1 /* 2 * Copyright(c) 2015 - 2017 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 48 /* 49 * This file contains all of the code that is specific to the HFI chip 50 */ 51 52 #include <linux/pci.h> 53 #include <linux/delay.h> 54 #include <linux/interrupt.h> 55 #include <linux/module.h> 56 57 #include "hfi.h" 58 #include "trace.h" 59 #include "mad.h" 60 #include "pio.h" 61 #include "sdma.h" 62 #include "eprom.h" 63 #include "efivar.h" 64 #include "platform.h" 65 #include "aspm.h" 66 #include "affinity.h" 67 #include "debugfs.h" 68 69 #define NUM_IB_PORTS 1 70 71 uint kdeth_qp; 72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO); 73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix"); 74 75 uint num_vls = HFI1_MAX_VLS_SUPPORTED; 76 module_param(num_vls, uint, S_IRUGO); 77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)"); 78 79 /* 80 * Default time to aggregate two 10K packets from the idle state 81 * (timer not running). The timer starts at the end of the first packet, 82 * so only the time for one 10K packet and header plus a bit extra is needed. 83 * 10 * 1024 + 64 header byte = 10304 byte 84 * 10304 byte / 12.5 GB/s = 824.32ns 85 */ 86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */ 87 module_param(rcv_intr_timeout, uint, S_IRUGO); 88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns"); 89 90 uint rcv_intr_count = 16; /* same as qib */ 91 module_param(rcv_intr_count, uint, S_IRUGO); 92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count"); 93 94 ushort link_crc_mask = SUPPORTED_CRCS; 95 module_param(link_crc_mask, ushort, S_IRUGO); 96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link"); 97 98 uint loopback; 99 module_param_named(loopback, loopback, uint, S_IRUGO); 100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable"); 101 102 /* Other driver tunables */ 103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/ 104 static ushort crc_14b_sideband = 1; 105 static uint use_flr = 1; 106 uint quick_linkup; /* skip LNI */ 107 108 struct flag_table { 109 u64 flag; /* the flag */ 110 char *str; /* description string */ 111 u16 extra; /* extra information */ 112 u16 unused0; 113 u32 unused1; 114 }; 115 116 /* str must be a string constant */ 117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra} 118 #define FLAG_ENTRY0(str, flag) {flag, str, 0} 119 120 /* Send Error Consequences */ 121 #define SEC_WRITE_DROPPED 0x1 122 #define SEC_PACKET_DROPPED 0x2 123 #define SEC_SC_HALTED 0x4 /* per-context only */ 124 #define SEC_SPC_FREEZE 0x8 /* per-HFI only */ 125 126 #define DEFAULT_KRCVQS 2 127 #define MIN_KERNEL_KCTXTS 2 128 #define FIRST_KERNEL_KCTXT 1 129 130 /* 131 * RSM instance allocation 132 * 0 - Verbs 133 * 1 - User Fecn Handling 134 * 2 - Vnic 135 */ 136 #define RSM_INS_VERBS 0 137 #define RSM_INS_FECN 1 138 #define RSM_INS_VNIC 2 139 140 /* Bit offset into the GUID which carries HFI id information */ 141 #define GUID_HFI_INDEX_SHIFT 39 142 143 /* extract the emulation revision */ 144 #define emulator_rev(dd) ((dd)->irev >> 8) 145 /* parallel and serial emulation versions are 3 and 4 respectively */ 146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3) 147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4) 148 149 /* RSM fields for Verbs */ 150 /* packet type */ 151 #define IB_PACKET_TYPE 2ull 152 #define QW_SHIFT 6ull 153 /* QPN[7..1] */ 154 #define QPN_WIDTH 7ull 155 156 /* LRH.BTH: QW 0, OFFSET 48 - for match */ 157 #define LRH_BTH_QW 0ull 158 #define LRH_BTH_BIT_OFFSET 48ull 159 #define LRH_BTH_OFFSET(off) ((LRH_BTH_QW << QW_SHIFT) | (off)) 160 #define LRH_BTH_MATCH_OFFSET LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET) 161 #define LRH_BTH_SELECT 162 #define LRH_BTH_MASK 3ull 163 #define LRH_BTH_VALUE 2ull 164 165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */ 166 #define LRH_SC_QW 0ull 167 #define LRH_SC_BIT_OFFSET 56ull 168 #define LRH_SC_OFFSET(off) ((LRH_SC_QW << QW_SHIFT) | (off)) 169 #define LRH_SC_MATCH_OFFSET LRH_SC_OFFSET(LRH_SC_BIT_OFFSET) 170 #define LRH_SC_MASK 128ull 171 #define LRH_SC_VALUE 0ull 172 173 /* SC[n..0] QW 0, OFFSET 60 - for select */ 174 #define LRH_SC_SELECT_OFFSET ((LRH_SC_QW << QW_SHIFT) | (60ull)) 175 176 /* QPN[m+n:1] QW 1, OFFSET 1 */ 177 #define QPN_SELECT_OFFSET ((1ull << QW_SHIFT) | (1ull)) 178 179 /* RSM fields for Vnic */ 180 /* L2_TYPE: QW 0, OFFSET 61 - for match */ 181 #define L2_TYPE_QW 0ull 182 #define L2_TYPE_BIT_OFFSET 61ull 183 #define L2_TYPE_OFFSET(off) ((L2_TYPE_QW << QW_SHIFT) | (off)) 184 #define L2_TYPE_MATCH_OFFSET L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET) 185 #define L2_TYPE_MASK 3ull 186 #define L2_16B_VALUE 2ull 187 188 /* L4_TYPE QW 1, OFFSET 0 - for match */ 189 #define L4_TYPE_QW 1ull 190 #define L4_TYPE_BIT_OFFSET 0ull 191 #define L4_TYPE_OFFSET(off) ((L4_TYPE_QW << QW_SHIFT) | (off)) 192 #define L4_TYPE_MATCH_OFFSET L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET) 193 #define L4_16B_TYPE_MASK 0xFFull 194 #define L4_16B_ETH_VALUE 0x78ull 195 196 /* 16B VESWID - for select */ 197 #define L4_16B_HDR_VESWID_OFFSET ((2 << QW_SHIFT) | (16ull)) 198 /* 16B ENTROPY - for select */ 199 #define L2_16B_ENTROPY_OFFSET ((1 << QW_SHIFT) | (32ull)) 200 201 /* defines to build power on SC2VL table */ 202 #define SC2VL_VAL( \ 203 num, \ 204 sc0, sc0val, \ 205 sc1, sc1val, \ 206 sc2, sc2val, \ 207 sc3, sc3val, \ 208 sc4, sc4val, \ 209 sc5, sc5val, \ 210 sc6, sc6val, \ 211 sc7, sc7val) \ 212 ( \ 213 ((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \ 214 ((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \ 215 ((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \ 216 ((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \ 217 ((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \ 218 ((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \ 219 ((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \ 220 ((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT) \ 221 ) 222 223 #define DC_SC_VL_VAL( \ 224 range, \ 225 e0, e0val, \ 226 e1, e1val, \ 227 e2, e2val, \ 228 e3, e3val, \ 229 e4, e4val, \ 230 e5, e5val, \ 231 e6, e6val, \ 232 e7, e7val, \ 233 e8, e8val, \ 234 e9, e9val, \ 235 e10, e10val, \ 236 e11, e11val, \ 237 e12, e12val, \ 238 e13, e13val, \ 239 e14, e14val, \ 240 e15, e15val) \ 241 ( \ 242 ((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \ 243 ((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \ 244 ((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \ 245 ((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \ 246 ((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \ 247 ((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \ 248 ((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \ 249 ((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \ 250 ((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \ 251 ((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \ 252 ((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \ 253 ((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \ 254 ((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \ 255 ((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \ 256 ((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \ 257 ((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \ 258 ) 259 260 /* all CceStatus sub-block freeze bits */ 261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \ 262 | CCE_STATUS_RXE_FROZE_SMASK \ 263 | CCE_STATUS_TXE_FROZE_SMASK \ 264 | CCE_STATUS_TXE_PIO_FROZE_SMASK) 265 /* all CceStatus sub-block TXE pause bits */ 266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \ 267 | CCE_STATUS_TXE_PAUSED_SMASK \ 268 | CCE_STATUS_SDMA_PAUSED_SMASK) 269 /* all CceStatus sub-block RXE pause bits */ 270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK 271 272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL 273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF 274 275 /* 276 * CCE Error flags. 277 */ 278 static struct flag_table cce_err_status_flags[] = { 279 /* 0*/ FLAG_ENTRY0("CceCsrParityErr", 280 CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK), 281 /* 1*/ FLAG_ENTRY0("CceCsrReadBadAddrErr", 282 CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK), 283 /* 2*/ FLAG_ENTRY0("CceCsrWriteBadAddrErr", 284 CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK), 285 /* 3*/ FLAG_ENTRY0("CceTrgtAsyncFifoParityErr", 286 CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK), 287 /* 4*/ FLAG_ENTRY0("CceTrgtAccessErr", 288 CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK), 289 /* 5*/ FLAG_ENTRY0("CceRspdDataParityErr", 290 CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK), 291 /* 6*/ FLAG_ENTRY0("CceCli0AsyncFifoParityErr", 292 CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK), 293 /* 7*/ FLAG_ENTRY0("CceCsrCfgBusParityErr", 294 CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK), 295 /* 8*/ FLAG_ENTRY0("CceCli2AsyncFifoParityErr", 296 CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK), 297 /* 9*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 298 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK), 299 /*10*/ FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr", 300 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK), 301 /*11*/ FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError", 302 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK), 303 /*12*/ FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError", 304 CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK), 305 /*13*/ FLAG_ENTRY0("PcicRetryMemCorErr", 306 CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK), 307 /*14*/ FLAG_ENTRY0("PcicRetryMemCorErr", 308 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK), 309 /*15*/ FLAG_ENTRY0("PcicPostHdQCorErr", 310 CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK), 311 /*16*/ FLAG_ENTRY0("PcicPostHdQCorErr", 312 CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK), 313 /*17*/ FLAG_ENTRY0("PcicPostHdQCorErr", 314 CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK), 315 /*18*/ FLAG_ENTRY0("PcicCplDatQCorErr", 316 CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK), 317 /*19*/ FLAG_ENTRY0("PcicNPostHQParityErr", 318 CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK), 319 /*20*/ FLAG_ENTRY0("PcicNPostDatQParityErr", 320 CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK), 321 /*21*/ FLAG_ENTRY0("PcicRetryMemUncErr", 322 CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK), 323 /*22*/ FLAG_ENTRY0("PcicRetrySotMemUncErr", 324 CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK), 325 /*23*/ FLAG_ENTRY0("PcicPostHdQUncErr", 326 CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK), 327 /*24*/ FLAG_ENTRY0("PcicPostDatQUncErr", 328 CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK), 329 /*25*/ FLAG_ENTRY0("PcicCplHdQUncErr", 330 CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK), 331 /*26*/ FLAG_ENTRY0("PcicCplDatQUncErr", 332 CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK), 333 /*27*/ FLAG_ENTRY0("PcicTransmitFrontParityErr", 334 CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK), 335 /*28*/ FLAG_ENTRY0("PcicTransmitBackParityErr", 336 CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK), 337 /*29*/ FLAG_ENTRY0("PcicReceiveParityErr", 338 CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK), 339 /*30*/ FLAG_ENTRY0("CceTrgtCplTimeoutErr", 340 CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK), 341 /*31*/ FLAG_ENTRY0("LATriggered", 342 CCE_ERR_STATUS_LA_TRIGGERED_SMASK), 343 /*32*/ FLAG_ENTRY0("CceSegReadBadAddrErr", 344 CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK), 345 /*33*/ FLAG_ENTRY0("CceSegWriteBadAddrErr", 346 CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK), 347 /*34*/ FLAG_ENTRY0("CceRcplAsyncFifoParityErr", 348 CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK), 349 /*35*/ FLAG_ENTRY0("CceRxdmaConvFifoParityErr", 350 CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK), 351 /*36*/ FLAG_ENTRY0("CceMsixTableCorErr", 352 CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK), 353 /*37*/ FLAG_ENTRY0("CceMsixTableUncErr", 354 CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK), 355 /*38*/ FLAG_ENTRY0("CceIntMapCorErr", 356 CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK), 357 /*39*/ FLAG_ENTRY0("CceIntMapUncErr", 358 CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK), 359 /*40*/ FLAG_ENTRY0("CceMsixCsrParityErr", 360 CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK), 361 /*41-63 reserved*/ 362 }; 363 364 /* 365 * Misc Error flags 366 */ 367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK 368 static struct flag_table misc_err_status_flags[] = { 369 /* 0*/ FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)), 370 /* 1*/ FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)), 371 /* 2*/ FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)), 372 /* 3*/ FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)), 373 /* 4*/ FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)), 374 /* 5*/ FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)), 375 /* 6*/ FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)), 376 /* 7*/ FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)), 377 /* 8*/ FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)), 378 /* 9*/ FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)), 379 /*10*/ FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)), 380 /*11*/ FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)), 381 /*12*/ FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL)) 382 }; 383 384 /* 385 * TXE PIO Error flags and consequences 386 */ 387 static struct flag_table pio_err_status_flags[] = { 388 /* 0*/ FLAG_ENTRY("PioWriteBadCtxt", 389 SEC_WRITE_DROPPED, 390 SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK), 391 /* 1*/ FLAG_ENTRY("PioWriteAddrParity", 392 SEC_SPC_FREEZE, 393 SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK), 394 /* 2*/ FLAG_ENTRY("PioCsrParity", 395 SEC_SPC_FREEZE, 396 SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK), 397 /* 3*/ FLAG_ENTRY("PioSbMemFifo0", 398 SEC_SPC_FREEZE, 399 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK), 400 /* 4*/ FLAG_ENTRY("PioSbMemFifo1", 401 SEC_SPC_FREEZE, 402 SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK), 403 /* 5*/ FLAG_ENTRY("PioPccFifoParity", 404 SEC_SPC_FREEZE, 405 SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK), 406 /* 6*/ FLAG_ENTRY("PioPecFifoParity", 407 SEC_SPC_FREEZE, 408 SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK), 409 /* 7*/ FLAG_ENTRY("PioSbrdctlCrrelParity", 410 SEC_SPC_FREEZE, 411 SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK), 412 /* 8*/ FLAG_ENTRY("PioSbrdctrlCrrelFifoParity", 413 SEC_SPC_FREEZE, 414 SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK), 415 /* 9*/ FLAG_ENTRY("PioPktEvictFifoParityErr", 416 SEC_SPC_FREEZE, 417 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK), 418 /*10*/ FLAG_ENTRY("PioSmPktResetParity", 419 SEC_SPC_FREEZE, 420 SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK), 421 /*11*/ FLAG_ENTRY("PioVlLenMemBank0Unc", 422 SEC_SPC_FREEZE, 423 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK), 424 /*12*/ FLAG_ENTRY("PioVlLenMemBank1Unc", 425 SEC_SPC_FREEZE, 426 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK), 427 /*13*/ FLAG_ENTRY("PioVlLenMemBank0Cor", 428 0, 429 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK), 430 /*14*/ FLAG_ENTRY("PioVlLenMemBank1Cor", 431 0, 432 SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK), 433 /*15*/ FLAG_ENTRY("PioCreditRetFifoParity", 434 SEC_SPC_FREEZE, 435 SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK), 436 /*16*/ FLAG_ENTRY("PioPpmcPblFifo", 437 SEC_SPC_FREEZE, 438 SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK), 439 /*17*/ FLAG_ENTRY("PioInitSmIn", 440 0, 441 SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK), 442 /*18*/ FLAG_ENTRY("PioPktEvictSmOrArbSm", 443 SEC_SPC_FREEZE, 444 SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK), 445 /*19*/ FLAG_ENTRY("PioHostAddrMemUnc", 446 SEC_SPC_FREEZE, 447 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK), 448 /*20*/ FLAG_ENTRY("PioHostAddrMemCor", 449 0, 450 SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK), 451 /*21*/ FLAG_ENTRY("PioWriteDataParity", 452 SEC_SPC_FREEZE, 453 SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK), 454 /*22*/ FLAG_ENTRY("PioStateMachine", 455 SEC_SPC_FREEZE, 456 SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK), 457 /*23*/ FLAG_ENTRY("PioWriteQwValidParity", 458 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 459 SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK), 460 /*24*/ FLAG_ENTRY("PioBlockQwCountParity", 461 SEC_WRITE_DROPPED | SEC_SPC_FREEZE, 462 SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK), 463 /*25*/ FLAG_ENTRY("PioVlfVlLenParity", 464 SEC_SPC_FREEZE, 465 SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK), 466 /*26*/ FLAG_ENTRY("PioVlfSopParity", 467 SEC_SPC_FREEZE, 468 SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK), 469 /*27*/ FLAG_ENTRY("PioVlFifoParity", 470 SEC_SPC_FREEZE, 471 SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK), 472 /*28*/ FLAG_ENTRY("PioPpmcBqcMemParity", 473 SEC_SPC_FREEZE, 474 SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK), 475 /*29*/ FLAG_ENTRY("PioPpmcSopLen", 476 SEC_SPC_FREEZE, 477 SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK), 478 /*30-31 reserved*/ 479 /*32*/ FLAG_ENTRY("PioCurrentFreeCntParity", 480 SEC_SPC_FREEZE, 481 SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK), 482 /*33*/ FLAG_ENTRY("PioLastReturnedCntParity", 483 SEC_SPC_FREEZE, 484 SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK), 485 /*34*/ FLAG_ENTRY("PioPccSopHeadParity", 486 SEC_SPC_FREEZE, 487 SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK), 488 /*35*/ FLAG_ENTRY("PioPecSopHeadParityErr", 489 SEC_SPC_FREEZE, 490 SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK), 491 /*36-63 reserved*/ 492 }; 493 494 /* TXE PIO errors that cause an SPC freeze */ 495 #define ALL_PIO_FREEZE_ERR \ 496 (SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \ 497 | SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \ 498 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \ 499 | SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \ 500 | SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \ 501 | SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \ 502 | SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \ 503 | SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \ 504 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \ 505 | SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \ 506 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \ 507 | SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \ 508 | SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \ 509 | SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \ 510 | SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \ 511 | SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \ 512 | SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \ 513 | SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \ 514 | SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \ 515 | SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \ 516 | SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \ 517 | SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \ 518 | SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \ 519 | SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \ 520 | SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \ 521 | SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \ 522 | SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \ 523 | SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \ 524 | SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK) 525 526 /* 527 * TXE SDMA Error flags 528 */ 529 static struct flag_table sdma_err_status_flags[] = { 530 /* 0*/ FLAG_ENTRY0("SDmaRpyTagErr", 531 SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK), 532 /* 1*/ FLAG_ENTRY0("SDmaCsrParityErr", 533 SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK), 534 /* 2*/ FLAG_ENTRY0("SDmaPcieReqTrackingUncErr", 535 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK), 536 /* 3*/ FLAG_ENTRY0("SDmaPcieReqTrackingCorErr", 537 SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK), 538 /*04-63 reserved*/ 539 }; 540 541 /* TXE SDMA errors that cause an SPC freeze */ 542 #define ALL_SDMA_FREEZE_ERR \ 543 (SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \ 544 | SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \ 545 | SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK) 546 547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */ 548 #define PORT_DISCARD_EGRESS_ERRS \ 549 (SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \ 550 | SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \ 551 | SEND_EGRESS_ERR_INFO_VL_ERR_SMASK) 552 553 /* 554 * TXE Egress Error flags 555 */ 556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK 557 static struct flag_table egress_err_status_flags[] = { 558 /* 0*/ FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)), 559 /* 1*/ FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)), 560 /* 2 reserved */ 561 /* 3*/ FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr", 562 SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)), 563 /* 4*/ FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)), 564 /* 5*/ FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)), 565 /* 6 reserved */ 566 /* 7*/ FLAG_ENTRY0("TxPioLaunchIntfParityErr", 567 SEES(TX_PIO_LAUNCH_INTF_PARITY)), 568 /* 8*/ FLAG_ENTRY0("TxSdmaLaunchIntfParityErr", 569 SEES(TX_SDMA_LAUNCH_INTF_PARITY)), 570 /* 9-10 reserved */ 571 /*11*/ FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr", 572 SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)), 573 /*12*/ FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)), 574 /*13*/ FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)), 575 /*14*/ FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)), 576 /*15*/ FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)), 577 /*16*/ FLAG_ENTRY0("TxSdma0DisallowedPacketErr", 578 SEES(TX_SDMA0_DISALLOWED_PACKET)), 579 /*17*/ FLAG_ENTRY0("TxSdma1DisallowedPacketErr", 580 SEES(TX_SDMA1_DISALLOWED_PACKET)), 581 /*18*/ FLAG_ENTRY0("TxSdma2DisallowedPacketErr", 582 SEES(TX_SDMA2_DISALLOWED_PACKET)), 583 /*19*/ FLAG_ENTRY0("TxSdma3DisallowedPacketErr", 584 SEES(TX_SDMA3_DISALLOWED_PACKET)), 585 /*20*/ FLAG_ENTRY0("TxSdma4DisallowedPacketErr", 586 SEES(TX_SDMA4_DISALLOWED_PACKET)), 587 /*21*/ FLAG_ENTRY0("TxSdma5DisallowedPacketErr", 588 SEES(TX_SDMA5_DISALLOWED_PACKET)), 589 /*22*/ FLAG_ENTRY0("TxSdma6DisallowedPacketErr", 590 SEES(TX_SDMA6_DISALLOWED_PACKET)), 591 /*23*/ FLAG_ENTRY0("TxSdma7DisallowedPacketErr", 592 SEES(TX_SDMA7_DISALLOWED_PACKET)), 593 /*24*/ FLAG_ENTRY0("TxSdma8DisallowedPacketErr", 594 SEES(TX_SDMA8_DISALLOWED_PACKET)), 595 /*25*/ FLAG_ENTRY0("TxSdma9DisallowedPacketErr", 596 SEES(TX_SDMA9_DISALLOWED_PACKET)), 597 /*26*/ FLAG_ENTRY0("TxSdma10DisallowedPacketErr", 598 SEES(TX_SDMA10_DISALLOWED_PACKET)), 599 /*27*/ FLAG_ENTRY0("TxSdma11DisallowedPacketErr", 600 SEES(TX_SDMA11_DISALLOWED_PACKET)), 601 /*28*/ FLAG_ENTRY0("TxSdma12DisallowedPacketErr", 602 SEES(TX_SDMA12_DISALLOWED_PACKET)), 603 /*29*/ FLAG_ENTRY0("TxSdma13DisallowedPacketErr", 604 SEES(TX_SDMA13_DISALLOWED_PACKET)), 605 /*30*/ FLAG_ENTRY0("TxSdma14DisallowedPacketErr", 606 SEES(TX_SDMA14_DISALLOWED_PACKET)), 607 /*31*/ FLAG_ENTRY0("TxSdma15DisallowedPacketErr", 608 SEES(TX_SDMA15_DISALLOWED_PACKET)), 609 /*32*/ FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr", 610 SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)), 611 /*33*/ FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr", 612 SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)), 613 /*34*/ FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr", 614 SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)), 615 /*35*/ FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr", 616 SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)), 617 /*36*/ FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr", 618 SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)), 619 /*37*/ FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr", 620 SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)), 621 /*38*/ FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr", 622 SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)), 623 /*39*/ FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr", 624 SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)), 625 /*40*/ FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr", 626 SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)), 627 /*41*/ FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)), 628 /*42*/ FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)), 629 /*43*/ FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)), 630 /*44*/ FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)), 631 /*45*/ FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)), 632 /*46*/ FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)), 633 /*47*/ FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)), 634 /*48*/ FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)), 635 /*49*/ FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)), 636 /*50*/ FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)), 637 /*51*/ FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)), 638 /*52*/ FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)), 639 /*53*/ FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)), 640 /*54*/ FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)), 641 /*55*/ FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)), 642 /*56*/ FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)), 643 /*57*/ FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)), 644 /*58*/ FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)), 645 /*59*/ FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)), 646 /*60*/ FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)), 647 /*61*/ FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)), 648 /*62*/ FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr", 649 SEES(TX_READ_SDMA_MEMORY_CSR_UNC)), 650 /*63*/ FLAG_ENTRY0("TxReadPioMemoryCsrUncErr", 651 SEES(TX_READ_PIO_MEMORY_CSR_UNC)), 652 }; 653 654 /* 655 * TXE Egress Error Info flags 656 */ 657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK 658 static struct flag_table egress_err_info_flags[] = { 659 /* 0*/ FLAG_ENTRY0("Reserved", 0ull), 660 /* 1*/ FLAG_ENTRY0("VLErr", SEEI(VL)), 661 /* 2*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 662 /* 3*/ FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)), 663 /* 4*/ FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)), 664 /* 5*/ FLAG_ENTRY0("SLIDErr", SEEI(SLID)), 665 /* 6*/ FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)), 666 /* 7*/ FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)), 667 /* 8*/ FLAG_ENTRY0("RawErr", SEEI(RAW)), 668 /* 9*/ FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)), 669 /*10*/ FLAG_ENTRY0("GRHErr", SEEI(GRH)), 670 /*11*/ FLAG_ENTRY0("BypassErr", SEEI(BYPASS)), 671 /*12*/ FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)), 672 /*13*/ FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)), 673 /*14*/ FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)), 674 /*15*/ FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)), 675 /*16*/ FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)), 676 /*17*/ FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)), 677 /*18*/ FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)), 678 /*19*/ FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)), 679 /*20*/ FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)), 680 /*21*/ FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)), 681 }; 682 683 /* TXE Egress errors that cause an SPC freeze */ 684 #define ALL_TXE_EGRESS_FREEZE_ERR \ 685 (SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \ 686 | SEES(TX_PIO_LAUNCH_INTF_PARITY) \ 687 | SEES(TX_SDMA_LAUNCH_INTF_PARITY) \ 688 | SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \ 689 | SEES(TX_LAUNCH_CSR_PARITY) \ 690 | SEES(TX_SBRD_CTL_CSR_PARITY) \ 691 | SEES(TX_CONFIG_PARITY) \ 692 | SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \ 693 | SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \ 694 | SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \ 695 | SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \ 696 | SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \ 697 | SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \ 698 | SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \ 699 | SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \ 700 | SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \ 701 | SEES(TX_CREDIT_RETURN_PARITY)) 702 703 /* 704 * TXE Send error flags 705 */ 706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK 707 static struct flag_table send_err_status_flags[] = { 708 /* 0*/ FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)), 709 /* 1*/ FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)), 710 /* 2*/ FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR)) 711 }; 712 713 /* 714 * TXE Send Context Error flags and consequences 715 */ 716 static struct flag_table sc_err_status_flags[] = { 717 /* 0*/ FLAG_ENTRY("InconsistentSop", 718 SEC_PACKET_DROPPED | SEC_SC_HALTED, 719 SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK), 720 /* 1*/ FLAG_ENTRY("DisallowedPacket", 721 SEC_PACKET_DROPPED | SEC_SC_HALTED, 722 SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK), 723 /* 2*/ FLAG_ENTRY("WriteCrossesBoundary", 724 SEC_WRITE_DROPPED | SEC_SC_HALTED, 725 SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK), 726 /* 3*/ FLAG_ENTRY("WriteOverflow", 727 SEC_WRITE_DROPPED | SEC_SC_HALTED, 728 SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK), 729 /* 4*/ FLAG_ENTRY("WriteOutOfBounds", 730 SEC_WRITE_DROPPED | SEC_SC_HALTED, 731 SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK), 732 /* 5-63 reserved*/ 733 }; 734 735 /* 736 * RXE Receive Error flags 737 */ 738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK 739 static struct flag_table rxe_err_status_flags[] = { 740 /* 0*/ FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)), 741 /* 1*/ FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)), 742 /* 2*/ FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)), 743 /* 3*/ FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)), 744 /* 4*/ FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)), 745 /* 5*/ FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)), 746 /* 6*/ FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)), 747 /* 7*/ FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)), 748 /* 8*/ FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)), 749 /* 9*/ FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)), 750 /*10*/ FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)), 751 /*11*/ FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)), 752 /*12*/ FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)), 753 /*13*/ FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)), 754 /*14*/ FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)), 755 /*15*/ FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)), 756 /*16*/ FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr", 757 RXES(RBUF_LOOKUP_DES_REG_UNC_COR)), 758 /*17*/ FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)), 759 /*18*/ FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)), 760 /*19*/ FLAG_ENTRY0("RxRbufBlockListReadUncErr", 761 RXES(RBUF_BLOCK_LIST_READ_UNC)), 762 /*20*/ FLAG_ENTRY0("RxRbufBlockListReadCorErr", 763 RXES(RBUF_BLOCK_LIST_READ_COR)), 764 /*21*/ FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr", 765 RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)), 766 /*22*/ FLAG_ENTRY0("RxRbufCsrQEntCntParityErr", 767 RXES(RBUF_CSR_QENT_CNT_PARITY)), 768 /*23*/ FLAG_ENTRY0("RxRbufCsrQNextBufParityErr", 769 RXES(RBUF_CSR_QNEXT_BUF_PARITY)), 770 /*24*/ FLAG_ENTRY0("RxRbufCsrQVldBitParityErr", 771 RXES(RBUF_CSR_QVLD_BIT_PARITY)), 772 /*25*/ FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)), 773 /*26*/ FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)), 774 /*27*/ FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr", 775 RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)), 776 /*28*/ FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)), 777 /*29*/ FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)), 778 /*30*/ FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)), 779 /*31*/ FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)), 780 /*32*/ FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)), 781 /*33*/ FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)), 782 /*34*/ FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)), 783 /*35*/ FLAG_ENTRY0("RxRbufFlInitdoneParityErr", 784 RXES(RBUF_FL_INITDONE_PARITY)), 785 /*36*/ FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr", 786 RXES(RBUF_FL_INIT_WR_ADDR_PARITY)), 787 /*37*/ FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)), 788 /*38*/ FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)), 789 /*39*/ FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)), 790 /*40*/ FLAG_ENTRY0("RxLookupDesPart1UncCorErr", 791 RXES(LOOKUP_DES_PART1_UNC_COR)), 792 /*41*/ FLAG_ENTRY0("RxLookupDesPart2ParityErr", 793 RXES(LOOKUP_DES_PART2_PARITY)), 794 /*42*/ FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)), 795 /*43*/ FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)), 796 /*44*/ FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)), 797 /*45*/ FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)), 798 /*46*/ FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)), 799 /*47*/ FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)), 800 /*48*/ FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)), 801 /*49*/ FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)), 802 /*50*/ FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)), 803 /*51*/ FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)), 804 /*52*/ FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)), 805 /*53*/ FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)), 806 /*54*/ FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)), 807 /*55*/ FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)), 808 /*56*/ FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)), 809 /*57*/ FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)), 810 /*58*/ FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)), 811 /*59*/ FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)), 812 /*60*/ FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)), 813 /*61*/ FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)), 814 /*62*/ FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)), 815 /*63*/ FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY)) 816 }; 817 818 /* RXE errors that will trigger an SPC freeze */ 819 #define ALL_RXE_FREEZE_ERR \ 820 (RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \ 821 | RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \ 822 | RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \ 823 | RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \ 824 | RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \ 825 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \ 826 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \ 827 | RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \ 828 | RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \ 829 | RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \ 830 | RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \ 831 | RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \ 832 | RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \ 833 | RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \ 834 | RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \ 835 | RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \ 836 | RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \ 837 | RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \ 838 | RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \ 839 | RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \ 840 | RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \ 841 | RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \ 842 | RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \ 843 | RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \ 844 | RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \ 845 | RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \ 846 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \ 847 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \ 848 | RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \ 849 | RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \ 850 | RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \ 851 | RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \ 852 | RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \ 853 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \ 854 | RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \ 855 | RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \ 856 | RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \ 857 | RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \ 858 | RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \ 859 | RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \ 860 | RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \ 861 | RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \ 862 | RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \ 863 | RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK) 864 865 #define RXE_FREEZE_ABORT_MASK \ 866 (RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \ 867 RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \ 868 RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK) 869 870 /* 871 * DCC Error Flags 872 */ 873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK 874 static struct flag_table dcc_err_flags[] = { 875 FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)), 876 FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)), 877 FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)), 878 FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)), 879 FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)), 880 FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)), 881 FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)), 882 FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)), 883 FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)), 884 FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)), 885 FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)), 886 FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)), 887 FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)), 888 FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)), 889 FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)), 890 FLAG_ENTRY0("link_err", DCCE(LINK_ERR)), 891 FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)), 892 FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)), 893 FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)), 894 FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)), 895 FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)), 896 FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)), 897 FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)), 898 FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)), 899 FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)), 900 FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)), 901 FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)), 902 FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)), 903 FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)), 904 FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)), 905 FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)), 906 FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)), 907 FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)), 908 FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)), 909 FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)), 910 FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)), 911 FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)), 912 FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)), 913 FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)), 914 FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)), 915 FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)), 916 FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)), 917 FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)), 918 FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)), 919 FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)), 920 FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)), 921 }; 922 923 /* 924 * LCB error flags 925 */ 926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK 927 static struct flag_table lcb_err_flags[] = { 928 /* 0*/ FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)), 929 /* 1*/ FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)), 930 /* 2*/ FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)), 931 /* 3*/ FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST", 932 LCBE(ALL_LNS_FAILED_REINIT_TEST)), 933 /* 4*/ FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)), 934 /* 5*/ FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)), 935 /* 6*/ FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)), 936 /* 7*/ FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)), 937 /* 8*/ FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)), 938 /* 9*/ FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)), 939 /*10*/ FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)), 940 /*11*/ FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)), 941 /*12*/ FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)), 942 /*13*/ FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER", 943 LCBE(UNEXPECTED_ROUND_TRIP_MARKER)), 944 /*14*/ FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)), 945 /*15*/ FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)), 946 /*16*/ FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)), 947 /*17*/ FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)), 948 /*18*/ FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)), 949 /*19*/ FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE", 950 LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)), 951 /*20*/ FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)), 952 /*21*/ FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)), 953 /*22*/ FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)), 954 /*23*/ FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)), 955 /*24*/ FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)), 956 /*25*/ FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)), 957 /*26*/ FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP", 958 LCBE(RST_FOR_INCOMPLT_RND_TRIP)), 959 /*27*/ FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)), 960 /*28*/ FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE", 961 LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)), 962 /*29*/ FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR", 963 LCBE(REDUNDANT_FLIT_PARITY_ERR)) 964 }; 965 966 /* 967 * DC8051 Error Flags 968 */ 969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK 970 static struct flag_table dc8051_err_flags[] = { 971 FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)), 972 FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)), 973 FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)), 974 FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)), 975 FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)), 976 FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)), 977 FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)), 978 FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)), 979 FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES", 980 D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)), 981 FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)), 982 }; 983 984 /* 985 * DC8051 Information Error flags 986 * 987 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field. 988 */ 989 static struct flag_table dc8051_info_err_flags[] = { 990 FLAG_ENTRY0("Spico ROM check failed", SPICO_ROM_FAILED), 991 FLAG_ENTRY0("Unknown frame received", UNKNOWN_FRAME), 992 FLAG_ENTRY0("Target BER not met", TARGET_BER_NOT_MET), 993 FLAG_ENTRY0("Serdes internal loopback failure", 994 FAILED_SERDES_INTERNAL_LOOPBACK), 995 FLAG_ENTRY0("Failed SerDes init", FAILED_SERDES_INIT), 996 FLAG_ENTRY0("Failed LNI(Polling)", FAILED_LNI_POLLING), 997 FLAG_ENTRY0("Failed LNI(Debounce)", FAILED_LNI_DEBOUNCE), 998 FLAG_ENTRY0("Failed LNI(EstbComm)", FAILED_LNI_ESTBCOMM), 999 FLAG_ENTRY0("Failed LNI(OptEq)", FAILED_LNI_OPTEQ), 1000 FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1), 1001 FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2), 1002 FLAG_ENTRY0("Failed LNI(ConfigLT)", FAILED_LNI_CONFIGLT), 1003 FLAG_ENTRY0("Host Handshake Timeout", HOST_HANDSHAKE_TIMEOUT), 1004 FLAG_ENTRY0("External Device Request Timeout", 1005 EXTERNAL_DEVICE_REQ_TIMEOUT), 1006 }; 1007 1008 /* 1009 * DC8051 Information Host Information flags 1010 * 1011 * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field. 1012 */ 1013 static struct flag_table dc8051_info_host_msg_flags[] = { 1014 FLAG_ENTRY0("Host request done", 0x0001), 1015 FLAG_ENTRY0("BC PWR_MGM message", 0x0002), 1016 FLAG_ENTRY0("BC SMA message", 0x0004), 1017 FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008), 1018 FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010), 1019 FLAG_ENTRY0("External device config request", 0x0020), 1020 FLAG_ENTRY0("VerifyCap all frames received", 0x0040), 1021 FLAG_ENTRY0("LinkUp achieved", 0x0080), 1022 FLAG_ENTRY0("Link going down", 0x0100), 1023 FLAG_ENTRY0("Link width downgraded", 0x0200), 1024 }; 1025 1026 static u32 encoded_size(u32 size); 1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate); 1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state); 1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 1030 u8 *continuous); 1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 1032 u8 *vcu, u16 *vl15buf, u8 *crc_sizes); 1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 1034 u8 *remote_tx_rate, u16 *link_widths); 1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 1036 u8 *flag_bits, u16 *link_widths); 1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 1038 u8 *device_rev); 1039 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx); 1040 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx, 1041 u8 *tx_polarity_inversion, 1042 u8 *rx_polarity_inversion, u8 *max_rate); 1043 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 1044 unsigned int context, u64 err_status); 1045 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg); 1046 static void handle_dcc_err(struct hfi1_devdata *dd, 1047 unsigned int context, u64 err_status); 1048 static void handle_lcb_err(struct hfi1_devdata *dd, 1049 unsigned int context, u64 err_status); 1050 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg); 1051 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1052 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1053 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1054 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1055 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1056 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1057 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg); 1058 static void set_partition_keys(struct hfi1_pportdata *ppd); 1059 static const char *link_state_name(u32 state); 1060 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, 1061 u32 state); 1062 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 1063 u64 *out_data); 1064 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data); 1065 static int thermal_init(struct hfi1_devdata *dd); 1066 1067 static void update_statusp(struct hfi1_pportdata *ppd, u32 state); 1068 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd, 1069 int msecs); 1070 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1071 int msecs); 1072 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state); 1073 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state); 1074 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state, 1075 int msecs); 1076 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc); 1077 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr); 1078 static void handle_temp_err(struct hfi1_devdata *dd); 1079 static void dc_shutdown(struct hfi1_devdata *dd); 1080 static void dc_start(struct hfi1_devdata *dd); 1081 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 1082 unsigned int *np); 1083 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd); 1084 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms); 1085 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index); 1086 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width); 1087 1088 /* 1089 * Error interrupt table entry. This is used as input to the interrupt 1090 * "clear down" routine used for all second tier error interrupt register. 1091 * Second tier interrupt registers have a single bit representing them 1092 * in the top-level CceIntStatus. 1093 */ 1094 struct err_reg_info { 1095 u32 status; /* status CSR offset */ 1096 u32 clear; /* clear CSR offset */ 1097 u32 mask; /* mask CSR offset */ 1098 void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg); 1099 const char *desc; 1100 }; 1101 1102 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START) 1103 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START) 1104 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START) 1105 1106 /* 1107 * Helpers for building HFI and DC error interrupt table entries. Different 1108 * helpers are needed because of inconsistent register names. 1109 */ 1110 #define EE(reg, handler, desc) \ 1111 { reg##_STATUS, reg##_CLEAR, reg##_MASK, \ 1112 handler, desc } 1113 #define DC_EE1(reg, handler, desc) \ 1114 { reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc } 1115 #define DC_EE2(reg, handler, desc) \ 1116 { reg##_FLG, reg##_CLR, reg##_EN, handler, desc } 1117 1118 /* 1119 * Table of the "misc" grouping of error interrupts. Each entry refers to 1120 * another register containing more information. 1121 */ 1122 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = { 1123 /* 0*/ EE(CCE_ERR, handle_cce_err, "CceErr"), 1124 /* 1*/ EE(RCV_ERR, handle_rxe_err, "RxeErr"), 1125 /* 2*/ EE(MISC_ERR, handle_misc_err, "MiscErr"), 1126 /* 3*/ { 0, 0, 0, NULL }, /* reserved */ 1127 /* 4*/ EE(SEND_PIO_ERR, handle_pio_err, "PioErr"), 1128 /* 5*/ EE(SEND_DMA_ERR, handle_sdma_err, "SDmaErr"), 1129 /* 6*/ EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"), 1130 /* 7*/ EE(SEND_ERR, handle_txe_err, "TxeErr") 1131 /* the rest are reserved */ 1132 }; 1133 1134 /* 1135 * Index into the Various section of the interrupt sources 1136 * corresponding to the Critical Temperature interrupt. 1137 */ 1138 #define TCRIT_INT_SOURCE 4 1139 1140 /* 1141 * SDMA error interrupt entry - refers to another register containing more 1142 * information. 1143 */ 1144 static const struct err_reg_info sdma_eng_err = 1145 EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr"); 1146 1147 static const struct err_reg_info various_err[NUM_VARIOUS] = { 1148 /* 0*/ { 0, 0, 0, NULL }, /* PbcInt */ 1149 /* 1*/ { 0, 0, 0, NULL }, /* GpioAssertInt */ 1150 /* 2*/ EE(ASIC_QSFP1, handle_qsfp_int, "QSFP1"), 1151 /* 3*/ EE(ASIC_QSFP2, handle_qsfp_int, "QSFP2"), 1152 /* 4*/ { 0, 0, 0, NULL }, /* TCritInt */ 1153 /* rest are reserved */ 1154 }; 1155 1156 /* 1157 * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG 1158 * register can not be derived from the MTU value because 10K is not 1159 * a power of 2. Therefore, we need a constant. Everything else can 1160 * be calculated. 1161 */ 1162 #define DCC_CFG_PORT_MTU_CAP_10240 7 1163 1164 /* 1165 * Table of the DC grouping of error interrupts. Each entry refers to 1166 * another register containing more information. 1167 */ 1168 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = { 1169 /* 0*/ DC_EE1(DCC_ERR, handle_dcc_err, "DCC Err"), 1170 /* 1*/ DC_EE2(DC_LCB_ERR, handle_lcb_err, "LCB Err"), 1171 /* 2*/ DC_EE2(DC_DC8051_ERR, handle_8051_interrupt, "DC8051 Interrupt"), 1172 /* 3*/ /* dc_lbm_int - special, see is_dc_int() */ 1173 /* the rest are reserved */ 1174 }; 1175 1176 struct cntr_entry { 1177 /* 1178 * counter name 1179 */ 1180 char *name; 1181 1182 /* 1183 * csr to read for name (if applicable) 1184 */ 1185 u64 csr; 1186 1187 /* 1188 * offset into dd or ppd to store the counter's value 1189 */ 1190 int offset; 1191 1192 /* 1193 * flags 1194 */ 1195 u8 flags; 1196 1197 /* 1198 * accessor for stat element, context either dd or ppd 1199 */ 1200 u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl, 1201 int mode, u64 data); 1202 }; 1203 1204 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0 1205 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159 1206 1207 #define CNTR_ELEM(name, csr, offset, flags, accessor) \ 1208 { \ 1209 name, \ 1210 csr, \ 1211 offset, \ 1212 flags, \ 1213 accessor \ 1214 } 1215 1216 /* 32bit RXE */ 1217 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1218 CNTR_ELEM(#name, \ 1219 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1220 0, flags | CNTR_32BIT, \ 1221 port_access_u32_csr) 1222 1223 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \ 1224 CNTR_ELEM(#name, \ 1225 (counter * 8 + RCV_COUNTER_ARRAY32), \ 1226 0, flags | CNTR_32BIT, \ 1227 dev_access_u32_csr) 1228 1229 /* 64bit RXE */ 1230 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1231 CNTR_ELEM(#name, \ 1232 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1233 0, flags, \ 1234 port_access_u64_csr) 1235 1236 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \ 1237 CNTR_ELEM(#name, \ 1238 (counter * 8 + RCV_COUNTER_ARRAY64), \ 1239 0, flags, \ 1240 dev_access_u64_csr) 1241 1242 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx 1243 #define OVR_ELM(ctx) \ 1244 CNTR_ELEM("RcvHdrOvr" #ctx, \ 1245 (RCV_HDR_OVFL_CNT + ctx * 0x100), \ 1246 0, CNTR_NORMAL, port_access_u64_csr) 1247 1248 /* 32bit TXE */ 1249 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \ 1250 CNTR_ELEM(#name, \ 1251 (counter * 8 + SEND_COUNTER_ARRAY32), \ 1252 0, flags | CNTR_32BIT, \ 1253 port_access_u32_csr) 1254 1255 /* 64bit TXE */ 1256 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \ 1257 CNTR_ELEM(#name, \ 1258 (counter * 8 + SEND_COUNTER_ARRAY64), \ 1259 0, flags, \ 1260 port_access_u64_csr) 1261 1262 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \ 1263 CNTR_ELEM(#name,\ 1264 counter * 8 + SEND_COUNTER_ARRAY64, \ 1265 0, \ 1266 flags, \ 1267 dev_access_u64_csr) 1268 1269 /* CCE */ 1270 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \ 1271 CNTR_ELEM(#name, \ 1272 (counter * 8 + CCE_COUNTER_ARRAY32), \ 1273 0, flags | CNTR_32BIT, \ 1274 dev_access_u32_csr) 1275 1276 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \ 1277 CNTR_ELEM(#name, \ 1278 (counter * 8 + CCE_INT_COUNTER_ARRAY32), \ 1279 0, flags | CNTR_32BIT, \ 1280 dev_access_u32_csr) 1281 1282 /* DC */ 1283 #define DC_PERF_CNTR(name, counter, flags) \ 1284 CNTR_ELEM(#name, \ 1285 counter, \ 1286 0, \ 1287 flags, \ 1288 dev_access_u64_csr) 1289 1290 #define DC_PERF_CNTR_LCB(name, counter, flags) \ 1291 CNTR_ELEM(#name, \ 1292 counter, \ 1293 0, \ 1294 flags, \ 1295 dc_access_lcb_cntr) 1296 1297 /* ibp counters */ 1298 #define SW_IBP_CNTR(name, cntr) \ 1299 CNTR_ELEM(#name, \ 1300 0, \ 1301 0, \ 1302 CNTR_SYNTH, \ 1303 access_ibp_##cntr) 1304 1305 /** 1306 * hfi_addr_from_offset - return addr for readq/writeq 1307 * @dd - the dd device 1308 * @offset - the offset of the CSR within bar0 1309 * 1310 * This routine selects the appropriate base address 1311 * based on the indicated offset. 1312 */ 1313 static inline void __iomem *hfi1_addr_from_offset( 1314 const struct hfi1_devdata *dd, 1315 u32 offset) 1316 { 1317 if (offset >= dd->base2_start) 1318 return dd->kregbase2 + (offset - dd->base2_start); 1319 return dd->kregbase1 + offset; 1320 } 1321 1322 /** 1323 * read_csr - read CSR at the indicated offset 1324 * @dd - the dd device 1325 * @offset - the offset of the CSR within bar0 1326 * 1327 * Return: the value read or all FF's if there 1328 * is no mapping 1329 */ 1330 u64 read_csr(const struct hfi1_devdata *dd, u32 offset) 1331 { 1332 if (dd->flags & HFI1_PRESENT) 1333 return readq(hfi1_addr_from_offset(dd, offset)); 1334 return -1; 1335 } 1336 1337 /** 1338 * write_csr - write CSR at the indicated offset 1339 * @dd - the dd device 1340 * @offset - the offset of the CSR within bar0 1341 * @value - value to write 1342 */ 1343 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value) 1344 { 1345 if (dd->flags & HFI1_PRESENT) { 1346 void __iomem *base = hfi1_addr_from_offset(dd, offset); 1347 1348 /* avoid write to RcvArray */ 1349 if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start)) 1350 return; 1351 writeq(value, base); 1352 } 1353 } 1354 1355 /** 1356 * get_csr_addr - return te iomem address for offset 1357 * @dd - the dd device 1358 * @offset - the offset of the CSR within bar0 1359 * 1360 * Return: The iomem address to use in subsequent 1361 * writeq/readq operations. 1362 */ 1363 void __iomem *get_csr_addr( 1364 const struct hfi1_devdata *dd, 1365 u32 offset) 1366 { 1367 if (dd->flags & HFI1_PRESENT) 1368 return hfi1_addr_from_offset(dd, offset); 1369 return NULL; 1370 } 1371 1372 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr, 1373 int mode, u64 value) 1374 { 1375 u64 ret; 1376 1377 if (mode == CNTR_MODE_R) { 1378 ret = read_csr(dd, csr); 1379 } else if (mode == CNTR_MODE_W) { 1380 write_csr(dd, csr, value); 1381 ret = value; 1382 } else { 1383 dd_dev_err(dd, "Invalid cntr register access mode"); 1384 return 0; 1385 } 1386 1387 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode); 1388 return ret; 1389 } 1390 1391 /* Dev Access */ 1392 static u64 dev_access_u32_csr(const struct cntr_entry *entry, 1393 void *context, int vl, int mode, u64 data) 1394 { 1395 struct hfi1_devdata *dd = context; 1396 u64 csr = entry->csr; 1397 1398 if (entry->flags & CNTR_SDMA) { 1399 if (vl == CNTR_INVALID_VL) 1400 return 0; 1401 csr += 0x100 * vl; 1402 } else { 1403 if (vl != CNTR_INVALID_VL) 1404 return 0; 1405 } 1406 return read_write_csr(dd, csr, mode, data); 1407 } 1408 1409 static u64 access_sde_err_cnt(const struct cntr_entry *entry, 1410 void *context, int idx, int mode, u64 data) 1411 { 1412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1413 1414 if (dd->per_sdma && idx < dd->num_sdma) 1415 return dd->per_sdma[idx].err_cnt; 1416 return 0; 1417 } 1418 1419 static u64 access_sde_int_cnt(const struct cntr_entry *entry, 1420 void *context, int idx, int mode, u64 data) 1421 { 1422 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1423 1424 if (dd->per_sdma && idx < dd->num_sdma) 1425 return dd->per_sdma[idx].sdma_int_cnt; 1426 return 0; 1427 } 1428 1429 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry, 1430 void *context, int idx, int mode, u64 data) 1431 { 1432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1433 1434 if (dd->per_sdma && idx < dd->num_sdma) 1435 return dd->per_sdma[idx].idle_int_cnt; 1436 return 0; 1437 } 1438 1439 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry, 1440 void *context, int idx, int mode, 1441 u64 data) 1442 { 1443 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1444 1445 if (dd->per_sdma && idx < dd->num_sdma) 1446 return dd->per_sdma[idx].progress_int_cnt; 1447 return 0; 1448 } 1449 1450 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context, 1451 int vl, int mode, u64 data) 1452 { 1453 struct hfi1_devdata *dd = context; 1454 1455 u64 val = 0; 1456 u64 csr = entry->csr; 1457 1458 if (entry->flags & CNTR_VL) { 1459 if (vl == CNTR_INVALID_VL) 1460 return 0; 1461 csr += 8 * vl; 1462 } else { 1463 if (vl != CNTR_INVALID_VL) 1464 return 0; 1465 } 1466 1467 val = read_write_csr(dd, csr, mode, data); 1468 return val; 1469 } 1470 1471 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context, 1472 int vl, int mode, u64 data) 1473 { 1474 struct hfi1_devdata *dd = context; 1475 u32 csr = entry->csr; 1476 int ret = 0; 1477 1478 if (vl != CNTR_INVALID_VL) 1479 return 0; 1480 if (mode == CNTR_MODE_R) 1481 ret = read_lcb_csr(dd, csr, &data); 1482 else if (mode == CNTR_MODE_W) 1483 ret = write_lcb_csr(dd, csr, data); 1484 1485 if (ret) { 1486 dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr); 1487 return 0; 1488 } 1489 1490 hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode); 1491 return data; 1492 } 1493 1494 /* Port Access */ 1495 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context, 1496 int vl, int mode, u64 data) 1497 { 1498 struct hfi1_pportdata *ppd = context; 1499 1500 if (vl != CNTR_INVALID_VL) 1501 return 0; 1502 return read_write_csr(ppd->dd, entry->csr, mode, data); 1503 } 1504 1505 static u64 port_access_u64_csr(const struct cntr_entry *entry, 1506 void *context, int vl, int mode, u64 data) 1507 { 1508 struct hfi1_pportdata *ppd = context; 1509 u64 val; 1510 u64 csr = entry->csr; 1511 1512 if (entry->flags & CNTR_VL) { 1513 if (vl == CNTR_INVALID_VL) 1514 return 0; 1515 csr += 8 * vl; 1516 } else { 1517 if (vl != CNTR_INVALID_VL) 1518 return 0; 1519 } 1520 val = read_write_csr(ppd->dd, csr, mode, data); 1521 return val; 1522 } 1523 1524 /* Software defined */ 1525 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode, 1526 u64 data) 1527 { 1528 u64 ret; 1529 1530 if (mode == CNTR_MODE_R) { 1531 ret = *cntr; 1532 } else if (mode == CNTR_MODE_W) { 1533 *cntr = data; 1534 ret = data; 1535 } else { 1536 dd_dev_err(dd, "Invalid cntr sw access mode"); 1537 return 0; 1538 } 1539 1540 hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode); 1541 1542 return ret; 1543 } 1544 1545 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context, 1546 int vl, int mode, u64 data) 1547 { 1548 struct hfi1_pportdata *ppd = context; 1549 1550 if (vl != CNTR_INVALID_VL) 1551 return 0; 1552 return read_write_sw(ppd->dd, &ppd->link_downed, mode, data); 1553 } 1554 1555 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context, 1556 int vl, int mode, u64 data) 1557 { 1558 struct hfi1_pportdata *ppd = context; 1559 1560 if (vl != CNTR_INVALID_VL) 1561 return 0; 1562 return read_write_sw(ppd->dd, &ppd->link_up, mode, data); 1563 } 1564 1565 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry, 1566 void *context, int vl, int mode, 1567 u64 data) 1568 { 1569 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1570 1571 if (vl != CNTR_INVALID_VL) 1572 return 0; 1573 return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data); 1574 } 1575 1576 static u64 access_sw_xmit_discards(const struct cntr_entry *entry, 1577 void *context, int vl, int mode, u64 data) 1578 { 1579 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; 1580 u64 zero = 0; 1581 u64 *counter; 1582 1583 if (vl == CNTR_INVALID_VL) 1584 counter = &ppd->port_xmit_discards; 1585 else if (vl >= 0 && vl < C_VL_COUNT) 1586 counter = &ppd->port_xmit_discards_vl[vl]; 1587 else 1588 counter = &zero; 1589 1590 return read_write_sw(ppd->dd, counter, mode, data); 1591 } 1592 1593 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry, 1594 void *context, int vl, int mode, 1595 u64 data) 1596 { 1597 struct hfi1_pportdata *ppd = context; 1598 1599 if (vl != CNTR_INVALID_VL) 1600 return 0; 1601 1602 return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors, 1603 mode, data); 1604 } 1605 1606 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry, 1607 void *context, int vl, int mode, u64 data) 1608 { 1609 struct hfi1_pportdata *ppd = context; 1610 1611 if (vl != CNTR_INVALID_VL) 1612 return 0; 1613 1614 return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors, 1615 mode, data); 1616 } 1617 1618 u64 get_all_cpu_total(u64 __percpu *cntr) 1619 { 1620 int cpu; 1621 u64 counter = 0; 1622 1623 for_each_possible_cpu(cpu) 1624 counter += *per_cpu_ptr(cntr, cpu); 1625 return counter; 1626 } 1627 1628 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val, 1629 u64 __percpu *cntr, 1630 int vl, int mode, u64 data) 1631 { 1632 u64 ret = 0; 1633 1634 if (vl != CNTR_INVALID_VL) 1635 return 0; 1636 1637 if (mode == CNTR_MODE_R) { 1638 ret = get_all_cpu_total(cntr) - *z_val; 1639 } else if (mode == CNTR_MODE_W) { 1640 /* A write can only zero the counter */ 1641 if (data == 0) 1642 *z_val = get_all_cpu_total(cntr); 1643 else 1644 dd_dev_err(dd, "Per CPU cntrs can only be zeroed"); 1645 } else { 1646 dd_dev_err(dd, "Invalid cntr sw cpu access mode"); 1647 return 0; 1648 } 1649 1650 return ret; 1651 } 1652 1653 static u64 access_sw_cpu_intr(const struct cntr_entry *entry, 1654 void *context, int vl, int mode, u64 data) 1655 { 1656 struct hfi1_devdata *dd = context; 1657 1658 return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl, 1659 mode, data); 1660 } 1661 1662 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry, 1663 void *context, int vl, int mode, u64 data) 1664 { 1665 struct hfi1_devdata *dd = context; 1666 1667 return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl, 1668 mode, data); 1669 } 1670 1671 static u64 access_sw_pio_wait(const struct cntr_entry *entry, 1672 void *context, int vl, int mode, u64 data) 1673 { 1674 struct hfi1_devdata *dd = context; 1675 1676 return dd->verbs_dev.n_piowait; 1677 } 1678 1679 static u64 access_sw_pio_drain(const struct cntr_entry *entry, 1680 void *context, int vl, int mode, u64 data) 1681 { 1682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1683 1684 return dd->verbs_dev.n_piodrain; 1685 } 1686 1687 static u64 access_sw_vtx_wait(const struct cntr_entry *entry, 1688 void *context, int vl, int mode, u64 data) 1689 { 1690 struct hfi1_devdata *dd = context; 1691 1692 return dd->verbs_dev.n_txwait; 1693 } 1694 1695 static u64 access_sw_kmem_wait(const struct cntr_entry *entry, 1696 void *context, int vl, int mode, u64 data) 1697 { 1698 struct hfi1_devdata *dd = context; 1699 1700 return dd->verbs_dev.n_kmem_wait; 1701 } 1702 1703 static u64 access_sw_send_schedule(const struct cntr_entry *entry, 1704 void *context, int vl, int mode, u64 data) 1705 { 1706 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1707 1708 return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl, 1709 mode, data); 1710 } 1711 1712 /* Software counters for the error status bits within MISC_ERR_STATUS */ 1713 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry, 1714 void *context, int vl, int mode, 1715 u64 data) 1716 { 1717 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1718 1719 return dd->misc_err_status_cnt[12]; 1720 } 1721 1722 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry, 1723 void *context, int vl, int mode, 1724 u64 data) 1725 { 1726 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1727 1728 return dd->misc_err_status_cnt[11]; 1729 } 1730 1731 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry, 1732 void *context, int vl, int mode, 1733 u64 data) 1734 { 1735 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1736 1737 return dd->misc_err_status_cnt[10]; 1738 } 1739 1740 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry, 1741 void *context, int vl, 1742 int mode, u64 data) 1743 { 1744 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1745 1746 return dd->misc_err_status_cnt[9]; 1747 } 1748 1749 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry, 1750 void *context, int vl, int mode, 1751 u64 data) 1752 { 1753 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1754 1755 return dd->misc_err_status_cnt[8]; 1756 } 1757 1758 static u64 access_misc_efuse_read_bad_addr_err_cnt( 1759 const struct cntr_entry *entry, 1760 void *context, int vl, int mode, u64 data) 1761 { 1762 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1763 1764 return dd->misc_err_status_cnt[7]; 1765 } 1766 1767 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry, 1768 void *context, int vl, 1769 int mode, u64 data) 1770 { 1771 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1772 1773 return dd->misc_err_status_cnt[6]; 1774 } 1775 1776 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry, 1777 void *context, int vl, int mode, 1778 u64 data) 1779 { 1780 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1781 1782 return dd->misc_err_status_cnt[5]; 1783 } 1784 1785 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry, 1786 void *context, int vl, int mode, 1787 u64 data) 1788 { 1789 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1790 1791 return dd->misc_err_status_cnt[4]; 1792 } 1793 1794 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry, 1795 void *context, int vl, 1796 int mode, u64 data) 1797 { 1798 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1799 1800 return dd->misc_err_status_cnt[3]; 1801 } 1802 1803 static u64 access_misc_csr_write_bad_addr_err_cnt( 1804 const struct cntr_entry *entry, 1805 void *context, int vl, int mode, u64 data) 1806 { 1807 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1808 1809 return dd->misc_err_status_cnt[2]; 1810 } 1811 1812 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1813 void *context, int vl, 1814 int mode, u64 data) 1815 { 1816 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1817 1818 return dd->misc_err_status_cnt[1]; 1819 } 1820 1821 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry, 1822 void *context, int vl, int mode, 1823 u64 data) 1824 { 1825 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1826 1827 return dd->misc_err_status_cnt[0]; 1828 } 1829 1830 /* 1831 * Software counter for the aggregate of 1832 * individual CceErrStatus counters 1833 */ 1834 static u64 access_sw_cce_err_status_aggregated_cnt( 1835 const struct cntr_entry *entry, 1836 void *context, int vl, int mode, u64 data) 1837 { 1838 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1839 1840 return dd->sw_cce_err_status_aggregate; 1841 } 1842 1843 /* 1844 * Software counters corresponding to each of the 1845 * error status bits within CceErrStatus 1846 */ 1847 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry, 1848 void *context, int vl, int mode, 1849 u64 data) 1850 { 1851 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1852 1853 return dd->cce_err_status_cnt[40]; 1854 } 1855 1856 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry, 1857 void *context, int vl, int mode, 1858 u64 data) 1859 { 1860 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1861 1862 return dd->cce_err_status_cnt[39]; 1863 } 1864 1865 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry, 1866 void *context, int vl, int mode, 1867 u64 data) 1868 { 1869 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1870 1871 return dd->cce_err_status_cnt[38]; 1872 } 1873 1874 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry, 1875 void *context, int vl, int mode, 1876 u64 data) 1877 { 1878 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1879 1880 return dd->cce_err_status_cnt[37]; 1881 } 1882 1883 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry, 1884 void *context, int vl, int mode, 1885 u64 data) 1886 { 1887 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1888 1889 return dd->cce_err_status_cnt[36]; 1890 } 1891 1892 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt( 1893 const struct cntr_entry *entry, 1894 void *context, int vl, int mode, u64 data) 1895 { 1896 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1897 1898 return dd->cce_err_status_cnt[35]; 1899 } 1900 1901 static u64 access_cce_rcpl_async_fifo_parity_err_cnt( 1902 const struct cntr_entry *entry, 1903 void *context, int vl, int mode, u64 data) 1904 { 1905 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1906 1907 return dd->cce_err_status_cnt[34]; 1908 } 1909 1910 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry, 1911 void *context, int vl, 1912 int mode, u64 data) 1913 { 1914 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1915 1916 return dd->cce_err_status_cnt[33]; 1917 } 1918 1919 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry, 1920 void *context, int vl, int mode, 1921 u64 data) 1922 { 1923 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1924 1925 return dd->cce_err_status_cnt[32]; 1926 } 1927 1928 static u64 access_la_triggered_cnt(const struct cntr_entry *entry, 1929 void *context, int vl, int mode, u64 data) 1930 { 1931 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1932 1933 return dd->cce_err_status_cnt[31]; 1934 } 1935 1936 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry, 1937 void *context, int vl, int mode, 1938 u64 data) 1939 { 1940 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1941 1942 return dd->cce_err_status_cnt[30]; 1943 } 1944 1945 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry, 1946 void *context, int vl, int mode, 1947 u64 data) 1948 { 1949 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1950 1951 return dd->cce_err_status_cnt[29]; 1952 } 1953 1954 static u64 access_pcic_transmit_back_parity_err_cnt( 1955 const struct cntr_entry *entry, 1956 void *context, int vl, int mode, u64 data) 1957 { 1958 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1959 1960 return dd->cce_err_status_cnt[28]; 1961 } 1962 1963 static u64 access_pcic_transmit_front_parity_err_cnt( 1964 const struct cntr_entry *entry, 1965 void *context, int vl, int mode, u64 data) 1966 { 1967 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1968 1969 return dd->cce_err_status_cnt[27]; 1970 } 1971 1972 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1973 void *context, int vl, int mode, 1974 u64 data) 1975 { 1976 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1977 1978 return dd->cce_err_status_cnt[26]; 1979 } 1980 1981 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry, 1982 void *context, int vl, int mode, 1983 u64 data) 1984 { 1985 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1986 1987 return dd->cce_err_status_cnt[25]; 1988 } 1989 1990 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry, 1991 void *context, int vl, int mode, 1992 u64 data) 1993 { 1994 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 1995 1996 return dd->cce_err_status_cnt[24]; 1997 } 1998 1999 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry, 2000 void *context, int vl, int mode, 2001 u64 data) 2002 { 2003 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2004 2005 return dd->cce_err_status_cnt[23]; 2006 } 2007 2008 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry, 2009 void *context, int vl, 2010 int mode, u64 data) 2011 { 2012 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2013 2014 return dd->cce_err_status_cnt[22]; 2015 } 2016 2017 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry, 2018 void *context, int vl, int mode, 2019 u64 data) 2020 { 2021 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2022 2023 return dd->cce_err_status_cnt[21]; 2024 } 2025 2026 static u64 access_pcic_n_post_dat_q_parity_err_cnt( 2027 const struct cntr_entry *entry, 2028 void *context, int vl, int mode, u64 data) 2029 { 2030 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2031 2032 return dd->cce_err_status_cnt[20]; 2033 } 2034 2035 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry, 2036 void *context, int vl, 2037 int mode, u64 data) 2038 { 2039 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2040 2041 return dd->cce_err_status_cnt[19]; 2042 } 2043 2044 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2045 void *context, int vl, int mode, 2046 u64 data) 2047 { 2048 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2049 2050 return dd->cce_err_status_cnt[18]; 2051 } 2052 2053 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2054 void *context, int vl, int mode, 2055 u64 data) 2056 { 2057 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2058 2059 return dd->cce_err_status_cnt[17]; 2060 } 2061 2062 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry, 2063 void *context, int vl, int mode, 2064 u64 data) 2065 { 2066 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2067 2068 return dd->cce_err_status_cnt[16]; 2069 } 2070 2071 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry, 2072 void *context, int vl, int mode, 2073 u64 data) 2074 { 2075 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2076 2077 return dd->cce_err_status_cnt[15]; 2078 } 2079 2080 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry, 2081 void *context, int vl, 2082 int mode, u64 data) 2083 { 2084 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2085 2086 return dd->cce_err_status_cnt[14]; 2087 } 2088 2089 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry, 2090 void *context, int vl, int mode, 2091 u64 data) 2092 { 2093 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2094 2095 return dd->cce_err_status_cnt[13]; 2096 } 2097 2098 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt( 2099 const struct cntr_entry *entry, 2100 void *context, int vl, int mode, u64 data) 2101 { 2102 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2103 2104 return dd->cce_err_status_cnt[12]; 2105 } 2106 2107 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt( 2108 const struct cntr_entry *entry, 2109 void *context, int vl, int mode, u64 data) 2110 { 2111 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2112 2113 return dd->cce_err_status_cnt[11]; 2114 } 2115 2116 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt( 2117 const struct cntr_entry *entry, 2118 void *context, int vl, int mode, u64 data) 2119 { 2120 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2121 2122 return dd->cce_err_status_cnt[10]; 2123 } 2124 2125 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt( 2126 const struct cntr_entry *entry, 2127 void *context, int vl, int mode, u64 data) 2128 { 2129 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2130 2131 return dd->cce_err_status_cnt[9]; 2132 } 2133 2134 static u64 access_cce_cli2_async_fifo_parity_err_cnt( 2135 const struct cntr_entry *entry, 2136 void *context, int vl, int mode, u64 data) 2137 { 2138 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2139 2140 return dd->cce_err_status_cnt[8]; 2141 } 2142 2143 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry, 2144 void *context, int vl, 2145 int mode, u64 data) 2146 { 2147 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2148 2149 return dd->cce_err_status_cnt[7]; 2150 } 2151 2152 static u64 access_cce_cli0_async_fifo_parity_err_cnt( 2153 const struct cntr_entry *entry, 2154 void *context, int vl, int mode, u64 data) 2155 { 2156 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2157 2158 return dd->cce_err_status_cnt[6]; 2159 } 2160 2161 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry, 2162 void *context, int vl, int mode, 2163 u64 data) 2164 { 2165 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2166 2167 return dd->cce_err_status_cnt[5]; 2168 } 2169 2170 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry, 2171 void *context, int vl, int mode, 2172 u64 data) 2173 { 2174 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2175 2176 return dd->cce_err_status_cnt[4]; 2177 } 2178 2179 static u64 access_cce_trgt_async_fifo_parity_err_cnt( 2180 const struct cntr_entry *entry, 2181 void *context, int vl, int mode, u64 data) 2182 { 2183 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2184 2185 return dd->cce_err_status_cnt[3]; 2186 } 2187 2188 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2189 void *context, int vl, 2190 int mode, u64 data) 2191 { 2192 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2193 2194 return dd->cce_err_status_cnt[2]; 2195 } 2196 2197 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2198 void *context, int vl, 2199 int mode, u64 data) 2200 { 2201 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2202 2203 return dd->cce_err_status_cnt[1]; 2204 } 2205 2206 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry, 2207 void *context, int vl, int mode, 2208 u64 data) 2209 { 2210 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2211 2212 return dd->cce_err_status_cnt[0]; 2213 } 2214 2215 /* 2216 * Software counters corresponding to each of the 2217 * error status bits within RcvErrStatus 2218 */ 2219 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry, 2220 void *context, int vl, int mode, 2221 u64 data) 2222 { 2223 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2224 2225 return dd->rcv_err_status_cnt[63]; 2226 } 2227 2228 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry, 2229 void *context, int vl, 2230 int mode, u64 data) 2231 { 2232 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2233 2234 return dd->rcv_err_status_cnt[62]; 2235 } 2236 2237 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 2238 void *context, int vl, int mode, 2239 u64 data) 2240 { 2241 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2242 2243 return dd->rcv_err_status_cnt[61]; 2244 } 2245 2246 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry, 2247 void *context, int vl, int mode, 2248 u64 data) 2249 { 2250 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2251 2252 return dd->rcv_err_status_cnt[60]; 2253 } 2254 2255 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2256 void *context, int vl, 2257 int mode, u64 data) 2258 { 2259 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2260 2261 return dd->rcv_err_status_cnt[59]; 2262 } 2263 2264 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2265 void *context, int vl, 2266 int mode, u64 data) 2267 { 2268 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2269 2270 return dd->rcv_err_status_cnt[58]; 2271 } 2272 2273 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry, 2274 void *context, int vl, int mode, 2275 u64 data) 2276 { 2277 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2278 2279 return dd->rcv_err_status_cnt[57]; 2280 } 2281 2282 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry, 2283 void *context, int vl, int mode, 2284 u64 data) 2285 { 2286 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2287 2288 return dd->rcv_err_status_cnt[56]; 2289 } 2290 2291 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry, 2292 void *context, int vl, int mode, 2293 u64 data) 2294 { 2295 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2296 2297 return dd->rcv_err_status_cnt[55]; 2298 } 2299 2300 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt( 2301 const struct cntr_entry *entry, 2302 void *context, int vl, int mode, u64 data) 2303 { 2304 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2305 2306 return dd->rcv_err_status_cnt[54]; 2307 } 2308 2309 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt( 2310 const struct cntr_entry *entry, 2311 void *context, int vl, int mode, u64 data) 2312 { 2313 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2314 2315 return dd->rcv_err_status_cnt[53]; 2316 } 2317 2318 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry, 2319 void *context, int vl, 2320 int mode, u64 data) 2321 { 2322 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2323 2324 return dd->rcv_err_status_cnt[52]; 2325 } 2326 2327 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry, 2328 void *context, int vl, 2329 int mode, u64 data) 2330 { 2331 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2332 2333 return dd->rcv_err_status_cnt[51]; 2334 } 2335 2336 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry, 2337 void *context, int vl, 2338 int mode, u64 data) 2339 { 2340 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2341 2342 return dd->rcv_err_status_cnt[50]; 2343 } 2344 2345 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry, 2346 void *context, int vl, 2347 int mode, u64 data) 2348 { 2349 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2350 2351 return dd->rcv_err_status_cnt[49]; 2352 } 2353 2354 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry, 2355 void *context, int vl, 2356 int mode, u64 data) 2357 { 2358 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2359 2360 return dd->rcv_err_status_cnt[48]; 2361 } 2362 2363 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry, 2364 void *context, int vl, 2365 int mode, u64 data) 2366 { 2367 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2368 2369 return dd->rcv_err_status_cnt[47]; 2370 } 2371 2372 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry, 2373 void *context, int vl, int mode, 2374 u64 data) 2375 { 2376 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2377 2378 return dd->rcv_err_status_cnt[46]; 2379 } 2380 2381 static u64 access_rx_hq_intr_csr_parity_err_cnt( 2382 const struct cntr_entry *entry, 2383 void *context, int vl, int mode, u64 data) 2384 { 2385 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2386 2387 return dd->rcv_err_status_cnt[45]; 2388 } 2389 2390 static u64 access_rx_lookup_csr_parity_err_cnt( 2391 const struct cntr_entry *entry, 2392 void *context, int vl, int mode, u64 data) 2393 { 2394 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2395 2396 return dd->rcv_err_status_cnt[44]; 2397 } 2398 2399 static u64 access_rx_lookup_rcv_array_cor_err_cnt( 2400 const struct cntr_entry *entry, 2401 void *context, int vl, int mode, u64 data) 2402 { 2403 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2404 2405 return dd->rcv_err_status_cnt[43]; 2406 } 2407 2408 static u64 access_rx_lookup_rcv_array_unc_err_cnt( 2409 const struct cntr_entry *entry, 2410 void *context, int vl, int mode, u64 data) 2411 { 2412 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2413 2414 return dd->rcv_err_status_cnt[42]; 2415 } 2416 2417 static u64 access_rx_lookup_des_part2_parity_err_cnt( 2418 const struct cntr_entry *entry, 2419 void *context, int vl, int mode, u64 data) 2420 { 2421 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2422 2423 return dd->rcv_err_status_cnt[41]; 2424 } 2425 2426 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt( 2427 const struct cntr_entry *entry, 2428 void *context, int vl, int mode, u64 data) 2429 { 2430 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2431 2432 return dd->rcv_err_status_cnt[40]; 2433 } 2434 2435 static u64 access_rx_lookup_des_part1_unc_err_cnt( 2436 const struct cntr_entry *entry, 2437 void *context, int vl, int mode, u64 data) 2438 { 2439 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2440 2441 return dd->rcv_err_status_cnt[39]; 2442 } 2443 2444 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt( 2445 const struct cntr_entry *entry, 2446 void *context, int vl, int mode, u64 data) 2447 { 2448 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2449 2450 return dd->rcv_err_status_cnt[38]; 2451 } 2452 2453 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt( 2454 const struct cntr_entry *entry, 2455 void *context, int vl, int mode, u64 data) 2456 { 2457 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2458 2459 return dd->rcv_err_status_cnt[37]; 2460 } 2461 2462 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt( 2463 const struct cntr_entry *entry, 2464 void *context, int vl, int mode, u64 data) 2465 { 2466 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2467 2468 return dd->rcv_err_status_cnt[36]; 2469 } 2470 2471 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt( 2472 const struct cntr_entry *entry, 2473 void *context, int vl, int mode, u64 data) 2474 { 2475 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2476 2477 return dd->rcv_err_status_cnt[35]; 2478 } 2479 2480 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt( 2481 const struct cntr_entry *entry, 2482 void *context, int vl, int mode, u64 data) 2483 { 2484 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2485 2486 return dd->rcv_err_status_cnt[34]; 2487 } 2488 2489 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt( 2490 const struct cntr_entry *entry, 2491 void *context, int vl, int mode, u64 data) 2492 { 2493 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2494 2495 return dd->rcv_err_status_cnt[33]; 2496 } 2497 2498 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry, 2499 void *context, int vl, int mode, 2500 u64 data) 2501 { 2502 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2503 2504 return dd->rcv_err_status_cnt[32]; 2505 } 2506 2507 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry, 2508 void *context, int vl, int mode, 2509 u64 data) 2510 { 2511 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2512 2513 return dd->rcv_err_status_cnt[31]; 2514 } 2515 2516 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry, 2517 void *context, int vl, int mode, 2518 u64 data) 2519 { 2520 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2521 2522 return dd->rcv_err_status_cnt[30]; 2523 } 2524 2525 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry, 2526 void *context, int vl, int mode, 2527 u64 data) 2528 { 2529 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2530 2531 return dd->rcv_err_status_cnt[29]; 2532 } 2533 2534 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry, 2535 void *context, int vl, 2536 int mode, u64 data) 2537 { 2538 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2539 2540 return dd->rcv_err_status_cnt[28]; 2541 } 2542 2543 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt( 2544 const struct cntr_entry *entry, 2545 void *context, int vl, int mode, u64 data) 2546 { 2547 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2548 2549 return dd->rcv_err_status_cnt[27]; 2550 } 2551 2552 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt( 2553 const struct cntr_entry *entry, 2554 void *context, int vl, int mode, u64 data) 2555 { 2556 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2557 2558 return dd->rcv_err_status_cnt[26]; 2559 } 2560 2561 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt( 2562 const struct cntr_entry *entry, 2563 void *context, int vl, int mode, u64 data) 2564 { 2565 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2566 2567 return dd->rcv_err_status_cnt[25]; 2568 } 2569 2570 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt( 2571 const struct cntr_entry *entry, 2572 void *context, int vl, int mode, u64 data) 2573 { 2574 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2575 2576 return dd->rcv_err_status_cnt[24]; 2577 } 2578 2579 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt( 2580 const struct cntr_entry *entry, 2581 void *context, int vl, int mode, u64 data) 2582 { 2583 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2584 2585 return dd->rcv_err_status_cnt[23]; 2586 } 2587 2588 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt( 2589 const struct cntr_entry *entry, 2590 void *context, int vl, int mode, u64 data) 2591 { 2592 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2593 2594 return dd->rcv_err_status_cnt[22]; 2595 } 2596 2597 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt( 2598 const struct cntr_entry *entry, 2599 void *context, int vl, int mode, u64 data) 2600 { 2601 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2602 2603 return dd->rcv_err_status_cnt[21]; 2604 } 2605 2606 static u64 access_rx_rbuf_block_list_read_cor_err_cnt( 2607 const struct cntr_entry *entry, 2608 void *context, int vl, int mode, u64 data) 2609 { 2610 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2611 2612 return dd->rcv_err_status_cnt[20]; 2613 } 2614 2615 static u64 access_rx_rbuf_block_list_read_unc_err_cnt( 2616 const struct cntr_entry *entry, 2617 void *context, int vl, int mode, u64 data) 2618 { 2619 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2620 2621 return dd->rcv_err_status_cnt[19]; 2622 } 2623 2624 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry, 2625 void *context, int vl, 2626 int mode, u64 data) 2627 { 2628 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2629 2630 return dd->rcv_err_status_cnt[18]; 2631 } 2632 2633 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry, 2634 void *context, int vl, 2635 int mode, u64 data) 2636 { 2637 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2638 2639 return dd->rcv_err_status_cnt[17]; 2640 } 2641 2642 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt( 2643 const struct cntr_entry *entry, 2644 void *context, int vl, int mode, u64 data) 2645 { 2646 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2647 2648 return dd->rcv_err_status_cnt[16]; 2649 } 2650 2651 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt( 2652 const struct cntr_entry *entry, 2653 void *context, int vl, int mode, u64 data) 2654 { 2655 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2656 2657 return dd->rcv_err_status_cnt[15]; 2658 } 2659 2660 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry, 2661 void *context, int vl, 2662 int mode, u64 data) 2663 { 2664 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2665 2666 return dd->rcv_err_status_cnt[14]; 2667 } 2668 2669 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry, 2670 void *context, int vl, 2671 int mode, u64 data) 2672 { 2673 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2674 2675 return dd->rcv_err_status_cnt[13]; 2676 } 2677 2678 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry, 2679 void *context, int vl, int mode, 2680 u64 data) 2681 { 2682 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2683 2684 return dd->rcv_err_status_cnt[12]; 2685 } 2686 2687 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry, 2688 void *context, int vl, int mode, 2689 u64 data) 2690 { 2691 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2692 2693 return dd->rcv_err_status_cnt[11]; 2694 } 2695 2696 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry, 2697 void *context, int vl, int mode, 2698 u64 data) 2699 { 2700 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2701 2702 return dd->rcv_err_status_cnt[10]; 2703 } 2704 2705 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry, 2706 void *context, int vl, int mode, 2707 u64 data) 2708 { 2709 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2710 2711 return dd->rcv_err_status_cnt[9]; 2712 } 2713 2714 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry, 2715 void *context, int vl, int mode, 2716 u64 data) 2717 { 2718 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2719 2720 return dd->rcv_err_status_cnt[8]; 2721 } 2722 2723 static u64 access_rx_rcv_qp_map_table_cor_err_cnt( 2724 const struct cntr_entry *entry, 2725 void *context, int vl, int mode, u64 data) 2726 { 2727 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2728 2729 return dd->rcv_err_status_cnt[7]; 2730 } 2731 2732 static u64 access_rx_rcv_qp_map_table_unc_err_cnt( 2733 const struct cntr_entry *entry, 2734 void *context, int vl, int mode, u64 data) 2735 { 2736 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2737 2738 return dd->rcv_err_status_cnt[6]; 2739 } 2740 2741 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry, 2742 void *context, int vl, int mode, 2743 u64 data) 2744 { 2745 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2746 2747 return dd->rcv_err_status_cnt[5]; 2748 } 2749 2750 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry, 2751 void *context, int vl, int mode, 2752 u64 data) 2753 { 2754 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2755 2756 return dd->rcv_err_status_cnt[4]; 2757 } 2758 2759 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry, 2760 void *context, int vl, int mode, 2761 u64 data) 2762 { 2763 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2764 2765 return dd->rcv_err_status_cnt[3]; 2766 } 2767 2768 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry, 2769 void *context, int vl, int mode, 2770 u64 data) 2771 { 2772 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2773 2774 return dd->rcv_err_status_cnt[2]; 2775 } 2776 2777 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry, 2778 void *context, int vl, int mode, 2779 u64 data) 2780 { 2781 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2782 2783 return dd->rcv_err_status_cnt[1]; 2784 } 2785 2786 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry, 2787 void *context, int vl, int mode, 2788 u64 data) 2789 { 2790 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2791 2792 return dd->rcv_err_status_cnt[0]; 2793 } 2794 2795 /* 2796 * Software counters corresponding to each of the 2797 * error status bits within SendPioErrStatus 2798 */ 2799 static u64 access_pio_pec_sop_head_parity_err_cnt( 2800 const struct cntr_entry *entry, 2801 void *context, int vl, int mode, u64 data) 2802 { 2803 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2804 2805 return dd->send_pio_err_status_cnt[35]; 2806 } 2807 2808 static u64 access_pio_pcc_sop_head_parity_err_cnt( 2809 const struct cntr_entry *entry, 2810 void *context, int vl, int mode, u64 data) 2811 { 2812 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2813 2814 return dd->send_pio_err_status_cnt[34]; 2815 } 2816 2817 static u64 access_pio_last_returned_cnt_parity_err_cnt( 2818 const struct cntr_entry *entry, 2819 void *context, int vl, int mode, u64 data) 2820 { 2821 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2822 2823 return dd->send_pio_err_status_cnt[33]; 2824 } 2825 2826 static u64 access_pio_current_free_cnt_parity_err_cnt( 2827 const struct cntr_entry *entry, 2828 void *context, int vl, int mode, u64 data) 2829 { 2830 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2831 2832 return dd->send_pio_err_status_cnt[32]; 2833 } 2834 2835 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry, 2836 void *context, int vl, int mode, 2837 u64 data) 2838 { 2839 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2840 2841 return dd->send_pio_err_status_cnt[31]; 2842 } 2843 2844 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry, 2845 void *context, int vl, int mode, 2846 u64 data) 2847 { 2848 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2849 2850 return dd->send_pio_err_status_cnt[30]; 2851 } 2852 2853 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry, 2854 void *context, int vl, int mode, 2855 u64 data) 2856 { 2857 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2858 2859 return dd->send_pio_err_status_cnt[29]; 2860 } 2861 2862 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt( 2863 const struct cntr_entry *entry, 2864 void *context, int vl, int mode, u64 data) 2865 { 2866 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2867 2868 return dd->send_pio_err_status_cnt[28]; 2869 } 2870 2871 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry, 2872 void *context, int vl, int mode, 2873 u64 data) 2874 { 2875 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2876 2877 return dd->send_pio_err_status_cnt[27]; 2878 } 2879 2880 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry, 2881 void *context, int vl, int mode, 2882 u64 data) 2883 { 2884 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2885 2886 return dd->send_pio_err_status_cnt[26]; 2887 } 2888 2889 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry, 2890 void *context, int vl, 2891 int mode, u64 data) 2892 { 2893 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2894 2895 return dd->send_pio_err_status_cnt[25]; 2896 } 2897 2898 static u64 access_pio_block_qw_count_parity_err_cnt( 2899 const struct cntr_entry *entry, 2900 void *context, int vl, int mode, u64 data) 2901 { 2902 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2903 2904 return dd->send_pio_err_status_cnt[24]; 2905 } 2906 2907 static u64 access_pio_write_qw_valid_parity_err_cnt( 2908 const struct cntr_entry *entry, 2909 void *context, int vl, int mode, u64 data) 2910 { 2911 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2912 2913 return dd->send_pio_err_status_cnt[23]; 2914 } 2915 2916 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry, 2917 void *context, int vl, int mode, 2918 u64 data) 2919 { 2920 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2921 2922 return dd->send_pio_err_status_cnt[22]; 2923 } 2924 2925 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry, 2926 void *context, int vl, 2927 int mode, u64 data) 2928 { 2929 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2930 2931 return dd->send_pio_err_status_cnt[21]; 2932 } 2933 2934 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry, 2935 void *context, int vl, 2936 int mode, u64 data) 2937 { 2938 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2939 2940 return dd->send_pio_err_status_cnt[20]; 2941 } 2942 2943 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry, 2944 void *context, int vl, 2945 int mode, u64 data) 2946 { 2947 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2948 2949 return dd->send_pio_err_status_cnt[19]; 2950 } 2951 2952 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt( 2953 const struct cntr_entry *entry, 2954 void *context, int vl, int mode, u64 data) 2955 { 2956 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2957 2958 return dd->send_pio_err_status_cnt[18]; 2959 } 2960 2961 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry, 2962 void *context, int vl, int mode, 2963 u64 data) 2964 { 2965 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2966 2967 return dd->send_pio_err_status_cnt[17]; 2968 } 2969 2970 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry, 2971 void *context, int vl, int mode, 2972 u64 data) 2973 { 2974 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2975 2976 return dd->send_pio_err_status_cnt[16]; 2977 } 2978 2979 static u64 access_pio_credit_ret_fifo_parity_err_cnt( 2980 const struct cntr_entry *entry, 2981 void *context, int vl, int mode, u64 data) 2982 { 2983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2984 2985 return dd->send_pio_err_status_cnt[15]; 2986 } 2987 2988 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt( 2989 const struct cntr_entry *entry, 2990 void *context, int vl, int mode, u64 data) 2991 { 2992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 2993 2994 return dd->send_pio_err_status_cnt[14]; 2995 } 2996 2997 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt( 2998 const struct cntr_entry *entry, 2999 void *context, int vl, int mode, u64 data) 3000 { 3001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3002 3003 return dd->send_pio_err_status_cnt[13]; 3004 } 3005 3006 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt( 3007 const struct cntr_entry *entry, 3008 void *context, int vl, int mode, u64 data) 3009 { 3010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3011 3012 return dd->send_pio_err_status_cnt[12]; 3013 } 3014 3015 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt( 3016 const struct cntr_entry *entry, 3017 void *context, int vl, int mode, u64 data) 3018 { 3019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3020 3021 return dd->send_pio_err_status_cnt[11]; 3022 } 3023 3024 static u64 access_pio_sm_pkt_reset_parity_err_cnt( 3025 const struct cntr_entry *entry, 3026 void *context, int vl, int mode, u64 data) 3027 { 3028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3029 3030 return dd->send_pio_err_status_cnt[10]; 3031 } 3032 3033 static u64 access_pio_pkt_evict_fifo_parity_err_cnt( 3034 const struct cntr_entry *entry, 3035 void *context, int vl, int mode, u64 data) 3036 { 3037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3038 3039 return dd->send_pio_err_status_cnt[9]; 3040 } 3041 3042 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt( 3043 const struct cntr_entry *entry, 3044 void *context, int vl, int mode, u64 data) 3045 { 3046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3047 3048 return dd->send_pio_err_status_cnt[8]; 3049 } 3050 3051 static u64 access_pio_sbrdctl_crrel_parity_err_cnt( 3052 const struct cntr_entry *entry, 3053 void *context, int vl, int mode, u64 data) 3054 { 3055 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3056 3057 return dd->send_pio_err_status_cnt[7]; 3058 } 3059 3060 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry, 3061 void *context, int vl, int mode, 3062 u64 data) 3063 { 3064 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3065 3066 return dd->send_pio_err_status_cnt[6]; 3067 } 3068 3069 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry, 3070 void *context, int vl, int mode, 3071 u64 data) 3072 { 3073 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3074 3075 return dd->send_pio_err_status_cnt[5]; 3076 } 3077 3078 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry, 3079 void *context, int vl, int mode, 3080 u64 data) 3081 { 3082 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3083 3084 return dd->send_pio_err_status_cnt[4]; 3085 } 3086 3087 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry, 3088 void *context, int vl, int mode, 3089 u64 data) 3090 { 3091 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3092 3093 return dd->send_pio_err_status_cnt[3]; 3094 } 3095 3096 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry, 3097 void *context, int vl, int mode, 3098 u64 data) 3099 { 3100 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3101 3102 return dd->send_pio_err_status_cnt[2]; 3103 } 3104 3105 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry, 3106 void *context, int vl, 3107 int mode, u64 data) 3108 { 3109 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3110 3111 return dd->send_pio_err_status_cnt[1]; 3112 } 3113 3114 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry, 3115 void *context, int vl, int mode, 3116 u64 data) 3117 { 3118 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3119 3120 return dd->send_pio_err_status_cnt[0]; 3121 } 3122 3123 /* 3124 * Software counters corresponding to each of the 3125 * error status bits within SendDmaErrStatus 3126 */ 3127 static u64 access_sdma_pcie_req_tracking_cor_err_cnt( 3128 const struct cntr_entry *entry, 3129 void *context, int vl, int mode, u64 data) 3130 { 3131 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3132 3133 return dd->send_dma_err_status_cnt[3]; 3134 } 3135 3136 static u64 access_sdma_pcie_req_tracking_unc_err_cnt( 3137 const struct cntr_entry *entry, 3138 void *context, int vl, int mode, u64 data) 3139 { 3140 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3141 3142 return dd->send_dma_err_status_cnt[2]; 3143 } 3144 3145 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry, 3146 void *context, int vl, int mode, 3147 u64 data) 3148 { 3149 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3150 3151 return dd->send_dma_err_status_cnt[1]; 3152 } 3153 3154 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry, 3155 void *context, int vl, int mode, 3156 u64 data) 3157 { 3158 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3159 3160 return dd->send_dma_err_status_cnt[0]; 3161 } 3162 3163 /* 3164 * Software counters corresponding to each of the 3165 * error status bits within SendEgressErrStatus 3166 */ 3167 static u64 access_tx_read_pio_memory_csr_unc_err_cnt( 3168 const struct cntr_entry *entry, 3169 void *context, int vl, int mode, u64 data) 3170 { 3171 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3172 3173 return dd->send_egress_err_status_cnt[63]; 3174 } 3175 3176 static u64 access_tx_read_sdma_memory_csr_err_cnt( 3177 const struct cntr_entry *entry, 3178 void *context, int vl, int mode, u64 data) 3179 { 3180 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3181 3182 return dd->send_egress_err_status_cnt[62]; 3183 } 3184 3185 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry, 3186 void *context, int vl, int mode, 3187 u64 data) 3188 { 3189 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3190 3191 return dd->send_egress_err_status_cnt[61]; 3192 } 3193 3194 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry, 3195 void *context, int vl, 3196 int mode, u64 data) 3197 { 3198 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3199 3200 return dd->send_egress_err_status_cnt[60]; 3201 } 3202 3203 static u64 access_tx_read_sdma_memory_cor_err_cnt( 3204 const struct cntr_entry *entry, 3205 void *context, int vl, int mode, u64 data) 3206 { 3207 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3208 3209 return dd->send_egress_err_status_cnt[59]; 3210 } 3211 3212 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry, 3213 void *context, int vl, int mode, 3214 u64 data) 3215 { 3216 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3217 3218 return dd->send_egress_err_status_cnt[58]; 3219 } 3220 3221 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry, 3222 void *context, int vl, int mode, 3223 u64 data) 3224 { 3225 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3226 3227 return dd->send_egress_err_status_cnt[57]; 3228 } 3229 3230 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry, 3231 void *context, int vl, int mode, 3232 u64 data) 3233 { 3234 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3235 3236 return dd->send_egress_err_status_cnt[56]; 3237 } 3238 3239 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry, 3240 void *context, int vl, int mode, 3241 u64 data) 3242 { 3243 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3244 3245 return dd->send_egress_err_status_cnt[55]; 3246 } 3247 3248 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry, 3249 void *context, int vl, int mode, 3250 u64 data) 3251 { 3252 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3253 3254 return dd->send_egress_err_status_cnt[54]; 3255 } 3256 3257 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry, 3258 void *context, int vl, int mode, 3259 u64 data) 3260 { 3261 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3262 3263 return dd->send_egress_err_status_cnt[53]; 3264 } 3265 3266 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry, 3267 void *context, int vl, int mode, 3268 u64 data) 3269 { 3270 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3271 3272 return dd->send_egress_err_status_cnt[52]; 3273 } 3274 3275 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry, 3276 void *context, int vl, int mode, 3277 u64 data) 3278 { 3279 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3280 3281 return dd->send_egress_err_status_cnt[51]; 3282 } 3283 3284 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry, 3285 void *context, int vl, int mode, 3286 u64 data) 3287 { 3288 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3289 3290 return dd->send_egress_err_status_cnt[50]; 3291 } 3292 3293 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry, 3294 void *context, int vl, int mode, 3295 u64 data) 3296 { 3297 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3298 3299 return dd->send_egress_err_status_cnt[49]; 3300 } 3301 3302 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry, 3303 void *context, int vl, int mode, 3304 u64 data) 3305 { 3306 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3307 3308 return dd->send_egress_err_status_cnt[48]; 3309 } 3310 3311 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry, 3312 void *context, int vl, int mode, 3313 u64 data) 3314 { 3315 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3316 3317 return dd->send_egress_err_status_cnt[47]; 3318 } 3319 3320 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry, 3321 void *context, int vl, int mode, 3322 u64 data) 3323 { 3324 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3325 3326 return dd->send_egress_err_status_cnt[46]; 3327 } 3328 3329 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry, 3330 void *context, int vl, int mode, 3331 u64 data) 3332 { 3333 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3334 3335 return dd->send_egress_err_status_cnt[45]; 3336 } 3337 3338 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry, 3339 void *context, int vl, 3340 int mode, u64 data) 3341 { 3342 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3343 3344 return dd->send_egress_err_status_cnt[44]; 3345 } 3346 3347 static u64 access_tx_read_sdma_memory_unc_err_cnt( 3348 const struct cntr_entry *entry, 3349 void *context, int vl, int mode, u64 data) 3350 { 3351 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3352 3353 return dd->send_egress_err_status_cnt[43]; 3354 } 3355 3356 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry, 3357 void *context, int vl, int mode, 3358 u64 data) 3359 { 3360 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3361 3362 return dd->send_egress_err_status_cnt[42]; 3363 } 3364 3365 static u64 access_tx_credit_return_partiy_err_cnt( 3366 const struct cntr_entry *entry, 3367 void *context, int vl, int mode, u64 data) 3368 { 3369 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3370 3371 return dd->send_egress_err_status_cnt[41]; 3372 } 3373 3374 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt( 3375 const struct cntr_entry *entry, 3376 void *context, int vl, int mode, u64 data) 3377 { 3378 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3379 3380 return dd->send_egress_err_status_cnt[40]; 3381 } 3382 3383 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt( 3384 const struct cntr_entry *entry, 3385 void *context, int vl, int mode, u64 data) 3386 { 3387 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3388 3389 return dd->send_egress_err_status_cnt[39]; 3390 } 3391 3392 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt( 3393 const struct cntr_entry *entry, 3394 void *context, int vl, int mode, u64 data) 3395 { 3396 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3397 3398 return dd->send_egress_err_status_cnt[38]; 3399 } 3400 3401 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt( 3402 const struct cntr_entry *entry, 3403 void *context, int vl, int mode, u64 data) 3404 { 3405 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3406 3407 return dd->send_egress_err_status_cnt[37]; 3408 } 3409 3410 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt( 3411 const struct cntr_entry *entry, 3412 void *context, int vl, int mode, u64 data) 3413 { 3414 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3415 3416 return dd->send_egress_err_status_cnt[36]; 3417 } 3418 3419 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt( 3420 const struct cntr_entry *entry, 3421 void *context, int vl, int mode, u64 data) 3422 { 3423 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3424 3425 return dd->send_egress_err_status_cnt[35]; 3426 } 3427 3428 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt( 3429 const struct cntr_entry *entry, 3430 void *context, int vl, int mode, u64 data) 3431 { 3432 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3433 3434 return dd->send_egress_err_status_cnt[34]; 3435 } 3436 3437 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt( 3438 const struct cntr_entry *entry, 3439 void *context, int vl, int mode, u64 data) 3440 { 3441 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3442 3443 return dd->send_egress_err_status_cnt[33]; 3444 } 3445 3446 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt( 3447 const struct cntr_entry *entry, 3448 void *context, int vl, int mode, u64 data) 3449 { 3450 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3451 3452 return dd->send_egress_err_status_cnt[32]; 3453 } 3454 3455 static u64 access_tx_sdma15_disallowed_packet_err_cnt( 3456 const struct cntr_entry *entry, 3457 void *context, int vl, int mode, u64 data) 3458 { 3459 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3460 3461 return dd->send_egress_err_status_cnt[31]; 3462 } 3463 3464 static u64 access_tx_sdma14_disallowed_packet_err_cnt( 3465 const struct cntr_entry *entry, 3466 void *context, int vl, int mode, u64 data) 3467 { 3468 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3469 3470 return dd->send_egress_err_status_cnt[30]; 3471 } 3472 3473 static u64 access_tx_sdma13_disallowed_packet_err_cnt( 3474 const struct cntr_entry *entry, 3475 void *context, int vl, int mode, u64 data) 3476 { 3477 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3478 3479 return dd->send_egress_err_status_cnt[29]; 3480 } 3481 3482 static u64 access_tx_sdma12_disallowed_packet_err_cnt( 3483 const struct cntr_entry *entry, 3484 void *context, int vl, int mode, u64 data) 3485 { 3486 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3487 3488 return dd->send_egress_err_status_cnt[28]; 3489 } 3490 3491 static u64 access_tx_sdma11_disallowed_packet_err_cnt( 3492 const struct cntr_entry *entry, 3493 void *context, int vl, int mode, u64 data) 3494 { 3495 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3496 3497 return dd->send_egress_err_status_cnt[27]; 3498 } 3499 3500 static u64 access_tx_sdma10_disallowed_packet_err_cnt( 3501 const struct cntr_entry *entry, 3502 void *context, int vl, int mode, u64 data) 3503 { 3504 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3505 3506 return dd->send_egress_err_status_cnt[26]; 3507 } 3508 3509 static u64 access_tx_sdma9_disallowed_packet_err_cnt( 3510 const struct cntr_entry *entry, 3511 void *context, int vl, int mode, u64 data) 3512 { 3513 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3514 3515 return dd->send_egress_err_status_cnt[25]; 3516 } 3517 3518 static u64 access_tx_sdma8_disallowed_packet_err_cnt( 3519 const struct cntr_entry *entry, 3520 void *context, int vl, int mode, u64 data) 3521 { 3522 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3523 3524 return dd->send_egress_err_status_cnt[24]; 3525 } 3526 3527 static u64 access_tx_sdma7_disallowed_packet_err_cnt( 3528 const struct cntr_entry *entry, 3529 void *context, int vl, int mode, u64 data) 3530 { 3531 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3532 3533 return dd->send_egress_err_status_cnt[23]; 3534 } 3535 3536 static u64 access_tx_sdma6_disallowed_packet_err_cnt( 3537 const struct cntr_entry *entry, 3538 void *context, int vl, int mode, u64 data) 3539 { 3540 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3541 3542 return dd->send_egress_err_status_cnt[22]; 3543 } 3544 3545 static u64 access_tx_sdma5_disallowed_packet_err_cnt( 3546 const struct cntr_entry *entry, 3547 void *context, int vl, int mode, u64 data) 3548 { 3549 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3550 3551 return dd->send_egress_err_status_cnt[21]; 3552 } 3553 3554 static u64 access_tx_sdma4_disallowed_packet_err_cnt( 3555 const struct cntr_entry *entry, 3556 void *context, int vl, int mode, u64 data) 3557 { 3558 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3559 3560 return dd->send_egress_err_status_cnt[20]; 3561 } 3562 3563 static u64 access_tx_sdma3_disallowed_packet_err_cnt( 3564 const struct cntr_entry *entry, 3565 void *context, int vl, int mode, u64 data) 3566 { 3567 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3568 3569 return dd->send_egress_err_status_cnt[19]; 3570 } 3571 3572 static u64 access_tx_sdma2_disallowed_packet_err_cnt( 3573 const struct cntr_entry *entry, 3574 void *context, int vl, int mode, u64 data) 3575 { 3576 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3577 3578 return dd->send_egress_err_status_cnt[18]; 3579 } 3580 3581 static u64 access_tx_sdma1_disallowed_packet_err_cnt( 3582 const struct cntr_entry *entry, 3583 void *context, int vl, int mode, u64 data) 3584 { 3585 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3586 3587 return dd->send_egress_err_status_cnt[17]; 3588 } 3589 3590 static u64 access_tx_sdma0_disallowed_packet_err_cnt( 3591 const struct cntr_entry *entry, 3592 void *context, int vl, int mode, u64 data) 3593 { 3594 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3595 3596 return dd->send_egress_err_status_cnt[16]; 3597 } 3598 3599 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry, 3600 void *context, int vl, int mode, 3601 u64 data) 3602 { 3603 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3604 3605 return dd->send_egress_err_status_cnt[15]; 3606 } 3607 3608 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry, 3609 void *context, int vl, 3610 int mode, u64 data) 3611 { 3612 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3613 3614 return dd->send_egress_err_status_cnt[14]; 3615 } 3616 3617 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry, 3618 void *context, int vl, int mode, 3619 u64 data) 3620 { 3621 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3622 3623 return dd->send_egress_err_status_cnt[13]; 3624 } 3625 3626 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry, 3627 void *context, int vl, int mode, 3628 u64 data) 3629 { 3630 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3631 3632 return dd->send_egress_err_status_cnt[12]; 3633 } 3634 3635 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt( 3636 const struct cntr_entry *entry, 3637 void *context, int vl, int mode, u64 data) 3638 { 3639 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3640 3641 return dd->send_egress_err_status_cnt[11]; 3642 } 3643 3644 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry, 3645 void *context, int vl, int mode, 3646 u64 data) 3647 { 3648 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3649 3650 return dd->send_egress_err_status_cnt[10]; 3651 } 3652 3653 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry, 3654 void *context, int vl, int mode, 3655 u64 data) 3656 { 3657 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3658 3659 return dd->send_egress_err_status_cnt[9]; 3660 } 3661 3662 static u64 access_tx_sdma_launch_intf_parity_err_cnt( 3663 const struct cntr_entry *entry, 3664 void *context, int vl, int mode, u64 data) 3665 { 3666 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3667 3668 return dd->send_egress_err_status_cnt[8]; 3669 } 3670 3671 static u64 access_tx_pio_launch_intf_parity_err_cnt( 3672 const struct cntr_entry *entry, 3673 void *context, int vl, int mode, u64 data) 3674 { 3675 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3676 3677 return dd->send_egress_err_status_cnt[7]; 3678 } 3679 3680 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry, 3681 void *context, int vl, int mode, 3682 u64 data) 3683 { 3684 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3685 3686 return dd->send_egress_err_status_cnt[6]; 3687 } 3688 3689 static u64 access_tx_incorrect_link_state_err_cnt( 3690 const struct cntr_entry *entry, 3691 void *context, int vl, int mode, u64 data) 3692 { 3693 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3694 3695 return dd->send_egress_err_status_cnt[5]; 3696 } 3697 3698 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry, 3699 void *context, int vl, int mode, 3700 u64 data) 3701 { 3702 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3703 3704 return dd->send_egress_err_status_cnt[4]; 3705 } 3706 3707 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt( 3708 const struct cntr_entry *entry, 3709 void *context, int vl, int mode, u64 data) 3710 { 3711 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3712 3713 return dd->send_egress_err_status_cnt[3]; 3714 } 3715 3716 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry, 3717 void *context, int vl, int mode, 3718 u64 data) 3719 { 3720 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3721 3722 return dd->send_egress_err_status_cnt[2]; 3723 } 3724 3725 static u64 access_tx_pkt_integrity_mem_unc_err_cnt( 3726 const struct cntr_entry *entry, 3727 void *context, int vl, int mode, u64 data) 3728 { 3729 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3730 3731 return dd->send_egress_err_status_cnt[1]; 3732 } 3733 3734 static u64 access_tx_pkt_integrity_mem_cor_err_cnt( 3735 const struct cntr_entry *entry, 3736 void *context, int vl, int mode, u64 data) 3737 { 3738 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3739 3740 return dd->send_egress_err_status_cnt[0]; 3741 } 3742 3743 /* 3744 * Software counters corresponding to each of the 3745 * error status bits within SendErrStatus 3746 */ 3747 static u64 access_send_csr_write_bad_addr_err_cnt( 3748 const struct cntr_entry *entry, 3749 void *context, int vl, int mode, u64 data) 3750 { 3751 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3752 3753 return dd->send_err_status_cnt[2]; 3754 } 3755 3756 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry, 3757 void *context, int vl, 3758 int mode, u64 data) 3759 { 3760 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3761 3762 return dd->send_err_status_cnt[1]; 3763 } 3764 3765 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry, 3766 void *context, int vl, int mode, 3767 u64 data) 3768 { 3769 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3770 3771 return dd->send_err_status_cnt[0]; 3772 } 3773 3774 /* 3775 * Software counters corresponding to each of the 3776 * error status bits within SendCtxtErrStatus 3777 */ 3778 static u64 access_pio_write_out_of_bounds_err_cnt( 3779 const struct cntr_entry *entry, 3780 void *context, int vl, int mode, u64 data) 3781 { 3782 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3783 3784 return dd->sw_ctxt_err_status_cnt[4]; 3785 } 3786 3787 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry, 3788 void *context, int vl, int mode, 3789 u64 data) 3790 { 3791 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3792 3793 return dd->sw_ctxt_err_status_cnt[3]; 3794 } 3795 3796 static u64 access_pio_write_crosses_boundary_err_cnt( 3797 const struct cntr_entry *entry, 3798 void *context, int vl, int mode, u64 data) 3799 { 3800 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3801 3802 return dd->sw_ctxt_err_status_cnt[2]; 3803 } 3804 3805 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry, 3806 void *context, int vl, 3807 int mode, u64 data) 3808 { 3809 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3810 3811 return dd->sw_ctxt_err_status_cnt[1]; 3812 } 3813 3814 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry, 3815 void *context, int vl, int mode, 3816 u64 data) 3817 { 3818 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3819 3820 return dd->sw_ctxt_err_status_cnt[0]; 3821 } 3822 3823 /* 3824 * Software counters corresponding to each of the 3825 * error status bits within SendDmaEngErrStatus 3826 */ 3827 static u64 access_sdma_header_request_fifo_cor_err_cnt( 3828 const struct cntr_entry *entry, 3829 void *context, int vl, int mode, u64 data) 3830 { 3831 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3832 3833 return dd->sw_send_dma_eng_err_status_cnt[23]; 3834 } 3835 3836 static u64 access_sdma_header_storage_cor_err_cnt( 3837 const struct cntr_entry *entry, 3838 void *context, int vl, int mode, u64 data) 3839 { 3840 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3841 3842 return dd->sw_send_dma_eng_err_status_cnt[22]; 3843 } 3844 3845 static u64 access_sdma_packet_tracking_cor_err_cnt( 3846 const struct cntr_entry *entry, 3847 void *context, int vl, int mode, u64 data) 3848 { 3849 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3850 3851 return dd->sw_send_dma_eng_err_status_cnt[21]; 3852 } 3853 3854 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry, 3855 void *context, int vl, int mode, 3856 u64 data) 3857 { 3858 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3859 3860 return dd->sw_send_dma_eng_err_status_cnt[20]; 3861 } 3862 3863 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry, 3864 void *context, int vl, int mode, 3865 u64 data) 3866 { 3867 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3868 3869 return dd->sw_send_dma_eng_err_status_cnt[19]; 3870 } 3871 3872 static u64 access_sdma_header_request_fifo_unc_err_cnt( 3873 const struct cntr_entry *entry, 3874 void *context, int vl, int mode, u64 data) 3875 { 3876 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3877 3878 return dd->sw_send_dma_eng_err_status_cnt[18]; 3879 } 3880 3881 static u64 access_sdma_header_storage_unc_err_cnt( 3882 const struct cntr_entry *entry, 3883 void *context, int vl, int mode, u64 data) 3884 { 3885 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3886 3887 return dd->sw_send_dma_eng_err_status_cnt[17]; 3888 } 3889 3890 static u64 access_sdma_packet_tracking_unc_err_cnt( 3891 const struct cntr_entry *entry, 3892 void *context, int vl, int mode, u64 data) 3893 { 3894 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3895 3896 return dd->sw_send_dma_eng_err_status_cnt[16]; 3897 } 3898 3899 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry, 3900 void *context, int vl, int mode, 3901 u64 data) 3902 { 3903 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3904 3905 return dd->sw_send_dma_eng_err_status_cnt[15]; 3906 } 3907 3908 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry, 3909 void *context, int vl, int mode, 3910 u64 data) 3911 { 3912 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3913 3914 return dd->sw_send_dma_eng_err_status_cnt[14]; 3915 } 3916 3917 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry, 3918 void *context, int vl, int mode, 3919 u64 data) 3920 { 3921 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3922 3923 return dd->sw_send_dma_eng_err_status_cnt[13]; 3924 } 3925 3926 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry, 3927 void *context, int vl, int mode, 3928 u64 data) 3929 { 3930 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3931 3932 return dd->sw_send_dma_eng_err_status_cnt[12]; 3933 } 3934 3935 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry, 3936 void *context, int vl, int mode, 3937 u64 data) 3938 { 3939 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3940 3941 return dd->sw_send_dma_eng_err_status_cnt[11]; 3942 } 3943 3944 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry, 3945 void *context, int vl, int mode, 3946 u64 data) 3947 { 3948 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3949 3950 return dd->sw_send_dma_eng_err_status_cnt[10]; 3951 } 3952 3953 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry, 3954 void *context, int vl, int mode, 3955 u64 data) 3956 { 3957 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3958 3959 return dd->sw_send_dma_eng_err_status_cnt[9]; 3960 } 3961 3962 static u64 access_sdma_packet_desc_overflow_err_cnt( 3963 const struct cntr_entry *entry, 3964 void *context, int vl, int mode, u64 data) 3965 { 3966 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3967 3968 return dd->sw_send_dma_eng_err_status_cnt[8]; 3969 } 3970 3971 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry, 3972 void *context, int vl, 3973 int mode, u64 data) 3974 { 3975 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3976 3977 return dd->sw_send_dma_eng_err_status_cnt[7]; 3978 } 3979 3980 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry, 3981 void *context, int vl, int mode, u64 data) 3982 { 3983 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3984 3985 return dd->sw_send_dma_eng_err_status_cnt[6]; 3986 } 3987 3988 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry, 3989 void *context, int vl, int mode, 3990 u64 data) 3991 { 3992 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 3993 3994 return dd->sw_send_dma_eng_err_status_cnt[5]; 3995 } 3996 3997 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry, 3998 void *context, int vl, int mode, 3999 u64 data) 4000 { 4001 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4002 4003 return dd->sw_send_dma_eng_err_status_cnt[4]; 4004 } 4005 4006 static u64 access_sdma_tail_out_of_bounds_err_cnt( 4007 const struct cntr_entry *entry, 4008 void *context, int vl, int mode, u64 data) 4009 { 4010 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4011 4012 return dd->sw_send_dma_eng_err_status_cnt[3]; 4013 } 4014 4015 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry, 4016 void *context, int vl, int mode, 4017 u64 data) 4018 { 4019 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4020 4021 return dd->sw_send_dma_eng_err_status_cnt[2]; 4022 } 4023 4024 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry, 4025 void *context, int vl, int mode, 4026 u64 data) 4027 { 4028 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4029 4030 return dd->sw_send_dma_eng_err_status_cnt[1]; 4031 } 4032 4033 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry, 4034 void *context, int vl, int mode, 4035 u64 data) 4036 { 4037 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4038 4039 return dd->sw_send_dma_eng_err_status_cnt[0]; 4040 } 4041 4042 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry, 4043 void *context, int vl, int mode, 4044 u64 data) 4045 { 4046 struct hfi1_devdata *dd = (struct hfi1_devdata *)context; 4047 4048 u64 val = 0; 4049 u64 csr = entry->csr; 4050 4051 val = read_write_csr(dd, csr, mode, data); 4052 if (mode == CNTR_MODE_R) { 4053 val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ? 4054 CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors; 4055 } else if (mode == CNTR_MODE_W) { 4056 dd->sw_rcv_bypass_packet_errors = 0; 4057 } else { 4058 dd_dev_err(dd, "Invalid cntr register access mode"); 4059 return 0; 4060 } 4061 return val; 4062 } 4063 4064 #define def_access_sw_cpu(cntr) \ 4065 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry, \ 4066 void *context, int vl, int mode, u64 data) \ 4067 { \ 4068 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4069 return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr, \ 4070 ppd->ibport_data.rvp.cntr, vl, \ 4071 mode, data); \ 4072 } 4073 4074 def_access_sw_cpu(rc_acks); 4075 def_access_sw_cpu(rc_qacks); 4076 def_access_sw_cpu(rc_delayed_comp); 4077 4078 #define def_access_ibp_counter(cntr) \ 4079 static u64 access_ibp_##cntr(const struct cntr_entry *entry, \ 4080 void *context, int vl, int mode, u64 data) \ 4081 { \ 4082 struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context; \ 4083 \ 4084 if (vl != CNTR_INVALID_VL) \ 4085 return 0; \ 4086 \ 4087 return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr, \ 4088 mode, data); \ 4089 } 4090 4091 def_access_ibp_counter(loop_pkts); 4092 def_access_ibp_counter(rc_resends); 4093 def_access_ibp_counter(rnr_naks); 4094 def_access_ibp_counter(other_naks); 4095 def_access_ibp_counter(rc_timeouts); 4096 def_access_ibp_counter(pkt_drops); 4097 def_access_ibp_counter(dmawait); 4098 def_access_ibp_counter(rc_seqnak); 4099 def_access_ibp_counter(rc_dupreq); 4100 def_access_ibp_counter(rdma_seq); 4101 def_access_ibp_counter(unaligned); 4102 def_access_ibp_counter(seq_naks); 4103 4104 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = { 4105 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH), 4106 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT, 4107 CNTR_NORMAL), 4108 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT, 4109 CNTR_NORMAL), 4110 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs, 4111 RCV_TID_FLOW_GEN_MISMATCH_CNT, 4112 CNTR_NORMAL), 4113 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL, 4114 CNTR_NORMAL), 4115 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs, 4116 RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL), 4117 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt, 4118 CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL), 4119 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT, 4120 CNTR_NORMAL), 4121 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT, 4122 CNTR_NORMAL), 4123 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT, 4124 CNTR_NORMAL), 4125 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT, 4126 CNTR_NORMAL), 4127 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT, 4128 CNTR_NORMAL), 4129 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT, 4130 CNTR_NORMAL), 4131 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt, 4132 CCE_RCV_URGENT_INT_CNT, CNTR_NORMAL), 4133 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt, 4134 CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL), 4135 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT, 4136 CNTR_SYNTH), 4137 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH, 4138 access_dc_rcv_err_cnt), 4139 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT, 4140 CNTR_SYNTH), 4141 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT, 4142 CNTR_SYNTH), 4143 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT, 4144 CNTR_SYNTH), 4145 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts, 4146 DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH), 4147 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts, 4148 DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT, 4149 CNTR_SYNTH), 4150 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr, 4151 DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH), 4152 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT, 4153 CNTR_SYNTH), 4154 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT, 4155 CNTR_SYNTH), 4156 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT, 4157 CNTR_SYNTH), 4158 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT, 4159 CNTR_SYNTH), 4160 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT, 4161 CNTR_SYNTH), 4162 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT, 4163 CNTR_SYNTH), 4164 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT, 4165 CNTR_SYNTH), 4166 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT, 4167 CNTR_SYNTH | CNTR_VL), 4168 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT, 4169 CNTR_SYNTH | CNTR_VL), 4170 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH), 4171 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT, 4172 CNTR_SYNTH | CNTR_VL), 4173 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH), 4174 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT, 4175 CNTR_SYNTH | CNTR_VL), 4176 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT, 4177 CNTR_SYNTH), 4178 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT, 4179 CNTR_SYNTH | CNTR_VL), 4180 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT, 4181 CNTR_SYNTH), 4182 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT, 4183 CNTR_SYNTH | CNTR_VL), 4184 [C_DC_TOTAL_CRC] = 4185 DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR, 4186 CNTR_SYNTH), 4187 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0, 4188 CNTR_SYNTH), 4189 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1, 4190 CNTR_SYNTH), 4191 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2, 4192 CNTR_SYNTH), 4193 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3, 4194 CNTR_SYNTH), 4195 [C_DC_CRC_MULT_LN] = 4196 DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN, 4197 CNTR_SYNTH), 4198 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT, 4199 CNTR_SYNTH), 4200 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT, 4201 CNTR_SYNTH), 4202 [C_DC_SEQ_CRC_CNT] = 4203 DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT, 4204 CNTR_SYNTH), 4205 [C_DC_ESC0_ONLY_CNT] = 4206 DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT, 4207 CNTR_SYNTH), 4208 [C_DC_ESC0_PLUS1_CNT] = 4209 DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT, 4210 CNTR_SYNTH), 4211 [C_DC_ESC0_PLUS2_CNT] = 4212 DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT, 4213 CNTR_SYNTH), 4214 [C_DC_REINIT_FROM_PEER_CNT] = 4215 DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 4216 CNTR_SYNTH), 4217 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT, 4218 CNTR_SYNTH), 4219 [C_DC_MISC_FLG_CNT] = 4220 DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT, 4221 CNTR_SYNTH), 4222 [C_DC_PRF_GOOD_LTP_CNT] = 4223 DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH), 4224 [C_DC_PRF_ACCEPTED_LTP_CNT] = 4225 DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT, 4226 CNTR_SYNTH), 4227 [C_DC_PRF_RX_FLIT_CNT] = 4228 DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH), 4229 [C_DC_PRF_TX_FLIT_CNT] = 4230 DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH), 4231 [C_DC_PRF_CLK_CNTR] = 4232 DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH), 4233 [C_DC_PG_DBG_FLIT_CRDTS_CNT] = 4234 DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH), 4235 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] = 4236 DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT, 4237 CNTR_SYNTH), 4238 [C_DC_PG_STS_TX_SBE_CNT] = 4239 DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH), 4240 [C_DC_PG_STS_TX_MBE_CNT] = 4241 DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT, 4242 CNTR_SYNTH), 4243 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL, 4244 access_sw_cpu_intr), 4245 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL, 4246 access_sw_cpu_rcv_limit), 4247 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL, 4248 access_sw_vtx_wait), 4249 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL, 4250 access_sw_pio_wait), 4251 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL, 4252 access_sw_pio_drain), 4253 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL, 4254 access_sw_kmem_wait), 4255 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL, 4256 access_sw_send_schedule), 4257 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn", 4258 SEND_DMA_DESC_FETCHED_CNT, 0, 4259 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4260 dev_access_u32_csr), 4261 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0, 4262 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4263 access_sde_int_cnt), 4264 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0, 4265 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4266 access_sde_err_cnt), 4267 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0, 4268 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4269 access_sde_idle_int_cnt), 4270 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0, 4271 CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA, 4272 access_sde_progress_int_cnt), 4273 /* MISC_ERR_STATUS */ 4274 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0, 4275 CNTR_NORMAL, 4276 access_misc_pll_lock_fail_err_cnt), 4277 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0, 4278 CNTR_NORMAL, 4279 access_misc_mbist_fail_err_cnt), 4280 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0, 4281 CNTR_NORMAL, 4282 access_misc_invalid_eep_cmd_err_cnt), 4283 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0, 4284 CNTR_NORMAL, 4285 access_misc_efuse_done_parity_err_cnt), 4286 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0, 4287 CNTR_NORMAL, 4288 access_misc_efuse_write_err_cnt), 4289 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0, 4290 0, CNTR_NORMAL, 4291 access_misc_efuse_read_bad_addr_err_cnt), 4292 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0, 4293 CNTR_NORMAL, 4294 access_misc_efuse_csr_parity_err_cnt), 4295 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0, 4296 CNTR_NORMAL, 4297 access_misc_fw_auth_failed_err_cnt), 4298 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0, 4299 CNTR_NORMAL, 4300 access_misc_key_mismatch_err_cnt), 4301 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0, 4302 CNTR_NORMAL, 4303 access_misc_sbus_write_failed_err_cnt), 4304 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0, 4305 CNTR_NORMAL, 4306 access_misc_csr_write_bad_addr_err_cnt), 4307 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0, 4308 CNTR_NORMAL, 4309 access_misc_csr_read_bad_addr_err_cnt), 4310 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0, 4311 CNTR_NORMAL, 4312 access_misc_csr_parity_err_cnt), 4313 /* CceErrStatus */ 4314 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0, 4315 CNTR_NORMAL, 4316 access_sw_cce_err_status_aggregated_cnt), 4317 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0, 4318 CNTR_NORMAL, 4319 access_cce_msix_csr_parity_err_cnt), 4320 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0, 4321 CNTR_NORMAL, 4322 access_cce_int_map_unc_err_cnt), 4323 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0, 4324 CNTR_NORMAL, 4325 access_cce_int_map_cor_err_cnt), 4326 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0, 4327 CNTR_NORMAL, 4328 access_cce_msix_table_unc_err_cnt), 4329 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0, 4330 CNTR_NORMAL, 4331 access_cce_msix_table_cor_err_cnt), 4332 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0, 4333 0, CNTR_NORMAL, 4334 access_cce_rxdma_conv_fifo_parity_err_cnt), 4335 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0, 4336 0, CNTR_NORMAL, 4337 access_cce_rcpl_async_fifo_parity_err_cnt), 4338 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0, 4339 CNTR_NORMAL, 4340 access_cce_seg_write_bad_addr_err_cnt), 4341 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0, 4342 CNTR_NORMAL, 4343 access_cce_seg_read_bad_addr_err_cnt), 4344 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0, 4345 CNTR_NORMAL, 4346 access_la_triggered_cnt), 4347 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0, 4348 CNTR_NORMAL, 4349 access_cce_trgt_cpl_timeout_err_cnt), 4350 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0, 4351 CNTR_NORMAL, 4352 access_pcic_receive_parity_err_cnt), 4353 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0, 4354 CNTR_NORMAL, 4355 access_pcic_transmit_back_parity_err_cnt), 4356 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0, 4357 0, CNTR_NORMAL, 4358 access_pcic_transmit_front_parity_err_cnt), 4359 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0, 4360 CNTR_NORMAL, 4361 access_pcic_cpl_dat_q_unc_err_cnt), 4362 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0, 4363 CNTR_NORMAL, 4364 access_pcic_cpl_hd_q_unc_err_cnt), 4365 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0, 4366 CNTR_NORMAL, 4367 access_pcic_post_dat_q_unc_err_cnt), 4368 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0, 4369 CNTR_NORMAL, 4370 access_pcic_post_hd_q_unc_err_cnt), 4371 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0, 4372 CNTR_NORMAL, 4373 access_pcic_retry_sot_mem_unc_err_cnt), 4374 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0, 4375 CNTR_NORMAL, 4376 access_pcic_retry_mem_unc_err), 4377 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0, 4378 CNTR_NORMAL, 4379 access_pcic_n_post_dat_q_parity_err_cnt), 4380 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0, 4381 CNTR_NORMAL, 4382 access_pcic_n_post_h_q_parity_err_cnt), 4383 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0, 4384 CNTR_NORMAL, 4385 access_pcic_cpl_dat_q_cor_err_cnt), 4386 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0, 4387 CNTR_NORMAL, 4388 access_pcic_cpl_hd_q_cor_err_cnt), 4389 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0, 4390 CNTR_NORMAL, 4391 access_pcic_post_dat_q_cor_err_cnt), 4392 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0, 4393 CNTR_NORMAL, 4394 access_pcic_post_hd_q_cor_err_cnt), 4395 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0, 4396 CNTR_NORMAL, 4397 access_pcic_retry_sot_mem_cor_err_cnt), 4398 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0, 4399 CNTR_NORMAL, 4400 access_pcic_retry_mem_cor_err_cnt), 4401 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM( 4402 "CceCli1AsyncFifoDbgParityError", 0, 0, 4403 CNTR_NORMAL, 4404 access_cce_cli1_async_fifo_dbg_parity_err_cnt), 4405 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM( 4406 "CceCli1AsyncFifoRxdmaParityError", 0, 0, 4407 CNTR_NORMAL, 4408 access_cce_cli1_async_fifo_rxdma_parity_err_cnt 4409 ), 4410 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM( 4411 "CceCli1AsyncFifoSdmaHdParityErr", 0, 0, 4412 CNTR_NORMAL, 4413 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt), 4414 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM( 4415 "CceCli1AsyncFifoPioCrdtParityErr", 0, 0, 4416 CNTR_NORMAL, 4417 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt), 4418 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0, 4419 0, CNTR_NORMAL, 4420 access_cce_cli2_async_fifo_parity_err_cnt), 4421 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0, 4422 CNTR_NORMAL, 4423 access_cce_csr_cfg_bus_parity_err_cnt), 4424 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0, 4425 0, CNTR_NORMAL, 4426 access_cce_cli0_async_fifo_parity_err_cnt), 4427 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0, 4428 CNTR_NORMAL, 4429 access_cce_rspd_data_parity_err_cnt), 4430 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0, 4431 CNTR_NORMAL, 4432 access_cce_trgt_access_err_cnt), 4433 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0, 4434 0, CNTR_NORMAL, 4435 access_cce_trgt_async_fifo_parity_err_cnt), 4436 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0, 4437 CNTR_NORMAL, 4438 access_cce_csr_write_bad_addr_err_cnt), 4439 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0, 4440 CNTR_NORMAL, 4441 access_cce_csr_read_bad_addr_err_cnt), 4442 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0, 4443 CNTR_NORMAL, 4444 access_ccs_csr_parity_err_cnt), 4445 4446 /* RcvErrStatus */ 4447 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0, 4448 CNTR_NORMAL, 4449 access_rx_csr_parity_err_cnt), 4450 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0, 4451 CNTR_NORMAL, 4452 access_rx_csr_write_bad_addr_err_cnt), 4453 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0, 4454 CNTR_NORMAL, 4455 access_rx_csr_read_bad_addr_err_cnt), 4456 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0, 4457 CNTR_NORMAL, 4458 access_rx_dma_csr_unc_err_cnt), 4459 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0, 4460 CNTR_NORMAL, 4461 access_rx_dma_dq_fsm_encoding_err_cnt), 4462 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0, 4463 CNTR_NORMAL, 4464 access_rx_dma_eq_fsm_encoding_err_cnt), 4465 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0, 4466 CNTR_NORMAL, 4467 access_rx_dma_csr_parity_err_cnt), 4468 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0, 4469 CNTR_NORMAL, 4470 access_rx_rbuf_data_cor_err_cnt), 4471 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0, 4472 CNTR_NORMAL, 4473 access_rx_rbuf_data_unc_err_cnt), 4474 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0, 4475 CNTR_NORMAL, 4476 access_rx_dma_data_fifo_rd_cor_err_cnt), 4477 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0, 4478 CNTR_NORMAL, 4479 access_rx_dma_data_fifo_rd_unc_err_cnt), 4480 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0, 4481 CNTR_NORMAL, 4482 access_rx_dma_hdr_fifo_rd_cor_err_cnt), 4483 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0, 4484 CNTR_NORMAL, 4485 access_rx_dma_hdr_fifo_rd_unc_err_cnt), 4486 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0, 4487 CNTR_NORMAL, 4488 access_rx_rbuf_desc_part2_cor_err_cnt), 4489 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0, 4490 CNTR_NORMAL, 4491 access_rx_rbuf_desc_part2_unc_err_cnt), 4492 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0, 4493 CNTR_NORMAL, 4494 access_rx_rbuf_desc_part1_cor_err_cnt), 4495 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0, 4496 CNTR_NORMAL, 4497 access_rx_rbuf_desc_part1_unc_err_cnt), 4498 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0, 4499 CNTR_NORMAL, 4500 access_rx_hq_intr_fsm_err_cnt), 4501 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0, 4502 CNTR_NORMAL, 4503 access_rx_hq_intr_csr_parity_err_cnt), 4504 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0, 4505 CNTR_NORMAL, 4506 access_rx_lookup_csr_parity_err_cnt), 4507 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0, 4508 CNTR_NORMAL, 4509 access_rx_lookup_rcv_array_cor_err_cnt), 4510 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0, 4511 CNTR_NORMAL, 4512 access_rx_lookup_rcv_array_unc_err_cnt), 4513 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0, 4514 0, CNTR_NORMAL, 4515 access_rx_lookup_des_part2_parity_err_cnt), 4516 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0, 4517 0, CNTR_NORMAL, 4518 access_rx_lookup_des_part1_unc_cor_err_cnt), 4519 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0, 4520 CNTR_NORMAL, 4521 access_rx_lookup_des_part1_unc_err_cnt), 4522 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0, 4523 CNTR_NORMAL, 4524 access_rx_rbuf_next_free_buf_cor_err_cnt), 4525 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0, 4526 CNTR_NORMAL, 4527 access_rx_rbuf_next_free_buf_unc_err_cnt), 4528 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM( 4529 "RxRbufFlInitWrAddrParityErr", 0, 0, 4530 CNTR_NORMAL, 4531 access_rbuf_fl_init_wr_addr_parity_err_cnt), 4532 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0, 4533 0, CNTR_NORMAL, 4534 access_rx_rbuf_fl_initdone_parity_err_cnt), 4535 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0, 4536 0, CNTR_NORMAL, 4537 access_rx_rbuf_fl_write_addr_parity_err_cnt), 4538 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0, 4539 CNTR_NORMAL, 4540 access_rx_rbuf_fl_rd_addr_parity_err_cnt), 4541 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0, 4542 CNTR_NORMAL, 4543 access_rx_rbuf_empty_err_cnt), 4544 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0, 4545 CNTR_NORMAL, 4546 access_rx_rbuf_full_err_cnt), 4547 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0, 4548 CNTR_NORMAL, 4549 access_rbuf_bad_lookup_err_cnt), 4550 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0, 4551 CNTR_NORMAL, 4552 access_rbuf_ctx_id_parity_err_cnt), 4553 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0, 4554 CNTR_NORMAL, 4555 access_rbuf_csr_qeopdw_parity_err_cnt), 4556 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM( 4557 "RxRbufCsrQNumOfPktParityErr", 0, 0, 4558 CNTR_NORMAL, 4559 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt), 4560 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM( 4561 "RxRbufCsrQTlPtrParityErr", 0, 0, 4562 CNTR_NORMAL, 4563 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt), 4564 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0, 4565 0, CNTR_NORMAL, 4566 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt), 4567 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0, 4568 0, CNTR_NORMAL, 4569 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt), 4570 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr", 4571 0, 0, CNTR_NORMAL, 4572 access_rx_rbuf_csr_q_next_buf_parity_err_cnt), 4573 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0, 4574 0, CNTR_NORMAL, 4575 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt), 4576 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM( 4577 "RxRbufCsrQHeadBufNumParityErr", 0, 0, 4578 CNTR_NORMAL, 4579 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt), 4580 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0, 4581 0, CNTR_NORMAL, 4582 access_rx_rbuf_block_list_read_cor_err_cnt), 4583 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0, 4584 0, CNTR_NORMAL, 4585 access_rx_rbuf_block_list_read_unc_err_cnt), 4586 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0, 4587 CNTR_NORMAL, 4588 access_rx_rbuf_lookup_des_cor_err_cnt), 4589 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0, 4590 CNTR_NORMAL, 4591 access_rx_rbuf_lookup_des_unc_err_cnt), 4592 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM( 4593 "RxRbufLookupDesRegUncCorErr", 0, 0, 4594 CNTR_NORMAL, 4595 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt), 4596 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0, 4597 CNTR_NORMAL, 4598 access_rx_rbuf_lookup_des_reg_unc_err_cnt), 4599 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0, 4600 CNTR_NORMAL, 4601 access_rx_rbuf_free_list_cor_err_cnt), 4602 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0, 4603 CNTR_NORMAL, 4604 access_rx_rbuf_free_list_unc_err_cnt), 4605 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0, 4606 CNTR_NORMAL, 4607 access_rx_rcv_fsm_encoding_err_cnt), 4608 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0, 4609 CNTR_NORMAL, 4610 access_rx_dma_flag_cor_err_cnt), 4611 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0, 4612 CNTR_NORMAL, 4613 access_rx_dma_flag_unc_err_cnt), 4614 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0, 4615 CNTR_NORMAL, 4616 access_rx_dc_sop_eop_parity_err_cnt), 4617 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0, 4618 CNTR_NORMAL, 4619 access_rx_rcv_csr_parity_err_cnt), 4620 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0, 4621 CNTR_NORMAL, 4622 access_rx_rcv_qp_map_table_cor_err_cnt), 4623 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0, 4624 CNTR_NORMAL, 4625 access_rx_rcv_qp_map_table_unc_err_cnt), 4626 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0, 4627 CNTR_NORMAL, 4628 access_rx_rcv_data_cor_err_cnt), 4629 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0, 4630 CNTR_NORMAL, 4631 access_rx_rcv_data_unc_err_cnt), 4632 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0, 4633 CNTR_NORMAL, 4634 access_rx_rcv_hdr_cor_err_cnt), 4635 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0, 4636 CNTR_NORMAL, 4637 access_rx_rcv_hdr_unc_err_cnt), 4638 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0, 4639 CNTR_NORMAL, 4640 access_rx_dc_intf_parity_err_cnt), 4641 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0, 4642 CNTR_NORMAL, 4643 access_rx_dma_csr_cor_err_cnt), 4644 /* SendPioErrStatus */ 4645 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0, 4646 CNTR_NORMAL, 4647 access_pio_pec_sop_head_parity_err_cnt), 4648 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0, 4649 CNTR_NORMAL, 4650 access_pio_pcc_sop_head_parity_err_cnt), 4651 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr", 4652 0, 0, CNTR_NORMAL, 4653 access_pio_last_returned_cnt_parity_err_cnt), 4654 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0, 4655 0, CNTR_NORMAL, 4656 access_pio_current_free_cnt_parity_err_cnt), 4657 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0, 4658 CNTR_NORMAL, 4659 access_pio_reserved_31_err_cnt), 4660 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0, 4661 CNTR_NORMAL, 4662 access_pio_reserved_30_err_cnt), 4663 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0, 4664 CNTR_NORMAL, 4665 access_pio_ppmc_sop_len_err_cnt), 4666 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0, 4667 CNTR_NORMAL, 4668 access_pio_ppmc_bqc_mem_parity_err_cnt), 4669 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0, 4670 CNTR_NORMAL, 4671 access_pio_vl_fifo_parity_err_cnt), 4672 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0, 4673 CNTR_NORMAL, 4674 access_pio_vlf_sop_parity_err_cnt), 4675 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0, 4676 CNTR_NORMAL, 4677 access_pio_vlf_v1_len_parity_err_cnt), 4678 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0, 4679 CNTR_NORMAL, 4680 access_pio_block_qw_count_parity_err_cnt), 4681 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0, 4682 CNTR_NORMAL, 4683 access_pio_write_qw_valid_parity_err_cnt), 4684 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0, 4685 CNTR_NORMAL, 4686 access_pio_state_machine_err_cnt), 4687 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0, 4688 CNTR_NORMAL, 4689 access_pio_write_data_parity_err_cnt), 4690 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0, 4691 CNTR_NORMAL, 4692 access_pio_host_addr_mem_cor_err_cnt), 4693 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0, 4694 CNTR_NORMAL, 4695 access_pio_host_addr_mem_unc_err_cnt), 4696 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0, 4697 CNTR_NORMAL, 4698 access_pio_pkt_evict_sm_or_arb_sm_err_cnt), 4699 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0, 4700 CNTR_NORMAL, 4701 access_pio_init_sm_in_err_cnt), 4702 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0, 4703 CNTR_NORMAL, 4704 access_pio_ppmc_pbl_fifo_err_cnt), 4705 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0, 4706 0, CNTR_NORMAL, 4707 access_pio_credit_ret_fifo_parity_err_cnt), 4708 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0, 4709 CNTR_NORMAL, 4710 access_pio_v1_len_mem_bank1_cor_err_cnt), 4711 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0, 4712 CNTR_NORMAL, 4713 access_pio_v1_len_mem_bank0_cor_err_cnt), 4714 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0, 4715 CNTR_NORMAL, 4716 access_pio_v1_len_mem_bank1_unc_err_cnt), 4717 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0, 4718 CNTR_NORMAL, 4719 access_pio_v1_len_mem_bank0_unc_err_cnt), 4720 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0, 4721 CNTR_NORMAL, 4722 access_pio_sm_pkt_reset_parity_err_cnt), 4723 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0, 4724 CNTR_NORMAL, 4725 access_pio_pkt_evict_fifo_parity_err_cnt), 4726 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM( 4727 "PioSbrdctrlCrrelFifoParityErr", 0, 0, 4728 CNTR_NORMAL, 4729 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt), 4730 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0, 4731 CNTR_NORMAL, 4732 access_pio_sbrdctl_crrel_parity_err_cnt), 4733 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0, 4734 CNTR_NORMAL, 4735 access_pio_pec_fifo_parity_err_cnt), 4736 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0, 4737 CNTR_NORMAL, 4738 access_pio_pcc_fifo_parity_err_cnt), 4739 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0, 4740 CNTR_NORMAL, 4741 access_pio_sb_mem_fifo1_err_cnt), 4742 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0, 4743 CNTR_NORMAL, 4744 access_pio_sb_mem_fifo0_err_cnt), 4745 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0, 4746 CNTR_NORMAL, 4747 access_pio_csr_parity_err_cnt), 4748 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0, 4749 CNTR_NORMAL, 4750 access_pio_write_addr_parity_err_cnt), 4751 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0, 4752 CNTR_NORMAL, 4753 access_pio_write_bad_ctxt_err_cnt), 4754 /* SendDmaErrStatus */ 4755 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0, 4756 0, CNTR_NORMAL, 4757 access_sdma_pcie_req_tracking_cor_err_cnt), 4758 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0, 4759 0, CNTR_NORMAL, 4760 access_sdma_pcie_req_tracking_unc_err_cnt), 4761 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0, 4762 CNTR_NORMAL, 4763 access_sdma_csr_parity_err_cnt), 4764 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0, 4765 CNTR_NORMAL, 4766 access_sdma_rpy_tag_err_cnt), 4767 /* SendEgressErrStatus */ 4768 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0, 4769 CNTR_NORMAL, 4770 access_tx_read_pio_memory_csr_unc_err_cnt), 4771 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0, 4772 0, CNTR_NORMAL, 4773 access_tx_read_sdma_memory_csr_err_cnt), 4774 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0, 4775 CNTR_NORMAL, 4776 access_tx_egress_fifo_cor_err_cnt), 4777 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0, 4778 CNTR_NORMAL, 4779 access_tx_read_pio_memory_cor_err_cnt), 4780 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0, 4781 CNTR_NORMAL, 4782 access_tx_read_sdma_memory_cor_err_cnt), 4783 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0, 4784 CNTR_NORMAL, 4785 access_tx_sb_hdr_cor_err_cnt), 4786 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0, 4787 CNTR_NORMAL, 4788 access_tx_credit_overrun_err_cnt), 4789 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0, 4790 CNTR_NORMAL, 4791 access_tx_launch_fifo8_cor_err_cnt), 4792 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0, 4793 CNTR_NORMAL, 4794 access_tx_launch_fifo7_cor_err_cnt), 4795 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0, 4796 CNTR_NORMAL, 4797 access_tx_launch_fifo6_cor_err_cnt), 4798 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0, 4799 CNTR_NORMAL, 4800 access_tx_launch_fifo5_cor_err_cnt), 4801 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0, 4802 CNTR_NORMAL, 4803 access_tx_launch_fifo4_cor_err_cnt), 4804 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0, 4805 CNTR_NORMAL, 4806 access_tx_launch_fifo3_cor_err_cnt), 4807 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0, 4808 CNTR_NORMAL, 4809 access_tx_launch_fifo2_cor_err_cnt), 4810 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0, 4811 CNTR_NORMAL, 4812 access_tx_launch_fifo1_cor_err_cnt), 4813 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0, 4814 CNTR_NORMAL, 4815 access_tx_launch_fifo0_cor_err_cnt), 4816 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0, 4817 CNTR_NORMAL, 4818 access_tx_credit_return_vl_err_cnt), 4819 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0, 4820 CNTR_NORMAL, 4821 access_tx_hcrc_insertion_err_cnt), 4822 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0, 4823 CNTR_NORMAL, 4824 access_tx_egress_fifo_unc_err_cnt), 4825 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0, 4826 CNTR_NORMAL, 4827 access_tx_read_pio_memory_unc_err_cnt), 4828 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0, 4829 CNTR_NORMAL, 4830 access_tx_read_sdma_memory_unc_err_cnt), 4831 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0, 4832 CNTR_NORMAL, 4833 access_tx_sb_hdr_unc_err_cnt), 4834 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0, 4835 CNTR_NORMAL, 4836 access_tx_credit_return_partiy_err_cnt), 4837 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr", 4838 0, 0, CNTR_NORMAL, 4839 access_tx_launch_fifo8_unc_or_parity_err_cnt), 4840 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr", 4841 0, 0, CNTR_NORMAL, 4842 access_tx_launch_fifo7_unc_or_parity_err_cnt), 4843 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr", 4844 0, 0, CNTR_NORMAL, 4845 access_tx_launch_fifo6_unc_or_parity_err_cnt), 4846 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr", 4847 0, 0, CNTR_NORMAL, 4848 access_tx_launch_fifo5_unc_or_parity_err_cnt), 4849 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr", 4850 0, 0, CNTR_NORMAL, 4851 access_tx_launch_fifo4_unc_or_parity_err_cnt), 4852 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr", 4853 0, 0, CNTR_NORMAL, 4854 access_tx_launch_fifo3_unc_or_parity_err_cnt), 4855 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr", 4856 0, 0, CNTR_NORMAL, 4857 access_tx_launch_fifo2_unc_or_parity_err_cnt), 4858 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr", 4859 0, 0, CNTR_NORMAL, 4860 access_tx_launch_fifo1_unc_or_parity_err_cnt), 4861 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr", 4862 0, 0, CNTR_NORMAL, 4863 access_tx_launch_fifo0_unc_or_parity_err_cnt), 4864 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr", 4865 0, 0, CNTR_NORMAL, 4866 access_tx_sdma15_disallowed_packet_err_cnt), 4867 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr", 4868 0, 0, CNTR_NORMAL, 4869 access_tx_sdma14_disallowed_packet_err_cnt), 4870 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr", 4871 0, 0, CNTR_NORMAL, 4872 access_tx_sdma13_disallowed_packet_err_cnt), 4873 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr", 4874 0, 0, CNTR_NORMAL, 4875 access_tx_sdma12_disallowed_packet_err_cnt), 4876 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr", 4877 0, 0, CNTR_NORMAL, 4878 access_tx_sdma11_disallowed_packet_err_cnt), 4879 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr", 4880 0, 0, CNTR_NORMAL, 4881 access_tx_sdma10_disallowed_packet_err_cnt), 4882 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr", 4883 0, 0, CNTR_NORMAL, 4884 access_tx_sdma9_disallowed_packet_err_cnt), 4885 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr", 4886 0, 0, CNTR_NORMAL, 4887 access_tx_sdma8_disallowed_packet_err_cnt), 4888 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr", 4889 0, 0, CNTR_NORMAL, 4890 access_tx_sdma7_disallowed_packet_err_cnt), 4891 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr", 4892 0, 0, CNTR_NORMAL, 4893 access_tx_sdma6_disallowed_packet_err_cnt), 4894 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr", 4895 0, 0, CNTR_NORMAL, 4896 access_tx_sdma5_disallowed_packet_err_cnt), 4897 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr", 4898 0, 0, CNTR_NORMAL, 4899 access_tx_sdma4_disallowed_packet_err_cnt), 4900 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr", 4901 0, 0, CNTR_NORMAL, 4902 access_tx_sdma3_disallowed_packet_err_cnt), 4903 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr", 4904 0, 0, CNTR_NORMAL, 4905 access_tx_sdma2_disallowed_packet_err_cnt), 4906 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr", 4907 0, 0, CNTR_NORMAL, 4908 access_tx_sdma1_disallowed_packet_err_cnt), 4909 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr", 4910 0, 0, CNTR_NORMAL, 4911 access_tx_sdma0_disallowed_packet_err_cnt), 4912 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0, 4913 CNTR_NORMAL, 4914 access_tx_config_parity_err_cnt), 4915 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0, 4916 CNTR_NORMAL, 4917 access_tx_sbrd_ctl_csr_parity_err_cnt), 4918 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0, 4919 CNTR_NORMAL, 4920 access_tx_launch_csr_parity_err_cnt), 4921 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0, 4922 CNTR_NORMAL, 4923 access_tx_illegal_vl_err_cnt), 4924 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM( 4925 "TxSbrdCtlStateMachineParityErr", 0, 0, 4926 CNTR_NORMAL, 4927 access_tx_sbrd_ctl_state_machine_parity_err_cnt), 4928 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0, 4929 CNTR_NORMAL, 4930 access_egress_reserved_10_err_cnt), 4931 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0, 4932 CNTR_NORMAL, 4933 access_egress_reserved_9_err_cnt), 4934 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr", 4935 0, 0, CNTR_NORMAL, 4936 access_tx_sdma_launch_intf_parity_err_cnt), 4937 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0, 4938 CNTR_NORMAL, 4939 access_tx_pio_launch_intf_parity_err_cnt), 4940 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0, 4941 CNTR_NORMAL, 4942 access_egress_reserved_6_err_cnt), 4943 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0, 4944 CNTR_NORMAL, 4945 access_tx_incorrect_link_state_err_cnt), 4946 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0, 4947 CNTR_NORMAL, 4948 access_tx_linkdown_err_cnt), 4949 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM( 4950 "EgressFifoUnderrunOrParityErr", 0, 0, 4951 CNTR_NORMAL, 4952 access_tx_egress_fifi_underrun_or_parity_err_cnt), 4953 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0, 4954 CNTR_NORMAL, 4955 access_egress_reserved_2_err_cnt), 4956 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0, 4957 CNTR_NORMAL, 4958 access_tx_pkt_integrity_mem_unc_err_cnt), 4959 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0, 4960 CNTR_NORMAL, 4961 access_tx_pkt_integrity_mem_cor_err_cnt), 4962 /* SendErrStatus */ 4963 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0, 4964 CNTR_NORMAL, 4965 access_send_csr_write_bad_addr_err_cnt), 4966 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0, 4967 CNTR_NORMAL, 4968 access_send_csr_read_bad_addr_err_cnt), 4969 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0, 4970 CNTR_NORMAL, 4971 access_send_csr_parity_cnt), 4972 /* SendCtxtErrStatus */ 4973 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0, 4974 CNTR_NORMAL, 4975 access_pio_write_out_of_bounds_err_cnt), 4976 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0, 4977 CNTR_NORMAL, 4978 access_pio_write_overflow_err_cnt), 4979 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr", 4980 0, 0, CNTR_NORMAL, 4981 access_pio_write_crosses_boundary_err_cnt), 4982 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0, 4983 CNTR_NORMAL, 4984 access_pio_disallowed_packet_err_cnt), 4985 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0, 4986 CNTR_NORMAL, 4987 access_pio_inconsistent_sop_err_cnt), 4988 /* SendDmaEngErrStatus */ 4989 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr", 4990 0, 0, CNTR_NORMAL, 4991 access_sdma_header_request_fifo_cor_err_cnt), 4992 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0, 4993 CNTR_NORMAL, 4994 access_sdma_header_storage_cor_err_cnt), 4995 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0, 4996 CNTR_NORMAL, 4997 access_sdma_packet_tracking_cor_err_cnt), 4998 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0, 4999 CNTR_NORMAL, 5000 access_sdma_assembly_cor_err_cnt), 5001 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0, 5002 CNTR_NORMAL, 5003 access_sdma_desc_table_cor_err_cnt), 5004 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr", 5005 0, 0, CNTR_NORMAL, 5006 access_sdma_header_request_fifo_unc_err_cnt), 5007 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0, 5008 CNTR_NORMAL, 5009 access_sdma_header_storage_unc_err_cnt), 5010 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0, 5011 CNTR_NORMAL, 5012 access_sdma_packet_tracking_unc_err_cnt), 5013 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0, 5014 CNTR_NORMAL, 5015 access_sdma_assembly_unc_err_cnt), 5016 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0, 5017 CNTR_NORMAL, 5018 access_sdma_desc_table_unc_err_cnt), 5019 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0, 5020 CNTR_NORMAL, 5021 access_sdma_timeout_err_cnt), 5022 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0, 5023 CNTR_NORMAL, 5024 access_sdma_header_length_err_cnt), 5025 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0, 5026 CNTR_NORMAL, 5027 access_sdma_header_address_err_cnt), 5028 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0, 5029 CNTR_NORMAL, 5030 access_sdma_header_select_err_cnt), 5031 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0, 5032 CNTR_NORMAL, 5033 access_sdma_reserved_9_err_cnt), 5034 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0, 5035 CNTR_NORMAL, 5036 access_sdma_packet_desc_overflow_err_cnt), 5037 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0, 5038 CNTR_NORMAL, 5039 access_sdma_length_mismatch_err_cnt), 5040 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0, 5041 CNTR_NORMAL, 5042 access_sdma_halt_err_cnt), 5043 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0, 5044 CNTR_NORMAL, 5045 access_sdma_mem_read_err_cnt), 5046 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0, 5047 CNTR_NORMAL, 5048 access_sdma_first_desc_err_cnt), 5049 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0, 5050 CNTR_NORMAL, 5051 access_sdma_tail_out_of_bounds_err_cnt), 5052 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0, 5053 CNTR_NORMAL, 5054 access_sdma_too_long_err_cnt), 5055 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0, 5056 CNTR_NORMAL, 5057 access_sdma_gen_mismatch_err_cnt), 5058 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0, 5059 CNTR_NORMAL, 5060 access_sdma_wrong_dw_err_cnt), 5061 }; 5062 5063 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = { 5064 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT, 5065 CNTR_NORMAL), 5066 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT, 5067 CNTR_NORMAL), 5068 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT, 5069 CNTR_NORMAL), 5070 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT, 5071 CNTR_NORMAL), 5072 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT, 5073 CNTR_NORMAL), 5074 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT, 5075 CNTR_NORMAL), 5076 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT, 5077 CNTR_NORMAL), 5078 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL), 5079 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL), 5080 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH), 5081 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT, 5082 CNTR_SYNTH | CNTR_VL), 5083 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT, 5084 CNTR_SYNTH | CNTR_VL), 5085 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT, 5086 CNTR_SYNTH | CNTR_VL), 5087 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL), 5088 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL), 5089 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5090 access_sw_link_dn_cnt), 5091 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5092 access_sw_link_up_cnt), 5093 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL, 5094 access_sw_unknown_frame_cnt), 5095 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT, 5096 access_sw_xmit_discards), 5097 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0, 5098 CNTR_SYNTH | CNTR_32BIT | CNTR_VL, 5099 access_sw_xmit_discards), 5100 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH, 5101 access_xmit_constraint_errs), 5102 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH, 5103 access_rcv_constraint_errs), 5104 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts), 5105 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends), 5106 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks), 5107 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks), 5108 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts), 5109 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops), 5110 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait), 5111 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak), 5112 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq), 5113 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq), 5114 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned), 5115 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks), 5116 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL, 5117 access_sw_cpu_rc_acks), 5118 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL, 5119 access_sw_cpu_rc_qacks), 5120 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL, 5121 access_sw_cpu_rc_delayed_comp), 5122 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1), 5123 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3), 5124 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5), 5125 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7), 5126 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9), 5127 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11), 5128 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13), 5129 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15), 5130 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17), 5131 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19), 5132 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21), 5133 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23), 5134 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25), 5135 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27), 5136 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29), 5137 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31), 5138 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33), 5139 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35), 5140 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37), 5141 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39), 5142 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41), 5143 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43), 5144 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45), 5145 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47), 5146 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49), 5147 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51), 5148 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53), 5149 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55), 5150 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57), 5151 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59), 5152 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61), 5153 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63), 5154 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65), 5155 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67), 5156 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69), 5157 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71), 5158 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73), 5159 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75), 5160 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77), 5161 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79), 5162 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81), 5163 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83), 5164 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85), 5165 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87), 5166 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89), 5167 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91), 5168 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93), 5169 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95), 5170 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97), 5171 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99), 5172 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101), 5173 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103), 5174 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105), 5175 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107), 5176 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109), 5177 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111), 5178 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113), 5179 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115), 5180 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117), 5181 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119), 5182 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121), 5183 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123), 5184 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125), 5185 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127), 5186 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129), 5187 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131), 5188 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133), 5189 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135), 5190 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137), 5191 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139), 5192 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141), 5193 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143), 5194 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145), 5195 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147), 5196 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149), 5197 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151), 5198 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153), 5199 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155), 5200 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157), 5201 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159), 5202 }; 5203 5204 /* ======================================================================== */ 5205 5206 /* return true if this is chip revision revision a */ 5207 int is_ax(struct hfi1_devdata *dd) 5208 { 5209 u8 chip_rev_minor = 5210 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5211 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5212 return (chip_rev_minor & 0xf0) == 0; 5213 } 5214 5215 /* return true if this is chip revision revision b */ 5216 int is_bx(struct hfi1_devdata *dd) 5217 { 5218 u8 chip_rev_minor = 5219 dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT 5220 & CCE_REVISION_CHIP_REV_MINOR_MASK; 5221 return (chip_rev_minor & 0xF0) == 0x10; 5222 } 5223 5224 /* 5225 * Append string s to buffer buf. Arguments curp and len are the current 5226 * position and remaining length, respectively. 5227 * 5228 * return 0 on success, 1 on out of room 5229 */ 5230 static int append_str(char *buf, char **curp, int *lenp, const char *s) 5231 { 5232 char *p = *curp; 5233 int len = *lenp; 5234 int result = 0; /* success */ 5235 char c; 5236 5237 /* add a comma, if first in the buffer */ 5238 if (p != buf) { 5239 if (len == 0) { 5240 result = 1; /* out of room */ 5241 goto done; 5242 } 5243 *p++ = ','; 5244 len--; 5245 } 5246 5247 /* copy the string */ 5248 while ((c = *s++) != 0) { 5249 if (len == 0) { 5250 result = 1; /* out of room */ 5251 goto done; 5252 } 5253 *p++ = c; 5254 len--; 5255 } 5256 5257 done: 5258 /* write return values */ 5259 *curp = p; 5260 *lenp = len; 5261 5262 return result; 5263 } 5264 5265 /* 5266 * Using the given flag table, print a comma separated string into 5267 * the buffer. End in '*' if the buffer is too short. 5268 */ 5269 static char *flag_string(char *buf, int buf_len, u64 flags, 5270 struct flag_table *table, int table_size) 5271 { 5272 char extra[32]; 5273 char *p = buf; 5274 int len = buf_len; 5275 int no_room = 0; 5276 int i; 5277 5278 /* make sure there is at least 2 so we can form "*" */ 5279 if (len < 2) 5280 return ""; 5281 5282 len--; /* leave room for a nul */ 5283 for (i = 0; i < table_size; i++) { 5284 if (flags & table[i].flag) { 5285 no_room = append_str(buf, &p, &len, table[i].str); 5286 if (no_room) 5287 break; 5288 flags &= ~table[i].flag; 5289 } 5290 } 5291 5292 /* any undocumented bits left? */ 5293 if (!no_room && flags) { 5294 snprintf(extra, sizeof(extra), "bits 0x%llx", flags); 5295 no_room = append_str(buf, &p, &len, extra); 5296 } 5297 5298 /* add * if ran out of room */ 5299 if (no_room) { 5300 /* may need to back up to add space for a '*' */ 5301 if (len == 0) 5302 --p; 5303 *p++ = '*'; 5304 } 5305 5306 /* add final nul - space already allocated above */ 5307 *p = 0; 5308 return buf; 5309 } 5310 5311 /* first 8 CCE error interrupt source names */ 5312 static const char * const cce_misc_names[] = { 5313 "CceErrInt", /* 0 */ 5314 "RxeErrInt", /* 1 */ 5315 "MiscErrInt", /* 2 */ 5316 "Reserved3", /* 3 */ 5317 "PioErrInt", /* 4 */ 5318 "SDmaErrInt", /* 5 */ 5319 "EgressErrInt", /* 6 */ 5320 "TxeErrInt" /* 7 */ 5321 }; 5322 5323 /* 5324 * Return the miscellaneous error interrupt name. 5325 */ 5326 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source) 5327 { 5328 if (source < ARRAY_SIZE(cce_misc_names)) 5329 strncpy(buf, cce_misc_names[source], bsize); 5330 else 5331 snprintf(buf, bsize, "Reserved%u", 5332 source + IS_GENERAL_ERR_START); 5333 5334 return buf; 5335 } 5336 5337 /* 5338 * Return the SDMA engine error interrupt name. 5339 */ 5340 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source) 5341 { 5342 snprintf(buf, bsize, "SDmaEngErrInt%u", source); 5343 return buf; 5344 } 5345 5346 /* 5347 * Return the send context error interrupt name. 5348 */ 5349 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source) 5350 { 5351 snprintf(buf, bsize, "SendCtxtErrInt%u", source); 5352 return buf; 5353 } 5354 5355 static const char * const various_names[] = { 5356 "PbcInt", 5357 "GpioAssertInt", 5358 "Qsfp1Int", 5359 "Qsfp2Int", 5360 "TCritInt" 5361 }; 5362 5363 /* 5364 * Return the various interrupt name. 5365 */ 5366 static char *is_various_name(char *buf, size_t bsize, unsigned int source) 5367 { 5368 if (source < ARRAY_SIZE(various_names)) 5369 strncpy(buf, various_names[source], bsize); 5370 else 5371 snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START); 5372 return buf; 5373 } 5374 5375 /* 5376 * Return the DC interrupt name. 5377 */ 5378 static char *is_dc_name(char *buf, size_t bsize, unsigned int source) 5379 { 5380 static const char * const dc_int_names[] = { 5381 "common", 5382 "lcb", 5383 "8051", 5384 "lbm" /* local block merge */ 5385 }; 5386 5387 if (source < ARRAY_SIZE(dc_int_names)) 5388 snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]); 5389 else 5390 snprintf(buf, bsize, "DCInt%u", source); 5391 return buf; 5392 } 5393 5394 static const char * const sdma_int_names[] = { 5395 "SDmaInt", 5396 "SdmaIdleInt", 5397 "SdmaProgressInt", 5398 }; 5399 5400 /* 5401 * Return the SDMA engine interrupt name. 5402 */ 5403 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source) 5404 { 5405 /* what interrupt */ 5406 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 5407 /* which engine */ 5408 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 5409 5410 if (likely(what < 3)) 5411 snprintf(buf, bsize, "%s%u", sdma_int_names[what], which); 5412 else 5413 snprintf(buf, bsize, "Invalid SDMA interrupt %u", source); 5414 return buf; 5415 } 5416 5417 /* 5418 * Return the receive available interrupt name. 5419 */ 5420 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source) 5421 { 5422 snprintf(buf, bsize, "RcvAvailInt%u", source); 5423 return buf; 5424 } 5425 5426 /* 5427 * Return the receive urgent interrupt name. 5428 */ 5429 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source) 5430 { 5431 snprintf(buf, bsize, "RcvUrgentInt%u", source); 5432 return buf; 5433 } 5434 5435 /* 5436 * Return the send credit interrupt name. 5437 */ 5438 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source) 5439 { 5440 snprintf(buf, bsize, "SendCreditInt%u", source); 5441 return buf; 5442 } 5443 5444 /* 5445 * Return the reserved interrupt name. 5446 */ 5447 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source) 5448 { 5449 snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START); 5450 return buf; 5451 } 5452 5453 static char *cce_err_status_string(char *buf, int buf_len, u64 flags) 5454 { 5455 return flag_string(buf, buf_len, flags, 5456 cce_err_status_flags, 5457 ARRAY_SIZE(cce_err_status_flags)); 5458 } 5459 5460 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags) 5461 { 5462 return flag_string(buf, buf_len, flags, 5463 rxe_err_status_flags, 5464 ARRAY_SIZE(rxe_err_status_flags)); 5465 } 5466 5467 static char *misc_err_status_string(char *buf, int buf_len, u64 flags) 5468 { 5469 return flag_string(buf, buf_len, flags, misc_err_status_flags, 5470 ARRAY_SIZE(misc_err_status_flags)); 5471 } 5472 5473 static char *pio_err_status_string(char *buf, int buf_len, u64 flags) 5474 { 5475 return flag_string(buf, buf_len, flags, 5476 pio_err_status_flags, 5477 ARRAY_SIZE(pio_err_status_flags)); 5478 } 5479 5480 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags) 5481 { 5482 return flag_string(buf, buf_len, flags, 5483 sdma_err_status_flags, 5484 ARRAY_SIZE(sdma_err_status_flags)); 5485 } 5486 5487 static char *egress_err_status_string(char *buf, int buf_len, u64 flags) 5488 { 5489 return flag_string(buf, buf_len, flags, 5490 egress_err_status_flags, 5491 ARRAY_SIZE(egress_err_status_flags)); 5492 } 5493 5494 static char *egress_err_info_string(char *buf, int buf_len, u64 flags) 5495 { 5496 return flag_string(buf, buf_len, flags, 5497 egress_err_info_flags, 5498 ARRAY_SIZE(egress_err_info_flags)); 5499 } 5500 5501 static char *send_err_status_string(char *buf, int buf_len, u64 flags) 5502 { 5503 return flag_string(buf, buf_len, flags, 5504 send_err_status_flags, 5505 ARRAY_SIZE(send_err_status_flags)); 5506 } 5507 5508 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5509 { 5510 char buf[96]; 5511 int i = 0; 5512 5513 /* 5514 * For most these errors, there is nothing that can be done except 5515 * report or record it. 5516 */ 5517 dd_dev_info(dd, "CCE Error: %s\n", 5518 cce_err_status_string(buf, sizeof(buf), reg)); 5519 5520 if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) && 5521 is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) { 5522 /* this error requires a manual drop into SPC freeze mode */ 5523 /* then a fix up */ 5524 start_freeze_handling(dd->pport, FREEZE_SELF); 5525 } 5526 5527 for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) { 5528 if (reg & (1ull << i)) { 5529 incr_cntr64(&dd->cce_err_status_cnt[i]); 5530 /* maintain a counter over all cce_err_status errors */ 5531 incr_cntr64(&dd->sw_cce_err_status_aggregate); 5532 } 5533 } 5534 } 5535 5536 /* 5537 * Check counters for receive errors that do not have an interrupt 5538 * associated with them. 5539 */ 5540 #define RCVERR_CHECK_TIME 10 5541 static void update_rcverr_timer(struct timer_list *t) 5542 { 5543 struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer); 5544 struct hfi1_pportdata *ppd = dd->pport; 5545 u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL); 5546 5547 if (dd->rcv_ovfl_cnt < cur_ovfl_cnt && 5548 ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) { 5549 dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__); 5550 set_link_down_reason( 5551 ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0, 5552 OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN); 5553 queue_work(ppd->link_wq, &ppd->link_bounce_work); 5554 } 5555 dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt; 5556 5557 mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5558 } 5559 5560 static int init_rcverr(struct hfi1_devdata *dd) 5561 { 5562 timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0); 5563 /* Assume the hardware counter has been reset */ 5564 dd->rcv_ovfl_cnt = 0; 5565 return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME); 5566 } 5567 5568 static void free_rcverr(struct hfi1_devdata *dd) 5569 { 5570 if (dd->rcverr_timer.function) 5571 del_timer_sync(&dd->rcverr_timer); 5572 } 5573 5574 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5575 { 5576 char buf[96]; 5577 int i = 0; 5578 5579 dd_dev_info(dd, "Receive Error: %s\n", 5580 rxe_err_status_string(buf, sizeof(buf), reg)); 5581 5582 if (reg & ALL_RXE_FREEZE_ERR) { 5583 int flags = 0; 5584 5585 /* 5586 * Freeze mode recovery is disabled for the errors 5587 * in RXE_FREEZE_ABORT_MASK 5588 */ 5589 if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK)) 5590 flags = FREEZE_ABORT; 5591 5592 start_freeze_handling(dd->pport, flags); 5593 } 5594 5595 for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) { 5596 if (reg & (1ull << i)) 5597 incr_cntr64(&dd->rcv_err_status_cnt[i]); 5598 } 5599 } 5600 5601 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5602 { 5603 char buf[96]; 5604 int i = 0; 5605 5606 dd_dev_info(dd, "Misc Error: %s", 5607 misc_err_status_string(buf, sizeof(buf), reg)); 5608 for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) { 5609 if (reg & (1ull << i)) 5610 incr_cntr64(&dd->misc_err_status_cnt[i]); 5611 } 5612 } 5613 5614 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5615 { 5616 char buf[96]; 5617 int i = 0; 5618 5619 dd_dev_info(dd, "PIO Error: %s\n", 5620 pio_err_status_string(buf, sizeof(buf), reg)); 5621 5622 if (reg & ALL_PIO_FREEZE_ERR) 5623 start_freeze_handling(dd->pport, 0); 5624 5625 for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) { 5626 if (reg & (1ull << i)) 5627 incr_cntr64(&dd->send_pio_err_status_cnt[i]); 5628 } 5629 } 5630 5631 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5632 { 5633 char buf[96]; 5634 int i = 0; 5635 5636 dd_dev_info(dd, "SDMA Error: %s\n", 5637 sdma_err_status_string(buf, sizeof(buf), reg)); 5638 5639 if (reg & ALL_SDMA_FREEZE_ERR) 5640 start_freeze_handling(dd->pport, 0); 5641 5642 for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) { 5643 if (reg & (1ull << i)) 5644 incr_cntr64(&dd->send_dma_err_status_cnt[i]); 5645 } 5646 } 5647 5648 static inline void __count_port_discards(struct hfi1_pportdata *ppd) 5649 { 5650 incr_cntr64(&ppd->port_xmit_discards); 5651 } 5652 5653 static void count_port_inactive(struct hfi1_devdata *dd) 5654 { 5655 __count_port_discards(dd->pport); 5656 } 5657 5658 /* 5659 * We have had a "disallowed packet" error during egress. Determine the 5660 * integrity check which failed, and update relevant error counter, etc. 5661 * 5662 * Note that the SEND_EGRESS_ERR_INFO register has only a single 5663 * bit of state per integrity check, and so we can miss the reason for an 5664 * egress error if more than one packet fails the same integrity check 5665 * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO. 5666 */ 5667 static void handle_send_egress_err_info(struct hfi1_devdata *dd, 5668 int vl) 5669 { 5670 struct hfi1_pportdata *ppd = dd->pport; 5671 u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */ 5672 u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO); 5673 char buf[96]; 5674 5675 /* clear down all observed info as quickly as possible after read */ 5676 write_csr(dd, SEND_EGRESS_ERR_INFO, info); 5677 5678 dd_dev_info(dd, 5679 "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n", 5680 info, egress_err_info_string(buf, sizeof(buf), info), src); 5681 5682 /* Eventually add other counters for each bit */ 5683 if (info & PORT_DISCARD_EGRESS_ERRS) { 5684 int weight, i; 5685 5686 /* 5687 * Count all applicable bits as individual errors and 5688 * attribute them to the packet that triggered this handler. 5689 * This may not be completely accurate due to limitations 5690 * on the available hardware error information. There is 5691 * a single information register and any number of error 5692 * packets may have occurred and contributed to it before 5693 * this routine is called. This means that: 5694 * a) If multiple packets with the same error occur before 5695 * this routine is called, earlier packets are missed. 5696 * There is only a single bit for each error type. 5697 * b) Errors may not be attributed to the correct VL. 5698 * The driver is attributing all bits in the info register 5699 * to the packet that triggered this call, but bits 5700 * could be an accumulation of different packets with 5701 * different VLs. 5702 * c) A single error packet may have multiple counts attached 5703 * to it. There is no way for the driver to know if 5704 * multiple bits set in the info register are due to a 5705 * single packet or multiple packets. The driver assumes 5706 * multiple packets. 5707 */ 5708 weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS); 5709 for (i = 0; i < weight; i++) { 5710 __count_port_discards(ppd); 5711 if (vl >= 0 && vl < TXE_NUM_DATA_VL) 5712 incr_cntr64(&ppd->port_xmit_discards_vl[vl]); 5713 else if (vl == 15) 5714 incr_cntr64(&ppd->port_xmit_discards_vl 5715 [C_VL_15]); 5716 } 5717 } 5718 } 5719 5720 /* 5721 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5722 * register. Does it represent a 'port inactive' error? 5723 */ 5724 static inline int port_inactive_err(u64 posn) 5725 { 5726 return (posn >= SEES(TX_LINKDOWN) && 5727 posn <= SEES(TX_INCORRECT_LINK_STATE)); 5728 } 5729 5730 /* 5731 * Input value is a bit position within the SEND_EGRESS_ERR_STATUS 5732 * register. Does it represent a 'disallowed packet' error? 5733 */ 5734 static inline int disallowed_pkt_err(int posn) 5735 { 5736 return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) && 5737 posn <= SEES(TX_SDMA15_DISALLOWED_PACKET)); 5738 } 5739 5740 /* 5741 * Input value is a bit position of one of the SDMA engine disallowed 5742 * packet errors. Return which engine. Use of this must be guarded by 5743 * disallowed_pkt_err(). 5744 */ 5745 static inline int disallowed_pkt_engine(int posn) 5746 { 5747 return posn - SEES(TX_SDMA0_DISALLOWED_PACKET); 5748 } 5749 5750 /* 5751 * Translate an SDMA engine to a VL. Return -1 if the tranlation cannot 5752 * be done. 5753 */ 5754 static int engine_to_vl(struct hfi1_devdata *dd, int engine) 5755 { 5756 struct sdma_vl_map *m; 5757 int vl; 5758 5759 /* range check */ 5760 if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES) 5761 return -1; 5762 5763 rcu_read_lock(); 5764 m = rcu_dereference(dd->sdma_map); 5765 vl = m->engine_to_vl[engine]; 5766 rcu_read_unlock(); 5767 5768 return vl; 5769 } 5770 5771 /* 5772 * Translate the send context (sofware index) into a VL. Return -1 if the 5773 * translation cannot be done. 5774 */ 5775 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index) 5776 { 5777 struct send_context_info *sci; 5778 struct send_context *sc; 5779 int i; 5780 5781 sci = &dd->send_contexts[sw_index]; 5782 5783 /* there is no information for user (PSM) and ack contexts */ 5784 if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15)) 5785 return -1; 5786 5787 sc = sci->sc; 5788 if (!sc) 5789 return -1; 5790 if (dd->vld[15].sc == sc) 5791 return 15; 5792 for (i = 0; i < num_vls; i++) 5793 if (dd->vld[i].sc == sc) 5794 return i; 5795 5796 return -1; 5797 } 5798 5799 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5800 { 5801 u64 reg_copy = reg, handled = 0; 5802 char buf[96]; 5803 int i = 0; 5804 5805 if (reg & ALL_TXE_EGRESS_FREEZE_ERR) 5806 start_freeze_handling(dd->pport, 0); 5807 else if (is_ax(dd) && 5808 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) && 5809 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) 5810 start_freeze_handling(dd->pport, 0); 5811 5812 while (reg_copy) { 5813 int posn = fls64(reg_copy); 5814 /* fls64() returns a 1-based offset, we want it zero based */ 5815 int shift = posn - 1; 5816 u64 mask = 1ULL << shift; 5817 5818 if (port_inactive_err(shift)) { 5819 count_port_inactive(dd); 5820 handled |= mask; 5821 } else if (disallowed_pkt_err(shift)) { 5822 int vl = engine_to_vl(dd, disallowed_pkt_engine(shift)); 5823 5824 handle_send_egress_err_info(dd, vl); 5825 handled |= mask; 5826 } 5827 reg_copy &= ~mask; 5828 } 5829 5830 reg &= ~handled; 5831 5832 if (reg) 5833 dd_dev_info(dd, "Egress Error: %s\n", 5834 egress_err_status_string(buf, sizeof(buf), reg)); 5835 5836 for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) { 5837 if (reg & (1ull << i)) 5838 incr_cntr64(&dd->send_egress_err_status_cnt[i]); 5839 } 5840 } 5841 5842 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 5843 { 5844 char buf[96]; 5845 int i = 0; 5846 5847 dd_dev_info(dd, "Send Error: %s\n", 5848 send_err_status_string(buf, sizeof(buf), reg)); 5849 5850 for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) { 5851 if (reg & (1ull << i)) 5852 incr_cntr64(&dd->send_err_status_cnt[i]); 5853 } 5854 } 5855 5856 /* 5857 * The maximum number of times the error clear down will loop before 5858 * blocking a repeating error. This value is arbitrary. 5859 */ 5860 #define MAX_CLEAR_COUNT 20 5861 5862 /* 5863 * Clear and handle an error register. All error interrupts are funneled 5864 * through here to have a central location to correctly handle single- 5865 * or multi-shot errors. 5866 * 5867 * For non per-context registers, call this routine with a context value 5868 * of 0 so the per-context offset is zero. 5869 * 5870 * If the handler loops too many times, assume that something is wrong 5871 * and can't be fixed, so mask the error bits. 5872 */ 5873 static void interrupt_clear_down(struct hfi1_devdata *dd, 5874 u32 context, 5875 const struct err_reg_info *eri) 5876 { 5877 u64 reg; 5878 u32 count; 5879 5880 /* read in a loop until no more errors are seen */ 5881 count = 0; 5882 while (1) { 5883 reg = read_kctxt_csr(dd, context, eri->status); 5884 if (reg == 0) 5885 break; 5886 write_kctxt_csr(dd, context, eri->clear, reg); 5887 if (likely(eri->handler)) 5888 eri->handler(dd, context, reg); 5889 count++; 5890 if (count > MAX_CLEAR_COUNT) { 5891 u64 mask; 5892 5893 dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n", 5894 eri->desc, reg); 5895 /* 5896 * Read-modify-write so any other masked bits 5897 * remain masked. 5898 */ 5899 mask = read_kctxt_csr(dd, context, eri->mask); 5900 mask &= ~reg; 5901 write_kctxt_csr(dd, context, eri->mask, mask); 5902 break; 5903 } 5904 } 5905 } 5906 5907 /* 5908 * CCE block "misc" interrupt. Source is < 16. 5909 */ 5910 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source) 5911 { 5912 const struct err_reg_info *eri = &misc_errs[source]; 5913 5914 if (eri->handler) { 5915 interrupt_clear_down(dd, 0, eri); 5916 } else { 5917 dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n", 5918 source); 5919 } 5920 } 5921 5922 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags) 5923 { 5924 return flag_string(buf, buf_len, flags, 5925 sc_err_status_flags, 5926 ARRAY_SIZE(sc_err_status_flags)); 5927 } 5928 5929 /* 5930 * Send context error interrupt. Source (hw_context) is < 160. 5931 * 5932 * All send context errors cause the send context to halt. The normal 5933 * clear-down mechanism cannot be used because we cannot clear the 5934 * error bits until several other long-running items are done first. 5935 * This is OK because with the context halted, nothing else is going 5936 * to happen on it anyway. 5937 */ 5938 static void is_sendctxt_err_int(struct hfi1_devdata *dd, 5939 unsigned int hw_context) 5940 { 5941 struct send_context_info *sci; 5942 struct send_context *sc; 5943 char flags[96]; 5944 u64 status; 5945 u32 sw_index; 5946 int i = 0; 5947 5948 sw_index = dd->hw_to_sw[hw_context]; 5949 if (sw_index >= dd->num_send_contexts) { 5950 dd_dev_err(dd, 5951 "out of range sw index %u for send context %u\n", 5952 sw_index, hw_context); 5953 return; 5954 } 5955 sci = &dd->send_contexts[sw_index]; 5956 sc = sci->sc; 5957 if (!sc) { 5958 dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__, 5959 sw_index, hw_context); 5960 return; 5961 } 5962 5963 /* tell the software that a halt has begun */ 5964 sc_stop(sc, SCF_HALTED); 5965 5966 status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS); 5967 5968 dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context, 5969 send_context_err_status_string(flags, sizeof(flags), 5970 status)); 5971 5972 if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK) 5973 handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index)); 5974 5975 /* 5976 * Automatically restart halted kernel contexts out of interrupt 5977 * context. User contexts must ask the driver to restart the context. 5978 */ 5979 if (sc->type != SC_USER) 5980 queue_work(dd->pport->hfi1_wq, &sc->halt_work); 5981 5982 /* 5983 * Update the counters for the corresponding status bits. 5984 * Note that these particular counters are aggregated over all 5985 * 160 contexts. 5986 */ 5987 for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) { 5988 if (status & (1ull << i)) 5989 incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]); 5990 } 5991 } 5992 5993 static void handle_sdma_eng_err(struct hfi1_devdata *dd, 5994 unsigned int source, u64 status) 5995 { 5996 struct sdma_engine *sde; 5997 int i = 0; 5998 5999 sde = &dd->per_sdma[source]; 6000 #ifdef CONFIG_SDMA_VERBOSITY 6001 dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 6002 slashstrip(__FILE__), __LINE__, __func__); 6003 dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n", 6004 sde->this_idx, source, (unsigned long long)status); 6005 #endif 6006 sde->err_cnt++; 6007 sdma_engine_error(sde, status); 6008 6009 /* 6010 * Update the counters for the corresponding status bits. 6011 * Note that these particular counters are aggregated over 6012 * all 16 DMA engines. 6013 */ 6014 for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) { 6015 if (status & (1ull << i)) 6016 incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]); 6017 } 6018 } 6019 6020 /* 6021 * CCE block SDMA error interrupt. Source is < 16. 6022 */ 6023 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source) 6024 { 6025 #ifdef CONFIG_SDMA_VERBOSITY 6026 struct sdma_engine *sde = &dd->per_sdma[source]; 6027 6028 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 6029 slashstrip(__FILE__), __LINE__, __func__); 6030 dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx, 6031 source); 6032 sdma_dumpstate(sde); 6033 #endif 6034 interrupt_clear_down(dd, source, &sdma_eng_err); 6035 } 6036 6037 /* 6038 * CCE block "various" interrupt. Source is < 8. 6039 */ 6040 static void is_various_int(struct hfi1_devdata *dd, unsigned int source) 6041 { 6042 const struct err_reg_info *eri = &various_err[source]; 6043 6044 /* 6045 * TCritInt cannot go through interrupt_clear_down() 6046 * because it is not a second tier interrupt. The handler 6047 * should be called directly. 6048 */ 6049 if (source == TCRIT_INT_SOURCE) 6050 handle_temp_err(dd); 6051 else if (eri->handler) 6052 interrupt_clear_down(dd, 0, eri); 6053 else 6054 dd_dev_info(dd, 6055 "%s: Unimplemented/reserved interrupt %d\n", 6056 __func__, source); 6057 } 6058 6059 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg) 6060 { 6061 /* src_ctx is always zero */ 6062 struct hfi1_pportdata *ppd = dd->pport; 6063 unsigned long flags; 6064 u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 6065 6066 if (reg & QSFP_HFI0_MODPRST_N) { 6067 if (!qsfp_mod_present(ppd)) { 6068 dd_dev_info(dd, "%s: QSFP module removed\n", 6069 __func__); 6070 6071 ppd->driver_link_ready = 0; 6072 /* 6073 * Cable removed, reset all our information about the 6074 * cache and cable capabilities 6075 */ 6076 6077 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6078 /* 6079 * We don't set cache_refresh_required here as we expect 6080 * an interrupt when a cable is inserted 6081 */ 6082 ppd->qsfp_info.cache_valid = 0; 6083 ppd->qsfp_info.reset_needed = 0; 6084 ppd->qsfp_info.limiting_active = 0; 6085 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6086 flags); 6087 /* Invert the ModPresent pin now to detect plug-in */ 6088 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6089 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6090 6091 if ((ppd->offline_disabled_reason > 6092 HFI1_ODR_MASK( 6093 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) || 6094 (ppd->offline_disabled_reason == 6095 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))) 6096 ppd->offline_disabled_reason = 6097 HFI1_ODR_MASK( 6098 OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED); 6099 6100 if (ppd->host_link_state == HLS_DN_POLL) { 6101 /* 6102 * The link is still in POLL. This means 6103 * that the normal link down processing 6104 * will not happen. We have to do it here 6105 * before turning the DC off. 6106 */ 6107 queue_work(ppd->link_wq, &ppd->link_down_work); 6108 } 6109 } else { 6110 dd_dev_info(dd, "%s: QSFP module inserted\n", 6111 __func__); 6112 6113 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6114 ppd->qsfp_info.cache_valid = 0; 6115 ppd->qsfp_info.cache_refresh_required = 1; 6116 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 6117 flags); 6118 6119 /* 6120 * Stop inversion of ModPresent pin to detect 6121 * removal of the cable 6122 */ 6123 qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N; 6124 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT : 6125 ASIC_QSFP1_INVERT, qsfp_int_mgmt); 6126 6127 ppd->offline_disabled_reason = 6128 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 6129 } 6130 } 6131 6132 if (reg & QSFP_HFI0_INT_N) { 6133 dd_dev_info(dd, "%s: Interrupt received from QSFP module\n", 6134 __func__); 6135 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 6136 ppd->qsfp_info.check_interrupt_flags = 1; 6137 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags); 6138 } 6139 6140 /* Schedule the QSFP work only if there is a cable attached. */ 6141 if (qsfp_mod_present(ppd)) 6142 queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work); 6143 } 6144 6145 static int request_host_lcb_access(struct hfi1_devdata *dd) 6146 { 6147 int ret; 6148 6149 ret = do_8051_command(dd, HCMD_MISC, 6150 (u64)HCMD_MISC_REQUEST_LCB_ACCESS << 6151 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6152 if (ret != HCMD_SUCCESS) { 6153 dd_dev_err(dd, "%s: command failed with error %d\n", 6154 __func__, ret); 6155 } 6156 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6157 } 6158 6159 static int request_8051_lcb_access(struct hfi1_devdata *dd) 6160 { 6161 int ret; 6162 6163 ret = do_8051_command(dd, HCMD_MISC, 6164 (u64)HCMD_MISC_GRANT_LCB_ACCESS << 6165 LOAD_DATA_FIELD_ID_SHIFT, NULL); 6166 if (ret != HCMD_SUCCESS) { 6167 dd_dev_err(dd, "%s: command failed with error %d\n", 6168 __func__, ret); 6169 } 6170 return ret == HCMD_SUCCESS ? 0 : -EBUSY; 6171 } 6172 6173 /* 6174 * Set the LCB selector - allow host access. The DCC selector always 6175 * points to the host. 6176 */ 6177 static inline void set_host_lcb_access(struct hfi1_devdata *dd) 6178 { 6179 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6180 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK | 6181 DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK); 6182 } 6183 6184 /* 6185 * Clear the LCB selector - allow 8051 access. The DCC selector always 6186 * points to the host. 6187 */ 6188 static inline void set_8051_lcb_access(struct hfi1_devdata *dd) 6189 { 6190 write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL, 6191 DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK); 6192 } 6193 6194 /* 6195 * Acquire LCB access from the 8051. If the host already has access, 6196 * just increment a counter. Otherwise, inform the 8051 that the 6197 * host is taking access. 6198 * 6199 * Returns: 6200 * 0 on success 6201 * -EBUSY if the 8051 has control and cannot be disturbed 6202 * -errno if unable to acquire access from the 8051 6203 */ 6204 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6205 { 6206 struct hfi1_pportdata *ppd = dd->pport; 6207 int ret = 0; 6208 6209 /* 6210 * Use the host link state lock so the operation of this routine 6211 * { link state check, selector change, count increment } can occur 6212 * as a unit against a link state change. Otherwise there is a 6213 * race between the state change and the count increment. 6214 */ 6215 if (sleep_ok) { 6216 mutex_lock(&ppd->hls_lock); 6217 } else { 6218 while (!mutex_trylock(&ppd->hls_lock)) 6219 udelay(1); 6220 } 6221 6222 /* this access is valid only when the link is up */ 6223 if (ppd->host_link_state & HLS_DOWN) { 6224 dd_dev_info(dd, "%s: link state %s not up\n", 6225 __func__, link_state_name(ppd->host_link_state)); 6226 ret = -EBUSY; 6227 goto done; 6228 } 6229 6230 if (dd->lcb_access_count == 0) { 6231 ret = request_host_lcb_access(dd); 6232 if (ret) { 6233 dd_dev_err(dd, 6234 "%s: unable to acquire LCB access, err %d\n", 6235 __func__, ret); 6236 goto done; 6237 } 6238 set_host_lcb_access(dd); 6239 } 6240 dd->lcb_access_count++; 6241 done: 6242 mutex_unlock(&ppd->hls_lock); 6243 return ret; 6244 } 6245 6246 /* 6247 * Release LCB access by decrementing the use count. If the count is moving 6248 * from 1 to 0, inform 8051 that it has control back. 6249 * 6250 * Returns: 6251 * 0 on success 6252 * -errno if unable to release access to the 8051 6253 */ 6254 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok) 6255 { 6256 int ret = 0; 6257 6258 /* 6259 * Use the host link state lock because the acquire needed it. 6260 * Here, we only need to keep { selector change, count decrement } 6261 * as a unit. 6262 */ 6263 if (sleep_ok) { 6264 mutex_lock(&dd->pport->hls_lock); 6265 } else { 6266 while (!mutex_trylock(&dd->pport->hls_lock)) 6267 udelay(1); 6268 } 6269 6270 if (dd->lcb_access_count == 0) { 6271 dd_dev_err(dd, "%s: LCB access count is zero. Skipping.\n", 6272 __func__); 6273 goto done; 6274 } 6275 6276 if (dd->lcb_access_count == 1) { 6277 set_8051_lcb_access(dd); 6278 ret = request_8051_lcb_access(dd); 6279 if (ret) { 6280 dd_dev_err(dd, 6281 "%s: unable to release LCB access, err %d\n", 6282 __func__, ret); 6283 /* restore host access if the grant didn't work */ 6284 set_host_lcb_access(dd); 6285 goto done; 6286 } 6287 } 6288 dd->lcb_access_count--; 6289 done: 6290 mutex_unlock(&dd->pport->hls_lock); 6291 return ret; 6292 } 6293 6294 /* 6295 * Initialize LCB access variables and state. Called during driver load, 6296 * after most of the initialization is finished. 6297 * 6298 * The DC default is LCB access on for the host. The driver defaults to 6299 * leaving access to the 8051. Assign access now - this constrains the call 6300 * to this routine to be after all LCB set-up is done. In particular, after 6301 * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts() 6302 */ 6303 static void init_lcb_access(struct hfi1_devdata *dd) 6304 { 6305 dd->lcb_access_count = 0; 6306 } 6307 6308 /* 6309 * Write a response back to a 8051 request. 6310 */ 6311 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data) 6312 { 6313 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 6314 DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK | 6315 (u64)return_code << 6316 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT | 6317 (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 6318 } 6319 6320 /* 6321 * Handle host requests from the 8051. 6322 */ 6323 static void handle_8051_request(struct hfi1_pportdata *ppd) 6324 { 6325 struct hfi1_devdata *dd = ppd->dd; 6326 u64 reg; 6327 u16 data = 0; 6328 u8 type; 6329 6330 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1); 6331 if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0) 6332 return; /* no request */ 6333 6334 /* zero out COMPLETED so the response is seen */ 6335 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0); 6336 6337 /* extract request details */ 6338 type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT) 6339 & DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK; 6340 data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT) 6341 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK; 6342 6343 switch (type) { 6344 case HREQ_LOAD_CONFIG: 6345 case HREQ_SAVE_CONFIG: 6346 case HREQ_READ_CONFIG: 6347 case HREQ_SET_TX_EQ_ABS: 6348 case HREQ_SET_TX_EQ_REL: 6349 case HREQ_ENABLE: 6350 dd_dev_info(dd, "8051 request: request 0x%x not supported\n", 6351 type); 6352 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6353 break; 6354 case HREQ_CONFIG_DONE: 6355 hreq_response(dd, HREQ_SUCCESS, 0); 6356 break; 6357 6358 case HREQ_INTERFACE_TEST: 6359 hreq_response(dd, HREQ_SUCCESS, data); 6360 break; 6361 default: 6362 dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type); 6363 hreq_response(dd, HREQ_NOT_SUPPORTED, 0); 6364 break; 6365 } 6366 } 6367 6368 /* 6369 * Set up allocation unit vaulue. 6370 */ 6371 void set_up_vau(struct hfi1_devdata *dd, u8 vau) 6372 { 6373 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6374 6375 /* do not modify other values in the register */ 6376 reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK; 6377 reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT; 6378 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6379 } 6380 6381 /* 6382 * Set up initial VL15 credits of the remote. Assumes the rest of 6383 * the CM credit registers are zero from a previous global or credit reset. 6384 * Shared limit for VL15 will always be 0. 6385 */ 6386 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf) 6387 { 6388 u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 6389 6390 /* set initial values for total and shared credit limit */ 6391 reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK | 6392 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK); 6393 6394 /* 6395 * Set total limit to be equal to VL15 credits. 6396 * Leave shared limit at 0. 6397 */ 6398 reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 6399 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 6400 6401 write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf 6402 << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT); 6403 } 6404 6405 /* 6406 * Zero all credit details from the previous connection and 6407 * reset the CM manager's internal counters. 6408 */ 6409 void reset_link_credits(struct hfi1_devdata *dd) 6410 { 6411 int i; 6412 6413 /* remove all previous VL credit limits */ 6414 for (i = 0; i < TXE_NUM_DATA_VL; i++) 6415 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 6416 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 6417 write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0); 6418 /* reset the CM block */ 6419 pio_send_control(dd, PSC_CM_RESET); 6420 /* reset cached value */ 6421 dd->vl15buf_cached = 0; 6422 } 6423 6424 /* convert a vCU to a CU */ 6425 static u32 vcu_to_cu(u8 vcu) 6426 { 6427 return 1 << vcu; 6428 } 6429 6430 /* convert a CU to a vCU */ 6431 static u8 cu_to_vcu(u32 cu) 6432 { 6433 return ilog2(cu); 6434 } 6435 6436 /* convert a vAU to an AU */ 6437 static u32 vau_to_au(u8 vau) 6438 { 6439 return 8 * (1 << vau); 6440 } 6441 6442 static void set_linkup_defaults(struct hfi1_pportdata *ppd) 6443 { 6444 ppd->sm_trap_qp = 0x0; 6445 ppd->sa_qp = 0x1; 6446 } 6447 6448 /* 6449 * Graceful LCB shutdown. This leaves the LCB FIFOs in reset. 6450 */ 6451 static void lcb_shutdown(struct hfi1_devdata *dd, int abort) 6452 { 6453 u64 reg; 6454 6455 /* clear lcb run: LCB_CFG_RUN.EN = 0 */ 6456 write_csr(dd, DC_LCB_CFG_RUN, 0); 6457 /* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */ 6458 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 6459 1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT); 6460 /* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */ 6461 dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN); 6462 reg = read_csr(dd, DCC_CFG_RESET); 6463 write_csr(dd, DCC_CFG_RESET, reg | 6464 (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) | 6465 (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT)); 6466 (void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */ 6467 if (!abort) { 6468 udelay(1); /* must hold for the longer of 16cclks or 20ns */ 6469 write_csr(dd, DCC_CFG_RESET, reg); 6470 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6471 } 6472 } 6473 6474 /* 6475 * This routine should be called after the link has been transitioned to 6476 * OFFLINE (OFFLINE state has the side effect of putting the SerDes into 6477 * reset). 6478 * 6479 * The expectation is that the caller of this routine would have taken 6480 * care of properly transitioning the link into the correct state. 6481 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6482 * before calling this function. 6483 */ 6484 static void _dc_shutdown(struct hfi1_devdata *dd) 6485 { 6486 lockdep_assert_held(&dd->dc8051_lock); 6487 6488 if (dd->dc_shutdown) 6489 return; 6490 6491 dd->dc_shutdown = 1; 6492 /* Shutdown the LCB */ 6493 lcb_shutdown(dd, 1); 6494 /* 6495 * Going to OFFLINE would have causes the 8051 to put the 6496 * SerDes into reset already. Just need to shut down the 8051, 6497 * itself. 6498 */ 6499 write_csr(dd, DC_DC8051_CFG_RST, 0x1); 6500 } 6501 6502 static void dc_shutdown(struct hfi1_devdata *dd) 6503 { 6504 mutex_lock(&dd->dc8051_lock); 6505 _dc_shutdown(dd); 6506 mutex_unlock(&dd->dc8051_lock); 6507 } 6508 6509 /* 6510 * Calling this after the DC has been brought out of reset should not 6511 * do any damage. 6512 * NOTE: the caller needs to acquire the dd->dc8051_lock lock 6513 * before calling this function. 6514 */ 6515 static void _dc_start(struct hfi1_devdata *dd) 6516 { 6517 lockdep_assert_held(&dd->dc8051_lock); 6518 6519 if (!dd->dc_shutdown) 6520 return; 6521 6522 /* Take the 8051 out of reset */ 6523 write_csr(dd, DC_DC8051_CFG_RST, 0ull); 6524 /* Wait until 8051 is ready */ 6525 if (wait_fm_ready(dd, TIMEOUT_8051_START)) 6526 dd_dev_err(dd, "%s: timeout starting 8051 firmware\n", 6527 __func__); 6528 6529 /* Take away reset for LCB and RX FPE (set in lcb_shutdown). */ 6530 write_csr(dd, DCC_CFG_RESET, 0x10); 6531 /* lcb_shutdown() with abort=1 does not restore these */ 6532 write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en); 6533 dd->dc_shutdown = 0; 6534 } 6535 6536 static void dc_start(struct hfi1_devdata *dd) 6537 { 6538 mutex_lock(&dd->dc8051_lock); 6539 _dc_start(dd); 6540 mutex_unlock(&dd->dc8051_lock); 6541 } 6542 6543 /* 6544 * These LCB adjustments are for the Aurora SerDes core in the FPGA. 6545 */ 6546 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd) 6547 { 6548 u64 rx_radr, tx_radr; 6549 u32 version; 6550 6551 if (dd->icode != ICODE_FPGA_EMULATION) 6552 return; 6553 6554 /* 6555 * These LCB defaults on emulator _s are good, nothing to do here: 6556 * LCB_CFG_TX_FIFOS_RADR 6557 * LCB_CFG_RX_FIFOS_RADR 6558 * LCB_CFG_LN_DCLK 6559 * LCB_CFG_IGNORE_LOST_RCLK 6560 */ 6561 if (is_emulator_s(dd)) 6562 return; 6563 /* else this is _p */ 6564 6565 version = emulator_rev(dd); 6566 if (!is_ax(dd)) 6567 version = 0x2d; /* all B0 use 0x2d or higher settings */ 6568 6569 if (version <= 0x12) { 6570 /* release 0x12 and below */ 6571 6572 /* 6573 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9 6574 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9 6575 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa 6576 */ 6577 rx_radr = 6578 0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6579 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6580 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6581 /* 6582 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default) 6583 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6 6584 */ 6585 tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6586 } else if (version <= 0x18) { 6587 /* release 0x13 up to 0x18 */ 6588 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6589 rx_radr = 6590 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6591 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6592 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6593 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6594 } else if (version == 0x19) { 6595 /* release 0x19 */ 6596 /* LCB_CFG_RX_FIFOS_RADR = 0xa99 */ 6597 rx_radr = 6598 0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6599 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6600 | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6601 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6602 } else if (version == 0x1a) { 6603 /* release 0x1a */ 6604 /* LCB_CFG_RX_FIFOS_RADR = 0x988 */ 6605 rx_radr = 6606 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6607 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6608 | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6609 tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6610 write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull); 6611 } else { 6612 /* release 0x1b and higher */ 6613 /* LCB_CFG_RX_FIFOS_RADR = 0x877 */ 6614 rx_radr = 6615 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT 6616 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT 6617 | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT; 6618 tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT; 6619 } 6620 6621 write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr); 6622 /* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */ 6623 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 6624 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 6625 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr); 6626 } 6627 6628 /* 6629 * Handle a SMA idle message 6630 * 6631 * This is a work-queue function outside of the interrupt. 6632 */ 6633 void handle_sma_message(struct work_struct *work) 6634 { 6635 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6636 sma_message_work); 6637 struct hfi1_devdata *dd = ppd->dd; 6638 u64 msg; 6639 int ret; 6640 6641 /* 6642 * msg is bytes 1-4 of the 40-bit idle message - the command code 6643 * is stripped off 6644 */ 6645 ret = read_idle_sma(dd, &msg); 6646 if (ret) 6647 return; 6648 dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg); 6649 /* 6650 * React to the SMA message. Byte[1] (0 for us) is the command. 6651 */ 6652 switch (msg & 0xff) { 6653 case SMA_IDLE_ARM: 6654 /* 6655 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6656 * State Transitions 6657 * 6658 * Only expected in INIT or ARMED, discard otherwise. 6659 */ 6660 if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED)) 6661 ppd->neighbor_normal = 1; 6662 break; 6663 case SMA_IDLE_ACTIVE: 6664 /* 6665 * See OPAv1 table 9-14 - HFI and External Switch Ports Key 6666 * State Transitions 6667 * 6668 * Can activate the node. Discard otherwise. 6669 */ 6670 if (ppd->host_link_state == HLS_UP_ARMED && 6671 ppd->is_active_optimize_enabled) { 6672 ppd->neighbor_normal = 1; 6673 ret = set_link_state(ppd, HLS_UP_ACTIVE); 6674 if (ret) 6675 dd_dev_err( 6676 dd, 6677 "%s: received Active SMA idle message, couldn't set link to Active\n", 6678 __func__); 6679 } 6680 break; 6681 default: 6682 dd_dev_err(dd, 6683 "%s: received unexpected SMA idle message 0x%llx\n", 6684 __func__, msg); 6685 break; 6686 } 6687 } 6688 6689 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear) 6690 { 6691 u64 rcvctrl; 6692 unsigned long flags; 6693 6694 spin_lock_irqsave(&dd->rcvctrl_lock, flags); 6695 rcvctrl = read_csr(dd, RCV_CTRL); 6696 rcvctrl |= add; 6697 rcvctrl &= ~clear; 6698 write_csr(dd, RCV_CTRL, rcvctrl); 6699 spin_unlock_irqrestore(&dd->rcvctrl_lock, flags); 6700 } 6701 6702 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add) 6703 { 6704 adjust_rcvctrl(dd, add, 0); 6705 } 6706 6707 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear) 6708 { 6709 adjust_rcvctrl(dd, 0, clear); 6710 } 6711 6712 /* 6713 * Called from all interrupt handlers to start handling an SPC freeze. 6714 */ 6715 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags) 6716 { 6717 struct hfi1_devdata *dd = ppd->dd; 6718 struct send_context *sc; 6719 int i; 6720 6721 if (flags & FREEZE_SELF) 6722 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6723 6724 /* enter frozen mode */ 6725 dd->flags |= HFI1_FROZEN; 6726 6727 /* notify all SDMA engines that they are going into a freeze */ 6728 sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN)); 6729 6730 /* do halt pre-handling on all enabled send contexts */ 6731 for (i = 0; i < dd->num_send_contexts; i++) { 6732 sc = dd->send_contexts[i].sc; 6733 if (sc && (sc->flags & SCF_ENABLED)) 6734 sc_stop(sc, SCF_FROZEN | SCF_HALTED); 6735 } 6736 6737 /* Send context are frozen. Notify user space */ 6738 hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT); 6739 6740 if (flags & FREEZE_ABORT) { 6741 dd_dev_err(dd, 6742 "Aborted freeze recovery. Please REBOOT system\n"); 6743 return; 6744 } 6745 /* queue non-interrupt handler */ 6746 queue_work(ppd->hfi1_wq, &ppd->freeze_work); 6747 } 6748 6749 /* 6750 * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen, 6751 * depending on the "freeze" parameter. 6752 * 6753 * No need to return an error if it times out, our only option 6754 * is to proceed anyway. 6755 */ 6756 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze) 6757 { 6758 unsigned long timeout; 6759 u64 reg; 6760 6761 timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT); 6762 while (1) { 6763 reg = read_csr(dd, CCE_STATUS); 6764 if (freeze) { 6765 /* waiting until all indicators are set */ 6766 if ((reg & ALL_FROZE) == ALL_FROZE) 6767 return; /* all done */ 6768 } else { 6769 /* waiting until all indicators are clear */ 6770 if ((reg & ALL_FROZE) == 0) 6771 return; /* all done */ 6772 } 6773 6774 if (time_after(jiffies, timeout)) { 6775 dd_dev_err(dd, 6776 "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing", 6777 freeze ? "" : "un", reg & ALL_FROZE, 6778 freeze ? ALL_FROZE : 0ull); 6779 return; 6780 } 6781 usleep_range(80, 120); 6782 } 6783 } 6784 6785 /* 6786 * Do all freeze handling for the RXE block. 6787 */ 6788 static void rxe_freeze(struct hfi1_devdata *dd) 6789 { 6790 int i; 6791 struct hfi1_ctxtdata *rcd; 6792 6793 /* disable port */ 6794 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6795 6796 /* disable all receive contexts */ 6797 for (i = 0; i < dd->num_rcv_contexts; i++) { 6798 rcd = hfi1_rcd_get_by_index(dd, i); 6799 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd); 6800 hfi1_rcd_put(rcd); 6801 } 6802 } 6803 6804 /* 6805 * Unfreeze handling for the RXE block - kernel contexts only. 6806 * This will also enable the port. User contexts will do unfreeze 6807 * handling on a per-context basis as they call into the driver. 6808 * 6809 */ 6810 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd) 6811 { 6812 u32 rcvmask; 6813 u16 i; 6814 struct hfi1_ctxtdata *rcd; 6815 6816 /* enable all kernel contexts */ 6817 for (i = 0; i < dd->num_rcv_contexts; i++) { 6818 rcd = hfi1_rcd_get_by_index(dd, i); 6819 6820 /* Ensure all non-user contexts(including vnic) are enabled */ 6821 if (!rcd || 6822 (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) { 6823 hfi1_rcd_put(rcd); 6824 continue; 6825 } 6826 rcvmask = HFI1_RCVCTRL_CTXT_ENB; 6827 /* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */ 6828 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? 6829 HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS; 6830 hfi1_rcvctrl(dd, rcvmask, rcd); 6831 hfi1_rcd_put(rcd); 6832 } 6833 6834 /* enable port */ 6835 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 6836 } 6837 6838 /* 6839 * Non-interrupt SPC freeze handling. 6840 * 6841 * This is a work-queue function outside of the triggering interrupt. 6842 */ 6843 void handle_freeze(struct work_struct *work) 6844 { 6845 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6846 freeze_work); 6847 struct hfi1_devdata *dd = ppd->dd; 6848 6849 /* wait for freeze indicators on all affected blocks */ 6850 wait_for_freeze_status(dd, 1); 6851 6852 /* SPC is now frozen */ 6853 6854 /* do send PIO freeze steps */ 6855 pio_freeze(dd); 6856 6857 /* do send DMA freeze steps */ 6858 sdma_freeze(dd); 6859 6860 /* do send egress freeze steps - nothing to do */ 6861 6862 /* do receive freeze steps */ 6863 rxe_freeze(dd); 6864 6865 /* 6866 * Unfreeze the hardware - clear the freeze, wait for each 6867 * block's frozen bit to clear, then clear the frozen flag. 6868 */ 6869 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6870 wait_for_freeze_status(dd, 0); 6871 6872 if (is_ax(dd)) { 6873 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK); 6874 wait_for_freeze_status(dd, 1); 6875 write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK); 6876 wait_for_freeze_status(dd, 0); 6877 } 6878 6879 /* do send PIO unfreeze steps for kernel contexts */ 6880 pio_kernel_unfreeze(dd); 6881 6882 /* do send DMA unfreeze steps */ 6883 sdma_unfreeze(dd); 6884 6885 /* do send egress unfreeze steps - nothing to do */ 6886 6887 /* do receive unfreeze steps for kernel contexts */ 6888 rxe_kernel_unfreeze(dd); 6889 6890 /* 6891 * The unfreeze procedure touches global device registers when 6892 * it disables and re-enables RXE. Mark the device unfrozen 6893 * after all that is done so other parts of the driver waiting 6894 * for the device to unfreeze don't do things out of order. 6895 * 6896 * The above implies that the meaning of HFI1_FROZEN flag is 6897 * "Device has gone into freeze mode and freeze mode handling 6898 * is still in progress." 6899 * 6900 * The flag will be removed when freeze mode processing has 6901 * completed. 6902 */ 6903 dd->flags &= ~HFI1_FROZEN; 6904 wake_up(&dd->event_queue); 6905 6906 /* no longer frozen */ 6907 } 6908 6909 /** 6910 * update_xmit_counters - update PortXmitWait/PortVlXmitWait 6911 * counters. 6912 * @ppd: info of physical Hfi port 6913 * @link_width: new link width after link up or downgrade 6914 * 6915 * Update the PortXmitWait and PortVlXmitWait counters after 6916 * a link up or downgrade event to reflect a link width change. 6917 */ 6918 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width) 6919 { 6920 int i; 6921 u16 tx_width; 6922 u16 link_speed; 6923 6924 tx_width = tx_link_width(link_width); 6925 link_speed = get_link_speed(ppd->link_speed_active); 6926 6927 /* 6928 * There are C_VL_COUNT number of PortVLXmitWait counters. 6929 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter. 6930 */ 6931 for (i = 0; i < C_VL_COUNT + 1; i++) 6932 get_xmit_wait_counters(ppd, tx_width, link_speed, i); 6933 } 6934 6935 /* 6936 * Handle a link up interrupt from the 8051. 6937 * 6938 * This is a work-queue function outside of the interrupt. 6939 */ 6940 void handle_link_up(struct work_struct *work) 6941 { 6942 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 6943 link_up_work); 6944 struct hfi1_devdata *dd = ppd->dd; 6945 6946 set_link_state(ppd, HLS_UP_INIT); 6947 6948 /* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */ 6949 read_ltp_rtt(dd); 6950 /* 6951 * OPA specifies that certain counters are cleared on a transition 6952 * to link up, so do that. 6953 */ 6954 clear_linkup_counters(dd); 6955 /* 6956 * And (re)set link up default values. 6957 */ 6958 set_linkup_defaults(ppd); 6959 6960 /* 6961 * Set VL15 credits. Use cached value from verify cap interrupt. 6962 * In case of quick linkup or simulator, vl15 value will be set by 6963 * handle_linkup_change. VerifyCap interrupt handler will not be 6964 * called in those scenarios. 6965 */ 6966 if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) 6967 set_up_vl15(dd, dd->vl15buf_cached); 6968 6969 /* enforce link speed enabled */ 6970 if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) { 6971 /* oops - current speed is not enabled, bounce */ 6972 dd_dev_err(dd, 6973 "Link speed active 0x%x is outside enabled 0x%x, downing link\n", 6974 ppd->link_speed_active, ppd->link_speed_enabled); 6975 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0, 6976 OPA_LINKDOWN_REASON_SPEED_POLICY); 6977 set_link_state(ppd, HLS_DN_OFFLINE); 6978 start_link(ppd); 6979 } 6980 } 6981 6982 /* 6983 * Several pieces of LNI information were cached for SMA in ppd. 6984 * Reset these on link down 6985 */ 6986 static void reset_neighbor_info(struct hfi1_pportdata *ppd) 6987 { 6988 ppd->neighbor_guid = 0; 6989 ppd->neighbor_port_number = 0; 6990 ppd->neighbor_type = 0; 6991 ppd->neighbor_fm_security = 0; 6992 } 6993 6994 static const char * const link_down_reason_strs[] = { 6995 [OPA_LINKDOWN_REASON_NONE] = "None", 6996 [OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0", 6997 [OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length", 6998 [OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long", 6999 [OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short", 7000 [OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID", 7001 [OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID", 7002 [OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2", 7003 [OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC", 7004 [OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8", 7005 [OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail", 7006 [OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10", 7007 [OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error", 7008 [OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15", 7009 [OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker", 7010 [OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14", 7011 [OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15", 7012 [OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance", 7013 [OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance", 7014 [OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance", 7015 [OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack", 7016 [OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker", 7017 [OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt", 7018 [OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit", 7019 [OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit", 7020 [OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24", 7021 [OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25", 7022 [OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26", 7023 [OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27", 7024 [OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28", 7025 [OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29", 7026 [OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30", 7027 [OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] = 7028 "Excessive buffer overrun", 7029 [OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown", 7030 [OPA_LINKDOWN_REASON_REBOOT] = "Reboot", 7031 [OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown", 7032 [OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce", 7033 [OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy", 7034 [OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy", 7035 [OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected", 7036 [OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] = 7037 "Local media not installed", 7038 [OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed", 7039 [OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config", 7040 [OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] = 7041 "End to end not installed", 7042 [OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy", 7043 [OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy", 7044 [OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy", 7045 [OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management", 7046 [OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled", 7047 [OPA_LINKDOWN_REASON_TRANSIENT] = "Transient" 7048 }; 7049 7050 /* return the neighbor link down reason string */ 7051 static const char *link_down_reason_str(u8 reason) 7052 { 7053 const char *str = NULL; 7054 7055 if (reason < ARRAY_SIZE(link_down_reason_strs)) 7056 str = link_down_reason_strs[reason]; 7057 if (!str) 7058 str = "(invalid)"; 7059 7060 return str; 7061 } 7062 7063 /* 7064 * Handle a link down interrupt from the 8051. 7065 * 7066 * This is a work-queue function outside of the interrupt. 7067 */ 7068 void handle_link_down(struct work_struct *work) 7069 { 7070 u8 lcl_reason, neigh_reason = 0; 7071 u8 link_down_reason; 7072 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7073 link_down_work); 7074 int was_up; 7075 static const char ldr_str[] = "Link down reason: "; 7076 7077 if ((ppd->host_link_state & 7078 (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) && 7079 ppd->port_type == PORT_TYPE_FIXED) 7080 ppd->offline_disabled_reason = 7081 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED); 7082 7083 /* Go offline first, then deal with reading/writing through 8051 */ 7084 was_up = !!(ppd->host_link_state & HLS_UP); 7085 set_link_state(ppd, HLS_DN_OFFLINE); 7086 xchg(&ppd->is_link_down_queued, 0); 7087 7088 if (was_up) { 7089 lcl_reason = 0; 7090 /* link down reason is only valid if the link was up */ 7091 read_link_down_reason(ppd->dd, &link_down_reason); 7092 switch (link_down_reason) { 7093 case LDR_LINK_TRANSFER_ACTIVE_LOW: 7094 /* the link went down, no idle message reason */ 7095 dd_dev_info(ppd->dd, "%sUnexpected link down\n", 7096 ldr_str); 7097 break; 7098 case LDR_RECEIVED_LINKDOWN_IDLE_MSG: 7099 /* 7100 * The neighbor reason is only valid if an idle message 7101 * was received for it. 7102 */ 7103 read_planned_down_reason_code(ppd->dd, &neigh_reason); 7104 dd_dev_info(ppd->dd, 7105 "%sNeighbor link down message %d, %s\n", 7106 ldr_str, neigh_reason, 7107 link_down_reason_str(neigh_reason)); 7108 break; 7109 case LDR_RECEIVED_HOST_OFFLINE_REQ: 7110 dd_dev_info(ppd->dd, 7111 "%sHost requested link to go offline\n", 7112 ldr_str); 7113 break; 7114 default: 7115 dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n", 7116 ldr_str, link_down_reason); 7117 break; 7118 } 7119 7120 /* 7121 * If no reason, assume peer-initiated but missed 7122 * LinkGoingDown idle flits. 7123 */ 7124 if (neigh_reason == 0) 7125 lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN; 7126 } else { 7127 /* went down while polling or going up */ 7128 lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT; 7129 } 7130 7131 set_link_down_reason(ppd, lcl_reason, neigh_reason, 0); 7132 7133 /* inform the SMA when the link transitions from up to down */ 7134 if (was_up && ppd->local_link_down_reason.sma == 0 && 7135 ppd->neigh_link_down_reason.sma == 0) { 7136 ppd->local_link_down_reason.sma = 7137 ppd->local_link_down_reason.latest; 7138 ppd->neigh_link_down_reason.sma = 7139 ppd->neigh_link_down_reason.latest; 7140 } 7141 7142 reset_neighbor_info(ppd); 7143 7144 /* disable the port */ 7145 clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 7146 7147 /* 7148 * If there is no cable attached, turn the DC off. Otherwise, 7149 * start the link bring up. 7150 */ 7151 if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd)) 7152 dc_shutdown(ppd->dd); 7153 else 7154 start_link(ppd); 7155 } 7156 7157 void handle_link_bounce(struct work_struct *work) 7158 { 7159 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7160 link_bounce_work); 7161 7162 /* 7163 * Only do something if the link is currently up. 7164 */ 7165 if (ppd->host_link_state & HLS_UP) { 7166 set_link_state(ppd, HLS_DN_OFFLINE); 7167 start_link(ppd); 7168 } else { 7169 dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n", 7170 __func__, link_state_name(ppd->host_link_state)); 7171 } 7172 } 7173 7174 /* 7175 * Mask conversion: Capability exchange to Port LTP. The capability 7176 * exchange has an implicit 16b CRC that is mandatory. 7177 */ 7178 static int cap_to_port_ltp(int cap) 7179 { 7180 int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */ 7181 7182 if (cap & CAP_CRC_14B) 7183 port_ltp |= PORT_LTP_CRC_MODE_14; 7184 if (cap & CAP_CRC_48B) 7185 port_ltp |= PORT_LTP_CRC_MODE_48; 7186 if (cap & CAP_CRC_12B_16B_PER_LANE) 7187 port_ltp |= PORT_LTP_CRC_MODE_PER_LANE; 7188 7189 return port_ltp; 7190 } 7191 7192 /* 7193 * Convert an OPA Port LTP mask to capability mask 7194 */ 7195 int port_ltp_to_cap(int port_ltp) 7196 { 7197 int cap_mask = 0; 7198 7199 if (port_ltp & PORT_LTP_CRC_MODE_14) 7200 cap_mask |= CAP_CRC_14B; 7201 if (port_ltp & PORT_LTP_CRC_MODE_48) 7202 cap_mask |= CAP_CRC_48B; 7203 if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE) 7204 cap_mask |= CAP_CRC_12B_16B_PER_LANE; 7205 7206 return cap_mask; 7207 } 7208 7209 /* 7210 * Convert a single DC LCB CRC mode to an OPA Port LTP mask. 7211 */ 7212 static int lcb_to_port_ltp(int lcb_crc) 7213 { 7214 int port_ltp = 0; 7215 7216 if (lcb_crc == LCB_CRC_12B_16B_PER_LANE) 7217 port_ltp = PORT_LTP_CRC_MODE_PER_LANE; 7218 else if (lcb_crc == LCB_CRC_48B) 7219 port_ltp = PORT_LTP_CRC_MODE_48; 7220 else if (lcb_crc == LCB_CRC_14B) 7221 port_ltp = PORT_LTP_CRC_MODE_14; 7222 else 7223 port_ltp = PORT_LTP_CRC_MODE_16; 7224 7225 return port_ltp; 7226 } 7227 7228 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd) 7229 { 7230 if (ppd->pkeys[2] != 0) { 7231 ppd->pkeys[2] = 0; 7232 (void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0); 7233 hfi1_event_pkey_change(ppd->dd, ppd->port); 7234 } 7235 } 7236 7237 /* 7238 * Convert the given link width to the OPA link width bitmask. 7239 */ 7240 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width) 7241 { 7242 switch (width) { 7243 case 0: 7244 /* 7245 * Simulator and quick linkup do not set the width. 7246 * Just set it to 4x without complaint. 7247 */ 7248 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup) 7249 return OPA_LINK_WIDTH_4X; 7250 return 0; /* no lanes up */ 7251 case 1: return OPA_LINK_WIDTH_1X; 7252 case 2: return OPA_LINK_WIDTH_2X; 7253 case 3: return OPA_LINK_WIDTH_3X; 7254 default: 7255 dd_dev_info(dd, "%s: invalid width %d, using 4\n", 7256 __func__, width); 7257 /* fall through */ 7258 case 4: return OPA_LINK_WIDTH_4X; 7259 } 7260 } 7261 7262 /* 7263 * Do a population count on the bottom nibble. 7264 */ 7265 static const u8 bit_counts[16] = { 7266 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 7267 }; 7268 7269 static inline u8 nibble_to_count(u8 nibble) 7270 { 7271 return bit_counts[nibble & 0xf]; 7272 } 7273 7274 /* 7275 * Read the active lane information from the 8051 registers and return 7276 * their widths. 7277 * 7278 * Active lane information is found in these 8051 registers: 7279 * enable_lane_tx 7280 * enable_lane_rx 7281 */ 7282 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width, 7283 u16 *rx_width) 7284 { 7285 u16 tx, rx; 7286 u8 enable_lane_rx; 7287 u8 enable_lane_tx; 7288 u8 tx_polarity_inversion; 7289 u8 rx_polarity_inversion; 7290 u8 max_rate; 7291 7292 /* read the active lanes */ 7293 read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 7294 &rx_polarity_inversion, &max_rate); 7295 read_local_lni(dd, &enable_lane_rx); 7296 7297 /* convert to counts */ 7298 tx = nibble_to_count(enable_lane_tx); 7299 rx = nibble_to_count(enable_lane_rx); 7300 7301 /* 7302 * Set link_speed_active here, overriding what was set in 7303 * handle_verify_cap(). The ASIC 8051 firmware does not correctly 7304 * set the max_rate field in handle_verify_cap until v0.19. 7305 */ 7306 if ((dd->icode == ICODE_RTL_SILICON) && 7307 (dd->dc8051_ver < dc8051_ver(0, 19, 0))) { 7308 /* max_rate: 0 = 12.5G, 1 = 25G */ 7309 switch (max_rate) { 7310 case 0: 7311 dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G; 7312 break; 7313 default: 7314 dd_dev_err(dd, 7315 "%s: unexpected max rate %d, using 25Gb\n", 7316 __func__, (int)max_rate); 7317 /* fall through */ 7318 case 1: 7319 dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G; 7320 break; 7321 } 7322 } 7323 7324 dd_dev_info(dd, 7325 "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n", 7326 enable_lane_tx, tx, enable_lane_rx, rx); 7327 *tx_width = link_width_to_bits(dd, tx); 7328 *rx_width = link_width_to_bits(dd, rx); 7329 } 7330 7331 /* 7332 * Read verify_cap_local_fm_link_width[1] to obtain the link widths. 7333 * Valid after the end of VerifyCap and during LinkUp. Does not change 7334 * after link up. I.e. look elsewhere for downgrade information. 7335 * 7336 * Bits are: 7337 * + bits [7:4] contain the number of active transmitters 7338 * + bits [3:0] contain the number of active receivers 7339 * These are numbers 1 through 4 and can be different values if the 7340 * link is asymmetric. 7341 * 7342 * verify_cap_local_fm_link_width[0] retains its original value. 7343 */ 7344 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width, 7345 u16 *rx_width) 7346 { 7347 u16 widths, tx, rx; 7348 u8 misc_bits, local_flags; 7349 u16 active_tx, active_rx; 7350 7351 read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths); 7352 tx = widths >> 12; 7353 rx = (widths >> 8) & 0xf; 7354 7355 *tx_width = link_width_to_bits(dd, tx); 7356 *rx_width = link_width_to_bits(dd, rx); 7357 7358 /* print the active widths */ 7359 get_link_widths(dd, &active_tx, &active_rx); 7360 } 7361 7362 /* 7363 * Set ppd->link_width_active and ppd->link_width_downgrade_active using 7364 * hardware information when the link first comes up. 7365 * 7366 * The link width is not available until after VerifyCap.AllFramesReceived 7367 * (the trigger for handle_verify_cap), so this is outside that routine 7368 * and should be called when the 8051 signals linkup. 7369 */ 7370 void get_linkup_link_widths(struct hfi1_pportdata *ppd) 7371 { 7372 u16 tx_width, rx_width; 7373 7374 /* get end-of-LNI link widths */ 7375 get_linkup_widths(ppd->dd, &tx_width, &rx_width); 7376 7377 /* use tx_width as the link is supposed to be symmetric on link up */ 7378 ppd->link_width_active = tx_width; 7379 /* link width downgrade active (LWD.A) starts out matching LW.A */ 7380 ppd->link_width_downgrade_tx_active = ppd->link_width_active; 7381 ppd->link_width_downgrade_rx_active = ppd->link_width_active; 7382 /* per OPA spec, on link up LWD.E resets to LWD.S */ 7383 ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported; 7384 /* cache the active egress rate (units {10^6 bits/sec]) */ 7385 ppd->current_egress_rate = active_egress_rate(ppd); 7386 } 7387 7388 /* 7389 * Handle a verify capabilities interrupt from the 8051. 7390 * 7391 * This is a work-queue function outside of the interrupt. 7392 */ 7393 void handle_verify_cap(struct work_struct *work) 7394 { 7395 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7396 link_vc_work); 7397 struct hfi1_devdata *dd = ppd->dd; 7398 u64 reg; 7399 u8 power_management; 7400 u8 continuous; 7401 u8 vcu; 7402 u8 vau; 7403 u8 z; 7404 u16 vl15buf; 7405 u16 link_widths; 7406 u16 crc_mask; 7407 u16 crc_val; 7408 u16 device_id; 7409 u16 active_tx, active_rx; 7410 u8 partner_supported_crc; 7411 u8 remote_tx_rate; 7412 u8 device_rev; 7413 7414 set_link_state(ppd, HLS_VERIFY_CAP); 7415 7416 lcb_shutdown(dd, 0); 7417 adjust_lcb_for_fpga_serdes(dd); 7418 7419 read_vc_remote_phy(dd, &power_management, &continuous); 7420 read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf, 7421 &partner_supported_crc); 7422 read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths); 7423 read_remote_device_id(dd, &device_id, &device_rev); 7424 7425 /* print the active widths */ 7426 get_link_widths(dd, &active_tx, &active_rx); 7427 dd_dev_info(dd, 7428 "Peer PHY: power management 0x%x, continuous updates 0x%x\n", 7429 (int)power_management, (int)continuous); 7430 dd_dev_info(dd, 7431 "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n", 7432 (int)vau, (int)z, (int)vcu, (int)vl15buf, 7433 (int)partner_supported_crc); 7434 dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n", 7435 (u32)remote_tx_rate, (u32)link_widths); 7436 dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n", 7437 (u32)device_id, (u32)device_rev); 7438 /* 7439 * The peer vAU value just read is the peer receiver value. HFI does 7440 * not support a transmit vAU of 0 (AU == 8). We advertised that 7441 * with Z=1 in the fabric capabilities sent to the peer. The peer 7442 * will see our Z=1, and, if it advertised a vAU of 0, will move its 7443 * receive to vAU of 1 (AU == 16). Do the same here. We do not care 7444 * about the peer Z value - our sent vAU is 3 (hardwired) and is not 7445 * subject to the Z value exception. 7446 */ 7447 if (vau == 0) 7448 vau = 1; 7449 set_up_vau(dd, vau); 7450 7451 /* 7452 * Set VL15 credits to 0 in global credit register. Cache remote VL15 7453 * credits value and wait for link-up interrupt ot set it. 7454 */ 7455 set_up_vl15(dd, 0); 7456 dd->vl15buf_cached = vl15buf; 7457 7458 /* set up the LCB CRC mode */ 7459 crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc; 7460 7461 /* order is important: use the lowest bit in common */ 7462 if (crc_mask & CAP_CRC_14B) 7463 crc_val = LCB_CRC_14B; 7464 else if (crc_mask & CAP_CRC_48B) 7465 crc_val = LCB_CRC_48B; 7466 else if (crc_mask & CAP_CRC_12B_16B_PER_LANE) 7467 crc_val = LCB_CRC_12B_16B_PER_LANE; 7468 else 7469 crc_val = LCB_CRC_16B; 7470 7471 dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val); 7472 write_csr(dd, DC_LCB_CFG_CRC_MODE, 7473 (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT); 7474 7475 /* set (14b only) or clear sideband credit */ 7476 reg = read_csr(dd, SEND_CM_CTRL); 7477 if (crc_val == LCB_CRC_14B && crc_14b_sideband) { 7478 write_csr(dd, SEND_CM_CTRL, 7479 reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7480 } else { 7481 write_csr(dd, SEND_CM_CTRL, 7482 reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK); 7483 } 7484 7485 ppd->link_speed_active = 0; /* invalid value */ 7486 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 7487 /* remote_tx_rate: 0 = 12.5G, 1 = 25G */ 7488 switch (remote_tx_rate) { 7489 case 0: 7490 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7491 break; 7492 case 1: 7493 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7494 break; 7495 } 7496 } else { 7497 /* actual rate is highest bit of the ANDed rates */ 7498 u8 rate = remote_tx_rate & ppd->local_tx_rate; 7499 7500 if (rate & 2) 7501 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7502 else if (rate & 1) 7503 ppd->link_speed_active = OPA_LINK_SPEED_12_5G; 7504 } 7505 if (ppd->link_speed_active == 0) { 7506 dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n", 7507 __func__, (int)remote_tx_rate); 7508 ppd->link_speed_active = OPA_LINK_SPEED_25G; 7509 } 7510 7511 /* 7512 * Cache the values of the supported, enabled, and active 7513 * LTP CRC modes to return in 'portinfo' queries. But the bit 7514 * flags that are returned in the portinfo query differ from 7515 * what's in the link_crc_mask, crc_sizes, and crc_val 7516 * variables. Convert these here. 7517 */ 7518 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 7519 /* supported crc modes */ 7520 ppd->port_ltp_crc_mode |= 7521 cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4; 7522 /* enabled crc modes */ 7523 ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val); 7524 /* active crc mode */ 7525 7526 /* set up the remote credit return table */ 7527 assign_remote_cm_au_table(dd, vcu); 7528 7529 /* 7530 * The LCB is reset on entry to handle_verify_cap(), so this must 7531 * be applied on every link up. 7532 * 7533 * Adjust LCB error kill enable to kill the link if 7534 * these RBUF errors are seen: 7535 * REPLAY_BUF_MBE_SMASK 7536 * FLIT_INPUT_BUF_MBE_SMASK 7537 */ 7538 if (is_ax(dd)) { /* fixed in B0 */ 7539 reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN); 7540 reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK 7541 | DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK; 7542 write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg); 7543 } 7544 7545 /* pull LCB fifos out of reset - all fifo clocks must be stable */ 7546 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 7547 7548 /* give 8051 access to the LCB CSRs */ 7549 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 7550 set_8051_lcb_access(dd); 7551 7552 /* tell the 8051 to go to LinkUp */ 7553 set_link_state(ppd, HLS_GOING_UP); 7554 } 7555 7556 /** 7557 * apply_link_downgrade_policy - Apply the link width downgrade enabled 7558 * policy against the current active link widths. 7559 * @ppd: info of physical Hfi port 7560 * @refresh_widths: True indicates link downgrade event 7561 * @return: True indicates a successful link downgrade. False indicates 7562 * link downgrade event failed and the link will bounce back to 7563 * default link width. 7564 * 7565 * Called when the enabled policy changes or the active link widths 7566 * change. 7567 * Refresh_widths indicates that a link downgrade occurred. The 7568 * link_downgraded variable is set by refresh_widths and 7569 * determines the success/failure of the policy application. 7570 */ 7571 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd, 7572 bool refresh_widths) 7573 { 7574 int do_bounce = 0; 7575 int tries; 7576 u16 lwde; 7577 u16 tx, rx; 7578 bool link_downgraded = refresh_widths; 7579 7580 /* use the hls lock to avoid a race with actual link up */ 7581 tries = 0; 7582 retry: 7583 mutex_lock(&ppd->hls_lock); 7584 /* only apply if the link is up */ 7585 if (ppd->host_link_state & HLS_DOWN) { 7586 /* still going up..wait and retry */ 7587 if (ppd->host_link_state & HLS_GOING_UP) { 7588 if (++tries < 1000) { 7589 mutex_unlock(&ppd->hls_lock); 7590 usleep_range(100, 120); /* arbitrary */ 7591 goto retry; 7592 } 7593 dd_dev_err(ppd->dd, 7594 "%s: giving up waiting for link state change\n", 7595 __func__); 7596 } 7597 goto done; 7598 } 7599 7600 lwde = ppd->link_width_downgrade_enabled; 7601 7602 if (refresh_widths) { 7603 get_link_widths(ppd->dd, &tx, &rx); 7604 ppd->link_width_downgrade_tx_active = tx; 7605 ppd->link_width_downgrade_rx_active = rx; 7606 } 7607 7608 if (ppd->link_width_downgrade_tx_active == 0 || 7609 ppd->link_width_downgrade_rx_active == 0) { 7610 /* the 8051 reported a dead link as a downgrade */ 7611 dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n"); 7612 link_downgraded = false; 7613 } else if (lwde == 0) { 7614 /* downgrade is disabled */ 7615 7616 /* bounce if not at starting active width */ 7617 if ((ppd->link_width_active != 7618 ppd->link_width_downgrade_tx_active) || 7619 (ppd->link_width_active != 7620 ppd->link_width_downgrade_rx_active)) { 7621 dd_dev_err(ppd->dd, 7622 "Link downgrade is disabled and link has downgraded, downing link\n"); 7623 dd_dev_err(ppd->dd, 7624 " original 0x%x, tx active 0x%x, rx active 0x%x\n", 7625 ppd->link_width_active, 7626 ppd->link_width_downgrade_tx_active, 7627 ppd->link_width_downgrade_rx_active); 7628 do_bounce = 1; 7629 link_downgraded = false; 7630 } 7631 } else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 || 7632 (lwde & ppd->link_width_downgrade_rx_active) == 0) { 7633 /* Tx or Rx is outside the enabled policy */ 7634 dd_dev_err(ppd->dd, 7635 "Link is outside of downgrade allowed, downing link\n"); 7636 dd_dev_err(ppd->dd, 7637 " enabled 0x%x, tx active 0x%x, rx active 0x%x\n", 7638 lwde, ppd->link_width_downgrade_tx_active, 7639 ppd->link_width_downgrade_rx_active); 7640 do_bounce = 1; 7641 link_downgraded = false; 7642 } 7643 7644 done: 7645 mutex_unlock(&ppd->hls_lock); 7646 7647 if (do_bounce) { 7648 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0, 7649 OPA_LINKDOWN_REASON_WIDTH_POLICY); 7650 set_link_state(ppd, HLS_DN_OFFLINE); 7651 start_link(ppd); 7652 } 7653 7654 return link_downgraded; 7655 } 7656 7657 /* 7658 * Handle a link downgrade interrupt from the 8051. 7659 * 7660 * This is a work-queue function outside of the interrupt. 7661 */ 7662 void handle_link_downgrade(struct work_struct *work) 7663 { 7664 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 7665 link_downgrade_work); 7666 7667 dd_dev_info(ppd->dd, "8051: Link width downgrade\n"); 7668 if (apply_link_downgrade_policy(ppd, true)) 7669 update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active); 7670 } 7671 7672 static char *dcc_err_string(char *buf, int buf_len, u64 flags) 7673 { 7674 return flag_string(buf, buf_len, flags, dcc_err_flags, 7675 ARRAY_SIZE(dcc_err_flags)); 7676 } 7677 7678 static char *lcb_err_string(char *buf, int buf_len, u64 flags) 7679 { 7680 return flag_string(buf, buf_len, flags, lcb_err_flags, 7681 ARRAY_SIZE(lcb_err_flags)); 7682 } 7683 7684 static char *dc8051_err_string(char *buf, int buf_len, u64 flags) 7685 { 7686 return flag_string(buf, buf_len, flags, dc8051_err_flags, 7687 ARRAY_SIZE(dc8051_err_flags)); 7688 } 7689 7690 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags) 7691 { 7692 return flag_string(buf, buf_len, flags, dc8051_info_err_flags, 7693 ARRAY_SIZE(dc8051_info_err_flags)); 7694 } 7695 7696 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags) 7697 { 7698 return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags, 7699 ARRAY_SIZE(dc8051_info_host_msg_flags)); 7700 } 7701 7702 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg) 7703 { 7704 struct hfi1_pportdata *ppd = dd->pport; 7705 u64 info, err, host_msg; 7706 int queue_link_down = 0; 7707 char buf[96]; 7708 7709 /* look at the flags */ 7710 if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) { 7711 /* 8051 information set by firmware */ 7712 /* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */ 7713 info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051); 7714 err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT) 7715 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK; 7716 host_msg = (info >> 7717 DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT) 7718 & DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK; 7719 7720 /* 7721 * Handle error flags. 7722 */ 7723 if (err & FAILED_LNI) { 7724 /* 7725 * LNI error indications are cleared by the 8051 7726 * only when starting polling. Only pay attention 7727 * to them when in the states that occur during 7728 * LNI. 7729 */ 7730 if (ppd->host_link_state 7731 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 7732 queue_link_down = 1; 7733 dd_dev_info(dd, "Link error: %s\n", 7734 dc8051_info_err_string(buf, 7735 sizeof(buf), 7736 err & 7737 FAILED_LNI)); 7738 } 7739 err &= ~(u64)FAILED_LNI; 7740 } 7741 /* unknown frames can happen durning LNI, just count */ 7742 if (err & UNKNOWN_FRAME) { 7743 ppd->unknown_frame_count++; 7744 err &= ~(u64)UNKNOWN_FRAME; 7745 } 7746 if (err) { 7747 /* report remaining errors, but do not do anything */ 7748 dd_dev_err(dd, "8051 info error: %s\n", 7749 dc8051_info_err_string(buf, sizeof(buf), 7750 err)); 7751 } 7752 7753 /* 7754 * Handle host message flags. 7755 */ 7756 if (host_msg & HOST_REQ_DONE) { 7757 /* 7758 * Presently, the driver does a busy wait for 7759 * host requests to complete. This is only an 7760 * informational message. 7761 * NOTE: The 8051 clears the host message 7762 * information *on the next 8051 command*. 7763 * Therefore, when linkup is achieved, 7764 * this flag will still be set. 7765 */ 7766 host_msg &= ~(u64)HOST_REQ_DONE; 7767 } 7768 if (host_msg & BC_SMA_MSG) { 7769 queue_work(ppd->link_wq, &ppd->sma_message_work); 7770 host_msg &= ~(u64)BC_SMA_MSG; 7771 } 7772 if (host_msg & LINKUP_ACHIEVED) { 7773 dd_dev_info(dd, "8051: Link up\n"); 7774 queue_work(ppd->link_wq, &ppd->link_up_work); 7775 host_msg &= ~(u64)LINKUP_ACHIEVED; 7776 } 7777 if (host_msg & EXT_DEVICE_CFG_REQ) { 7778 handle_8051_request(ppd); 7779 host_msg &= ~(u64)EXT_DEVICE_CFG_REQ; 7780 } 7781 if (host_msg & VERIFY_CAP_FRAME) { 7782 queue_work(ppd->link_wq, &ppd->link_vc_work); 7783 host_msg &= ~(u64)VERIFY_CAP_FRAME; 7784 } 7785 if (host_msg & LINK_GOING_DOWN) { 7786 const char *extra = ""; 7787 /* no downgrade action needed if going down */ 7788 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7789 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7790 extra = " (ignoring downgrade)"; 7791 } 7792 dd_dev_info(dd, "8051: Link down%s\n", extra); 7793 queue_link_down = 1; 7794 host_msg &= ~(u64)LINK_GOING_DOWN; 7795 } 7796 if (host_msg & LINK_WIDTH_DOWNGRADED) { 7797 queue_work(ppd->link_wq, &ppd->link_downgrade_work); 7798 host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED; 7799 } 7800 if (host_msg) { 7801 /* report remaining messages, but do not do anything */ 7802 dd_dev_info(dd, "8051 info host message: %s\n", 7803 dc8051_info_host_msg_string(buf, 7804 sizeof(buf), 7805 host_msg)); 7806 } 7807 7808 reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK; 7809 } 7810 if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) { 7811 /* 7812 * Lost the 8051 heartbeat. If this happens, we 7813 * receive constant interrupts about it. Disable 7814 * the interrupt after the first. 7815 */ 7816 dd_dev_err(dd, "Lost 8051 heartbeat\n"); 7817 write_csr(dd, DC_DC8051_ERR_EN, 7818 read_csr(dd, DC_DC8051_ERR_EN) & 7819 ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK); 7820 7821 reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK; 7822 } 7823 if (reg) { 7824 /* report the error, but do not do anything */ 7825 dd_dev_err(dd, "8051 error: %s\n", 7826 dc8051_err_string(buf, sizeof(buf), reg)); 7827 } 7828 7829 if (queue_link_down) { 7830 /* 7831 * if the link is already going down or disabled, do not 7832 * queue another. If there's a link down entry already 7833 * queued, don't queue another one. 7834 */ 7835 if ((ppd->host_link_state & 7836 (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) || 7837 ppd->link_enabled == 0) { 7838 dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n", 7839 __func__, ppd->host_link_state, 7840 ppd->link_enabled); 7841 } else { 7842 if (xchg(&ppd->is_link_down_queued, 1) == 1) 7843 dd_dev_info(dd, 7844 "%s: link down request already queued\n", 7845 __func__); 7846 else 7847 queue_work(ppd->link_wq, &ppd->link_down_work); 7848 } 7849 } 7850 } 7851 7852 static const char * const fm_config_txt[] = { 7853 [0] = 7854 "BadHeadDist: Distance violation between two head flits", 7855 [1] = 7856 "BadTailDist: Distance violation between two tail flits", 7857 [2] = 7858 "BadCtrlDist: Distance violation between two credit control flits", 7859 [3] = 7860 "BadCrdAck: Credits return for unsupported VL", 7861 [4] = 7862 "UnsupportedVLMarker: Received VL Marker", 7863 [5] = 7864 "BadPreempt: Exceeded the preemption nesting level", 7865 [6] = 7866 "BadControlFlit: Received unsupported control flit", 7867 /* no 7 */ 7868 [8] = 7869 "UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL", 7870 }; 7871 7872 static const char * const port_rcv_txt[] = { 7873 [1] = 7874 "BadPktLen: Illegal PktLen", 7875 [2] = 7876 "PktLenTooLong: Packet longer than PktLen", 7877 [3] = 7878 "PktLenTooShort: Packet shorter than PktLen", 7879 [4] = 7880 "BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)", 7881 [5] = 7882 "BadDLID: Illegal DLID (0, doesn't match HFI)", 7883 [6] = 7884 "BadL2: Illegal L2 opcode", 7885 [7] = 7886 "BadSC: Unsupported SC", 7887 [9] = 7888 "BadRC: Illegal RC", 7889 [11] = 7890 "PreemptError: Preempting with same VL", 7891 [12] = 7892 "PreemptVL15: Preempting a VL15 packet", 7893 }; 7894 7895 #define OPA_LDR_FMCONFIG_OFFSET 16 7896 #define OPA_LDR_PORTRCV_OFFSET 0 7897 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 7898 { 7899 u64 info, hdr0, hdr1; 7900 const char *extra; 7901 char buf[96]; 7902 struct hfi1_pportdata *ppd = dd->pport; 7903 u8 lcl_reason = 0; 7904 int do_bounce = 0; 7905 7906 if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) { 7907 if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) { 7908 info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE); 7909 dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK; 7910 /* set status bit */ 7911 dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK; 7912 } 7913 reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK; 7914 } 7915 7916 if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) { 7917 struct hfi1_pportdata *ppd = dd->pport; 7918 /* this counter saturates at (2^32) - 1 */ 7919 if (ppd->link_downed < (u32)UINT_MAX) 7920 ppd->link_downed++; 7921 reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK; 7922 } 7923 7924 if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) { 7925 u8 reason_valid = 1; 7926 7927 info = read_csr(dd, DCC_ERR_INFO_FMCONFIG); 7928 if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) { 7929 dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK; 7930 /* set status bit */ 7931 dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK; 7932 } 7933 switch (info) { 7934 case 0: 7935 case 1: 7936 case 2: 7937 case 3: 7938 case 4: 7939 case 5: 7940 case 6: 7941 extra = fm_config_txt[info]; 7942 break; 7943 case 8: 7944 extra = fm_config_txt[info]; 7945 if (ppd->port_error_action & 7946 OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) { 7947 do_bounce = 1; 7948 /* 7949 * lcl_reason cannot be derived from info 7950 * for this error 7951 */ 7952 lcl_reason = 7953 OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER; 7954 } 7955 break; 7956 default: 7957 reason_valid = 0; 7958 snprintf(buf, sizeof(buf), "reserved%lld", info); 7959 extra = buf; 7960 break; 7961 } 7962 7963 if (reason_valid && !do_bounce) { 7964 do_bounce = ppd->port_error_action & 7965 (1 << (OPA_LDR_FMCONFIG_OFFSET + info)); 7966 lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST; 7967 } 7968 7969 /* just report this */ 7970 dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n", 7971 extra); 7972 reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK; 7973 } 7974 7975 if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) { 7976 u8 reason_valid = 1; 7977 7978 info = read_csr(dd, DCC_ERR_INFO_PORTRCV); 7979 hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0); 7980 hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1); 7981 if (!(dd->err_info_rcvport.status_and_code & 7982 OPA_EI_STATUS_SMASK)) { 7983 dd->err_info_rcvport.status_and_code = 7984 info & OPA_EI_CODE_SMASK; 7985 /* set status bit */ 7986 dd->err_info_rcvport.status_and_code |= 7987 OPA_EI_STATUS_SMASK; 7988 /* 7989 * save first 2 flits in the packet that caused 7990 * the error 7991 */ 7992 dd->err_info_rcvport.packet_flit1 = hdr0; 7993 dd->err_info_rcvport.packet_flit2 = hdr1; 7994 } 7995 switch (info) { 7996 case 1: 7997 case 2: 7998 case 3: 7999 case 4: 8000 case 5: 8001 case 6: 8002 case 7: 8003 case 9: 8004 case 11: 8005 case 12: 8006 extra = port_rcv_txt[info]; 8007 break; 8008 default: 8009 reason_valid = 0; 8010 snprintf(buf, sizeof(buf), "reserved%lld", info); 8011 extra = buf; 8012 break; 8013 } 8014 8015 if (reason_valid && !do_bounce) { 8016 do_bounce = ppd->port_error_action & 8017 (1 << (OPA_LDR_PORTRCV_OFFSET + info)); 8018 lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0; 8019 } 8020 8021 /* just report this */ 8022 dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n" 8023 " hdr0 0x%llx, hdr1 0x%llx\n", 8024 extra, hdr0, hdr1); 8025 8026 reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK; 8027 } 8028 8029 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) { 8030 /* informative only */ 8031 dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n"); 8032 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK; 8033 } 8034 if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) { 8035 /* informative only */ 8036 dd_dev_info_ratelimited(dd, "host access to LCB blocked\n"); 8037 reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK; 8038 } 8039 8040 if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev))) 8041 reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK; 8042 8043 /* report any remaining errors */ 8044 if (reg) 8045 dd_dev_info_ratelimited(dd, "DCC Error: %s\n", 8046 dcc_err_string(buf, sizeof(buf), reg)); 8047 8048 if (lcl_reason == 0) 8049 lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN; 8050 8051 if (do_bounce) { 8052 dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n", 8053 __func__); 8054 set_link_down_reason(ppd, lcl_reason, 0, lcl_reason); 8055 queue_work(ppd->link_wq, &ppd->link_bounce_work); 8056 } 8057 } 8058 8059 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg) 8060 { 8061 char buf[96]; 8062 8063 dd_dev_info(dd, "LCB Error: %s\n", 8064 lcb_err_string(buf, sizeof(buf), reg)); 8065 } 8066 8067 /* 8068 * CCE block DC interrupt. Source is < 8. 8069 */ 8070 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source) 8071 { 8072 const struct err_reg_info *eri = &dc_errs[source]; 8073 8074 if (eri->handler) { 8075 interrupt_clear_down(dd, 0, eri); 8076 } else if (source == 3 /* dc_lbm_int */) { 8077 /* 8078 * This indicates that a parity error has occurred on the 8079 * address/control lines presented to the LBM. The error 8080 * is a single pulse, there is no associated error flag, 8081 * and it is non-maskable. This is because if a parity 8082 * error occurs on the request the request is dropped. 8083 * This should never occur, but it is nice to know if it 8084 * ever does. 8085 */ 8086 dd_dev_err(dd, "Parity error in DC LBM block\n"); 8087 } else { 8088 dd_dev_err(dd, "Invalid DC interrupt %u\n", source); 8089 } 8090 } 8091 8092 /* 8093 * TX block send credit interrupt. Source is < 160. 8094 */ 8095 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source) 8096 { 8097 sc_group_release_update(dd, source); 8098 } 8099 8100 /* 8101 * TX block SDMA interrupt. Source is < 48. 8102 * 8103 * SDMA interrupts are grouped by type: 8104 * 8105 * 0 - N-1 = SDma 8106 * N - 2N-1 = SDmaProgress 8107 * 2N - 3N-1 = SDmaIdle 8108 */ 8109 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source) 8110 { 8111 /* what interrupt */ 8112 unsigned int what = source / TXE_NUM_SDMA_ENGINES; 8113 /* which engine */ 8114 unsigned int which = source % TXE_NUM_SDMA_ENGINES; 8115 8116 #ifdef CONFIG_SDMA_VERBOSITY 8117 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which, 8118 slashstrip(__FILE__), __LINE__, __func__); 8119 sdma_dumpstate(&dd->per_sdma[which]); 8120 #endif 8121 8122 if (likely(what < 3 && which < dd->num_sdma)) { 8123 sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source); 8124 } else { 8125 /* should not happen */ 8126 dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source); 8127 } 8128 } 8129 8130 /* 8131 * RX block receive available interrupt. Source is < 160. 8132 */ 8133 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source) 8134 { 8135 struct hfi1_ctxtdata *rcd; 8136 char *err_detail; 8137 8138 if (likely(source < dd->num_rcv_contexts)) { 8139 rcd = hfi1_rcd_get_by_index(dd, source); 8140 if (rcd) { 8141 /* Check for non-user contexts, including vnic */ 8142 if (source < dd->first_dyn_alloc_ctxt || rcd->is_vnic) 8143 rcd->do_interrupt(rcd, 0); 8144 else 8145 handle_user_interrupt(rcd); 8146 8147 hfi1_rcd_put(rcd); 8148 return; /* OK */ 8149 } 8150 /* received an interrupt, but no rcd */ 8151 err_detail = "dataless"; 8152 } else { 8153 /* received an interrupt, but are not using that context */ 8154 err_detail = "out of range"; 8155 } 8156 dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n", 8157 err_detail, source); 8158 } 8159 8160 /* 8161 * RX block receive urgent interrupt. Source is < 160. 8162 */ 8163 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source) 8164 { 8165 struct hfi1_ctxtdata *rcd; 8166 char *err_detail; 8167 8168 if (likely(source < dd->num_rcv_contexts)) { 8169 rcd = hfi1_rcd_get_by_index(dd, source); 8170 if (rcd) { 8171 /* only pay attention to user urgent interrupts */ 8172 if (source >= dd->first_dyn_alloc_ctxt && 8173 !rcd->is_vnic) 8174 handle_user_interrupt(rcd); 8175 8176 hfi1_rcd_put(rcd); 8177 return; /* OK */ 8178 } 8179 /* received an interrupt, but no rcd */ 8180 err_detail = "dataless"; 8181 } else { 8182 /* received an interrupt, but are not using that context */ 8183 err_detail = "out of range"; 8184 } 8185 dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n", 8186 err_detail, source); 8187 } 8188 8189 /* 8190 * Reserved range interrupt. Should not be called in normal operation. 8191 */ 8192 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source) 8193 { 8194 char name[64]; 8195 8196 dd_dev_err(dd, "unexpected %s interrupt\n", 8197 is_reserved_name(name, sizeof(name), source)); 8198 } 8199 8200 static const struct is_table is_table[] = { 8201 /* 8202 * start end 8203 * name func interrupt func 8204 */ 8205 { IS_GENERAL_ERR_START, IS_GENERAL_ERR_END, 8206 is_misc_err_name, is_misc_err_int }, 8207 { IS_SDMAENG_ERR_START, IS_SDMAENG_ERR_END, 8208 is_sdma_eng_err_name, is_sdma_eng_err_int }, 8209 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, 8210 is_sendctxt_err_name, is_sendctxt_err_int }, 8211 { IS_SDMA_START, IS_SDMA_END, 8212 is_sdma_eng_name, is_sdma_eng_int }, 8213 { IS_VARIOUS_START, IS_VARIOUS_END, 8214 is_various_name, is_various_int }, 8215 { IS_DC_START, IS_DC_END, 8216 is_dc_name, is_dc_int }, 8217 { IS_RCVAVAIL_START, IS_RCVAVAIL_END, 8218 is_rcv_avail_name, is_rcv_avail_int }, 8219 { IS_RCVURGENT_START, IS_RCVURGENT_END, 8220 is_rcv_urgent_name, is_rcv_urgent_int }, 8221 { IS_SENDCREDIT_START, IS_SENDCREDIT_END, 8222 is_send_credit_name, is_send_credit_int}, 8223 { IS_RESERVED_START, IS_RESERVED_END, 8224 is_reserved_name, is_reserved_int}, 8225 }; 8226 8227 /* 8228 * Interrupt source interrupt - called when the given source has an interrupt. 8229 * Source is a bit index into an array of 64-bit integers. 8230 */ 8231 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source) 8232 { 8233 const struct is_table *entry; 8234 8235 /* avoids a double compare by walking the table in-order */ 8236 for (entry = &is_table[0]; entry->is_name; entry++) { 8237 if (source < entry->end) { 8238 trace_hfi1_interrupt(dd, entry, source); 8239 entry->is_int(dd, source - entry->start); 8240 return; 8241 } 8242 } 8243 /* fell off the end */ 8244 dd_dev_err(dd, "invalid interrupt source %u\n", source); 8245 } 8246 8247 /* 8248 * General interrupt handler. This is able to correctly handle 8249 * all interrupts in case INTx is used. 8250 */ 8251 static irqreturn_t general_interrupt(int irq, void *data) 8252 { 8253 struct hfi1_devdata *dd = data; 8254 u64 regs[CCE_NUM_INT_CSRS]; 8255 u32 bit; 8256 int i; 8257 irqreturn_t handled = IRQ_NONE; 8258 8259 this_cpu_inc(*dd->int_counter); 8260 8261 /* phase 1: scan and clear all handled interrupts */ 8262 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 8263 if (dd->gi_mask[i] == 0) { 8264 regs[i] = 0; /* used later */ 8265 continue; 8266 } 8267 regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) & 8268 dd->gi_mask[i]; 8269 /* only clear if anything is set */ 8270 if (regs[i]) 8271 write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]); 8272 } 8273 8274 /* phase 2: call the appropriate handler */ 8275 for_each_set_bit(bit, (unsigned long *)®s[0], 8276 CCE_NUM_INT_CSRS * 64) { 8277 is_interrupt(dd, bit); 8278 handled = IRQ_HANDLED; 8279 } 8280 8281 return handled; 8282 } 8283 8284 static irqreturn_t sdma_interrupt(int irq, void *data) 8285 { 8286 struct sdma_engine *sde = data; 8287 struct hfi1_devdata *dd = sde->dd; 8288 u64 status; 8289 8290 #ifdef CONFIG_SDMA_VERBOSITY 8291 dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx, 8292 slashstrip(__FILE__), __LINE__, __func__); 8293 sdma_dumpstate(sde); 8294 #endif 8295 8296 this_cpu_inc(*dd->int_counter); 8297 8298 /* This read_csr is really bad in the hot path */ 8299 status = read_csr(dd, 8300 CCE_INT_STATUS + (8 * (IS_SDMA_START / 64))) 8301 & sde->imask; 8302 if (likely(status)) { 8303 /* clear the interrupt(s) */ 8304 write_csr(dd, 8305 CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)), 8306 status); 8307 8308 /* handle the interrupt(s) */ 8309 sdma_engine_interrupt(sde, status); 8310 } else { 8311 dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n", 8312 sde->this_idx); 8313 } 8314 return IRQ_HANDLED; 8315 } 8316 8317 /* 8318 * Clear the receive interrupt. Use a read of the interrupt clear CSR 8319 * to insure that the write completed. This does NOT guarantee that 8320 * queued DMA writes to memory from the chip are pushed. 8321 */ 8322 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd) 8323 { 8324 struct hfi1_devdata *dd = rcd->dd; 8325 u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg); 8326 8327 mmiowb(); /* make sure everything before is written */ 8328 write_csr(dd, addr, rcd->imask); 8329 /* force the above write on the chip and get a value back */ 8330 (void)read_csr(dd, addr); 8331 } 8332 8333 /* force the receive interrupt */ 8334 void force_recv_intr(struct hfi1_ctxtdata *rcd) 8335 { 8336 write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask); 8337 } 8338 8339 /* 8340 * Return non-zero if a packet is present. 8341 * 8342 * This routine is called when rechecking for packets after the RcvAvail 8343 * interrupt has been cleared down. First, do a quick check of memory for 8344 * a packet present. If not found, use an expensive CSR read of the context 8345 * tail to determine the actual tail. The CSR read is necessary because there 8346 * is no method to push pending DMAs to memory other than an interrupt and we 8347 * are trying to determine if we need to force an interrupt. 8348 */ 8349 static inline int check_packet_present(struct hfi1_ctxtdata *rcd) 8350 { 8351 u32 tail; 8352 int present; 8353 8354 if (!HFI1_CAP_IS_KSET(DMA_RTAIL)) 8355 present = (rcd->seq_cnt == 8356 rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd)))); 8357 else /* is RDMA rtail */ 8358 present = (rcd->head != get_rcvhdrtail(rcd)); 8359 8360 if (present) 8361 return 1; 8362 8363 /* fall back to a CSR read, correct indpendent of DMA_RTAIL */ 8364 tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 8365 return rcd->head != tail; 8366 } 8367 8368 /* 8369 * Receive packet IRQ handler. This routine expects to be on its own IRQ. 8370 * This routine will try to handle packets immediately (latency), but if 8371 * it finds too many, it will invoke the thread handler (bandwitdh). The 8372 * chip receive interrupt is *not* cleared down until this or the thread (if 8373 * invoked) is finished. The intent is to avoid extra interrupts while we 8374 * are processing packets anyway. 8375 */ 8376 static irqreturn_t receive_context_interrupt(int irq, void *data) 8377 { 8378 struct hfi1_ctxtdata *rcd = data; 8379 struct hfi1_devdata *dd = rcd->dd; 8380 int disposition; 8381 int present; 8382 8383 trace_hfi1_receive_interrupt(dd, rcd); 8384 this_cpu_inc(*dd->int_counter); 8385 aspm_ctx_disable(rcd); 8386 8387 /* receive interrupt remains blocked while processing packets */ 8388 disposition = rcd->do_interrupt(rcd, 0); 8389 8390 /* 8391 * Too many packets were seen while processing packets in this 8392 * IRQ handler. Invoke the handler thread. The receive interrupt 8393 * remains blocked. 8394 */ 8395 if (disposition == RCV_PKT_LIMIT) 8396 return IRQ_WAKE_THREAD; 8397 8398 /* 8399 * The packet processor detected no more packets. Clear the receive 8400 * interrupt and recheck for a packet packet that may have arrived 8401 * after the previous check and interrupt clear. If a packet arrived, 8402 * force another interrupt. 8403 */ 8404 clear_recv_intr(rcd); 8405 present = check_packet_present(rcd); 8406 if (present) 8407 force_recv_intr(rcd); 8408 8409 return IRQ_HANDLED; 8410 } 8411 8412 /* 8413 * Receive packet thread handler. This expects to be invoked with the 8414 * receive interrupt still blocked. 8415 */ 8416 static irqreturn_t receive_context_thread(int irq, void *data) 8417 { 8418 struct hfi1_ctxtdata *rcd = data; 8419 int present; 8420 8421 /* receive interrupt is still blocked from the IRQ handler */ 8422 (void)rcd->do_interrupt(rcd, 1); 8423 8424 /* 8425 * The packet processor will only return if it detected no more 8426 * packets. Hold IRQs here so we can safely clear the interrupt and 8427 * recheck for a packet that may have arrived after the previous 8428 * check and the interrupt clear. If a packet arrived, force another 8429 * interrupt. 8430 */ 8431 local_irq_disable(); 8432 clear_recv_intr(rcd); 8433 present = check_packet_present(rcd); 8434 if (present) 8435 force_recv_intr(rcd); 8436 local_irq_enable(); 8437 8438 return IRQ_HANDLED; 8439 } 8440 8441 /* ========================================================================= */ 8442 8443 u32 read_physical_state(struct hfi1_devdata *dd) 8444 { 8445 u64 reg; 8446 8447 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); 8448 return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT) 8449 & DC_DC8051_STS_CUR_STATE_PORT_MASK; 8450 } 8451 8452 u32 read_logical_state(struct hfi1_devdata *dd) 8453 { 8454 u64 reg; 8455 8456 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8457 return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT) 8458 & DCC_CFG_PORT_CONFIG_LINK_STATE_MASK; 8459 } 8460 8461 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate) 8462 { 8463 u64 reg; 8464 8465 reg = read_csr(dd, DCC_CFG_PORT_CONFIG); 8466 /* clear current state, set new state */ 8467 reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK; 8468 reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT; 8469 write_csr(dd, DCC_CFG_PORT_CONFIG, reg); 8470 } 8471 8472 /* 8473 * Use the 8051 to read a LCB CSR. 8474 */ 8475 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data) 8476 { 8477 u32 regno; 8478 int ret; 8479 8480 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 8481 if (acquire_lcb_access(dd, 0) == 0) { 8482 *data = read_csr(dd, addr); 8483 release_lcb_access(dd, 0); 8484 return 0; 8485 } 8486 return -EBUSY; 8487 } 8488 8489 /* register is an index of LCB registers: (offset - base) / 8 */ 8490 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8491 ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data); 8492 if (ret != HCMD_SUCCESS) 8493 return -EBUSY; 8494 return 0; 8495 } 8496 8497 /* 8498 * Provide a cache for some of the LCB registers in case the LCB is 8499 * unavailable. 8500 * (The LCB is unavailable in certain link states, for example.) 8501 */ 8502 struct lcb_datum { 8503 u32 off; 8504 u64 val; 8505 }; 8506 8507 static struct lcb_datum lcb_cache[] = { 8508 { DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0}, 8509 { DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 }, 8510 { DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 }, 8511 }; 8512 8513 static void update_lcb_cache(struct hfi1_devdata *dd) 8514 { 8515 int i; 8516 int ret; 8517 u64 val; 8518 8519 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8520 ret = read_lcb_csr(dd, lcb_cache[i].off, &val); 8521 8522 /* Update if we get good data */ 8523 if (likely(ret != -EBUSY)) 8524 lcb_cache[i].val = val; 8525 } 8526 } 8527 8528 static int read_lcb_cache(u32 off, u64 *val) 8529 { 8530 int i; 8531 8532 for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) { 8533 if (lcb_cache[i].off == off) { 8534 *val = lcb_cache[i].val; 8535 return 0; 8536 } 8537 } 8538 8539 pr_warn("%s bad offset 0x%x\n", __func__, off); 8540 return -1; 8541 } 8542 8543 /* 8544 * Read an LCB CSR. Access may not be in host control, so check. 8545 * Return 0 on success, -EBUSY on failure. 8546 */ 8547 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data) 8548 { 8549 struct hfi1_pportdata *ppd = dd->pport; 8550 8551 /* if up, go through the 8051 for the value */ 8552 if (ppd->host_link_state & HLS_UP) 8553 return read_lcb_via_8051(dd, addr, data); 8554 /* if going up or down, check the cache, otherwise, no access */ 8555 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) { 8556 if (read_lcb_cache(addr, data)) 8557 return -EBUSY; 8558 return 0; 8559 } 8560 8561 /* otherwise, host has access */ 8562 *data = read_csr(dd, addr); 8563 return 0; 8564 } 8565 8566 /* 8567 * Use the 8051 to write a LCB CSR. 8568 */ 8569 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data) 8570 { 8571 u32 regno; 8572 int ret; 8573 8574 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || 8575 (dd->dc8051_ver < dc8051_ver(0, 20, 0))) { 8576 if (acquire_lcb_access(dd, 0) == 0) { 8577 write_csr(dd, addr, data); 8578 release_lcb_access(dd, 0); 8579 return 0; 8580 } 8581 return -EBUSY; 8582 } 8583 8584 /* register is an index of LCB registers: (offset - base) / 8 */ 8585 regno = (addr - DC_LCB_CFG_RUN) >> 3; 8586 ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data); 8587 if (ret != HCMD_SUCCESS) 8588 return -EBUSY; 8589 return 0; 8590 } 8591 8592 /* 8593 * Write an LCB CSR. Access may not be in host control, so check. 8594 * Return 0 on success, -EBUSY on failure. 8595 */ 8596 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data) 8597 { 8598 struct hfi1_pportdata *ppd = dd->pport; 8599 8600 /* if up, go through the 8051 for the value */ 8601 if (ppd->host_link_state & HLS_UP) 8602 return write_lcb_via_8051(dd, addr, data); 8603 /* if going up or down, no access */ 8604 if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) 8605 return -EBUSY; 8606 /* otherwise, host has access */ 8607 write_csr(dd, addr, data); 8608 return 0; 8609 } 8610 8611 /* 8612 * Returns: 8613 * < 0 = Linux error, not able to get access 8614 * > 0 = 8051 command RETURN_CODE 8615 */ 8616 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data, 8617 u64 *out_data) 8618 { 8619 u64 reg, completed; 8620 int return_code; 8621 unsigned long timeout; 8622 8623 hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data); 8624 8625 mutex_lock(&dd->dc8051_lock); 8626 8627 /* We can't send any commands to the 8051 if it's in reset */ 8628 if (dd->dc_shutdown) { 8629 return_code = -ENODEV; 8630 goto fail; 8631 } 8632 8633 /* 8634 * If an 8051 host command timed out previously, then the 8051 is 8635 * stuck. 8636 * 8637 * On first timeout, attempt to reset and restart the entire DC 8638 * block (including 8051). (Is this too big of a hammer?) 8639 * 8640 * If the 8051 times out a second time, the reset did not bring it 8641 * back to healthy life. In that case, fail any subsequent commands. 8642 */ 8643 if (dd->dc8051_timed_out) { 8644 if (dd->dc8051_timed_out > 1) { 8645 dd_dev_err(dd, 8646 "Previous 8051 host command timed out, skipping command %u\n", 8647 type); 8648 return_code = -ENXIO; 8649 goto fail; 8650 } 8651 _dc_shutdown(dd); 8652 _dc_start(dd); 8653 } 8654 8655 /* 8656 * If there is no timeout, then the 8051 command interface is 8657 * waiting for a command. 8658 */ 8659 8660 /* 8661 * When writing a LCB CSR, out_data contains the full value to 8662 * to be written, while in_data contains the relative LCB 8663 * address in 7:0. Do the work here, rather than the caller, 8664 * of distrubting the write data to where it needs to go: 8665 * 8666 * Write data 8667 * 39:00 -> in_data[47:8] 8668 * 47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE 8669 * 63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA 8670 */ 8671 if (type == HCMD_WRITE_LCB_CSR) { 8672 in_data |= ((*out_data) & 0xffffffffffull) << 8; 8673 /* must preserve COMPLETED - it is tied to hardware */ 8674 reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0); 8675 reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK; 8676 reg |= ((((*out_data) >> 40) & 0xff) << 8677 DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT) 8678 | ((((*out_data) >> 48) & 0xffff) << 8679 DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT); 8680 write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg); 8681 } 8682 8683 /* 8684 * Do two writes: the first to stabilize the type and req_data, the 8685 * second to activate. 8686 */ 8687 reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK) 8688 << DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT 8689 | (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK) 8690 << DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT; 8691 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8692 reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK; 8693 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg); 8694 8695 /* wait for completion, alternate: interrupt */ 8696 timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT); 8697 while (1) { 8698 reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1); 8699 completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK; 8700 if (completed) 8701 break; 8702 if (time_after(jiffies, timeout)) { 8703 dd->dc8051_timed_out++; 8704 dd_dev_err(dd, "8051 host command %u timeout\n", type); 8705 if (out_data) 8706 *out_data = 0; 8707 return_code = -ETIMEDOUT; 8708 goto fail; 8709 } 8710 udelay(2); 8711 } 8712 8713 if (out_data) { 8714 *out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT) 8715 & DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK; 8716 if (type == HCMD_READ_LCB_CSR) { 8717 /* top 16 bits are in a different register */ 8718 *out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1) 8719 & DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK) 8720 << (48 8721 - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT); 8722 } 8723 } 8724 return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT) 8725 & DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK; 8726 dd->dc8051_timed_out = 0; 8727 /* 8728 * Clear command for next user. 8729 */ 8730 write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0); 8731 8732 fail: 8733 mutex_unlock(&dd->dc8051_lock); 8734 return return_code; 8735 } 8736 8737 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state) 8738 { 8739 return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL); 8740 } 8741 8742 int load_8051_config(struct hfi1_devdata *dd, u8 field_id, 8743 u8 lane_id, u32 config_data) 8744 { 8745 u64 data; 8746 int ret; 8747 8748 data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT 8749 | (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT 8750 | (u64)config_data << LOAD_DATA_DATA_SHIFT; 8751 ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL); 8752 if (ret != HCMD_SUCCESS) { 8753 dd_dev_err(dd, 8754 "load 8051 config: field id %d, lane %d, err %d\n", 8755 (int)field_id, (int)lane_id, ret); 8756 } 8757 return ret; 8758 } 8759 8760 /* 8761 * Read the 8051 firmware "registers". Use the RAM directly. Always 8762 * set the result, even on error. 8763 * Return 0 on success, -errno on failure 8764 */ 8765 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id, 8766 u32 *result) 8767 { 8768 u64 big_data; 8769 u32 addr; 8770 int ret; 8771 8772 /* address start depends on the lane_id */ 8773 if (lane_id < 4) 8774 addr = (4 * NUM_GENERAL_FIELDS) 8775 + (lane_id * 4 * NUM_LANE_FIELDS); 8776 else 8777 addr = 0; 8778 addr += field_id * 4; 8779 8780 /* read is in 8-byte chunks, hardware will truncate the address down */ 8781 ret = read_8051_data(dd, addr, 8, &big_data); 8782 8783 if (ret == 0) { 8784 /* extract the 4 bytes we want */ 8785 if (addr & 0x4) 8786 *result = (u32)(big_data >> 32); 8787 else 8788 *result = (u32)big_data; 8789 } else { 8790 *result = 0; 8791 dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n", 8792 __func__, lane_id, field_id); 8793 } 8794 8795 return ret; 8796 } 8797 8798 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management, 8799 u8 continuous) 8800 { 8801 u32 frame; 8802 8803 frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT 8804 | power_management << POWER_MANAGEMENT_SHIFT; 8805 return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY, 8806 GENERAL_CONFIG, frame); 8807 } 8808 8809 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu, 8810 u16 vl15buf, u8 crc_sizes) 8811 { 8812 u32 frame; 8813 8814 frame = (u32)vau << VAU_SHIFT 8815 | (u32)z << Z_SHIFT 8816 | (u32)vcu << VCU_SHIFT 8817 | (u32)vl15buf << VL15BUF_SHIFT 8818 | (u32)crc_sizes << CRC_SIZES_SHIFT; 8819 return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC, 8820 GENERAL_CONFIG, frame); 8821 } 8822 8823 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits, 8824 u8 *flag_bits, u16 *link_widths) 8825 { 8826 u32 frame; 8827 8828 read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8829 &frame); 8830 *misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK; 8831 *flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK; 8832 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8833 } 8834 8835 static int write_vc_local_link_width(struct hfi1_devdata *dd, 8836 u8 misc_bits, 8837 u8 flag_bits, 8838 u16 link_widths) 8839 { 8840 u32 frame; 8841 8842 frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT 8843 | (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT 8844 | (u32)link_widths << LINK_WIDTH_SHIFT; 8845 return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG, 8846 frame); 8847 } 8848 8849 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id, 8850 u8 device_rev) 8851 { 8852 u32 frame; 8853 8854 frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT) 8855 | ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT); 8856 return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame); 8857 } 8858 8859 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id, 8860 u8 *device_rev) 8861 { 8862 u32 frame; 8863 8864 read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame); 8865 *device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK; 8866 *device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT) 8867 & REMOTE_DEVICE_REV_MASK; 8868 } 8869 8870 int write_host_interface_version(struct hfi1_devdata *dd, u8 version) 8871 { 8872 u32 frame; 8873 u32 mask; 8874 8875 mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT); 8876 read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame); 8877 /* Clear, then set field */ 8878 frame &= ~mask; 8879 frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT); 8880 return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, 8881 frame); 8882 } 8883 8884 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor, 8885 u8 *ver_patch) 8886 { 8887 u32 frame; 8888 8889 read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame); 8890 *ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) & 8891 STS_FM_VERSION_MAJOR_MASK; 8892 *ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) & 8893 STS_FM_VERSION_MINOR_MASK; 8894 8895 read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame); 8896 *ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) & 8897 STS_FM_VERSION_PATCH_MASK; 8898 } 8899 8900 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management, 8901 u8 *continuous) 8902 { 8903 u32 frame; 8904 8905 read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame); 8906 *power_management = (frame >> POWER_MANAGEMENT_SHIFT) 8907 & POWER_MANAGEMENT_MASK; 8908 *continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT) 8909 & CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK; 8910 } 8911 8912 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z, 8913 u8 *vcu, u16 *vl15buf, u8 *crc_sizes) 8914 { 8915 u32 frame; 8916 8917 read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame); 8918 *vau = (frame >> VAU_SHIFT) & VAU_MASK; 8919 *z = (frame >> Z_SHIFT) & Z_MASK; 8920 *vcu = (frame >> VCU_SHIFT) & VCU_MASK; 8921 *vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK; 8922 *crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK; 8923 } 8924 8925 static void read_vc_remote_link_width(struct hfi1_devdata *dd, 8926 u8 *remote_tx_rate, 8927 u16 *link_widths) 8928 { 8929 u32 frame; 8930 8931 read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG, 8932 &frame); 8933 *remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT) 8934 & REMOTE_TX_RATE_MASK; 8935 *link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK; 8936 } 8937 8938 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx) 8939 { 8940 u32 frame; 8941 8942 read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame); 8943 *enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK; 8944 } 8945 8946 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls) 8947 { 8948 read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls); 8949 } 8950 8951 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs) 8952 { 8953 read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs); 8954 } 8955 8956 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality) 8957 { 8958 u32 frame; 8959 int ret; 8960 8961 *link_quality = 0; 8962 if (dd->pport->host_link_state & HLS_UP) { 8963 ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, 8964 &frame); 8965 if (ret == 0) 8966 *link_quality = (frame >> LINK_QUALITY_SHIFT) 8967 & LINK_QUALITY_MASK; 8968 } 8969 } 8970 8971 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc) 8972 { 8973 u32 frame; 8974 8975 read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame); 8976 *pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK; 8977 } 8978 8979 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr) 8980 { 8981 u32 frame; 8982 8983 read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame); 8984 *ldr = (frame & 0xff); 8985 } 8986 8987 static int read_tx_settings(struct hfi1_devdata *dd, 8988 u8 *enable_lane_tx, 8989 u8 *tx_polarity_inversion, 8990 u8 *rx_polarity_inversion, 8991 u8 *max_rate) 8992 { 8993 u32 frame; 8994 int ret; 8995 8996 ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame); 8997 *enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT) 8998 & ENABLE_LANE_TX_MASK; 8999 *tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT) 9000 & TX_POLARITY_INVERSION_MASK; 9001 *rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT) 9002 & RX_POLARITY_INVERSION_MASK; 9003 *max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK; 9004 return ret; 9005 } 9006 9007 static int write_tx_settings(struct hfi1_devdata *dd, 9008 u8 enable_lane_tx, 9009 u8 tx_polarity_inversion, 9010 u8 rx_polarity_inversion, 9011 u8 max_rate) 9012 { 9013 u32 frame; 9014 9015 /* no need to mask, all variable sizes match field widths */ 9016 frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT 9017 | tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT 9018 | rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT 9019 | max_rate << MAX_RATE_SHIFT; 9020 return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame); 9021 } 9022 9023 /* 9024 * Read an idle LCB message. 9025 * 9026 * Returns 0 on success, -EINVAL on error 9027 */ 9028 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out) 9029 { 9030 int ret; 9031 9032 ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out); 9033 if (ret != HCMD_SUCCESS) { 9034 dd_dev_err(dd, "read idle message: type %d, err %d\n", 9035 (u32)type, ret); 9036 return -EINVAL; 9037 } 9038 dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out); 9039 /* return only the payload as we already know the type */ 9040 *data_out >>= IDLE_PAYLOAD_SHIFT; 9041 return 0; 9042 } 9043 9044 /* 9045 * Read an idle SMA message. To be done in response to a notification from 9046 * the 8051. 9047 * 9048 * Returns 0 on success, -EINVAL on error 9049 */ 9050 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data) 9051 { 9052 return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT, 9053 data); 9054 } 9055 9056 /* 9057 * Send an idle LCB message. 9058 * 9059 * Returns 0 on success, -EINVAL on error 9060 */ 9061 static int send_idle_message(struct hfi1_devdata *dd, u64 data) 9062 { 9063 int ret; 9064 9065 dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data); 9066 ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL); 9067 if (ret != HCMD_SUCCESS) { 9068 dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n", 9069 data, ret); 9070 return -EINVAL; 9071 } 9072 return 0; 9073 } 9074 9075 /* 9076 * Send an idle SMA message. 9077 * 9078 * Returns 0 on success, -EINVAL on error 9079 */ 9080 int send_idle_sma(struct hfi1_devdata *dd, u64 message) 9081 { 9082 u64 data; 9083 9084 data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) | 9085 ((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT); 9086 return send_idle_message(dd, data); 9087 } 9088 9089 /* 9090 * Initialize the LCB then do a quick link up. This may or may not be 9091 * in loopback. 9092 * 9093 * return 0 on success, -errno on error 9094 */ 9095 static int do_quick_linkup(struct hfi1_devdata *dd) 9096 { 9097 int ret; 9098 9099 lcb_shutdown(dd, 0); 9100 9101 if (loopback) { 9102 /* LCB_CFG_LOOPBACK.VAL = 2 */ 9103 /* LCB_CFG_LANE_WIDTH.VAL = 0 */ 9104 write_csr(dd, DC_LCB_CFG_LOOPBACK, 9105 IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT); 9106 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 9107 } 9108 9109 /* start the LCBs */ 9110 /* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */ 9111 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 9112 9113 /* simulator only loopback steps */ 9114 if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) { 9115 /* LCB_CFG_RUN.EN = 1 */ 9116 write_csr(dd, DC_LCB_CFG_RUN, 9117 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 9118 9119 ret = wait_link_transfer_active(dd, 10); 9120 if (ret) 9121 return ret; 9122 9123 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 9124 1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT); 9125 } 9126 9127 if (!loopback) { 9128 /* 9129 * When doing quick linkup and not in loopback, both 9130 * sides must be done with LCB set-up before either 9131 * starts the quick linkup. Put a delay here so that 9132 * both sides can be started and have a chance to be 9133 * done with LCB set up before resuming. 9134 */ 9135 dd_dev_err(dd, 9136 "Pausing for peer to be finished with LCB set up\n"); 9137 msleep(5000); 9138 dd_dev_err(dd, "Continuing with quick linkup\n"); 9139 } 9140 9141 write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */ 9142 set_8051_lcb_access(dd); 9143 9144 /* 9145 * State "quick" LinkUp request sets the physical link state to 9146 * LinkUp without a verify capability sequence. 9147 * This state is in simulator v37 and later. 9148 */ 9149 ret = set_physical_link_state(dd, PLS_QUICK_LINKUP); 9150 if (ret != HCMD_SUCCESS) { 9151 dd_dev_err(dd, 9152 "%s: set physical link state to quick LinkUp failed with return %d\n", 9153 __func__, ret); 9154 9155 set_host_lcb_access(dd); 9156 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 9157 9158 if (ret >= 0) 9159 ret = -EINVAL; 9160 return ret; 9161 } 9162 9163 return 0; /* success */ 9164 } 9165 9166 /* 9167 * Do all special steps to set up loopback. 9168 */ 9169 static int init_loopback(struct hfi1_devdata *dd) 9170 { 9171 dd_dev_info(dd, "Entering loopback mode\n"); 9172 9173 /* all loopbacks should disable self GUID check */ 9174 write_csr(dd, DC_DC8051_CFG_MODE, 9175 (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK)); 9176 9177 /* 9178 * The simulator has only one loopback option - LCB. Switch 9179 * to that option, which includes quick link up. 9180 * 9181 * Accept all valid loopback values. 9182 */ 9183 if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) && 9184 (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB || 9185 loopback == LOOPBACK_CABLE)) { 9186 loopback = LOOPBACK_LCB; 9187 quick_linkup = 1; 9188 return 0; 9189 } 9190 9191 /* 9192 * SerDes loopback init sequence is handled in set_local_link_attributes 9193 */ 9194 if (loopback == LOOPBACK_SERDES) 9195 return 0; 9196 9197 /* LCB loopback - handled at poll time */ 9198 if (loopback == LOOPBACK_LCB) { 9199 quick_linkup = 1; /* LCB is always quick linkup */ 9200 9201 /* not supported in emulation due to emulation RTL changes */ 9202 if (dd->icode == ICODE_FPGA_EMULATION) { 9203 dd_dev_err(dd, 9204 "LCB loopback not supported in emulation\n"); 9205 return -EINVAL; 9206 } 9207 return 0; 9208 } 9209 9210 /* external cable loopback requires no extra steps */ 9211 if (loopback == LOOPBACK_CABLE) 9212 return 0; 9213 9214 dd_dev_err(dd, "Invalid loopback mode %d\n", loopback); 9215 return -EINVAL; 9216 } 9217 9218 /* 9219 * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits 9220 * used in the Verify Capability link width attribute. 9221 */ 9222 static u16 opa_to_vc_link_widths(u16 opa_widths) 9223 { 9224 int i; 9225 u16 result = 0; 9226 9227 static const struct link_bits { 9228 u16 from; 9229 u16 to; 9230 } opa_link_xlate[] = { 9231 { OPA_LINK_WIDTH_1X, 1 << (1 - 1) }, 9232 { OPA_LINK_WIDTH_2X, 1 << (2 - 1) }, 9233 { OPA_LINK_WIDTH_3X, 1 << (3 - 1) }, 9234 { OPA_LINK_WIDTH_4X, 1 << (4 - 1) }, 9235 }; 9236 9237 for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) { 9238 if (opa_widths & opa_link_xlate[i].from) 9239 result |= opa_link_xlate[i].to; 9240 } 9241 return result; 9242 } 9243 9244 /* 9245 * Set link attributes before moving to polling. 9246 */ 9247 static int set_local_link_attributes(struct hfi1_pportdata *ppd) 9248 { 9249 struct hfi1_devdata *dd = ppd->dd; 9250 u8 enable_lane_tx; 9251 u8 tx_polarity_inversion; 9252 u8 rx_polarity_inversion; 9253 int ret; 9254 u32 misc_bits = 0; 9255 /* reset our fabric serdes to clear any lingering problems */ 9256 fabric_serdes_reset(dd); 9257 9258 /* set the local tx rate - need to read-modify-write */ 9259 ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion, 9260 &rx_polarity_inversion, &ppd->local_tx_rate); 9261 if (ret) 9262 goto set_local_link_attributes_fail; 9263 9264 if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) { 9265 /* set the tx rate to the fastest enabled */ 9266 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9267 ppd->local_tx_rate = 1; 9268 else 9269 ppd->local_tx_rate = 0; 9270 } else { 9271 /* set the tx rate to all enabled */ 9272 ppd->local_tx_rate = 0; 9273 if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G) 9274 ppd->local_tx_rate |= 2; 9275 if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G) 9276 ppd->local_tx_rate |= 1; 9277 } 9278 9279 enable_lane_tx = 0xF; /* enable all four lanes */ 9280 ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion, 9281 rx_polarity_inversion, ppd->local_tx_rate); 9282 if (ret != HCMD_SUCCESS) 9283 goto set_local_link_attributes_fail; 9284 9285 ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION); 9286 if (ret != HCMD_SUCCESS) { 9287 dd_dev_err(dd, 9288 "Failed to set host interface version, return 0x%x\n", 9289 ret); 9290 goto set_local_link_attributes_fail; 9291 } 9292 9293 /* 9294 * DC supports continuous updates. 9295 */ 9296 ret = write_vc_local_phy(dd, 9297 0 /* no power management */, 9298 1 /* continuous updates */); 9299 if (ret != HCMD_SUCCESS) 9300 goto set_local_link_attributes_fail; 9301 9302 /* z=1 in the next call: AU of 0 is not supported by the hardware */ 9303 ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init, 9304 ppd->port_crc_mode_enabled); 9305 if (ret != HCMD_SUCCESS) 9306 goto set_local_link_attributes_fail; 9307 9308 /* 9309 * SerDes loopback init sequence requires 9310 * setting bit 0 of MISC_CONFIG_BITS 9311 */ 9312 if (loopback == LOOPBACK_SERDES) 9313 misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT; 9314 9315 ret = write_vc_local_link_width(dd, misc_bits, 0, 9316 opa_to_vc_link_widths( 9317 ppd->link_width_enabled)); 9318 if (ret != HCMD_SUCCESS) 9319 goto set_local_link_attributes_fail; 9320 9321 /* let peer know who we are */ 9322 ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev); 9323 if (ret == HCMD_SUCCESS) 9324 return 0; 9325 9326 set_local_link_attributes_fail: 9327 dd_dev_err(dd, 9328 "Failed to set local link attributes, return 0x%x\n", 9329 ret); 9330 return ret; 9331 } 9332 9333 /* 9334 * Call this to start the link. 9335 * Do not do anything if the link is disabled. 9336 * Returns 0 if link is disabled, moved to polling, or the driver is not ready. 9337 */ 9338 int start_link(struct hfi1_pportdata *ppd) 9339 { 9340 /* 9341 * Tune the SerDes to a ballpark setting for optimal signal and bit 9342 * error rate. Needs to be done before starting the link. 9343 */ 9344 tune_serdes(ppd); 9345 9346 if (!ppd->driver_link_ready) { 9347 dd_dev_info(ppd->dd, 9348 "%s: stopping link start because driver is not ready\n", 9349 __func__); 9350 return 0; 9351 } 9352 9353 /* 9354 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the 9355 * pkey table can be configured properly if the HFI unit is connected 9356 * to switch port with MgmtAllowed=NO 9357 */ 9358 clear_full_mgmt_pkey(ppd); 9359 9360 return set_link_state(ppd, HLS_DN_POLL); 9361 } 9362 9363 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd) 9364 { 9365 struct hfi1_devdata *dd = ppd->dd; 9366 u64 mask; 9367 unsigned long timeout; 9368 9369 /* 9370 * Some QSFP cables have a quirk that asserts the IntN line as a side 9371 * effect of power up on plug-in. We ignore this false positive 9372 * interrupt until the module has finished powering up by waiting for 9373 * a minimum timeout of the module inrush initialization time of 9374 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the 9375 * module have stabilized. 9376 */ 9377 msleep(500); 9378 9379 /* 9380 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1) 9381 */ 9382 timeout = jiffies + msecs_to_jiffies(2000); 9383 while (1) { 9384 mask = read_csr(dd, dd->hfi1_id ? 9385 ASIC_QSFP2_IN : ASIC_QSFP1_IN); 9386 if (!(mask & QSFP_HFI0_INT_N)) 9387 break; 9388 if (time_after(jiffies, timeout)) { 9389 dd_dev_info(dd, "%s: No IntN detected, reset complete\n", 9390 __func__); 9391 break; 9392 } 9393 udelay(2); 9394 } 9395 } 9396 9397 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable) 9398 { 9399 struct hfi1_devdata *dd = ppd->dd; 9400 u64 mask; 9401 9402 mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK); 9403 if (enable) { 9404 /* 9405 * Clear the status register to avoid an immediate interrupt 9406 * when we re-enable the IntN pin 9407 */ 9408 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9409 QSFP_HFI0_INT_N); 9410 mask |= (u64)QSFP_HFI0_INT_N; 9411 } else { 9412 mask &= ~(u64)QSFP_HFI0_INT_N; 9413 } 9414 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask); 9415 } 9416 9417 int reset_qsfp(struct hfi1_pportdata *ppd) 9418 { 9419 struct hfi1_devdata *dd = ppd->dd; 9420 u64 mask, qsfp_mask; 9421 9422 /* Disable INT_N from triggering QSFP interrupts */ 9423 set_qsfp_int_n(ppd, 0); 9424 9425 /* Reset the QSFP */ 9426 mask = (u64)QSFP_HFI0_RESET_N; 9427 9428 qsfp_mask = read_csr(dd, 9429 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT); 9430 qsfp_mask &= ~mask; 9431 write_csr(dd, 9432 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9433 9434 udelay(10); 9435 9436 qsfp_mask |= mask; 9437 write_csr(dd, 9438 dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask); 9439 9440 wait_for_qsfp_init(ppd); 9441 9442 /* 9443 * Allow INT_N to trigger the QSFP interrupt to watch 9444 * for alarms and warnings 9445 */ 9446 set_qsfp_int_n(ppd, 1); 9447 9448 /* 9449 * After the reset, AOC transmitters are enabled by default. They need 9450 * to be turned off to complete the QSFP setup before they can be 9451 * enabled again. 9452 */ 9453 return set_qsfp_tx(ppd, 0); 9454 } 9455 9456 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd, 9457 u8 *qsfp_interrupt_status) 9458 { 9459 struct hfi1_devdata *dd = ppd->dd; 9460 9461 if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) || 9462 (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING)) 9463 dd_dev_err(dd, "%s: QSFP cable temperature too high\n", 9464 __func__); 9465 9466 if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) || 9467 (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING)) 9468 dd_dev_err(dd, "%s: QSFP cable temperature too low\n", 9469 __func__); 9470 9471 /* 9472 * The remaining alarms/warnings don't matter if the link is down. 9473 */ 9474 if (ppd->host_link_state & HLS_DOWN) 9475 return 0; 9476 9477 if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) || 9478 (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING)) 9479 dd_dev_err(dd, "%s: QSFP supply voltage too high\n", 9480 __func__); 9481 9482 if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) || 9483 (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING)) 9484 dd_dev_err(dd, "%s: QSFP supply voltage too low\n", 9485 __func__); 9486 9487 /* Byte 2 is vendor specific */ 9488 9489 if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) || 9490 (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING)) 9491 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n", 9492 __func__); 9493 9494 if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) || 9495 (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING)) 9496 dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n", 9497 __func__); 9498 9499 if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) || 9500 (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING)) 9501 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n", 9502 __func__); 9503 9504 if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) || 9505 (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING)) 9506 dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n", 9507 __func__); 9508 9509 if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) || 9510 (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING)) 9511 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n", 9512 __func__); 9513 9514 if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) || 9515 (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING)) 9516 dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n", 9517 __func__); 9518 9519 if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) || 9520 (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING)) 9521 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n", 9522 __func__); 9523 9524 if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) || 9525 (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING)) 9526 dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n", 9527 __func__); 9528 9529 if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) || 9530 (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING)) 9531 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n", 9532 __func__); 9533 9534 if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) || 9535 (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING)) 9536 dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n", 9537 __func__); 9538 9539 if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) || 9540 (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING)) 9541 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n", 9542 __func__); 9543 9544 if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) || 9545 (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING)) 9546 dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n", 9547 __func__); 9548 9549 /* Bytes 9-10 and 11-12 are reserved */ 9550 /* Bytes 13-15 are vendor specific */ 9551 9552 return 0; 9553 } 9554 9555 /* This routine will only be scheduled if the QSFP module present is asserted */ 9556 void qsfp_event(struct work_struct *work) 9557 { 9558 struct qsfp_data *qd; 9559 struct hfi1_pportdata *ppd; 9560 struct hfi1_devdata *dd; 9561 9562 qd = container_of(work, struct qsfp_data, qsfp_work); 9563 ppd = qd->ppd; 9564 dd = ppd->dd; 9565 9566 /* Sanity check */ 9567 if (!qsfp_mod_present(ppd)) 9568 return; 9569 9570 if (ppd->host_link_state == HLS_DN_DISABLE) { 9571 dd_dev_info(ppd->dd, 9572 "%s: stopping link start because link is disabled\n", 9573 __func__); 9574 return; 9575 } 9576 9577 /* 9578 * Turn DC back on after cable has been re-inserted. Up until 9579 * now, the DC has been in reset to save power. 9580 */ 9581 dc_start(dd); 9582 9583 if (qd->cache_refresh_required) { 9584 set_qsfp_int_n(ppd, 0); 9585 9586 wait_for_qsfp_init(ppd); 9587 9588 /* 9589 * Allow INT_N to trigger the QSFP interrupt to watch 9590 * for alarms and warnings 9591 */ 9592 set_qsfp_int_n(ppd, 1); 9593 9594 start_link(ppd); 9595 } 9596 9597 if (qd->check_interrupt_flags) { 9598 u8 qsfp_interrupt_status[16] = {0,}; 9599 9600 if (one_qsfp_read(ppd, dd->hfi1_id, 6, 9601 &qsfp_interrupt_status[0], 16) != 16) { 9602 dd_dev_info(dd, 9603 "%s: Failed to read status of QSFP module\n", 9604 __func__); 9605 } else { 9606 unsigned long flags; 9607 9608 handle_qsfp_error_conditions( 9609 ppd, qsfp_interrupt_status); 9610 spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags); 9611 ppd->qsfp_info.check_interrupt_flags = 0; 9612 spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, 9613 flags); 9614 } 9615 } 9616 } 9617 9618 static void init_qsfp_int(struct hfi1_devdata *dd) 9619 { 9620 struct hfi1_pportdata *ppd = dd->pport; 9621 u64 qsfp_mask, cce_int_mask; 9622 const int qsfp1_int_smask = QSFP1_INT % 64; 9623 const int qsfp2_int_smask = QSFP2_INT % 64; 9624 9625 /* 9626 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0 9627 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR, 9628 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find 9629 * the index of the appropriate CSR in the CCEIntMask CSR array 9630 */ 9631 cce_int_mask = read_csr(dd, CCE_INT_MASK + 9632 (8 * (QSFP1_INT / 64))); 9633 if (dd->hfi1_id) { 9634 cce_int_mask &= ~((u64)1 << qsfp1_int_smask); 9635 write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)), 9636 cce_int_mask); 9637 } else { 9638 cce_int_mask &= ~((u64)1 << qsfp2_int_smask); 9639 write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)), 9640 cce_int_mask); 9641 } 9642 9643 qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N); 9644 /* Clear current status to avoid spurious interrupts */ 9645 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR, 9646 qsfp_mask); 9647 write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, 9648 qsfp_mask); 9649 9650 set_qsfp_int_n(ppd, 0); 9651 9652 /* Handle active low nature of INT_N and MODPRST_N pins */ 9653 if (qsfp_mod_present(ppd)) 9654 qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N; 9655 write_csr(dd, 9656 dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT, 9657 qsfp_mask); 9658 } 9659 9660 /* 9661 * Do a one-time initialize of the LCB block. 9662 */ 9663 static void init_lcb(struct hfi1_devdata *dd) 9664 { 9665 /* simulator does not correctly handle LCB cclk loopback, skip */ 9666 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 9667 return; 9668 9669 /* the DC has been reset earlier in the driver load */ 9670 9671 /* set LCB for cclk loopback on the port */ 9672 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01); 9673 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00); 9674 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00); 9675 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 9676 write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08); 9677 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02); 9678 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00); 9679 } 9680 9681 /* 9682 * Perform a test read on the QSFP. Return 0 on success, -ERRNO 9683 * on error. 9684 */ 9685 static int test_qsfp_read(struct hfi1_pportdata *ppd) 9686 { 9687 int ret; 9688 u8 status; 9689 9690 /* 9691 * Report success if not a QSFP or, if it is a QSFP, but the cable is 9692 * not present 9693 */ 9694 if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd)) 9695 return 0; 9696 9697 /* read byte 2, the status byte */ 9698 ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1); 9699 if (ret < 0) 9700 return ret; 9701 if (ret != 1) 9702 return -EIO; 9703 9704 return 0; /* success */ 9705 } 9706 9707 /* 9708 * Values for QSFP retry. 9709 * 9710 * Give up after 10s (20 x 500ms). The overall timeout was empirically 9711 * arrived at from experience on a large cluster. 9712 */ 9713 #define MAX_QSFP_RETRIES 20 9714 #define QSFP_RETRY_WAIT 500 /* msec */ 9715 9716 /* 9717 * Try a QSFP read. If it fails, schedule a retry for later. 9718 * Called on first link activation after driver load. 9719 */ 9720 static void try_start_link(struct hfi1_pportdata *ppd) 9721 { 9722 if (test_qsfp_read(ppd)) { 9723 /* read failed */ 9724 if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) { 9725 dd_dev_err(ppd->dd, "QSFP not responding, giving up\n"); 9726 return; 9727 } 9728 dd_dev_info(ppd->dd, 9729 "QSFP not responding, waiting and retrying %d\n", 9730 (int)ppd->qsfp_retry_count); 9731 ppd->qsfp_retry_count++; 9732 queue_delayed_work(ppd->link_wq, &ppd->start_link_work, 9733 msecs_to_jiffies(QSFP_RETRY_WAIT)); 9734 return; 9735 } 9736 ppd->qsfp_retry_count = 0; 9737 9738 start_link(ppd); 9739 } 9740 9741 /* 9742 * Workqueue function to start the link after a delay. 9743 */ 9744 void handle_start_link(struct work_struct *work) 9745 { 9746 struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, 9747 start_link_work.work); 9748 try_start_link(ppd); 9749 } 9750 9751 int bringup_serdes(struct hfi1_pportdata *ppd) 9752 { 9753 struct hfi1_devdata *dd = ppd->dd; 9754 u64 guid; 9755 int ret; 9756 9757 if (HFI1_CAP_IS_KSET(EXTENDED_PSN)) 9758 add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK); 9759 9760 guid = ppd->guids[HFI1_PORT_GUID_INDEX]; 9761 if (!guid) { 9762 if (dd->base_guid) 9763 guid = dd->base_guid + ppd->port - 1; 9764 ppd->guids[HFI1_PORT_GUID_INDEX] = guid; 9765 } 9766 9767 /* Set linkinit_reason on power up per OPA spec */ 9768 ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP; 9769 9770 /* one-time init of the LCB */ 9771 init_lcb(dd); 9772 9773 if (loopback) { 9774 ret = init_loopback(dd); 9775 if (ret < 0) 9776 return ret; 9777 } 9778 9779 get_port_type(ppd); 9780 if (ppd->port_type == PORT_TYPE_QSFP) { 9781 set_qsfp_int_n(ppd, 0); 9782 wait_for_qsfp_init(ppd); 9783 set_qsfp_int_n(ppd, 1); 9784 } 9785 9786 try_start_link(ppd); 9787 return 0; 9788 } 9789 9790 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd) 9791 { 9792 struct hfi1_devdata *dd = ppd->dd; 9793 9794 /* 9795 * Shut down the link and keep it down. First turn off that the 9796 * driver wants to allow the link to be up (driver_link_ready). 9797 * Then make sure the link is not automatically restarted 9798 * (link_enabled). Cancel any pending restart. And finally 9799 * go offline. 9800 */ 9801 ppd->driver_link_ready = 0; 9802 ppd->link_enabled = 0; 9803 9804 ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */ 9805 flush_delayed_work(&ppd->start_link_work); 9806 cancel_delayed_work_sync(&ppd->start_link_work); 9807 9808 ppd->offline_disabled_reason = 9809 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT); 9810 set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0, 9811 OPA_LINKDOWN_REASON_REBOOT); 9812 set_link_state(ppd, HLS_DN_OFFLINE); 9813 9814 /* disable the port */ 9815 clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 9816 } 9817 9818 static inline int init_cpu_counters(struct hfi1_devdata *dd) 9819 { 9820 struct hfi1_pportdata *ppd; 9821 int i; 9822 9823 ppd = (struct hfi1_pportdata *)(dd + 1); 9824 for (i = 0; i < dd->num_pports; i++, ppd++) { 9825 ppd->ibport_data.rvp.rc_acks = NULL; 9826 ppd->ibport_data.rvp.rc_qacks = NULL; 9827 ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64); 9828 ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64); 9829 ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64); 9830 if (!ppd->ibport_data.rvp.rc_acks || 9831 !ppd->ibport_data.rvp.rc_delayed_comp || 9832 !ppd->ibport_data.rvp.rc_qacks) 9833 return -ENOMEM; 9834 } 9835 9836 return 0; 9837 } 9838 9839 /* 9840 * index is the index into the receive array 9841 */ 9842 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index, 9843 u32 type, unsigned long pa, u16 order) 9844 { 9845 u64 reg; 9846 9847 if (!(dd->flags & HFI1_PRESENT)) 9848 goto done; 9849 9850 if (type == PT_INVALID || type == PT_INVALID_FLUSH) { 9851 pa = 0; 9852 order = 0; 9853 } else if (type > PT_INVALID) { 9854 dd_dev_err(dd, 9855 "unexpected receive array type %u for index %u, not handled\n", 9856 type, index); 9857 goto done; 9858 } 9859 trace_hfi1_put_tid(dd, index, type, pa, order); 9860 9861 #define RT_ADDR_SHIFT 12 /* 4KB kernel address boundary */ 9862 reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK 9863 | (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT 9864 | ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK) 9865 << RCV_ARRAY_RT_ADDR_SHIFT; 9866 trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg); 9867 writeq(reg, dd->rcvarray_wc + (index * 8)); 9868 9869 if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3) 9870 /* 9871 * Eager entries are written and flushed 9872 * 9873 * Expected entries are flushed every 4 writes 9874 */ 9875 flush_wc(); 9876 done: 9877 return; 9878 } 9879 9880 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd) 9881 { 9882 struct hfi1_devdata *dd = rcd->dd; 9883 u32 i; 9884 9885 /* this could be optimized */ 9886 for (i = rcd->eager_base; i < rcd->eager_base + 9887 rcd->egrbufs.alloced; i++) 9888 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9889 9890 for (i = rcd->expected_base; 9891 i < rcd->expected_base + rcd->expected_count; i++) 9892 hfi1_put_tid(dd, i, PT_INVALID, 0, 0); 9893 } 9894 9895 static const char * const ib_cfg_name_strings[] = { 9896 "HFI1_IB_CFG_LIDLMC", 9897 "HFI1_IB_CFG_LWID_DG_ENB", 9898 "HFI1_IB_CFG_LWID_ENB", 9899 "HFI1_IB_CFG_LWID", 9900 "HFI1_IB_CFG_SPD_ENB", 9901 "HFI1_IB_CFG_SPD", 9902 "HFI1_IB_CFG_RXPOL_ENB", 9903 "HFI1_IB_CFG_LREV_ENB", 9904 "HFI1_IB_CFG_LINKLATENCY", 9905 "HFI1_IB_CFG_HRTBT", 9906 "HFI1_IB_CFG_OP_VLS", 9907 "HFI1_IB_CFG_VL_HIGH_CAP", 9908 "HFI1_IB_CFG_VL_LOW_CAP", 9909 "HFI1_IB_CFG_OVERRUN_THRESH", 9910 "HFI1_IB_CFG_PHYERR_THRESH", 9911 "HFI1_IB_CFG_LINKDEFAULT", 9912 "HFI1_IB_CFG_PKEYS", 9913 "HFI1_IB_CFG_MTU", 9914 "HFI1_IB_CFG_LSTATE", 9915 "HFI1_IB_CFG_VL_HIGH_LIMIT", 9916 "HFI1_IB_CFG_PMA_TICKS", 9917 "HFI1_IB_CFG_PORT" 9918 }; 9919 9920 static const char *ib_cfg_name(int which) 9921 { 9922 if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings)) 9923 return "invalid"; 9924 return ib_cfg_name_strings[which]; 9925 } 9926 9927 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which) 9928 { 9929 struct hfi1_devdata *dd = ppd->dd; 9930 int val = 0; 9931 9932 switch (which) { 9933 case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */ 9934 val = ppd->link_width_enabled; 9935 break; 9936 case HFI1_IB_CFG_LWID: /* currently active Link-width */ 9937 val = ppd->link_width_active; 9938 break; 9939 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 9940 val = ppd->link_speed_enabled; 9941 break; 9942 case HFI1_IB_CFG_SPD: /* current Link speed */ 9943 val = ppd->link_speed_active; 9944 break; 9945 9946 case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */ 9947 case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */ 9948 case HFI1_IB_CFG_LINKLATENCY: 9949 goto unimplemented; 9950 9951 case HFI1_IB_CFG_OP_VLS: 9952 val = ppd->actual_vls_operational; 9953 break; 9954 case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */ 9955 val = VL_ARB_HIGH_PRIO_TABLE_SIZE; 9956 break; 9957 case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */ 9958 val = VL_ARB_LOW_PRIO_TABLE_SIZE; 9959 break; 9960 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 9961 val = ppd->overrun_threshold; 9962 break; 9963 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 9964 val = ppd->phy_error_threshold; 9965 break; 9966 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 9967 val = HLS_DEFAULT; 9968 break; 9969 9970 case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */ 9971 case HFI1_IB_CFG_PMA_TICKS: 9972 default: 9973 unimplemented: 9974 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 9975 dd_dev_info( 9976 dd, 9977 "%s: which %s: not implemented\n", 9978 __func__, 9979 ib_cfg_name(which)); 9980 break; 9981 } 9982 9983 return val; 9984 } 9985 9986 /* 9987 * The largest MAD packet size. 9988 */ 9989 #define MAX_MAD_PACKET 2048 9990 9991 /* 9992 * Return the maximum header bytes that can go on the _wire_ 9993 * for this device. This count includes the ICRC which is 9994 * not part of the packet held in memory but it is appended 9995 * by the HW. 9996 * This is dependent on the device's receive header entry size. 9997 * HFI allows this to be set per-receive context, but the 9998 * driver presently enforces a global value. 9999 */ 10000 u32 lrh_max_header_bytes(struct hfi1_devdata *dd) 10001 { 10002 /* 10003 * The maximum non-payload (MTU) bytes in LRH.PktLen are 10004 * the Receive Header Entry Size minus the PBC (or RHF) size 10005 * plus one DW for the ICRC appended by HW. 10006 * 10007 * dd->rcd[0].rcvhdrqentsize is in DW. 10008 * We use rcd[0] as all context will have the same value. Also, 10009 * the first kernel context would have been allocated by now so 10010 * we are guaranteed a valid value. 10011 */ 10012 return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2; 10013 } 10014 10015 /* 10016 * Set Send Length 10017 * @ppd - per port data 10018 * 10019 * Set the MTU by limiting how many DWs may be sent. The SendLenCheck* 10020 * registers compare against LRH.PktLen, so use the max bytes included 10021 * in the LRH. 10022 * 10023 * This routine changes all VL values except VL15, which it maintains at 10024 * the same value. 10025 */ 10026 static void set_send_length(struct hfi1_pportdata *ppd) 10027 { 10028 struct hfi1_devdata *dd = ppd->dd; 10029 u32 max_hb = lrh_max_header_bytes(dd), dcmtu; 10030 u32 maxvlmtu = dd->vld[15].mtu; 10031 u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2) 10032 & SEND_LEN_CHECK1_LEN_VL15_MASK) << 10033 SEND_LEN_CHECK1_LEN_VL15_SHIFT; 10034 int i, j; 10035 u32 thres; 10036 10037 for (i = 0; i < ppd->vls_supported; i++) { 10038 if (dd->vld[i].mtu > maxvlmtu) 10039 maxvlmtu = dd->vld[i].mtu; 10040 if (i <= 3) 10041 len1 |= (((dd->vld[i].mtu + max_hb) >> 2) 10042 & SEND_LEN_CHECK0_LEN_VL0_MASK) << 10043 ((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT); 10044 else 10045 len2 |= (((dd->vld[i].mtu + max_hb) >> 2) 10046 & SEND_LEN_CHECK1_LEN_VL4_MASK) << 10047 ((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT); 10048 } 10049 write_csr(dd, SEND_LEN_CHECK0, len1); 10050 write_csr(dd, SEND_LEN_CHECK1, len2); 10051 /* adjust kernel credit return thresholds based on new MTUs */ 10052 /* all kernel receive contexts have the same hdrqentsize */ 10053 for (i = 0; i < ppd->vls_supported; i++) { 10054 thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50), 10055 sc_mtu_to_threshold(dd->vld[i].sc, 10056 dd->vld[i].mtu, 10057 dd->rcd[0]->rcvhdrqentsize)); 10058 for (j = 0; j < INIT_SC_PER_VL; j++) 10059 sc_set_cr_threshold( 10060 pio_select_send_context_vl(dd, j, i), 10061 thres); 10062 } 10063 thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50), 10064 sc_mtu_to_threshold(dd->vld[15].sc, 10065 dd->vld[15].mtu, 10066 dd->rcd[0]->rcvhdrqentsize)); 10067 sc_set_cr_threshold(dd->vld[15].sc, thres); 10068 10069 /* Adjust maximum MTU for the port in DC */ 10070 dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 : 10071 (ilog2(maxvlmtu >> 8) + 1); 10072 len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG); 10073 len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK; 10074 len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) << 10075 DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT; 10076 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1); 10077 } 10078 10079 static void set_lidlmc(struct hfi1_pportdata *ppd) 10080 { 10081 int i; 10082 u64 sreg = 0; 10083 struct hfi1_devdata *dd = ppd->dd; 10084 u32 mask = ~((1U << ppd->lmc) - 1); 10085 u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1); 10086 u32 lid; 10087 10088 /* 10089 * Program 0 in CSR if port lid is extended. This prevents 10090 * 9B packets being sent out for large lids. 10091 */ 10092 lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid; 10093 c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK 10094 | DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK); 10095 c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK) 10096 << DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) | 10097 ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK) 10098 << DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT); 10099 write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1); 10100 10101 /* 10102 * Iterate over all the send contexts and set their SLID check 10103 */ 10104 sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) << 10105 SEND_CTXT_CHECK_SLID_MASK_SHIFT) | 10106 (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) << 10107 SEND_CTXT_CHECK_SLID_VALUE_SHIFT); 10108 10109 for (i = 0; i < dd->chip_send_contexts; i++) { 10110 hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x", 10111 i, (u32)sreg); 10112 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg); 10113 } 10114 10115 /* Now we have to do the same thing for the sdma engines */ 10116 sdma_update_lmc(dd, mask, lid); 10117 } 10118 10119 static const char *state_completed_string(u32 completed) 10120 { 10121 static const char * const state_completed[] = { 10122 "EstablishComm", 10123 "OptimizeEQ", 10124 "VerifyCap" 10125 }; 10126 10127 if (completed < ARRAY_SIZE(state_completed)) 10128 return state_completed[completed]; 10129 10130 return "unknown"; 10131 } 10132 10133 static const char all_lanes_dead_timeout_expired[] = 10134 "All lanes were inactive – was the interconnect media removed?"; 10135 static const char tx_out_of_policy[] = 10136 "Passing lanes on local port do not meet the local link width policy"; 10137 static const char no_state_complete[] = 10138 "State timeout occurred before link partner completed the state"; 10139 static const char * const state_complete_reasons[] = { 10140 [0x00] = "Reason unknown", 10141 [0x01] = "Link was halted by driver, refer to LinkDownReason", 10142 [0x02] = "Link partner reported failure", 10143 [0x10] = "Unable to achieve frame sync on any lane", 10144 [0x11] = 10145 "Unable to find a common bit rate with the link partner", 10146 [0x12] = 10147 "Unable to achieve frame sync on sufficient lanes to meet the local link width policy", 10148 [0x13] = 10149 "Unable to identify preset equalization on sufficient lanes to meet the local link width policy", 10150 [0x14] = no_state_complete, 10151 [0x15] = 10152 "State timeout occurred before link partner identified equalization presets", 10153 [0x16] = 10154 "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy", 10155 [0x17] = tx_out_of_policy, 10156 [0x20] = all_lanes_dead_timeout_expired, 10157 [0x21] = 10158 "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy", 10159 [0x22] = no_state_complete, 10160 [0x23] = 10161 "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy", 10162 [0x24] = tx_out_of_policy, 10163 [0x30] = all_lanes_dead_timeout_expired, 10164 [0x31] = 10165 "State timeout occurred waiting for host to process received frames", 10166 [0x32] = no_state_complete, 10167 [0x33] = 10168 "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy", 10169 [0x34] = tx_out_of_policy, 10170 [0x35] = "Negotiated link width is mutually exclusive", 10171 [0x36] = 10172 "Timed out before receiving verifycap frames in VerifyCap.Exchange", 10173 [0x37] = "Unable to resolve secure data exchange", 10174 }; 10175 10176 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd, 10177 u32 code) 10178 { 10179 const char *str = NULL; 10180 10181 if (code < ARRAY_SIZE(state_complete_reasons)) 10182 str = state_complete_reasons[code]; 10183 10184 if (str) 10185 return str; 10186 return "Reserved"; 10187 } 10188 10189 /* describe the given last state complete frame */ 10190 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame, 10191 const char *prefix) 10192 { 10193 struct hfi1_devdata *dd = ppd->dd; 10194 u32 success; 10195 u32 state; 10196 u32 reason; 10197 u32 lanes; 10198 10199 /* 10200 * Decode frame: 10201 * [ 0: 0] - success 10202 * [ 3: 1] - state 10203 * [ 7: 4] - next state timeout 10204 * [15: 8] - reason code 10205 * [31:16] - lanes 10206 */ 10207 success = frame & 0x1; 10208 state = (frame >> 1) & 0x7; 10209 reason = (frame >> 8) & 0xff; 10210 lanes = (frame >> 16) & 0xffff; 10211 10212 dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n", 10213 prefix, frame); 10214 dd_dev_err(dd, " last reported state state: %s (0x%x)\n", 10215 state_completed_string(state), state); 10216 dd_dev_err(dd, " state successfully completed: %s\n", 10217 success ? "yes" : "no"); 10218 dd_dev_err(dd, " fail reason 0x%x: %s\n", 10219 reason, state_complete_reason_code_string(ppd, reason)); 10220 dd_dev_err(dd, " passing lane mask: 0x%x", lanes); 10221 } 10222 10223 /* 10224 * Read the last state complete frames and explain them. This routine 10225 * expects to be called if the link went down during link negotiation 10226 * and initialization (LNI). That is, anywhere between polling and link up. 10227 */ 10228 static void check_lni_states(struct hfi1_pportdata *ppd) 10229 { 10230 u32 last_local_state; 10231 u32 last_remote_state; 10232 10233 read_last_local_state(ppd->dd, &last_local_state); 10234 read_last_remote_state(ppd->dd, &last_remote_state); 10235 10236 /* 10237 * Don't report anything if there is nothing to report. A value of 10238 * 0 means the link was taken down while polling and there was no 10239 * training in-process. 10240 */ 10241 if (last_local_state == 0 && last_remote_state == 0) 10242 return; 10243 10244 decode_state_complete(ppd, last_local_state, "transmitted"); 10245 decode_state_complete(ppd, last_remote_state, "received"); 10246 } 10247 10248 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */ 10249 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms) 10250 { 10251 u64 reg; 10252 unsigned long timeout; 10253 10254 /* watch LCB_STS_LINK_TRANSFER_ACTIVE */ 10255 timeout = jiffies + msecs_to_jiffies(wait_ms); 10256 while (1) { 10257 reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE); 10258 if (reg) 10259 break; 10260 if (time_after(jiffies, timeout)) { 10261 dd_dev_err(dd, 10262 "timeout waiting for LINK_TRANSFER_ACTIVE\n"); 10263 return -ETIMEDOUT; 10264 } 10265 udelay(2); 10266 } 10267 return 0; 10268 } 10269 10270 /* called when the logical link state is not down as it should be */ 10271 static void force_logical_link_state_down(struct hfi1_pportdata *ppd) 10272 { 10273 struct hfi1_devdata *dd = ppd->dd; 10274 10275 /* 10276 * Bring link up in LCB loopback 10277 */ 10278 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10279 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 10280 DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK); 10281 10282 write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0); 10283 write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0); 10284 write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110); 10285 write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2); 10286 10287 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0); 10288 (void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET); 10289 udelay(3); 10290 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1); 10291 write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT); 10292 10293 wait_link_transfer_active(dd, 100); 10294 10295 /* 10296 * Bring the link down again. 10297 */ 10298 write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1); 10299 write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0); 10300 write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0); 10301 10302 dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n"); 10303 } 10304 10305 /* 10306 * Helper for set_link_state(). Do not call except from that routine. 10307 * Expects ppd->hls_mutex to be held. 10308 * 10309 * @rem_reason value to be sent to the neighbor 10310 * 10311 * LinkDownReasons only set if transition succeeds. 10312 */ 10313 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason) 10314 { 10315 struct hfi1_devdata *dd = ppd->dd; 10316 u32 previous_state; 10317 int offline_state_ret; 10318 int ret; 10319 10320 update_lcb_cache(dd); 10321 10322 previous_state = ppd->host_link_state; 10323 ppd->host_link_state = HLS_GOING_OFFLINE; 10324 10325 /* start offline transition */ 10326 ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE); 10327 10328 if (ret != HCMD_SUCCESS) { 10329 dd_dev_err(dd, 10330 "Failed to transition to Offline link state, return %d\n", 10331 ret); 10332 return -EINVAL; 10333 } 10334 if (ppd->offline_disabled_reason == 10335 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)) 10336 ppd->offline_disabled_reason = 10337 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT); 10338 10339 offline_state_ret = wait_phys_link_offline_substates(ppd, 10000); 10340 if (offline_state_ret < 0) 10341 return offline_state_ret; 10342 10343 /* Disabling AOC transmitters */ 10344 if (ppd->port_type == PORT_TYPE_QSFP && 10345 ppd->qsfp_info.limiting_active && 10346 qsfp_mod_present(ppd)) { 10347 int ret; 10348 10349 ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT); 10350 if (ret == 0) { 10351 set_qsfp_tx(ppd, 0); 10352 release_chip_resource(dd, qsfp_resource(dd)); 10353 } else { 10354 /* not fatal, but should warn */ 10355 dd_dev_err(dd, 10356 "Unable to acquire lock to turn off QSFP TX\n"); 10357 } 10358 } 10359 10360 /* 10361 * Wait for the offline.Quiet transition if it hasn't happened yet. It 10362 * can take a while for the link to go down. 10363 */ 10364 if (offline_state_ret != PLS_OFFLINE_QUIET) { 10365 ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000); 10366 if (ret < 0) 10367 return ret; 10368 } 10369 10370 /* 10371 * Now in charge of LCB - must be after the physical state is 10372 * offline.quiet and before host_link_state is changed. 10373 */ 10374 set_host_lcb_access(dd); 10375 write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */ 10376 10377 /* make sure the logical state is also down */ 10378 ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000); 10379 if (ret) 10380 force_logical_link_state_down(ppd); 10381 10382 ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */ 10383 update_statusp(ppd, IB_PORT_DOWN); 10384 10385 /* 10386 * The LNI has a mandatory wait time after the physical state 10387 * moves to Offline.Quiet. The wait time may be different 10388 * depending on how the link went down. The 8051 firmware 10389 * will observe the needed wait time and only move to ready 10390 * when that is completed. The largest of the quiet timeouts 10391 * is 6s, so wait that long and then at least 0.5s more for 10392 * other transitions, and another 0.5s for a buffer. 10393 */ 10394 ret = wait_fm_ready(dd, 7000); 10395 if (ret) { 10396 dd_dev_err(dd, 10397 "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n"); 10398 /* state is really offline, so make it so */ 10399 ppd->host_link_state = HLS_DN_OFFLINE; 10400 return ret; 10401 } 10402 10403 /* 10404 * The state is now offline and the 8051 is ready to accept host 10405 * requests. 10406 * - change our state 10407 * - notify others if we were previously in a linkup state 10408 */ 10409 ppd->host_link_state = HLS_DN_OFFLINE; 10410 if (previous_state & HLS_UP) { 10411 /* went down while link was up */ 10412 handle_linkup_change(dd, 0); 10413 } else if (previous_state 10414 & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) { 10415 /* went down while attempting link up */ 10416 check_lni_states(ppd); 10417 10418 /* The QSFP doesn't need to be reset on LNI failure */ 10419 ppd->qsfp_info.reset_needed = 0; 10420 } 10421 10422 /* the active link width (downgrade) is 0 on link down */ 10423 ppd->link_width_active = 0; 10424 ppd->link_width_downgrade_tx_active = 0; 10425 ppd->link_width_downgrade_rx_active = 0; 10426 ppd->current_egress_rate = 0; 10427 return 0; 10428 } 10429 10430 /* return the link state name */ 10431 static const char *link_state_name(u32 state) 10432 { 10433 const char *name; 10434 int n = ilog2(state); 10435 static const char * const names[] = { 10436 [__HLS_UP_INIT_BP] = "INIT", 10437 [__HLS_UP_ARMED_BP] = "ARMED", 10438 [__HLS_UP_ACTIVE_BP] = "ACTIVE", 10439 [__HLS_DN_DOWNDEF_BP] = "DOWNDEF", 10440 [__HLS_DN_POLL_BP] = "POLL", 10441 [__HLS_DN_DISABLE_BP] = "DISABLE", 10442 [__HLS_DN_OFFLINE_BP] = "OFFLINE", 10443 [__HLS_VERIFY_CAP_BP] = "VERIFY_CAP", 10444 [__HLS_GOING_UP_BP] = "GOING_UP", 10445 [__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE", 10446 [__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN" 10447 }; 10448 10449 name = n < ARRAY_SIZE(names) ? names[n] : NULL; 10450 return name ? name : "unknown"; 10451 } 10452 10453 /* return the link state reason name */ 10454 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state) 10455 { 10456 if (state == HLS_UP_INIT) { 10457 switch (ppd->linkinit_reason) { 10458 case OPA_LINKINIT_REASON_LINKUP: 10459 return "(LINKUP)"; 10460 case OPA_LINKINIT_REASON_FLAPPING: 10461 return "(FLAPPING)"; 10462 case OPA_LINKINIT_OUTSIDE_POLICY: 10463 return "(OUTSIDE_POLICY)"; 10464 case OPA_LINKINIT_QUARANTINED: 10465 return "(QUARANTINED)"; 10466 case OPA_LINKINIT_INSUFIC_CAPABILITY: 10467 return "(INSUFIC_CAPABILITY)"; 10468 default: 10469 break; 10470 } 10471 } 10472 return ""; 10473 } 10474 10475 /* 10476 * driver_pstate - convert the driver's notion of a port's 10477 * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*). 10478 * Return -1 (converted to a u32) to indicate error. 10479 */ 10480 u32 driver_pstate(struct hfi1_pportdata *ppd) 10481 { 10482 switch (ppd->host_link_state) { 10483 case HLS_UP_INIT: 10484 case HLS_UP_ARMED: 10485 case HLS_UP_ACTIVE: 10486 return IB_PORTPHYSSTATE_LINKUP; 10487 case HLS_DN_POLL: 10488 return IB_PORTPHYSSTATE_POLLING; 10489 case HLS_DN_DISABLE: 10490 return IB_PORTPHYSSTATE_DISABLED; 10491 case HLS_DN_OFFLINE: 10492 return OPA_PORTPHYSSTATE_OFFLINE; 10493 case HLS_VERIFY_CAP: 10494 return IB_PORTPHYSSTATE_POLLING; 10495 case HLS_GOING_UP: 10496 return IB_PORTPHYSSTATE_POLLING; 10497 case HLS_GOING_OFFLINE: 10498 return OPA_PORTPHYSSTATE_OFFLINE; 10499 case HLS_LINK_COOLDOWN: 10500 return OPA_PORTPHYSSTATE_OFFLINE; 10501 case HLS_DN_DOWNDEF: 10502 default: 10503 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10504 ppd->host_link_state); 10505 return -1; 10506 } 10507 } 10508 10509 /* 10510 * driver_lstate - convert the driver's notion of a port's 10511 * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1 10512 * (converted to a u32) to indicate error. 10513 */ 10514 u32 driver_lstate(struct hfi1_pportdata *ppd) 10515 { 10516 if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN)) 10517 return IB_PORT_DOWN; 10518 10519 switch (ppd->host_link_state & HLS_UP) { 10520 case HLS_UP_INIT: 10521 return IB_PORT_INIT; 10522 case HLS_UP_ARMED: 10523 return IB_PORT_ARMED; 10524 case HLS_UP_ACTIVE: 10525 return IB_PORT_ACTIVE; 10526 default: 10527 dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n", 10528 ppd->host_link_state); 10529 return -1; 10530 } 10531 } 10532 10533 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason, 10534 u8 neigh_reason, u8 rem_reason) 10535 { 10536 if (ppd->local_link_down_reason.latest == 0 && 10537 ppd->neigh_link_down_reason.latest == 0) { 10538 ppd->local_link_down_reason.latest = lcl_reason; 10539 ppd->neigh_link_down_reason.latest = neigh_reason; 10540 ppd->remote_link_down_reason = rem_reason; 10541 } 10542 } 10543 10544 /* 10545 * Verify if BCT for data VLs is non-zero. 10546 */ 10547 static inline bool data_vls_operational(struct hfi1_pportdata *ppd) 10548 { 10549 return !!ppd->actual_vls_operational; 10550 } 10551 10552 /* 10553 * Change the physical and/or logical link state. 10554 * 10555 * Do not call this routine while inside an interrupt. It contains 10556 * calls to routines that can take multiple seconds to finish. 10557 * 10558 * Returns 0 on success, -errno on failure. 10559 */ 10560 int set_link_state(struct hfi1_pportdata *ppd, u32 state) 10561 { 10562 struct hfi1_devdata *dd = ppd->dd; 10563 struct ib_event event = {.device = NULL}; 10564 int ret1, ret = 0; 10565 int orig_new_state, poll_bounce; 10566 10567 mutex_lock(&ppd->hls_lock); 10568 10569 orig_new_state = state; 10570 if (state == HLS_DN_DOWNDEF) 10571 state = HLS_DEFAULT; 10572 10573 /* interpret poll -> poll as a link bounce */ 10574 poll_bounce = ppd->host_link_state == HLS_DN_POLL && 10575 state == HLS_DN_POLL; 10576 10577 dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__, 10578 link_state_name(ppd->host_link_state), 10579 link_state_name(orig_new_state), 10580 poll_bounce ? "(bounce) " : "", 10581 link_state_reason_name(ppd, state)); 10582 10583 /* 10584 * If we're going to a (HLS_*) link state that implies the logical 10585 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then 10586 * reset is_sm_config_started to 0. 10587 */ 10588 if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE))) 10589 ppd->is_sm_config_started = 0; 10590 10591 /* 10592 * Do nothing if the states match. Let a poll to poll link bounce 10593 * go through. 10594 */ 10595 if (ppd->host_link_state == state && !poll_bounce) 10596 goto done; 10597 10598 switch (state) { 10599 case HLS_UP_INIT: 10600 if (ppd->host_link_state == HLS_DN_POLL && 10601 (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) { 10602 /* 10603 * Quick link up jumps from polling to here. 10604 * 10605 * Whether in normal or loopback mode, the 10606 * simulator jumps from polling to link up. 10607 * Accept that here. 10608 */ 10609 /* OK */ 10610 } else if (ppd->host_link_state != HLS_GOING_UP) { 10611 goto unexpected; 10612 } 10613 10614 /* 10615 * Wait for Link_Up physical state. 10616 * Physical and Logical states should already be 10617 * be transitioned to LinkUp and LinkInit respectively. 10618 */ 10619 ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000); 10620 if (ret) { 10621 dd_dev_err(dd, 10622 "%s: physical state did not change to LINK-UP\n", 10623 __func__); 10624 break; 10625 } 10626 10627 ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000); 10628 if (ret) { 10629 dd_dev_err(dd, 10630 "%s: logical state did not change to INIT\n", 10631 __func__); 10632 break; 10633 } 10634 10635 /* clear old transient LINKINIT_REASON code */ 10636 if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR) 10637 ppd->linkinit_reason = 10638 OPA_LINKINIT_REASON_LINKUP; 10639 10640 /* enable the port */ 10641 add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK); 10642 10643 handle_linkup_change(dd, 1); 10644 10645 /* 10646 * After link up, a new link width will have been set. 10647 * Update the xmit counters with regards to the new 10648 * link width. 10649 */ 10650 update_xmit_counters(ppd, ppd->link_width_active); 10651 10652 ppd->host_link_state = HLS_UP_INIT; 10653 update_statusp(ppd, IB_PORT_INIT); 10654 break; 10655 case HLS_UP_ARMED: 10656 if (ppd->host_link_state != HLS_UP_INIT) 10657 goto unexpected; 10658 10659 if (!data_vls_operational(ppd)) { 10660 dd_dev_err(dd, 10661 "%s: data VLs not operational\n", __func__); 10662 ret = -EINVAL; 10663 break; 10664 } 10665 10666 set_logical_state(dd, LSTATE_ARMED); 10667 ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000); 10668 if (ret) { 10669 dd_dev_err(dd, 10670 "%s: logical state did not change to ARMED\n", 10671 __func__); 10672 break; 10673 } 10674 ppd->host_link_state = HLS_UP_ARMED; 10675 update_statusp(ppd, IB_PORT_ARMED); 10676 /* 10677 * The simulator does not currently implement SMA messages, 10678 * so neighbor_normal is not set. Set it here when we first 10679 * move to Armed. 10680 */ 10681 if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) 10682 ppd->neighbor_normal = 1; 10683 break; 10684 case HLS_UP_ACTIVE: 10685 if (ppd->host_link_state != HLS_UP_ARMED) 10686 goto unexpected; 10687 10688 set_logical_state(dd, LSTATE_ACTIVE); 10689 ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000); 10690 if (ret) { 10691 dd_dev_err(dd, 10692 "%s: logical state did not change to ACTIVE\n", 10693 __func__); 10694 } else { 10695 /* tell all engines to go running */ 10696 sdma_all_running(dd); 10697 ppd->host_link_state = HLS_UP_ACTIVE; 10698 update_statusp(ppd, IB_PORT_ACTIVE); 10699 10700 /* Signal the IB layer that the port has went active */ 10701 event.device = &dd->verbs_dev.rdi.ibdev; 10702 event.element.port_num = ppd->port; 10703 event.event = IB_EVENT_PORT_ACTIVE; 10704 } 10705 break; 10706 case HLS_DN_POLL: 10707 if ((ppd->host_link_state == HLS_DN_DISABLE || 10708 ppd->host_link_state == HLS_DN_OFFLINE) && 10709 dd->dc_shutdown) 10710 dc_start(dd); 10711 /* Hand LED control to the DC */ 10712 write_csr(dd, DCC_CFG_LED_CNTRL, 0); 10713 10714 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10715 u8 tmp = ppd->link_enabled; 10716 10717 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10718 if (ret) { 10719 ppd->link_enabled = tmp; 10720 break; 10721 } 10722 ppd->remote_link_down_reason = 0; 10723 10724 if (ppd->driver_link_ready) 10725 ppd->link_enabled = 1; 10726 } 10727 10728 set_all_slowpath(ppd->dd); 10729 ret = set_local_link_attributes(ppd); 10730 if (ret) 10731 break; 10732 10733 ppd->port_error_action = 0; 10734 ppd->host_link_state = HLS_DN_POLL; 10735 10736 if (quick_linkup) { 10737 /* quick linkup does not go into polling */ 10738 ret = do_quick_linkup(dd); 10739 } else { 10740 ret1 = set_physical_link_state(dd, PLS_POLLING); 10741 if (ret1 != HCMD_SUCCESS) { 10742 dd_dev_err(dd, 10743 "Failed to transition to Polling link state, return 0x%x\n", 10744 ret1); 10745 ret = -EINVAL; 10746 } 10747 } 10748 ppd->offline_disabled_reason = 10749 HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE); 10750 /* 10751 * If an error occurred above, go back to offline. The 10752 * caller may reschedule another attempt. 10753 */ 10754 if (ret) 10755 goto_offline(ppd, 0); 10756 else 10757 log_physical_state(ppd, PLS_POLLING); 10758 break; 10759 case HLS_DN_DISABLE: 10760 /* link is disabled */ 10761 ppd->link_enabled = 0; 10762 10763 /* allow any state to transition to disabled */ 10764 10765 /* must transition to offline first */ 10766 if (ppd->host_link_state != HLS_DN_OFFLINE) { 10767 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10768 if (ret) 10769 break; 10770 ppd->remote_link_down_reason = 0; 10771 } 10772 10773 if (!dd->dc_shutdown) { 10774 ret1 = set_physical_link_state(dd, PLS_DISABLED); 10775 if (ret1 != HCMD_SUCCESS) { 10776 dd_dev_err(dd, 10777 "Failed to transition to Disabled link state, return 0x%x\n", 10778 ret1); 10779 ret = -EINVAL; 10780 break; 10781 } 10782 ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000); 10783 if (ret) { 10784 dd_dev_err(dd, 10785 "%s: physical state did not change to DISABLED\n", 10786 __func__); 10787 break; 10788 } 10789 dc_shutdown(dd); 10790 } 10791 ppd->host_link_state = HLS_DN_DISABLE; 10792 break; 10793 case HLS_DN_OFFLINE: 10794 if (ppd->host_link_state == HLS_DN_DISABLE) 10795 dc_start(dd); 10796 10797 /* allow any state to transition to offline */ 10798 ret = goto_offline(ppd, ppd->remote_link_down_reason); 10799 if (!ret) 10800 ppd->remote_link_down_reason = 0; 10801 break; 10802 case HLS_VERIFY_CAP: 10803 if (ppd->host_link_state != HLS_DN_POLL) 10804 goto unexpected; 10805 ppd->host_link_state = HLS_VERIFY_CAP; 10806 log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP); 10807 break; 10808 case HLS_GOING_UP: 10809 if (ppd->host_link_state != HLS_VERIFY_CAP) 10810 goto unexpected; 10811 10812 ret1 = set_physical_link_state(dd, PLS_LINKUP); 10813 if (ret1 != HCMD_SUCCESS) { 10814 dd_dev_err(dd, 10815 "Failed to transition to link up state, return 0x%x\n", 10816 ret1); 10817 ret = -EINVAL; 10818 break; 10819 } 10820 ppd->host_link_state = HLS_GOING_UP; 10821 break; 10822 10823 case HLS_GOING_OFFLINE: /* transient within goto_offline() */ 10824 case HLS_LINK_COOLDOWN: /* transient within goto_offline() */ 10825 default: 10826 dd_dev_info(dd, "%s: state 0x%x: not supported\n", 10827 __func__, state); 10828 ret = -EINVAL; 10829 break; 10830 } 10831 10832 goto done; 10833 10834 unexpected: 10835 dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n", 10836 __func__, link_state_name(ppd->host_link_state), 10837 link_state_name(state)); 10838 ret = -EINVAL; 10839 10840 done: 10841 mutex_unlock(&ppd->hls_lock); 10842 10843 if (event.device) 10844 ib_dispatch_event(&event); 10845 10846 return ret; 10847 } 10848 10849 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val) 10850 { 10851 u64 reg; 10852 int ret = 0; 10853 10854 switch (which) { 10855 case HFI1_IB_CFG_LIDLMC: 10856 set_lidlmc(ppd); 10857 break; 10858 case HFI1_IB_CFG_VL_HIGH_LIMIT: 10859 /* 10860 * The VL Arbitrator high limit is sent in units of 4k 10861 * bytes, while HFI stores it in units of 64 bytes. 10862 */ 10863 val *= 4096 / 64; 10864 reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK) 10865 << SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT; 10866 write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg); 10867 break; 10868 case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */ 10869 /* HFI only supports POLL as the default link down state */ 10870 if (val != HLS_DN_POLL) 10871 ret = -EINVAL; 10872 break; 10873 case HFI1_IB_CFG_OP_VLS: 10874 if (ppd->vls_operational != val) { 10875 ppd->vls_operational = val; 10876 if (!ppd->port) 10877 ret = -EINVAL; 10878 } 10879 break; 10880 /* 10881 * For link width, link width downgrade, and speed enable, always AND 10882 * the setting with what is actually supported. This has two benefits. 10883 * First, enabled can't have unsupported values, no matter what the 10884 * SM or FM might want. Second, the ALL_SUPPORTED wildcards that mean 10885 * "fill in with your supported value" have all the bits in the 10886 * field set, so simply ANDing with supported has the desired result. 10887 */ 10888 case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */ 10889 ppd->link_width_enabled = val & ppd->link_width_supported; 10890 break; 10891 case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */ 10892 ppd->link_width_downgrade_enabled = 10893 val & ppd->link_width_downgrade_supported; 10894 break; 10895 case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */ 10896 ppd->link_speed_enabled = val & ppd->link_speed_supported; 10897 break; 10898 case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */ 10899 /* 10900 * HFI does not follow IB specs, save this value 10901 * so we can report it, if asked. 10902 */ 10903 ppd->overrun_threshold = val; 10904 break; 10905 case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */ 10906 /* 10907 * HFI does not follow IB specs, save this value 10908 * so we can report it, if asked. 10909 */ 10910 ppd->phy_error_threshold = val; 10911 break; 10912 10913 case HFI1_IB_CFG_MTU: 10914 set_send_length(ppd); 10915 break; 10916 10917 case HFI1_IB_CFG_PKEYS: 10918 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 10919 set_partition_keys(ppd); 10920 break; 10921 10922 default: 10923 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 10924 dd_dev_info(ppd->dd, 10925 "%s: which %s, val 0x%x: not implemented\n", 10926 __func__, ib_cfg_name(which), val); 10927 break; 10928 } 10929 return ret; 10930 } 10931 10932 /* begin functions related to vl arbitration table caching */ 10933 static void init_vl_arb_caches(struct hfi1_pportdata *ppd) 10934 { 10935 int i; 10936 10937 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10938 VL_ARB_LOW_PRIO_TABLE_SIZE); 10939 BUILD_BUG_ON(VL_ARB_TABLE_SIZE != 10940 VL_ARB_HIGH_PRIO_TABLE_SIZE); 10941 10942 /* 10943 * Note that we always return values directly from the 10944 * 'vl_arb_cache' (and do no CSR reads) in response to a 10945 * 'Get(VLArbTable)'. This is obviously correct after a 10946 * 'Set(VLArbTable)', since the cache will then be up to 10947 * date. But it's also correct prior to any 'Set(VLArbTable)' 10948 * since then both the cache, and the relevant h/w registers 10949 * will be zeroed. 10950 */ 10951 10952 for (i = 0; i < MAX_PRIO_TABLE; i++) 10953 spin_lock_init(&ppd->vl_arb_cache[i].lock); 10954 } 10955 10956 /* 10957 * vl_arb_lock_cache 10958 * 10959 * All other vl_arb_* functions should be called only after locking 10960 * the cache. 10961 */ 10962 static inline struct vl_arb_cache * 10963 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx) 10964 { 10965 if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE) 10966 return NULL; 10967 spin_lock(&ppd->vl_arb_cache[idx].lock); 10968 return &ppd->vl_arb_cache[idx]; 10969 } 10970 10971 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx) 10972 { 10973 spin_unlock(&ppd->vl_arb_cache[idx].lock); 10974 } 10975 10976 static void vl_arb_get_cache(struct vl_arb_cache *cache, 10977 struct ib_vl_weight_elem *vl) 10978 { 10979 memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10980 } 10981 10982 static void vl_arb_set_cache(struct vl_arb_cache *cache, 10983 struct ib_vl_weight_elem *vl) 10984 { 10985 memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10986 } 10987 10988 static int vl_arb_match_cache(struct vl_arb_cache *cache, 10989 struct ib_vl_weight_elem *vl) 10990 { 10991 return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl)); 10992 } 10993 10994 /* end functions related to vl arbitration table caching */ 10995 10996 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target, 10997 u32 size, struct ib_vl_weight_elem *vl) 10998 { 10999 struct hfi1_devdata *dd = ppd->dd; 11000 u64 reg; 11001 unsigned int i, is_up = 0; 11002 int drain, ret = 0; 11003 11004 mutex_lock(&ppd->hls_lock); 11005 11006 if (ppd->host_link_state & HLS_UP) 11007 is_up = 1; 11008 11009 drain = !is_ax(dd) && is_up; 11010 11011 if (drain) 11012 /* 11013 * Before adjusting VL arbitration weights, empty per-VL 11014 * FIFOs, otherwise a packet whose VL weight is being 11015 * set to 0 could get stuck in a FIFO with no chance to 11016 * egress. 11017 */ 11018 ret = stop_drain_data_vls(dd); 11019 11020 if (ret) { 11021 dd_dev_err( 11022 dd, 11023 "%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n", 11024 __func__); 11025 goto err; 11026 } 11027 11028 for (i = 0; i < size; i++, vl++) { 11029 /* 11030 * NOTE: The low priority shift and mask are used here, but 11031 * they are the same for both the low and high registers. 11032 */ 11033 reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK) 11034 << SEND_LOW_PRIORITY_LIST_VL_SHIFT) 11035 | (((u64)vl->weight 11036 & SEND_LOW_PRIORITY_LIST_WEIGHT_MASK) 11037 << SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT); 11038 write_csr(dd, target + (i * 8), reg); 11039 } 11040 pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE); 11041 11042 if (drain) 11043 open_fill_data_vls(dd); /* reopen all VLs */ 11044 11045 err: 11046 mutex_unlock(&ppd->hls_lock); 11047 11048 return ret; 11049 } 11050 11051 /* 11052 * Read one credit merge VL register. 11053 */ 11054 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr, 11055 struct vl_limit *vll) 11056 { 11057 u64 reg = read_csr(dd, csr); 11058 11059 vll->dedicated = cpu_to_be16( 11060 (reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT) 11061 & SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK); 11062 vll->shared = cpu_to_be16( 11063 (reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT) 11064 & SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK); 11065 } 11066 11067 /* 11068 * Read the current credit merge limits. 11069 */ 11070 static int get_buffer_control(struct hfi1_devdata *dd, 11071 struct buffer_control *bc, u16 *overall_limit) 11072 { 11073 u64 reg; 11074 int i; 11075 11076 /* not all entries are filled in */ 11077 memset(bc, 0, sizeof(*bc)); 11078 11079 /* OPA and HFI have a 1-1 mapping */ 11080 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11081 read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]); 11082 11083 /* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */ 11084 read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]); 11085 11086 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11087 bc->overall_shared_limit = cpu_to_be16( 11088 (reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT) 11089 & SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK); 11090 if (overall_limit) 11091 *overall_limit = (reg 11092 >> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT) 11093 & SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK; 11094 return sizeof(struct buffer_control); 11095 } 11096 11097 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11098 { 11099 u64 reg; 11100 int i; 11101 11102 /* each register contains 16 SC->VLnt mappings, 4 bits each */ 11103 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0); 11104 for (i = 0; i < sizeof(u64); i++) { 11105 u8 byte = *(((u8 *)®) + i); 11106 11107 dp->vlnt[2 * i] = byte & 0xf; 11108 dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4; 11109 } 11110 11111 reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16); 11112 for (i = 0; i < sizeof(u64); i++) { 11113 u8 byte = *(((u8 *)®) + i); 11114 11115 dp->vlnt[16 + (2 * i)] = byte & 0xf; 11116 dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4; 11117 } 11118 return sizeof(struct sc2vlnt); 11119 } 11120 11121 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems, 11122 struct ib_vl_weight_elem *vl) 11123 { 11124 unsigned int i; 11125 11126 for (i = 0; i < nelems; i++, vl++) { 11127 vl->vl = 0xf; 11128 vl->weight = 0; 11129 } 11130 } 11131 11132 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp) 11133 { 11134 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, 11135 DC_SC_VL_VAL(15_0, 11136 0, dp->vlnt[0] & 0xf, 11137 1, dp->vlnt[1] & 0xf, 11138 2, dp->vlnt[2] & 0xf, 11139 3, dp->vlnt[3] & 0xf, 11140 4, dp->vlnt[4] & 0xf, 11141 5, dp->vlnt[5] & 0xf, 11142 6, dp->vlnt[6] & 0xf, 11143 7, dp->vlnt[7] & 0xf, 11144 8, dp->vlnt[8] & 0xf, 11145 9, dp->vlnt[9] & 0xf, 11146 10, dp->vlnt[10] & 0xf, 11147 11, dp->vlnt[11] & 0xf, 11148 12, dp->vlnt[12] & 0xf, 11149 13, dp->vlnt[13] & 0xf, 11150 14, dp->vlnt[14] & 0xf, 11151 15, dp->vlnt[15] & 0xf)); 11152 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, 11153 DC_SC_VL_VAL(31_16, 11154 16, dp->vlnt[16] & 0xf, 11155 17, dp->vlnt[17] & 0xf, 11156 18, dp->vlnt[18] & 0xf, 11157 19, dp->vlnt[19] & 0xf, 11158 20, dp->vlnt[20] & 0xf, 11159 21, dp->vlnt[21] & 0xf, 11160 22, dp->vlnt[22] & 0xf, 11161 23, dp->vlnt[23] & 0xf, 11162 24, dp->vlnt[24] & 0xf, 11163 25, dp->vlnt[25] & 0xf, 11164 26, dp->vlnt[26] & 0xf, 11165 27, dp->vlnt[27] & 0xf, 11166 28, dp->vlnt[28] & 0xf, 11167 29, dp->vlnt[29] & 0xf, 11168 30, dp->vlnt[30] & 0xf, 11169 31, dp->vlnt[31] & 0xf)); 11170 } 11171 11172 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what, 11173 u16 limit) 11174 { 11175 if (limit != 0) 11176 dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n", 11177 what, (int)limit, idx); 11178 } 11179 11180 /* change only the shared limit portion of SendCmGLobalCredit */ 11181 static void set_global_shared(struct hfi1_devdata *dd, u16 limit) 11182 { 11183 u64 reg; 11184 11185 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11186 reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK; 11187 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT; 11188 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11189 } 11190 11191 /* change only the total credit limit portion of SendCmGLobalCredit */ 11192 static void set_global_limit(struct hfi1_devdata *dd, u16 limit) 11193 { 11194 u64 reg; 11195 11196 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT); 11197 reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK; 11198 reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT; 11199 write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg); 11200 } 11201 11202 /* set the given per-VL shared limit */ 11203 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit) 11204 { 11205 u64 reg; 11206 u32 addr; 11207 11208 if (vl < TXE_NUM_DATA_VL) 11209 addr = SEND_CM_CREDIT_VL + (8 * vl); 11210 else 11211 addr = SEND_CM_CREDIT_VL15; 11212 11213 reg = read_csr(dd, addr); 11214 reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK; 11215 reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT; 11216 write_csr(dd, addr, reg); 11217 } 11218 11219 /* set the given per-VL dedicated limit */ 11220 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit) 11221 { 11222 u64 reg; 11223 u32 addr; 11224 11225 if (vl < TXE_NUM_DATA_VL) 11226 addr = SEND_CM_CREDIT_VL + (8 * vl); 11227 else 11228 addr = SEND_CM_CREDIT_VL15; 11229 11230 reg = read_csr(dd, addr); 11231 reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK; 11232 reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT; 11233 write_csr(dd, addr, reg); 11234 } 11235 11236 /* spin until the given per-VL status mask bits clear */ 11237 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask, 11238 const char *which) 11239 { 11240 unsigned long timeout; 11241 u64 reg; 11242 11243 timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT); 11244 while (1) { 11245 reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask; 11246 11247 if (reg == 0) 11248 return; /* success */ 11249 if (time_after(jiffies, timeout)) 11250 break; /* timed out */ 11251 udelay(1); 11252 } 11253 11254 dd_dev_err(dd, 11255 "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n", 11256 which, VL_STATUS_CLEAR_TIMEOUT, mask, reg); 11257 /* 11258 * If this occurs, it is likely there was a credit loss on the link. 11259 * The only recovery from that is a link bounce. 11260 */ 11261 dd_dev_err(dd, 11262 "Continuing anyway. A credit loss may occur. Suggest a link bounce\n"); 11263 } 11264 11265 /* 11266 * The number of credits on the VLs may be changed while everything 11267 * is "live", but the following algorithm must be followed due to 11268 * how the hardware is actually implemented. In particular, 11269 * Return_Credit_Status[] is the only correct status check. 11270 * 11271 * if (reducing Global_Shared_Credit_Limit or any shared limit changing) 11272 * set Global_Shared_Credit_Limit = 0 11273 * use_all_vl = 1 11274 * mask0 = all VLs that are changing either dedicated or shared limits 11275 * set Shared_Limit[mask0] = 0 11276 * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0 11277 * if (changing any dedicated limit) 11278 * mask1 = all VLs that are lowering dedicated limits 11279 * lower Dedicated_Limit[mask1] 11280 * spin until Return_Credit_Status[mask1] == 0 11281 * raise Dedicated_Limits 11282 * raise Shared_Limits 11283 * raise Global_Shared_Credit_Limit 11284 * 11285 * lower = if the new limit is lower, set the limit to the new value 11286 * raise = if the new limit is higher than the current value (may be changed 11287 * earlier in the algorithm), set the new limit to the new value 11288 */ 11289 int set_buffer_control(struct hfi1_pportdata *ppd, 11290 struct buffer_control *new_bc) 11291 { 11292 struct hfi1_devdata *dd = ppd->dd; 11293 u64 changing_mask, ld_mask, stat_mask; 11294 int change_count; 11295 int i, use_all_mask; 11296 int this_shared_changing; 11297 int vl_count = 0, ret; 11298 /* 11299 * A0: add the variable any_shared_limit_changing below and in the 11300 * algorithm above. If removing A0 support, it can be removed. 11301 */ 11302 int any_shared_limit_changing; 11303 struct buffer_control cur_bc; 11304 u8 changing[OPA_MAX_VLS]; 11305 u8 lowering_dedicated[OPA_MAX_VLS]; 11306 u16 cur_total; 11307 u32 new_total = 0; 11308 const u64 all_mask = 11309 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK 11310 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK 11311 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK 11312 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK 11313 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK 11314 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK 11315 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK 11316 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK 11317 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK; 11318 11319 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15) 11320 #define NUM_USABLE_VLS 16 /* look at VL15 and less */ 11321 11322 /* find the new total credits, do sanity check on unused VLs */ 11323 for (i = 0; i < OPA_MAX_VLS; i++) { 11324 if (valid_vl(i)) { 11325 new_total += be16_to_cpu(new_bc->vl[i].dedicated); 11326 continue; 11327 } 11328 nonzero_msg(dd, i, "dedicated", 11329 be16_to_cpu(new_bc->vl[i].dedicated)); 11330 nonzero_msg(dd, i, "shared", 11331 be16_to_cpu(new_bc->vl[i].shared)); 11332 new_bc->vl[i].dedicated = 0; 11333 new_bc->vl[i].shared = 0; 11334 } 11335 new_total += be16_to_cpu(new_bc->overall_shared_limit); 11336 11337 /* fetch the current values */ 11338 get_buffer_control(dd, &cur_bc, &cur_total); 11339 11340 /* 11341 * Create the masks we will use. 11342 */ 11343 memset(changing, 0, sizeof(changing)); 11344 memset(lowering_dedicated, 0, sizeof(lowering_dedicated)); 11345 /* 11346 * NOTE: Assumes that the individual VL bits are adjacent and in 11347 * increasing order 11348 */ 11349 stat_mask = 11350 SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK; 11351 changing_mask = 0; 11352 ld_mask = 0; 11353 change_count = 0; 11354 any_shared_limit_changing = 0; 11355 for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) { 11356 if (!valid_vl(i)) 11357 continue; 11358 this_shared_changing = new_bc->vl[i].shared 11359 != cur_bc.vl[i].shared; 11360 if (this_shared_changing) 11361 any_shared_limit_changing = 1; 11362 if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated || 11363 this_shared_changing) { 11364 changing[i] = 1; 11365 changing_mask |= stat_mask; 11366 change_count++; 11367 } 11368 if (be16_to_cpu(new_bc->vl[i].dedicated) < 11369 be16_to_cpu(cur_bc.vl[i].dedicated)) { 11370 lowering_dedicated[i] = 1; 11371 ld_mask |= stat_mask; 11372 } 11373 } 11374 11375 /* bracket the credit change with a total adjustment */ 11376 if (new_total > cur_total) 11377 set_global_limit(dd, new_total); 11378 11379 /* 11380 * Start the credit change algorithm. 11381 */ 11382 use_all_mask = 0; 11383 if ((be16_to_cpu(new_bc->overall_shared_limit) < 11384 be16_to_cpu(cur_bc.overall_shared_limit)) || 11385 (is_ax(dd) && any_shared_limit_changing)) { 11386 set_global_shared(dd, 0); 11387 cur_bc.overall_shared_limit = 0; 11388 use_all_mask = 1; 11389 } 11390 11391 for (i = 0; i < NUM_USABLE_VLS; i++) { 11392 if (!valid_vl(i)) 11393 continue; 11394 11395 if (changing[i]) { 11396 set_vl_shared(dd, i, 0); 11397 cur_bc.vl[i].shared = 0; 11398 } 11399 } 11400 11401 wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask, 11402 "shared"); 11403 11404 if (change_count > 0) { 11405 for (i = 0; i < NUM_USABLE_VLS; i++) { 11406 if (!valid_vl(i)) 11407 continue; 11408 11409 if (lowering_dedicated[i]) { 11410 set_vl_dedicated(dd, i, 11411 be16_to_cpu(new_bc-> 11412 vl[i].dedicated)); 11413 cur_bc.vl[i].dedicated = 11414 new_bc->vl[i].dedicated; 11415 } 11416 } 11417 11418 wait_for_vl_status_clear(dd, ld_mask, "dedicated"); 11419 11420 /* now raise all dedicated that are going up */ 11421 for (i = 0; i < NUM_USABLE_VLS; i++) { 11422 if (!valid_vl(i)) 11423 continue; 11424 11425 if (be16_to_cpu(new_bc->vl[i].dedicated) > 11426 be16_to_cpu(cur_bc.vl[i].dedicated)) 11427 set_vl_dedicated(dd, i, 11428 be16_to_cpu(new_bc-> 11429 vl[i].dedicated)); 11430 } 11431 } 11432 11433 /* next raise all shared that are going up */ 11434 for (i = 0; i < NUM_USABLE_VLS; i++) { 11435 if (!valid_vl(i)) 11436 continue; 11437 11438 if (be16_to_cpu(new_bc->vl[i].shared) > 11439 be16_to_cpu(cur_bc.vl[i].shared)) 11440 set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared)); 11441 } 11442 11443 /* finally raise the global shared */ 11444 if (be16_to_cpu(new_bc->overall_shared_limit) > 11445 be16_to_cpu(cur_bc.overall_shared_limit)) 11446 set_global_shared(dd, 11447 be16_to_cpu(new_bc->overall_shared_limit)); 11448 11449 /* bracket the credit change with a total adjustment */ 11450 if (new_total < cur_total) 11451 set_global_limit(dd, new_total); 11452 11453 /* 11454 * Determine the actual number of operational VLS using the number of 11455 * dedicated and shared credits for each VL. 11456 */ 11457 if (change_count > 0) { 11458 for (i = 0; i < TXE_NUM_DATA_VL; i++) 11459 if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 || 11460 be16_to_cpu(new_bc->vl[i].shared) > 0) 11461 vl_count++; 11462 ppd->actual_vls_operational = vl_count; 11463 ret = sdma_map_init(dd, ppd->port - 1, vl_count ? 11464 ppd->actual_vls_operational : 11465 ppd->vls_operational, 11466 NULL); 11467 if (ret == 0) 11468 ret = pio_map_init(dd, ppd->port - 1, vl_count ? 11469 ppd->actual_vls_operational : 11470 ppd->vls_operational, NULL); 11471 if (ret) 11472 return ret; 11473 } 11474 return 0; 11475 } 11476 11477 /* 11478 * Read the given fabric manager table. Return the size of the 11479 * table (in bytes) on success, and a negative error code on 11480 * failure. 11481 */ 11482 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t) 11483 11484 { 11485 int size; 11486 struct vl_arb_cache *vlc; 11487 11488 switch (which) { 11489 case FM_TBL_VL_HIGH_ARB: 11490 size = 256; 11491 /* 11492 * OPA specifies 128 elements (of 2 bytes each), though 11493 * HFI supports only 16 elements in h/w. 11494 */ 11495 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11496 vl_arb_get_cache(vlc, t); 11497 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11498 break; 11499 case FM_TBL_VL_LOW_ARB: 11500 size = 256; 11501 /* 11502 * OPA specifies 128 elements (of 2 bytes each), though 11503 * HFI supports only 16 elements in h/w. 11504 */ 11505 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11506 vl_arb_get_cache(vlc, t); 11507 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11508 break; 11509 case FM_TBL_BUFFER_CONTROL: 11510 size = get_buffer_control(ppd->dd, t, NULL); 11511 break; 11512 case FM_TBL_SC2VLNT: 11513 size = get_sc2vlnt(ppd->dd, t); 11514 break; 11515 case FM_TBL_VL_PREEMPT_ELEMS: 11516 size = 256; 11517 /* OPA specifies 128 elements, of 2 bytes each */ 11518 get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t); 11519 break; 11520 case FM_TBL_VL_PREEMPT_MATRIX: 11521 size = 256; 11522 /* 11523 * OPA specifies that this is the same size as the VL 11524 * arbitration tables (i.e., 256 bytes). 11525 */ 11526 break; 11527 default: 11528 return -EINVAL; 11529 } 11530 return size; 11531 } 11532 11533 /* 11534 * Write the given fabric manager table. 11535 */ 11536 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t) 11537 { 11538 int ret = 0; 11539 struct vl_arb_cache *vlc; 11540 11541 switch (which) { 11542 case FM_TBL_VL_HIGH_ARB: 11543 vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE); 11544 if (vl_arb_match_cache(vlc, t)) { 11545 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11546 break; 11547 } 11548 vl_arb_set_cache(vlc, t); 11549 vl_arb_unlock_cache(ppd, HI_PRIO_TABLE); 11550 ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST, 11551 VL_ARB_HIGH_PRIO_TABLE_SIZE, t); 11552 break; 11553 case FM_TBL_VL_LOW_ARB: 11554 vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE); 11555 if (vl_arb_match_cache(vlc, t)) { 11556 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11557 break; 11558 } 11559 vl_arb_set_cache(vlc, t); 11560 vl_arb_unlock_cache(ppd, LO_PRIO_TABLE); 11561 ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST, 11562 VL_ARB_LOW_PRIO_TABLE_SIZE, t); 11563 break; 11564 case FM_TBL_BUFFER_CONTROL: 11565 ret = set_buffer_control(ppd, t); 11566 break; 11567 case FM_TBL_SC2VLNT: 11568 set_sc2vlnt(ppd->dd, t); 11569 break; 11570 default: 11571 ret = -EINVAL; 11572 } 11573 return ret; 11574 } 11575 11576 /* 11577 * Disable all data VLs. 11578 * 11579 * Return 0 if disabled, non-zero if the VLs cannot be disabled. 11580 */ 11581 static int disable_data_vls(struct hfi1_devdata *dd) 11582 { 11583 if (is_ax(dd)) 11584 return 1; 11585 11586 pio_send_control(dd, PSC_DATA_VL_DISABLE); 11587 11588 return 0; 11589 } 11590 11591 /* 11592 * open_fill_data_vls() - the counterpart to stop_drain_data_vls(). 11593 * Just re-enables all data VLs (the "fill" part happens 11594 * automatically - the name was chosen for symmetry with 11595 * stop_drain_data_vls()). 11596 * 11597 * Return 0 if successful, non-zero if the VLs cannot be enabled. 11598 */ 11599 int open_fill_data_vls(struct hfi1_devdata *dd) 11600 { 11601 if (is_ax(dd)) 11602 return 1; 11603 11604 pio_send_control(dd, PSC_DATA_VL_ENABLE); 11605 11606 return 0; 11607 } 11608 11609 /* 11610 * drain_data_vls() - assumes that disable_data_vls() has been called, 11611 * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA 11612 * engines to drop to 0. 11613 */ 11614 static void drain_data_vls(struct hfi1_devdata *dd) 11615 { 11616 sc_wait(dd); 11617 sdma_wait(dd); 11618 pause_for_credit_return(dd); 11619 } 11620 11621 /* 11622 * stop_drain_data_vls() - disable, then drain all per-VL fifos. 11623 * 11624 * Use open_fill_data_vls() to resume using data VLs. This pair is 11625 * meant to be used like this: 11626 * 11627 * stop_drain_data_vls(dd); 11628 * // do things with per-VL resources 11629 * open_fill_data_vls(dd); 11630 */ 11631 int stop_drain_data_vls(struct hfi1_devdata *dd) 11632 { 11633 int ret; 11634 11635 ret = disable_data_vls(dd); 11636 if (ret == 0) 11637 drain_data_vls(dd); 11638 11639 return ret; 11640 } 11641 11642 /* 11643 * Convert a nanosecond time to a cclock count. No matter how slow 11644 * the cclock, a non-zero ns will always have a non-zero result. 11645 */ 11646 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns) 11647 { 11648 u32 cclocks; 11649 11650 if (dd->icode == ICODE_FPGA_EMULATION) 11651 cclocks = (ns * 1000) / FPGA_CCLOCK_PS; 11652 else /* simulation pretends to be ASIC */ 11653 cclocks = (ns * 1000) / ASIC_CCLOCK_PS; 11654 if (ns && !cclocks) /* if ns nonzero, must be at least 1 */ 11655 cclocks = 1; 11656 return cclocks; 11657 } 11658 11659 /* 11660 * Convert a cclock count to nanoseconds. Not matter how slow 11661 * the cclock, a non-zero cclocks will always have a non-zero result. 11662 */ 11663 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks) 11664 { 11665 u32 ns; 11666 11667 if (dd->icode == ICODE_FPGA_EMULATION) 11668 ns = (cclocks * FPGA_CCLOCK_PS) / 1000; 11669 else /* simulation pretends to be ASIC */ 11670 ns = (cclocks * ASIC_CCLOCK_PS) / 1000; 11671 if (cclocks && !ns) 11672 ns = 1; 11673 return ns; 11674 } 11675 11676 /* 11677 * Dynamically adjust the receive interrupt timeout for a context based on 11678 * incoming packet rate. 11679 * 11680 * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero. 11681 */ 11682 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts) 11683 { 11684 struct hfi1_devdata *dd = rcd->dd; 11685 u32 timeout = rcd->rcvavail_timeout; 11686 11687 /* 11688 * This algorithm doubles or halves the timeout depending on whether 11689 * the number of packets received in this interrupt were less than or 11690 * greater equal the interrupt count. 11691 * 11692 * The calculations below do not allow a steady state to be achieved. 11693 * Only at the endpoints it is possible to have an unchanging 11694 * timeout. 11695 */ 11696 if (npkts < rcv_intr_count) { 11697 /* 11698 * Not enough packets arrived before the timeout, adjust 11699 * timeout downward. 11700 */ 11701 if (timeout < 2) /* already at minimum? */ 11702 return; 11703 timeout >>= 1; 11704 } else { 11705 /* 11706 * More than enough packets arrived before the timeout, adjust 11707 * timeout upward. 11708 */ 11709 if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */ 11710 return; 11711 timeout = min(timeout << 1, dd->rcv_intr_timeout_csr); 11712 } 11713 11714 rcd->rcvavail_timeout = timeout; 11715 /* 11716 * timeout cannot be larger than rcv_intr_timeout_csr which has already 11717 * been verified to be in range 11718 */ 11719 write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT, 11720 (u64)timeout << 11721 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11722 } 11723 11724 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd, 11725 u32 intr_adjust, u32 npkts) 11726 { 11727 struct hfi1_devdata *dd = rcd->dd; 11728 u64 reg; 11729 u32 ctxt = rcd->ctxt; 11730 11731 /* 11732 * Need to write timeout register before updating RcvHdrHead to ensure 11733 * that a new value is used when the HW decides to restart counting. 11734 */ 11735 if (intr_adjust) 11736 adjust_rcv_timeout(rcd, npkts); 11737 if (updegr) { 11738 reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK) 11739 << RCV_EGR_INDEX_HEAD_HEAD_SHIFT; 11740 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg); 11741 } 11742 mmiowb(); 11743 reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) | 11744 (((u64)hd & RCV_HDR_HEAD_HEAD_MASK) 11745 << RCV_HDR_HEAD_HEAD_SHIFT); 11746 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11747 mmiowb(); 11748 } 11749 11750 u32 hdrqempty(struct hfi1_ctxtdata *rcd) 11751 { 11752 u32 head, tail; 11753 11754 head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) 11755 & RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT; 11756 11757 if (rcd->rcvhdrtail_kvaddr) 11758 tail = get_rcvhdrtail(rcd); 11759 else 11760 tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL); 11761 11762 return head == tail; 11763 } 11764 11765 /* 11766 * Context Control and Receive Array encoding for buffer size: 11767 * 0x0 invalid 11768 * 0x1 4 KB 11769 * 0x2 8 KB 11770 * 0x3 16 KB 11771 * 0x4 32 KB 11772 * 0x5 64 KB 11773 * 0x6 128 KB 11774 * 0x7 256 KB 11775 * 0x8 512 KB (Receive Array only) 11776 * 0x9 1 MB (Receive Array only) 11777 * 0xa 2 MB (Receive Array only) 11778 * 11779 * 0xB-0xF - reserved (Receive Array only) 11780 * 11781 * 11782 * This routine assumes that the value has already been sanity checked. 11783 */ 11784 static u32 encoded_size(u32 size) 11785 { 11786 switch (size) { 11787 case 4 * 1024: return 0x1; 11788 case 8 * 1024: return 0x2; 11789 case 16 * 1024: return 0x3; 11790 case 32 * 1024: return 0x4; 11791 case 64 * 1024: return 0x5; 11792 case 128 * 1024: return 0x6; 11793 case 256 * 1024: return 0x7; 11794 case 512 * 1024: return 0x8; 11795 case 1 * 1024 * 1024: return 0x9; 11796 case 2 * 1024 * 1024: return 0xa; 11797 } 11798 return 0x1; /* if invalid, go with the minimum size */ 11799 } 11800 11801 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op, 11802 struct hfi1_ctxtdata *rcd) 11803 { 11804 u64 rcvctrl, reg; 11805 int did_enable = 0; 11806 u16 ctxt; 11807 11808 if (!rcd) 11809 return; 11810 11811 ctxt = rcd->ctxt; 11812 11813 hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op); 11814 11815 rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL); 11816 /* if the context already enabled, don't do the extra steps */ 11817 if ((op & HFI1_RCVCTRL_CTXT_ENB) && 11818 !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) { 11819 /* reset the tail and hdr addresses, and sequence count */ 11820 write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR, 11821 rcd->rcvhdrq_dma); 11822 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) 11823 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11824 rcd->rcvhdrqtailaddr_dma); 11825 rcd->seq_cnt = 1; 11826 11827 /* reset the cached receive header queue head value */ 11828 rcd->head = 0; 11829 11830 /* 11831 * Zero the receive header queue so we don't get false 11832 * positives when checking the sequence number. The 11833 * sequence numbers could land exactly on the same spot. 11834 * E.g. a rcd restart before the receive header wrapped. 11835 */ 11836 memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size); 11837 11838 /* starting timeout */ 11839 rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr; 11840 11841 /* enable the context */ 11842 rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK; 11843 11844 /* clean the egr buffer size first */ 11845 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11846 rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size) 11847 & RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK) 11848 << RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT; 11849 11850 /* zero RcvHdrHead - set RcvHdrHead.Counter after enable */ 11851 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0); 11852 did_enable = 1; 11853 11854 /* zero RcvEgrIndexHead */ 11855 write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0); 11856 11857 /* set eager count and base index */ 11858 reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT) 11859 & RCV_EGR_CTRL_EGR_CNT_MASK) 11860 << RCV_EGR_CTRL_EGR_CNT_SHIFT) | 11861 (((rcd->eager_base >> RCV_SHIFT) 11862 & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK) 11863 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT); 11864 write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg); 11865 11866 /* 11867 * Set TID (expected) count and base index. 11868 * rcd->expected_count is set to individual RcvArray entries, 11869 * not pairs, and the CSR takes a pair-count in groups of 11870 * four, so divide by 8. 11871 */ 11872 reg = (((rcd->expected_count >> RCV_SHIFT) 11873 & RCV_TID_CTRL_TID_PAIR_CNT_MASK) 11874 << RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) | 11875 (((rcd->expected_base >> RCV_SHIFT) 11876 & RCV_TID_CTRL_TID_BASE_INDEX_MASK) 11877 << RCV_TID_CTRL_TID_BASE_INDEX_SHIFT); 11878 write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg); 11879 if (ctxt == HFI1_CTRL_CTXT) 11880 write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT); 11881 } 11882 if (op & HFI1_RCVCTRL_CTXT_DIS) { 11883 write_csr(dd, RCV_VL15, 0); 11884 /* 11885 * When receive context is being disabled turn on tail 11886 * update with a dummy tail address and then disable 11887 * receive context. 11888 */ 11889 if (dd->rcvhdrtail_dummy_dma) { 11890 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11891 dd->rcvhdrtail_dummy_dma); 11892 /* Enabling RcvCtxtCtrl.TailUpd is intentional. */ 11893 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11894 } 11895 11896 rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK; 11897 } 11898 if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) 11899 rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11900 if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) 11901 rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK; 11902 if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma) 11903 rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11904 if (op & HFI1_RCVCTRL_TAILUPD_DIS) { 11905 /* See comment on RcvCtxtCtrl.TailUpd above */ 11906 if (!(op & HFI1_RCVCTRL_CTXT_DIS)) 11907 rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK; 11908 } 11909 if (op & HFI1_RCVCTRL_TIDFLOW_ENB) 11910 rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11911 if (op & HFI1_RCVCTRL_TIDFLOW_DIS) 11912 rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK; 11913 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) { 11914 /* 11915 * In one-packet-per-eager mode, the size comes from 11916 * the RcvArray entry. 11917 */ 11918 rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK; 11919 rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11920 } 11921 if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS) 11922 rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK; 11923 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB) 11924 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11925 if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS) 11926 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK; 11927 if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB) 11928 rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11929 if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS) 11930 rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK; 11931 rcd->rcvctrl = rcvctrl; 11932 hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl); 11933 write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl); 11934 11935 /* work around sticky RcvCtxtStatus.BlockedRHQFull */ 11936 if (did_enable && 11937 (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) { 11938 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11939 if (reg != 0) { 11940 dd_dev_info(dd, "ctxt %d status %lld (blocked)\n", 11941 ctxt, reg); 11942 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11943 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10); 11944 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00); 11945 read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD); 11946 reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS); 11947 dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n", 11948 ctxt, reg, reg == 0 ? "not" : "still"); 11949 } 11950 } 11951 11952 if (did_enable) { 11953 /* 11954 * The interrupt timeout and count must be set after 11955 * the context is enabled to take effect. 11956 */ 11957 /* set interrupt timeout */ 11958 write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT, 11959 (u64)rcd->rcvavail_timeout << 11960 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT); 11961 11962 /* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */ 11963 reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT; 11964 write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg); 11965 } 11966 11967 if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS)) 11968 /* 11969 * If the context has been disabled and the Tail Update has 11970 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address 11971 * so it doesn't contain an address that is invalid. 11972 */ 11973 write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR, 11974 dd->rcvhdrtail_dummy_dma); 11975 } 11976 11977 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp) 11978 { 11979 int ret; 11980 u64 val = 0; 11981 11982 if (namep) { 11983 ret = dd->cntrnameslen; 11984 *namep = dd->cntrnames; 11985 } else { 11986 const struct cntr_entry *entry; 11987 int i, j; 11988 11989 ret = (dd->ndevcntrs) * sizeof(u64); 11990 11991 /* Get the start of the block of counters */ 11992 *cntrp = dd->cntrs; 11993 11994 /* 11995 * Now go and fill in each counter in the block. 11996 */ 11997 for (i = 0; i < DEV_CNTR_LAST; i++) { 11998 entry = &dev_cntrs[i]; 11999 hfi1_cdbg(CNTR, "reading %s", entry->name); 12000 if (entry->flags & CNTR_DISABLED) { 12001 /* Nothing */ 12002 hfi1_cdbg(CNTR, "\tDisabled\n"); 12003 } else { 12004 if (entry->flags & CNTR_VL) { 12005 hfi1_cdbg(CNTR, "\tPer VL\n"); 12006 for (j = 0; j < C_VL_COUNT; j++) { 12007 val = entry->rw_cntr(entry, 12008 dd, j, 12009 CNTR_MODE_R, 12010 0); 12011 hfi1_cdbg( 12012 CNTR, 12013 "\t\tRead 0x%llx for %d\n", 12014 val, j); 12015 dd->cntrs[entry->offset + j] = 12016 val; 12017 } 12018 } else if (entry->flags & CNTR_SDMA) { 12019 hfi1_cdbg(CNTR, 12020 "\t Per SDMA Engine\n"); 12021 for (j = 0; j < dd->chip_sdma_engines; 12022 j++) { 12023 val = 12024 entry->rw_cntr(entry, dd, j, 12025 CNTR_MODE_R, 0); 12026 hfi1_cdbg(CNTR, 12027 "\t\tRead 0x%llx for %d\n", 12028 val, j); 12029 dd->cntrs[entry->offset + j] = 12030 val; 12031 } 12032 } else { 12033 val = entry->rw_cntr(entry, dd, 12034 CNTR_INVALID_VL, 12035 CNTR_MODE_R, 0); 12036 dd->cntrs[entry->offset] = val; 12037 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 12038 } 12039 } 12040 } 12041 } 12042 return ret; 12043 } 12044 12045 /* 12046 * Used by sysfs to create files for hfi stats to read 12047 */ 12048 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp) 12049 { 12050 int ret; 12051 u64 val = 0; 12052 12053 if (namep) { 12054 ret = ppd->dd->portcntrnameslen; 12055 *namep = ppd->dd->portcntrnames; 12056 } else { 12057 const struct cntr_entry *entry; 12058 int i, j; 12059 12060 ret = ppd->dd->nportcntrs * sizeof(u64); 12061 *cntrp = ppd->cntrs; 12062 12063 for (i = 0; i < PORT_CNTR_LAST; i++) { 12064 entry = &port_cntrs[i]; 12065 hfi1_cdbg(CNTR, "reading %s", entry->name); 12066 if (entry->flags & CNTR_DISABLED) { 12067 /* Nothing */ 12068 hfi1_cdbg(CNTR, "\tDisabled\n"); 12069 continue; 12070 } 12071 12072 if (entry->flags & CNTR_VL) { 12073 hfi1_cdbg(CNTR, "\tPer VL"); 12074 for (j = 0; j < C_VL_COUNT; j++) { 12075 val = entry->rw_cntr(entry, ppd, j, 12076 CNTR_MODE_R, 12077 0); 12078 hfi1_cdbg( 12079 CNTR, 12080 "\t\tRead 0x%llx for %d", 12081 val, j); 12082 ppd->cntrs[entry->offset + j] = val; 12083 } 12084 } else { 12085 val = entry->rw_cntr(entry, ppd, 12086 CNTR_INVALID_VL, 12087 CNTR_MODE_R, 12088 0); 12089 ppd->cntrs[entry->offset] = val; 12090 hfi1_cdbg(CNTR, "\tRead 0x%llx", val); 12091 } 12092 } 12093 } 12094 return ret; 12095 } 12096 12097 static void free_cntrs(struct hfi1_devdata *dd) 12098 { 12099 struct hfi1_pportdata *ppd; 12100 int i; 12101 12102 if (dd->synth_stats_timer.function) 12103 del_timer_sync(&dd->synth_stats_timer); 12104 ppd = (struct hfi1_pportdata *)(dd + 1); 12105 for (i = 0; i < dd->num_pports; i++, ppd++) { 12106 kfree(ppd->cntrs); 12107 kfree(ppd->scntrs); 12108 free_percpu(ppd->ibport_data.rvp.rc_acks); 12109 free_percpu(ppd->ibport_data.rvp.rc_qacks); 12110 free_percpu(ppd->ibport_data.rvp.rc_delayed_comp); 12111 ppd->cntrs = NULL; 12112 ppd->scntrs = NULL; 12113 ppd->ibport_data.rvp.rc_acks = NULL; 12114 ppd->ibport_data.rvp.rc_qacks = NULL; 12115 ppd->ibport_data.rvp.rc_delayed_comp = NULL; 12116 } 12117 kfree(dd->portcntrnames); 12118 dd->portcntrnames = NULL; 12119 kfree(dd->cntrs); 12120 dd->cntrs = NULL; 12121 kfree(dd->scntrs); 12122 dd->scntrs = NULL; 12123 kfree(dd->cntrnames); 12124 dd->cntrnames = NULL; 12125 if (dd->update_cntr_wq) { 12126 destroy_workqueue(dd->update_cntr_wq); 12127 dd->update_cntr_wq = NULL; 12128 } 12129 } 12130 12131 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry, 12132 u64 *psval, void *context, int vl) 12133 { 12134 u64 val; 12135 u64 sval = *psval; 12136 12137 if (entry->flags & CNTR_DISABLED) { 12138 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12139 return 0; 12140 } 12141 12142 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12143 12144 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0); 12145 12146 /* If its a synthetic counter there is more work we need to do */ 12147 if (entry->flags & CNTR_SYNTH) { 12148 if (sval == CNTR_MAX) { 12149 /* No need to read already saturated */ 12150 return CNTR_MAX; 12151 } 12152 12153 if (entry->flags & CNTR_32BIT) { 12154 /* 32bit counters can wrap multiple times */ 12155 u64 upper = sval >> 32; 12156 u64 lower = (sval << 32) >> 32; 12157 12158 if (lower > val) { /* hw wrapped */ 12159 if (upper == CNTR_32BIT_MAX) 12160 val = CNTR_MAX; 12161 else 12162 upper++; 12163 } 12164 12165 if (val != CNTR_MAX) 12166 val = (upper << 32) | val; 12167 12168 } else { 12169 /* If we rolled we are saturated */ 12170 if ((val < sval) || (val > CNTR_MAX)) 12171 val = CNTR_MAX; 12172 } 12173 } 12174 12175 *psval = val; 12176 12177 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12178 12179 return val; 12180 } 12181 12182 static u64 write_dev_port_cntr(struct hfi1_devdata *dd, 12183 struct cntr_entry *entry, 12184 u64 *psval, void *context, int vl, u64 data) 12185 { 12186 u64 val; 12187 12188 if (entry->flags & CNTR_DISABLED) { 12189 dd_dev_err(dd, "Counter %s not enabled", entry->name); 12190 return 0; 12191 } 12192 12193 hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval); 12194 12195 if (entry->flags & CNTR_SYNTH) { 12196 *psval = data; 12197 if (entry->flags & CNTR_32BIT) { 12198 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12199 (data << 32) >> 32); 12200 val = data; /* return the full 64bit value */ 12201 } else { 12202 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, 12203 data); 12204 } 12205 } else { 12206 val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data); 12207 } 12208 12209 *psval = val; 12210 12211 hfi1_cdbg(CNTR, "\tNew val=0x%llx", val); 12212 12213 return val; 12214 } 12215 12216 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl) 12217 { 12218 struct cntr_entry *entry; 12219 u64 *sval; 12220 12221 entry = &dev_cntrs[index]; 12222 sval = dd->scntrs + entry->offset; 12223 12224 if (vl != CNTR_INVALID_VL) 12225 sval += vl; 12226 12227 return read_dev_port_cntr(dd, entry, sval, dd, vl); 12228 } 12229 12230 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data) 12231 { 12232 struct cntr_entry *entry; 12233 u64 *sval; 12234 12235 entry = &dev_cntrs[index]; 12236 sval = dd->scntrs + entry->offset; 12237 12238 if (vl != CNTR_INVALID_VL) 12239 sval += vl; 12240 12241 return write_dev_port_cntr(dd, entry, sval, dd, vl, data); 12242 } 12243 12244 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl) 12245 { 12246 struct cntr_entry *entry; 12247 u64 *sval; 12248 12249 entry = &port_cntrs[index]; 12250 sval = ppd->scntrs + entry->offset; 12251 12252 if (vl != CNTR_INVALID_VL) 12253 sval += vl; 12254 12255 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12256 (index <= C_RCV_HDR_OVF_LAST)) { 12257 /* We do not want to bother for disabled contexts */ 12258 return 0; 12259 } 12260 12261 return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl); 12262 } 12263 12264 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data) 12265 { 12266 struct cntr_entry *entry; 12267 u64 *sval; 12268 12269 entry = &port_cntrs[index]; 12270 sval = ppd->scntrs + entry->offset; 12271 12272 if (vl != CNTR_INVALID_VL) 12273 sval += vl; 12274 12275 if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) && 12276 (index <= C_RCV_HDR_OVF_LAST)) { 12277 /* We do not want to bother for disabled contexts */ 12278 return 0; 12279 } 12280 12281 return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data); 12282 } 12283 12284 static void do_update_synth_timer(struct work_struct *work) 12285 { 12286 u64 cur_tx; 12287 u64 cur_rx; 12288 u64 total_flits; 12289 u8 update = 0; 12290 int i, j, vl; 12291 struct hfi1_pportdata *ppd; 12292 struct cntr_entry *entry; 12293 struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata, 12294 update_cntr_work); 12295 12296 /* 12297 * Rather than keep beating on the CSRs pick a minimal set that we can 12298 * check to watch for potential roll over. We can do this by looking at 12299 * the number of flits sent/recv. If the total flits exceeds 32bits then 12300 * we have to iterate all the counters and update. 12301 */ 12302 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12303 cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12304 12305 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12306 cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0); 12307 12308 hfi1_cdbg( 12309 CNTR, 12310 "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n", 12311 dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx); 12312 12313 if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) { 12314 /* 12315 * May not be strictly necessary to update but it won't hurt and 12316 * simplifies the logic here. 12317 */ 12318 update = 1; 12319 hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating", 12320 dd->unit); 12321 } else { 12322 total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx); 12323 hfi1_cdbg(CNTR, 12324 "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit, 12325 total_flits, (u64)CNTR_32BIT_MAX); 12326 if (total_flits >= CNTR_32BIT_MAX) { 12327 hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating", 12328 dd->unit); 12329 update = 1; 12330 } 12331 } 12332 12333 if (update) { 12334 hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit); 12335 for (i = 0; i < DEV_CNTR_LAST; i++) { 12336 entry = &dev_cntrs[i]; 12337 if (entry->flags & CNTR_VL) { 12338 for (vl = 0; vl < C_VL_COUNT; vl++) 12339 read_dev_cntr(dd, i, vl); 12340 } else { 12341 read_dev_cntr(dd, i, CNTR_INVALID_VL); 12342 } 12343 } 12344 ppd = (struct hfi1_pportdata *)(dd + 1); 12345 for (i = 0; i < dd->num_pports; i++, ppd++) { 12346 for (j = 0; j < PORT_CNTR_LAST; j++) { 12347 entry = &port_cntrs[j]; 12348 if (entry->flags & CNTR_VL) { 12349 for (vl = 0; vl < C_VL_COUNT; vl++) 12350 read_port_cntr(ppd, j, vl); 12351 } else { 12352 read_port_cntr(ppd, j, CNTR_INVALID_VL); 12353 } 12354 } 12355 } 12356 12357 /* 12358 * We want the value in the register. The goal is to keep track 12359 * of the number of "ticks" not the counter value. In other 12360 * words if the register rolls we want to notice it and go ahead 12361 * and force an update. 12362 */ 12363 entry = &dev_cntrs[C_DC_XMIT_FLITS]; 12364 dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12365 CNTR_MODE_R, 0); 12366 12367 entry = &dev_cntrs[C_DC_RCV_FLITS]; 12368 dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, 12369 CNTR_MODE_R, 0); 12370 12371 hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx", 12372 dd->unit, dd->last_tx, dd->last_rx); 12373 12374 } else { 12375 hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit); 12376 } 12377 } 12378 12379 static void update_synth_timer(struct timer_list *t) 12380 { 12381 struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer); 12382 12383 queue_work(dd->update_cntr_wq, &dd->update_cntr_work); 12384 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12385 } 12386 12387 #define C_MAX_NAME 16 /* 15 chars + one for /0 */ 12388 static int init_cntrs(struct hfi1_devdata *dd) 12389 { 12390 int i, rcv_ctxts, j; 12391 size_t sz; 12392 char *p; 12393 char name[C_MAX_NAME]; 12394 struct hfi1_pportdata *ppd; 12395 const char *bit_type_32 = ",32"; 12396 const int bit_type_32_sz = strlen(bit_type_32); 12397 12398 /* set up the stats timer; the add_timer is done at the end */ 12399 timer_setup(&dd->synth_stats_timer, update_synth_timer, 0); 12400 12401 /***********************/ 12402 /* per device counters */ 12403 /***********************/ 12404 12405 /* size names and determine how many we have*/ 12406 dd->ndevcntrs = 0; 12407 sz = 0; 12408 12409 for (i = 0; i < DEV_CNTR_LAST; i++) { 12410 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12411 hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name); 12412 continue; 12413 } 12414 12415 if (dev_cntrs[i].flags & CNTR_VL) { 12416 dev_cntrs[i].offset = dd->ndevcntrs; 12417 for (j = 0; j < C_VL_COUNT; j++) { 12418 snprintf(name, C_MAX_NAME, "%s%d", 12419 dev_cntrs[i].name, vl_from_idx(j)); 12420 sz += strlen(name); 12421 /* Add ",32" for 32-bit counters */ 12422 if (dev_cntrs[i].flags & CNTR_32BIT) 12423 sz += bit_type_32_sz; 12424 sz++; 12425 dd->ndevcntrs++; 12426 } 12427 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12428 dev_cntrs[i].offset = dd->ndevcntrs; 12429 for (j = 0; j < dd->chip_sdma_engines; j++) { 12430 snprintf(name, C_MAX_NAME, "%s%d", 12431 dev_cntrs[i].name, j); 12432 sz += strlen(name); 12433 /* Add ",32" for 32-bit counters */ 12434 if (dev_cntrs[i].flags & CNTR_32BIT) 12435 sz += bit_type_32_sz; 12436 sz++; 12437 dd->ndevcntrs++; 12438 } 12439 } else { 12440 /* +1 for newline. */ 12441 sz += strlen(dev_cntrs[i].name) + 1; 12442 /* Add ",32" for 32-bit counters */ 12443 if (dev_cntrs[i].flags & CNTR_32BIT) 12444 sz += bit_type_32_sz; 12445 dev_cntrs[i].offset = dd->ndevcntrs; 12446 dd->ndevcntrs++; 12447 } 12448 } 12449 12450 /* allocate space for the counter values */ 12451 dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12452 if (!dd->cntrs) 12453 goto bail; 12454 12455 dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL); 12456 if (!dd->scntrs) 12457 goto bail; 12458 12459 /* allocate space for the counter names */ 12460 dd->cntrnameslen = sz; 12461 dd->cntrnames = kmalloc(sz, GFP_KERNEL); 12462 if (!dd->cntrnames) 12463 goto bail; 12464 12465 /* fill in the names */ 12466 for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) { 12467 if (dev_cntrs[i].flags & CNTR_DISABLED) { 12468 /* Nothing */ 12469 } else if (dev_cntrs[i].flags & CNTR_VL) { 12470 for (j = 0; j < C_VL_COUNT; j++) { 12471 snprintf(name, C_MAX_NAME, "%s%d", 12472 dev_cntrs[i].name, 12473 vl_from_idx(j)); 12474 memcpy(p, name, strlen(name)); 12475 p += strlen(name); 12476 12477 /* Counter is 32 bits */ 12478 if (dev_cntrs[i].flags & CNTR_32BIT) { 12479 memcpy(p, bit_type_32, bit_type_32_sz); 12480 p += bit_type_32_sz; 12481 } 12482 12483 *p++ = '\n'; 12484 } 12485 } else if (dev_cntrs[i].flags & CNTR_SDMA) { 12486 for (j = 0; j < dd->chip_sdma_engines; j++) { 12487 snprintf(name, C_MAX_NAME, "%s%d", 12488 dev_cntrs[i].name, j); 12489 memcpy(p, name, strlen(name)); 12490 p += strlen(name); 12491 12492 /* Counter is 32 bits */ 12493 if (dev_cntrs[i].flags & CNTR_32BIT) { 12494 memcpy(p, bit_type_32, bit_type_32_sz); 12495 p += bit_type_32_sz; 12496 } 12497 12498 *p++ = '\n'; 12499 } 12500 } else { 12501 memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name)); 12502 p += strlen(dev_cntrs[i].name); 12503 12504 /* Counter is 32 bits */ 12505 if (dev_cntrs[i].flags & CNTR_32BIT) { 12506 memcpy(p, bit_type_32, bit_type_32_sz); 12507 p += bit_type_32_sz; 12508 } 12509 12510 *p++ = '\n'; 12511 } 12512 } 12513 12514 /*********************/ 12515 /* per port counters */ 12516 /*********************/ 12517 12518 /* 12519 * Go through the counters for the overflows and disable the ones we 12520 * don't need. This varies based on platform so we need to do it 12521 * dynamically here. 12522 */ 12523 rcv_ctxts = dd->num_rcv_contexts; 12524 for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts; 12525 i <= C_RCV_HDR_OVF_LAST; i++) { 12526 port_cntrs[i].flags |= CNTR_DISABLED; 12527 } 12528 12529 /* size port counter names and determine how many we have*/ 12530 sz = 0; 12531 dd->nportcntrs = 0; 12532 for (i = 0; i < PORT_CNTR_LAST; i++) { 12533 if (port_cntrs[i].flags & CNTR_DISABLED) { 12534 hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name); 12535 continue; 12536 } 12537 12538 if (port_cntrs[i].flags & CNTR_VL) { 12539 port_cntrs[i].offset = dd->nportcntrs; 12540 for (j = 0; j < C_VL_COUNT; j++) { 12541 snprintf(name, C_MAX_NAME, "%s%d", 12542 port_cntrs[i].name, vl_from_idx(j)); 12543 sz += strlen(name); 12544 /* Add ",32" for 32-bit counters */ 12545 if (port_cntrs[i].flags & CNTR_32BIT) 12546 sz += bit_type_32_sz; 12547 sz++; 12548 dd->nportcntrs++; 12549 } 12550 } else { 12551 /* +1 for newline */ 12552 sz += strlen(port_cntrs[i].name) + 1; 12553 /* Add ",32" for 32-bit counters */ 12554 if (port_cntrs[i].flags & CNTR_32BIT) 12555 sz += bit_type_32_sz; 12556 port_cntrs[i].offset = dd->nportcntrs; 12557 dd->nportcntrs++; 12558 } 12559 } 12560 12561 /* allocate space for the counter names */ 12562 dd->portcntrnameslen = sz; 12563 dd->portcntrnames = kmalloc(sz, GFP_KERNEL); 12564 if (!dd->portcntrnames) 12565 goto bail; 12566 12567 /* fill in port cntr names */ 12568 for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) { 12569 if (port_cntrs[i].flags & CNTR_DISABLED) 12570 continue; 12571 12572 if (port_cntrs[i].flags & CNTR_VL) { 12573 for (j = 0; j < C_VL_COUNT; j++) { 12574 snprintf(name, C_MAX_NAME, "%s%d", 12575 port_cntrs[i].name, vl_from_idx(j)); 12576 memcpy(p, name, strlen(name)); 12577 p += strlen(name); 12578 12579 /* Counter is 32 bits */ 12580 if (port_cntrs[i].flags & CNTR_32BIT) { 12581 memcpy(p, bit_type_32, bit_type_32_sz); 12582 p += bit_type_32_sz; 12583 } 12584 12585 *p++ = '\n'; 12586 } 12587 } else { 12588 memcpy(p, port_cntrs[i].name, 12589 strlen(port_cntrs[i].name)); 12590 p += strlen(port_cntrs[i].name); 12591 12592 /* Counter is 32 bits */ 12593 if (port_cntrs[i].flags & CNTR_32BIT) { 12594 memcpy(p, bit_type_32, bit_type_32_sz); 12595 p += bit_type_32_sz; 12596 } 12597 12598 *p++ = '\n'; 12599 } 12600 } 12601 12602 /* allocate per port storage for counter values */ 12603 ppd = (struct hfi1_pportdata *)(dd + 1); 12604 for (i = 0; i < dd->num_pports; i++, ppd++) { 12605 ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12606 if (!ppd->cntrs) 12607 goto bail; 12608 12609 ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL); 12610 if (!ppd->scntrs) 12611 goto bail; 12612 } 12613 12614 /* CPU counters need to be allocated and zeroed */ 12615 if (init_cpu_counters(dd)) 12616 goto bail; 12617 12618 dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d", 12619 WQ_MEM_RECLAIM, dd->unit); 12620 if (!dd->update_cntr_wq) 12621 goto bail; 12622 12623 INIT_WORK(&dd->update_cntr_work, do_update_synth_timer); 12624 12625 mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME); 12626 return 0; 12627 bail: 12628 free_cntrs(dd); 12629 return -ENOMEM; 12630 } 12631 12632 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate) 12633 { 12634 switch (chip_lstate) { 12635 default: 12636 dd_dev_err(dd, 12637 "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n", 12638 chip_lstate); 12639 /* fall through */ 12640 case LSTATE_DOWN: 12641 return IB_PORT_DOWN; 12642 case LSTATE_INIT: 12643 return IB_PORT_INIT; 12644 case LSTATE_ARMED: 12645 return IB_PORT_ARMED; 12646 case LSTATE_ACTIVE: 12647 return IB_PORT_ACTIVE; 12648 } 12649 } 12650 12651 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate) 12652 { 12653 /* look at the HFI meta-states only */ 12654 switch (chip_pstate & 0xf0) { 12655 default: 12656 dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n", 12657 chip_pstate); 12658 /* fall through */ 12659 case PLS_DISABLED: 12660 return IB_PORTPHYSSTATE_DISABLED; 12661 case PLS_OFFLINE: 12662 return OPA_PORTPHYSSTATE_OFFLINE; 12663 case PLS_POLLING: 12664 return IB_PORTPHYSSTATE_POLLING; 12665 case PLS_CONFIGPHY: 12666 return IB_PORTPHYSSTATE_TRAINING; 12667 case PLS_LINKUP: 12668 return IB_PORTPHYSSTATE_LINKUP; 12669 case PLS_PHYTEST: 12670 return IB_PORTPHYSSTATE_PHY_TEST; 12671 } 12672 } 12673 12674 /* return the OPA port logical state name */ 12675 const char *opa_lstate_name(u32 lstate) 12676 { 12677 static const char * const port_logical_names[] = { 12678 "PORT_NOP", 12679 "PORT_DOWN", 12680 "PORT_INIT", 12681 "PORT_ARMED", 12682 "PORT_ACTIVE", 12683 "PORT_ACTIVE_DEFER", 12684 }; 12685 if (lstate < ARRAY_SIZE(port_logical_names)) 12686 return port_logical_names[lstate]; 12687 return "unknown"; 12688 } 12689 12690 /* return the OPA port physical state name */ 12691 const char *opa_pstate_name(u32 pstate) 12692 { 12693 static const char * const port_physical_names[] = { 12694 "PHYS_NOP", 12695 "reserved1", 12696 "PHYS_POLL", 12697 "PHYS_DISABLED", 12698 "PHYS_TRAINING", 12699 "PHYS_LINKUP", 12700 "PHYS_LINK_ERR_RECOVER", 12701 "PHYS_PHY_TEST", 12702 "reserved8", 12703 "PHYS_OFFLINE", 12704 "PHYS_GANGED", 12705 "PHYS_TEST", 12706 }; 12707 if (pstate < ARRAY_SIZE(port_physical_names)) 12708 return port_physical_names[pstate]; 12709 return "unknown"; 12710 } 12711 12712 /** 12713 * update_statusp - Update userspace status flag 12714 * @ppd: Port data structure 12715 * @state: port state information 12716 * 12717 * Actual port status is determined by the host_link_state value 12718 * in the ppd. 12719 * 12720 * host_link_state MUST be updated before updating the user space 12721 * statusp. 12722 */ 12723 static void update_statusp(struct hfi1_pportdata *ppd, u32 state) 12724 { 12725 /* 12726 * Set port status flags in the page mapped into userspace 12727 * memory. Do it here to ensure a reliable state - this is 12728 * the only function called by all state handling code. 12729 * Always set the flags due to the fact that the cache value 12730 * might have been changed explicitly outside of this 12731 * function. 12732 */ 12733 if (ppd->statusp) { 12734 switch (state) { 12735 case IB_PORT_DOWN: 12736 case IB_PORT_INIT: 12737 *ppd->statusp &= ~(HFI1_STATUS_IB_CONF | 12738 HFI1_STATUS_IB_READY); 12739 break; 12740 case IB_PORT_ARMED: 12741 *ppd->statusp |= HFI1_STATUS_IB_CONF; 12742 break; 12743 case IB_PORT_ACTIVE: 12744 *ppd->statusp |= HFI1_STATUS_IB_READY; 12745 break; 12746 } 12747 } 12748 dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n", 12749 opa_lstate_name(state), state); 12750 } 12751 12752 /** 12753 * wait_logical_linkstate - wait for an IB link state change to occur 12754 * @ppd: port device 12755 * @state: the state to wait for 12756 * @msecs: the number of milliseconds to wait 12757 * 12758 * Wait up to msecs milliseconds for IB link state change to occur. 12759 * For now, take the easy polling route. 12760 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12761 */ 12762 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12763 int msecs) 12764 { 12765 unsigned long timeout; 12766 u32 new_state; 12767 12768 timeout = jiffies + msecs_to_jiffies(msecs); 12769 while (1) { 12770 new_state = chip_to_opa_lstate(ppd->dd, 12771 read_logical_state(ppd->dd)); 12772 if (new_state == state) 12773 break; 12774 if (time_after(jiffies, timeout)) { 12775 dd_dev_err(ppd->dd, 12776 "timeout waiting for link state 0x%x\n", 12777 state); 12778 return -ETIMEDOUT; 12779 } 12780 msleep(20); 12781 } 12782 12783 return 0; 12784 } 12785 12786 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state) 12787 { 12788 u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state); 12789 12790 dd_dev_info(ppd->dd, 12791 "physical state changed to %s (0x%x), phy 0x%x\n", 12792 opa_pstate_name(ib_pstate), ib_pstate, state); 12793 } 12794 12795 /* 12796 * Read the physical hardware link state and check if it matches host 12797 * drivers anticipated state. 12798 */ 12799 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state) 12800 { 12801 u32 read_state = read_physical_state(ppd->dd); 12802 12803 if (read_state == state) { 12804 log_state_transition(ppd, state); 12805 } else { 12806 dd_dev_err(ppd->dd, 12807 "anticipated phy link state 0x%x, read 0x%x\n", 12808 state, read_state); 12809 } 12810 } 12811 12812 /* 12813 * wait_physical_linkstate - wait for an physical link state change to occur 12814 * @ppd: port device 12815 * @state: the state to wait for 12816 * @msecs: the number of milliseconds to wait 12817 * 12818 * Wait up to msecs milliseconds for physical link state change to occur. 12819 * Returns 0 if state reached, otherwise -ETIMEDOUT. 12820 */ 12821 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state, 12822 int msecs) 12823 { 12824 u32 read_state; 12825 unsigned long timeout; 12826 12827 timeout = jiffies + msecs_to_jiffies(msecs); 12828 while (1) { 12829 read_state = read_physical_state(ppd->dd); 12830 if (read_state == state) 12831 break; 12832 if (time_after(jiffies, timeout)) { 12833 dd_dev_err(ppd->dd, 12834 "timeout waiting for phy link state 0x%x\n", 12835 state); 12836 return -ETIMEDOUT; 12837 } 12838 usleep_range(1950, 2050); /* sleep 2ms-ish */ 12839 } 12840 12841 log_state_transition(ppd, state); 12842 return 0; 12843 } 12844 12845 /* 12846 * wait_phys_link_offline_quiet_substates - wait for any offline substate 12847 * @ppd: port device 12848 * @msecs: the number of milliseconds to wait 12849 * 12850 * Wait up to msecs milliseconds for any offline physical link 12851 * state change to occur. 12852 * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT. 12853 */ 12854 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd, 12855 int msecs) 12856 { 12857 u32 read_state; 12858 unsigned long timeout; 12859 12860 timeout = jiffies + msecs_to_jiffies(msecs); 12861 while (1) { 12862 read_state = read_physical_state(ppd->dd); 12863 if ((read_state & 0xF0) == PLS_OFFLINE) 12864 break; 12865 if (time_after(jiffies, timeout)) { 12866 dd_dev_err(ppd->dd, 12867 "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n", 12868 read_state, msecs); 12869 return -ETIMEDOUT; 12870 } 12871 usleep_range(1950, 2050); /* sleep 2ms-ish */ 12872 } 12873 12874 log_state_transition(ppd, read_state); 12875 return read_state; 12876 } 12877 12878 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \ 12879 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12880 12881 #define SET_STATIC_RATE_CONTROL_SMASK(r) \ 12882 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK) 12883 12884 void hfi1_init_ctxt(struct send_context *sc) 12885 { 12886 if (sc) { 12887 struct hfi1_devdata *dd = sc->dd; 12888 u64 reg; 12889 u8 set = (sc->type == SC_USER ? 12890 HFI1_CAP_IS_USET(STATIC_RATE_CTRL) : 12891 HFI1_CAP_IS_KSET(STATIC_RATE_CTRL)); 12892 reg = read_kctxt_csr(dd, sc->hw_context, 12893 SEND_CTXT_CHECK_ENABLE); 12894 if (set) 12895 CLEAR_STATIC_RATE_CONTROL_SMASK(reg); 12896 else 12897 SET_STATIC_RATE_CONTROL_SMASK(reg); 12898 write_kctxt_csr(dd, sc->hw_context, 12899 SEND_CTXT_CHECK_ENABLE, reg); 12900 } 12901 } 12902 12903 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp) 12904 { 12905 int ret = 0; 12906 u64 reg; 12907 12908 if (dd->icode != ICODE_RTL_SILICON) { 12909 if (HFI1_CAP_IS_KSET(PRINT_UNIMPL)) 12910 dd_dev_info(dd, "%s: tempsense not supported by HW\n", 12911 __func__); 12912 return -EINVAL; 12913 } 12914 reg = read_csr(dd, ASIC_STS_THERM); 12915 temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) & 12916 ASIC_STS_THERM_CURR_TEMP_MASK); 12917 temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) & 12918 ASIC_STS_THERM_LO_TEMP_MASK); 12919 temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) & 12920 ASIC_STS_THERM_HI_TEMP_MASK); 12921 temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) & 12922 ASIC_STS_THERM_CRIT_TEMP_MASK); 12923 /* triggers is a 3-bit value - 1 bit per trigger. */ 12924 temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7); 12925 12926 return ret; 12927 } 12928 12929 /** 12930 * get_int_mask - get 64 bit int mask 12931 * @dd - the devdata 12932 * @i - the csr (relative to CCE_INT_MASK) 12933 * 12934 * Returns the mask with the urgent interrupt mask 12935 * bit clear for kernel receive contexts. 12936 */ 12937 static u64 get_int_mask(struct hfi1_devdata *dd, u32 i) 12938 { 12939 u64 mask = U64_MAX; /* default to no change */ 12940 12941 if (i >= (IS_RCVURGENT_START / 64) && i < (IS_RCVURGENT_END / 64)) { 12942 int j = (i - (IS_RCVURGENT_START / 64)) * 64; 12943 int k = !j ? IS_RCVURGENT_START % 64 : 0; 12944 12945 if (j) 12946 j -= IS_RCVURGENT_START % 64; 12947 /* j = 0..dd->first_dyn_alloc_ctxt - 1,k = 0..63 */ 12948 for (; j < dd->first_dyn_alloc_ctxt && k < 64; j++, k++) 12949 /* convert to bit in mask and clear */ 12950 mask &= ~BIT_ULL(k); 12951 } 12952 return mask; 12953 } 12954 12955 /* ========================================================================= */ 12956 12957 /* 12958 * Enable/disable chip from delivering interrupts. 12959 */ 12960 void set_intr_state(struct hfi1_devdata *dd, u32 enable) 12961 { 12962 int i; 12963 12964 /* 12965 * In HFI, the mask needs to be 1 to allow interrupts. 12966 */ 12967 if (enable) { 12968 /* enable all interrupts but urgent on kernel contexts */ 12969 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 12970 u64 mask = get_int_mask(dd, i); 12971 12972 write_csr(dd, CCE_INT_MASK + (8 * i), mask); 12973 } 12974 12975 init_qsfp_int(dd); 12976 } else { 12977 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12978 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 12979 } 12980 } 12981 12982 /* 12983 * Clear all interrupt sources on the chip. 12984 */ 12985 static void clear_all_interrupts(struct hfi1_devdata *dd) 12986 { 12987 int i; 12988 12989 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 12990 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0); 12991 12992 write_csr(dd, CCE_ERR_CLEAR, ~(u64)0); 12993 write_csr(dd, MISC_ERR_CLEAR, ~(u64)0); 12994 write_csr(dd, RCV_ERR_CLEAR, ~(u64)0); 12995 write_csr(dd, SEND_ERR_CLEAR, ~(u64)0); 12996 write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0); 12997 write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0); 12998 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0); 12999 for (i = 0; i < dd->chip_send_contexts; i++) 13000 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0); 13001 for (i = 0; i < dd->chip_sdma_engines; i++) 13002 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0); 13003 13004 write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0); 13005 write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0); 13006 write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0); 13007 } 13008 13009 /* Move to pcie.c? */ 13010 static void disable_intx(struct pci_dev *pdev) 13011 { 13012 pci_intx(pdev, 0); 13013 } 13014 13015 /** 13016 * hfi1_clean_up_interrupts() - Free all IRQ resources 13017 * @dd: valid device data data structure 13018 * 13019 * Free the MSI or INTx IRQs and assoicated PCI resources, 13020 * if they have been allocated. 13021 */ 13022 void hfi1_clean_up_interrupts(struct hfi1_devdata *dd) 13023 { 13024 int i; 13025 13026 /* remove irqs - must happen before disabling/turning off */ 13027 if (dd->num_msix_entries) { 13028 /* MSI-X */ 13029 struct hfi1_msix_entry *me = dd->msix_entries; 13030 13031 for (i = 0; i < dd->num_msix_entries; i++, me++) { 13032 if (!me->arg) /* => no irq, no affinity */ 13033 continue; 13034 hfi1_put_irq_affinity(dd, me); 13035 pci_free_irq(dd->pcidev, i, me->arg); 13036 } 13037 13038 /* clean structures */ 13039 kfree(dd->msix_entries); 13040 dd->msix_entries = NULL; 13041 dd->num_msix_entries = 0; 13042 } else { 13043 /* INTx */ 13044 if (dd->requested_intx_irq) { 13045 pci_free_irq(dd->pcidev, 0, dd); 13046 dd->requested_intx_irq = 0; 13047 } 13048 disable_intx(dd->pcidev); 13049 } 13050 13051 pci_free_irq_vectors(dd->pcidev); 13052 } 13053 13054 /* 13055 * Remap the interrupt source from the general handler to the given MSI-X 13056 * interrupt. 13057 */ 13058 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr) 13059 { 13060 u64 reg; 13061 int m, n; 13062 13063 /* clear from the handled mask of the general interrupt */ 13064 m = isrc / 64; 13065 n = isrc % 64; 13066 if (likely(m < CCE_NUM_INT_CSRS)) { 13067 dd->gi_mask[m] &= ~((u64)1 << n); 13068 } else { 13069 dd_dev_err(dd, "remap interrupt err\n"); 13070 return; 13071 } 13072 13073 /* direct the chip source to the given MSI-X interrupt */ 13074 m = isrc / 8; 13075 n = isrc % 8; 13076 reg = read_csr(dd, CCE_INT_MAP + (8 * m)); 13077 reg &= ~((u64)0xff << (8 * n)); 13078 reg |= ((u64)msix_intr & 0xff) << (8 * n); 13079 write_csr(dd, CCE_INT_MAP + (8 * m), reg); 13080 } 13081 13082 static void remap_sdma_interrupts(struct hfi1_devdata *dd, 13083 int engine, int msix_intr) 13084 { 13085 /* 13086 * SDMA engine interrupt sources grouped by type, rather than 13087 * engine. Per-engine interrupts are as follows: 13088 * SDMA 13089 * SDMAProgress 13090 * SDMAIdle 13091 */ 13092 remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine, 13093 msix_intr); 13094 remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine, 13095 msix_intr); 13096 remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine, 13097 msix_intr); 13098 } 13099 13100 static int request_intx_irq(struct hfi1_devdata *dd) 13101 { 13102 int ret; 13103 13104 ret = pci_request_irq(dd->pcidev, 0, general_interrupt, NULL, dd, 13105 DRIVER_NAME "_%d", dd->unit); 13106 if (ret) 13107 dd_dev_err(dd, "unable to request INTx interrupt, err %d\n", 13108 ret); 13109 else 13110 dd->requested_intx_irq = 1; 13111 return ret; 13112 } 13113 13114 static int request_msix_irqs(struct hfi1_devdata *dd) 13115 { 13116 int first_general, last_general; 13117 int first_sdma, last_sdma; 13118 int first_rx, last_rx; 13119 int i, ret = 0; 13120 13121 /* calculate the ranges we are going to use */ 13122 first_general = 0; 13123 last_general = first_general + 1; 13124 first_sdma = last_general; 13125 last_sdma = first_sdma + dd->num_sdma; 13126 first_rx = last_sdma; 13127 last_rx = first_rx + dd->n_krcv_queues + dd->num_vnic_contexts; 13128 13129 /* VNIC MSIx interrupts get mapped when VNIC contexts are created */ 13130 dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues; 13131 13132 /* 13133 * Sanity check - the code expects all SDMA chip source 13134 * interrupts to be in the same CSR, starting at bit 0. Verify 13135 * that this is true by checking the bit location of the start. 13136 */ 13137 BUILD_BUG_ON(IS_SDMA_START % 64); 13138 13139 for (i = 0; i < dd->num_msix_entries; i++) { 13140 struct hfi1_msix_entry *me = &dd->msix_entries[i]; 13141 const char *err_info; 13142 irq_handler_t handler; 13143 irq_handler_t thread = NULL; 13144 void *arg = NULL; 13145 int idx; 13146 struct hfi1_ctxtdata *rcd = NULL; 13147 struct sdma_engine *sde = NULL; 13148 char name[MAX_NAME_SIZE]; 13149 13150 /* obtain the arguments to pci_request_irq */ 13151 if (first_general <= i && i < last_general) { 13152 idx = i - first_general; 13153 handler = general_interrupt; 13154 arg = dd; 13155 snprintf(name, sizeof(name), 13156 DRIVER_NAME "_%d", dd->unit); 13157 err_info = "general"; 13158 me->type = IRQ_GENERAL; 13159 } else if (first_sdma <= i && i < last_sdma) { 13160 idx = i - first_sdma; 13161 sde = &dd->per_sdma[idx]; 13162 handler = sdma_interrupt; 13163 arg = sde; 13164 snprintf(name, sizeof(name), 13165 DRIVER_NAME "_%d sdma%d", dd->unit, idx); 13166 err_info = "sdma"; 13167 remap_sdma_interrupts(dd, idx, i); 13168 me->type = IRQ_SDMA; 13169 } else if (first_rx <= i && i < last_rx) { 13170 idx = i - first_rx; 13171 rcd = hfi1_rcd_get_by_index_safe(dd, idx); 13172 if (rcd) { 13173 /* 13174 * Set the interrupt register and mask for this 13175 * context's interrupt. 13176 */ 13177 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 13178 rcd->imask = ((u64)1) << 13179 ((IS_RCVAVAIL_START + idx) % 64); 13180 handler = receive_context_interrupt; 13181 thread = receive_context_thread; 13182 arg = rcd; 13183 snprintf(name, sizeof(name), 13184 DRIVER_NAME "_%d kctxt%d", 13185 dd->unit, idx); 13186 err_info = "receive context"; 13187 remap_intr(dd, IS_RCVAVAIL_START + idx, i); 13188 me->type = IRQ_RCVCTXT; 13189 rcd->msix_intr = i; 13190 hfi1_rcd_put(rcd); 13191 } 13192 } else { 13193 /* not in our expected range - complain, then 13194 * ignore it 13195 */ 13196 dd_dev_err(dd, 13197 "Unexpected extra MSI-X interrupt %d\n", i); 13198 continue; 13199 } 13200 /* no argument, no interrupt */ 13201 if (!arg) 13202 continue; 13203 /* make sure the name is terminated */ 13204 name[sizeof(name) - 1] = 0; 13205 me->irq = pci_irq_vector(dd->pcidev, i); 13206 ret = pci_request_irq(dd->pcidev, i, handler, thread, arg, 13207 name); 13208 if (ret) { 13209 dd_dev_err(dd, 13210 "unable to allocate %s interrupt, irq %d, index %d, err %d\n", 13211 err_info, me->irq, idx, ret); 13212 return ret; 13213 } 13214 /* 13215 * assign arg after pci_request_irq call, so it will be 13216 * cleaned up 13217 */ 13218 me->arg = arg; 13219 13220 ret = hfi1_get_irq_affinity(dd, me); 13221 if (ret) 13222 dd_dev_err(dd, "unable to pin IRQ %d\n", ret); 13223 } 13224 13225 return ret; 13226 } 13227 13228 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd) 13229 { 13230 int i; 13231 13232 if (!dd->num_msix_entries) { 13233 synchronize_irq(pci_irq_vector(dd->pcidev, 0)); 13234 return; 13235 } 13236 13237 for (i = 0; i < dd->vnic.num_ctxt; i++) { 13238 struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i]; 13239 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr]; 13240 13241 synchronize_irq(me->irq); 13242 } 13243 } 13244 13245 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd) 13246 { 13247 struct hfi1_devdata *dd = rcd->dd; 13248 struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr]; 13249 13250 if (!me->arg) /* => no irq, no affinity */ 13251 return; 13252 13253 hfi1_put_irq_affinity(dd, me); 13254 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg); 13255 13256 me->arg = NULL; 13257 } 13258 13259 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd) 13260 { 13261 struct hfi1_devdata *dd = rcd->dd; 13262 struct hfi1_msix_entry *me; 13263 int idx = rcd->ctxt; 13264 void *arg = rcd; 13265 int ret; 13266 13267 rcd->msix_intr = dd->vnic.msix_idx++; 13268 me = &dd->msix_entries[rcd->msix_intr]; 13269 13270 /* 13271 * Set the interrupt register and mask for this 13272 * context's interrupt. 13273 */ 13274 rcd->ireg = (IS_RCVAVAIL_START + idx) / 64; 13275 rcd->imask = ((u64)1) << 13276 ((IS_RCVAVAIL_START + idx) % 64); 13277 me->type = IRQ_RCVCTXT; 13278 me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr); 13279 remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr); 13280 13281 ret = pci_request_irq(dd->pcidev, rcd->msix_intr, 13282 receive_context_interrupt, 13283 receive_context_thread, arg, 13284 DRIVER_NAME "_%d kctxt%d", dd->unit, idx); 13285 if (ret) { 13286 dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n", 13287 me->irq, idx, ret); 13288 return; 13289 } 13290 /* 13291 * assign arg after pci_request_irq call, so it will be 13292 * cleaned up 13293 */ 13294 me->arg = arg; 13295 13296 ret = hfi1_get_irq_affinity(dd, me); 13297 if (ret) { 13298 dd_dev_err(dd, 13299 "unable to pin IRQ %d\n", ret); 13300 pci_free_irq(dd->pcidev, rcd->msix_intr, me->arg); 13301 } 13302 } 13303 13304 /* 13305 * Set the general handler to accept all interrupts, remap all 13306 * chip interrupts back to MSI-X 0. 13307 */ 13308 static void reset_interrupts(struct hfi1_devdata *dd) 13309 { 13310 int i; 13311 13312 /* all interrupts handled by the general handler */ 13313 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 13314 dd->gi_mask[i] = ~(u64)0; 13315 13316 /* all chip interrupts map to MSI-X 0 */ 13317 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13318 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13319 } 13320 13321 static int set_up_interrupts(struct hfi1_devdata *dd) 13322 { 13323 u32 total; 13324 int ret, request; 13325 int single_interrupt = 0; /* we expect to have all the interrupts */ 13326 13327 /* 13328 * Interrupt count: 13329 * 1 general, "slow path" interrupt (includes the SDMA engines 13330 * slow source, SDMACleanupDone) 13331 * N interrupts - one per used SDMA engine 13332 * M interrupt - one per kernel receive context 13333 * V interrupt - one for each VNIC context 13334 */ 13335 total = 1 + dd->num_sdma + dd->n_krcv_queues + dd->num_vnic_contexts; 13336 13337 /* ask for MSI-X interrupts */ 13338 request = request_msix(dd, total); 13339 if (request < 0) { 13340 ret = request; 13341 goto fail; 13342 } else if (request == 0) { 13343 /* using INTx */ 13344 /* dd->num_msix_entries already zero */ 13345 single_interrupt = 1; 13346 dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n"); 13347 } else if (request < total) { 13348 /* using MSI-X, with reduced interrupts */ 13349 dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n", 13350 total, request); 13351 ret = -EINVAL; 13352 goto fail; 13353 } else { 13354 dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries), 13355 GFP_KERNEL); 13356 if (!dd->msix_entries) { 13357 ret = -ENOMEM; 13358 goto fail; 13359 } 13360 /* using MSI-X */ 13361 dd->num_msix_entries = total; 13362 dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total); 13363 } 13364 13365 /* mask all interrupts */ 13366 set_intr_state(dd, 0); 13367 /* clear all pending interrupts */ 13368 clear_all_interrupts(dd); 13369 13370 /* reset general handler mask, chip MSI-X mappings */ 13371 reset_interrupts(dd); 13372 13373 if (single_interrupt) 13374 ret = request_intx_irq(dd); 13375 else 13376 ret = request_msix_irqs(dd); 13377 if (ret) 13378 goto fail; 13379 13380 return 0; 13381 13382 fail: 13383 hfi1_clean_up_interrupts(dd); 13384 return ret; 13385 } 13386 13387 /* 13388 * Set up context values in dd. Sets: 13389 * 13390 * num_rcv_contexts - number of contexts being used 13391 * n_krcv_queues - number of kernel contexts 13392 * first_dyn_alloc_ctxt - first dynamically allocated context 13393 * in array of contexts 13394 * freectxts - number of free user contexts 13395 * num_send_contexts - number of PIO send contexts being used 13396 * num_vnic_contexts - number of contexts reserved for VNIC 13397 */ 13398 static int set_up_context_variables(struct hfi1_devdata *dd) 13399 { 13400 unsigned long num_kernel_contexts; 13401 u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT; 13402 int total_contexts; 13403 int ret; 13404 unsigned ngroups; 13405 int qos_rmt_count; 13406 int user_rmt_reduced; 13407 u32 n_usr_ctxts; 13408 13409 /* 13410 * Kernel receive contexts: 13411 * - Context 0 - control context (VL15/multicast/error) 13412 * - Context 1 - first kernel context 13413 * - Context 2 - second kernel context 13414 * ... 13415 */ 13416 if (n_krcvqs) 13417 /* 13418 * n_krcvqs is the sum of module parameter kernel receive 13419 * contexts, krcvqs[]. It does not include the control 13420 * context, so add that. 13421 */ 13422 num_kernel_contexts = n_krcvqs + 1; 13423 else 13424 num_kernel_contexts = DEFAULT_KRCVQS + 1; 13425 /* 13426 * Every kernel receive context needs an ACK send context. 13427 * one send context is allocated for each VL{0-7} and VL15 13428 */ 13429 if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) { 13430 dd_dev_err(dd, 13431 "Reducing # kernel rcv contexts to: %d, from %lu\n", 13432 (int)(dd->chip_send_contexts - num_vls - 1), 13433 num_kernel_contexts); 13434 num_kernel_contexts = dd->chip_send_contexts - num_vls - 1; 13435 } 13436 13437 /* Accommodate VNIC contexts if possible */ 13438 if ((num_kernel_contexts + num_vnic_contexts) > dd->chip_rcv_contexts) { 13439 dd_dev_err(dd, "No receive contexts available for VNIC\n"); 13440 num_vnic_contexts = 0; 13441 } 13442 total_contexts = num_kernel_contexts + num_vnic_contexts; 13443 13444 /* 13445 * User contexts: 13446 * - default to 1 user context per real (non-HT) CPU core if 13447 * num_user_contexts is negative 13448 */ 13449 if (num_user_contexts < 0) 13450 n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask); 13451 else 13452 n_usr_ctxts = num_user_contexts; 13453 /* 13454 * Adjust the counts given a global max. 13455 */ 13456 if (total_contexts + n_usr_ctxts > dd->chip_rcv_contexts) { 13457 dd_dev_err(dd, 13458 "Reducing # user receive contexts to: %d, from %u\n", 13459 (int)(dd->chip_rcv_contexts - total_contexts), 13460 n_usr_ctxts); 13461 /* recalculate */ 13462 n_usr_ctxts = dd->chip_rcv_contexts - total_contexts; 13463 } 13464 13465 /* each user context requires an entry in the RMT */ 13466 qos_rmt_count = qos_rmt_entries(dd, NULL, NULL); 13467 if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) { 13468 user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count; 13469 dd_dev_err(dd, 13470 "RMT size is reducing the number of user receive contexts from %u to %d\n", 13471 n_usr_ctxts, 13472 user_rmt_reduced); 13473 /* recalculate */ 13474 n_usr_ctxts = user_rmt_reduced; 13475 } 13476 13477 total_contexts += n_usr_ctxts; 13478 13479 /* the first N are kernel contexts, the rest are user/vnic contexts */ 13480 dd->num_rcv_contexts = total_contexts; 13481 dd->n_krcv_queues = num_kernel_contexts; 13482 dd->first_dyn_alloc_ctxt = num_kernel_contexts; 13483 dd->num_vnic_contexts = num_vnic_contexts; 13484 dd->num_user_contexts = n_usr_ctxts; 13485 dd->freectxts = n_usr_ctxts; 13486 dd_dev_info(dd, 13487 "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n", 13488 (int)dd->chip_rcv_contexts, 13489 (int)dd->num_rcv_contexts, 13490 (int)dd->n_krcv_queues, 13491 dd->num_vnic_contexts, 13492 dd->num_user_contexts); 13493 13494 /* 13495 * Receive array allocation: 13496 * All RcvArray entries are divided into groups of 8. This 13497 * is required by the hardware and will speed up writes to 13498 * consecutive entries by using write-combining of the entire 13499 * cacheline. 13500 * 13501 * The number of groups are evenly divided among all contexts. 13502 * any left over groups will be given to the first N user 13503 * contexts. 13504 */ 13505 dd->rcv_entries.group_size = RCV_INCREMENT; 13506 ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size; 13507 dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts; 13508 dd->rcv_entries.nctxt_extra = ngroups - 13509 (dd->num_rcv_contexts * dd->rcv_entries.ngroups); 13510 dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n", 13511 dd->rcv_entries.ngroups, 13512 dd->rcv_entries.nctxt_extra); 13513 if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size > 13514 MAX_EAGER_ENTRIES * 2) { 13515 dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) / 13516 dd->rcv_entries.group_size; 13517 dd_dev_info(dd, 13518 "RcvArray group count too high, change to %u\n", 13519 dd->rcv_entries.ngroups); 13520 dd->rcv_entries.nctxt_extra = 0; 13521 } 13522 /* 13523 * PIO send contexts 13524 */ 13525 ret = init_sc_pools_and_sizes(dd); 13526 if (ret >= 0) { /* success */ 13527 dd->num_send_contexts = ret; 13528 dd_dev_info( 13529 dd, 13530 "send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n", 13531 dd->chip_send_contexts, 13532 dd->num_send_contexts, 13533 dd->sc_sizes[SC_KERNEL].count, 13534 dd->sc_sizes[SC_ACK].count, 13535 dd->sc_sizes[SC_USER].count, 13536 dd->sc_sizes[SC_VL15].count); 13537 ret = 0; /* success */ 13538 } 13539 13540 return ret; 13541 } 13542 13543 /* 13544 * Set the device/port partition key table. The MAD code 13545 * will ensure that, at least, the partial management 13546 * partition key is present in the table. 13547 */ 13548 static void set_partition_keys(struct hfi1_pportdata *ppd) 13549 { 13550 struct hfi1_devdata *dd = ppd->dd; 13551 u64 reg = 0; 13552 int i; 13553 13554 dd_dev_info(dd, "Setting partition keys\n"); 13555 for (i = 0; i < hfi1_get_npkeys(dd); i++) { 13556 reg |= (ppd->pkeys[i] & 13557 RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) << 13558 ((i % 4) * 13559 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT); 13560 /* Each register holds 4 PKey values. */ 13561 if ((i % 4) == 3) { 13562 write_csr(dd, RCV_PARTITION_KEY + 13563 ((i - 3) * 2), reg); 13564 reg = 0; 13565 } 13566 } 13567 13568 /* Always enable HW pkeys check when pkeys table is set */ 13569 add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK); 13570 } 13571 13572 /* 13573 * These CSRs and memories are uninitialized on reset and must be 13574 * written before reading to set the ECC/parity bits. 13575 * 13576 * NOTE: All user context CSRs that are not mmaped write-only 13577 * (e.g. the TID flows) must be initialized even if the driver never 13578 * reads them. 13579 */ 13580 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd) 13581 { 13582 int i, j; 13583 13584 /* CceIntMap */ 13585 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13586 write_csr(dd, CCE_INT_MAP + (8 * i), 0); 13587 13588 /* SendCtxtCreditReturnAddr */ 13589 for (i = 0; i < dd->chip_send_contexts; i++) 13590 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13591 13592 /* PIO Send buffers */ 13593 /* SDMA Send buffers */ 13594 /* 13595 * These are not normally read, and (presently) have no method 13596 * to be read, so are not pre-initialized 13597 */ 13598 13599 /* RcvHdrAddr */ 13600 /* RcvHdrTailAddr */ 13601 /* RcvTidFlowTable */ 13602 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13603 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13604 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13605 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) 13606 write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0); 13607 } 13608 13609 /* RcvArray */ 13610 for (i = 0; i < dd->chip_rcv_array_count; i++) 13611 hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0); 13612 13613 /* RcvQPMapTable */ 13614 for (i = 0; i < 32; i++) 13615 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13616 } 13617 13618 /* 13619 * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus. 13620 */ 13621 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits, 13622 u64 ctrl_bits) 13623 { 13624 unsigned long timeout; 13625 u64 reg; 13626 13627 /* is the condition present? */ 13628 reg = read_csr(dd, CCE_STATUS); 13629 if ((reg & status_bits) == 0) 13630 return; 13631 13632 /* clear the condition */ 13633 write_csr(dd, CCE_CTRL, ctrl_bits); 13634 13635 /* wait for the condition to clear */ 13636 timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT); 13637 while (1) { 13638 reg = read_csr(dd, CCE_STATUS); 13639 if ((reg & status_bits) == 0) 13640 return; 13641 if (time_after(jiffies, timeout)) { 13642 dd_dev_err(dd, 13643 "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n", 13644 status_bits, reg & status_bits); 13645 return; 13646 } 13647 udelay(1); 13648 } 13649 } 13650 13651 /* set CCE CSRs to chip reset defaults */ 13652 static void reset_cce_csrs(struct hfi1_devdata *dd) 13653 { 13654 int i; 13655 13656 /* CCE_REVISION read-only */ 13657 /* CCE_REVISION2 read-only */ 13658 /* CCE_CTRL - bits clear automatically */ 13659 /* CCE_STATUS read-only, use CceCtrl to clear */ 13660 clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK); 13661 clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK); 13662 clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK); 13663 for (i = 0; i < CCE_NUM_SCRATCH; i++) 13664 write_csr(dd, CCE_SCRATCH + (8 * i), 0); 13665 /* CCE_ERR_STATUS read-only */ 13666 write_csr(dd, CCE_ERR_MASK, 0); 13667 write_csr(dd, CCE_ERR_CLEAR, ~0ull); 13668 /* CCE_ERR_FORCE leave alone */ 13669 for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++) 13670 write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0); 13671 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR); 13672 /* CCE_PCIE_CTRL leave alone */ 13673 for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) { 13674 write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0); 13675 write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i), 13676 CCE_MSIX_TABLE_UPPER_RESETCSR); 13677 } 13678 for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) { 13679 /* CCE_MSIX_PBA read-only */ 13680 write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull); 13681 write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull); 13682 } 13683 for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++) 13684 write_csr(dd, CCE_INT_MAP, 0); 13685 for (i = 0; i < CCE_NUM_INT_CSRS; i++) { 13686 /* CCE_INT_STATUS read-only */ 13687 write_csr(dd, CCE_INT_MASK + (8 * i), 0); 13688 write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull); 13689 /* CCE_INT_FORCE leave alone */ 13690 /* CCE_INT_BLOCKED read-only */ 13691 } 13692 for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++) 13693 write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0); 13694 } 13695 13696 /* set MISC CSRs to chip reset defaults */ 13697 static void reset_misc_csrs(struct hfi1_devdata *dd) 13698 { 13699 int i; 13700 13701 for (i = 0; i < 32; i++) { 13702 write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0); 13703 write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0); 13704 write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0); 13705 } 13706 /* 13707 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can 13708 * only be written 128-byte chunks 13709 */ 13710 /* init RSA engine to clear lingering errors */ 13711 write_csr(dd, MISC_CFG_RSA_CMD, 1); 13712 write_csr(dd, MISC_CFG_RSA_MU, 0); 13713 write_csr(dd, MISC_CFG_FW_CTRL, 0); 13714 /* MISC_STS_8051_DIGEST read-only */ 13715 /* MISC_STS_SBM_DIGEST read-only */ 13716 /* MISC_STS_PCIE_DIGEST read-only */ 13717 /* MISC_STS_FAB_DIGEST read-only */ 13718 /* MISC_ERR_STATUS read-only */ 13719 write_csr(dd, MISC_ERR_MASK, 0); 13720 write_csr(dd, MISC_ERR_CLEAR, ~0ull); 13721 /* MISC_ERR_FORCE leave alone */ 13722 } 13723 13724 /* set TXE CSRs to chip reset defaults */ 13725 static void reset_txe_csrs(struct hfi1_devdata *dd) 13726 { 13727 int i; 13728 13729 /* 13730 * TXE Kernel CSRs 13731 */ 13732 write_csr(dd, SEND_CTRL, 0); 13733 __cm_reset(dd, 0); /* reset CM internal state */ 13734 /* SEND_CONTEXTS read-only */ 13735 /* SEND_DMA_ENGINES read-only */ 13736 /* SEND_PIO_MEM_SIZE read-only */ 13737 /* SEND_DMA_MEM_SIZE read-only */ 13738 write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0); 13739 pio_reset_all(dd); /* SEND_PIO_INIT_CTXT */ 13740 /* SEND_PIO_ERR_STATUS read-only */ 13741 write_csr(dd, SEND_PIO_ERR_MASK, 0); 13742 write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull); 13743 /* SEND_PIO_ERR_FORCE leave alone */ 13744 /* SEND_DMA_ERR_STATUS read-only */ 13745 write_csr(dd, SEND_DMA_ERR_MASK, 0); 13746 write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull); 13747 /* SEND_DMA_ERR_FORCE leave alone */ 13748 /* SEND_EGRESS_ERR_STATUS read-only */ 13749 write_csr(dd, SEND_EGRESS_ERR_MASK, 0); 13750 write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull); 13751 /* SEND_EGRESS_ERR_FORCE leave alone */ 13752 write_csr(dd, SEND_BTH_QP, 0); 13753 write_csr(dd, SEND_STATIC_RATE_CONTROL, 0); 13754 write_csr(dd, SEND_SC2VLT0, 0); 13755 write_csr(dd, SEND_SC2VLT1, 0); 13756 write_csr(dd, SEND_SC2VLT2, 0); 13757 write_csr(dd, SEND_SC2VLT3, 0); 13758 write_csr(dd, SEND_LEN_CHECK0, 0); 13759 write_csr(dd, SEND_LEN_CHECK1, 0); 13760 /* SEND_ERR_STATUS read-only */ 13761 write_csr(dd, SEND_ERR_MASK, 0); 13762 write_csr(dd, SEND_ERR_CLEAR, ~0ull); 13763 /* SEND_ERR_FORCE read-only */ 13764 for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++) 13765 write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0); 13766 for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++) 13767 write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0); 13768 for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++) 13769 write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0); 13770 for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++) 13771 write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0); 13772 for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++) 13773 write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0); 13774 write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR); 13775 write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR); 13776 /* SEND_CM_CREDIT_USED_STATUS read-only */ 13777 write_csr(dd, SEND_CM_TIMER_CTRL, 0); 13778 write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0); 13779 write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0); 13780 write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0); 13781 write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0); 13782 for (i = 0; i < TXE_NUM_DATA_VL; i++) 13783 write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0); 13784 write_csr(dd, SEND_CM_CREDIT_VL15, 0); 13785 /* SEND_CM_CREDIT_USED_VL read-only */ 13786 /* SEND_CM_CREDIT_USED_VL15 read-only */ 13787 /* SEND_EGRESS_CTXT_STATUS read-only */ 13788 /* SEND_EGRESS_SEND_DMA_STATUS read-only */ 13789 write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull); 13790 /* SEND_EGRESS_ERR_INFO read-only */ 13791 /* SEND_EGRESS_ERR_SOURCE read-only */ 13792 13793 /* 13794 * TXE Per-Context CSRs 13795 */ 13796 for (i = 0; i < dd->chip_send_contexts; i++) { 13797 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 13798 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0); 13799 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0); 13800 write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0); 13801 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0); 13802 write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull); 13803 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0); 13804 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0); 13805 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0); 13806 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0); 13807 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0); 13808 write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0); 13809 } 13810 13811 /* 13812 * TXE Per-SDMA CSRs 13813 */ 13814 for (i = 0; i < dd->chip_sdma_engines; i++) { 13815 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 13816 /* SEND_DMA_STATUS read-only */ 13817 write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0); 13818 write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0); 13819 write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0); 13820 /* SEND_DMA_HEAD read-only */ 13821 write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0); 13822 write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0); 13823 /* SEND_DMA_IDLE_CNT read-only */ 13824 write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0); 13825 write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0); 13826 /* SEND_DMA_DESC_FETCHED_CNT read-only */ 13827 /* SEND_DMA_ENG_ERR_STATUS read-only */ 13828 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0); 13829 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull); 13830 /* SEND_DMA_ENG_ERR_FORCE leave alone */ 13831 write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0); 13832 write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0); 13833 write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0); 13834 write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0); 13835 write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0); 13836 write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0); 13837 write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0); 13838 } 13839 } 13840 13841 /* 13842 * Expect on entry: 13843 * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0 13844 */ 13845 static void init_rbufs(struct hfi1_devdata *dd) 13846 { 13847 u64 reg; 13848 int count; 13849 13850 /* 13851 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are 13852 * clear. 13853 */ 13854 count = 0; 13855 while (1) { 13856 reg = read_csr(dd, RCV_STATUS); 13857 if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK 13858 | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0) 13859 break; 13860 /* 13861 * Give up after 1ms - maximum wait time. 13862 * 13863 * RBuf size is 136KiB. Slowest possible is PCIe Gen1 x1 at 13864 * 250MB/s bandwidth. Lower rate to 66% for overhead to get: 13865 * 136 KB / (66% * 250MB/s) = 844us 13866 */ 13867 if (count++ > 500) { 13868 dd_dev_err(dd, 13869 "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n", 13870 __func__, reg); 13871 break; 13872 } 13873 udelay(2); /* do not busy-wait the CSR */ 13874 } 13875 13876 /* start the init - expect RcvCtrl to be 0 */ 13877 write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK); 13878 13879 /* 13880 * Read to force the write of Rcvtrl.RxRbufInit. There is a brief 13881 * period after the write before RcvStatus.RxRbufInitDone is valid. 13882 * The delay in the first run through the loop below is sufficient and 13883 * required before the first read of RcvStatus.RxRbufInintDone. 13884 */ 13885 read_csr(dd, RCV_CTRL); 13886 13887 /* wait for the init to finish */ 13888 count = 0; 13889 while (1) { 13890 /* delay is required first time through - see above */ 13891 udelay(2); /* do not busy-wait the CSR */ 13892 reg = read_csr(dd, RCV_STATUS); 13893 if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK)) 13894 break; 13895 13896 /* give up after 100us - slowest possible at 33MHz is 73us */ 13897 if (count++ > 50) { 13898 dd_dev_err(dd, 13899 "%s: RcvStatus.RxRbufInit not set, continuing\n", 13900 __func__); 13901 break; 13902 } 13903 } 13904 } 13905 13906 /* set RXE CSRs to chip reset defaults */ 13907 static void reset_rxe_csrs(struct hfi1_devdata *dd) 13908 { 13909 int i, j; 13910 13911 /* 13912 * RXE Kernel CSRs 13913 */ 13914 write_csr(dd, RCV_CTRL, 0); 13915 init_rbufs(dd); 13916 /* RCV_STATUS read-only */ 13917 /* RCV_CONTEXTS read-only */ 13918 /* RCV_ARRAY_CNT read-only */ 13919 /* RCV_BUF_SIZE read-only */ 13920 write_csr(dd, RCV_BTH_QP, 0); 13921 write_csr(dd, RCV_MULTICAST, 0); 13922 write_csr(dd, RCV_BYPASS, 0); 13923 write_csr(dd, RCV_VL15, 0); 13924 /* this is a clear-down */ 13925 write_csr(dd, RCV_ERR_INFO, 13926 RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK); 13927 /* RCV_ERR_STATUS read-only */ 13928 write_csr(dd, RCV_ERR_MASK, 0); 13929 write_csr(dd, RCV_ERR_CLEAR, ~0ull); 13930 /* RCV_ERR_FORCE leave alone */ 13931 for (i = 0; i < 32; i++) 13932 write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0); 13933 for (i = 0; i < 4; i++) 13934 write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0); 13935 for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++) 13936 write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0); 13937 for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++) 13938 write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0); 13939 for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++) 13940 clear_rsm_rule(dd, i); 13941 for (i = 0; i < 32; i++) 13942 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0); 13943 13944 /* 13945 * RXE Kernel and User Per-Context CSRs 13946 */ 13947 for (i = 0; i < dd->chip_rcv_contexts; i++) { 13948 /* kernel */ 13949 write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0); 13950 /* RCV_CTXT_STATUS read-only */ 13951 write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0); 13952 write_kctxt_csr(dd, i, RCV_TID_CTRL, 0); 13953 write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0); 13954 write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0); 13955 write_kctxt_csr(dd, i, RCV_HDR_CNT, 0); 13956 write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0); 13957 write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0); 13958 write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0); 13959 write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0); 13960 write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0); 13961 13962 /* user */ 13963 /* RCV_HDR_TAIL read-only */ 13964 write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0); 13965 /* RCV_EGR_INDEX_TAIL read-only */ 13966 write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0); 13967 /* RCV_EGR_OFFSET_TAIL read-only */ 13968 for (j = 0; j < RXE_NUM_TID_FLOWS; j++) { 13969 write_uctxt_csr(dd, i, 13970 RCV_TID_FLOW_TABLE + (8 * j), 0); 13971 } 13972 } 13973 } 13974 13975 /* 13976 * Set sc2vl tables. 13977 * 13978 * They power on to zeros, so to avoid send context errors 13979 * they need to be set: 13980 * 13981 * SC 0-7 -> VL 0-7 (respectively) 13982 * SC 15 -> VL 15 13983 * otherwise 13984 * -> VL 0 13985 */ 13986 static void init_sc2vl_tables(struct hfi1_devdata *dd) 13987 { 13988 int i; 13989 /* init per architecture spec, constrained by hardware capability */ 13990 13991 /* HFI maps sent packets */ 13992 write_csr(dd, SEND_SC2VLT0, SC2VL_VAL( 13993 0, 13994 0, 0, 1, 1, 13995 2, 2, 3, 3, 13996 4, 4, 5, 5, 13997 6, 6, 7, 7)); 13998 write_csr(dd, SEND_SC2VLT1, SC2VL_VAL( 13999 1, 14000 8, 0, 9, 0, 14001 10, 0, 11, 0, 14002 12, 0, 13, 0, 14003 14, 0, 15, 15)); 14004 write_csr(dd, SEND_SC2VLT2, SC2VL_VAL( 14005 2, 14006 16, 0, 17, 0, 14007 18, 0, 19, 0, 14008 20, 0, 21, 0, 14009 22, 0, 23, 0)); 14010 write_csr(dd, SEND_SC2VLT3, SC2VL_VAL( 14011 3, 14012 24, 0, 25, 0, 14013 26, 0, 27, 0, 14014 28, 0, 29, 0, 14015 30, 0, 31, 0)); 14016 14017 /* DC maps received packets */ 14018 write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL( 14019 15_0, 14020 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 14021 8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15)); 14022 write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL( 14023 31_16, 14024 16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0, 14025 24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0)); 14026 14027 /* initialize the cached sc2vl values consistently with h/w */ 14028 for (i = 0; i < 32; i++) { 14029 if (i < 8 || i == 15) 14030 *((u8 *)(dd->sc2vl) + i) = (u8)i; 14031 else 14032 *((u8 *)(dd->sc2vl) + i) = 0; 14033 } 14034 } 14035 14036 /* 14037 * Read chip sizes and then reset parts to sane, disabled, values. We cannot 14038 * depend on the chip going through a power-on reset - a driver may be loaded 14039 * and unloaded many times. 14040 * 14041 * Do not write any CSR values to the chip in this routine - there may be 14042 * a reset following the (possible) FLR in this routine. 14043 * 14044 */ 14045 static int init_chip(struct hfi1_devdata *dd) 14046 { 14047 int i; 14048 int ret = 0; 14049 14050 /* 14051 * Put the HFI CSRs in a known state. 14052 * Combine this with a DC reset. 14053 * 14054 * Stop the device from doing anything while we do a 14055 * reset. We know there are no other active users of 14056 * the device since we are now in charge. Turn off 14057 * off all outbound and inbound traffic and make sure 14058 * the device does not generate any interrupts. 14059 */ 14060 14061 /* disable send contexts and SDMA engines */ 14062 write_csr(dd, SEND_CTRL, 0); 14063 for (i = 0; i < dd->chip_send_contexts; i++) 14064 write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0); 14065 for (i = 0; i < dd->chip_sdma_engines; i++) 14066 write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0); 14067 /* disable port (turn off RXE inbound traffic) and contexts */ 14068 write_csr(dd, RCV_CTRL, 0); 14069 for (i = 0; i < dd->chip_rcv_contexts; i++) 14070 write_csr(dd, RCV_CTXT_CTRL, 0); 14071 /* mask all interrupt sources */ 14072 for (i = 0; i < CCE_NUM_INT_CSRS; i++) 14073 write_csr(dd, CCE_INT_MASK + (8 * i), 0ull); 14074 14075 /* 14076 * DC Reset: do a full DC reset before the register clear. 14077 * A recommended length of time to hold is one CSR read, 14078 * so reread the CceDcCtrl. Then, hold the DC in reset 14079 * across the clear. 14080 */ 14081 write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK); 14082 (void)read_csr(dd, CCE_DC_CTRL); 14083 14084 if (use_flr) { 14085 /* 14086 * A FLR will reset the SPC core and part of the PCIe. 14087 * The parts that need to be restored have already been 14088 * saved. 14089 */ 14090 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 14091 14092 /* do the FLR, the DC reset will remain */ 14093 pcie_flr(dd->pcidev); 14094 14095 /* restore command and BARs */ 14096 ret = restore_pci_variables(dd); 14097 if (ret) { 14098 dd_dev_err(dd, "%s: Could not restore PCI variables\n", 14099 __func__); 14100 return ret; 14101 } 14102 14103 if (is_ax(dd)) { 14104 dd_dev_info(dd, "Resetting CSRs with FLR\n"); 14105 pcie_flr(dd->pcidev); 14106 ret = restore_pci_variables(dd); 14107 if (ret) { 14108 dd_dev_err(dd, "%s: Could not restore PCI variables\n", 14109 __func__); 14110 return ret; 14111 } 14112 } 14113 } else { 14114 dd_dev_info(dd, "Resetting CSRs with writes\n"); 14115 reset_cce_csrs(dd); 14116 reset_txe_csrs(dd); 14117 reset_rxe_csrs(dd); 14118 reset_misc_csrs(dd); 14119 } 14120 /* clear the DC reset */ 14121 write_csr(dd, CCE_DC_CTRL, 0); 14122 14123 /* Set the LED off */ 14124 setextled(dd, 0); 14125 14126 /* 14127 * Clear the QSFP reset. 14128 * An FLR enforces a 0 on all out pins. The driver does not touch 14129 * ASIC_QSFPn_OUT otherwise. This leaves RESET_N low and 14130 * anything plugged constantly in reset, if it pays attention 14131 * to RESET_N. 14132 * Prime examples of this are optical cables. Set all pins high. 14133 * I2CCLK and I2CDAT will change per direction, and INT_N and 14134 * MODPRS_N are input only and their value is ignored. 14135 */ 14136 write_csr(dd, ASIC_QSFP1_OUT, 0x1f); 14137 write_csr(dd, ASIC_QSFP2_OUT, 0x1f); 14138 init_chip_resources(dd); 14139 return ret; 14140 } 14141 14142 static void init_early_variables(struct hfi1_devdata *dd) 14143 { 14144 int i; 14145 14146 /* assign link credit variables */ 14147 dd->vau = CM_VAU; 14148 dd->link_credits = CM_GLOBAL_CREDITS; 14149 if (is_ax(dd)) 14150 dd->link_credits--; 14151 dd->vcu = cu_to_vcu(hfi1_cu); 14152 /* enough room for 8 MAD packets plus header - 17K */ 14153 dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau); 14154 if (dd->vl15_init > dd->link_credits) 14155 dd->vl15_init = dd->link_credits; 14156 14157 write_uninitialized_csrs_and_memories(dd); 14158 14159 if (HFI1_CAP_IS_KSET(PKEY_CHECK)) 14160 for (i = 0; i < dd->num_pports; i++) { 14161 struct hfi1_pportdata *ppd = &dd->pport[i]; 14162 14163 set_partition_keys(ppd); 14164 } 14165 init_sc2vl_tables(dd); 14166 } 14167 14168 static void init_kdeth_qp(struct hfi1_devdata *dd) 14169 { 14170 /* user changed the KDETH_QP */ 14171 if (kdeth_qp != 0 && kdeth_qp >= 0xff) { 14172 /* out of range or illegal value */ 14173 dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring"); 14174 kdeth_qp = 0; 14175 } 14176 if (kdeth_qp == 0) /* not set, or failed range check */ 14177 kdeth_qp = DEFAULT_KDETH_QP; 14178 14179 write_csr(dd, SEND_BTH_QP, 14180 (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) << 14181 SEND_BTH_QP_KDETH_QP_SHIFT); 14182 14183 write_csr(dd, RCV_BTH_QP, 14184 (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) << 14185 RCV_BTH_QP_KDETH_QP_SHIFT); 14186 } 14187 14188 /** 14189 * init_qpmap_table 14190 * @dd - device data 14191 * @first_ctxt - first context 14192 * @last_ctxt - first context 14193 * 14194 * This return sets the qpn mapping table that 14195 * is indexed by qpn[8:1]. 14196 * 14197 * The routine will round robin the 256 settings 14198 * from first_ctxt to last_ctxt. 14199 * 14200 * The first/last looks ahead to having specialized 14201 * receive contexts for mgmt and bypass. Normal 14202 * verbs traffic will assumed to be on a range 14203 * of receive contexts. 14204 */ 14205 static void init_qpmap_table(struct hfi1_devdata *dd, 14206 u32 first_ctxt, 14207 u32 last_ctxt) 14208 { 14209 u64 reg = 0; 14210 u64 regno = RCV_QP_MAP_TABLE; 14211 int i; 14212 u64 ctxt = first_ctxt; 14213 14214 for (i = 0; i < 256; i++) { 14215 reg |= ctxt << (8 * (i % 8)); 14216 ctxt++; 14217 if (ctxt > last_ctxt) 14218 ctxt = first_ctxt; 14219 if (i % 8 == 7) { 14220 write_csr(dd, regno, reg); 14221 reg = 0; 14222 regno += 8; 14223 } 14224 } 14225 14226 add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK 14227 | RCV_CTRL_RCV_BYPASS_ENABLE_SMASK); 14228 } 14229 14230 struct rsm_map_table { 14231 u64 map[NUM_MAP_REGS]; 14232 unsigned int used; 14233 }; 14234 14235 struct rsm_rule_data { 14236 u8 offset; 14237 u8 pkt_type; 14238 u32 field1_off; 14239 u32 field2_off; 14240 u32 index1_off; 14241 u32 index1_width; 14242 u32 index2_off; 14243 u32 index2_width; 14244 u32 mask1; 14245 u32 value1; 14246 u32 mask2; 14247 u32 value2; 14248 }; 14249 14250 /* 14251 * Return an initialized RMT map table for users to fill in. OK if it 14252 * returns NULL, indicating no table. 14253 */ 14254 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd) 14255 { 14256 struct rsm_map_table *rmt; 14257 u8 rxcontext = is_ax(dd) ? 0 : 0xff; /* 0 is default if a0 ver. */ 14258 14259 rmt = kmalloc(sizeof(*rmt), GFP_KERNEL); 14260 if (rmt) { 14261 memset(rmt->map, rxcontext, sizeof(rmt->map)); 14262 rmt->used = 0; 14263 } 14264 14265 return rmt; 14266 } 14267 14268 /* 14269 * Write the final RMT map table to the chip and free the table. OK if 14270 * table is NULL. 14271 */ 14272 static void complete_rsm_map_table(struct hfi1_devdata *dd, 14273 struct rsm_map_table *rmt) 14274 { 14275 int i; 14276 14277 if (rmt) { 14278 /* write table to chip */ 14279 for (i = 0; i < NUM_MAP_REGS; i++) 14280 write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]); 14281 14282 /* enable RSM */ 14283 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14284 } 14285 } 14286 14287 /* 14288 * Add a receive side mapping rule. 14289 */ 14290 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index, 14291 struct rsm_rule_data *rrd) 14292 { 14293 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 14294 (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT | 14295 1ull << rule_index | /* enable bit */ 14296 (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT); 14297 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 14298 (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT | 14299 (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT | 14300 (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT | 14301 (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT | 14302 (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT | 14303 (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT); 14304 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 14305 (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT | 14306 (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT | 14307 (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT | 14308 (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT); 14309 } 14310 14311 /* 14312 * Clear a receive side mapping rule. 14313 */ 14314 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index) 14315 { 14316 write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0); 14317 write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0); 14318 write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0); 14319 } 14320 14321 /* return the number of RSM map table entries that will be used for QOS */ 14322 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp, 14323 unsigned int *np) 14324 { 14325 int i; 14326 unsigned int m, n; 14327 u8 max_by_vl = 0; 14328 14329 /* is QOS active at all? */ 14330 if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS || 14331 num_vls == 1 || 14332 krcvqsset <= 1) 14333 goto no_qos; 14334 14335 /* determine bits for qpn */ 14336 for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++) 14337 if (krcvqs[i] > max_by_vl) 14338 max_by_vl = krcvqs[i]; 14339 if (max_by_vl > 32) 14340 goto no_qos; 14341 m = ilog2(__roundup_pow_of_two(max_by_vl)); 14342 14343 /* determine bits for vl */ 14344 n = ilog2(__roundup_pow_of_two(num_vls)); 14345 14346 /* reject if too much is used */ 14347 if ((m + n) > 7) 14348 goto no_qos; 14349 14350 if (mp) 14351 *mp = m; 14352 if (np) 14353 *np = n; 14354 14355 return 1 << (m + n); 14356 14357 no_qos: 14358 if (mp) 14359 *mp = 0; 14360 if (np) 14361 *np = 0; 14362 return 0; 14363 } 14364 14365 /** 14366 * init_qos - init RX qos 14367 * @dd - device data 14368 * @rmt - RSM map table 14369 * 14370 * This routine initializes Rule 0 and the RSM map table to implement 14371 * quality of service (qos). 14372 * 14373 * If all of the limit tests succeed, qos is applied based on the array 14374 * interpretation of krcvqs where entry 0 is VL0. 14375 * 14376 * The number of vl bits (n) and the number of qpn bits (m) are computed to 14377 * feed both the RSM map table and the single rule. 14378 */ 14379 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt) 14380 { 14381 struct rsm_rule_data rrd; 14382 unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m; 14383 unsigned int rmt_entries; 14384 u64 reg; 14385 14386 if (!rmt) 14387 goto bail; 14388 rmt_entries = qos_rmt_entries(dd, &m, &n); 14389 if (rmt_entries == 0) 14390 goto bail; 14391 qpns_per_vl = 1 << m; 14392 14393 /* enough room in the map table? */ 14394 rmt_entries = 1 << (m + n); 14395 if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES) 14396 goto bail; 14397 14398 /* add qos entries to the the RSM map table */ 14399 for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) { 14400 unsigned tctxt; 14401 14402 for (qpn = 0, tctxt = ctxt; 14403 krcvqs[i] && qpn < qpns_per_vl; qpn++) { 14404 unsigned idx, regoff, regidx; 14405 14406 /* generate the index the hardware will produce */ 14407 idx = rmt->used + ((qpn << n) ^ i); 14408 regoff = (idx % 8) * 8; 14409 regidx = idx / 8; 14410 /* replace default with context number */ 14411 reg = rmt->map[regidx]; 14412 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK 14413 << regoff); 14414 reg |= (u64)(tctxt++) << regoff; 14415 rmt->map[regidx] = reg; 14416 if (tctxt == ctxt + krcvqs[i]) 14417 tctxt = ctxt; 14418 } 14419 ctxt += krcvqs[i]; 14420 } 14421 14422 rrd.offset = rmt->used; 14423 rrd.pkt_type = 2; 14424 rrd.field1_off = LRH_BTH_MATCH_OFFSET; 14425 rrd.field2_off = LRH_SC_MATCH_OFFSET; 14426 rrd.index1_off = LRH_SC_SELECT_OFFSET; 14427 rrd.index1_width = n; 14428 rrd.index2_off = QPN_SELECT_OFFSET; 14429 rrd.index2_width = m + n; 14430 rrd.mask1 = LRH_BTH_MASK; 14431 rrd.value1 = LRH_BTH_VALUE; 14432 rrd.mask2 = LRH_SC_MASK; 14433 rrd.value2 = LRH_SC_VALUE; 14434 14435 /* add rule 0 */ 14436 add_rsm_rule(dd, RSM_INS_VERBS, &rrd); 14437 14438 /* mark RSM map entries as used */ 14439 rmt->used += rmt_entries; 14440 /* map everything else to the mcast/err/vl15 context */ 14441 init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT); 14442 dd->qos_shift = n + 1; 14443 return; 14444 bail: 14445 dd->qos_shift = 1; 14446 init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1); 14447 } 14448 14449 static void init_user_fecn_handling(struct hfi1_devdata *dd, 14450 struct rsm_map_table *rmt) 14451 { 14452 struct rsm_rule_data rrd; 14453 u64 reg; 14454 int i, idx, regoff, regidx; 14455 u8 offset; 14456 14457 /* there needs to be enough room in the map table */ 14458 if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) { 14459 dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n"); 14460 return; 14461 } 14462 14463 /* 14464 * RSM will extract the destination context as an index into the 14465 * map table. The destination contexts are a sequential block 14466 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive). 14467 * Map entries are accessed as offset + extracted value. Adjust 14468 * the added offset so this sequence can be placed anywhere in 14469 * the table - as long as the entries themselves do not wrap. 14470 * There are only enough bits in offset for the table size, so 14471 * start with that to allow for a "negative" offset. 14472 */ 14473 offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used - 14474 (int)dd->first_dyn_alloc_ctxt); 14475 14476 for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used; 14477 i < dd->num_rcv_contexts; i++, idx++) { 14478 /* replace with identity mapping */ 14479 regoff = (idx % 8) * 8; 14480 regidx = idx / 8; 14481 reg = rmt->map[regidx]; 14482 reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff); 14483 reg |= (u64)i << regoff; 14484 rmt->map[regidx] = reg; 14485 } 14486 14487 /* 14488 * For RSM intercept of Expected FECN packets: 14489 * o packet type 0 - expected 14490 * o match on F (bit 95), using select/match 1, and 14491 * o match on SH (bit 133), using select/match 2. 14492 * 14493 * Use index 1 to extract the 8-bit receive context from DestQP 14494 * (start at bit 64). Use that as the RSM map table index. 14495 */ 14496 rrd.offset = offset; 14497 rrd.pkt_type = 0; 14498 rrd.field1_off = 95; 14499 rrd.field2_off = 133; 14500 rrd.index1_off = 64; 14501 rrd.index1_width = 8; 14502 rrd.index2_off = 0; 14503 rrd.index2_width = 0; 14504 rrd.mask1 = 1; 14505 rrd.value1 = 1; 14506 rrd.mask2 = 1; 14507 rrd.value2 = 1; 14508 14509 /* add rule 1 */ 14510 add_rsm_rule(dd, RSM_INS_FECN, &rrd); 14511 14512 rmt->used += dd->num_user_contexts; 14513 } 14514 14515 /* Initialize RSM for VNIC */ 14516 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd) 14517 { 14518 u8 i, j; 14519 u8 ctx_id = 0; 14520 u64 reg; 14521 u32 regoff; 14522 struct rsm_rule_data rrd; 14523 14524 if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) { 14525 dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n", 14526 dd->vnic.rmt_start); 14527 return; 14528 } 14529 14530 dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n", 14531 dd->vnic.rmt_start, 14532 dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES); 14533 14534 /* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */ 14535 regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8; 14536 reg = read_csr(dd, regoff); 14537 for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) { 14538 /* Update map register with vnic context */ 14539 j = (dd->vnic.rmt_start + i) % 8; 14540 reg &= ~(0xffllu << (j * 8)); 14541 reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8); 14542 /* Wrap up vnic ctx index */ 14543 ctx_id %= dd->vnic.num_ctxt; 14544 /* Write back map register */ 14545 if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) { 14546 dev_dbg(&(dd)->pcidev->dev, 14547 "Vnic rsm map reg[%d] =0x%llx\n", 14548 regoff - RCV_RSM_MAP_TABLE, reg); 14549 14550 write_csr(dd, regoff, reg); 14551 regoff += 8; 14552 if (i < (NUM_VNIC_MAP_ENTRIES - 1)) 14553 reg = read_csr(dd, regoff); 14554 } 14555 } 14556 14557 /* Add rule for vnic */ 14558 rrd.offset = dd->vnic.rmt_start; 14559 rrd.pkt_type = 4; 14560 /* Match 16B packets */ 14561 rrd.field1_off = L2_TYPE_MATCH_OFFSET; 14562 rrd.mask1 = L2_TYPE_MASK; 14563 rrd.value1 = L2_16B_VALUE; 14564 /* Match ETH L4 packets */ 14565 rrd.field2_off = L4_TYPE_MATCH_OFFSET; 14566 rrd.mask2 = L4_16B_TYPE_MASK; 14567 rrd.value2 = L4_16B_ETH_VALUE; 14568 /* Calc context from veswid and entropy */ 14569 rrd.index1_off = L4_16B_HDR_VESWID_OFFSET; 14570 rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES); 14571 rrd.index2_off = L2_16B_ENTROPY_OFFSET; 14572 rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES); 14573 add_rsm_rule(dd, RSM_INS_VNIC, &rrd); 14574 14575 /* Enable RSM if not already enabled */ 14576 add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14577 } 14578 14579 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd) 14580 { 14581 clear_rsm_rule(dd, RSM_INS_VNIC); 14582 14583 /* Disable RSM if used only by vnic */ 14584 if (dd->vnic.rmt_start == 0) 14585 clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK); 14586 } 14587 14588 static void init_rxe(struct hfi1_devdata *dd) 14589 { 14590 struct rsm_map_table *rmt; 14591 u64 val; 14592 14593 /* enable all receive errors */ 14594 write_csr(dd, RCV_ERR_MASK, ~0ull); 14595 14596 rmt = alloc_rsm_map_table(dd); 14597 /* set up QOS, including the QPN map table */ 14598 init_qos(dd, rmt); 14599 init_user_fecn_handling(dd, rmt); 14600 complete_rsm_map_table(dd, rmt); 14601 /* record number of used rsm map entries for vnic */ 14602 dd->vnic.rmt_start = rmt->used; 14603 kfree(rmt); 14604 14605 /* 14606 * make sure RcvCtrl.RcvWcb <= PCIe Device Control 14607 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config 14608 * space, PciCfgCap2.MaxPayloadSize in HFI). There is only one 14609 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and 14610 * Max_PayLoad_Size set to its minimum of 128. 14611 * 14612 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0 14613 * (64 bytes). Max_Payload_Size is possibly modified upward in 14614 * tune_pcie_caps() which is called after this routine. 14615 */ 14616 14617 /* Have 16 bytes (4DW) of bypass header available in header queue */ 14618 val = read_csr(dd, RCV_BYPASS); 14619 val |= (4ull << 16); 14620 write_csr(dd, RCV_BYPASS, val); 14621 } 14622 14623 static void init_other(struct hfi1_devdata *dd) 14624 { 14625 /* enable all CCE errors */ 14626 write_csr(dd, CCE_ERR_MASK, ~0ull); 14627 /* enable *some* Misc errors */ 14628 write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK); 14629 /* enable all DC errors, except LCB */ 14630 write_csr(dd, DCC_ERR_FLG_EN, ~0ull); 14631 write_csr(dd, DC_DC8051_ERR_EN, ~0ull); 14632 } 14633 14634 /* 14635 * Fill out the given AU table using the given CU. A CU is defined in terms 14636 * AUs. The table is a an encoding: given the index, how many AUs does that 14637 * represent? 14638 * 14639 * NOTE: Assumes that the register layout is the same for the 14640 * local and remote tables. 14641 */ 14642 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu, 14643 u32 csr0to3, u32 csr4to7) 14644 { 14645 write_csr(dd, csr0to3, 14646 0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT | 14647 1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT | 14648 2ull * cu << 14649 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT | 14650 4ull * cu << 14651 SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT); 14652 write_csr(dd, csr4to7, 14653 8ull * cu << 14654 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT | 14655 16ull * cu << 14656 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT | 14657 32ull * cu << 14658 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT | 14659 64ull * cu << 14660 SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT); 14661 } 14662 14663 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14664 { 14665 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3, 14666 SEND_CM_LOCAL_AU_TABLE4_TO7); 14667 } 14668 14669 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu) 14670 { 14671 assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3, 14672 SEND_CM_REMOTE_AU_TABLE4_TO7); 14673 } 14674 14675 static void init_txe(struct hfi1_devdata *dd) 14676 { 14677 int i; 14678 14679 /* enable all PIO, SDMA, general, and Egress errors */ 14680 write_csr(dd, SEND_PIO_ERR_MASK, ~0ull); 14681 write_csr(dd, SEND_DMA_ERR_MASK, ~0ull); 14682 write_csr(dd, SEND_ERR_MASK, ~0ull); 14683 write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull); 14684 14685 /* enable all per-context and per-SDMA engine errors */ 14686 for (i = 0; i < dd->chip_send_contexts; i++) 14687 write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull); 14688 for (i = 0; i < dd->chip_sdma_engines; i++) 14689 write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull); 14690 14691 /* set the local CU to AU mapping */ 14692 assign_local_cm_au_table(dd, dd->vcu); 14693 14694 /* 14695 * Set reasonable default for Credit Return Timer 14696 * Don't set on Simulator - causes it to choke. 14697 */ 14698 if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR) 14699 write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE); 14700 } 14701 14702 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, 14703 u16 jkey) 14704 { 14705 u8 hw_ctxt; 14706 u64 reg; 14707 14708 if (!rcd || !rcd->sc) 14709 return -EINVAL; 14710 14711 hw_ctxt = rcd->sc->hw_context; 14712 reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */ 14713 ((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) << 14714 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT); 14715 /* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */ 14716 if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY)) 14717 reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK; 14718 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg); 14719 /* 14720 * Enable send-side J_KEY integrity check, unless this is A0 h/w 14721 */ 14722 if (!is_ax(dd)) { 14723 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14724 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14725 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14726 } 14727 14728 /* Enable J_KEY check on receive context. */ 14729 reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK | 14730 ((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) << 14731 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT); 14732 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg); 14733 14734 return 0; 14735 } 14736 14737 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd) 14738 { 14739 u8 hw_ctxt; 14740 u64 reg; 14741 14742 if (!rcd || !rcd->sc) 14743 return -EINVAL; 14744 14745 hw_ctxt = rcd->sc->hw_context; 14746 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0); 14747 /* 14748 * Disable send-side J_KEY integrity check, unless this is A0 h/w. 14749 * This check would not have been enabled for A0 h/w, see 14750 * set_ctxt_jkey(). 14751 */ 14752 if (!is_ax(dd)) { 14753 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14754 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK; 14755 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14756 } 14757 /* Turn off the J_KEY on the receive side */ 14758 write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0); 14759 14760 return 0; 14761 } 14762 14763 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd, 14764 u16 pkey) 14765 { 14766 u8 hw_ctxt; 14767 u64 reg; 14768 14769 if (!rcd || !rcd->sc) 14770 return -EINVAL; 14771 14772 hw_ctxt = rcd->sc->hw_context; 14773 reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) << 14774 SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT; 14775 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg); 14776 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14777 reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14778 reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK; 14779 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14780 14781 return 0; 14782 } 14783 14784 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt) 14785 { 14786 u8 hw_ctxt; 14787 u64 reg; 14788 14789 if (!ctxt || !ctxt->sc) 14790 return -EINVAL; 14791 14792 hw_ctxt = ctxt->sc->hw_context; 14793 reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE); 14794 reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK; 14795 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg); 14796 write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0); 14797 14798 return 0; 14799 } 14800 14801 /* 14802 * Start doing the clean up the the chip. Our clean up happens in multiple 14803 * stages and this is just the first. 14804 */ 14805 void hfi1_start_cleanup(struct hfi1_devdata *dd) 14806 { 14807 aspm_exit(dd); 14808 free_cntrs(dd); 14809 free_rcverr(dd); 14810 finish_chip_resources(dd); 14811 } 14812 14813 #define HFI_BASE_GUID(dev) \ 14814 ((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT)) 14815 14816 /* 14817 * Information can be shared between the two HFIs on the same ASIC 14818 * in the same OS. This function finds the peer device and sets 14819 * up a shared structure. 14820 */ 14821 static int init_asic_data(struct hfi1_devdata *dd) 14822 { 14823 unsigned long flags; 14824 struct hfi1_devdata *tmp, *peer = NULL; 14825 struct hfi1_asic_data *asic_data; 14826 int ret = 0; 14827 14828 /* pre-allocate the asic structure in case we are the first device */ 14829 asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL); 14830 if (!asic_data) 14831 return -ENOMEM; 14832 14833 spin_lock_irqsave(&hfi1_devs_lock, flags); 14834 /* Find our peer device */ 14835 list_for_each_entry(tmp, &hfi1_dev_list, list) { 14836 if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) && 14837 dd->unit != tmp->unit) { 14838 peer = tmp; 14839 break; 14840 } 14841 } 14842 14843 if (peer) { 14844 /* use already allocated structure */ 14845 dd->asic_data = peer->asic_data; 14846 kfree(asic_data); 14847 } else { 14848 dd->asic_data = asic_data; 14849 mutex_init(&dd->asic_data->asic_resource_mutex); 14850 } 14851 dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */ 14852 spin_unlock_irqrestore(&hfi1_devs_lock, flags); 14853 14854 /* first one through - set up i2c devices */ 14855 if (!peer) 14856 ret = set_up_i2c(dd, dd->asic_data); 14857 14858 return ret; 14859 } 14860 14861 /* 14862 * Set dd->boardname. Use a generic name if a name is not returned from 14863 * EFI variable space. 14864 * 14865 * Return 0 on success, -ENOMEM if space could not be allocated. 14866 */ 14867 static int obtain_boardname(struct hfi1_devdata *dd) 14868 { 14869 /* generic board description */ 14870 const char generic[] = 14871 "Intel Omni-Path Host Fabric Interface Adapter 100 Series"; 14872 unsigned long size; 14873 int ret; 14874 14875 ret = read_hfi1_efi_var(dd, "description", &size, 14876 (void **)&dd->boardname); 14877 if (ret) { 14878 dd_dev_info(dd, "Board description not found\n"); 14879 /* use generic description */ 14880 dd->boardname = kstrdup(generic, GFP_KERNEL); 14881 if (!dd->boardname) 14882 return -ENOMEM; 14883 } 14884 return 0; 14885 } 14886 14887 /* 14888 * Check the interrupt registers to make sure that they are mapped correctly. 14889 * It is intended to help user identify any mismapping by VMM when the driver 14890 * is running in a VM. This function should only be called before interrupt 14891 * is set up properly. 14892 * 14893 * Return 0 on success, -EINVAL on failure. 14894 */ 14895 static int check_int_registers(struct hfi1_devdata *dd) 14896 { 14897 u64 reg; 14898 u64 all_bits = ~(u64)0; 14899 u64 mask; 14900 14901 /* Clear CceIntMask[0] to avoid raising any interrupts */ 14902 mask = read_csr(dd, CCE_INT_MASK); 14903 write_csr(dd, CCE_INT_MASK, 0ull); 14904 reg = read_csr(dd, CCE_INT_MASK); 14905 if (reg) 14906 goto err_exit; 14907 14908 /* Clear all interrupt status bits */ 14909 write_csr(dd, CCE_INT_CLEAR, all_bits); 14910 reg = read_csr(dd, CCE_INT_STATUS); 14911 if (reg) 14912 goto err_exit; 14913 14914 /* Set all interrupt status bits */ 14915 write_csr(dd, CCE_INT_FORCE, all_bits); 14916 reg = read_csr(dd, CCE_INT_STATUS); 14917 if (reg != all_bits) 14918 goto err_exit; 14919 14920 /* Restore the interrupt mask */ 14921 write_csr(dd, CCE_INT_CLEAR, all_bits); 14922 write_csr(dd, CCE_INT_MASK, mask); 14923 14924 return 0; 14925 err_exit: 14926 write_csr(dd, CCE_INT_MASK, mask); 14927 dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n"); 14928 return -EINVAL; 14929 } 14930 14931 /** 14932 * Allocate and initialize the device structure for the hfi. 14933 * @dev: the pci_dev for hfi1_ib device 14934 * @ent: pci_device_id struct for this dev 14935 * 14936 * Also allocates, initializes, and returns the devdata struct for this 14937 * device instance 14938 * 14939 * This is global, and is called directly at init to set up the 14940 * chip-specific function pointers for later use. 14941 */ 14942 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev, 14943 const struct pci_device_id *ent) 14944 { 14945 struct hfi1_devdata *dd; 14946 struct hfi1_pportdata *ppd; 14947 u64 reg; 14948 int i, ret; 14949 static const char * const inames[] = { /* implementation names */ 14950 "RTL silicon", 14951 "RTL VCS simulation", 14952 "RTL FPGA emulation", 14953 "Functional simulator" 14954 }; 14955 struct pci_dev *parent = pdev->bus->self; 14956 14957 dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS * 14958 sizeof(struct hfi1_pportdata)); 14959 if (IS_ERR(dd)) 14960 goto bail; 14961 ppd = dd->pport; 14962 for (i = 0; i < dd->num_pports; i++, ppd++) { 14963 int vl; 14964 /* init common fields */ 14965 hfi1_init_pportdata(pdev, ppd, dd, 0, 1); 14966 /* DC supports 4 link widths */ 14967 ppd->link_width_supported = 14968 OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X | 14969 OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X; 14970 ppd->link_width_downgrade_supported = 14971 ppd->link_width_supported; 14972 /* start out enabling only 4X */ 14973 ppd->link_width_enabled = OPA_LINK_WIDTH_4X; 14974 ppd->link_width_downgrade_enabled = 14975 ppd->link_width_downgrade_supported; 14976 /* link width active is 0 when link is down */ 14977 /* link width downgrade active is 0 when link is down */ 14978 14979 if (num_vls < HFI1_MIN_VLS_SUPPORTED || 14980 num_vls > HFI1_MAX_VLS_SUPPORTED) { 14981 dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n", 14982 num_vls, HFI1_MAX_VLS_SUPPORTED); 14983 num_vls = HFI1_MAX_VLS_SUPPORTED; 14984 } 14985 ppd->vls_supported = num_vls; 14986 ppd->vls_operational = ppd->vls_supported; 14987 /* Set the default MTU. */ 14988 for (vl = 0; vl < num_vls; vl++) 14989 dd->vld[vl].mtu = hfi1_max_mtu; 14990 dd->vld[15].mtu = MAX_MAD_PACKET; 14991 /* 14992 * Set the initial values to reasonable default, will be set 14993 * for real when link is up. 14994 */ 14995 ppd->overrun_threshold = 0x4; 14996 ppd->phy_error_threshold = 0xf; 14997 ppd->port_crc_mode_enabled = link_crc_mask; 14998 /* initialize supported LTP CRC mode */ 14999 ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8; 15000 /* initialize enabled LTP CRC mode */ 15001 ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4; 15002 /* start in offline */ 15003 ppd->host_link_state = HLS_DN_OFFLINE; 15004 init_vl_arb_caches(ppd); 15005 } 15006 15007 /* 15008 * Do remaining PCIe setup and save PCIe values in dd. 15009 * Any error printing is already done by the init code. 15010 * On return, we have the chip mapped. 15011 */ 15012 ret = hfi1_pcie_ddinit(dd, pdev); 15013 if (ret < 0) 15014 goto bail_free; 15015 15016 /* Save PCI space registers to rewrite after device reset */ 15017 ret = save_pci_variables(dd); 15018 if (ret < 0) 15019 goto bail_cleanup; 15020 15021 /* verify that reads actually work, save revision for reset check */ 15022 dd->revision = read_csr(dd, CCE_REVISION); 15023 if (dd->revision == ~(u64)0) { 15024 dd_dev_err(dd, "cannot read chip CSRs\n"); 15025 ret = -EINVAL; 15026 goto bail_cleanup; 15027 } 15028 dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT) 15029 & CCE_REVISION_CHIP_REV_MAJOR_MASK; 15030 dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT) 15031 & CCE_REVISION_CHIP_REV_MINOR_MASK; 15032 15033 /* 15034 * Check interrupt registers mapping if the driver has no access to 15035 * the upstream component. In this case, it is likely that the driver 15036 * is running in a VM. 15037 */ 15038 if (!parent) { 15039 ret = check_int_registers(dd); 15040 if (ret) 15041 goto bail_cleanup; 15042 } 15043 15044 /* 15045 * obtain the hardware ID - NOT related to unit, which is a 15046 * software enumeration 15047 */ 15048 reg = read_csr(dd, CCE_REVISION2); 15049 dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT) 15050 & CCE_REVISION2_HFI_ID_MASK; 15051 /* the variable size will remove unwanted bits */ 15052 dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT; 15053 dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT; 15054 dd_dev_info(dd, "Implementation: %s, revision 0x%x\n", 15055 dd->icode < ARRAY_SIZE(inames) ? 15056 inames[dd->icode] : "unknown", (int)dd->irev); 15057 15058 /* speeds the hardware can support */ 15059 dd->pport->link_speed_supported = OPA_LINK_SPEED_25G; 15060 /* speeds allowed to run at */ 15061 dd->pport->link_speed_enabled = dd->pport->link_speed_supported; 15062 /* give a reasonable active value, will be set on link up */ 15063 dd->pport->link_speed_active = OPA_LINK_SPEED_25G; 15064 15065 dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS); 15066 dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS); 15067 dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES); 15068 dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE); 15069 dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE); 15070 /* fix up link widths for emulation _p */ 15071 ppd = dd->pport; 15072 if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) { 15073 ppd->link_width_supported = 15074 ppd->link_width_enabled = 15075 ppd->link_width_downgrade_supported = 15076 ppd->link_width_downgrade_enabled = 15077 OPA_LINK_WIDTH_1X; 15078 } 15079 /* insure num_vls isn't larger than number of sdma engines */ 15080 if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) { 15081 dd_dev_err(dd, "num_vls %u too large, using %u VLs\n", 15082 num_vls, dd->chip_sdma_engines); 15083 num_vls = dd->chip_sdma_engines; 15084 ppd->vls_supported = dd->chip_sdma_engines; 15085 ppd->vls_operational = ppd->vls_supported; 15086 } 15087 15088 /* 15089 * Convert the ns parameter to the 64 * cclocks used in the CSR. 15090 * Limit the max if larger than the field holds. If timeout is 15091 * non-zero, then the calculated field will be at least 1. 15092 * 15093 * Must be after icode is set up - the cclock rate depends 15094 * on knowing the hardware being used. 15095 */ 15096 dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64; 15097 if (dd->rcv_intr_timeout_csr > 15098 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK) 15099 dd->rcv_intr_timeout_csr = 15100 RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK; 15101 else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout) 15102 dd->rcv_intr_timeout_csr = 1; 15103 15104 /* needs to be done before we look for the peer device */ 15105 read_guid(dd); 15106 15107 /* set up shared ASIC data with peer device */ 15108 ret = init_asic_data(dd); 15109 if (ret) 15110 goto bail_cleanup; 15111 15112 /* obtain chip sizes, reset chip CSRs */ 15113 ret = init_chip(dd); 15114 if (ret) 15115 goto bail_cleanup; 15116 15117 /* read in the PCIe link speed information */ 15118 ret = pcie_speeds(dd); 15119 if (ret) 15120 goto bail_cleanup; 15121 15122 /* call before get_platform_config(), after init_chip_resources() */ 15123 ret = eprom_init(dd); 15124 if (ret) 15125 goto bail_free_rcverr; 15126 15127 /* Needs to be called before hfi1_firmware_init */ 15128 get_platform_config(dd); 15129 15130 /* read in firmware */ 15131 ret = hfi1_firmware_init(dd); 15132 if (ret) 15133 goto bail_cleanup; 15134 15135 /* 15136 * In general, the PCIe Gen3 transition must occur after the 15137 * chip has been idled (so it won't initiate any PCIe transactions 15138 * e.g. an interrupt) and before the driver changes any registers 15139 * (the transition will reset the registers). 15140 * 15141 * In particular, place this call after: 15142 * - init_chip() - the chip will not initiate any PCIe transactions 15143 * - pcie_speeds() - reads the current link speed 15144 * - hfi1_firmware_init() - the needed firmware is ready to be 15145 * downloaded 15146 */ 15147 ret = do_pcie_gen3_transition(dd); 15148 if (ret) 15149 goto bail_cleanup; 15150 15151 /* start setting dd values and adjusting CSRs */ 15152 init_early_variables(dd); 15153 15154 parse_platform_config(dd); 15155 15156 ret = obtain_boardname(dd); 15157 if (ret) 15158 goto bail_cleanup; 15159 15160 snprintf(dd->boardversion, BOARD_VERS_MAX, 15161 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n", 15162 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN, 15163 (u32)dd->majrev, 15164 (u32)dd->minrev, 15165 (dd->revision >> CCE_REVISION_SW_SHIFT) 15166 & CCE_REVISION_SW_MASK); 15167 15168 ret = set_up_context_variables(dd); 15169 if (ret) 15170 goto bail_cleanup; 15171 15172 /* set initial RXE CSRs */ 15173 init_rxe(dd); 15174 /* set initial TXE CSRs */ 15175 init_txe(dd); 15176 /* set initial non-RXE, non-TXE CSRs */ 15177 init_other(dd); 15178 /* set up KDETH QP prefix in both RX and TX CSRs */ 15179 init_kdeth_qp(dd); 15180 15181 ret = hfi1_dev_affinity_init(dd); 15182 if (ret) 15183 goto bail_cleanup; 15184 15185 /* send contexts must be set up before receive contexts */ 15186 ret = init_send_contexts(dd); 15187 if (ret) 15188 goto bail_cleanup; 15189 15190 ret = hfi1_create_kctxts(dd); 15191 if (ret) 15192 goto bail_cleanup; 15193 15194 /* 15195 * Initialize aspm, to be done after gen3 transition and setting up 15196 * contexts and before enabling interrupts 15197 */ 15198 aspm_init(dd); 15199 15200 dd->rcvhdrsize = DEFAULT_RCVHDRSIZE; 15201 /* 15202 * rcd[0] is guaranteed to be valid by this point. Also, all 15203 * context are using the same value, as per the module parameter. 15204 */ 15205 dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32); 15206 15207 ret = init_pervl_scs(dd); 15208 if (ret) 15209 goto bail_cleanup; 15210 15211 /* sdma init */ 15212 for (i = 0; i < dd->num_pports; ++i) { 15213 ret = sdma_init(dd, i); 15214 if (ret) 15215 goto bail_cleanup; 15216 } 15217 15218 /* use contexts created by hfi1_create_kctxts */ 15219 ret = set_up_interrupts(dd); 15220 if (ret) 15221 goto bail_cleanup; 15222 15223 /* set up LCB access - must be after set_up_interrupts() */ 15224 init_lcb_access(dd); 15225 15226 /* 15227 * Serial number is created from the base guid: 15228 * [27:24] = base guid [38:35] 15229 * [23: 0] = base guid [23: 0] 15230 */ 15231 snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n", 15232 (dd->base_guid & 0xFFFFFF) | 15233 ((dd->base_guid >> 11) & 0xF000000)); 15234 15235 dd->oui1 = dd->base_guid >> 56 & 0xFF; 15236 dd->oui2 = dd->base_guid >> 48 & 0xFF; 15237 dd->oui3 = dd->base_guid >> 40 & 0xFF; 15238 15239 ret = load_firmware(dd); /* asymmetric with dispose_firmware() */ 15240 if (ret) 15241 goto bail_clear_intr; 15242 15243 thermal_init(dd); 15244 15245 ret = init_cntrs(dd); 15246 if (ret) 15247 goto bail_clear_intr; 15248 15249 ret = init_rcverr(dd); 15250 if (ret) 15251 goto bail_free_cntrs; 15252 15253 init_completion(&dd->user_comp); 15254 15255 /* The user refcount starts with one to inidicate an active device */ 15256 atomic_set(&dd->user_refcount, 1); 15257 15258 goto bail; 15259 15260 bail_free_rcverr: 15261 free_rcverr(dd); 15262 bail_free_cntrs: 15263 free_cntrs(dd); 15264 bail_clear_intr: 15265 hfi1_clean_up_interrupts(dd); 15266 bail_cleanup: 15267 hfi1_pcie_ddcleanup(dd); 15268 bail_free: 15269 hfi1_free_devdata(dd); 15270 dd = ERR_PTR(ret); 15271 bail: 15272 return dd; 15273 } 15274 15275 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate, 15276 u32 dw_len) 15277 { 15278 u32 delta_cycles; 15279 u32 current_egress_rate = ppd->current_egress_rate; 15280 /* rates here are in units of 10^6 bits/sec */ 15281 15282 if (desired_egress_rate == -1) 15283 return 0; /* shouldn't happen */ 15284 15285 if (desired_egress_rate >= current_egress_rate) 15286 return 0; /* we can't help go faster, only slower */ 15287 15288 delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) - 15289 egress_cycles(dw_len * 4, current_egress_rate); 15290 15291 return (u16)delta_cycles; 15292 } 15293 15294 /** 15295 * create_pbc - build a pbc for transmission 15296 * @flags: special case flags or-ed in built pbc 15297 * @srate: static rate 15298 * @vl: vl 15299 * @dwlen: dword length (header words + data words + pbc words) 15300 * 15301 * Create a PBC with the given flags, rate, VL, and length. 15302 * 15303 * NOTE: The PBC created will not insert any HCRC - all callers but one are 15304 * for verbs, which does not use this PSM feature. The lone other caller 15305 * is for the diagnostic interface which calls this if the user does not 15306 * supply their own PBC. 15307 */ 15308 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl, 15309 u32 dw_len) 15310 { 15311 u64 pbc, delay = 0; 15312 15313 if (unlikely(srate_mbs)) 15314 delay = delay_cycles(ppd, srate_mbs, dw_len); 15315 15316 pbc = flags 15317 | (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT) 15318 | ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT) 15319 | (vl & PBC_VL_MASK) << PBC_VL_SHIFT 15320 | (dw_len & PBC_LENGTH_DWS_MASK) 15321 << PBC_LENGTH_DWS_SHIFT; 15322 15323 return pbc; 15324 } 15325 15326 #define SBUS_THERMAL 0x4f 15327 #define SBUS_THERM_MONITOR_MODE 0x1 15328 15329 #define THERM_FAILURE(dev, ret, reason) \ 15330 dd_dev_err((dd), \ 15331 "Thermal sensor initialization failed: %s (%d)\n", \ 15332 (reason), (ret)) 15333 15334 /* 15335 * Initialize the thermal sensor. 15336 * 15337 * After initialization, enable polling of thermal sensor through 15338 * SBus interface. In order for this to work, the SBus Master 15339 * firmware has to be loaded due to the fact that the HW polling 15340 * logic uses SBus interrupts, which are not supported with 15341 * default firmware. Otherwise, no data will be returned through 15342 * the ASIC_STS_THERM CSR. 15343 */ 15344 static int thermal_init(struct hfi1_devdata *dd) 15345 { 15346 int ret = 0; 15347 15348 if (dd->icode != ICODE_RTL_SILICON || 15349 check_chip_resource(dd, CR_THERM_INIT, NULL)) 15350 return ret; 15351 15352 ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); 15353 if (ret) { 15354 THERM_FAILURE(dd, ret, "Acquire SBus"); 15355 return ret; 15356 } 15357 15358 dd_dev_info(dd, "Initializing thermal sensor\n"); 15359 /* Disable polling of thermal readings */ 15360 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0); 15361 msleep(100); 15362 /* Thermal Sensor Initialization */ 15363 /* Step 1: Reset the Thermal SBus Receiver */ 15364 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15365 RESET_SBUS_RECEIVER, 0); 15366 if (ret) { 15367 THERM_FAILURE(dd, ret, "Bus Reset"); 15368 goto done; 15369 } 15370 /* Step 2: Set Reset bit in Thermal block */ 15371 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15372 WRITE_SBUS_RECEIVER, 0x1); 15373 if (ret) { 15374 THERM_FAILURE(dd, ret, "Therm Block Reset"); 15375 goto done; 15376 } 15377 /* Step 3: Write clock divider value (100MHz -> 2MHz) */ 15378 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1, 15379 WRITE_SBUS_RECEIVER, 0x32); 15380 if (ret) { 15381 THERM_FAILURE(dd, ret, "Write Clock Div"); 15382 goto done; 15383 } 15384 /* Step 4: Select temperature mode */ 15385 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3, 15386 WRITE_SBUS_RECEIVER, 15387 SBUS_THERM_MONITOR_MODE); 15388 if (ret) { 15389 THERM_FAILURE(dd, ret, "Write Mode Sel"); 15390 goto done; 15391 } 15392 /* Step 5: De-assert block reset and start conversion */ 15393 ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0, 15394 WRITE_SBUS_RECEIVER, 0x2); 15395 if (ret) { 15396 THERM_FAILURE(dd, ret, "Write Reset Deassert"); 15397 goto done; 15398 } 15399 /* Step 5.1: Wait for first conversion (21.5ms per spec) */ 15400 msleep(22); 15401 15402 /* Enable polling of thermal readings */ 15403 write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1); 15404 15405 /* Set initialized flag */ 15406 ret = acquire_chip_resource(dd, CR_THERM_INIT, 0); 15407 if (ret) 15408 THERM_FAILURE(dd, ret, "Unable to set thermal init flag"); 15409 15410 done: 15411 release_chip_resource(dd, CR_SBUS); 15412 return ret; 15413 } 15414 15415 static void handle_temp_err(struct hfi1_devdata *dd) 15416 { 15417 struct hfi1_pportdata *ppd = &dd->pport[0]; 15418 /* 15419 * Thermal Critical Interrupt 15420 * Put the device into forced freeze mode, take link down to 15421 * offline, and put DC into reset. 15422 */ 15423 dd_dev_emerg(dd, 15424 "Critical temperature reached! Forcing device into freeze mode!\n"); 15425 dd->flags |= HFI1_FORCED_FREEZE; 15426 start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT); 15427 /* 15428 * Shut DC down as much and as quickly as possible. 15429 * 15430 * Step 1: Take the link down to OFFLINE. This will cause the 15431 * 8051 to put the Serdes in reset. However, we don't want to 15432 * go through the entire link state machine since we want to 15433 * shutdown ASAP. Furthermore, this is not a graceful shutdown 15434 * but rather an attempt to save the chip. 15435 * Code below is almost the same as quiet_serdes() but avoids 15436 * all the extra work and the sleeps. 15437 */ 15438 ppd->driver_link_ready = 0; 15439 ppd->link_enabled = 0; 15440 set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) | 15441 PLS_OFFLINE); 15442 /* 15443 * Step 2: Shutdown LCB and 8051 15444 * After shutdown, do not restore DC_CFG_RESET value. 15445 */ 15446 dc_shutdown(dd); 15447 } 15448