAPPING)";
10495 		case OPA_LINKINIT_OUTSIDE_POLICY:
10496 			return "(OUTSIDE_POLICY)";
10497 		case OPA_LINKINIT_QUARANTINED:
10498 			return "(QUARANTINED)";
10499 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10500 			return "(INSUFIC_CAPABILITY)";
10501 		default:
10502 			break;
10503 		}
10504 	}
10505 	return "";
10506 }
10507 
10508 /*
10509  * driver_pstate - convert the driver's notion of a port's
10510  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10511  * Return -1 (converted to a u32) to indicate error.
10512  */
10513 u32 driver_pstate(struct hfi1_pportdata *ppd)
10514 {
10515 	switch (ppd->host_link_state) {
10516 	case HLS_UP_INIT:
10517 	case HLS_UP_ARMED:
10518 	case HLS_UP_ACTIVE:
10519 		return IB_PORTPHYSSTATE_LINKUP;
10520 	case HLS_DN_POLL:
10521 		return IB_PORTPHYSSTATE_POLLING;
10522 	case HLS_DN_DISABLE:
10523 		return IB_PORTPHYSSTATE_DISABLED;
10524 	case HLS_DN_OFFLINE:
10525 		return OPA_PORTPHYSSTATE_OFFLINE;
10526 	case HLS_VERIFY_CAP:
10527 		return IB_PORTPHYSSTATE_TRAINING;
10528 	case HLS_GOING_UP:
10529 		return IB_PORTPHYSSTATE_TRAINING;
10530 	case HLS_GOING_OFFLINE:
10531 		return OPA_PORTPHYSSTATE_OFFLINE;
10532 	case HLS_LINK_COOLDOWN:
10533 		return OPA_PORTPHYSSTATE_OFFLINE;
10534 	case HLS_DN_DOWNDEF:
10535 	default:
10536 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10537 			   ppd->host_link_state);
10538 		return  -1;
10539 	}
10540 }
10541 
10542 /*
10543  * driver_lstate - convert the driver's notion of a port's
10544  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10545  * (converted to a u32) to indicate error.
10546  */
10547 u32 driver_lstate(struct hfi1_pportdata *ppd)
10548 {
10549 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10550 		return IB_PORT_DOWN;
10551 
10552 	switch (ppd->host_link_state & HLS_UP) {
10553 	case HLS_UP_INIT:
10554 		return IB_PORT_INIT;
10555 	case HLS_UP_ARMED:
10556 		return IB_PORT_ARMED;
10557 	case HLS_UP_ACTIVE:
10558 		return IB_PORT_ACTIVE;
10559 	default:
10560 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10561 			   ppd->host_link_state);
10562 	return -1;
10563 	}
10564 }
10565 
10566 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10567 			  u8 neigh_reason, u8 rem_reason)
10568 {
10569 	if (ppd->local_link_down_reason.latest == 0 &&
10570 	    ppd->neigh_link_down_reason.latest == 0) {
10571 		ppd->local_link_down_reason.latest = lcl_reason;
10572 		ppd->neigh_link_down_reason.latest = neigh_reason;
10573 		ppd->remote_link_down_reason = rem_reason;
10574 	}
10575 }
10576 
10577 /*
10578  * Verify if BCT for data VLs is non-zero.
10579  */
10580 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10581 {
10582 	return !!ppd->actual_vls_operational;
10583 }
10584 
10585 /*
10586  * Change the physical and/or logical link state.
10587  *
10588  * Do not call this routine while inside an interrupt.  It contains
10589  * calls to routines that can take multiple seconds to finish.
10590  *
10591  * Returns 0 on success, -errno on failure.
10592  */
10593 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10594 {
10595 	struct hfi1_devdata *dd = ppd->dd;
10596 	struct ib_event event = {.device = NULL};
10597 	int ret1, ret = 0;
10598 	int orig_new_state, poll_bounce;
10599 
10600 	mutex_lock(&ppd->hls_lock);
10601 
10602 	orig_new_state = state;
10603 	if (state == HLS_DN_DOWNDEF)
10604 		state = HLS_DEFAULT;
10605 
10606 	/* interpret poll -> poll as a link bounce */
10607 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10608 		      state == HLS_DN_POLL;
10609 
10610 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10611 		    link_state_name(ppd->host_link_state),
10612 		    link_state_name(orig_new_state),
10613 		    poll_bounce ? "(bounce) " : "",
10614 		    link_state_reason_name(ppd, state));
10615 
10616 	/*
10617 	 * If we're going to a (HLS_*) link state that implies the logical
10618 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10619 	 * reset is_sm_config_started to 0.
10620 	 */
10621 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10622 		ppd->is_sm_config_started = 0;
10623 
10624 	/*
10625 	 * Do nothing if the states match.  Let a poll to poll link bounce
10626 	 * go through.
10627 	 */
10628 	if (ppd->host_link_state == state && !poll_bounce)
10629 		goto done;
10630 
10631 	switch (state) {
10632 	case HLS_UP_INIT:
10633 		if (ppd->host_link_state == HLS_DN_POLL &&
10634 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10635 			/*
10636 			 * Quick link up jumps from polling to here.
10637 			 *
10638 			 * Whether in normal or loopback mode, the
10639 			 * simulator jumps from polling to link up.
10640 			 * Accept that here.
10641 			 */
10642 			/* OK */
10643 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10644 			goto unexpected;
10645 		}
10646 
10647 		/*
10648 		 * Wait for Link_Up physical state.
10649 		 * Physical and Logical states should already be
10650 		 * be transitioned to LinkUp and LinkInit respectively.
10651 		 */
10652 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10653 		if (ret) {
10654 			dd_dev_err(dd,
10655 				   "%s: physical state did not change to LINK-UP\n",
10656 				   __func__);
10657 			break;
10658 		}
10659 
10660 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10661 		if (ret) {
10662 			dd_dev_err(dd,
10663 				   "%s: logical state did not change to INIT\n",
10664 				   __func__);
10665 			break;
10666 		}
10667 
10668 		/* clear old transient LINKINIT_REASON code */
10669 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10670 			ppd->linkinit_reason =
10671 				OPA_LINKINIT_REASON_LINKUP;
10672 
10673 		/* enable the port */
10674 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10675 
10676 		handle_linkup_change(dd, 1);
10677 
10678 		/*
10679 		 * After link up, a new link width will have been set.
10680 		 * Update the xmit counters with regards to the new
10681 		 * link width.
10682 		 */
10683 		update_xmit_counters(ppd, ppd->link_width_active);
10684 
10685 		ppd->host_link_state = HLS_UP_INIT;
10686 		update_statusp(ppd, IB_PORT_INIT);
10687 		break;
10688 	case HLS_UP_ARMED:
10689 		if (ppd->host_link_state != HLS_UP_INIT)
10690 			goto unexpected;
10691 
10692 		if (!data_vls_operational(ppd)) {
10693 			dd_dev_err(dd,
10694 				   "%s: data VLs not operational\n", __func__);
10695 			ret = -EINVAL;
10696 			break;
10697 		}
10698 
10699 		set_logical_state(dd, LSTATE_ARMED);
10700 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10701 		if (ret) {
10702 			dd_dev_err(dd,
10703 				   "%s: logical state did not change to ARMED\n",
10704 				   __func__);
10705 			break;
10706 		}
10707 		ppd->host_link_state = HLS_UP_ARMED;
10708 		update_statusp(ppd, IB_PORT_ARMED);
10709 		/*
10710 		 * The simulator does not currently implement SMA messages,
10711 		 * so neighbor_normal is not set.  Set it here when we first
10712 		 * move to Armed.
10713 		 */
10714 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10715 			ppd->neighbor_normal = 1;
10716 		break;
10717 	case HLS_UP_ACTIVE:
10718 		if (ppd->host_link_state != HLS_UP_ARMED)
10719 			goto unexpected;
10720 
10721 		set_logical_state(dd, LSTATE_ACTIVE);
10722 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10723 		if (ret) {
10724 			dd_dev_err(dd,
10725 				   "%s: logical state did not change to ACTIVE\n",
10726 				   __func__);
10727 		} else {
10728 			/* tell all engines to go running */
10729 			sdma_all_running(dd);
10730 			ppd->host_link_state = HLS_UP_ACTIVE;
10731 			update_statusp(ppd, IB_PORT_ACTIVE);
10732 
10733 			/* Signal the IB layer that the port has went active */
10734 			event.device = &dd->verbs_dev.rdi.ibdev;
10735 			event.element.port_num = ppd->port;
10736 			event.event = IB_EVENT_PORT_ACTIVE;
10737 		}
10738 		break;
10739 	case HLS_DN_POLL:
10740 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10741 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10742 		    dd->dc_shutdown)
10743 			dc_start(dd);
10744 		/* Hand LED control to the DC */
10745 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10746 
10747 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10748 			u8 tmp = ppd->link_enabled;
10749 
10750 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10751 			if (ret) {
10752 				ppd->link_enabled = tmp;
10753 				break;
10754 			}
10755 			ppd->remote_link_down_reason = 0;
10756 
10757 			if (ppd->driver_link_ready)
10758 				ppd->link_enabled = 1;
10759 		}
10760 
10761 		set_all_slowpath(ppd->dd);
10762 		ret = set_local_link_attributes(ppd);
10763 		if (ret)
10764 			break;
10765 
10766 		ppd->port_error_action = 0;
10767 		ppd->host_link_state = HLS_DN_POLL;
10768 
10769 		if (quick_linkup) {
10770 			/* quick linkup does not go into polling */
10771 			ret = do_quick_linkup(dd);
10772 		} else {
10773 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10774 			if (ret1 != HCMD_SUCCESS) {
10775 				dd_dev_err(dd,
10776 					   "Failed to transition to Polling link state, return 0x%x\n",
10777 					   ret1);
10778 				ret = -EINVAL;
10779 			}
10780 		}
10781 		ppd->offline_disabled_reason =
10782 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10783 		/*
10784 		 * If an error occurred above, go back to offline.  The
10785 		 * caller may reschedule another attempt.
10786 		 */
10787 		if (ret)
10788 			goto_offline(ppd, 0);
10789 		else
10790 			log_physical_state(ppd, PLS_POLLING);
10791 		break;
10792 	case HLS_DN_DISABLE:
10793 		/* link is disabled */
10794 		ppd->link_enabled = 0;
10795 
10796 		/* allow any state to transition to disabled */
10797 
10798 		/* must transition to offline first */
10799 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10800 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10801 			if (ret)
10802 				break;
10803 			ppd->remote_link_down_reason = 0;
10804 		}
10805 
10806 		if (!dd->dc_shutdown) {
10807 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10808 			if (ret1 != HCMD_SUCCESS) {
10809 				dd_dev_err(dd,
10810 					   "Failed to transition to Disabled link state, return 0x%x\n",
10811 					   ret1);
10812 				ret = -EINVAL;
10813 				break;
10814 			}
10815 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10816 			if (ret) {
10817 				dd_dev_err(dd,
10818 					   "%s: physical state did not change to DISABLED\n",
10819 					   __func__);
10820 				break;
10821 			}
10822 			dc_shutdown(dd);
10823 		}
10824 		ppd->host_link_state = HLS_DN_DISABLE;
10825 		break;
10826 	case HLS_DN_OFFLINE:
10827 		if (ppd->host_link_state == HLS_DN_DISABLE)
10828 			dc_start(dd);
10829 
10830 		/* allow any state to transition to offline */
10831 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10832 		if (!ret)
10833 			ppd->remote_link_down_reason = 0;
10834 		break;
10835 	case HLS_VERIFY_CAP:
10836 		if (ppd->host_link_state != HLS_DN_POLL)
10837 			goto unexpected;
10838 		ppd->host_link_state = HLS_VERIFY_CAP;
10839 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10840 		break;
10841 	case HLS_GOING_UP:
10842 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10843 			goto unexpected;
10844 
10845 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10846 		if (ret1 != HCMD_SUCCESS) {
10847 			dd_dev_err(dd,
10848 				   "Failed to transition to link up state, return 0x%x\n",
10849 				   ret1);
10850 			ret = -EINVAL;
10851 			break;
10852 		}
10853 		ppd->host_link_state = HLS_GOING_UP;
10854 		break;
10855 
10856 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10857 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10858 	default:
10859 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10860 			    __func__, state);
10861 		ret = -EINVAL;
10862 		break;
10863 	}
10864 
10865 	goto done;
10866 
10867 unexpected:
10868 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10869 		   __func__, link_state_name(ppd->host_link_state),
10870 		   link_state_name(state));
10871 	ret = -EINVAL;
10872 
10873 done:
10874 	mutex_unlock(&ppd->hls_lock);
10875 
10876 	if (event.device)
10877 		ib_dispatch_event(&event);
10878 
10879 	return ret;
10880 }
10881 
10882 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10883 {
10884 	u64 reg;
10885 	int ret = 0;
10886 
10887 	switch (which) {
10888 	case HFI1_IB_CFG_LIDLMC:
10889 		set_lidlmc(ppd);
10890 		break;
10891 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10892 		/*
10893 		 * The VL Arbitrator high limit is sent in units of 4k
10894 		 * bytes, while HFI stores it in units of 64 bytes.
10895 		 */
10896 		val *= 4096 / 64;
10897 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10898 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10899 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10900 		break;
10901 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10902 		/* HFI only supports POLL as the default link down state */
10903 		if (val != HLS_DN_POLL)
10904 			ret = -EINVAL;
10905 		break;
10906 	case HFI1_IB_CFG_OP_VLS:
10907 		if (ppd->vls_operational != val) {
10908 			ppd->vls_operational = val;
10909 			if (!ppd->port)
10910 				ret = -EINVAL;
10911 		}
10912 		break;
10913 	/*
10914 	 * For link width, link width downgrade, and speed enable, always AND
10915 	 * the setting with what is actually supported.  This has two benefits.
10916 	 * First, enabled can't have unsupported values, no matter what the
10917 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10918 	 * "fill in with your supported value" have all the bits in the
10919 	 * field set, so simply ANDing with supported has the desired result.
10920 	 */
10921 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10922 		ppd->link_width_enabled = val & ppd->link_width_supported;
10923 		break;
10924 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10925 		ppd->link_width_downgrade_enabled =
10926 				val & ppd->link_width_downgrade_supported;
10927 		break;
10928 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10929 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10930 		break;
10931 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10932 		/*
10933 		 * HFI does not follow IB specs, save this value
10934 		 * so we can report it, if asked.
10935 		 */
10936 		ppd->overrun_threshold = val;
10937 		break;
10938 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10939 		/*
10940 		 * HFI does not follow IB specs, save this value
10941 		 * so we can report it, if asked.
10942 		 */
10943 		ppd->phy_error_threshold = val;
10944 		break;
10945 
10946 	case HFI1_IB_CFG_MTU:
10947 		set_send_length(ppd);
10948 		break;
10949 
10950 	case HFI1_IB_CFG_PKEYS:
10951 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10952 			set_partition_keys(ppd);
10953 		break;
10954 
10955 	default:
10956 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10957 			dd_dev_info(ppd->dd,
10958 				    "%s: which %s, val 0x%x: not implemented\n",
10959 				    __func__, ib_cfg_name(which), val);
10960 		break;
10961 	}
10962 	return ret;
10963 }
10964 
10965 /* begin functions related to vl arbitration table caching */
10966 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10967 {
10968 	int i;
10969 
10970 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10971 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10972 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10973 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10974 
10975 	/*
10976 	 * Note that we always return values directly from the
10977 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10978 	 * 'Get(VLArbTable)'. This is obviously correct after a
10979 	 * 'Set(VLArbTable)', since the cache will then be up to
10980 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10981 	 * since then both the cache, and the relevant h/w registers
10982 	 * will be zeroed.
10983 	 */
10984 
10985 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10986 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10987 }
10988 
10989 /*
10990  * vl_arb_lock_cache
10991  *
10992  * All other vl_arb_* functions should be called only after locking
10993  * the cache.
10994  */
10995 static inline struct vl_arb_cache *
10996 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10997 {
10998 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10999 		return NULL;
11000 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11001 	return &ppd->vl_arb_cache[idx];
11002 }
11003 
11004 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11005 {
11006 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11007 }
11008 
11009 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11010 			     struct ib_vl_weight_elem *vl)
11011 {
11012 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11013 }
11014 
11015 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11016 			     struct ib_vl_weight_elem *vl)
11017 {
11018 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11019 }
11020 
11021 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11022 			      struct ib_vl_weight_elem *vl)
11023 {
11024 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11025 }
11026 
11027 /* end functions related to vl arbitration table caching */
11028 
11029 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11030 			  u32 size, struct ib_vl_weight_elem *vl)
11031 {
11032 	struct hfi1_devdata *dd = ppd->dd;
11033 	u64 reg;
11034 	unsigned int i, is_up = 0;
11035 	int drain, ret = 0;
11036 
11037 	mutex_lock(&ppd->hls_lock);
11038 
11039 	if (ppd->host_link_state & HLS_UP)
11040 		is_up = 1;
11041 
11042 	drain = !is_ax(dd) && is_up;
11043 
11044 	if (drain)
11045 		/*
11046 		 * Before adjusting VL arbitration weights, empty per-VL
11047 		 * FIFOs, otherwise a packet whose VL weight is being
11048 		 * set to 0 could get stuck in a FIFO with no chance to
11049 		 * egress.
11050 		 */
11051 		ret = stop_drain_data_vls(dd);
11052 
11053 	if (ret) {
11054 		dd_dev_err(
11055 			dd,
11056 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11057 			__func__);
11058 		goto err;
11059 	}
11060 
11061 	for (i = 0; i < size; i++, vl++) {
11062 		/*
11063 		 * NOTE: The low priority shift and mask are used here, but
11064 		 * they are the same for both the low and high registers.
11065 		 */
11066 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11067 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11068 		      | (((u64)vl->weight
11069 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11070 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11071 		write_csr(dd, target + (i * 8), reg);
11072 	}
11073 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11074 
11075 	if (drain)
11076 		open_fill_data_vls(dd); /* reopen all VLs */
11077 
11078 err:
11079 	mutex_unlock(&ppd->hls_lock);
11080 
11081 	return ret;
11082 }
11083 
11084 /*
11085  * Read one credit merge VL register.
11086  */
11087 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11088 			   struct vl_limit *vll)
11089 {
11090 	u64 reg = read_csr(dd, csr);
11091 
11092 	vll->dedicated = cpu_to_be16(
11093 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11094 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11095 	vll->shared = cpu_to_be16(
11096 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11097 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11098 }
11099 
11100 /*
11101  * Read the current credit merge limits.
11102  */
11103 static int get_buffer_control(struct hfi1_devdata *dd,
11104 			      struct buffer_control *bc, u16 *overall_limit)
11105 {
11106 	u64 reg;
11107 	int i;
11108 
11109 	/* not all entries are filled in */
11110 	memset(bc, 0, sizeof(*bc));
11111 
11112 	/* OPA and HFI have a 1-1 mapping */
11113 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11114 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11115 
11116 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11117 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11118 
11119 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11120 	bc->overall_shared_limit = cpu_to_be16(
11121 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11122 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11123 	if (overall_limit)
11124 		*overall_limit = (reg
11125 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11126 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11127 	return sizeof(struct buffer_control);
11128 }
11129 
11130 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11131 {
11132 	u64 reg;
11133 	int i;
11134 
11135 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11136 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11137 	for (i = 0; i < sizeof(u64); i++) {
11138 		u8 byte = *(((u8 *)&reg) + i);
11139 
11140 		dp->vlnt[2 * i] = byte & 0xf;
11141 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11142 	}
11143 
11144 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11145 	for (i = 0; i < sizeof(u64); i++) {
11146 		u8 byte = *(((u8 *)&reg) + i);
11147 
11148 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11149 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11150 	}
11151 	return sizeof(struct sc2vlnt);
11152 }
11153 
11154 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11155 			      struct ib_vl_weight_elem *vl)
11156 {
11157 	unsigned int i;
11158 
11159 	for (i = 0; i < nelems; i++, vl++) {
11160 		vl->vl = 0xf;
11161 		vl->weight = 0;
11162 	}
11163 }
11164 
11165 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11166 {
11167 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11168 		  DC_SC_VL_VAL(15_0,
11169 			       0, dp->vlnt[0] & 0xf,
11170 			       1, dp->vlnt[1] & 0xf,
11171 			       2, dp->vlnt[2] & 0xf,
11172 			       3, dp->vlnt[3] & 0xf,
11173 			       4, dp->vlnt[4] & 0xf,
11174 			       5, dp->vlnt[5] & 0xf,
11175 			       6, dp->vlnt[6] & 0xf,
11176 			       7, dp->vlnt[7] & 0xf,
11177 			       8, dp->vlnt[8] & 0xf,
11178 			       9, dp->vlnt[9] & 0xf,
11179 			       10, dp->vlnt[10] & 0xf,
11180 			       11, dp->vlnt[11] & 0xf,
11181 			       12, dp->vlnt[12] & 0xf,
11182 			       13, dp->vlnt[13] & 0xf,
11183 			       14, dp->vlnt[14] & 0xf,
11184 			       15, dp->vlnt[15] & 0xf));
11185 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11186 		  DC_SC_VL_VAL(31_16,
11187 			       16, dp->vlnt[16] & 0xf,
11188 			       17, dp->vlnt[17] & 0xf,
11189 			       18, dp->vlnt[18] & 0xf,
11190 			       19, dp->vlnt[19] & 0xf,
11191 			       20, dp->vlnt[20] & 0xf,
11192 			       21, dp->vlnt[21] & 0xf,
11193 			       22, dp->vlnt[22] & 0xf,
11194 			       23, dp->vlnt[23] & 0xf,
11195 			       24, dp->vlnt[24] & 0xf,
11196 			       25, dp->vlnt[25] & 0xf,
11197 			       26, dp->vlnt[26] & 0xf,
11198 			       27, dp->vlnt[27] & 0xf,
11199 			       28, dp->vlnt[28] & 0xf,
11200 			       29, dp->vlnt[29] & 0xf,
11201 			       30, dp->vlnt[30] & 0xf,
11202 			       31, dp->vlnt[31] & 0xf));
11203 }
11204 
11205 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11206 			u16 limit)
11207 {
11208 	if (limit != 0)
11209 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11210 			    what, (int)limit, idx);
11211 }
11212 
11213 /* change only the shared limit portion of SendCmGLobalCredit */
11214 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11215 {
11216 	u64 reg;
11217 
11218 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11219 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11220 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11221 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11222 }
11223 
11224 /* change only the total credit limit portion of SendCmGLobalCredit */
11225 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11226 {
11227 	u64 reg;
11228 
11229 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11230 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11231 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11232 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11233 }
11234 
11235 /* set the given per-VL shared limit */
11236 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11237 {
11238 	u64 reg;
11239 	u32 addr;
11240 
11241 	if (vl < TXE_NUM_DATA_VL)
11242 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11243 	else
11244 		addr = SEND_CM_CREDIT_VL15;
11245 
11246 	reg = read_csr(dd, addr);
11247 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11248 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11249 	write_csr(dd, addr, reg);
11250 }
11251 
11252 /* set the given per-VL dedicated limit */
11253 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11254 {
11255 	u64 reg;
11256 	u32 addr;
11257 
11258 	if (vl < TXE_NUM_DATA_VL)
11259 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11260 	else
11261 		addr = SEND_CM_CREDIT_VL15;
11262 
11263 	reg = read_csr(dd, addr);
11264 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11265 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11266 	write_csr(dd, addr, reg);
11267 }
11268 
11269 /* spin until the given per-VL status mask bits clear */
11270 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11271 				     const char *which)
11272 {
11273 	unsigned long timeout;
11274 	u64 reg;
11275 
11276 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11277 	while (1) {
11278 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11279 
11280 		if (reg == 0)
11281 			return;	/* success */
11282 		if (time_after(jiffies, timeout))
11283 			break;		/* timed out */
11284 		udelay(1);
11285 	}
11286 
11287 	dd_dev_err(dd,
11288 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11289 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11290 	/*
11291 	 * If this occurs, it is likely there was a credit loss on the link.
11292 	 * The only recovery from that is a link bounce.
11293 	 */
11294 	dd_dev_err(dd,
11295 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11296 }
11297 
11298 /*
11299  * The number of credits on the VLs may be changed while everything
11300  * is "live", but the following algorithm must be followed due to
11301  * how the hardware is actually implemented.  In particular,
11302  * Return_Credit_Status[] is the only correct status check.
11303  *
11304  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11305  *     set Global_Shared_Credit_Limit = 0
11306  *     use_all_vl = 1
11307  * mask0 = all VLs that are changing either dedicated or shared limits
11308  * set Shared_Limit[mask0] = 0
11309  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11310  * if (changing any dedicated limit)
11311  *     mask1 = all VLs that are lowering dedicated limits
11312  *     lower Dedicated_Limit[mask1]
11313  *     spin until Return_Credit_Status[mask1] == 0
11314  *     raise Dedicated_Limits
11315  * raise Shared_Limits
11316  * raise Global_Shared_Credit_Limit
11317  *
11318  * lower = if the new limit is lower, set the limit to the new value
11319  * raise = if the new limit is higher than the current value (may be changed
11320  *	earlier in the algorithm), set the new limit to the new value
11321  */
11322 int set_buffer_control(struct hfi1_pportdata *ppd,
11323 		       struct buffer_control *new_bc)
11324 {
11325 	struct hfi1_devdata *dd = ppd->dd;
11326 	u64 changing_mask, ld_mask, stat_mask;
11327 	int change_count;
11328 	int i, use_all_mask;
11329 	int this_shared_changing;
11330 	int vl_count = 0, ret;
11331 	/*
11332 	 * A0: add the variable any_shared_limit_changing below and in the
11333 	 * algorithm above.  If removing A0 support, it can be removed.
11334 	 */
11335 	int any_shared_limit_changing;
11336 	struct buffer_control cur_bc;
11337 	u8 changing[OPA_MAX_VLS];
11338 	u8 lowering_dedicated[OPA_MAX_VLS];
11339 	u16 cur_total;
11340 	u32 new_total = 0;
11341 	const u64 all_mask =
11342 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11343 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11344 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11345 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11346 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11347 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11348 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11349 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11350 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11351 
11352 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11353 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11354 
11355 	/* find the new total credits, do sanity check on unused VLs */
11356 	for (i = 0; i < OPA_MAX_VLS; i++) {
11357 		if (valid_vl(i)) {
11358 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11359 			continue;
11360 		}
11361 		nonzero_msg(dd, i, "dedicated",
11362 			    be16_to_cpu(new_bc->vl[i].dedicated));
11363 		nonzero_msg(dd, i, "shared",
11364 			    be16_to_cpu(new_bc->vl[i].shared));
11365 		new_bc->vl[i].dedicated = 0;
11366 		new_bc->vl[i].shared = 0;
11367 	}
11368 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11369 
11370 	/* fetch the current values */
11371 	get_buffer_control(dd, &cur_bc, &cur_total);
11372 
11373 	/*
11374 	 * Create the masks we will use.
11375 	 */
11376 	memset(changing, 0, sizeof(changing));
11377 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11378 	/*
11379 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11380 	 * increasing order
11381 	 */
11382 	stat_mask =
11383 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11384 	changing_mask = 0;
11385 	ld_mask = 0;
11386 	change_count = 0;
11387 	any_shared_limit_changing = 0;
11388 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11389 		if (!valid_vl(i))
11390 			continue;
11391 		this_shared_changing = new_bc->vl[i].shared
11392 						!= cur_bc.vl[i].shared;
11393 		if (this_shared_changing)
11394 			any_shared_limit_changing = 1;
11395 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11396 		    this_shared_changing) {
11397 			changing[i] = 1;
11398 			changing_mask |= stat_mask;
11399 			change_count++;
11400 		}
11401 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11402 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11403 			lowering_dedicated[i] = 1;
11404 			ld_mask |= stat_mask;
11405 		}
11406 	}
11407 
11408 	/* bracket the credit change with a total adjustment */
11409 	if (new_total > cur_total)
11410 		set_global_limit(dd, new_total);
11411 
11412 	/*
11413 	 * Start the credit change algorithm.
11414 	 */
11415 	use_all_mask = 0;
11416 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11417 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11418 	    (is_ax(dd) && any_shared_limit_changing)) {
11419 		set_global_shared(dd, 0);
11420 		cur_bc.overall_shared_limit = 0;
11421 		use_all_mask = 1;
11422 	}
11423 
11424 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11425 		if (!valid_vl(i))
11426 			continue;
11427 
11428 		if (changing[i]) {
11429 			set_vl_shared(dd, i, 0);
11430 			cur_bc.vl[i].shared = 0;
11431 		}
11432 	}
11433 
11434 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11435 				 "shared");
11436 
11437 	if (change_count > 0) {
11438 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11439 			if (!valid_vl(i))
11440 				continue;
11441 
11442 			if (lowering_dedicated[i]) {
11443 				set_vl_dedicated(dd, i,
11444 						 be16_to_cpu(new_bc->
11445 							     vl[i].dedicated));
11446 				cur_bc.vl[i].dedicated =
11447 						new_bc->vl[i].dedicated;
11448 			}
11449 		}
11450 
11451 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11452 
11453 		/* now raise all dedicated that are going up */
11454 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11455 			if (!valid_vl(i))
11456 				continue;
11457 
11458 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11459 					be16_to_cpu(cur_bc.vl[i].dedicated))
11460 				set_vl_dedicated(dd, i,
11461 						 be16_to_cpu(new_bc->
11462 							     vl[i].dedicated));
11463 		}
11464 	}
11465 
11466 	/* next raise all shared that are going up */
11467 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11468 		if (!valid_vl(i))
11469 			continue;
11470 
11471 		if (be16_to_cpu(new_bc->vl[i].shared) >
11472 				be16_to_cpu(cur_bc.vl[i].shared))
11473 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11474 	}
11475 
11476 	/* finally raise the global shared */
11477 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11478 	    be16_to_cpu(cur_bc.overall_shared_limit))
11479 		set_global_shared(dd,
11480 				  be16_to_cpu(new_bc->overall_shared_limit));
11481 
11482 	/* bracket the credit change with a total adjustment */
11483 	if (new_total < cur_total)
11484 		set_global_limit(dd, new_total);
11485 
11486 	/*
11487 	 * Determine the actual number of operational VLS using the number of
11488 	 * dedicated and shared credits for each VL.
11489 	 */
11490 	if (change_count > 0) {
11491 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11492 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11493 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11494 				vl_count++;
11495 		ppd->actual_vls_operational = vl_count;
11496 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11497 				    ppd->actual_vls_operational :
11498 				    ppd->vls_operational,
11499 				    NULL);
11500 		if (ret == 0)
11501 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11502 					   ppd->actual_vls_operational :
11503 					   ppd->vls_operational, NULL);
11504 		if (ret)
11505 			return ret;
11506 	}
11507 	return 0;
11508 }
11509 
11510 /*
11511  * Read the given fabric manager table. Return the size of the
11512  * table (in bytes) on success, and a negative error code on
11513  * failure.
11514  */
11515 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11516 
11517 {
11518 	int size;
11519 	struct vl_arb_cache *vlc;
11520 
11521 	switch (which) {
11522 	case FM_TBL_VL_HIGH_ARB:
11523 		size = 256;
11524 		/*
11525 		 * OPA specifies 128 elements (of 2 bytes each), though
11526 		 * HFI supports only 16 elements in h/w.
11527 		 */
11528 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11529 		vl_arb_get_cache(vlc, t);
11530 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11531 		break;
11532 	case FM_TBL_VL_LOW_ARB:
11533 		size = 256;
11534 		/*
11535 		 * OPA specifies 128 elements (of 2 bytes each), though
11536 		 * HFI supports only 16 elements in h/w.
11537 		 */
11538 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11539 		vl_arb_get_cache(vlc, t);
11540 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11541 		break;
11542 	case FM_TBL_BUFFER_CONTROL:
11543 		size = get_buffer_control(ppd->dd, t, NULL);
11544 		break;
11545 	case FM_TBL_SC2VLNT:
11546 		size = get_sc2vlnt(ppd->dd, t);
11547 		break;
11548 	case FM_TBL_VL_PREEMPT_ELEMS:
11549 		size = 256;
11550 		/* OPA specifies 128 elements, of 2 bytes each */
11551 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11552 		break;
11553 	case FM_TBL_VL_PREEMPT_MATRIX:
11554 		size = 256;
11555 		/*
11556 		 * OPA specifies that this is the same size as the VL
11557 		 * arbitration tables (i.e., 256 bytes).
11558 		 */
11559 		break;
11560 	default:
11561 		return -EINVAL;
11562 	}
11563 	return size;
11564 }
11565 
11566 /*
11567  * Write the given fabric manager table.
11568  */
11569 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11570 {
11571 	int ret = 0;
11572 	struct vl_arb_cache *vlc;
11573 
11574 	switch (which) {
11575 	case FM_TBL_VL_HIGH_ARB:
11576 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11577 		if (vl_arb_match_cache(vlc, t)) {
11578 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11579 			break;
11580 		}
11581 		vl_arb_set_cache(vlc, t);
11582 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11583 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11584 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11585 		break;
11586 	case FM_TBL_VL_LOW_ARB:
11587 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11588 		if (vl_arb_match_cache(vlc, t)) {
11589 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11590 			break;
11591 		}
11592 		vl_arb_set_cache(vlc, t);
11593 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11594 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11595 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11596 		break;
11597 	case FM_TBL_BUFFER_CONTROL:
11598 		ret = set_buffer_control(ppd, t);
11599 		break;
11600 	case FM_TBL_SC2VLNT:
11601 		set_sc2vlnt(ppd->dd, t);
11602 		break;
11603 	default:
11604 		ret = -EINVAL;
11605 	}
11606 	return ret;
11607 }
11608 
11609 /*
11610  * Disable all data VLs.
11611  *
11612  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11613  */
11614 static int disable_data_vls(struct hfi1_devdata *dd)
11615 {
11616 	if (is_ax(dd))
11617 		return 1;
11618 
11619 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11620 
11621 	return 0;
11622 }
11623 
11624 /*
11625  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11626  * Just re-enables all data VLs (the "fill" part happens
11627  * automatically - the name was chosen for symmetry with
11628  * stop_drain_data_vls()).
11629  *
11630  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11631  */
11632 int open_fill_data_vls(struct hfi1_devdata *dd)
11633 {
11634 	if (is_ax(dd))
11635 		return 1;
11636 
11637 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11638 
11639 	return 0;
11640 }
11641 
11642 /*
11643  * drain_data_vls() - assumes that disable_data_vls() has been called,
11644  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11645  * engines to drop to 0.
11646  */
11647 static void drain_data_vls(struct hfi1_devdata *dd)
11648 {
11649 	sc_wait(dd);
11650 	sdma_wait(dd);
11651 	pause_for_credit_return(dd);
11652 }
11653 
11654 /*
11655  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11656  *
11657  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11658  * meant to be used like this:
11659  *
11660  * stop_drain_data_vls(dd);
11661  * // do things with per-VL resources
11662  * open_fill_data_vls(dd);
11663  */
11664 int stop_drain_data_vls(struct hfi1_devdata *dd)
11665 {
11666 	int ret;
11667 
11668 	ret = disable_data_vls(dd);
11669 	if (ret == 0)
11670 		drain_data_vls(dd);
11671 
11672 	return ret;
11673 }
11674 
11675 /*
11676  * Convert a nanosecond time to a cclock count.  No matter how slow
11677  * the cclock, a non-zero ns will always have a non-zero result.
11678  */
11679 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11680 {
11681 	u32 cclocks;
11682 
11683 	if (dd->icode == ICODE_FPGA_EMULATION)
11684 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11685 	else  /* simulation pretends to be ASIC */
11686 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11687 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11688 		cclocks = 1;
11689 	return cclocks;
11690 }
11691 
11692 /*
11693  * Convert a cclock count to nanoseconds. Not matter how slow
11694  * the cclock, a non-zero cclocks will always have a non-zero result.
11695  */
11696 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11697 {
11698 	u32 ns;
11699 
11700 	if (dd->icode == ICODE_FPGA_EMULATION)
11701 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11702 	else  /* simulation pretends to be ASIC */
11703 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11704 	if (cclocks && !ns)
11705 		ns = 1;
11706 	return ns;
11707 }
11708 
11709 /*
11710  * Dynamically adjust the receive interrupt timeout for a context based on
11711  * incoming packet rate.
11712  *
11713  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11714  */
11715 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11716 {
11717 	struct hfi1_devdata *dd = rcd->dd;
11718 	u32 timeout = rcd->rcvavail_timeout;
11719 
11720 	/*
11721 	 * This algorithm doubles or halves the timeout depending on whether
11722 	 * the number of packets received in this interrupt were less than or
11723 	 * greater equal the interrupt count.
11724 	 *
11725 	 * The calculations below do not allow a steady state to be achieved.
11726 	 * Only at the endpoints it is possible to have an unchanging
11727 	 * timeout.
11728 	 */
11729 	if (npkts < rcv_intr_count) {
11730 		/*
11731 		 * Not enough packets arrived before the timeout, adjust
11732 		 * timeout downward.
11733 		 */
11734 		if (timeout < 2) /* already at minimum? */
11735 			return;
11736 		timeout >>= 1;
11737 	} else {
11738 		/*
11739 		 * More than enough packets arrived before the timeout, adjust
11740 		 * timeout upward.
11741 		 */
11742 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11743 			return;
11744 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11745 	}
11746 
11747 	rcd->rcvavail_timeout = timeout;
11748 	/*
11749 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11750 	 * been verified to be in range
11751 	 */
11752 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11753 			(u64)timeout <<
11754 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11755 }
11756 
11757 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11758 		    u32 intr_adjust, u32 npkts)
11759 {
11760 	struct hfi1_devdata *dd = rcd->dd;
11761 	u64 reg;
11762 	u32 ctxt = rcd->ctxt;
11763 
11764 	/*
11765 	 * Need to write timeout register before updating RcvHdrHead to ensure
11766 	 * that a new value is used when the HW decides to restart counting.
11767 	 */
11768 	if (intr_adjust)
11769 		adjust_rcv_timeout(rcd, npkts);
11770 	if (updegr) {
11771 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11772 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11773 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11774 	}
11775 	mmiowb();
11776 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11777 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11778 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11779 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11780 	mmiowb();
11781 }
11782 
11783 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11784 {
11785 	u32 head, tail;
11786 
11787 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11788 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11789 
11790 	if (rcd->rcvhdrtail_kvaddr)
11791 		tail = get_rcvhdrtail(rcd);
11792 	else
11793 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11794 
11795 	return head == tail;
11796 }
11797 
11798 /*
11799  * Context Control and Receive Array encoding for buffer size:
11800  *	0x0 invalid
11801  *	0x1   4 KB
11802  *	0x2   8 KB
11803  *	0x3  16 KB
11804  *	0x4  32 KB
11805  *	0x5  64 KB
11806  *	0x6 128 KB
11807  *	0x7 256 KB
11808  *	0x8 512 KB (Receive Array only)
11809  *	0x9   1 MB (Receive Array only)
11810  *	0xa   2 MB (Receive Array only)
11811  *
11812  *	0xB-0xF - reserved (Receive Array only)
11813  *
11814  *
11815  * This routine assumes that the value has already been sanity checked.
11816  */
11817 static u32 encoded_size(u32 size)
11818 {
11819 	switch (size) {
11820 	case   4 * 1024: return 0x1;
11821 	case   8 * 1024: return 0x2;
11822 	case  16 * 1024: return 0x3;
11823 	case  32 * 1024: return 0x4;
11824 	case  64 * 1024: return 0x5;
11825 	case 128 * 1024: return 0x6;
11826 	case 256 * 1024: return 0x7;
11827 	case 512 * 1024: return 0x8;
11828 	case   1 * 1024 * 1024: return 0x9;
11829 	case   2 * 1024 * 1024: return 0xa;
11830 	}
11831 	return 0x1;	/* if invalid, go with the minimum size */
11832 }
11833 
11834 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11835 		  struct hfi1_ctxtdata *rcd)
11836 {
11837 	u64 rcvctrl, reg;
11838 	int did_enable = 0;
11839 	u16 ctxt;
11840 
11841 	if (!rcd)
11842 		return;
11843 
11844 	ctxt = rcd->ctxt;
11845 
11846 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11847 
11848 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11849 	/* if the context already enabled, don't do the extra steps */
11850 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11851 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11852 		/* reset the tail and hdr addresses, and sequence count */
11853 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11854 				rcd->rcvhdrq_dma);
11855 		if (rcd->rcvhdrtail_kvaddr)
11856 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11857 					rcd->rcvhdrqtailaddr_dma);
11858 		rcd->seq_cnt = 1;
11859 
11860 		/* reset the cached receive header queue head value */
11861 		rcd->head = 0;
11862 
11863 		/*
11864 		 * Zero the receive header queue so we don't get false
11865 		 * positives when checking the sequence number.  The
11866 		 * sequence numbers could land exactly on the same spot.
11867 		 * E.g. a rcd restart before the receive header wrapped.
11868 		 */
11869 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11870 
11871 		/* starting timeout */
11872 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11873 
11874 		/* enable the context */
11875 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11876 
11877 		/* clean the egr buffer size first */
11878 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11879 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11880 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11881 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11882 
11883 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11884 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11885 		did_enable = 1;
11886 
11887 		/* zero RcvEgrIndexHead */
11888 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11889 
11890 		/* set eager count and base index */
11891 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11892 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11893 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11894 			(((rcd->eager_base >> RCV_SHIFT)
11895 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11896 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11897 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11898 
11899 		/*
11900 		 * Set TID (expected) count and base index.
11901 		 * rcd->expected_count is set to individual RcvArray entries,
11902 		 * not pairs, and the CSR takes a pair-count in groups of
11903 		 * four, so divide by 8.
11904 		 */
11905 		reg = (((rcd->expected_count >> RCV_SHIFT)
11906 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11907 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11908 		      (((rcd->expected_base >> RCV_SHIFT)
11909 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11910 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11911 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11912 		if (ctxt == HFI1_CTRL_CTXT)
11913 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11914 	}
11915 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11916 		write_csr(dd, RCV_VL15, 0);
11917 		/*
11918 		 * When receive context is being disabled turn on tail
11919 		 * update with a dummy tail address and then disable
11920 		 * receive context.
11921 		 */
11922 		if (dd->rcvhdrtail_dummy_dma) {
11923 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11924 					dd->rcvhdrtail_dummy_dma);
11925 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11926 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11927 		}
11928 
11929 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11930 	}
11931 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11932 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11933 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11934 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11935 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11936 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11937 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11938 		/* See comment on RcvCtxtCtrl.TailUpd above */
11939 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11940 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11941 	}
11942 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11943 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11944 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11945 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11946 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11947 		/*
11948 		 * In one-packet-per-eager mode, the size comes from
11949 		 * the RcvArray entry.
11950 		 */
11951 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11952 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11953 	}
11954 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11955 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11956 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11957 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11958 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11959 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11960 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11961 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11962 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11963 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11964 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11965 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
11966 
11967 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11968 	if (did_enable &&
11969 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11970 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11971 		if (reg != 0) {
11972 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11973 				    ctxt, reg);
11974 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11975 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11976 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11977 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11978 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11979 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11980 				    ctxt, reg, reg == 0 ? "not" : "still");
11981 		}
11982 	}
11983 
11984 	if (did_enable) {
11985 		/*
11986 		 * The interrupt timeout and count must be set after
11987 		 * the context is enabled to take effect.
11988 		 */
11989 		/* set interrupt timeout */
11990 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11991 				(u64)rcd->rcvavail_timeout <<
11992 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11993 
11994 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11995 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11996 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11997 	}
11998 
11999 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12000 		/*
12001 		 * If the context has been disabled and the Tail Update has
12002 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12003 		 * so it doesn't contain an address that is invalid.
12004 		 */
12005 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12006 				dd->rcvhdrtail_dummy_dma);
12007 }
12008 
12009 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12010 {
12011 	int ret;
12012 	u64 val = 0;
12013 
12014 	if (namep) {
12015 		ret = dd->cntrnameslen;
12016 		*namep = dd->cntrnames;
12017 	} else {
12018 		const struct cntr_entry *entry;
12019 		int i, j;
12020 
12021 		ret = (dd->ndevcntrs) * sizeof(u64);
12022 
12023 		/* Get the start of the block of counters */
12024 		*cntrp = dd->cntrs;
12025 
12026 		/*
12027 		 * Now go and fill in each counter in the block.
12028 		 */
12029 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12030 			entry = &dev_cntrs[i];
12031 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12032 			if (entry->flags & CNTR_DISABLED) {
12033 				/* Nothing */
12034 				hfi1_cdbg(CNTR, "\tDisabled\n");
12035 			} else {
12036 				if (entry->flags & CNTR_VL) {
12037 					hfi1_cdbg(CNTR, "\tPer VL\n");
12038 					for (j = 0; j < C_VL_COUNT; j++) {
12039 						val = entry->rw_cntr(entry,
12040 								  dd, j,
12041 								  CNTR_MODE_R,
12042 								  0);
12043 						hfi1_cdbg(
12044 						   CNTR,
12045 						   "\t\tRead 0x%llx for %d\n",
12046 						   val, j);
12047 						dd->cntrs[entry->offset + j] =
12048 									    val;
12049 					}
12050 				} else if (entry->flags & CNTR_SDMA) {
12051 					hfi1_cdbg(CNTR,
12052 						  "\t Per SDMA Engine\n");
12053 					for (j = 0; j < chip_sdma_engines(dd);
12054 					     j++) {
12055 						val =
12056 						entry->rw_cntr(entry, dd, j,
12057 							       CNTR_MODE_R, 0);
12058 						hfi1_cdbg(CNTR,
12059 							  "\t\tRead 0x%llx for %d\n",
12060 							  val, j);
12061 						dd->cntrs[entry->offset + j] =
12062 									val;
12063 					}
12064 				} else {
12065 					val = entry->rw_cntr(entry, dd,
12066 							CNTR_INVALID_VL,
12067 							CNTR_MODE_R, 0);
12068 					dd->cntrs[entry->offset] = val;
12069 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12070 				}
12071 			}
12072 		}
12073 	}
12074 	return ret;
12075 }
12076 
12077 /*
12078  * Used by sysfs to create files for hfi stats to read
12079  */
12080 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12081 {
12082 	int ret;
12083 	u64 val = 0;
12084 
12085 	if (namep) {
12086 		ret = ppd->dd->portcntrnameslen;
12087 		*namep = ppd->dd->portcntrnames;
12088 	} else {
12089 		const struct cntr_entry *entry;
12090 		int i, j;
12091 
12092 		ret = ppd->dd->nportcntrs * sizeof(u64);
12093 		*cntrp = ppd->cntrs;
12094 
12095 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12096 			entry = &port_cntrs[i];
12097 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12098 			if (entry->flags & CNTR_DISABLED) {
12099 				/* Nothing */
12100 				hfi1_cdbg(CNTR, "\tDisabled\n");
12101 				continue;
12102 			}
12103 
12104 			if (entry->flags & CNTR_VL) {
12105 				hfi1_cdbg(CNTR, "\tPer VL");
12106 				for (j = 0; j < C_VL_COUNT; j++) {
12107 					val = entry->rw_cntr(entry, ppd, j,
12108 							       CNTR_MODE_R,
12109 							       0);
12110 					hfi1_cdbg(
12111 					   CNTR,
12112 					   "\t\tRead 0x%llx for %d",
12113 					   val, j);
12114 					ppd->cntrs[entry->offset + j] = val;
12115 				}
12116 			} else {
12117 				val = entry->rw_cntr(entry, ppd,
12118 						       CNTR_INVALID_VL,
12119 						       CNTR_MODE_R,
12120 						       0);
12121 				ppd->cntrs[entry->offset] = val;
12122 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12123 			}
12124 		}
12125 	}
12126 	return ret;
12127 }
12128 
12129 static void free_cntrs(struct hfi1_devdata *dd)
12130 {
12131 	struct hfi1_pportdata *ppd;
12132 	int i;
12133 
12134 	if (dd->synth_stats_timer.function)
12135 		del_timer_sync(&dd->synth_stats_timer);
12136 	ppd = (struct hfi1_pportdata *)(dd + 1);
12137 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12138 		kfree(ppd->cntrs);
12139 		kfree(ppd->scntrs);
12140 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12141 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12142 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12143 		ppd->cntrs = NULL;
12144 		ppd->scntrs = NULL;
12145 		ppd->ibport_data.rvp.rc_acks = NULL;
12146 		ppd->ibport_data.rvp.rc_qacks = NULL;
12147 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12148 	}
12149 	kfree(dd->portcntrnames);
12150 	dd->portcntrnames = NULL;
12151 	kfree(dd->cntrs);
12152 	dd->cntrs = NULL;
12153 	kfree(dd->scntrs);
12154 	dd->scntrs = NULL;
12155 	kfree(dd->cntrnames);
12156 	dd->cntrnames = NULL;
12157 	if (dd->update_cntr_wq) {
12158 		destroy_workqueue(dd->update_cntr_wq);
12159 		dd->update_cntr_wq = NULL;
12160 	}
12161 }
12162 
12163 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12164 			      u64 *psval, void *context, int vl)
12165 {
12166 	u64 val;
12167 	u64 sval = *psval;
12168 
12169 	if (entry->flags & CNTR_DISABLED) {
12170 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12171 		return 0;
12172 	}
12173 
12174 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12175 
12176 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12177 
12178 	/* If its a synthetic counter there is more work we need to do */
12179 	if (entry->flags & CNTR_SYNTH) {
12180 		if (sval == CNTR_MAX) {
12181 			/* No need to read already saturated */
12182 			return CNTR_MAX;
12183 		}
12184 
12185 		if (entry->flags & CNTR_32BIT) {
12186 			/* 32bit counters can wrap multiple times */
12187 			u64 upper = sval >> 32;
12188 			u64 lower = (sval << 32) >> 32;
12189 
12190 			if (lower > val) { /* hw wrapped */
12191 				if (upper == CNTR_32BIT_MAX)
12192 					val = CNTR_MAX;
12193 				else
12194 					upper++;
12195 			}
12196 
12197 			if (val != CNTR_MAX)
12198 				val = (upper << 32) | val;
12199 
12200 		} else {
12201 			/* If we rolled we are saturated */
12202 			if ((val < sval) || (val > CNTR_MAX))
12203 				val = CNTR_MAX;
12204 		}
12205 	}
12206 
12207 	*psval = val;
12208 
12209 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12210 
12211 	return val;
12212 }
12213 
12214 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12215 			       struct cntr_entry *entry,
12216 			       u64 *psval, void *context, int vl, u64 data)
12217 {
12218 	u64 val;
12219 
12220 	if (entry->flags & CNTR_DISABLED) {
12221 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12222 		return 0;
12223 	}
12224 
12225 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12226 
12227 	if (entry->flags & CNTR_SYNTH) {
12228 		*psval = data;
12229 		if (entry->flags & CNTR_32BIT) {
12230 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12231 					     (data << 32) >> 32);
12232 			val = data; /* return the full 64bit value */
12233 		} else {
12234 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12235 					     data);
12236 		}
12237 	} else {
12238 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12239 	}
12240 
12241 	*psval = val;
12242 
12243 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12244 
12245 	return val;
12246 }
12247 
12248 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12249 {
12250 	struct cntr_entry *entry;
12251 	u64 *sval;
12252 
12253 	entry = &dev_cntrs[index];
12254 	sval = dd->scntrs + entry->offset;
12255 
12256 	if (vl != CNTR_INVALID_VL)
12257 		sval += vl;
12258 
12259 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12260 }
12261 
12262 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12263 {
12264 	struct cntr_entry *entry;
12265 	u64 *sval;
12266 
12267 	entry = &dev_cntrs[index];
12268 	sval = dd->scntrs + entry->offset;
12269 
12270 	if (vl != CNTR_INVALID_VL)
12271 		sval += vl;
12272 
12273 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12274 }
12275 
12276 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12277 {
12278 	struct cntr_entry *entry;
12279 	u64 *sval;
12280 
12281 	entry = &port_cntrs[index];
12282 	sval = ppd->scntrs + entry->offset;
12283 
12284 	if (vl != CNTR_INVALID_VL)
12285 		sval += vl;
12286 
12287 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12288 	    (index <= C_RCV_HDR_OVF_LAST)) {
12289 		/* We do not want to bother for disabled contexts */
12290 		return 0;
12291 	}
12292 
12293 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12294 }
12295 
12296 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12297 {
12298 	struct cntr_entry *entry;
12299 	u64 *sval;
12300 
12301 	entry = &port_cntrs[index];
12302 	sval = ppd->scntrs + entry->offset;
12303 
12304 	if (vl != CNTR_INVALID_VL)
12305 		sval += vl;
12306 
12307 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12308 	    (index <= C_RCV_HDR_OVF_LAST)) {
12309 		/* We do not want to bother for disabled contexts */
12310 		return 0;
12311 	}
12312 
12313 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12314 }
12315 
12316 static void do_update_synth_timer(struct work_struct *work)
12317 {
12318 	u64 cur_tx;
12319 	u64 cur_rx;
12320 	u64 total_flits;
12321 	u8 update = 0;
12322 	int i, j, vl;
12323 	struct hfi1_pportdata *ppd;
12324 	struct cntr_entry *entry;
12325 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12326 					       update_cntr_work);
12327 
12328 	/*
12329 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12330 	 * check to watch for potential roll over. We can do this by looking at
12331 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12332 	 * we have to iterate all the counters and update.
12333 	 */
12334 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12335 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12336 
12337 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12338 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12339 
12340 	hfi1_cdbg(
12341 	    CNTR,
12342 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12343 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12344 
12345 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12346 		/*
12347 		 * May not be strictly necessary to update but it won't hurt and
12348 		 * simplifies the logic here.
12349 		 */
12350 		update = 1;
12351 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12352 			  dd->unit);
12353 	} else {
12354 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12355 		hfi1_cdbg(CNTR,
12356 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12357 			  total_flits, (u64)CNTR_32BIT_MAX);
12358 		if (total_flits >= CNTR_32BIT_MAX) {
12359 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12360 				  dd->unit);
12361 			update = 1;
12362 		}
12363 	}
12364 
12365 	if (update) {
12366 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12367 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12368 			entry = &dev_cntrs[i];
12369 			if (entry->flags & CNTR_VL) {
12370 				for (vl = 0; vl < C_VL_COUNT; vl++)
12371 					read_dev_cntr(dd, i, vl);
12372 			} else {
12373 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12374 			}
12375 		}
12376 		ppd = (struct hfi1_pportdata *)(dd + 1);
12377 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12378 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12379 				entry = &port_cntrs[j];
12380 				if (entry->flags & CNTR_VL) {
12381 					for (vl = 0; vl < C_VL_COUNT; vl++)
12382 						read_port_cntr(ppd, j, vl);
12383 				} else {
12384 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12385 				}
12386 			}
12387 		}
12388 
12389 		/*
12390 		 * We want the value in the register. The goal is to keep track
12391 		 * of the number of "ticks" not the counter value. In other
12392 		 * words if the register rolls we want to notice it and go ahead
12393 		 * and force an update.
12394 		 */
12395 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12396 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12397 						CNTR_MODE_R, 0);
12398 
12399 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12400 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12401 						CNTR_MODE_R, 0);
12402 
12403 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12404 			  dd->unit, dd->last_tx, dd->last_rx);
12405 
12406 	} else {
12407 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12408 	}
12409 }
12410 
12411 static void update_synth_timer(struct timer_list *t)
12412 {
12413 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12414 
12415 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12416 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12417 }
12418 
12419 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12420 static int init_cntrs(struct hfi1_devdata *dd)
12421 {
12422 	int i, rcv_ctxts, j;
12423 	size_t sz;
12424 	char *p;
12425 	char name[C_MAX_NAME];
12426 	struct hfi1_pportdata *ppd;
12427 	const char *bit_type_32 = ",32";
12428 	const int bit_type_32_sz = strlen(bit_type_32);
12429 	u32 sdma_engines = chip_sdma_engines(dd);
12430 
12431 	/* set up the stats timer; the add_timer is done at the end */
12432 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12433 
12434 	/***********************/
12435 	/* per device counters */
12436 	/***********************/
12437 
12438 	/* size names and determine how many we have*/
12439 	dd->ndevcntrs = 0;
12440 	sz = 0;
12441 
12442 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12443 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12444 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12445 			continue;
12446 		}
12447 
12448 		if (dev_cntrs[i].flags & CNTR_VL) {
12449 			dev_cntrs[i].offset = dd->ndevcntrs;
12450 			for (j = 0; j < C_VL_COUNT; j++) {
12451 				snprintf(name, C_MAX_NAME, "%s%d",
12452 					 dev_cntrs[i].name, vl_from_idx(j));
12453 				sz += strlen(name);
12454 				/* Add ",32" for 32-bit counters */
12455 				if (dev_cntrs[i].flags & CNTR_32BIT)
12456 					sz += bit_type_32_sz;
12457 				sz++;
12458 				dd->ndevcntrs++;
12459 			}
12460 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12461 			dev_cntrs[i].offset = dd->ndevcntrs;
12462 			for (j = 0; j < sdma_engines; j++) {
12463 				snprintf(name, C_MAX_NAME, "%s%d",
12464 					 dev_cntrs[i].name, j);
12465 				sz += strlen(name);
12466 				/* Add ",32" for 32-bit counters */
12467 				if (dev_cntrs[i].flags & CNTR_32BIT)
12468 					sz += bit_type_32_sz;
12469 				sz++;
12470 				dd->ndevcntrs++;
12471 			}
12472 		} else {
12473 			/* +1 for newline. */
12474 			sz += strlen(dev_cntrs[i].name) + 1;
12475 			/* Add ",32" for 32-bit counters */
12476 			if (dev_cntrs[i].flags & CNTR_32BIT)
12477 				sz += bit_type_32_sz;
12478 			dev_cntrs[i].offset = dd->ndevcntrs;
12479 			dd->ndevcntrs++;
12480 		}
12481 	}
12482 
12483 	/* allocate space for the counter values */
12484 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12485 	if (!dd->cntrs)
12486 		goto bail;
12487 
12488 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12489 	if (!dd->scntrs)
12490 		goto bail;
12491 
12492 	/* allocate space for the counter names */
12493 	dd->cntrnameslen = sz;
12494 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12495 	if (!dd->cntrnames)
12496 		goto bail;
12497 
12498 	/* fill in the names */
12499 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12500 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12501 			/* Nothing */
12502 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12503 			for (j = 0; j < C_VL_COUNT; j++) {
12504 				snprintf(name, C_MAX_NAME, "%s%d",
12505 					 dev_cntrs[i].name,
12506 					 vl_from_idx(j));
12507 				memcpy(p, name, strlen(name));
12508 				p += strlen(name);
12509 
12510 				/* Counter is 32 bits */
12511 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12512 					memcpy(p, bit_type_32, bit_type_32_sz);
12513 					p += bit_type_32_sz;
12514 				}
12515 
12516 				*p++ = '\n';
12517 			}
12518 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12519 			for (j = 0; j < sdma_engines; j++) {
12520 				snprintf(name, C_MAX_NAME, "%s%d",
12521 					 dev_cntrs[i].name, j);
12522 				memcpy(p, name, strlen(name));
12523 				p += strlen(name);
12524 
12525 				/* Counter is 32 bits */
12526 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12527 					memcpy(p, bit_type_32, bit_type_32_sz);
12528 					p += bit_type_32_sz;
12529 				}
12530 
12531 				*p++ = '\n';
12532 			}
12533 		} else {
12534 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12535 			p += strlen(dev_cntrs[i].name);
12536 
12537 			/* Counter is 32 bits */
12538 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12539 				memcpy(p, bit_type_32, bit_type_32_sz);
12540 				p += bit_type_32_sz;
12541 			}
12542 
12543 			*p++ = '\n';
12544 		}
12545 	}
12546 
12547 	/*********************/
12548 	/* per port counters */
12549 	/*********************/
12550 
12551 	/*
12552 	 * Go through the counters for the overflows and disable the ones we
12553 	 * don't need. This varies based on platform so we need to do it
12554 	 * dynamically here.
12555 	 */
12556 	rcv_ctxts = dd->num_rcv_contexts;
12557 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12558 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12559 		port_cntrs[i].flags |= CNTR_DISABLED;
12560 	}
12561 
12562 	/* size port counter names and determine how many we have*/
12563 	sz = 0;
12564 	dd->nportcntrs = 0;
12565 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12566 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12567 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12568 			continue;
12569 		}
12570 
12571 		if (port_cntrs[i].flags & CNTR_VL) {
12572 			port_cntrs[i].offset = dd->nportcntrs;
12573 			for (j = 0; j < C_VL_COUNT; j++) {
12574 				snprintf(name, C_MAX_NAME, "%s%d",
12575 					 port_cntrs[i].name, vl_from_idx(j));
12576 				sz += strlen(name);
12577 				/* Add ",32" for 32-bit counters */
12578 				if (port_cntrs[i].flags & CNTR_32BIT)
12579 					sz += bit_type_32_sz;
12580 				sz++;
12581 				dd->nportcntrs++;
12582 			}
12583 		} else {
12584 			/* +1 for newline */
12585 			sz += strlen(port_cntrs[i].name) + 1;
12586 			/* Add ",32" for 32-bit counters */
12587 			if (port_cntrs[i].flags & CNTR_32BIT)
12588 				sz += bit_type_32_sz;
12589 			port_cntrs[i].offset = dd->nportcntrs;
12590 			dd->nportcntrs++;
12591 		}
12592 	}
12593 
12594 	/* allocate space for the counter names */
12595 	dd->portcntrnameslen = sz;
12596 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12597 	if (!dd->portcntrnames)
12598 		goto bail;
12599 
12600 	/* fill in port cntr names */
12601 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12602 		if (port_cntrs[i].flags & CNTR_DISABLED)
12603 			continue;
12604 
12605 		if (port_cntrs[i].flags & CNTR_VL) {
12606 			for (j = 0; j < C_VL_COUNT; j++) {
12607 				snprintf(name, C_MAX_NAME, "%s%d",
12608 					 port_cntrs[i].name, vl_from_idx(j));
12609 				memcpy(p, name, strlen(name));
12610 				p += strlen(name);
12611 
12612 				/* Counter is 32 bits */
12613 				if (port_cntrs[i].flags & CNTR_32BIT) {
12614 					memcpy(p, bit_type_32, bit_type_32_sz);
12615 					p += bit_type_32_sz;
12616 				}
12617 
12618 				*p++ = '\n';
12619 			}
12620 		} else {
12621 			memcpy(p, port_cntrs[i].name,
12622 			       strlen(port_cntrs[i].name));
12623 			p += strlen(port_cntrs[i].name);
12624 
12625 			/* Counter is 32 bits */
12626 			if (port_cntrs[i].flags & CNTR_32BIT) {
12627 				memcpy(p, bit_type_32, bit_type_32_sz);
12628 				p += bit_type_32_sz;
12629 			}
12630 
12631 			*p++ = '\n';
12632 		}
12633 	}
12634 
12635 	/* allocate per port storage for counter values */
12636 	ppd = (struct hfi1_pportdata *)(dd + 1);
12637 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12638 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12639 		if (!ppd->cntrs)
12640 			goto bail;
12641 
12642 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12643 		if (!ppd->scntrs)
12644 			goto bail;
12645 	}
12646 
12647 	/* CPU counters need to be allocated and zeroed */
12648 	if (init_cpu_counters(dd))
12649 		goto bail;
12650 
12651 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12652 						     WQ_MEM_RECLAIM, dd->unit);
12653 	if (!dd->update_cntr_wq)
12654 		goto bail;
12655 
12656 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12657 
12658 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12659 	return 0;
12660 bail:
12661 	free_cntrs(dd);
12662 	return -ENOMEM;
12663 }
12664 
12665 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12666 {
12667 	switch (chip_lstate) {
12668 	default:
12669 		dd_dev_err(dd,
12670 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12671 			   chip_lstate);
12672 		/* fall through */
12673 	case LSTATE_DOWN:
12674 		return IB_PORT_DOWN;
12675 	case LSTATE_INIT:
12676 		return IB_PORT_INIT;
12677 	case LSTATE_ARMED:
12678 		return IB_PORT_ARMED;
12679 	case LSTATE_ACTIVE:
12680 		return IB_PORT_ACTIVE;
12681 	}
12682 }
12683 
12684 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12685 {
12686 	/* look at the HFI meta-states only */
12687 	switch (chip_pstate & 0xf0) {
12688 	default:
12689 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12690 			   chip_pstate);
12691 		/* fall through */
12692 	case PLS_DISABLED:
12693 		return IB_PORTPHYSSTATE_DISABLED;
12694 	case PLS_OFFLINE:
12695 		return OPA_PORTPHYSSTATE_OFFLINE;
12696 	case PLS_POLLING:
12697 		return IB_PORTPHYSSTATE_POLLING;
12698 	case PLS_CONFIGPHY:
12699 		return IB_PORTPHYSSTATE_TRAINING;
12700 	case PLS_LINKUP:
12701 		return IB_PORTPHYSSTATE_LINKUP;
12702 	case PLS_PHYTEST:
12703 		return IB_PORTPHYSSTATE_PHY_TEST;
12704 	}
12705 }
12706 
12707 /* return the OPA port logical state name */
12708 const char *opa_lstate_name(u32 lstate)
12709 {
12710 	static const char * const port_logical_names[] = {
12711 		"PORT_NOP",
12712 		"PORT_DOWN",
12713 		"PORT_INIT",
12714 		"PORT_ARMED",
12715 		"PORT_ACTIVE",
12716 		"PORT_ACTIVE_DEFER",
12717 	};
12718 	if (lstate < ARRAY_SIZE(port_logical_names))
12719 		return port_logical_names[lstate];
12720 	return "unknown";
12721 }
12722 
12723 /* return the OPA port physical state name */
12724 const char *opa_pstate_name(u32 pstate)
12725 {
12726 	static const char * const port_physical_names[] = {
12727 		"PHYS_NOP",
12728 		"reserved1",
12729 		"PHYS_POLL",
12730 		"PHYS_DISABLED",
12731 		"PHYS_TRAINING",
12732 		"PHYS_LINKUP",
12733 		"PHYS_LINK_ERR_RECOVER",
12734 		"PHYS_PHY_TEST",
12735 		"reserved8",
12736 		"PHYS_OFFLINE",
12737 		"PHYS_GANGED",
12738 		"PHYS_TEST",
12739 	};
12740 	if (pstate < ARRAY_SIZE(port_physical_names))
12741 		return port_physical_names[pstate];
12742 	return "unknown";
12743 }
12744 
12745 /**
12746  * update_statusp - Update userspace status flag
12747  * @ppd: Port data structure
12748  * @state: port state information
12749  *
12750  * Actual port status is determined by the host_link_state value
12751  * in the ppd.
12752  *
12753  * host_link_state MUST be updated before updating the user space
12754  * statusp.
12755  */
12756 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12757 {
12758 	/*
12759 	 * Set port status flags in the page mapped into userspace
12760 	 * memory. Do it here to ensure a reliable state - this is
12761 	 * the only function called by all state handling code.
12762 	 * Always set the flags due to the fact that the cache value
12763 	 * might have been changed explicitly outside of this
12764 	 * function.
12765 	 */
12766 	if (ppd->statusp) {
12767 		switch (state) {
12768 		case IB_PORT_DOWN:
12769 		case IB_PORT_INIT:
12770 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12771 					   HFI1_STATUS_IB_READY);
12772 			break;
12773 		case IB_PORT_ARMED:
12774 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12775 			break;
12776 		case IB_PORT_ACTIVE:
12777 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12778 			break;
12779 		}
12780 	}
12781 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12782 		    opa_lstate_name(state), state);
12783 }
12784 
12785 /**
12786  * wait_logical_linkstate - wait for an IB link state change to occur
12787  * @ppd: port device
12788  * @state: the state to wait for
12789  * @msecs: the number of milliseconds to wait
12790  *
12791  * Wait up to msecs milliseconds for IB link state change to occur.
12792  * For now, take the easy polling route.
12793  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12794  */
12795 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12796 				  int msecs)
12797 {
12798 	unsigned long timeout;
12799 	u32 new_state;
12800 
12801 	timeout = jiffies + msecs_to_jiffies(msecs);
12802 	while (1) {
12803 		new_state = chip_to_opa_lstate(ppd->dd,
12804 					       read_logical_state(ppd->dd));
12805 		if (new_state == state)
12806 			break;
12807 		if (time_after(jiffies, timeout)) {
12808 			dd_dev_err(ppd->dd,
12809 				   "timeout waiting for link state 0x%x\n",
12810 				   state);
12811 			return -ETIMEDOUT;
12812 		}
12813 		msleep(20);
12814 	}
12815 
12816 	return 0;
12817 }
12818 
12819 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12820 {
12821 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12822 
12823 	dd_dev_info(ppd->dd,
12824 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12825 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12826 }
12827 
12828 /*
12829  * Read the physical hardware link state and check if it matches host
12830  * drivers anticipated state.
12831  */
12832 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12833 {
12834 	u32 read_state = read_physical_state(ppd->dd);
12835 
12836 	if (read_state == state) {
12837 		log_state_transition(ppd, state);
12838 	} else {
12839 		dd_dev_err(ppd->dd,
12840 			   "anticipated phy link state 0x%x, read 0x%x\n",
12841 			   state, read_state);
12842 	}
12843 }
12844 
12845 /*
12846  * wait_physical_linkstate - wait for an physical link state change to occur
12847  * @ppd: port device
12848  * @state: the state to wait for
12849  * @msecs: the number of milliseconds to wait
12850  *
12851  * Wait up to msecs milliseconds for physical link state change to occur.
12852  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12853  */
12854 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12855 				   int msecs)
12856 {
12857 	u32 read_state;
12858 	unsigned long timeout;
12859 
12860 	timeout = jiffies + msecs_to_jiffies(msecs);
12861 	while (1) {
12862 		read_state = read_physical_state(ppd->dd);
12863 		if (read_state == state)
12864 			break;
12865 		if (time_after(jiffies, timeout)) {
12866 			dd_dev_err(ppd->dd,
12867 				   "timeout waiting for phy link state 0x%x\n",
12868 				   state);
12869 			return -ETIMEDOUT;
12870 		}
12871 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12872 	}
12873 
12874 	log_state_transition(ppd, state);
12875 	return 0;
12876 }
12877 
12878 /*
12879  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12880  * @ppd: port device
12881  * @msecs: the number of milliseconds to wait
12882  *
12883  * Wait up to msecs milliseconds for any offline physical link
12884  * state change to occur.
12885  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12886  */
12887 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12888 					    int msecs)
12889 {
12890 	u32 read_state;
12891 	unsigned long timeout;
12892 
12893 	timeout = jiffies + msecs_to_jiffies(msecs);
12894 	while (1) {
12895 		read_state = read_physical_state(ppd->dd);
12896 		if ((read_state & 0xF0) == PLS_OFFLINE)
12897 			break;
12898 		if (time_after(jiffies, timeout)) {
12899 			dd_dev_err(ppd->dd,
12900 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12901 				   read_state, msecs);
12902 			return -ETIMEDOUT;
12903 		}
12904 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12905 	}
12906 
12907 	log_state_transition(ppd, read_state);
12908 	return read_state;
12909 }
12910 
12911 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12912 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12913 
12914 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12915 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12916 
12917 void hfi1_init_ctxt(struct send_context *sc)
12918 {
12919 	if (sc) {
12920 		struct hfi1_devdata *dd = sc->dd;
12921 		u64 reg;
12922 		u8 set = (sc->type == SC_USER ?
12923 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12924 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12925 		reg = read_kctxt_csr(dd, sc->hw_context,
12926 				     SEND_CTXT_CHECK_ENABLE);
12927 		if (set)
12928 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12929 		else
12930 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12931 		write_kctxt_csr(dd, sc->hw_context,
12932 				SEND_CTXT_CHECK_ENABLE, reg);
12933 	}
12934 }
12935 
12936 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12937 {
12938 	int ret = 0;
12939 	u64 reg;
12940 
12941 	if (dd->icode != ICODE_RTL_SILICON) {
12942 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12943 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12944 				    __func__);
12945 		return -EINVAL;
12946 	}
12947 	reg = read_csr(dd, ASIC_STS_THERM);
12948 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12949 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12950 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12951 			ASIC_STS_THERM_LO_TEMP_MASK);
12952 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12953 			ASIC_STS_THERM_HI_TEMP_MASK);
12954 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12955 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12956 	/* triggers is a 3-bit value - 1 bit per trigger. */
12957 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12958 
12959 	return ret;
12960 }
12961 
12962 /**
12963  * get_int_mask - get 64 bit int mask
12964  * @dd - the devdata
12965  * @i - the csr (relative to CCE_INT_MASK)
12966  *
12967  * Returns the mask with the urgent interrupt mask
12968  * bit clear for kernel receive contexts.
12969  */
12970 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i)
12971 {
12972 	u64 mask = U64_MAX; /* default to no change */
12973 
12974 	if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) {
12975 		int j = (i - (IS_RCVURGENT_START / 64)) * 64;
12976 		int k = !j ? IS_RCVURGENT_START % 64 : 0;
12977 
12978 		if (j)
12979 			j -= IS_RCVURGENT_START % 64;
12980 		/* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */
12981 		for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++)
12982 			/* convert to bit in mask and clear */
12983 			mask &= ~BIT_ULL(k);
12984 	}
12985 	return mask;
12986 }
12987 
12988 /* ========================================================================= */
12989 
12990 /*
12991  * Enable/disable chip from delivering interrupts.
12992  */
12993 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12994 {
12995 	int i;
12996 
12997 	/*
12998 	 * In HFI, the mask needs to be 1 to allow interrupts.
12999 	 */
13000 	if (enable) {
13001 		/* enable all interrupts but urgent on kernel contexts */
13002 		for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13003 			u64 mask = get_int_mask(dd, i);
13004 
13005 			write_csr(dd, CCE_INT_MASK + (8 * i), mask);
13006 		}
13007 
13008 		init_qsfp_int(dd);
13009 	} else {
13010 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13011 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13012 	}
13013 }
13014 
13015 /*
13016  * Clear all interrupt sources on the chip.
13017  */
13018 static void clear_all_interrupts(struct hfi1_devdata *dd)
13019 {
13020 	int i;
13021 
13022 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13023 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13024 
13025 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13026 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13027 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13028 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13029 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13030 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13031 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13032 	for (i = 0; i < chip_send_contexts(dd); i++)
13033 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13034 	for (i = 0; i < chip_sdma_engines(dd); i++)
13035 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13036 
13037 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13038 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13039 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13040 }
13041 
13042 /**
13043  * hfi1_clean_up_interrupts() - Free all IRQ resources
13044  * @dd: valid device data data structure
13045  *
13046  * Free the MSIx and assoicated PCI resources, if they have been allocated.
13047  */
13048 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd)
13049 {
13050 	int i;
13051 	struct hfi1_msix_entry *me = dd->msix_entries;
13052 
13053 	/* remove irqs - must happen before disabling/turning off */
13054 	for (i = 0; i < dd->num_msix_entries; i++, me++) {
13055 		if (!me->arg) /* => no irq, no affinity */
13056 			continue;
13057 		hfi1_put_irq_affinity(dd, me);
13058 		pci_free_irq(dd->pcidev, i, me->arg);
13059 	}
13060 
13061 	/* clean structures */
13062 	kfree(dd->msix_entries);
13063 	dd->msix_entries = NULL;
13064 	dd->num_msix_entries = 0;
13065 
13066 	pci_free_irq_vectors(dd->pcidev);
13067 }
13068 
13069 /*
13070  * Remap the interrupt source from the general handler to the given MSI-X
13071  * interrupt.
13072  */
13073 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13074 {
13075 	u64 reg;
13076 	int m, n;
13077 
13078 	/* clear from the handled mask of the general interrupt */
13079 	m = isrc / 64;
13080 	n = isrc % 64;
13081 	if (likely(m < CCE_NUM_INT_CSRS)) {
13082 		dd->gi_mask[m] &= ~((u64)1 << n);
13083 	} else {
13084 		dd_dev_err(dd, "remap interrupt err\n");
13085 		return;
13086 	}
13087 
13088 	/* direct the chip source to the given MSI-X interrupt */
13089 	m = isrc / 8;
13090 	n = isrc % 8;
13091 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13092 	reg &= ~((u64)0xff << (8 * n));
13093 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13094 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13095 }
13096 
13097 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
13098 				  int engine, int msix_intr)
13099 {
13100 	/*
13101 	 * SDMA engine interrupt sources grouped by type, rather than
13102 	 * engine.  Per-engine interrupts are as follows:
13103 	 *	SDMA
13104 	 *	SDMAProgress
13105 	 *	SDMAIdle
13106 	 */
13107 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
13108 		   msix_intr);
13109 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
13110 		   msix_intr);
13111 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
13112 		   msix_intr);
13113 }
13114 
13115 static int request_msix_irqs(struct hfi1_devdata *dd)
13116 {
13117 	int first_general, last_general;
13118 	int first_sdma, last_sdma;
13119 	int first_rx, last_rx;
13120 	int i, ret = 0;
13121 
13122 	/* calculate the ranges we are going to use */
13123 	first_general = 0;
13124 	last_general = first_general + 1;
13125 	first_sdma = last_general;
13126 	last_sdma = first_sdma + dd->num_sdma;
13127 	first_rx = last_sdma;
13128 	last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts;
13129 
13130 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13131 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13132 
13133 	/*
13134 	 * Sanity check - the code expects all SDMA chip source
13135 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13136 	 * that this is true by checking the bit location of the start.
13137 	 */
13138 	BUILD_BUG_ON(IS_SDMA_START % 64);
13139 
13140 	for (i = 0; i < dd->num_msix_entries; i++) {
13141 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13142 		const char *err_info;
13143 		irq_handler_t handler;
13144 		irq_handler_t thread = NULL;
13145 		void *arg = NULL;
13146 		int idx;
13147 		struct hfi1_ctxtdata *rcd = NULL;
13148 		struct sdma_engine *sde = NULL;
13149 		char name[MAX_NAME_SIZE];
13150 
13151 		/* obtain the arguments to pci_request_irq */
13152 		if (first_general <= i && i < last_general) {
13153 			idx = i - first_general;
13154 			handler = general_interrupt;
13155 			arg = dd;
13156 			snprintf(name, sizeof(name),
13157 				 DRIVER_NAME "_%d", dd->unit);
13158 			err_info = "general";
13159 			me->type = IRQ_GENERAL;
13160 		} else if (first_sdma <= i && i < last_sdma) {
13161 			idx = i - first_sdma;
13162 			sde = &dd->per_sdma[idx];
13163 			handler = sdma_interrupt;
13164 			arg = sde;
13165 			snprintf(name, sizeof(name),
13166 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13167 			err_info = "sdma";
13168 			remap_sdma_interrupts(dd, idx, i);
13169 			me->type = IRQ_SDMA;
13170 		} else if (first_rx <= i && i < last_rx) {
13171 			idx = i - first_rx;
13172 			rcd = hfi1_rcd_get_by_index_safe(dd, idx);
13173 			if (rcd) {
13174 				/*
13175 				 * Set the interrupt register and mask for this
13176 				 * context's interrupt.
13177 				 */
13178 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13179 				rcd->imask = ((u64)1) <<
13180 					  ((IS_RCVAVAIL_START + idx) % 64);
13181 				handler = receive_context_interrupt;
13182 				thread = receive_context_thread;
13183 				arg = rcd;
13184 				snprintf(name, sizeof(name),
13185 					 DRIVER_NAME "_%d kctxt%d",
13186 					 dd->unit, idx);
13187 				err_info = "receive context";
13188 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13189 				me->type = IRQ_RCVCTXT;
13190 				rcd->msix_intr = i;
13191 				hfi1_rcd_put(rcd);
13192 			}
13193 		} else {
13194 			/* not in our expected range - complain, then
13195 			 * ignore it
13196 			 */
13197 			dd_dev_err(dd,
13198 				   "Unexpected extra MSI-X interrupt %d\n", i);
13199 			continue;
13200 		}
13201 		/* no argument, no interrupt */
13202 		if (!arg)
13203 			continue;
13204 		/* make sure the name is terminated */
13205 		name[sizeof(name) - 1] = 0;
13206 		me->irq = pci_irq_vector(dd->pcidev, i);
13207 		ret = pci_request_irq(dd->pcidev, i, handler, thread, arg,
13208 				      name);
13209 		if (ret) {
13210 			dd_dev_err(dd,
13211 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13212 				   err_info, me->irq, idx, ret);
13213 			return ret;
13214 		}
13215 		/*
13216 		 * assign arg after pci_request_irq call, so it will be
13217 		 * cleaned up
13218 		 */
13219 		me->arg = arg;
13220 
13221 		ret = hfi1_get_irq_affinity(dd, me);
13222 		if (ret)
13223 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13224 	}
13225 
13226 	return ret;
13227 }
13228 
13229 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13230 {
13231 	int i;
13232 
13233 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13234 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13235 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13236 
13237 		synchronize_irq(me->irq);
13238 	}
13239 }
13240 
13241 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13242 {
13243 	struct hfi1_devdata *dd = rcd->dd;
13244 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13245 
13246 	if (!me->arg) /* => no irq, no affinity */
13247 		return;
13248 
13249 	hfi1_put_irq_affinity(dd, me);
13250 	pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13251 
13252 	me->arg = NULL;
13253 }
13254 
13255 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13256 {
13257 	struct hfi1_devdata *dd = rcd->dd;
13258 	struct hfi1_msix_entry *me;
13259 	int idx = rcd->ctxt;
13260 	void *arg = rcd;
13261 	int ret;
13262 
13263 	rcd->msix_intr = dd->vnic.msix_idx++;
13264 	me = &dd->msix_entries[rcd->msix_intr];
13265 
13266 	/*
13267 	 * Set the interrupt register and mask for this
13268 	 * context's interrupt.
13269 	 */
13270 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13271 	rcd->imask = ((u64)1) <<
13272 		  ((IS_RCVAVAIL_START + idx) % 64);
13273 	me->type = IRQ_RCVCTXT;
13274 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13275 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13276 
13277 	ret = pci_request_irq(dd->pcidev, rcd->msix_intr,
13278 			      receive_context_interrupt,
13279 			      receive_context_thread, arg,
13280 			      DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13281 	if (ret) {
13282 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13283 			   me->irq, idx, ret);
13284 		return;
13285 	}
13286 	/*
13287 	 * assign arg after pci_request_irq call, so it will be
13288 	 * cleaned up
13289 	 */
13290 	me->arg = arg;
13291 
13292 	ret = hfi1_get_irq_affinity(dd, me);
13293 	if (ret) {
13294 		dd_dev_err(dd,
13295 			   "unable to pin IRQ %d\n", ret);
13296 		pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg);
13297 	}
13298 }
13299 
13300 /*
13301  * Set the general handler to accept all interrupts, remap all
13302  * chip interrupts back to MSI-X 0.
13303  */
13304 static void reset_interrupts(struct hfi1_devdata *dd)
13305 {
13306 	int i;
13307 
13308 	/* all interrupts handled by the general handler */
13309 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13310 		dd->gi_mask[i] = ~(u64)0;
13311 
13312 	/* all chip interrupts map to MSI-X 0 */
13313 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13314 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13315 }
13316 
13317 static int set_up_interrupts(struct hfi1_devdata *dd)
13318 {
13319 	u32 total;
13320 	int ret, request;
13321 
13322 	/*
13323 	 * Interrupt count:
13324 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13325 	 *		slow source, SDMACleanupDone)
13326 	 *	N interrupts - one per used SDMA engine
13327 	 *	M interrupt - one per kernel receive context
13328 	 *	V interrupt - one for each VNIC context
13329 	 */
13330 	total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts;
13331 
13332 	/* ask for MSI-X interrupts */
13333 	request = request_msix(dd, total);
13334 	if (request < 0) {
13335 		ret = request;
13336 		goto fail;
13337 	} else {
13338 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13339 					   GFP_KERNEL);
13340 		if (!dd->msix_entries) {
13341 			ret = -ENOMEM;
13342 			goto fail;
13343 		}
13344 		/* using MSI-X */
13345 		dd->num_msix_entries = total;
13346 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13347 	}
13348 
13349 	/* mask all interrupts */
13350 	set_intr_state(dd, 0);
13351 	/* clear all pending interrupts */
13352 	clear_all_interrupts(dd);
13353 
13354 	/* reset general handler mask, chip MSI-X mappings */
13355 	reset_interrupts(dd);
13356 
13357 	ret = request_msix_irqs(dd);
13358 	if (ret)
13359 		goto fail;
13360 
13361 	return 0;
13362 
13363 fail:
13364 	hfi1_clean_up_interrupts(dd);
13365 	return ret;
13366 }
13367 
13368 /*
13369  * Set up context values in dd.  Sets:
13370  *
13371  *	num_rcv_contexts - number of contexts being used
13372  *	n_krcv_queues - number of kernel contexts
13373  *	first_dyn_alloc_ctxt - first dynamically allocated context
13374  *                             in array of contexts
13375  *	freectxts  - number of free user contexts
13376  *	num_send_contexts - number of PIO send contexts being used
13377  *	num_vnic_contexts - number of contexts reserved for VNIC
13378  */
13379 static int set_up_context_variables(struct hfi1_devdata *dd)
13380 {
13381 	unsigned long num_kernel_contexts;
13382 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13383 	int total_contexts;
13384 	int ret;
13385 	unsigned ngroups;
13386 	int qos_rmt_count;
13387 	int user_rmt_reduced;
13388 	u32 n_usr_ctxts;
13389 	u32 send_contexts = chip_send_contexts(dd);
13390 	u32 rcv_contexts = chip_rcv_contexts(dd);
13391 
13392 	/*
13393 	 * Kernel receive contexts:
13394 	 * - Context 0 - control context (VL15/multicast/error)
13395 	 * - Context 1 - first kernel context
13396 	 * - Context 2 - second kernel context
13397 	 * ...
13398 	 */
13399 	if (n_krcvqs)
13400 		/*
13401 		 * n_krcvqs is the sum of module parameter kernel receive
13402 		 * contexts, krcvqs[].  It does not include the control
13403 		 * context, so add that.
13404 		 */
13405 		num_kernel_contexts = n_krcvqs + 1;
13406 	else
13407 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13408 	/*
13409 	 * Every kernel receive context needs an ACK send context.
13410 	 * one send context is allocated for each VL{0-7} and VL15
13411 	 */
13412 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13413 		dd_dev_err(dd,
13414 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13415 			   send_contexts - num_vls - 1,
13416 			   num_kernel_contexts);
13417 		num_kernel_contexts = send_contexts - num_vls - 1;
13418 	}
13419 
13420 	/* Accommodate VNIC contexts if possible */
13421 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13422 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13423 		num_vnic_contexts = 0;
13424 	}
13425 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13426 
13427 	/*
13428 	 * User contexts:
13429 	 *	- default to 1 user context per real (non-HT) CPU core if
13430 	 *	  num_user_contexts is negative
13431 	 */
13432 	if (num_user_contexts < 0)
13433 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13434 	else
13435 		n_usr_ctxts = num_user_contexts;
13436 	/*
13437 	 * Adjust the counts given a global max.
13438 	 */
13439 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13440 		dd_dev_err(dd,
13441 			   "Reducing # user receive contexts to: %d, from %u\n",
13442 			   rcv_contexts - total_contexts,
13443 			   n_usr_ctxts);
13444 		/* recalculate */
13445 		n_usr_ctxts = rcv_contexts - total_contexts;
13446 	}
13447 
13448 	/* each user context requires an entry in the RMT */
13449 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13450 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13451 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13452 		dd_dev_err(dd,
13453 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13454 			   n_usr_ctxts,
13455 			   user_rmt_reduced);
13456 		/* recalculate */
13457 		n_usr_ctxts = user_rmt_reduced;
13458 	}
13459 
13460 	total_contexts += n_usr_ctxts;
13461 
13462 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13463 	dd->num_rcv_contexts = total_contexts;
13464 	dd->n_krcv_queues = num_kernel_contexts;
13465 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13466 	dd->num_vnic_contexts = num_vnic_contexts;
13467 	dd->num_user_contexts = n_usr_ctxts;
13468 	dd->freectxts = n_usr_ctxts;
13469 	dd_dev_info(dd,
13470 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13471 		    rcv_contexts,
13472 		    (int)dd->num_rcv_contexts,
13473 		    (int)dd->n_krcv_queues,
13474 		    dd->num_vnic_contexts,
13475 		    dd->num_user_contexts);
13476 
13477 	/*
13478 	 * Receive array allocation:
13479 	 *   All RcvArray entries are divided into groups of 8. This
13480 	 *   is required by the hardware and will speed up writes to
13481 	 *   consecutive entries by using write-combining of the entire
13482 	 *   cacheline.
13483 	 *
13484 	 *   The number of groups are evenly divided among all contexts.
13485 	 *   any left over groups will be given to the first N user
13486 	 *   contexts.
13487 	 */
13488 	dd->rcv_entries.group_size = RCV_INCREMENT;
13489 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13490 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13491 	dd->rcv_entries.nctxt_extra = ngroups -
13492 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13493 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13494 		    dd->rcv_entries.ngroups,
13495 		    dd->rcv_entries.nctxt_extra);
13496 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13497 	    MAX_EAGER_ENTRIES * 2) {
13498 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13499 			dd->rcv_entries.group_size;
13500 		dd_dev_info(dd,
13501 			    "RcvArray group count too high, change to %u\n",
13502 			    dd->rcv_entries.ngroups);
13503 		dd->rcv_entries.nctxt_extra = 0;
13504 	}
13505 	/*
13506 	 * PIO send contexts
13507 	 */
13508 	ret = init_sc_pools_and_sizes(dd);
13509 	if (ret >= 0) {	/* success */
13510 		dd->num_send_contexts = ret;
13511 		dd_dev_info(
13512 			dd,
13513 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13514 			send_contexts,
13515 			dd->num_send_contexts,
13516 			dd->sc_sizes[SC_KERNEL].count,
13517 			dd->sc_sizes[SC_ACK].count,
13518 			dd->sc_sizes[SC_USER].count,
13519 			dd->sc_sizes[SC_VL15].count);
13520 		ret = 0;	/* success */
13521 	}
13522 
13523 	return ret;
13524 }
13525 
13526 /*
13527  * Set the device/port partition key table. The MAD code
13528  * will ensure that, at least, the partial management
13529  * partition key is present in the table.
13530  */
13531 static void set_partition_keys(struct hfi1_pportdata *ppd)
13532 {
13533 	struct hfi1_devdata *dd = ppd->dd;
13534 	u64 reg = 0;
13535 	int i;
13536 
13537 	dd_dev_info(dd, "Setting partition keys\n");
13538 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13539 		reg |= (ppd->pkeys[i] &
13540 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13541 			((i % 4) *
13542 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13543 		/* Each register holds 4 PKey values. */
13544 		if ((i % 4) == 3) {
13545 			write_csr(dd, RCV_PARTITION_KEY +
13546 				  ((i - 3) * 2), reg);
13547 			reg = 0;
13548 		}
13549 	}
13550 
13551 	/* Always enable HW pkeys check when pkeys table is set */
13552 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13553 }
13554 
13555 /*
13556  * These CSRs and memories are uninitialized on reset and must be
13557  * written before reading to set the ECC/parity bits.
13558  *
13559  * NOTE: All user context CSRs that are not mmaped write-only
13560  * (e.g. the TID flows) must be initialized even if the driver never
13561  * reads them.
13562  */
13563 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13564 {
13565 	int i, j;
13566 
13567 	/* CceIntMap */
13568 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13569 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13570 
13571 	/* SendCtxtCreditReturnAddr */
13572 	for (i = 0; i < chip_send_contexts(dd); i++)
13573 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13574 
13575 	/* PIO Send buffers */
13576 	/* SDMA Send buffers */
13577 	/*
13578 	 * These are not normally read, and (presently) have no method
13579 	 * to be read, so are not pre-initialized
13580 	 */
13581 
13582 	/* RcvHdrAddr */
13583 	/* RcvHdrTailAddr */
13584 	/* RcvTidFlowTable */
13585 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13586 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13587 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13588 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13589 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13590 	}
13591 
13592 	/* RcvArray */
13593 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13594 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13595 
13596 	/* RcvQPMapTable */
13597 	for (i = 0; i < 32; i++)
13598 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13599 }
13600 
13601 /*
13602  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13603  */
13604 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13605 			     u64 ctrl_bits)
13606 {
13607 	unsigned long timeout;
13608 	u64 reg;
13609 
13610 	/* is the condition present? */
13611 	reg = read_csr(dd, CCE_STATUS);
13612 	if ((reg & status_bits) == 0)
13613 		return;
13614 
13615 	/* clear the condition */
13616 	write_csr(dd, CCE_CTRL, ctrl_bits);
13617 
13618 	/* wait for the condition to clear */
13619 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13620 	while (1) {
13621 		reg = read_csr(dd, CCE_STATUS);
13622 		if ((reg & status_bits) == 0)
13623 			return;
13624 		if (time_after(jiffies, timeout)) {
13625 			dd_dev_err(dd,
13626 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13627 				   status_bits, reg & status_bits);
13628 			return;
13629 		}
13630 		udelay(1);
13631 	}
13632 }
13633 
13634 /* set CCE CSRs to chip reset defaults */
13635 static void reset_cce_csrs(struct hfi1_devdata *dd)
13636 {
13637 	int i;
13638 
13639 	/* CCE_REVISION read-only */
13640 	/* CCE_REVISION2 read-only */
13641 	/* CCE_CTRL - bits clear automatically */
13642 	/* CCE_STATUS read-only, use CceCtrl to clear */
13643 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13644 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13645 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13646 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13647 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13648 	/* CCE_ERR_STATUS read-only */
13649 	write_csr(dd, CCE_ERR_MASK, 0);
13650 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13651 	/* CCE_ERR_FORCE leave alone */
13652 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13653 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13654 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13655 	/* CCE_PCIE_CTRL leave alone */
13656 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13657 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13658 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13659 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13660 	}
13661 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13662 		/* CCE_MSIX_PBA read-only */
13663 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13664 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13665 	}
13666 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13667 		write_csr(dd, CCE_INT_MAP, 0);
13668 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13669 		/* CCE_INT_STATUS read-only */
13670 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13671 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13672 		/* CCE_INT_FORCE leave alone */
13673 		/* CCE_INT_BLOCKED read-only */
13674 	}
13675 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13676 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13677 }
13678 
13679 /* set MISC CSRs to chip reset defaults */
13680 static void reset_misc_csrs(struct hfi1_devdata *dd)
13681 {
13682 	int i;
13683 
13684 	for (i = 0; i < 32; i++) {
13685 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13686 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13687 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13688 	}
13689 	/*
13690 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13691 	 * only be written 128-byte chunks
13692 	 */
13693 	/* init RSA engine to clear lingering errors */
13694 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13695 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13696 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13697 	/* MISC_STS_8051_DIGEST read-only */
13698 	/* MISC_STS_SBM_DIGEST read-only */
13699 	/* MISC_STS_PCIE_DIGEST read-only */
13700 	/* MISC_STS_FAB_DIGEST read-only */
13701 	/* MISC_ERR_STATUS read-only */
13702 	write_csr(dd, MISC_ERR_MASK, 0);
13703 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13704 	/* MISC_ERR_FORCE leave alone */
13705 }
13706 
13707 /* set TXE CSRs to chip reset defaults */
13708 static void reset_txe_csrs(struct hfi1_devdata *dd)
13709 {
13710 	int i;
13711 
13712 	/*
13713 	 * TXE Kernel CSRs
13714 	 */
13715 	write_csr(dd, SEND_CTRL, 0);
13716 	__cm_reset(dd, 0);	/* reset CM internal state */
13717 	/* SEND_CONTEXTS read-only */
13718 	/* SEND_DMA_ENGINES read-only */
13719 	/* SEND_PIO_MEM_SIZE read-only */
13720 	/* SEND_DMA_MEM_SIZE read-only */
13721 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13722 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13723 	/* SEND_PIO_ERR_STATUS read-only */
13724 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13725 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13726 	/* SEND_PIO_ERR_FORCE leave alone */
13727 	/* SEND_DMA_ERR_STATUS read-only */
13728 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13729 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13730 	/* SEND_DMA_ERR_FORCE leave alone */
13731 	/* SEND_EGRESS_ERR_STATUS read-only */
13732 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13733 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13734 	/* SEND_EGRESS_ERR_FORCE leave alone */
13735 	write_csr(dd, SEND_BTH_QP, 0);
13736 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13737 	write_csr(dd, SEND_SC2VLT0, 0);
13738 	write_csr(dd, SEND_SC2VLT1, 0);
13739 	write_csr(dd, SEND_SC2VLT2, 0);
13740 	write_csr(dd, SEND_SC2VLT3, 0);
13741 	write_csr(dd, SEND_LEN_CHECK0, 0);
13742 	write_csr(dd, SEND_LEN_CHECK1, 0);
13743 	/* SEND_ERR_STATUS read-only */
13744 	write_csr(dd, SEND_ERR_MASK, 0);
13745 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13746 	/* SEND_ERR_FORCE read-only */
13747 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13748 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13749 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13750 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13751 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13752 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13753 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13754 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13755 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13756 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13757 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13758 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13759 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13760 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13761 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13762 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13763 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13764 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13765 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13766 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13767 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13768 	/* SEND_CM_CREDIT_USED_VL read-only */
13769 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13770 	/* SEND_EGRESS_CTXT_STATUS read-only */
13771 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13772 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13773 	/* SEND_EGRESS_ERR_INFO read-only */
13774 	/* SEND_EGRESS_ERR_SOURCE read-only */
13775 
13776 	/*
13777 	 * TXE Per-Context CSRs
13778 	 */
13779 	for (i = 0; i < chip_send_contexts(dd); i++) {
13780 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13781 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13782 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13783 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13784 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13785 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13786 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13787 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13788 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13789 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13790 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13791 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13792 	}
13793 
13794 	/*
13795 	 * TXE Per-SDMA CSRs
13796 	 */
13797 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13798 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13799 		/* SEND_DMA_STATUS read-only */
13800 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13801 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13802 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13803 		/* SEND_DMA_HEAD read-only */
13804 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13805 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13806 		/* SEND_DMA_IDLE_CNT read-only */
13807 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13808 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13809 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13810 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13811 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13812 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13813 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13814 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13815 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13816 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13817 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13818 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13819 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13820 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13821 	}
13822 }
13823 
13824 /*
13825  * Expect on entry:
13826  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13827  */
13828 static void init_rbufs(struct hfi1_devdata *dd)
13829 {
13830 	u64 reg;
13831 	int count;
13832 
13833 	/*
13834 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13835 	 * clear.
13836 	 */
13837 	count = 0;
13838 	while (1) {
13839 		reg = read_csr(dd, RCV_STATUS);
13840 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13841 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13842 			break;
13843 		/*
13844 		 * Give up after 1ms - maximum wait time.
13845 		 *
13846 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13847 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13848 		 *	136 KB / (66% * 250MB/s) = 844us
13849 		 */
13850 		if (count++ > 500) {
13851 			dd_dev_err(dd,
13852 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13853 				   __func__, reg);
13854 			break;
13855 		}
13856 		udelay(2); /* do not busy-wait the CSR */
13857 	}
13858 
13859 	/* start the init - expect RcvCtrl to be 0 */
13860 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13861 
13862 	/*
13863 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13864 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13865 	 * The delay in the first run through the loop below is sufficient and
13866 	 * required before the first read of RcvStatus.RxRbufInintDone.
13867 	 */
13868 	read_csr(dd, RCV_CTRL);
13869 
13870 	/* wait for the init to finish */
13871 	count = 0;
13872 	while (1) {
13873 		/* delay is required first time through - see above */
13874 		udelay(2); /* do not busy-wait the CSR */
13875 		reg = read_csr(dd, RCV_STATUS);
13876 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13877 			break;
13878 
13879 		/* give up after 100us - slowest possible at 33MHz is 73us */
13880 		if (count++ > 50) {
13881 			dd_dev_err(dd,
13882 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13883 				   __func__);
13884 			break;
13885 		}
13886 	}
13887 }
13888 
13889 /* set RXE CSRs to chip reset defaults */
13890 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13891 {
13892 	int i, j;
13893 
13894 	/*
13895 	 * RXE Kernel CSRs
13896 	 */
13897 	write_csr(dd, RCV_CTRL, 0);
13898 	init_rbufs(dd);
13899 	/* RCV_STATUS read-only */
13900 	/* RCV_CONTEXTS read-only */
13901 	/* RCV_ARRAY_CNT read-only */
13902 	/* RCV_BUF_SIZE read-only */
13903 	write_csr(dd, RCV_BTH_QP, 0);
13904 	write_csr(dd, RCV_MULTICAST, 0);
13905 	write_csr(dd, RCV_BYPASS, 0);
13906 	write_csr(dd, RCV_VL15, 0);
13907 	/* this is a clear-down */
13908 	write_csr(dd, RCV_ERR_INFO,
13909 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13910 	/* RCV_ERR_STATUS read-only */
13911 	write_csr(dd, RCV_ERR_MASK, 0);
13912 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13913 	/* RCV_ERR_FORCE leave alone */
13914 	for (i = 0; i < 32; i++)
13915 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13916 	for (i = 0; i < 4; i++)
13917 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13918 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13919 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13920 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13921 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13922 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13923 		clear_rsm_rule(dd, i);
13924 	for (i = 0; i < 32; i++)
13925 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13926 
13927 	/*
13928 	 * RXE Kernel and User Per-Context CSRs
13929 	 */
13930 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13931 		/* kernel */
13932 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13933 		/* RCV_CTXT_STATUS read-only */
13934 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13935 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13936 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13937 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13938 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13939 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13940 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13941 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13942 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13943 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13944 
13945 		/* user */
13946 		/* RCV_HDR_TAIL read-only */
13947 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13948 		/* RCV_EGR_INDEX_TAIL read-only */
13949 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13950 		/* RCV_EGR_OFFSET_TAIL read-only */
13951 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13952 			write_uctxt_csr(dd, i,
13953 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13954 		}
13955 	}
13956 }
13957 
13958 /*
13959  * Set sc2vl tables.
13960  *
13961  * They power on to zeros, so to avoid send context errors
13962  * they need to be set:
13963  *
13964  * SC 0-7 -> VL 0-7 (respectively)
13965  * SC 15  -> VL 15
13966  * otherwise
13967  *        -> VL 0
13968  */
13969 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13970 {
13971 	int i;
13972 	/* init per architecture spec, constrained by hardware capability */
13973 
13974 	/* HFI maps sent packets */
13975 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13976 		0,
13977 		0, 0, 1, 1,
13978 		2, 2, 3, 3,
13979 		4, 4, 5, 5,
13980 		6, 6, 7, 7));
13981 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13982 		1,
13983 		8, 0, 9, 0,
13984 		10, 0, 11, 0,
13985 		12, 0, 13, 0,
13986 		14, 0, 15, 15));
13987 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13988 		2,
13989 		16, 0, 17, 0,
13990 		18, 0, 19, 0,
13991 		20, 0, 21, 0,
13992 		22, 0, 23, 0));
13993 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13994 		3,
13995 		24, 0, 25, 0,
13996 		26, 0, 27, 0,
13997 		28, 0, 29, 0,
13998 		30, 0, 31, 0));
13999 
14000 	/* DC maps received packets */
14001 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
14002 		15_0,
14003 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
14004 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
14005 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
14006 		31_16,
14007 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
14008 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
14009 
14010 	/* initialize the cached sc2vl values consistently with h/w */
14011 	for (i = 0; i < 32; i++) {
14012 		if (i < 8 || i == 15)
14013 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
14014 		else
14015 			*((u8 *)(dd->sc2vl) + i) = 0;
14016 	}
14017 }
14018 
14019 /*
14020  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
14021  * depend on the chip going through a power-on reset - a driver may be loaded
14022  * and unloaded many times.
14023  *
14024  * Do not write any CSR values to the chip in this routine - there may be
14025  * a reset following the (possible) FLR in this routine.
14026  *
14027  */
14028 static int init_chip(struct hfi1_devdata *dd)
14029 {
14030 	int i;
14031 	int ret = 0;
14032 
14033 	/*
14034 	 * Put the HFI CSRs in a known state.
14035 	 * Combine this with a DC reset.
14036 	 *
14037 	 * Stop the device from doing anything while we do a
14038 	 * reset.  We know there are no other active users of
14039 	 * the device since we are now in charge.  Turn off
14040 	 * off all outbound and inbound traffic and make sure
14041 	 * the device does not generate any interrupts.
14042 	 */
14043 
14044 	/* disable send contexts and SDMA engines */
14045 	write_csr(dd, SEND_CTRL, 0);
14046 	for (i = 0; i < chip_send_contexts(dd); i++)
14047 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
14048 	for (i = 0; i < chip_sdma_engines(dd); i++)
14049 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
14050 	/* disable port (turn off RXE inbound traffic) and contexts */
14051 	write_csr(dd, RCV_CTRL, 0);
14052 	for (i = 0; i < chip_rcv_contexts(dd); i++)
14053 		write_csr(dd, RCV_CTXT_CTRL, 0);
14054 	/* mask all interrupt sources */
14055 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
14056 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
14057 
14058 	/*
14059 	 * DC Reset: do a full DC reset before the register clear.
14060 	 * A recommended length of time to hold is one CSR read,
14061 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
14062 	 * across the clear.
14063 	 */
14064 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
14065 	(void)read_csr(dd, CCE_DC_CTRL);
14066 
14067 	if (use_flr) {
14068 		/*
14069 		 * A FLR will reset the SPC core and part of the PCIe.
14070 		 * The parts that need to be restored have already been
14071 		 * saved.
14072 		 */
14073 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
14074 
14075 		/* do the FLR, the DC reset will remain */
14076 		pcie_flr(dd->pcidev);
14077 
14078 		/* restore command and BARs */
14079 		ret = restore_pci_variables(dd);
14080 		if (ret) {
14081 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14082 				   __func__);
14083 			return ret;
14084 		}
14085 
14086 		if (is_ax(dd)) {
14087 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14088 			pcie_flr(dd->pcidev);
14089 			ret = restore_pci_variables(dd);
14090 			if (ret) {
14091 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14092 					   __func__);
14093 				return ret;
14094 			}
14095 		}
14096 	} else {
14097 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14098 		reset_cce_csrs(dd);
14099 		reset_txe_csrs(dd);
14100 		reset_rxe_csrs(dd);
14101 		reset_misc_csrs(dd);
14102 	}
14103 	/* clear the DC reset */
14104 	write_csr(dd, CCE_DC_CTRL, 0);
14105 
14106 	/* Set the LED off */
14107 	setextled(dd, 0);
14108 
14109 	/*
14110 	 * Clear the QSFP reset.
14111 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14112 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14113 	 * anything plugged constantly in reset, if it pays attention
14114 	 * to RESET_N.
14115 	 * Prime examples of this are optical cables. Set all pins high.
14116 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14117 	 * MODPRS_N are input only and their value is ignored.
14118 	 */
14119 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14120 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14121 	init_chip_resources(dd);
14122 	return ret;
14123 }
14124 
14125 static void init_early_variables(struct hfi1_devdata *dd)
14126 {
14127 	int i;
14128 
14129 	/* assign link credit variables */
14130 	dd->vau = CM_VAU;
14131 	dd->link_credits = CM_GLOBAL_CREDITS;
14132 	if (is_ax(dd))
14133 		dd->link_credits--;
14134 	dd->vcu = cu_to_vcu(hfi1_cu);
14135 	/* enough room for 8 MAD packets plus header - 17K */
14136 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14137 	if (dd->vl15_init > dd->link_credits)
14138 		dd->vl15_init = dd->link_credits;
14139 
14140 	write_uninitialized_csrs_and_memories(dd);
14141 
14142 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14143 		for (i = 0; i < dd->num_pports; i++) {
14144 			struct hfi1_pportdata *ppd = &dd->pport[i];
14145 
14146 			set_partition_keys(ppd);
14147 		}
14148 	init_sc2vl_tables(dd);
14149 }
14150 
14151 static void init_kdeth_qp(struct hfi1_devdata *dd)
14152 {
14153 	/* user changed the KDETH_QP */
14154 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14155 		/* out of range or illegal value */
14156 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14157 		kdeth_qp = 0;
14158 	}
14159 	if (kdeth_qp == 0)	/* not set, or failed range check */
14160 		kdeth_qp = DEFAULT_KDETH_QP;
14161 
14162 	write_csr(dd, SEND_BTH_QP,
14163 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14164 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14165 
14166 	write_csr(dd, RCV_BTH_QP,
14167 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14168 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14169 }
14170 
14171 /**
14172  * init_qpmap_table
14173  * @dd - device data
14174  * @first_ctxt - first context
14175  * @last_ctxt - first context
14176  *
14177  * This return sets the qpn mapping table that
14178  * is indexed by qpn[8:1].
14179  *
14180  * The routine will round robin the 256 settings
14181  * from first_ctxt to last_ctxt.
14182  *
14183  * The first/last looks ahead to having specialized
14184  * receive contexts for mgmt and bypass.  Normal
14185  * verbs traffic will assumed to be on a range
14186  * of receive contexts.
14187  */
14188 static void init_qpmap_table(struct hfi1_devdata *dd,
14189 			     u32 first_ctxt,
14190 			     u32 last_ctxt)
14191 {
14192 	u64 reg = 0;
14193 	u64 regno = RCV_QP_MAP_TABLE;
14194 	int i;
14195 	u64 ctxt = first_ctxt;
14196 
14197 	for (i = 0; i < 256; i++) {
14198 		reg |= ctxt << (8 * (i % 8));
14199 		ctxt++;
14200 		if (ctxt > last_ctxt)
14201 			ctxt = first_ctxt;
14202 		if (i % 8 == 7) {
14203 			write_csr(dd, regno, reg);
14204 			reg = 0;
14205 			regno += 8;
14206 		}
14207 	}
14208 
14209 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14210 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14211 }
14212 
14213 struct rsm_map_table {
14214 	u64 map[NUM_MAP_REGS];
14215 	unsigned int used;
14216 };
14217 
14218 struct rsm_rule_data {
14219 	u8 offset;
14220 	u8 pkt_type;
14221 	u32 field1_off;
14222 	u32 field2_off;
14223 	u32 index1_off;
14224 	u32 index1_width;
14225 	u32 index2_off;
14226 	u32 index2_width;
14227 	u32 mask1;
14228 	u32 value1;
14229 	u32 mask2;
14230 	u32 value2;
14231 };
14232 
14233 /*
14234  * Return an initialized RMT map table for users to fill in.  OK if it
14235  * returns NULL, indicating no table.
14236  */
14237 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14238 {
14239 	struct rsm_map_table *rmt;
14240 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14241 
14242 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14243 	if (rmt) {
14244 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14245 		rmt->used = 0;
14246 	}
14247 
14248 	return rmt;
14249 }
14250 
14251 /*
14252  * Write the final RMT map table to the chip and free the table.  OK if
14253  * table is NULL.
14254  */
14255 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14256 				   struct rsm_map_table *rmt)
14257 {
14258 	int i;
14259 
14260 	if (rmt) {
14261 		/* write table to chip */
14262 		for (i = 0; i < NUM_MAP_REGS; i++)
14263 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14264 
14265 		/* enable RSM */
14266 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14267 	}
14268 }
14269 
14270 /*
14271  * Add a receive side mapping rule.
14272  */
14273 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14274 			 struct rsm_rule_data *rrd)
14275 {
14276 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14277 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14278 		  1ull << rule_index | /* enable bit */
14279 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14280 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14281 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14282 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14283 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14284 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14285 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14286 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14287 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14288 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14289 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14290 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14291 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14292 }
14293 
14294 /*
14295  * Clear a receive side mapping rule.
14296  */
14297 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14298 {
14299 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14300 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14301 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14302 }
14303 
14304 /* return the number of RSM map table entries that will be used for QOS */
14305 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14306 			   unsigned int *np)
14307 {
14308 	int i;
14309 	unsigned int m, n;
14310 	u8 max_by_vl = 0;
14311 
14312 	/* is QOS active at all? */
14313 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14314 	    num_vls == 1 ||
14315 	    krcvqsset <= 1)
14316 		goto no_qos;
14317 
14318 	/* determine bits for qpn */
14319 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14320 		if (krcvqs[i] > max_by_vl)
14321 			max_by_vl = krcvqs[i];
14322 	if (max_by_vl > 32)
14323 		goto no_qos;
14324 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14325 
14326 	/* determine bits for vl */
14327 	n = ilog2(__roundup_pow_of_two(num_vls));
14328 
14329 	/* reject if too much is used */
14330 	if ((m + n) > 7)
14331 		goto no_qos;
14332 
14333 	if (mp)
14334 		*mp = m;
14335 	if (np)
14336 		*np = n;
14337 
14338 	return 1 << (m + n);
14339 
14340 no_qos:
14341 	if (mp)
14342 		*mp = 0;
14343 	if (np)
14344 		*np = 0;
14345 	return 0;
14346 }
14347 
14348 /**
14349  * init_qos - init RX qos
14350  * @dd - device data
14351  * @rmt - RSM map table
14352  *
14353  * This routine initializes Rule 0 and the RSM map table to implement
14354  * quality of service (qos).
14355  *
14356  * If all of the limit tests succeed, qos is applied based on the array
14357  * interpretation of krcvqs where entry 0 is VL0.
14358  *
14359  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14360  * feed both the RSM map table and the single rule.
14361  */
14362 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14363 {
14364 	struct rsm_rule_data rrd;
14365 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14366 	unsigned int rmt_entries;
14367 	u64 reg;
14368 
14369 	if (!rmt)
14370 		goto bail;
14371 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14372 	if (rmt_entries == 0)
14373 		goto bail;
14374 	qpns_per_vl = 1 << m;
14375 
14376 	/* enough room in the map table? */
14377 	rmt_entries = 1 << (m + n);
14378 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14379 		goto bail;
14380 
14381 	/* add qos entries to the the RSM map table */
14382 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14383 		unsigned tctxt;
14384 
14385 		for (qpn = 0, tctxt = ctxt;
14386 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14387 			unsigned idx, regoff, regidx;
14388 
14389 			/* generate the index the hardware will produce */
14390 			idx = rmt->used + ((qpn << n) ^ i);
14391 			regoff = (idx % 8) * 8;
14392 			regidx = idx / 8;
14393 			/* replace default with context number */
14394 			reg = rmt->map[regidx];
14395 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14396 				<< regoff);
14397 			reg |= (u64)(tctxt++) << regoff;
14398 			rmt->map[regidx] = reg;
14399 			if (tctxt == ctxt + krcvqs[i])
14400 				tctxt = ctxt;
14401 		}
14402 		ctxt += krcvqs[i];
14403 	}
14404 
14405 	rrd.offset = rmt->used;
14406 	rrd.pkt_type = 2;
14407 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14408 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14409 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14410 	rrd.index1_width = n;
14411 	rrd.index2_off = QPN_SELECT_OFFSET;
14412 	rrd.index2_width = m + n;
14413 	rrd.mask1 = LRH_BTH_MASK;
14414 	rrd.value1 = LRH_BTH_VALUE;
14415 	rrd.mask2 = LRH_SC_MASK;
14416 	rrd.value2 = LRH_SC_VALUE;
14417 
14418 	/* add rule 0 */
14419 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14420 
14421 	/* mark RSM map entries as used */
14422 	rmt->used += rmt_entries;
14423 	/* map everything else to the mcast/err/vl15 context */
14424 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14425 	dd->qos_shift = n + 1;
14426 	return;
14427 bail:
14428 	dd->qos_shift = 1;
14429 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14430 }
14431 
14432 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14433 				    struct rsm_map_table *rmt)
14434 {
14435 	struct rsm_rule_data rrd;
14436 	u64 reg;
14437 	int i, idx, regoff, regidx;
14438 	u8 offset;
14439 
14440 	/* there needs to be enough room in the map table */
14441 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14442 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14443 		return;
14444 	}
14445 
14446 	/*
14447 	 * RSM will extract the destination context as an index into the
14448 	 * map table.  The destination contexts are a sequential block
14449 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14450 	 * Map entries are accessed as offset + extracted value.  Adjust
14451 	 * the added offset so this sequence can be placed anywhere in
14452 	 * the table - as long as the entries themselves do not wrap.
14453 	 * There are only enough bits in offset for the table size, so
14454 	 * start with that to allow for a "negative" offset.
14455 	 */
14456 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14457 						(int)dd->first_dyn_alloc_ctxt);
14458 
14459 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14460 				i < dd->num_rcv_contexts; i++, idx++) {
14461 		/* replace with identity mapping */
14462 		regoff = (idx % 8) * 8;
14463 		regidx = idx / 8;
14464 		reg = rmt->map[regidx];
14465 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14466 		reg |= (u64)i << regoff;
14467 		rmt->map[regidx] = reg;
14468 	}
14469 
14470 	/*
14471 	 * For RSM intercept of Expected FECN packets:
14472 	 * o packet type 0 - expected
14473 	 * o match on F (bit 95), using select/match 1, and
14474 	 * o match on SH (bit 133), using select/match 2.
14475 	 *
14476 	 * Use index 1 to extract the 8-bit receive context from DestQP
14477 	 * (start at bit 64).  Use that as the RSM map table index.
14478 	 */
14479 	rrd.offset = offset;
14480 	rrd.pkt_type = 0;
14481 	rrd.field1_off = 95;
14482 	rrd.field2_off = 133;
14483 	rrd.index1_off = 64;
14484 	rrd.index1_width = 8;
14485 	rrd.index2_off = 0;
14486 	rrd.index2_width = 0;
14487 	rrd.mask1 = 1;
14488 	rrd.value1 = 1;
14489 	rrd.mask2 = 1;
14490 	rrd.value2 = 1;
14491 
14492 	/* add rule 1 */
14493 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14494 
14495 	rmt->used += dd->num_user_contexts;
14496 }
14497 
14498 /* Initialize RSM for VNIC */
14499 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14500 {
14501 	u8 i, j;
14502 	u8 ctx_id = 0;
14503 	u64 reg;
14504 	u32 regoff;
14505 	struct rsm_rule_data rrd;
14506 
14507 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14508 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14509 			   dd->vnic.rmt_start);
14510 		return;
14511 	}
14512 
14513 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14514 		dd->vnic.rmt_start,
14515 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14516 
14517 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14518 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14519 	reg = read_csr(dd, regoff);
14520 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14521 		/* Update map register with vnic context */
14522 		j = (dd->vnic.rmt_start + i) % 8;
14523 		reg &= ~(0xffllu << (j * 8));
14524 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14525 		/* Wrap up vnic ctx index */
14526 		ctx_id %= dd->vnic.num_ctxt;
14527 		/* Write back map register */
14528 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14529 			dev_dbg(&(dd)->pcidev->dev,
14530 				"Vnic rsm map reg[%d] =0x%llx\n",
14531 				regoff - RCV_RSM_MAP_TABLE, reg);
14532 
14533 			write_csr(dd, regoff, reg);
14534 			regoff += 8;
14535 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14536 				reg = read_csr(dd, regoff);
14537 		}
14538 	}
14539 
14540 	/* Add rule for vnic */
14541 	rrd.offset = dd->vnic.rmt_start;
14542 	rrd.pkt_type = 4;
14543 	/* Match 16B packets */
14544 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14545 	rrd.mask1 = L2_TYPE_MASK;
14546 	rrd.value1 = L2_16B_VALUE;
14547 	/* Match ETH L4 packets */
14548 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14549 	rrd.mask2 = L4_16B_TYPE_MASK;
14550 	rrd.value2 = L4_16B_ETH_VALUE;
14551 	/* Calc context from veswid and entropy */
14552 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14553 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14554 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14555 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14556 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14557 
14558 	/* Enable RSM if not already enabled */
14559 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14560 }
14561 
14562 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14563 {
14564 	clear_rsm_rule(dd, RSM_INS_VNIC);
14565 
14566 	/* Disable RSM if used only by vnic */
14567 	if (dd->vnic.rmt_start == 0)
14568 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14569 }
14570 
14571 static void init_rxe(struct hfi1_devdata *dd)
14572 {
14573 	struct rsm_map_table *rmt;
14574 	u64 val;
14575 
14576 	/* enable all receive errors */
14577 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14578 
14579 	rmt = alloc_rsm_map_table(dd);
14580 	/* set up QOS, including the QPN map table */
14581 	init_qos(dd, rmt);
14582 	init_user_fecn_handling(dd, rmt);
14583 	complete_rsm_map_table(dd, rmt);
14584 	/* record number of used rsm map entries for vnic */
14585 	dd->vnic.rmt_start = rmt->used;
14586 	kfree(rmt);
14587 
14588 	/*
14589 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14590 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14591 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14592 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14593 	 * Max_PayLoad_Size set to its minimum of 128.
14594 	 *
14595 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14596 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14597 	 * tune_pcie_caps() which is called after this routine.
14598 	 */
14599 
14600 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14601 	val = read_csr(dd, RCV_BYPASS);
14602 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14603 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14604 		RCV_BYPASS_HDR_SIZE_SHIFT);
14605 	write_csr(dd, RCV_BYPASS, val);
14606 }
14607 
14608 static void init_other(struct hfi1_devdata *dd)
14609 {
14610 	/* enable all CCE errors */
14611 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14612 	/* enable *some* Misc errors */
14613 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14614 	/* enable all DC errors, except LCB */
14615 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14616 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14617 }
14618 
14619 /*
14620  * Fill out the given AU table using the given CU.  A CU is defined in terms
14621  * AUs.  The table is a an encoding: given the index, how many AUs does that
14622  * represent?
14623  *
14624  * NOTE: Assumes that the register layout is the same for the
14625  * local and remote tables.
14626  */
14627 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14628 			       u32 csr0to3, u32 csr4to7)
14629 {
14630 	write_csr(dd, csr0to3,
14631 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14632 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14633 		  2ull * cu <<
14634 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14635 		  4ull * cu <<
14636 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14637 	write_csr(dd, csr4to7,
14638 		  8ull * cu <<
14639 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14640 		  16ull * cu <<
14641 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14642 		  32ull * cu <<
14643 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14644 		  64ull * cu <<
14645 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14646 }
14647 
14648 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14649 {
14650 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14651 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14652 }
14653 
14654 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14655 {
14656 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14657 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14658 }
14659 
14660 static void init_txe(struct hfi1_devdata *dd)
14661 {
14662 	int i;
14663 
14664 	/* enable all PIO, SDMA, general, and Egress errors */
14665 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14666 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14667 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14668 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14669 
14670 	/* enable all per-context and per-SDMA engine errors */
14671 	for (i = 0; i < chip_send_contexts(dd); i++)
14672 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14673 	for (i = 0; i < chip_sdma_engines(dd); i++)
14674 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14675 
14676 	/* set the local CU to AU mapping */
14677 	assign_local_cm_au_table(dd, dd->vcu);
14678 
14679 	/*
14680 	 * Set reasonable default for Credit Return Timer
14681 	 * Don't set on Simulator - causes it to choke.
14682 	 */
14683 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14684 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14685 }
14686 
14687 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14688 		       u16 jkey)
14689 {
14690 	u8 hw_ctxt;
14691 	u64 reg;
14692 
14693 	if (!rcd || !rcd->sc)
14694 		return -EINVAL;
14695 
14696 	hw_ctxt = rcd->sc->hw_context;
14697 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14698 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14699 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14700 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14701 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14702 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14703 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14704 	/*
14705 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14706 	 */
14707 	if (!is_ax(dd)) {
14708 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14709 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14710 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14711 	}
14712 
14713 	/* Enable J_KEY check on receive context. */
14714 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14715 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14716 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14717 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14718 
14719 	return 0;
14720 }
14721 
14722 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14723 {
14724 	u8 hw_ctxt;
14725 	u64 reg;
14726 
14727 	if (!rcd || !rcd->sc)
14728 		return -EINVAL;
14729 
14730 	hw_ctxt = rcd->sc->hw_context;
14731 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14732 	/*
14733 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14734 	 * This check would not have been enabled for A0 h/w, see
14735 	 * set_ctxt_jkey().
14736 	 */
14737 	if (!is_ax(dd)) {
14738 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14739 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14740 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14741 	}
14742 	/* Turn off the J_KEY on the receive side */
14743 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14744 
14745 	return 0;
14746 }
14747 
14748 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14749 		       u16 pkey)
14750 {
14751 	u8 hw_ctxt;
14752 	u64 reg;
14753 
14754 	if (!rcd || !rcd->sc)
14755 		return -EINVAL;
14756 
14757 	hw_ctxt = rcd->sc->hw_context;
14758 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14759 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14760 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14761 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14762 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14763 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14764 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14765 
14766 	return 0;
14767 }
14768 
14769 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14770 {
14771 	u8 hw_ctxt;
14772 	u64 reg;
14773 
14774 	if (!ctxt || !ctxt->sc)
14775 		return -EINVAL;
14776 
14777 	hw_ctxt = ctxt->sc->hw_context;
14778 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14779 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14780 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14781 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14782 
14783 	return 0;
14784 }
14785 
14786 /*
14787  * Start doing the clean up the the chip. Our clean up happens in multiple
14788  * stages and this is just the first.
14789  */
14790 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14791 {
14792 	aspm_exit(dd);
14793 	free_cntrs(dd);
14794 	free_rcverr(dd);
14795 	finish_chip_resources(dd);
14796 }
14797 
14798 #define HFI_BASE_GUID(dev) \
14799 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14800 
14801 /*
14802  * Information can be shared between the two HFIs on the same ASIC
14803  * in the same OS.  This function finds the peer device and sets
14804  * up a shared structure.
14805  */
14806 static int init_asic_data(struct hfi1_devdata *dd)
14807 {
14808 	unsigned long flags;
14809 	struct hfi1_devdata *tmp, *peer = NULL;
14810 	struct hfi1_asic_data *asic_data;
14811 	int ret = 0;
14812 
14813 	/* pre-allocate the asic structure in case we are the first device */
14814 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14815 	if (!asic_data)
14816 		return -ENOMEM;
14817 
14818 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14819 	/* Find our peer device */
14820 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14821 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14822 		    dd->unit != tmp->unit) {
14823 			peer = tmp;
14824 			break;
14825 		}
14826 	}
14827 
14828 	if (peer) {
14829 		/* use already allocated structure */
14830 		dd->asic_data = peer->asic_data;
14831 		kfree(asic_data);
14832 	} else {
14833 		dd->asic_data = asic_data;
14834 		mutex_init(&dd->asic_data->asic_resource_mutex);
14835 	}
14836 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14837 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14838 
14839 	/* first one through - set up i2c devices */
14840 	if (!peer)
14841 		ret = set_up_i2c(dd, dd->asic_data);
14842 
14843 	return ret;
14844 }
14845 
14846 /*
14847  * Set dd->boardname.  Use a generic name if a name is not returned from
14848  * EFI variable space.
14849  *
14850  * Return 0 on success, -ENOMEM if space could not be allocated.
14851  */
14852 static int obtain_boardname(struct hfi1_devdata *dd)
14853 {
14854 	/* generic board description */
14855 	const char generic[] =
14856 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14857 	unsigned long size;
14858 	int ret;
14859 
14860 	ret = read_hfi1_efi_var(dd, "description", &size,
14861 				(void **)&dd->boardname);
14862 	if (ret) {
14863 		dd_dev_info(dd, "Board description not found\n");
14864 		/* use generic description */
14865 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14866 		if (!dd->boardname)
14867 			return -ENOMEM;
14868 	}
14869 	return 0;
14870 }
14871 
14872 /*
14873  * Check the interrupt registers to make sure that they are mapped correctly.
14874  * It is intended to help user identify any mismapping by VMM when the driver
14875  * is running in a VM. This function should only be called before interrupt
14876  * is set up properly.
14877  *
14878  * Return 0 on success, -EINVAL on failure.
14879  */
14880 static int check_int_registers(struct hfi1_devdata *dd)
14881 {
14882 	u64 reg;
14883 	u64 all_bits = ~(u64)0;
14884 	u64 mask;
14885 
14886 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14887 	mask = read_csr(dd, CCE_INT_MASK);
14888 	write_csr(dd, CCE_INT_MASK, 0ull);
14889 	reg = read_csr(dd, CCE_INT_MASK);
14890 	if (reg)
14891 		goto err_exit;
14892 
14893 	/* Clear all interrupt status bits */
14894 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14895 	reg = read_csr(dd, CCE_INT_STATUS);
14896 	if (reg)
14897 		goto err_exit;
14898 
14899 	/* Set all interrupt status bits */
14900 	write_csr(dd, CCE_INT_FORCE, all_bits);
14901 	reg = read_csr(dd, CCE_INT_STATUS);
14902 	if (reg != all_bits)
14903 		goto err_exit;
14904 
14905 	/* Restore the interrupt mask */
14906 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14907 	write_csr(dd, CCE_INT_MASK, mask);
14908 
14909 	return 0;
14910 err_exit:
14911 	write_csr(dd, CCE_INT_MASK, mask);
14912 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14913 	return -EINVAL;
14914 }
14915 
14916 /**
14917  * Allocate and initialize the device structure for the hfi.
14918  * @dev: the pci_dev for hfi1_ib device
14919  * @ent: pci_device_id struct for this dev
14920  *
14921  * Also allocates, initializes, and returns the devdata struct for this
14922  * device instance
14923  *
14924  * This is global, and is called directly at init to set up the
14925  * chip-specific function pointers for later use.
14926  */
14927 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14928 				  const struct pci_device_id *ent)
14929 {
14930 	struct hfi1_devdata *dd;
14931 	struct hfi1_pportdata *ppd;
14932 	u64 reg;
14933 	int i, ret;
14934 	static const char * const inames[] = { /* implementation names */
14935 		"RTL silicon",
14936 		"RTL VCS simulation",
14937 		"RTL FPGA emulation",
14938 		"Functional simulator"
14939 	};
14940 	struct pci_dev *parent = pdev->bus->self;
14941 	u32 sdma_engines;
14942 
14943 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14944 				sizeof(struct hfi1_pportdata));
14945 	if (IS_ERR(dd))
14946 		goto bail;
14947 	sdma_engines = chip_sdma_engines(dd);
14948 	ppd = dd->pport;
14949 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14950 		int vl;
14951 		/* init common fields */
14952 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14953 		/* DC supports 4 link widths */
14954 		ppd->link_width_supported =
14955 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14956 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14957 		ppd->link_width_downgrade_supported =
14958 			ppd->link_width_supported;
14959 		/* start out enabling only 4X */
14960 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14961 		ppd->link_width_downgrade_enabled =
14962 					ppd->link_width_downgrade_supported;
14963 		/* link width active is 0 when link is down */
14964 		/* link width downgrade active is 0 when link is down */
14965 
14966 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14967 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14968 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14969 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14970 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14971 		}
14972 		ppd->vls_supported = num_vls;
14973 		ppd->vls_operational = ppd->vls_supported;
14974 		/* Set the default MTU. */
14975 		for (vl = 0; vl < num_vls; vl++)
14976 			dd->vld[vl].mtu = hfi1_max_mtu;
14977 		dd->vld[15].mtu = MAX_MAD_PACKET;
14978 		/*
14979 		 * Set the initial values to reasonable default, will be set
14980 		 * for real when link is up.
14981 		 */
14982 		ppd->overrun_threshold = 0x4;
14983 		ppd->phy_error_threshold = 0xf;
14984 		ppd->port_crc_mode_enabled = link_crc_mask;
14985 		/* initialize supported LTP CRC mode */
14986 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14987 		/* initialize enabled LTP CRC mode */
14988 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14989 		/* start in offline */
14990 		ppd->host_link_state = HLS_DN_OFFLINE;
14991 		init_vl_arb_caches(ppd);
14992 	}
14993 
14994 	/*
14995 	 * Do remaining PCIe setup and save PCIe values in dd.
14996 	 * Any error printing is already done by the init code.
14997 	 * On return, we have the chip mapped.
14998 	 */
14999 	ret = hfi1_pcie_ddinit(dd, pdev);
15000 	if (ret < 0)
15001 		goto bail_free;
15002 
15003 	/* Save PCI space registers to rewrite after device reset */
15004 	ret = save_pci_variables(dd);
15005 	if (ret < 0)
15006 		goto bail_cleanup;
15007 
15008 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
15009 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
15010 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
15011 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
15012 
15013 	/*
15014 	 * Check interrupt registers mapping if the driver has no access to
15015 	 * the upstream component. In this case, it is likely that the driver
15016 	 * is running in a VM.
15017 	 */
15018 	if (!parent) {
15019 		ret = check_int_registers(dd);
15020 		if (ret)
15021 			goto bail_cleanup;
15022 	}
15023 
15024 	/*
15025 	 * obtain the hardware ID - NOT related to unit, which is a
15026 	 * software enumeration
15027 	 */
15028 	reg = read_csr(dd, CCE_REVISION2);
15029 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
15030 					& CCE_REVISION2_HFI_ID_MASK;
15031 	/* the variable size will remove unwanted bits */
15032 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
15033 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
15034 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
15035 		    dd->icode < ARRAY_SIZE(inames) ?
15036 		    inames[dd->icode] : "unknown", (int)dd->irev);
15037 
15038 	/* speeds the hardware can support */
15039 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
15040 	/* speeds allowed to run at */
15041 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
15042 	/* give a reasonable active value, will be set on link up */
15043 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
15044 
15045 	/* fix up link widths for emulation _p */
15046 	ppd = dd->pport;
15047 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
15048 		ppd->link_width_supported =
15049 			ppd->link_width_enabled =
15050 			ppd->link_width_downgrade_supported =
15051 			ppd->link_width_downgrade_enabled =
15052 				OPA_LINK_WIDTH_1X;
15053 	}
15054 	/* insure num_vls isn't larger than number of sdma engines */
15055 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
15056 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
15057 			   num_vls, sdma_engines);
15058 		num_vls = sdma_engines;
15059 		ppd->vls_supported = sdma_engines;
15060 		ppd->vls_operational = ppd->vls_supported;
15061 	}
15062 
15063 	/*
15064 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
15065 	 * Limit the max if larger than the field holds.  If timeout is
15066 	 * non-zero, then the calculated field will be at least 1.
15067 	 *
15068 	 * Must be after icode is set up - the cclock rate depends
15069 	 * on knowing the hardware being used.
15070 	 */
15071 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15072 	if (dd->rcv_intr_timeout_csr >
15073 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15074 		dd->rcv_intr_timeout_csr =
15075 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15076 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15077 		dd->rcv_intr_timeout_csr = 1;
15078 
15079 	/* needs to be done before we look for the peer device */
15080 	read_guid(dd);
15081 
15082 	/* set up shared ASIC data with peer device */
15083 	ret = init_asic_data(dd);
15084 	if (ret)
15085 		goto bail_cleanup;
15086 
15087 	/* obtain chip sizes, reset chip CSRs */
15088 	ret = init_chip(dd);
15089 	if (ret)
15090 		goto bail_cleanup;
15091 
15092 	/* read in the PCIe link speed information */
15093 	ret = pcie_speeds(dd);
15094 	if (ret)
15095 		goto bail_cleanup;
15096 
15097 	/* call before get_platform_config(), after init_chip_resources() */
15098 	ret = eprom_init(dd);
15099 	if (ret)
15100 		goto bail_free_rcverr;
15101 
15102 	/* Needs to be called before hfi1_firmware_init */
15103 	get_platform_config(dd);
15104 
15105 	/* read in firmware */
15106 	ret = hfi1_firmware_init(dd);
15107 	if (ret)
15108 		goto bail_cleanup;
15109 
15110 	/*
15111 	 * In general, the PCIe Gen3 transition must occur after the
15112 	 * chip has been idled (so it won't initiate any PCIe transactions
15113 	 * e.g. an interrupt) and before the driver changes any registers
15114 	 * (the transition will reset the registers).
15115 	 *
15116 	 * In particular, place this call after:
15117 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15118 	 * - pcie_speeds()   - reads the current link speed
15119 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15120 	 *			    downloaded
15121 	 */
15122 	ret = do_pcie_gen3_transition(dd);
15123 	if (ret)
15124 		goto bail_cleanup;
15125 
15126 	/* start setting dd values and adjusting CSRs */
15127 	init_early_variables(dd);
15128 
15129 	parse_platform_config(dd);
15130 
15131 	ret = obtain_boardname(dd);
15132 	if (ret)
15133 		goto bail_cleanup;
15134 
15135 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15136 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15137 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15138 		 (u32)dd->majrev,
15139 		 (u32)dd->minrev,
15140 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15141 		    & CCE_REVISION_SW_MASK);
15142 
15143 	ret = set_up_context_variables(dd);
15144 	if (ret)
15145 		goto bail_cleanup;
15146 
15147 	/* set initial RXE CSRs */
15148 	init_rxe(dd);
15149 	/* set initial TXE CSRs */
15150 	init_txe(dd);
15151 	/* set initial non-RXE, non-TXE CSRs */
15152 	init_other(dd);
15153 	/* set up KDETH QP prefix in both RX and TX CSRs */
15154 	init_kdeth_qp(dd);
15155 
15156 	ret = hfi1_dev_affinity_init(dd);
15157 	if (ret)
15158 		goto bail_cleanup;
15159 
15160 	/* send contexts must be set up before receive contexts */
15161 	ret = init_send_contexts(dd);
15162 	if (ret)
15163 		goto bail_cleanup;
15164 
15165 	ret = hfi1_create_kctxts(dd);
15166 	if (ret)
15167 		goto bail_cleanup;
15168 
15169 	/*
15170 	 * Initialize aspm, to be done after gen3 transition and setting up
15171 	 * contexts and before enabling interrupts
15172 	 */
15173 	aspm_init(dd);
15174 
15175 	ret = init_pervl_scs(dd);
15176 	if (ret)
15177 		goto bail_cleanup;
15178 
15179 	/* sdma init */
15180 	for (i = 0; i < dd->num_pports; ++i) {
15181 		ret = sdma_init(dd, i);
15182 		if (ret)
15183 			goto bail_cleanup;
15184 	}
15185 
15186 	/* use contexts created by hfi1_create_kctxts */
15187 	ret = set_up_interrupts(dd);
15188 	if (ret)
15189 		goto bail_cleanup;
15190 
15191 	ret = hfi1_comp_vectors_set_up(dd);
15192 	if (ret)
15193 		goto bail_clear_intr;
15194 
15195 	/* set up LCB access - must be after set_up_interrupts() */
15196 	init_lcb_access(dd);
15197 
15198 	/*
15199 	 * Serial number is created from the base guid:
15200 	 * [27:24] = base guid [38:35]
15201 	 * [23: 0] = base guid [23: 0]
15202 	 */
15203 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15204 		 (dd->base_guid & 0xFFFFFF) |
15205 		     ((dd->base_guid >> 11) & 0xF000000));
15206 
15207 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15208 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15209 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15210 
15211 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15212 	if (ret)
15213 		goto bail_clear_intr;
15214 
15215 	thermal_init(dd);
15216 
15217 	ret = init_cntrs(dd);
15218 	if (ret)
15219 		goto bail_clear_intr;
15220 
15221 	ret = init_rcverr(dd);
15222 	if (ret)
15223 		goto bail_free_cntrs;
15224 
15225 	init_completion(&dd->user_comp);
15226 
15227 	/* The user refcount starts with one to inidicate an active device */
15228 	atomic_set(&dd->user_refcount, 1);
15229 
15230 	goto bail;
15231 
15232 bail_free_rcverr:
15233 	free_rcverr(dd);
15234 bail_free_cntrs:
15235 	free_cntrs(dd);
15236 bail_clear_intr:
15237 	hfi1_comp_vectors_clean_up(dd);
15238 	hfi1_clean_up_interrupts(dd);
15239 bail_cleanup:
15240 	hfi1_pcie_ddcleanup(dd);
15241 bail_free:
15242 	hfi1_free_devdata(dd);
15243 	dd = ERR_PTR(ret);
15244 bail:
15245 	return dd;
15246 }
15247 
15248 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15249 			u32 dw_len)
15250 {
15251 	u32 delta_cycles;
15252 	u32 current_egress_rate = ppd->current_egress_rate;
15253 	/* rates here are in units of 10^6 bits/sec */
15254 
15255 	if (desired_egress_rate == -1)
15256 		return 0; /* shouldn't happen */
15257 
15258 	if (desired_egress_rate >= current_egress_rate)
15259 		return 0; /* we can't help go faster, only slower */
15260 
15261 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15262 			egress_cycles(dw_len * 4, current_egress_rate);
15263 
15264 	return (u16)delta_cycles;
15265 }
15266 
15267 /**
15268  * create_pbc - build a pbc for transmission
15269  * @flags: special case flags or-ed in built pbc
15270  * @srate: static rate
15271  * @vl: vl
15272  * @dwlen: dword length (header words + data words + pbc words)
15273  *
15274  * Create a PBC with the given flags, rate, VL, and length.
15275  *
15276  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15277  * for verbs, which does not use this PSM feature.  The lone other caller
15278  * is for the diagnostic interface which calls this if the user does not
15279  * supply their own PBC.
15280  */
15281 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15282 	       u32 dw_len)
15283 {
15284 	u64 pbc, delay = 0;
15285 
15286 	if (unlikely(srate_mbs))
15287 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15288 
15289 	pbc = flags
15290 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15291 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15292 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15293 		| (dw_len & PBC_LENGTH_DWS_MASK)
15294 			<< PBC_LENGTH_DWS_SHIFT;
15295 
15296 	return pbc;
15297 }
15298 
15299 #define SBUS_THERMAL    0x4f
15300 #define SBUS_THERM_MONITOR_MODE 0x1
15301 
15302 #define THERM_FAILURE(dev, ret, reason) \
15303 	dd_dev_err((dd),						\
15304 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15305 		   (reason), (ret))
15306 
15307 /*
15308  * Initialize the thermal sensor.
15309  *
15310  * After initialization, enable polling of thermal sensor through
15311  * SBus interface. In order for this to work, the SBus Master
15312  * firmware has to be loaded due to the fact that the HW polling
15313  * logic uses SBus interrupts, which are not supported with
15314  * default firmware. Otherwise, no data will be returned through
15315  * the ASIC_STS_THERM CSR.
15316  */
15317 static int thermal_init(struct hfi1_devdata *dd)
15318 {
15319 	int ret = 0;
15320 
15321 	if (dd->icode != ICODE_RTL_SILICON ||
15322 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15323 		return ret;
15324 
15325 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15326 	if (ret) {
15327 		THERM_FAILURE(dd, ret, "Acquire SBus");
15328 		return ret;
15329 	}
15330 
15331 	dd_dev_info(dd, "Initializing thermal sensor\n");
15332 	/* Disable polling of thermal readings */
15333 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15334 	msleep(100);
15335 	/* Thermal Sensor Initialization */
15336 	/*    Step 1: Reset the Thermal SBus Receiver */
15337 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15338 				RESET_SBUS_RECEIVER, 0);
15339 	if (ret) {
15340 		THERM_FAILURE(dd, ret, "Bus Reset");
15341 		goto done;
15342 	}
15343 	/*    Step 2: Set Reset bit in Thermal block */
15344 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15345 				WRITE_SBUS_RECEIVER, 0x1);
15346 	if (ret) {
15347 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15348 		goto done;
15349 	}
15350 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15351 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15352 				WRITE_SBUS_RECEIVER, 0x32);
15353 	if (ret) {
15354 		THERM_FAILURE(dd, ret, "Write Clock Div");
15355 		goto done;
15356 	}
15357 	/*    Step 4: Select temperature mode */
15358 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15359 				WRITE_SBUS_RECEIVER,
15360 				SBUS_THERM_MONITOR_MODE);
15361 	if (ret) {
15362 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15363 		goto done;
15364 	}
15365 	/*    Step 5: De-assert block reset and start conversion */
15366 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15367 				WRITE_SBUS_RECEIVER, 0x2);
15368 	if (ret) {
15369 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15370 		goto done;
15371 	}
15372 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15373 	msleep(22);
15374 
15375 	/* Enable polling of thermal readings */
15376 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15377 
15378 	/* Set initialized flag */
15379 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15380 	if (ret)
15381 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15382 
15383 done:
15384 	release_chip_resource(dd, CR_SBUS);
15385 	return ret;
15386 }
15387 
15388 static void handle_temp_err(struct hfi1_devdata *dd)
15389 {
15390 	struct hfi1_pportdata *ppd = &dd->pport[0];
15391 	/*
15392 	 * Thermal Critical Interrupt
15393 	 * Put the device into forced freeze mode, take link down to
15394 	 * offline, and put DC into reset.
15395 	 */
15396 	dd_dev_emerg(dd,
15397 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15398 	dd->flags |= HFI1_FORCED_FREEZE;
15399 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15400 	/*
15401 	 * Shut DC down as much and as quickly as possible.
15402 	 *
15403 	 * Step 1: Take the link down to OFFLINE. This will cause the
15404 	 *         8051 to put the Serdes in reset. However, we don't want to
15405 	 *         go through the entire link state machine since we want to
15406 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15407 	 *         but rather an attempt to save the chip.
15408 	 *         Code below is almost the same as quiet_serdes() but avoids
15409 	 *         all the extra work and the sleeps.
15410 	 */
15411 	ppd->driver_link_ready = 0;
15412 	ppd->link_enabled = 0;
15413 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15414 				PLS_OFFLINE);
15415 	/*
15416 	 * Step 2: Shutdown LCB and 8051
15417 	 *         After shutdown, do not restore DC_CFG_RESET value.
15418 	 */
15419 	dc_shutdown(dd);
15420 }
15421