xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 28efb0046512e8a13ed9f9bdf0d68d10bbfbe9cf)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 
69 #define NUM_IB_PORTS 1
70 
71 uint kdeth_qp;
72 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
73 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
74 
75 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
76 module_param(num_vls, uint, S_IRUGO);
77 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
78 
79 /*
80  * Default time to aggregate two 10K packets from the idle state
81  * (timer not running). The timer starts at the end of the first packet,
82  * so only the time for one 10K packet and header plus a bit extra is needed.
83  * 10 * 1024 + 64 header byte = 10304 byte
84  * 10304 byte / 12.5 GB/s = 824.32ns
85  */
86 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
87 module_param(rcv_intr_timeout, uint, S_IRUGO);
88 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
89 
90 uint rcv_intr_count = 16; /* same as qib */
91 module_param(rcv_intr_count, uint, S_IRUGO);
92 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
93 
94 ushort link_crc_mask = SUPPORTED_CRCS;
95 module_param(link_crc_mask, ushort, S_IRUGO);
96 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
97 
98 uint loopback;
99 module_param_named(loopback, loopback, uint, S_IRUGO);
100 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
101 
102 /* Other driver tunables */
103 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
104 static ushort crc_14b_sideband = 1;
105 static uint use_flr = 1;
106 uint quick_linkup; /* skip LNI */
107 
108 struct flag_table {
109 	u64 flag;	/* the flag */
110 	char *str;	/* description string */
111 	u16 extra;	/* extra information */
112 	u16 unused0;
113 	u32 unused1;
114 };
115 
116 /* str must be a string constant */
117 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
118 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
119 
120 /* Send Error Consequences */
121 #define SEC_WRITE_DROPPED	0x1
122 #define SEC_PACKET_DROPPED	0x2
123 #define SEC_SC_HALTED		0x4	/* per-context only */
124 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
125 
126 #define DEFAULT_KRCVQS		  2
127 #define MIN_KERNEL_KCTXTS         2
128 #define FIRST_KERNEL_KCTXT        1
129 
130 /*
131  * RSM instance allocation
132  *   0 - Verbs
133  *   1 - User Fecn Handling
134  *   2 - Vnic
135  */
136 #define RSM_INS_VERBS             0
137 #define RSM_INS_FECN              1
138 #define RSM_INS_VNIC              2
139 
140 /* Bit offset into the GUID which carries HFI id information */
141 #define GUID_HFI_INDEX_SHIFT     39
142 
143 /* extract the emulation revision */
144 #define emulator_rev(dd) ((dd)->irev >> 8)
145 /* parallel and serial emulation versions are 3 and 4 respectively */
146 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
147 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
148 
149 /* RSM fields for Verbs */
150 /* packet type */
151 #define IB_PACKET_TYPE         2ull
152 #define QW_SHIFT               6ull
153 /* QPN[7..1] */
154 #define QPN_WIDTH              7ull
155 
156 /* LRH.BTH: QW 0, OFFSET 48 - for match */
157 #define LRH_BTH_QW             0ull
158 #define LRH_BTH_BIT_OFFSET     48ull
159 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
160 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
161 #define LRH_BTH_SELECT
162 #define LRH_BTH_MASK           3ull
163 #define LRH_BTH_VALUE          2ull
164 
165 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
166 #define LRH_SC_QW              0ull
167 #define LRH_SC_BIT_OFFSET      56ull
168 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
169 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
170 #define LRH_SC_MASK            128ull
171 #define LRH_SC_VALUE           0ull
172 
173 /* SC[n..0] QW 0, OFFSET 60 - for select */
174 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
175 
176 /* QPN[m+n:1] QW 1, OFFSET 1 */
177 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
178 
179 /* RSM fields for Vnic */
180 /* L2_TYPE: QW 0, OFFSET 61 - for match */
181 #define L2_TYPE_QW             0ull
182 #define L2_TYPE_BIT_OFFSET     61ull
183 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
184 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
185 #define L2_TYPE_MASK           3ull
186 #define L2_16B_VALUE           2ull
187 
188 /* L4_TYPE QW 1, OFFSET 0 - for match */
189 #define L4_TYPE_QW              1ull
190 #define L4_TYPE_BIT_OFFSET      0ull
191 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
192 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
193 #define L4_16B_TYPE_MASK        0xFFull
194 #define L4_16B_ETH_VALUE        0x78ull
195 
196 /* 16B VESWID - for select */
197 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
198 /* 16B ENTROPY - for select */
199 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
200 
201 /* defines to build power on SC2VL table */
202 #define SC2VL_VAL( \
203 	num, \
204 	sc0, sc0val, \
205 	sc1, sc1val, \
206 	sc2, sc2val, \
207 	sc3, sc3val, \
208 	sc4, sc4val, \
209 	sc5, sc5val, \
210 	sc6, sc6val, \
211 	sc7, sc7val) \
212 ( \
213 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
214 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
215 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
216 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
217 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
218 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
219 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
220 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
221 )
222 
223 #define DC_SC_VL_VAL( \
224 	range, \
225 	e0, e0val, \
226 	e1, e1val, \
227 	e2, e2val, \
228 	e3, e3val, \
229 	e4, e4val, \
230 	e5, e5val, \
231 	e6, e6val, \
232 	e7, e7val, \
233 	e8, e8val, \
234 	e9, e9val, \
235 	e10, e10val, \
236 	e11, e11val, \
237 	e12, e12val, \
238 	e13, e13val, \
239 	e14, e14val, \
240 	e15, e15val) \
241 ( \
242 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
243 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
244 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
245 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
246 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
247 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
248 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
249 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
250 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
251 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
252 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
253 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
254 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
255 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
256 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
257 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
258 )
259 
260 /* all CceStatus sub-block freeze bits */
261 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
262 			| CCE_STATUS_RXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_FROZE_SMASK \
264 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
265 /* all CceStatus sub-block TXE pause bits */
266 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
267 			| CCE_STATUS_TXE_PAUSED_SMASK \
268 			| CCE_STATUS_SDMA_PAUSED_SMASK)
269 /* all CceStatus sub-block RXE pause bits */
270 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
271 
272 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
273 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
274 
275 /*
276  * CCE Error flags.
277  */
278 static struct flag_table cce_err_status_flags[] = {
279 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
280 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
281 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
282 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
283 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
284 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
285 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
286 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
287 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
288 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
289 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
290 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
291 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
292 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
293 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
294 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
295 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
296 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
297 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
298 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
299 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
300 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
301 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
302 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
303 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
304 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
305 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
306 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
307 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
308 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
309 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
310 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
311 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
312 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
313 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
314 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
315 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
316 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
317 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
318 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
319 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
320 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
321 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
322 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
323 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
324 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
325 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
326 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
327 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
328 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
329 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
330 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
331 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
332 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
333 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
334 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
335 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
336 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
337 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
338 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
339 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
340 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
341 /*31*/	FLAG_ENTRY0("LATriggered",
342 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
343 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
344 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
345 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
346 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
347 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
348 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
349 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
350 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
351 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
352 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
353 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
354 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
355 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
356 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
357 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
358 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
359 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
360 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
361 /*41-63 reserved*/
362 };
363 
364 /*
365  * Misc Error flags
366  */
367 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
368 static struct flag_table misc_err_status_flags[] = {
369 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
370 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
371 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
372 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
373 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
374 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
375 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
376 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
377 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
378 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
379 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
380 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
381 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
382 };
383 
384 /*
385  * TXE PIO Error flags and consequences
386  */
387 static struct flag_table pio_err_status_flags[] = {
388 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
389 	SEC_WRITE_DROPPED,
390 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
391 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
392 	SEC_SPC_FREEZE,
393 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
394 /* 2*/	FLAG_ENTRY("PioCsrParity",
395 	SEC_SPC_FREEZE,
396 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
397 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
398 	SEC_SPC_FREEZE,
399 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
400 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
401 	SEC_SPC_FREEZE,
402 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
403 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
404 	SEC_SPC_FREEZE,
405 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
406 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
407 	SEC_SPC_FREEZE,
408 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
409 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
410 	SEC_SPC_FREEZE,
411 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
412 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
413 	SEC_SPC_FREEZE,
414 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
415 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
416 	SEC_SPC_FREEZE,
417 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
418 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
419 	SEC_SPC_FREEZE,
420 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
421 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
422 	SEC_SPC_FREEZE,
423 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
424 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
425 	SEC_SPC_FREEZE,
426 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
427 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
428 	0,
429 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
430 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
431 	0,
432 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
433 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
434 	SEC_SPC_FREEZE,
435 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
436 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
437 	SEC_SPC_FREEZE,
438 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
439 /*17*/	FLAG_ENTRY("PioInitSmIn",
440 	0,
441 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
442 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
443 	SEC_SPC_FREEZE,
444 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
445 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
446 	SEC_SPC_FREEZE,
447 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
448 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
449 	0,
450 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
451 /*21*/	FLAG_ENTRY("PioWriteDataParity",
452 	SEC_SPC_FREEZE,
453 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
454 /*22*/	FLAG_ENTRY("PioStateMachine",
455 	SEC_SPC_FREEZE,
456 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
457 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
458 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
459 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
460 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
461 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
462 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
463 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
464 	SEC_SPC_FREEZE,
465 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
466 /*26*/	FLAG_ENTRY("PioVlfSopParity",
467 	SEC_SPC_FREEZE,
468 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
469 /*27*/	FLAG_ENTRY("PioVlFifoParity",
470 	SEC_SPC_FREEZE,
471 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
472 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
473 	SEC_SPC_FREEZE,
474 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
475 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
476 	SEC_SPC_FREEZE,
477 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
478 /*30-31 reserved*/
479 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
480 	SEC_SPC_FREEZE,
481 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
482 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
483 	SEC_SPC_FREEZE,
484 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
485 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
486 	SEC_SPC_FREEZE,
487 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
488 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
489 	SEC_SPC_FREEZE,
490 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
491 /*36-63 reserved*/
492 };
493 
494 /* TXE PIO errors that cause an SPC freeze */
495 #define ALL_PIO_FREEZE_ERR \
496 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
524 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
525 
526 /*
527  * TXE SDMA Error flags
528  */
529 static struct flag_table sdma_err_status_flags[] = {
530 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
531 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
532 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
533 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
534 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
535 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
536 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
537 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
538 /*04-63 reserved*/
539 };
540 
541 /* TXE SDMA errors that cause an SPC freeze */
542 #define ALL_SDMA_FREEZE_ERR  \
543 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
545 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
546 
547 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
548 #define PORT_DISCARD_EGRESS_ERRS \
549 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
551 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
552 
553 /*
554  * TXE Egress Error flags
555  */
556 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
557 static struct flag_table egress_err_status_flags[] = {
558 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
559 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
560 /* 2 reserved */
561 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
562 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
563 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
564 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
565 /* 6 reserved */
566 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
567 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
568 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
569 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
570 /* 9-10 reserved */
571 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
572 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
573 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
574 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
575 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
576 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
577 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
578 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
579 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
580 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
581 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
582 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
583 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
584 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
585 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
586 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
587 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
588 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
589 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
590 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
591 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
592 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
593 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
594 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
595 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
596 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
597 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
598 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
599 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
600 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
601 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
602 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
603 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
604 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
605 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
606 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
607 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
608 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
609 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
610 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
611 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
612 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
613 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
614 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
615 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
616 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
617 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
618 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
619 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
620 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
621 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
622 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
623 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
624 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
625 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
626 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
627 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
628 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
629 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
630 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
631 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
632 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
633 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
634 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
635 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
636 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
637 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
638 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
639 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
640 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
641 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
642 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
643 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
644 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
645 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
646 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
647 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
648 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
649 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
650 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
651 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
652 };
653 
654 /*
655  * TXE Egress Error Info flags
656  */
657 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
658 static struct flag_table egress_err_info_flags[] = {
659 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
660 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
661 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
663 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
664 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
665 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
666 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
667 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
668 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
669 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
670 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
671 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
672 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
673 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
674 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
675 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
676 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
677 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
678 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
679 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
680 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
681 };
682 
683 /* TXE Egress errors that cause an SPC freeze */
684 #define ALL_TXE_EGRESS_FREEZE_ERR \
685 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
686 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
688 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
689 	| SEES(TX_LAUNCH_CSR_PARITY) \
690 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
691 	| SEES(TX_CONFIG_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
700 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
701 	| SEES(TX_CREDIT_RETURN_PARITY))
702 
703 /*
704  * TXE Send error flags
705  */
706 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
707 static struct flag_table send_err_status_flags[] = {
708 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
709 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
710 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
711 };
712 
713 /*
714  * TXE Send Context Error flags and consequences
715  */
716 static struct flag_table sc_err_status_flags[] = {
717 /* 0*/	FLAG_ENTRY("InconsistentSop",
718 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
719 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
720 /* 1*/	FLAG_ENTRY("DisallowedPacket",
721 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
722 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
723 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
724 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
725 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
726 /* 3*/	FLAG_ENTRY("WriteOverflow",
727 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
728 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
729 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
730 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
731 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
732 /* 5-63 reserved*/
733 };
734 
735 /*
736  * RXE Receive Error flags
737  */
738 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
739 static struct flag_table rxe_err_status_flags[] = {
740 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
741 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
742 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
743 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
744 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
745 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
746 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
747 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
748 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
749 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
750 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
751 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
752 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
753 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
754 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
755 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
756 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
757 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
758 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
759 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
760 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
761 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
762 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
763 		RXES(RBUF_BLOCK_LIST_READ_COR)),
764 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
765 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
766 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
767 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
768 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
769 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
770 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
771 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
772 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
773 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
774 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
775 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
776 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
777 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
778 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
779 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
780 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
781 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
782 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
783 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
784 		RXES(RBUF_FL_INITDONE_PARITY)),
785 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
786 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
787 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
788 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
789 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
790 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
791 		RXES(LOOKUP_DES_PART1_UNC_COR)),
792 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
793 		RXES(LOOKUP_DES_PART2_PARITY)),
794 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
795 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
796 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
797 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
798 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
799 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
800 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
801 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
802 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
803 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
804 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
805 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
806 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
807 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
808 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
809 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
810 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
811 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
812 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
813 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
814 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
815 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
816 };
817 
818 /* RXE errors that will trigger an SPC freeze */
819 #define ALL_RXE_FREEZE_ERR  \
820 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
863 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
864 
865 #define RXE_FREEZE_ABORT_MASK \
866 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
868 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
869 
870 /*
871  * DCC Error Flags
872  */
873 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
874 static struct flag_table dcc_err_flags[] = {
875 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
876 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
877 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
878 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
880 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
881 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
882 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
883 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
884 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
885 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
886 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
887 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
888 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
889 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
890 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
891 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
892 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
894 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
895 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
896 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
897 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
898 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
899 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
900 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
901 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
902 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
903 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
904 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
905 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
906 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
908 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
909 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
910 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
911 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
912 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
913 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
914 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
915 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
916 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
917 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
919 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
920 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
921 };
922 
923 /*
924  * LCB error flags
925  */
926 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
927 static struct flag_table lcb_err_flags[] = {
928 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
929 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
930 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
931 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
932 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
933 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
934 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
935 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
936 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
937 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
938 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
939 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
940 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
941 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
942 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
943 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
944 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
945 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
946 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
947 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
948 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
949 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
950 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
951 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
952 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
953 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
954 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
955 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
956 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
957 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
958 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
959 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
960 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
961 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
962 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
963 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
964 };
965 
966 /*
967  * DC8051 Error Flags
968  */
969 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
970 static struct flag_table dc8051_err_flags[] = {
971 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
972 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
973 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
974 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
975 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
976 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
977 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
978 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
979 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
980 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
981 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
982 };
983 
984 /*
985  * DC8051 Information Error flags
986  *
987  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
988  */
989 static struct flag_table dc8051_info_err_flags[] = {
990 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
991 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
992 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
993 	FLAG_ENTRY0("Serdes internal loopback failure",
994 		    FAILED_SERDES_INTERNAL_LOOPBACK),
995 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
996 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
997 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
998 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
999 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1001 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1002 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1003 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1004 	FLAG_ENTRY0("External Device Request Timeout",
1005 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1006 };
1007 
1008 /*
1009  * DC8051 Information Host Information flags
1010  *
1011  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1012  */
1013 static struct flag_table dc8051_info_host_msg_flags[] = {
1014 	FLAG_ENTRY0("Host request done", 0x0001),
1015 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1016 	FLAG_ENTRY0("BC SMA message", 0x0004),
1017 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1018 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1019 	FLAG_ENTRY0("External device config request", 0x0020),
1020 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1021 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1022 	FLAG_ENTRY0("Link going down", 0x0100),
1023 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1024 };
1025 
1026 static u32 encoded_size(u32 size);
1027 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1028 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1029 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1030 			       u8 *continuous);
1031 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1032 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1033 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1034 				      u8 *remote_tx_rate, u16 *link_widths);
1035 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
1036 				     u8 *flag_bits, u16 *link_widths);
1037 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1038 				  u8 *device_rev);
1039 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed);
1040 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1041 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1042 			    u8 *tx_polarity_inversion,
1043 			    u8 *rx_polarity_inversion, u8 *max_rate);
1044 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1045 				unsigned int context, u64 err_status);
1046 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1047 static void handle_dcc_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_lcb_err(struct hfi1_devdata *dd,
1050 			   unsigned int context, u64 err_status);
1051 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1058 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1059 static void set_partition_keys(struct hfi1_pportdata *ppd);
1060 static const char *link_state_name(u32 state);
1061 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1062 					  u32 state);
1063 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1064 			   u64 *out_data);
1065 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1066 static int thermal_init(struct hfi1_devdata *dd);
1067 
1068 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1076 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1077 static void handle_temp_err(struct hfi1_devdata *dd);
1078 static void dc_shutdown(struct hfi1_devdata *dd);
1079 static void dc_start(struct hfi1_devdata *dd);
1080 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1081 			   unsigned int *np);
1082 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1083 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1084 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1085 
1086 /*
1087  * Error interrupt table entry.  This is used as input to the interrupt
1088  * "clear down" routine used for all second tier error interrupt register.
1089  * Second tier interrupt registers have a single bit representing them
1090  * in the top-level CceIntStatus.
1091  */
1092 struct err_reg_info {
1093 	u32 status;		/* status CSR offset */
1094 	u32 clear;		/* clear CSR offset */
1095 	u32 mask;		/* mask CSR offset */
1096 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1097 	const char *desc;
1098 };
1099 
1100 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END - IS_GENERAL_ERR_START)
1101 #define NUM_DC_ERRS (IS_DC_END - IS_DC_START)
1102 #define NUM_VARIOUS (IS_VARIOUS_END - IS_VARIOUS_START)
1103 
1104 /*
1105  * Helpers for building HFI and DC error interrupt table entries.  Different
1106  * helpers are needed because of inconsistent register names.
1107  */
1108 #define EE(reg, handler, desc) \
1109 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1110 		handler, desc }
1111 #define DC_EE1(reg, handler, desc) \
1112 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1113 #define DC_EE2(reg, handler, desc) \
1114 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1115 
1116 /*
1117  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1118  * another register containing more information.
1119  */
1120 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1121 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1122 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1123 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1124 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1125 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1126 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1127 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1128 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1129 	/* the rest are reserved */
1130 };
1131 
1132 /*
1133  * Index into the Various section of the interrupt sources
1134  * corresponding to the Critical Temperature interrupt.
1135  */
1136 #define TCRIT_INT_SOURCE 4
1137 
1138 /*
1139  * SDMA error interrupt entry - refers to another register containing more
1140  * information.
1141  */
1142 static const struct err_reg_info sdma_eng_err =
1143 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1144 
1145 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1146 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1147 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1148 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1149 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1150 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1151 	/* rest are reserved */
1152 };
1153 
1154 /*
1155  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1156  * register can not be derived from the MTU value because 10K is not
1157  * a power of 2. Therefore, we need a constant. Everything else can
1158  * be calculated.
1159  */
1160 #define DCC_CFG_PORT_MTU_CAP_10240 7
1161 
1162 /*
1163  * Table of the DC grouping of error interrupts.  Each entry refers to
1164  * another register containing more information.
1165  */
1166 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1167 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1168 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1169 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1170 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1171 	/* the rest are reserved */
1172 };
1173 
1174 struct cntr_entry {
1175 	/*
1176 	 * counter name
1177 	 */
1178 	char *name;
1179 
1180 	/*
1181 	 * csr to read for name (if applicable)
1182 	 */
1183 	u64 csr;
1184 
1185 	/*
1186 	 * offset into dd or ppd to store the counter's value
1187 	 */
1188 	int offset;
1189 
1190 	/*
1191 	 * flags
1192 	 */
1193 	u8 flags;
1194 
1195 	/*
1196 	 * accessor for stat element, context either dd or ppd
1197 	 */
1198 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1199 		       int mode, u64 data);
1200 };
1201 
1202 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1203 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1204 
1205 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1206 { \
1207 	name, \
1208 	csr, \
1209 	offset, \
1210 	flags, \
1211 	accessor \
1212 }
1213 
1214 /* 32bit RXE */
1215 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1216 CNTR_ELEM(#name, \
1217 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1218 	  0, flags | CNTR_32BIT, \
1219 	  port_access_u32_csr)
1220 
1221 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1222 CNTR_ELEM(#name, \
1223 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1224 	  0, flags | CNTR_32BIT, \
1225 	  dev_access_u32_csr)
1226 
1227 /* 64bit RXE */
1228 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1229 CNTR_ELEM(#name, \
1230 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1231 	  0, flags, \
1232 	  port_access_u64_csr)
1233 
1234 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1235 CNTR_ELEM(#name, \
1236 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1237 	  0, flags, \
1238 	  dev_access_u64_csr)
1239 
1240 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1241 #define OVR_ELM(ctx) \
1242 CNTR_ELEM("RcvHdrOvr" #ctx, \
1243 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1244 	  0, CNTR_NORMAL, port_access_u64_csr)
1245 
1246 /* 32bit TXE */
1247 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1248 CNTR_ELEM(#name, \
1249 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1250 	  0, flags | CNTR_32BIT, \
1251 	  port_access_u32_csr)
1252 
1253 /* 64bit TXE */
1254 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1255 CNTR_ELEM(#name, \
1256 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1257 	  0, flags, \
1258 	  port_access_u64_csr)
1259 
1260 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1261 CNTR_ELEM(#name,\
1262 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1263 	  0, \
1264 	  flags, \
1265 	  dev_access_u64_csr)
1266 
1267 /* CCE */
1268 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1269 CNTR_ELEM(#name, \
1270 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1271 	  0, flags | CNTR_32BIT, \
1272 	  dev_access_u32_csr)
1273 
1274 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1275 CNTR_ELEM(#name, \
1276 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1277 	  0, flags | CNTR_32BIT, \
1278 	  dev_access_u32_csr)
1279 
1280 /* DC */
1281 #define DC_PERF_CNTR(name, counter, flags) \
1282 CNTR_ELEM(#name, \
1283 	  counter, \
1284 	  0, \
1285 	  flags, \
1286 	  dev_access_u64_csr)
1287 
1288 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1289 CNTR_ELEM(#name, \
1290 	  counter, \
1291 	  0, \
1292 	  flags, \
1293 	  dc_access_lcb_cntr)
1294 
1295 /* ibp counters */
1296 #define SW_IBP_CNTR(name, cntr) \
1297 CNTR_ELEM(#name, \
1298 	  0, \
1299 	  0, \
1300 	  CNTR_SYNTH, \
1301 	  access_ibp_##cntr)
1302 
1303 /**
1304  * hfi_addr_from_offset - return addr for readq/writeq
1305  * @dd - the dd device
1306  * @offset - the offset of the CSR within bar0
1307  *
1308  * This routine selects the appropriate base address
1309  * based on the indicated offset.
1310  */
1311 static inline void __iomem *hfi1_addr_from_offset(
1312 	const struct hfi1_devdata *dd,
1313 	u32 offset)
1314 {
1315 	if (offset >= dd->base2_start)
1316 		return dd->kregbase2 + (offset - dd->base2_start);
1317 	return dd->kregbase1 + offset;
1318 }
1319 
1320 /**
1321  * read_csr - read CSR at the indicated offset
1322  * @dd - the dd device
1323  * @offset - the offset of the CSR within bar0
1324  *
1325  * Return: the value read or all FF's if there
1326  * is no mapping
1327  */
1328 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1329 {
1330 	if (dd->flags & HFI1_PRESENT)
1331 		return readq(hfi1_addr_from_offset(dd, offset));
1332 	return -1;
1333 }
1334 
1335 /**
1336  * write_csr - write CSR at the indicated offset
1337  * @dd - the dd device
1338  * @offset - the offset of the CSR within bar0
1339  * @value - value to write
1340  */
1341 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1342 {
1343 	if (dd->flags & HFI1_PRESENT) {
1344 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1345 
1346 		/* avoid write to RcvArray */
1347 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1348 			return;
1349 		writeq(value, base);
1350 	}
1351 }
1352 
1353 /**
1354  * get_csr_addr - return te iomem address for offset
1355  * @dd - the dd device
1356  * @offset - the offset of the CSR within bar0
1357  *
1358  * Return: The iomem address to use in subsequent
1359  * writeq/readq operations.
1360  */
1361 void __iomem *get_csr_addr(
1362 	const struct hfi1_devdata *dd,
1363 	u32 offset)
1364 {
1365 	if (dd->flags & HFI1_PRESENT)
1366 		return hfi1_addr_from_offset(dd, offset);
1367 	return NULL;
1368 }
1369 
1370 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1371 				 int mode, u64 value)
1372 {
1373 	u64 ret;
1374 
1375 	if (mode == CNTR_MODE_R) {
1376 		ret = read_csr(dd, csr);
1377 	} else if (mode == CNTR_MODE_W) {
1378 		write_csr(dd, csr, value);
1379 		ret = value;
1380 	} else {
1381 		dd_dev_err(dd, "Invalid cntr register access mode");
1382 		return 0;
1383 	}
1384 
1385 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1386 	return ret;
1387 }
1388 
1389 /* Dev Access */
1390 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1391 			      void *context, int vl, int mode, u64 data)
1392 {
1393 	struct hfi1_devdata *dd = context;
1394 	u64 csr = entry->csr;
1395 
1396 	if (entry->flags & CNTR_SDMA) {
1397 		if (vl == CNTR_INVALID_VL)
1398 			return 0;
1399 		csr += 0x100 * vl;
1400 	} else {
1401 		if (vl != CNTR_INVALID_VL)
1402 			return 0;
1403 	}
1404 	return read_write_csr(dd, csr, mode, data);
1405 }
1406 
1407 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1408 			      void *context, int idx, int mode, u64 data)
1409 {
1410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1411 
1412 	if (dd->per_sdma && idx < dd->num_sdma)
1413 		return dd->per_sdma[idx].err_cnt;
1414 	return 0;
1415 }
1416 
1417 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1418 			      void *context, int idx, int mode, u64 data)
1419 {
1420 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1421 
1422 	if (dd->per_sdma && idx < dd->num_sdma)
1423 		return dd->per_sdma[idx].sdma_int_cnt;
1424 	return 0;
1425 }
1426 
1427 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1428 				   void *context, int idx, int mode, u64 data)
1429 {
1430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1431 
1432 	if (dd->per_sdma && idx < dd->num_sdma)
1433 		return dd->per_sdma[idx].idle_int_cnt;
1434 	return 0;
1435 }
1436 
1437 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1438 				       void *context, int idx, int mode,
1439 				       u64 data)
1440 {
1441 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1442 
1443 	if (dd->per_sdma && idx < dd->num_sdma)
1444 		return dd->per_sdma[idx].progress_int_cnt;
1445 	return 0;
1446 }
1447 
1448 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1449 			      int vl, int mode, u64 data)
1450 {
1451 	struct hfi1_devdata *dd = context;
1452 
1453 	u64 val = 0;
1454 	u64 csr = entry->csr;
1455 
1456 	if (entry->flags & CNTR_VL) {
1457 		if (vl == CNTR_INVALID_VL)
1458 			return 0;
1459 		csr += 8 * vl;
1460 	} else {
1461 		if (vl != CNTR_INVALID_VL)
1462 			return 0;
1463 	}
1464 
1465 	val = read_write_csr(dd, csr, mode, data);
1466 	return val;
1467 }
1468 
1469 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1470 			      int vl, int mode, u64 data)
1471 {
1472 	struct hfi1_devdata *dd = context;
1473 	u32 csr = entry->csr;
1474 	int ret = 0;
1475 
1476 	if (vl != CNTR_INVALID_VL)
1477 		return 0;
1478 	if (mode == CNTR_MODE_R)
1479 		ret = read_lcb_csr(dd, csr, &data);
1480 	else if (mode == CNTR_MODE_W)
1481 		ret = write_lcb_csr(dd, csr, data);
1482 
1483 	if (ret) {
1484 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1485 		return 0;
1486 	}
1487 
1488 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1489 	return data;
1490 }
1491 
1492 /* Port Access */
1493 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1494 			       int vl, int mode, u64 data)
1495 {
1496 	struct hfi1_pportdata *ppd = context;
1497 
1498 	if (vl != CNTR_INVALID_VL)
1499 		return 0;
1500 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1501 }
1502 
1503 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1504 			       void *context, int vl, int mode, u64 data)
1505 {
1506 	struct hfi1_pportdata *ppd = context;
1507 	u64 val;
1508 	u64 csr = entry->csr;
1509 
1510 	if (entry->flags & CNTR_VL) {
1511 		if (vl == CNTR_INVALID_VL)
1512 			return 0;
1513 		csr += 8 * vl;
1514 	} else {
1515 		if (vl != CNTR_INVALID_VL)
1516 			return 0;
1517 	}
1518 	val = read_write_csr(ppd->dd, csr, mode, data);
1519 	return val;
1520 }
1521 
1522 /* Software defined */
1523 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1524 				u64 data)
1525 {
1526 	u64 ret;
1527 
1528 	if (mode == CNTR_MODE_R) {
1529 		ret = *cntr;
1530 	} else if (mode == CNTR_MODE_W) {
1531 		*cntr = data;
1532 		ret = data;
1533 	} else {
1534 		dd_dev_err(dd, "Invalid cntr sw access mode");
1535 		return 0;
1536 	}
1537 
1538 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1539 
1540 	return ret;
1541 }
1542 
1543 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1544 				 int vl, int mode, u64 data)
1545 {
1546 	struct hfi1_pportdata *ppd = context;
1547 
1548 	if (vl != CNTR_INVALID_VL)
1549 		return 0;
1550 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1551 }
1552 
1553 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1554 				 int vl, int mode, u64 data)
1555 {
1556 	struct hfi1_pportdata *ppd = context;
1557 
1558 	if (vl != CNTR_INVALID_VL)
1559 		return 0;
1560 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1561 }
1562 
1563 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1564 				       void *context, int vl, int mode,
1565 				       u64 data)
1566 {
1567 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1568 
1569 	if (vl != CNTR_INVALID_VL)
1570 		return 0;
1571 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1572 }
1573 
1574 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1575 				   void *context, int vl, int mode, u64 data)
1576 {
1577 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1578 	u64 zero = 0;
1579 	u64 *counter;
1580 
1581 	if (vl == CNTR_INVALID_VL)
1582 		counter = &ppd->port_xmit_discards;
1583 	else if (vl >= 0 && vl < C_VL_COUNT)
1584 		counter = &ppd->port_xmit_discards_vl[vl];
1585 	else
1586 		counter = &zero;
1587 
1588 	return read_write_sw(ppd->dd, counter, mode, data);
1589 }
1590 
1591 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1592 				       void *context, int vl, int mode,
1593 				       u64 data)
1594 {
1595 	struct hfi1_pportdata *ppd = context;
1596 
1597 	if (vl != CNTR_INVALID_VL)
1598 		return 0;
1599 
1600 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1601 			     mode, data);
1602 }
1603 
1604 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1605 				      void *context, int vl, int mode, u64 data)
1606 {
1607 	struct hfi1_pportdata *ppd = context;
1608 
1609 	if (vl != CNTR_INVALID_VL)
1610 		return 0;
1611 
1612 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1613 			     mode, data);
1614 }
1615 
1616 u64 get_all_cpu_total(u64 __percpu *cntr)
1617 {
1618 	int cpu;
1619 	u64 counter = 0;
1620 
1621 	for_each_possible_cpu(cpu)
1622 		counter += *per_cpu_ptr(cntr, cpu);
1623 	return counter;
1624 }
1625 
1626 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1627 			  u64 __percpu *cntr,
1628 			  int vl, int mode, u64 data)
1629 {
1630 	u64 ret = 0;
1631 
1632 	if (vl != CNTR_INVALID_VL)
1633 		return 0;
1634 
1635 	if (mode == CNTR_MODE_R) {
1636 		ret = get_all_cpu_total(cntr) - *z_val;
1637 	} else if (mode == CNTR_MODE_W) {
1638 		/* A write can only zero the counter */
1639 		if (data == 0)
1640 			*z_val = get_all_cpu_total(cntr);
1641 		else
1642 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1643 	} else {
1644 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1645 		return 0;
1646 	}
1647 
1648 	return ret;
1649 }
1650 
1651 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1652 			      void *context, int vl, int mode, u64 data)
1653 {
1654 	struct hfi1_devdata *dd = context;
1655 
1656 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1657 			      mode, data);
1658 }
1659 
1660 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1661 				   void *context, int vl, int mode, u64 data)
1662 {
1663 	struct hfi1_devdata *dd = context;
1664 
1665 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1666 			      mode, data);
1667 }
1668 
1669 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1670 			      void *context, int vl, int mode, u64 data)
1671 {
1672 	struct hfi1_devdata *dd = context;
1673 
1674 	return dd->verbs_dev.n_piowait;
1675 }
1676 
1677 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1678 			       void *context, int vl, int mode, u64 data)
1679 {
1680 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1681 
1682 	return dd->verbs_dev.n_piodrain;
1683 }
1684 
1685 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1686 			      void *context, int vl, int mode, u64 data)
1687 {
1688 	struct hfi1_devdata *dd = context;
1689 
1690 	return dd->verbs_dev.n_txwait;
1691 }
1692 
1693 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1694 			       void *context, int vl, int mode, u64 data)
1695 {
1696 	struct hfi1_devdata *dd = context;
1697 
1698 	return dd->verbs_dev.n_kmem_wait;
1699 }
1700 
1701 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1702 				   void *context, int vl, int mode, u64 data)
1703 {
1704 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1705 
1706 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1707 			      mode, data);
1708 }
1709 
1710 /* Software counters for the error status bits within MISC_ERR_STATUS */
1711 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1712 					     void *context, int vl, int mode,
1713 					     u64 data)
1714 {
1715 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1716 
1717 	return dd->misc_err_status_cnt[12];
1718 }
1719 
1720 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1721 					  void *context, int vl, int mode,
1722 					  u64 data)
1723 {
1724 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1725 
1726 	return dd->misc_err_status_cnt[11];
1727 }
1728 
1729 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1730 					       void *context, int vl, int mode,
1731 					       u64 data)
1732 {
1733 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1734 
1735 	return dd->misc_err_status_cnt[10];
1736 }
1737 
1738 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1739 						 void *context, int vl,
1740 						 int mode, u64 data)
1741 {
1742 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1743 
1744 	return dd->misc_err_status_cnt[9];
1745 }
1746 
1747 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1748 					   void *context, int vl, int mode,
1749 					   u64 data)
1750 {
1751 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1752 
1753 	return dd->misc_err_status_cnt[8];
1754 }
1755 
1756 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1757 				const struct cntr_entry *entry,
1758 				void *context, int vl, int mode, u64 data)
1759 {
1760 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1761 
1762 	return dd->misc_err_status_cnt[7];
1763 }
1764 
1765 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1766 						void *context, int vl,
1767 						int mode, u64 data)
1768 {
1769 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1770 
1771 	return dd->misc_err_status_cnt[6];
1772 }
1773 
1774 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1775 					      void *context, int vl, int mode,
1776 					      u64 data)
1777 {
1778 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1779 
1780 	return dd->misc_err_status_cnt[5];
1781 }
1782 
1783 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1784 					    void *context, int vl, int mode,
1785 					    u64 data)
1786 {
1787 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1788 
1789 	return dd->misc_err_status_cnt[4];
1790 }
1791 
1792 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1793 						 void *context, int vl,
1794 						 int mode, u64 data)
1795 {
1796 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1797 
1798 	return dd->misc_err_status_cnt[3];
1799 }
1800 
1801 static u64 access_misc_csr_write_bad_addr_err_cnt(
1802 				const struct cntr_entry *entry,
1803 				void *context, int vl, int mode, u64 data)
1804 {
1805 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1806 
1807 	return dd->misc_err_status_cnt[2];
1808 }
1809 
1810 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1811 						 void *context, int vl,
1812 						 int mode, u64 data)
1813 {
1814 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1815 
1816 	return dd->misc_err_status_cnt[1];
1817 }
1818 
1819 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1820 					  void *context, int vl, int mode,
1821 					  u64 data)
1822 {
1823 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1824 
1825 	return dd->misc_err_status_cnt[0];
1826 }
1827 
1828 /*
1829  * Software counter for the aggregate of
1830  * individual CceErrStatus counters
1831  */
1832 static u64 access_sw_cce_err_status_aggregated_cnt(
1833 				const struct cntr_entry *entry,
1834 				void *context, int vl, int mode, u64 data)
1835 {
1836 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1837 
1838 	return dd->sw_cce_err_status_aggregate;
1839 }
1840 
1841 /*
1842  * Software counters corresponding to each of the
1843  * error status bits within CceErrStatus
1844  */
1845 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1846 					      void *context, int vl, int mode,
1847 					      u64 data)
1848 {
1849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1850 
1851 	return dd->cce_err_status_cnt[40];
1852 }
1853 
1854 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1855 					  void *context, int vl, int mode,
1856 					  u64 data)
1857 {
1858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1859 
1860 	return dd->cce_err_status_cnt[39];
1861 }
1862 
1863 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1864 					  void *context, int vl, int mode,
1865 					  u64 data)
1866 {
1867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1868 
1869 	return dd->cce_err_status_cnt[38];
1870 }
1871 
1872 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1873 					     void *context, int vl, int mode,
1874 					     u64 data)
1875 {
1876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1877 
1878 	return dd->cce_err_status_cnt[37];
1879 }
1880 
1881 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1882 					     void *context, int vl, int mode,
1883 					     u64 data)
1884 {
1885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1886 
1887 	return dd->cce_err_status_cnt[36];
1888 }
1889 
1890 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1891 				const struct cntr_entry *entry,
1892 				void *context, int vl, int mode, u64 data)
1893 {
1894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1895 
1896 	return dd->cce_err_status_cnt[35];
1897 }
1898 
1899 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1900 				const struct cntr_entry *entry,
1901 				void *context, int vl, int mode, u64 data)
1902 {
1903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1904 
1905 	return dd->cce_err_status_cnt[34];
1906 }
1907 
1908 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1909 						 void *context, int vl,
1910 						 int mode, u64 data)
1911 {
1912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1913 
1914 	return dd->cce_err_status_cnt[33];
1915 }
1916 
1917 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1918 						void *context, int vl, int mode,
1919 						u64 data)
1920 {
1921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1922 
1923 	return dd->cce_err_status_cnt[32];
1924 }
1925 
1926 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1927 				   void *context, int vl, int mode, u64 data)
1928 {
1929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1930 
1931 	return dd->cce_err_status_cnt[31];
1932 }
1933 
1934 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1935 					       void *context, int vl, int mode,
1936 					       u64 data)
1937 {
1938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1939 
1940 	return dd->cce_err_status_cnt[30];
1941 }
1942 
1943 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1944 					      void *context, int vl, int mode,
1945 					      u64 data)
1946 {
1947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1948 
1949 	return dd->cce_err_status_cnt[29];
1950 }
1951 
1952 static u64 access_pcic_transmit_back_parity_err_cnt(
1953 				const struct cntr_entry *entry,
1954 				void *context, int vl, int mode, u64 data)
1955 {
1956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1957 
1958 	return dd->cce_err_status_cnt[28];
1959 }
1960 
1961 static u64 access_pcic_transmit_front_parity_err_cnt(
1962 				const struct cntr_entry *entry,
1963 				void *context, int vl, int mode, u64 data)
1964 {
1965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1966 
1967 	return dd->cce_err_status_cnt[27];
1968 }
1969 
1970 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1971 					     void *context, int vl, int mode,
1972 					     u64 data)
1973 {
1974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1975 
1976 	return dd->cce_err_status_cnt[26];
1977 }
1978 
1979 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1980 					    void *context, int vl, int mode,
1981 					    u64 data)
1982 {
1983 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1984 
1985 	return dd->cce_err_status_cnt[25];
1986 }
1987 
1988 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1989 					      void *context, int vl, int mode,
1990 					      u64 data)
1991 {
1992 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1993 
1994 	return dd->cce_err_status_cnt[24];
1995 }
1996 
1997 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1998 					     void *context, int vl, int mode,
1999 					     u64 data)
2000 {
2001 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2002 
2003 	return dd->cce_err_status_cnt[23];
2004 }
2005 
2006 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2007 						 void *context, int vl,
2008 						 int mode, u64 data)
2009 {
2010 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2011 
2012 	return dd->cce_err_status_cnt[22];
2013 }
2014 
2015 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2016 					 void *context, int vl, int mode,
2017 					 u64 data)
2018 {
2019 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2020 
2021 	return dd->cce_err_status_cnt[21];
2022 }
2023 
2024 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2025 				const struct cntr_entry *entry,
2026 				void *context, int vl, int mode, u64 data)
2027 {
2028 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2029 
2030 	return dd->cce_err_status_cnt[20];
2031 }
2032 
2033 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2034 						 void *context, int vl,
2035 						 int mode, u64 data)
2036 {
2037 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2038 
2039 	return dd->cce_err_status_cnt[19];
2040 }
2041 
2042 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2043 					     void *context, int vl, int mode,
2044 					     u64 data)
2045 {
2046 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2047 
2048 	return dd->cce_err_status_cnt[18];
2049 }
2050 
2051 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2052 					    void *context, int vl, int mode,
2053 					    u64 data)
2054 {
2055 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2056 
2057 	return dd->cce_err_status_cnt[17];
2058 }
2059 
2060 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2061 					      void *context, int vl, int mode,
2062 					      u64 data)
2063 {
2064 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2065 
2066 	return dd->cce_err_status_cnt[16];
2067 }
2068 
2069 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2070 					     void *context, int vl, int mode,
2071 					     u64 data)
2072 {
2073 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2074 
2075 	return dd->cce_err_status_cnt[15];
2076 }
2077 
2078 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2079 						 void *context, int vl,
2080 						 int mode, u64 data)
2081 {
2082 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2083 
2084 	return dd->cce_err_status_cnt[14];
2085 }
2086 
2087 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2088 					     void *context, int vl, int mode,
2089 					     u64 data)
2090 {
2091 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2092 
2093 	return dd->cce_err_status_cnt[13];
2094 }
2095 
2096 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2097 				const struct cntr_entry *entry,
2098 				void *context, int vl, int mode, u64 data)
2099 {
2100 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2101 
2102 	return dd->cce_err_status_cnt[12];
2103 }
2104 
2105 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2106 				const struct cntr_entry *entry,
2107 				void *context, int vl, int mode, u64 data)
2108 {
2109 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2110 
2111 	return dd->cce_err_status_cnt[11];
2112 }
2113 
2114 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2115 				const struct cntr_entry *entry,
2116 				void *context, int vl, int mode, u64 data)
2117 {
2118 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2119 
2120 	return dd->cce_err_status_cnt[10];
2121 }
2122 
2123 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2124 				const struct cntr_entry *entry,
2125 				void *context, int vl, int mode, u64 data)
2126 {
2127 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2128 
2129 	return dd->cce_err_status_cnt[9];
2130 }
2131 
2132 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2133 				const struct cntr_entry *entry,
2134 				void *context, int vl, int mode, u64 data)
2135 {
2136 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2137 
2138 	return dd->cce_err_status_cnt[8];
2139 }
2140 
2141 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2142 						 void *context, int vl,
2143 						 int mode, u64 data)
2144 {
2145 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2146 
2147 	return dd->cce_err_status_cnt[7];
2148 }
2149 
2150 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2151 				const struct cntr_entry *entry,
2152 				void *context, int vl, int mode, u64 data)
2153 {
2154 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2155 
2156 	return dd->cce_err_status_cnt[6];
2157 }
2158 
2159 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2160 					       void *context, int vl, int mode,
2161 					       u64 data)
2162 {
2163 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2164 
2165 	return dd->cce_err_status_cnt[5];
2166 }
2167 
2168 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2169 					  void *context, int vl, int mode,
2170 					  u64 data)
2171 {
2172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2173 
2174 	return dd->cce_err_status_cnt[4];
2175 }
2176 
2177 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2178 				const struct cntr_entry *entry,
2179 				void *context, int vl, int mode, u64 data)
2180 {
2181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2182 
2183 	return dd->cce_err_status_cnt[3];
2184 }
2185 
2186 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2187 						 void *context, int vl,
2188 						 int mode, u64 data)
2189 {
2190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2191 
2192 	return dd->cce_err_status_cnt[2];
2193 }
2194 
2195 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2196 						void *context, int vl,
2197 						int mode, u64 data)
2198 {
2199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2200 
2201 	return dd->cce_err_status_cnt[1];
2202 }
2203 
2204 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2205 					 void *context, int vl, int mode,
2206 					 u64 data)
2207 {
2208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2209 
2210 	return dd->cce_err_status_cnt[0];
2211 }
2212 
2213 /*
2214  * Software counters corresponding to each of the
2215  * error status bits within RcvErrStatus
2216  */
2217 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2218 					void *context, int vl, int mode,
2219 					u64 data)
2220 {
2221 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2222 
2223 	return dd->rcv_err_status_cnt[63];
2224 }
2225 
2226 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2227 						void *context, int vl,
2228 						int mode, u64 data)
2229 {
2230 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2231 
2232 	return dd->rcv_err_status_cnt[62];
2233 }
2234 
2235 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2236 					       void *context, int vl, int mode,
2237 					       u64 data)
2238 {
2239 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2240 
2241 	return dd->rcv_err_status_cnt[61];
2242 }
2243 
2244 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2245 					 void *context, int vl, int mode,
2246 					 u64 data)
2247 {
2248 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2249 
2250 	return dd->rcv_err_status_cnt[60];
2251 }
2252 
2253 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2254 						 void *context, int vl,
2255 						 int mode, u64 data)
2256 {
2257 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2258 
2259 	return dd->rcv_err_status_cnt[59];
2260 }
2261 
2262 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2263 						 void *context, int vl,
2264 						 int mode, u64 data)
2265 {
2266 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2267 
2268 	return dd->rcv_err_status_cnt[58];
2269 }
2270 
2271 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2272 					    void *context, int vl, int mode,
2273 					    u64 data)
2274 {
2275 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2276 
2277 	return dd->rcv_err_status_cnt[57];
2278 }
2279 
2280 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2281 					   void *context, int vl, int mode,
2282 					   u64 data)
2283 {
2284 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2285 
2286 	return dd->rcv_err_status_cnt[56];
2287 }
2288 
2289 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2290 					   void *context, int vl, int mode,
2291 					   u64 data)
2292 {
2293 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2294 
2295 	return dd->rcv_err_status_cnt[55];
2296 }
2297 
2298 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2299 				const struct cntr_entry *entry,
2300 				void *context, int vl, int mode, u64 data)
2301 {
2302 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2303 
2304 	return dd->rcv_err_status_cnt[54];
2305 }
2306 
2307 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2308 				const struct cntr_entry *entry,
2309 				void *context, int vl, int mode, u64 data)
2310 {
2311 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2312 
2313 	return dd->rcv_err_status_cnt[53];
2314 }
2315 
2316 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2317 						 void *context, int vl,
2318 						 int mode, u64 data)
2319 {
2320 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2321 
2322 	return dd->rcv_err_status_cnt[52];
2323 }
2324 
2325 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2326 						 void *context, int vl,
2327 						 int mode, u64 data)
2328 {
2329 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2330 
2331 	return dd->rcv_err_status_cnt[51];
2332 }
2333 
2334 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2335 						 void *context, int vl,
2336 						 int mode, u64 data)
2337 {
2338 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2339 
2340 	return dd->rcv_err_status_cnt[50];
2341 }
2342 
2343 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2344 						 void *context, int vl,
2345 						 int mode, u64 data)
2346 {
2347 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2348 
2349 	return dd->rcv_err_status_cnt[49];
2350 }
2351 
2352 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2353 						 void *context, int vl,
2354 						 int mode, u64 data)
2355 {
2356 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2357 
2358 	return dd->rcv_err_status_cnt[48];
2359 }
2360 
2361 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2362 						 void *context, int vl,
2363 						 int mode, u64 data)
2364 {
2365 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2366 
2367 	return dd->rcv_err_status_cnt[47];
2368 }
2369 
2370 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2371 					 void *context, int vl, int mode,
2372 					 u64 data)
2373 {
2374 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2375 
2376 	return dd->rcv_err_status_cnt[46];
2377 }
2378 
2379 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2380 				const struct cntr_entry *entry,
2381 				void *context, int vl, int mode, u64 data)
2382 {
2383 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2384 
2385 	return dd->rcv_err_status_cnt[45];
2386 }
2387 
2388 static u64 access_rx_lookup_csr_parity_err_cnt(
2389 				const struct cntr_entry *entry,
2390 				void *context, int vl, int mode, u64 data)
2391 {
2392 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2393 
2394 	return dd->rcv_err_status_cnt[44];
2395 }
2396 
2397 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2398 				const struct cntr_entry *entry,
2399 				void *context, int vl, int mode, u64 data)
2400 {
2401 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2402 
2403 	return dd->rcv_err_status_cnt[43];
2404 }
2405 
2406 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2407 				const struct cntr_entry *entry,
2408 				void *context, int vl, int mode, u64 data)
2409 {
2410 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2411 
2412 	return dd->rcv_err_status_cnt[42];
2413 }
2414 
2415 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2416 				const struct cntr_entry *entry,
2417 				void *context, int vl, int mode, u64 data)
2418 {
2419 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2420 
2421 	return dd->rcv_err_status_cnt[41];
2422 }
2423 
2424 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2425 				const struct cntr_entry *entry,
2426 				void *context, int vl, int mode, u64 data)
2427 {
2428 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2429 
2430 	return dd->rcv_err_status_cnt[40];
2431 }
2432 
2433 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2434 				const struct cntr_entry *entry,
2435 				void *context, int vl, int mode, u64 data)
2436 {
2437 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2438 
2439 	return dd->rcv_err_status_cnt[39];
2440 }
2441 
2442 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2443 				const struct cntr_entry *entry,
2444 				void *context, int vl, int mode, u64 data)
2445 {
2446 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2447 
2448 	return dd->rcv_err_status_cnt[38];
2449 }
2450 
2451 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2452 				const struct cntr_entry *entry,
2453 				void *context, int vl, int mode, u64 data)
2454 {
2455 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2456 
2457 	return dd->rcv_err_status_cnt[37];
2458 }
2459 
2460 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2461 				const struct cntr_entry *entry,
2462 				void *context, int vl, int mode, u64 data)
2463 {
2464 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2465 
2466 	return dd->rcv_err_status_cnt[36];
2467 }
2468 
2469 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2470 				const struct cntr_entry *entry,
2471 				void *context, int vl, int mode, u64 data)
2472 {
2473 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2474 
2475 	return dd->rcv_err_status_cnt[35];
2476 }
2477 
2478 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2479 				const struct cntr_entry *entry,
2480 				void *context, int vl, int mode, u64 data)
2481 {
2482 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2483 
2484 	return dd->rcv_err_status_cnt[34];
2485 }
2486 
2487 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2488 				const struct cntr_entry *entry,
2489 				void *context, int vl, int mode, u64 data)
2490 {
2491 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2492 
2493 	return dd->rcv_err_status_cnt[33];
2494 }
2495 
2496 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2497 					void *context, int vl, int mode,
2498 					u64 data)
2499 {
2500 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2501 
2502 	return dd->rcv_err_status_cnt[32];
2503 }
2504 
2505 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2506 				       void *context, int vl, int mode,
2507 				       u64 data)
2508 {
2509 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2510 
2511 	return dd->rcv_err_status_cnt[31];
2512 }
2513 
2514 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2515 					  void *context, int vl, int mode,
2516 					  u64 data)
2517 {
2518 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2519 
2520 	return dd->rcv_err_status_cnt[30];
2521 }
2522 
2523 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2524 					     void *context, int vl, int mode,
2525 					     u64 data)
2526 {
2527 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2528 
2529 	return dd->rcv_err_status_cnt[29];
2530 }
2531 
2532 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2533 						 void *context, int vl,
2534 						 int mode, u64 data)
2535 {
2536 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2537 
2538 	return dd->rcv_err_status_cnt[28];
2539 }
2540 
2541 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2542 				const struct cntr_entry *entry,
2543 				void *context, int vl, int mode, u64 data)
2544 {
2545 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2546 
2547 	return dd->rcv_err_status_cnt[27];
2548 }
2549 
2550 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2551 				const struct cntr_entry *entry,
2552 				void *context, int vl, int mode, u64 data)
2553 {
2554 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2555 
2556 	return dd->rcv_err_status_cnt[26];
2557 }
2558 
2559 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2560 				const struct cntr_entry *entry,
2561 				void *context, int vl, int mode, u64 data)
2562 {
2563 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2564 
2565 	return dd->rcv_err_status_cnt[25];
2566 }
2567 
2568 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2569 				const struct cntr_entry *entry,
2570 				void *context, int vl, int mode, u64 data)
2571 {
2572 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2573 
2574 	return dd->rcv_err_status_cnt[24];
2575 }
2576 
2577 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2578 				const struct cntr_entry *entry,
2579 				void *context, int vl, int mode, u64 data)
2580 {
2581 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2582 
2583 	return dd->rcv_err_status_cnt[23];
2584 }
2585 
2586 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2587 				const struct cntr_entry *entry,
2588 				void *context, int vl, int mode, u64 data)
2589 {
2590 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2591 
2592 	return dd->rcv_err_status_cnt[22];
2593 }
2594 
2595 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2596 				const struct cntr_entry *entry,
2597 				void *context, int vl, int mode, u64 data)
2598 {
2599 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2600 
2601 	return dd->rcv_err_status_cnt[21];
2602 }
2603 
2604 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2605 				const struct cntr_entry *entry,
2606 				void *context, int vl, int mode, u64 data)
2607 {
2608 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2609 
2610 	return dd->rcv_err_status_cnt[20];
2611 }
2612 
2613 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2614 				const struct cntr_entry *entry,
2615 				void *context, int vl, int mode, u64 data)
2616 {
2617 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2618 
2619 	return dd->rcv_err_status_cnt[19];
2620 }
2621 
2622 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2623 						 void *context, int vl,
2624 						 int mode, u64 data)
2625 {
2626 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2627 
2628 	return dd->rcv_err_status_cnt[18];
2629 }
2630 
2631 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2632 						 void *context, int vl,
2633 						 int mode, u64 data)
2634 {
2635 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2636 
2637 	return dd->rcv_err_status_cnt[17];
2638 }
2639 
2640 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2641 				const struct cntr_entry *entry,
2642 				void *context, int vl, int mode, u64 data)
2643 {
2644 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2645 
2646 	return dd->rcv_err_status_cnt[16];
2647 }
2648 
2649 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2650 				const struct cntr_entry *entry,
2651 				void *context, int vl, int mode, u64 data)
2652 {
2653 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2654 
2655 	return dd->rcv_err_status_cnt[15];
2656 }
2657 
2658 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2659 						void *context, int vl,
2660 						int mode, u64 data)
2661 {
2662 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2663 
2664 	return dd->rcv_err_status_cnt[14];
2665 }
2666 
2667 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2668 						void *context, int vl,
2669 						int mode, u64 data)
2670 {
2671 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2672 
2673 	return dd->rcv_err_status_cnt[13];
2674 }
2675 
2676 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2677 					      void *context, int vl, int mode,
2678 					      u64 data)
2679 {
2680 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2681 
2682 	return dd->rcv_err_status_cnt[12];
2683 }
2684 
2685 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2686 					  void *context, int vl, int mode,
2687 					  u64 data)
2688 {
2689 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2690 
2691 	return dd->rcv_err_status_cnt[11];
2692 }
2693 
2694 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2695 					  void *context, int vl, int mode,
2696 					  u64 data)
2697 {
2698 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2699 
2700 	return dd->rcv_err_status_cnt[10];
2701 }
2702 
2703 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2704 					       void *context, int vl, int mode,
2705 					       u64 data)
2706 {
2707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2708 
2709 	return dd->rcv_err_status_cnt[9];
2710 }
2711 
2712 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2713 					    void *context, int vl, int mode,
2714 					    u64 data)
2715 {
2716 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2717 
2718 	return dd->rcv_err_status_cnt[8];
2719 }
2720 
2721 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2722 				const struct cntr_entry *entry,
2723 				void *context, int vl, int mode, u64 data)
2724 {
2725 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2726 
2727 	return dd->rcv_err_status_cnt[7];
2728 }
2729 
2730 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2731 				const struct cntr_entry *entry,
2732 				void *context, int vl, int mode, u64 data)
2733 {
2734 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2735 
2736 	return dd->rcv_err_status_cnt[6];
2737 }
2738 
2739 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2740 					  void *context, int vl, int mode,
2741 					  u64 data)
2742 {
2743 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2744 
2745 	return dd->rcv_err_status_cnt[5];
2746 }
2747 
2748 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2749 					  void *context, int vl, int mode,
2750 					  u64 data)
2751 {
2752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2753 
2754 	return dd->rcv_err_status_cnt[4];
2755 }
2756 
2757 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2758 					 void *context, int vl, int mode,
2759 					 u64 data)
2760 {
2761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2762 
2763 	return dd->rcv_err_status_cnt[3];
2764 }
2765 
2766 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2767 					 void *context, int vl, int mode,
2768 					 u64 data)
2769 {
2770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2771 
2772 	return dd->rcv_err_status_cnt[2];
2773 }
2774 
2775 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2776 					    void *context, int vl, int mode,
2777 					    u64 data)
2778 {
2779 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2780 
2781 	return dd->rcv_err_status_cnt[1];
2782 }
2783 
2784 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2785 					 void *context, int vl, int mode,
2786 					 u64 data)
2787 {
2788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2789 
2790 	return dd->rcv_err_status_cnt[0];
2791 }
2792 
2793 /*
2794  * Software counters corresponding to each of the
2795  * error status bits within SendPioErrStatus
2796  */
2797 static u64 access_pio_pec_sop_head_parity_err_cnt(
2798 				const struct cntr_entry *entry,
2799 				void *context, int vl, int mode, u64 data)
2800 {
2801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2802 
2803 	return dd->send_pio_err_status_cnt[35];
2804 }
2805 
2806 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2807 				const struct cntr_entry *entry,
2808 				void *context, int vl, int mode, u64 data)
2809 {
2810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2811 
2812 	return dd->send_pio_err_status_cnt[34];
2813 }
2814 
2815 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2816 				const struct cntr_entry *entry,
2817 				void *context, int vl, int mode, u64 data)
2818 {
2819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2820 
2821 	return dd->send_pio_err_status_cnt[33];
2822 }
2823 
2824 static u64 access_pio_current_free_cnt_parity_err_cnt(
2825 				const struct cntr_entry *entry,
2826 				void *context, int vl, int mode, u64 data)
2827 {
2828 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2829 
2830 	return dd->send_pio_err_status_cnt[32];
2831 }
2832 
2833 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2834 					  void *context, int vl, int mode,
2835 					  u64 data)
2836 {
2837 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2838 
2839 	return dd->send_pio_err_status_cnt[31];
2840 }
2841 
2842 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2843 					  void *context, int vl, int mode,
2844 					  u64 data)
2845 {
2846 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2847 
2848 	return dd->send_pio_err_status_cnt[30];
2849 }
2850 
2851 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2852 					   void *context, int vl, int mode,
2853 					   u64 data)
2854 {
2855 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2856 
2857 	return dd->send_pio_err_status_cnt[29];
2858 }
2859 
2860 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2861 				const struct cntr_entry *entry,
2862 				void *context, int vl, int mode, u64 data)
2863 {
2864 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2865 
2866 	return dd->send_pio_err_status_cnt[28];
2867 }
2868 
2869 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2870 					     void *context, int vl, int mode,
2871 					     u64 data)
2872 {
2873 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2874 
2875 	return dd->send_pio_err_status_cnt[27];
2876 }
2877 
2878 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2879 					     void *context, int vl, int mode,
2880 					     u64 data)
2881 {
2882 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2883 
2884 	return dd->send_pio_err_status_cnt[26];
2885 }
2886 
2887 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2888 						void *context, int vl,
2889 						int mode, u64 data)
2890 {
2891 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2892 
2893 	return dd->send_pio_err_status_cnt[25];
2894 }
2895 
2896 static u64 access_pio_block_qw_count_parity_err_cnt(
2897 				const struct cntr_entry *entry,
2898 				void *context, int vl, int mode, u64 data)
2899 {
2900 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2901 
2902 	return dd->send_pio_err_status_cnt[24];
2903 }
2904 
2905 static u64 access_pio_write_qw_valid_parity_err_cnt(
2906 				const struct cntr_entry *entry,
2907 				void *context, int vl, int mode, u64 data)
2908 {
2909 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2910 
2911 	return dd->send_pio_err_status_cnt[23];
2912 }
2913 
2914 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2915 					    void *context, int vl, int mode,
2916 					    u64 data)
2917 {
2918 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2919 
2920 	return dd->send_pio_err_status_cnt[22];
2921 }
2922 
2923 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2924 						void *context, int vl,
2925 						int mode, u64 data)
2926 {
2927 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2928 
2929 	return dd->send_pio_err_status_cnt[21];
2930 }
2931 
2932 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2933 						void *context, int vl,
2934 						int mode, u64 data)
2935 {
2936 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2937 
2938 	return dd->send_pio_err_status_cnt[20];
2939 }
2940 
2941 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2942 						void *context, int vl,
2943 						int mode, u64 data)
2944 {
2945 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2946 
2947 	return dd->send_pio_err_status_cnt[19];
2948 }
2949 
2950 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2951 				const struct cntr_entry *entry,
2952 				void *context, int vl, int mode, u64 data)
2953 {
2954 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2955 
2956 	return dd->send_pio_err_status_cnt[18];
2957 }
2958 
2959 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2960 					 void *context, int vl, int mode,
2961 					 u64 data)
2962 {
2963 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2964 
2965 	return dd->send_pio_err_status_cnt[17];
2966 }
2967 
2968 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2969 					    void *context, int vl, int mode,
2970 					    u64 data)
2971 {
2972 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2973 
2974 	return dd->send_pio_err_status_cnt[16];
2975 }
2976 
2977 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2978 				const struct cntr_entry *entry,
2979 				void *context, int vl, int mode, u64 data)
2980 {
2981 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2982 
2983 	return dd->send_pio_err_status_cnt[15];
2984 }
2985 
2986 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2987 				const struct cntr_entry *entry,
2988 				void *context, int vl, int mode, u64 data)
2989 {
2990 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2991 
2992 	return dd->send_pio_err_status_cnt[14];
2993 }
2994 
2995 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2996 				const struct cntr_entry *entry,
2997 				void *context, int vl, int mode, u64 data)
2998 {
2999 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3000 
3001 	return dd->send_pio_err_status_cnt[13];
3002 }
3003 
3004 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3005 				const struct cntr_entry *entry,
3006 				void *context, int vl, int mode, u64 data)
3007 {
3008 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3009 
3010 	return dd->send_pio_err_status_cnt[12];
3011 }
3012 
3013 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3014 				const struct cntr_entry *entry,
3015 				void *context, int vl, int mode, u64 data)
3016 {
3017 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3018 
3019 	return dd->send_pio_err_status_cnt[11];
3020 }
3021 
3022 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3023 				const struct cntr_entry *entry,
3024 				void *context, int vl, int mode, u64 data)
3025 {
3026 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3027 
3028 	return dd->send_pio_err_status_cnt[10];
3029 }
3030 
3031 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3032 				const struct cntr_entry *entry,
3033 				void *context, int vl, int mode, u64 data)
3034 {
3035 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3036 
3037 	return dd->send_pio_err_status_cnt[9];
3038 }
3039 
3040 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3041 				const struct cntr_entry *entry,
3042 				void *context, int vl, int mode, u64 data)
3043 {
3044 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3045 
3046 	return dd->send_pio_err_status_cnt[8];
3047 }
3048 
3049 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3050 				const struct cntr_entry *entry,
3051 				void *context, int vl, int mode, u64 data)
3052 {
3053 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3054 
3055 	return dd->send_pio_err_status_cnt[7];
3056 }
3057 
3058 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3059 					      void *context, int vl, int mode,
3060 					      u64 data)
3061 {
3062 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3063 
3064 	return dd->send_pio_err_status_cnt[6];
3065 }
3066 
3067 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3068 					      void *context, int vl, int mode,
3069 					      u64 data)
3070 {
3071 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3072 
3073 	return dd->send_pio_err_status_cnt[5];
3074 }
3075 
3076 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3077 					   void *context, int vl, int mode,
3078 					   u64 data)
3079 {
3080 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3081 
3082 	return dd->send_pio_err_status_cnt[4];
3083 }
3084 
3085 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3086 					   void *context, int vl, int mode,
3087 					   u64 data)
3088 {
3089 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3090 
3091 	return dd->send_pio_err_status_cnt[3];
3092 }
3093 
3094 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3095 					 void *context, int vl, int mode,
3096 					 u64 data)
3097 {
3098 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3099 
3100 	return dd->send_pio_err_status_cnt[2];
3101 }
3102 
3103 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3104 						void *context, int vl,
3105 						int mode, u64 data)
3106 {
3107 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3108 
3109 	return dd->send_pio_err_status_cnt[1];
3110 }
3111 
3112 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3113 					     void *context, int vl, int mode,
3114 					     u64 data)
3115 {
3116 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3117 
3118 	return dd->send_pio_err_status_cnt[0];
3119 }
3120 
3121 /*
3122  * Software counters corresponding to each of the
3123  * error status bits within SendDmaErrStatus
3124  */
3125 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3126 				const struct cntr_entry *entry,
3127 				void *context, int vl, int mode, u64 data)
3128 {
3129 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3130 
3131 	return dd->send_dma_err_status_cnt[3];
3132 }
3133 
3134 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3135 				const struct cntr_entry *entry,
3136 				void *context, int vl, int mode, u64 data)
3137 {
3138 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3139 
3140 	return dd->send_dma_err_status_cnt[2];
3141 }
3142 
3143 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3144 					  void *context, int vl, int mode,
3145 					  u64 data)
3146 {
3147 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3148 
3149 	return dd->send_dma_err_status_cnt[1];
3150 }
3151 
3152 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3153 				       void *context, int vl, int mode,
3154 				       u64 data)
3155 {
3156 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3157 
3158 	return dd->send_dma_err_status_cnt[0];
3159 }
3160 
3161 /*
3162  * Software counters corresponding to each of the
3163  * error status bits within SendEgressErrStatus
3164  */
3165 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3166 				const struct cntr_entry *entry,
3167 				void *context, int vl, int mode, u64 data)
3168 {
3169 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3170 
3171 	return dd->send_egress_err_status_cnt[63];
3172 }
3173 
3174 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3175 				const struct cntr_entry *entry,
3176 				void *context, int vl, int mode, u64 data)
3177 {
3178 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3179 
3180 	return dd->send_egress_err_status_cnt[62];
3181 }
3182 
3183 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3184 					     void *context, int vl, int mode,
3185 					     u64 data)
3186 {
3187 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3188 
3189 	return dd->send_egress_err_status_cnt[61];
3190 }
3191 
3192 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3193 						 void *context, int vl,
3194 						 int mode, u64 data)
3195 {
3196 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3197 
3198 	return dd->send_egress_err_status_cnt[60];
3199 }
3200 
3201 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3202 				const struct cntr_entry *entry,
3203 				void *context, int vl, int mode, u64 data)
3204 {
3205 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3206 
3207 	return dd->send_egress_err_status_cnt[59];
3208 }
3209 
3210 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3211 					void *context, int vl, int mode,
3212 					u64 data)
3213 {
3214 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3215 
3216 	return dd->send_egress_err_status_cnt[58];
3217 }
3218 
3219 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3220 					    void *context, int vl, int mode,
3221 					    u64 data)
3222 {
3223 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3224 
3225 	return dd->send_egress_err_status_cnt[57];
3226 }
3227 
3228 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3229 					      void *context, int vl, int mode,
3230 					      u64 data)
3231 {
3232 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3233 
3234 	return dd->send_egress_err_status_cnt[56];
3235 }
3236 
3237 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3238 					      void *context, int vl, int mode,
3239 					      u64 data)
3240 {
3241 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3242 
3243 	return dd->send_egress_err_status_cnt[55];
3244 }
3245 
3246 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3247 					      void *context, int vl, int mode,
3248 					      u64 data)
3249 {
3250 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3251 
3252 	return dd->send_egress_err_status_cnt[54];
3253 }
3254 
3255 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3256 					      void *context, int vl, int mode,
3257 					      u64 data)
3258 {
3259 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3260 
3261 	return dd->send_egress_err_status_cnt[53];
3262 }
3263 
3264 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3265 					      void *context, int vl, int mode,
3266 					      u64 data)
3267 {
3268 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3269 
3270 	return dd->send_egress_err_status_cnt[52];
3271 }
3272 
3273 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3274 					      void *context, int vl, int mode,
3275 					      u64 data)
3276 {
3277 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3278 
3279 	return dd->send_egress_err_status_cnt[51];
3280 }
3281 
3282 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3283 					      void *context, int vl, int mode,
3284 					      u64 data)
3285 {
3286 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3287 
3288 	return dd->send_egress_err_status_cnt[50];
3289 }
3290 
3291 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3292 					      void *context, int vl, int mode,
3293 					      u64 data)
3294 {
3295 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3296 
3297 	return dd->send_egress_err_status_cnt[49];
3298 }
3299 
3300 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3301 					      void *context, int vl, int mode,
3302 					      u64 data)
3303 {
3304 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3305 
3306 	return dd->send_egress_err_status_cnt[48];
3307 }
3308 
3309 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3310 					      void *context, int vl, int mode,
3311 					      u64 data)
3312 {
3313 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3314 
3315 	return dd->send_egress_err_status_cnt[47];
3316 }
3317 
3318 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3319 					    void *context, int vl, int mode,
3320 					    u64 data)
3321 {
3322 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3323 
3324 	return dd->send_egress_err_status_cnt[46];
3325 }
3326 
3327 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3328 					     void *context, int vl, int mode,
3329 					     u64 data)
3330 {
3331 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3332 
3333 	return dd->send_egress_err_status_cnt[45];
3334 }
3335 
3336 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3337 						 void *context, int vl,
3338 						 int mode, u64 data)
3339 {
3340 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3341 
3342 	return dd->send_egress_err_status_cnt[44];
3343 }
3344 
3345 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3346 				const struct cntr_entry *entry,
3347 				void *context, int vl, int mode, u64 data)
3348 {
3349 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3350 
3351 	return dd->send_egress_err_status_cnt[43];
3352 }
3353 
3354 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3355 					void *context, int vl, int mode,
3356 					u64 data)
3357 {
3358 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3359 
3360 	return dd->send_egress_err_status_cnt[42];
3361 }
3362 
3363 static u64 access_tx_credit_return_partiy_err_cnt(
3364 				const struct cntr_entry *entry,
3365 				void *context, int vl, int mode, u64 data)
3366 {
3367 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3368 
3369 	return dd->send_egress_err_status_cnt[41];
3370 }
3371 
3372 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3373 				const struct cntr_entry *entry,
3374 				void *context, int vl, int mode, u64 data)
3375 {
3376 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3377 
3378 	return dd->send_egress_err_status_cnt[40];
3379 }
3380 
3381 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3382 				const struct cntr_entry *entry,
3383 				void *context, int vl, int mode, u64 data)
3384 {
3385 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3386 
3387 	return dd->send_egress_err_status_cnt[39];
3388 }
3389 
3390 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3391 				const struct cntr_entry *entry,
3392 				void *context, int vl, int mode, u64 data)
3393 {
3394 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3395 
3396 	return dd->send_egress_err_status_cnt[38];
3397 }
3398 
3399 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3400 				const struct cntr_entry *entry,
3401 				void *context, int vl, int mode, u64 data)
3402 {
3403 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3404 
3405 	return dd->send_egress_err_status_cnt[37];
3406 }
3407 
3408 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3409 				const struct cntr_entry *entry,
3410 				void *context, int vl, int mode, u64 data)
3411 {
3412 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3413 
3414 	return dd->send_egress_err_status_cnt[36];
3415 }
3416 
3417 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3418 				const struct cntr_entry *entry,
3419 				void *context, int vl, int mode, u64 data)
3420 {
3421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3422 
3423 	return dd->send_egress_err_status_cnt[35];
3424 }
3425 
3426 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3427 				const struct cntr_entry *entry,
3428 				void *context, int vl, int mode, u64 data)
3429 {
3430 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3431 
3432 	return dd->send_egress_err_status_cnt[34];
3433 }
3434 
3435 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3436 				const struct cntr_entry *entry,
3437 				void *context, int vl, int mode, u64 data)
3438 {
3439 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3440 
3441 	return dd->send_egress_err_status_cnt[33];
3442 }
3443 
3444 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3445 				const struct cntr_entry *entry,
3446 				void *context, int vl, int mode, u64 data)
3447 {
3448 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3449 
3450 	return dd->send_egress_err_status_cnt[32];
3451 }
3452 
3453 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3454 				const struct cntr_entry *entry,
3455 				void *context, int vl, int mode, u64 data)
3456 {
3457 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3458 
3459 	return dd->send_egress_err_status_cnt[31];
3460 }
3461 
3462 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3463 				const struct cntr_entry *entry,
3464 				void *context, int vl, int mode, u64 data)
3465 {
3466 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3467 
3468 	return dd->send_egress_err_status_cnt[30];
3469 }
3470 
3471 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3472 				const struct cntr_entry *entry,
3473 				void *context, int vl, int mode, u64 data)
3474 {
3475 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3476 
3477 	return dd->send_egress_err_status_cnt[29];
3478 }
3479 
3480 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3481 				const struct cntr_entry *entry,
3482 				void *context, int vl, int mode, u64 data)
3483 {
3484 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3485 
3486 	return dd->send_egress_err_status_cnt[28];
3487 }
3488 
3489 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3490 				const struct cntr_entry *entry,
3491 				void *context, int vl, int mode, u64 data)
3492 {
3493 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3494 
3495 	return dd->send_egress_err_status_cnt[27];
3496 }
3497 
3498 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3499 				const struct cntr_entry *entry,
3500 				void *context, int vl, int mode, u64 data)
3501 {
3502 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3503 
3504 	return dd->send_egress_err_status_cnt[26];
3505 }
3506 
3507 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3508 				const struct cntr_entry *entry,
3509 				void *context, int vl, int mode, u64 data)
3510 {
3511 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3512 
3513 	return dd->send_egress_err_status_cnt[25];
3514 }
3515 
3516 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3517 				const struct cntr_entry *entry,
3518 				void *context, int vl, int mode, u64 data)
3519 {
3520 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3521 
3522 	return dd->send_egress_err_status_cnt[24];
3523 }
3524 
3525 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3526 				const struct cntr_entry *entry,
3527 				void *context, int vl, int mode, u64 data)
3528 {
3529 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3530 
3531 	return dd->send_egress_err_status_cnt[23];
3532 }
3533 
3534 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3535 				const struct cntr_entry *entry,
3536 				void *context, int vl, int mode, u64 data)
3537 {
3538 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3539 
3540 	return dd->send_egress_err_status_cnt[22];
3541 }
3542 
3543 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3544 				const struct cntr_entry *entry,
3545 				void *context, int vl, int mode, u64 data)
3546 {
3547 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3548 
3549 	return dd->send_egress_err_status_cnt[21];
3550 }
3551 
3552 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3553 				const struct cntr_entry *entry,
3554 				void *context, int vl, int mode, u64 data)
3555 {
3556 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3557 
3558 	return dd->send_egress_err_status_cnt[20];
3559 }
3560 
3561 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3562 				const struct cntr_entry *entry,
3563 				void *context, int vl, int mode, u64 data)
3564 {
3565 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3566 
3567 	return dd->send_egress_err_status_cnt[19];
3568 }
3569 
3570 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3571 				const struct cntr_entry *entry,
3572 				void *context, int vl, int mode, u64 data)
3573 {
3574 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3575 
3576 	return dd->send_egress_err_status_cnt[18];
3577 }
3578 
3579 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3580 				const struct cntr_entry *entry,
3581 				void *context, int vl, int mode, u64 data)
3582 {
3583 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3584 
3585 	return dd->send_egress_err_status_cnt[17];
3586 }
3587 
3588 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3589 				const struct cntr_entry *entry,
3590 				void *context, int vl, int mode, u64 data)
3591 {
3592 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3593 
3594 	return dd->send_egress_err_status_cnt[16];
3595 }
3596 
3597 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3598 					   void *context, int vl, int mode,
3599 					   u64 data)
3600 {
3601 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3602 
3603 	return dd->send_egress_err_status_cnt[15];
3604 }
3605 
3606 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3607 						 void *context, int vl,
3608 						 int mode, u64 data)
3609 {
3610 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3611 
3612 	return dd->send_egress_err_status_cnt[14];
3613 }
3614 
3615 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3616 					       void *context, int vl, int mode,
3617 					       u64 data)
3618 {
3619 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3620 
3621 	return dd->send_egress_err_status_cnt[13];
3622 }
3623 
3624 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3625 					void *context, int vl, int mode,
3626 					u64 data)
3627 {
3628 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3629 
3630 	return dd->send_egress_err_status_cnt[12];
3631 }
3632 
3633 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3634 				const struct cntr_entry *entry,
3635 				void *context, int vl, int mode, u64 data)
3636 {
3637 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3638 
3639 	return dd->send_egress_err_status_cnt[11];
3640 }
3641 
3642 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3643 					     void *context, int vl, int mode,
3644 					     u64 data)
3645 {
3646 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3647 
3648 	return dd->send_egress_err_status_cnt[10];
3649 }
3650 
3651 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3652 					    void *context, int vl, int mode,
3653 					    u64 data)
3654 {
3655 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3656 
3657 	return dd->send_egress_err_status_cnt[9];
3658 }
3659 
3660 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3661 				const struct cntr_entry *entry,
3662 				void *context, int vl, int mode, u64 data)
3663 {
3664 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3665 
3666 	return dd->send_egress_err_status_cnt[8];
3667 }
3668 
3669 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3670 				const struct cntr_entry *entry,
3671 				void *context, int vl, int mode, u64 data)
3672 {
3673 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3674 
3675 	return dd->send_egress_err_status_cnt[7];
3676 }
3677 
3678 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3679 					    void *context, int vl, int mode,
3680 					    u64 data)
3681 {
3682 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3683 
3684 	return dd->send_egress_err_status_cnt[6];
3685 }
3686 
3687 static u64 access_tx_incorrect_link_state_err_cnt(
3688 				const struct cntr_entry *entry,
3689 				void *context, int vl, int mode, u64 data)
3690 {
3691 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3692 
3693 	return dd->send_egress_err_status_cnt[5];
3694 }
3695 
3696 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3697 				      void *context, int vl, int mode,
3698 				      u64 data)
3699 {
3700 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3701 
3702 	return dd->send_egress_err_status_cnt[4];
3703 }
3704 
3705 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3706 				const struct cntr_entry *entry,
3707 				void *context, int vl, int mode, u64 data)
3708 {
3709 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3710 
3711 	return dd->send_egress_err_status_cnt[3];
3712 }
3713 
3714 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3715 					    void *context, int vl, int mode,
3716 					    u64 data)
3717 {
3718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3719 
3720 	return dd->send_egress_err_status_cnt[2];
3721 }
3722 
3723 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3724 				const struct cntr_entry *entry,
3725 				void *context, int vl, int mode, u64 data)
3726 {
3727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3728 
3729 	return dd->send_egress_err_status_cnt[1];
3730 }
3731 
3732 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3733 				const struct cntr_entry *entry,
3734 				void *context, int vl, int mode, u64 data)
3735 {
3736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3737 
3738 	return dd->send_egress_err_status_cnt[0];
3739 }
3740 
3741 /*
3742  * Software counters corresponding to each of the
3743  * error status bits within SendErrStatus
3744  */
3745 static u64 access_send_csr_write_bad_addr_err_cnt(
3746 				const struct cntr_entry *entry,
3747 				void *context, int vl, int mode, u64 data)
3748 {
3749 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3750 
3751 	return dd->send_err_status_cnt[2];
3752 }
3753 
3754 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3755 						 void *context, int vl,
3756 						 int mode, u64 data)
3757 {
3758 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3759 
3760 	return dd->send_err_status_cnt[1];
3761 }
3762 
3763 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3764 				      void *context, int vl, int mode,
3765 				      u64 data)
3766 {
3767 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3768 
3769 	return dd->send_err_status_cnt[0];
3770 }
3771 
3772 /*
3773  * Software counters corresponding to each of the
3774  * error status bits within SendCtxtErrStatus
3775  */
3776 static u64 access_pio_write_out_of_bounds_err_cnt(
3777 				const struct cntr_entry *entry,
3778 				void *context, int vl, int mode, u64 data)
3779 {
3780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3781 
3782 	return dd->sw_ctxt_err_status_cnt[4];
3783 }
3784 
3785 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3786 					     void *context, int vl, int mode,
3787 					     u64 data)
3788 {
3789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3790 
3791 	return dd->sw_ctxt_err_status_cnt[3];
3792 }
3793 
3794 static u64 access_pio_write_crosses_boundary_err_cnt(
3795 				const struct cntr_entry *entry,
3796 				void *context, int vl, int mode, u64 data)
3797 {
3798 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3799 
3800 	return dd->sw_ctxt_err_status_cnt[2];
3801 }
3802 
3803 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3804 						void *context, int vl,
3805 						int mode, u64 data)
3806 {
3807 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3808 
3809 	return dd->sw_ctxt_err_status_cnt[1];
3810 }
3811 
3812 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3813 					       void *context, int vl, int mode,
3814 					       u64 data)
3815 {
3816 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3817 
3818 	return dd->sw_ctxt_err_status_cnt[0];
3819 }
3820 
3821 /*
3822  * Software counters corresponding to each of the
3823  * error status bits within SendDmaEngErrStatus
3824  */
3825 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3826 				const struct cntr_entry *entry,
3827 				void *context, int vl, int mode, u64 data)
3828 {
3829 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3830 
3831 	return dd->sw_send_dma_eng_err_status_cnt[23];
3832 }
3833 
3834 static u64 access_sdma_header_storage_cor_err_cnt(
3835 				const struct cntr_entry *entry,
3836 				void *context, int vl, int mode, u64 data)
3837 {
3838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3839 
3840 	return dd->sw_send_dma_eng_err_status_cnt[22];
3841 }
3842 
3843 static u64 access_sdma_packet_tracking_cor_err_cnt(
3844 				const struct cntr_entry *entry,
3845 				void *context, int vl, int mode, u64 data)
3846 {
3847 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3848 
3849 	return dd->sw_send_dma_eng_err_status_cnt[21];
3850 }
3851 
3852 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3853 					    void *context, int vl, int mode,
3854 					    u64 data)
3855 {
3856 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3857 
3858 	return dd->sw_send_dma_eng_err_status_cnt[20];
3859 }
3860 
3861 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3862 					      void *context, int vl, int mode,
3863 					      u64 data)
3864 {
3865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3866 
3867 	return dd->sw_send_dma_eng_err_status_cnt[19];
3868 }
3869 
3870 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3871 				const struct cntr_entry *entry,
3872 				void *context, int vl, int mode, u64 data)
3873 {
3874 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3875 
3876 	return dd->sw_send_dma_eng_err_status_cnt[18];
3877 }
3878 
3879 static u64 access_sdma_header_storage_unc_err_cnt(
3880 				const struct cntr_entry *entry,
3881 				void *context, int vl, int mode, u64 data)
3882 {
3883 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3884 
3885 	return dd->sw_send_dma_eng_err_status_cnt[17];
3886 }
3887 
3888 static u64 access_sdma_packet_tracking_unc_err_cnt(
3889 				const struct cntr_entry *entry,
3890 				void *context, int vl, int mode, u64 data)
3891 {
3892 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3893 
3894 	return dd->sw_send_dma_eng_err_status_cnt[16];
3895 }
3896 
3897 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3898 					    void *context, int vl, int mode,
3899 					    u64 data)
3900 {
3901 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3902 
3903 	return dd->sw_send_dma_eng_err_status_cnt[15];
3904 }
3905 
3906 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3907 					      void *context, int vl, int mode,
3908 					      u64 data)
3909 {
3910 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3911 
3912 	return dd->sw_send_dma_eng_err_status_cnt[14];
3913 }
3914 
3915 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3916 				       void *context, int vl, int mode,
3917 				       u64 data)
3918 {
3919 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3920 
3921 	return dd->sw_send_dma_eng_err_status_cnt[13];
3922 }
3923 
3924 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3925 					     void *context, int vl, int mode,
3926 					     u64 data)
3927 {
3928 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3929 
3930 	return dd->sw_send_dma_eng_err_status_cnt[12];
3931 }
3932 
3933 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3934 					      void *context, int vl, int mode,
3935 					      u64 data)
3936 {
3937 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3938 
3939 	return dd->sw_send_dma_eng_err_status_cnt[11];
3940 }
3941 
3942 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3943 					     void *context, int vl, int mode,
3944 					     u64 data)
3945 {
3946 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3947 
3948 	return dd->sw_send_dma_eng_err_status_cnt[10];
3949 }
3950 
3951 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3952 					  void *context, int vl, int mode,
3953 					  u64 data)
3954 {
3955 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3956 
3957 	return dd->sw_send_dma_eng_err_status_cnt[9];
3958 }
3959 
3960 static u64 access_sdma_packet_desc_overflow_err_cnt(
3961 				const struct cntr_entry *entry,
3962 				void *context, int vl, int mode, u64 data)
3963 {
3964 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3965 
3966 	return dd->sw_send_dma_eng_err_status_cnt[8];
3967 }
3968 
3969 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3970 					       void *context, int vl,
3971 					       int mode, u64 data)
3972 {
3973 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3974 
3975 	return dd->sw_send_dma_eng_err_status_cnt[7];
3976 }
3977 
3978 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3979 				    void *context, int vl, int mode, u64 data)
3980 {
3981 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3982 
3983 	return dd->sw_send_dma_eng_err_status_cnt[6];
3984 }
3985 
3986 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3987 					void *context, int vl, int mode,
3988 					u64 data)
3989 {
3990 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3991 
3992 	return dd->sw_send_dma_eng_err_status_cnt[5];
3993 }
3994 
3995 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3996 					  void *context, int vl, int mode,
3997 					  u64 data)
3998 {
3999 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4000 
4001 	return dd->sw_send_dma_eng_err_status_cnt[4];
4002 }
4003 
4004 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4005 				const struct cntr_entry *entry,
4006 				void *context, int vl, int mode, u64 data)
4007 {
4008 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4009 
4010 	return dd->sw_send_dma_eng_err_status_cnt[3];
4011 }
4012 
4013 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4014 					void *context, int vl, int mode,
4015 					u64 data)
4016 {
4017 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4018 
4019 	return dd->sw_send_dma_eng_err_status_cnt[2];
4020 }
4021 
4022 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4023 					    void *context, int vl, int mode,
4024 					    u64 data)
4025 {
4026 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4027 
4028 	return dd->sw_send_dma_eng_err_status_cnt[1];
4029 }
4030 
4031 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4032 					void *context, int vl, int mode,
4033 					u64 data)
4034 {
4035 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4036 
4037 	return dd->sw_send_dma_eng_err_status_cnt[0];
4038 }
4039 
4040 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4041 				 void *context, int vl, int mode,
4042 				 u64 data)
4043 {
4044 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4045 
4046 	u64 val = 0;
4047 	u64 csr = entry->csr;
4048 
4049 	val = read_write_csr(dd, csr, mode, data);
4050 	if (mode == CNTR_MODE_R) {
4051 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4052 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4053 	} else if (mode == CNTR_MODE_W) {
4054 		dd->sw_rcv_bypass_packet_errors = 0;
4055 	} else {
4056 		dd_dev_err(dd, "Invalid cntr register access mode");
4057 		return 0;
4058 	}
4059 	return val;
4060 }
4061 
4062 #define def_access_sw_cpu(cntr) \
4063 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4064 			      void *context, int vl, int mode, u64 data)      \
4065 {									      \
4066 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4067 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4068 			      ppd->ibport_data.rvp.cntr, vl,		      \
4069 			      mode, data);				      \
4070 }
4071 
4072 def_access_sw_cpu(rc_acks);
4073 def_access_sw_cpu(rc_qacks);
4074 def_access_sw_cpu(rc_delayed_comp);
4075 
4076 #define def_access_ibp_counter(cntr) \
4077 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4078 				void *context, int vl, int mode, u64 data)    \
4079 {									      \
4080 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4081 									      \
4082 	if (vl != CNTR_INVALID_VL)					      \
4083 		return 0;						      \
4084 									      \
4085 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4086 			     mode, data);				      \
4087 }
4088 
4089 def_access_ibp_counter(loop_pkts);
4090 def_access_ibp_counter(rc_resends);
4091 def_access_ibp_counter(rnr_naks);
4092 def_access_ibp_counter(other_naks);
4093 def_access_ibp_counter(rc_timeouts);
4094 def_access_ibp_counter(pkt_drops);
4095 def_access_ibp_counter(dmawait);
4096 def_access_ibp_counter(rc_seqnak);
4097 def_access_ibp_counter(rc_dupreq);
4098 def_access_ibp_counter(rdma_seq);
4099 def_access_ibp_counter(unaligned);
4100 def_access_ibp_counter(seq_naks);
4101 
4102 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4103 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4104 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4105 			CNTR_NORMAL),
4106 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4107 			CNTR_NORMAL),
4108 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4109 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4110 			CNTR_NORMAL),
4111 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4112 			CNTR_NORMAL),
4113 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4114 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4115 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4116 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4117 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4118 			CNTR_NORMAL),
4119 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4120 			CNTR_NORMAL),
4121 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4122 			CNTR_NORMAL),
4123 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4124 			CNTR_NORMAL),
4125 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4126 			CNTR_NORMAL),
4127 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4128 			CNTR_NORMAL),
4129 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4130 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4131 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4132 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4133 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4134 			      CNTR_SYNTH),
4135 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4136 			    access_dc_rcv_err_cnt),
4137 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4138 				 CNTR_SYNTH),
4139 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4140 				  CNTR_SYNTH),
4141 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4142 				  CNTR_SYNTH),
4143 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4144 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4145 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4146 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4147 				  CNTR_SYNTH),
4148 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4149 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4150 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4151 			       CNTR_SYNTH),
4152 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4153 			      CNTR_SYNTH),
4154 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4155 			       CNTR_SYNTH),
4156 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4157 				 CNTR_SYNTH),
4158 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4159 				CNTR_SYNTH),
4160 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4161 				CNTR_SYNTH),
4162 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4163 			       CNTR_SYNTH),
4164 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4165 				 CNTR_SYNTH | CNTR_VL),
4166 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4167 				CNTR_SYNTH | CNTR_VL),
4168 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4169 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4170 				 CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4173 				 CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4175 			      CNTR_SYNTH),
4176 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4177 				 CNTR_SYNTH | CNTR_VL),
4178 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4179 				CNTR_SYNTH),
4180 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4181 				   CNTR_SYNTH | CNTR_VL),
4182 [C_DC_TOTAL_CRC] =
4183 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4184 			 CNTR_SYNTH),
4185 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4186 				  CNTR_SYNTH),
4187 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4188 				  CNTR_SYNTH),
4189 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4190 				  CNTR_SYNTH),
4191 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4192 				  CNTR_SYNTH),
4193 [C_DC_CRC_MULT_LN] =
4194 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4195 			 CNTR_SYNTH),
4196 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4197 				    CNTR_SYNTH),
4198 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4199 				    CNTR_SYNTH),
4200 [C_DC_SEQ_CRC_CNT] =
4201 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4202 			 CNTR_SYNTH),
4203 [C_DC_ESC0_ONLY_CNT] =
4204 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_ESC0_PLUS1_CNT] =
4207 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS2_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_REINIT_FROM_PEER_CNT] =
4213 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4216 				  CNTR_SYNTH),
4217 [C_DC_MISC_FLG_CNT] =
4218 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4219 			 CNTR_SYNTH),
4220 [C_DC_PRF_GOOD_LTP_CNT] =
4221 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4222 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4223 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4224 			 CNTR_SYNTH),
4225 [C_DC_PRF_RX_FLIT_CNT] =
4226 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4227 [C_DC_PRF_TX_FLIT_CNT] =
4228 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4229 [C_DC_PRF_CLK_CNTR] =
4230 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4231 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4232 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4233 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4234 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4235 			 CNTR_SYNTH),
4236 [C_DC_PG_STS_TX_SBE_CNT] =
4237 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4238 [C_DC_PG_STS_TX_MBE_CNT] =
4239 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4240 			 CNTR_SYNTH),
4241 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4242 			    access_sw_cpu_intr),
4243 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4244 			    access_sw_cpu_rcv_limit),
4245 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4246 			    access_sw_vtx_wait),
4247 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4248 			    access_sw_pio_wait),
4249 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4250 			    access_sw_pio_drain),
4251 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4252 			    access_sw_kmem_wait),
4253 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4254 			    access_sw_send_schedule),
4255 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4256 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4257 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4258 				      dev_access_u32_csr),
4259 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4260 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 			     access_sde_int_cnt),
4262 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4263 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 			     access_sde_err_cnt),
4265 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4266 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 				  access_sde_idle_int_cnt),
4268 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4269 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 				      access_sde_progress_int_cnt),
4271 /* MISC_ERR_STATUS */
4272 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4273 				CNTR_NORMAL,
4274 				access_misc_pll_lock_fail_err_cnt),
4275 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_misc_mbist_fail_err_cnt),
4278 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_misc_invalid_eep_cmd_err_cnt),
4281 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_efuse_done_parity_err_cnt),
4284 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_misc_efuse_write_err_cnt),
4287 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4288 				0, CNTR_NORMAL,
4289 				access_misc_efuse_read_bad_addr_err_cnt),
4290 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4291 				CNTR_NORMAL,
4292 				access_misc_efuse_csr_parity_err_cnt),
4293 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_fw_auth_failed_err_cnt),
4296 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_misc_key_mismatch_err_cnt),
4299 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_sbus_write_failed_err_cnt),
4302 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_csr_write_bad_addr_err_cnt),
4305 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_csr_read_bad_addr_err_cnt),
4308 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_misc_csr_parity_err_cnt),
4311 /* CceErrStatus */
4312 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4313 				CNTR_NORMAL,
4314 				access_sw_cce_err_status_aggregated_cnt),
4315 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_cce_msix_csr_parity_err_cnt),
4318 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4319 				CNTR_NORMAL,
4320 				access_cce_int_map_unc_err_cnt),
4321 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_int_map_cor_err_cnt),
4324 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_msix_table_unc_err_cnt),
4327 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4328 				CNTR_NORMAL,
4329 				access_cce_msix_table_cor_err_cnt),
4330 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4331 				0, CNTR_NORMAL,
4332 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4333 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4334 				0, CNTR_NORMAL,
4335 				access_cce_rcpl_async_fifo_parity_err_cnt),
4336 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4337 				CNTR_NORMAL,
4338 				access_cce_seg_write_bad_addr_err_cnt),
4339 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4340 				CNTR_NORMAL,
4341 				access_cce_seg_read_bad_addr_err_cnt),
4342 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4343 				CNTR_NORMAL,
4344 				access_la_triggered_cnt),
4345 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_cce_trgt_cpl_timeout_err_cnt),
4348 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_pcic_receive_parity_err_cnt),
4351 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4352 				CNTR_NORMAL,
4353 				access_pcic_transmit_back_parity_err_cnt),
4354 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4355 				0, CNTR_NORMAL,
4356 				access_pcic_transmit_front_parity_err_cnt),
4357 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4358 				CNTR_NORMAL,
4359 				access_pcic_cpl_dat_q_unc_err_cnt),
4360 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_cpl_hd_q_unc_err_cnt),
4363 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4364 				CNTR_NORMAL,
4365 				access_pcic_post_dat_q_unc_err_cnt),
4366 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_post_hd_q_unc_err_cnt),
4369 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_retry_sot_mem_unc_err_cnt),
4372 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_retry_mem_unc_err),
4375 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_n_post_dat_q_parity_err_cnt),
4378 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_n_post_h_q_parity_err_cnt),
4381 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_cpl_dat_q_cor_err_cnt),
4384 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_cpl_hd_q_cor_err_cnt),
4387 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_post_dat_q_cor_err_cnt),
4390 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_post_hd_q_cor_err_cnt),
4393 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_retry_sot_mem_cor_err_cnt),
4396 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_pcic_retry_mem_cor_err_cnt),
4399 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4400 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4401 				CNTR_NORMAL,
4402 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4403 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4404 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4405 				CNTR_NORMAL,
4406 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4407 				),
4408 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4409 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4410 			CNTR_NORMAL,
4411 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4412 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4413 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4414 			CNTR_NORMAL,
4415 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4416 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4417 			0, CNTR_NORMAL,
4418 			access_cce_cli2_async_fifo_parity_err_cnt),
4419 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4420 			CNTR_NORMAL,
4421 			access_cce_csr_cfg_bus_parity_err_cnt),
4422 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4423 			0, CNTR_NORMAL,
4424 			access_cce_cli0_async_fifo_parity_err_cnt),
4425 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4426 			CNTR_NORMAL,
4427 			access_cce_rspd_data_parity_err_cnt),
4428 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4429 			CNTR_NORMAL,
4430 			access_cce_trgt_access_err_cnt),
4431 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4432 			0, CNTR_NORMAL,
4433 			access_cce_trgt_async_fifo_parity_err_cnt),
4434 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4435 			CNTR_NORMAL,
4436 			access_cce_csr_write_bad_addr_err_cnt),
4437 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_cce_csr_read_bad_addr_err_cnt),
4440 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_ccs_csr_parity_err_cnt),
4443 
4444 /* RcvErrStatus */
4445 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4446 			CNTR_NORMAL,
4447 			access_rx_csr_parity_err_cnt),
4448 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_rx_csr_write_bad_addr_err_cnt),
4451 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_csr_read_bad_addr_err_cnt),
4454 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_dma_csr_unc_err_cnt),
4457 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_dma_dq_fsm_encoding_err_cnt),
4460 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_dma_eq_fsm_encoding_err_cnt),
4463 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_dma_csr_parity_err_cnt),
4466 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_rbuf_data_cor_err_cnt),
4469 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_rbuf_data_unc_err_cnt),
4472 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4475 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4478 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4481 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4484 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_rbuf_desc_part2_cor_err_cnt),
4487 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_desc_part2_unc_err_cnt),
4490 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_desc_part1_cor_err_cnt),
4493 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_rbuf_desc_part1_unc_err_cnt),
4496 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_hq_intr_fsm_err_cnt),
4499 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_hq_intr_csr_parity_err_cnt),
4502 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_lookup_csr_parity_err_cnt),
4505 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_lookup_rcv_array_cor_err_cnt),
4508 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_lookup_rcv_array_unc_err_cnt),
4511 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4512 			0, CNTR_NORMAL,
4513 			access_rx_lookup_des_part2_parity_err_cnt),
4514 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4515 			0, CNTR_NORMAL,
4516 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4517 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4518 			CNTR_NORMAL,
4519 			access_rx_lookup_des_part1_unc_err_cnt),
4520 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4523 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4526 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4527 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4528 			CNTR_NORMAL,
4529 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4530 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4531 			0, CNTR_NORMAL,
4532 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4533 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4534 			0, CNTR_NORMAL,
4535 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4536 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4537 			CNTR_NORMAL,
4538 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4539 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_empty_err_cnt),
4542 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_full_err_cnt),
4545 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rbuf_bad_lookup_err_cnt),
4548 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rbuf_ctx_id_parity_err_cnt),
4551 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rbuf_csr_qeopdw_parity_err_cnt),
4554 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4555 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4556 			CNTR_NORMAL,
4557 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4558 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4559 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4560 			CNTR_NORMAL,
4561 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4562 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4563 			0, CNTR_NORMAL,
4564 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4566 			0, CNTR_NORMAL,
4567 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4569 			0, 0, CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4572 			0, CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4575 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4576 			CNTR_NORMAL,
4577 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4578 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4579 			0, CNTR_NORMAL,
4580 			access_rx_rbuf_block_list_read_cor_err_cnt),
4581 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4582 			0, CNTR_NORMAL,
4583 			access_rx_rbuf_block_list_read_unc_err_cnt),
4584 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4585 			CNTR_NORMAL,
4586 			access_rx_rbuf_lookup_des_cor_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_unc_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4591 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4592 			CNTR_NORMAL,
4593 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4594 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4597 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_free_list_cor_err_cnt),
4600 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rbuf_free_list_unc_err_cnt),
4603 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_rcv_fsm_encoding_err_cnt),
4606 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_dma_flag_cor_err_cnt),
4609 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_dma_flag_unc_err_cnt),
4612 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_dc_sop_eop_parity_err_cnt),
4615 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_rcv_csr_parity_err_cnt),
4618 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_rcv_qp_map_table_cor_err_cnt),
4621 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_rcv_qp_map_table_unc_err_cnt),
4624 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_data_cor_err_cnt),
4627 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_data_unc_err_cnt),
4630 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_hdr_cor_err_cnt),
4633 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_rcv_hdr_unc_err_cnt),
4636 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_dc_intf_parity_err_cnt),
4639 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_rx_dma_csr_cor_err_cnt),
4642 /* SendPioErrStatus */
4643 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4644 			CNTR_NORMAL,
4645 			access_pio_pec_sop_head_parity_err_cnt),
4646 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4647 			CNTR_NORMAL,
4648 			access_pio_pcc_sop_head_parity_err_cnt),
4649 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4650 			0, 0, CNTR_NORMAL,
4651 			access_pio_last_returned_cnt_parity_err_cnt),
4652 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4653 			0, CNTR_NORMAL,
4654 			access_pio_current_free_cnt_parity_err_cnt),
4655 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4656 			CNTR_NORMAL,
4657 			access_pio_reserved_31_err_cnt),
4658 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_reserved_30_err_cnt),
4661 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_ppmc_sop_len_err_cnt),
4664 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4667 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_vl_fifo_parity_err_cnt),
4670 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_vlf_sop_parity_err_cnt),
4673 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_vlf_v1_len_parity_err_cnt),
4676 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_block_qw_count_parity_err_cnt),
4679 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_write_qw_valid_parity_err_cnt),
4682 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_state_machine_err_cnt),
4685 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_write_data_parity_err_cnt),
4688 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_host_addr_mem_cor_err_cnt),
4691 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_host_addr_mem_unc_err_cnt),
4694 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4697 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_init_sm_in_err_cnt),
4700 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4701 			CNTR_NORMAL,
4702 			access_pio_ppmc_pbl_fifo_err_cnt),
4703 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4704 			0, CNTR_NORMAL,
4705 			access_pio_credit_ret_fifo_parity_err_cnt),
4706 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4707 			CNTR_NORMAL,
4708 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4713 			CNTR_NORMAL,
4714 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4718 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_sm_pkt_reset_parity_err_cnt),
4721 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_pkt_evict_fifo_parity_err_cnt),
4724 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4725 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4726 			CNTR_NORMAL,
4727 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4728 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_pio_sbrdctl_crrel_parity_err_cnt),
4731 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_pio_pec_fifo_parity_err_cnt),
4734 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_pcc_fifo_parity_err_cnt),
4737 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_sb_mem_fifo1_err_cnt),
4740 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_sb_mem_fifo0_err_cnt),
4743 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_csr_parity_err_cnt),
4746 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_write_addr_parity_err_cnt),
4749 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_pio_write_bad_ctxt_err_cnt),
4752 /* SendDmaErrStatus */
4753 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4754 			0, CNTR_NORMAL,
4755 			access_sdma_pcie_req_tracking_cor_err_cnt),
4756 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4757 			0, CNTR_NORMAL,
4758 			access_sdma_pcie_req_tracking_unc_err_cnt),
4759 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4760 			CNTR_NORMAL,
4761 			access_sdma_csr_parity_err_cnt),
4762 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_sdma_rpy_tag_err_cnt),
4765 /* SendEgressErrStatus */
4766 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4767 			CNTR_NORMAL,
4768 			access_tx_read_pio_memory_csr_unc_err_cnt),
4769 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4770 			0, CNTR_NORMAL,
4771 			access_tx_read_sdma_memory_csr_err_cnt),
4772 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4773 			CNTR_NORMAL,
4774 			access_tx_egress_fifo_cor_err_cnt),
4775 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_read_pio_memory_cor_err_cnt),
4778 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_tx_read_sdma_memory_cor_err_cnt),
4781 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_sb_hdr_cor_err_cnt),
4784 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_credit_overrun_err_cnt),
4787 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_launch_fifo8_cor_err_cnt),
4790 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_launch_fifo7_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_launch_fifo6_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo5_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo4_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo3_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo2_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo1_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_launch_fifo0_cor_err_cnt),
4814 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_credit_return_vl_err_cnt),
4817 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_hcrc_insertion_err_cnt),
4820 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_egress_fifo_unc_err_cnt),
4823 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_read_pio_memory_unc_err_cnt),
4826 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_read_sdma_memory_unc_err_cnt),
4829 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_sb_hdr_unc_err_cnt),
4832 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4833 			CNTR_NORMAL,
4834 			access_tx_credit_return_partiy_err_cnt),
4835 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4836 			0, 0, CNTR_NORMAL,
4837 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4838 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4839 			0, 0, CNTR_NORMAL,
4840 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4842 			0, 0, CNTR_NORMAL,
4843 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4862 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_sdma15_disallowed_packet_err_cnt),
4865 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_sdma14_disallowed_packet_err_cnt),
4868 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_sdma13_disallowed_packet_err_cnt),
4871 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma12_disallowed_packet_err_cnt),
4874 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma11_disallowed_packet_err_cnt),
4877 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma10_disallowed_packet_err_cnt),
4880 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma9_disallowed_packet_err_cnt),
4883 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma8_disallowed_packet_err_cnt),
4886 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma7_disallowed_packet_err_cnt),
4889 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma6_disallowed_packet_err_cnt),
4892 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma5_disallowed_packet_err_cnt),
4895 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma4_disallowed_packet_err_cnt),
4898 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma3_disallowed_packet_err_cnt),
4901 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma2_disallowed_packet_err_cnt),
4904 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma1_disallowed_packet_err_cnt),
4907 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4908 			0, 0, CNTR_NORMAL,
4909 			access_tx_sdma0_disallowed_packet_err_cnt),
4910 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4911 			CNTR_NORMAL,
4912 			access_tx_config_parity_err_cnt),
4913 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4916 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_tx_launch_csr_parity_err_cnt),
4919 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_illegal_vl_err_cnt),
4922 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4923 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4924 			CNTR_NORMAL,
4925 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4926 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_egress_reserved_10_err_cnt),
4929 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4930 			CNTR_NORMAL,
4931 			access_egress_reserved_9_err_cnt),
4932 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4933 			0, 0, CNTR_NORMAL,
4934 			access_tx_sdma_launch_intf_parity_err_cnt),
4935 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4936 			CNTR_NORMAL,
4937 			access_tx_pio_launch_intf_parity_err_cnt),
4938 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_egress_reserved_6_err_cnt),
4941 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_tx_incorrect_link_state_err_cnt),
4944 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_linkdown_err_cnt),
4947 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4948 			"EgressFifoUnderrunOrParityErr", 0, 0,
4949 			CNTR_NORMAL,
4950 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4951 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_egress_reserved_2_err_cnt),
4954 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_tx_pkt_integrity_mem_unc_err_cnt),
4957 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_pkt_integrity_mem_cor_err_cnt),
4960 /* SendErrStatus */
4961 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4962 			CNTR_NORMAL,
4963 			access_send_csr_write_bad_addr_err_cnt),
4964 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_send_csr_read_bad_addr_err_cnt),
4967 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_send_csr_parity_cnt),
4970 /* SendCtxtErrStatus */
4971 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4972 			CNTR_NORMAL,
4973 			access_pio_write_out_of_bounds_err_cnt),
4974 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_pio_write_overflow_err_cnt),
4977 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4978 			0, 0, CNTR_NORMAL,
4979 			access_pio_write_crosses_boundary_err_cnt),
4980 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4981 			CNTR_NORMAL,
4982 			access_pio_disallowed_packet_err_cnt),
4983 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_pio_inconsistent_sop_err_cnt),
4986 /* SendDmaEngErrStatus */
4987 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4988 			0, 0, CNTR_NORMAL,
4989 			access_sdma_header_request_fifo_cor_err_cnt),
4990 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4991 			CNTR_NORMAL,
4992 			access_sdma_header_storage_cor_err_cnt),
4993 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4994 			CNTR_NORMAL,
4995 			access_sdma_packet_tracking_cor_err_cnt),
4996 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4997 			CNTR_NORMAL,
4998 			access_sdma_assembly_cor_err_cnt),
4999 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_sdma_desc_table_cor_err_cnt),
5002 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5003 			0, 0, CNTR_NORMAL,
5004 			access_sdma_header_request_fifo_unc_err_cnt),
5005 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5006 			CNTR_NORMAL,
5007 			access_sdma_header_storage_unc_err_cnt),
5008 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_packet_tracking_unc_err_cnt),
5011 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5012 			CNTR_NORMAL,
5013 			access_sdma_assembly_unc_err_cnt),
5014 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_desc_table_unc_err_cnt),
5017 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_timeout_err_cnt),
5020 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_header_length_err_cnt),
5023 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_header_address_err_cnt),
5026 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_header_select_err_cnt),
5029 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_reserved_9_err_cnt),
5032 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_packet_desc_overflow_err_cnt),
5035 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_length_mismatch_err_cnt),
5038 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_halt_err_cnt),
5041 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_mem_read_err_cnt),
5044 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_first_desc_err_cnt),
5047 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_tail_out_of_bounds_err_cnt),
5050 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_too_long_err_cnt),
5053 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_gen_mismatch_err_cnt),
5056 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5057 			CNTR_NORMAL,
5058 			access_sdma_wrong_dw_err_cnt),
5059 };
5060 
5061 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5062 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5063 			CNTR_NORMAL),
5064 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5065 			CNTR_NORMAL),
5066 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5067 			CNTR_NORMAL),
5068 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5069 			CNTR_NORMAL),
5070 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5071 			CNTR_NORMAL),
5072 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5073 			CNTR_NORMAL),
5074 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5075 			CNTR_NORMAL),
5076 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5077 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5078 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5079 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5080 				      CNTR_SYNTH | CNTR_VL),
5081 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5082 				     CNTR_SYNTH | CNTR_VL),
5083 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5084 				      CNTR_SYNTH | CNTR_VL),
5085 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5086 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5087 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5088 			     access_sw_link_dn_cnt),
5089 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5090 			   access_sw_link_up_cnt),
5091 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5092 				 access_sw_unknown_frame_cnt),
5093 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5094 			     access_sw_xmit_discards),
5095 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5096 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5097 				access_sw_xmit_discards),
5098 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5099 				 access_xmit_constraint_errs),
5100 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5101 				access_rcv_constraint_errs),
5102 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5103 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5104 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5105 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5106 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5107 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5108 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5109 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5110 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5111 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5112 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5113 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5114 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5115 			       access_sw_cpu_rc_acks),
5116 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5117 				access_sw_cpu_rc_qacks),
5118 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5119 				       access_sw_cpu_rc_delayed_comp),
5120 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5121 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5122 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5123 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5124 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5125 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5126 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5127 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5128 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5129 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5130 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5131 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5132 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5133 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5134 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5135 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5136 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5137 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5138 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5139 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5140 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5141 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5142 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5143 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5144 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5145 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5146 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5147 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5148 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5149 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5150 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5151 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5152 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5153 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5154 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5155 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5156 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5157 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5158 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5159 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5160 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5161 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5162 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5163 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5164 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5165 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5166 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5167 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5168 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5169 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5170 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5171 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5172 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5173 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5174 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5175 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5176 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5177 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5178 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5179 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5180 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5181 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5182 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5183 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5184 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5185 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5186 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5187 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5188 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5189 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5190 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5191 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5192 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5193 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5194 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5195 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5196 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5197 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5198 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5199 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5200 };
5201 
5202 /* ======================================================================== */
5203 
5204 /* return true if this is chip revision revision a */
5205 int is_ax(struct hfi1_devdata *dd)
5206 {
5207 	u8 chip_rev_minor =
5208 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5209 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5210 	return (chip_rev_minor & 0xf0) == 0;
5211 }
5212 
5213 /* return true if this is chip revision revision b */
5214 int is_bx(struct hfi1_devdata *dd)
5215 {
5216 	u8 chip_rev_minor =
5217 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5218 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5219 	return (chip_rev_minor & 0xF0) == 0x10;
5220 }
5221 
5222 /*
5223  * Append string s to buffer buf.  Arguments curp and len are the current
5224  * position and remaining length, respectively.
5225  *
5226  * return 0 on success, 1 on out of room
5227  */
5228 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5229 {
5230 	char *p = *curp;
5231 	int len = *lenp;
5232 	int result = 0; /* success */
5233 	char c;
5234 
5235 	/* add a comma, if first in the buffer */
5236 	if (p != buf) {
5237 		if (len == 0) {
5238 			result = 1; /* out of room */
5239 			goto done;
5240 		}
5241 		*p++ = ',';
5242 		len--;
5243 	}
5244 
5245 	/* copy the string */
5246 	while ((c = *s++) != 0) {
5247 		if (len == 0) {
5248 			result = 1; /* out of room */
5249 			goto done;
5250 		}
5251 		*p++ = c;
5252 		len--;
5253 	}
5254 
5255 done:
5256 	/* write return values */
5257 	*curp = p;
5258 	*lenp = len;
5259 
5260 	return result;
5261 }
5262 
5263 /*
5264  * Using the given flag table, print a comma separated string into
5265  * the buffer.  End in '*' if the buffer is too short.
5266  */
5267 static char *flag_string(char *buf, int buf_len, u64 flags,
5268 			 struct flag_table *table, int table_size)
5269 {
5270 	char extra[32];
5271 	char *p = buf;
5272 	int len = buf_len;
5273 	int no_room = 0;
5274 	int i;
5275 
5276 	/* make sure there is at least 2 so we can form "*" */
5277 	if (len < 2)
5278 		return "";
5279 
5280 	len--;	/* leave room for a nul */
5281 	for (i = 0; i < table_size; i++) {
5282 		if (flags & table[i].flag) {
5283 			no_room = append_str(buf, &p, &len, table[i].str);
5284 			if (no_room)
5285 				break;
5286 			flags &= ~table[i].flag;
5287 		}
5288 	}
5289 
5290 	/* any undocumented bits left? */
5291 	if (!no_room && flags) {
5292 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5293 		no_room = append_str(buf, &p, &len, extra);
5294 	}
5295 
5296 	/* add * if ran out of room */
5297 	if (no_room) {
5298 		/* may need to back up to add space for a '*' */
5299 		if (len == 0)
5300 			--p;
5301 		*p++ = '*';
5302 	}
5303 
5304 	/* add final nul - space already allocated above */
5305 	*p = 0;
5306 	return buf;
5307 }
5308 
5309 /* first 8 CCE error interrupt source names */
5310 static const char * const cce_misc_names[] = {
5311 	"CceErrInt",		/* 0 */
5312 	"RxeErrInt",		/* 1 */
5313 	"MiscErrInt",		/* 2 */
5314 	"Reserved3",		/* 3 */
5315 	"PioErrInt",		/* 4 */
5316 	"SDmaErrInt",		/* 5 */
5317 	"EgressErrInt",		/* 6 */
5318 	"TxeErrInt"		/* 7 */
5319 };
5320 
5321 /*
5322  * Return the miscellaneous error interrupt name.
5323  */
5324 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5325 {
5326 	if (source < ARRAY_SIZE(cce_misc_names))
5327 		strncpy(buf, cce_misc_names[source], bsize);
5328 	else
5329 		snprintf(buf, bsize, "Reserved%u",
5330 			 source + IS_GENERAL_ERR_START);
5331 
5332 	return buf;
5333 }
5334 
5335 /*
5336  * Return the SDMA engine error interrupt name.
5337  */
5338 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5339 {
5340 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5341 	return buf;
5342 }
5343 
5344 /*
5345  * Return the send context error interrupt name.
5346  */
5347 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5348 {
5349 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5350 	return buf;
5351 }
5352 
5353 static const char * const various_names[] = {
5354 	"PbcInt",
5355 	"GpioAssertInt",
5356 	"Qsfp1Int",
5357 	"Qsfp2Int",
5358 	"TCritInt"
5359 };
5360 
5361 /*
5362  * Return the various interrupt name.
5363  */
5364 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5365 {
5366 	if (source < ARRAY_SIZE(various_names))
5367 		strncpy(buf, various_names[source], bsize);
5368 	else
5369 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5370 	return buf;
5371 }
5372 
5373 /*
5374  * Return the DC interrupt name.
5375  */
5376 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5377 {
5378 	static const char * const dc_int_names[] = {
5379 		"common",
5380 		"lcb",
5381 		"8051",
5382 		"lbm"	/* local block merge */
5383 	};
5384 
5385 	if (source < ARRAY_SIZE(dc_int_names))
5386 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5387 	else
5388 		snprintf(buf, bsize, "DCInt%u", source);
5389 	return buf;
5390 }
5391 
5392 static const char * const sdma_int_names[] = {
5393 	"SDmaInt",
5394 	"SdmaIdleInt",
5395 	"SdmaProgressInt",
5396 };
5397 
5398 /*
5399  * Return the SDMA engine interrupt name.
5400  */
5401 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5402 {
5403 	/* what interrupt */
5404 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5405 	/* which engine */
5406 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5407 
5408 	if (likely(what < 3))
5409 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5410 	else
5411 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5412 	return buf;
5413 }
5414 
5415 /*
5416  * Return the receive available interrupt name.
5417  */
5418 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5419 {
5420 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5421 	return buf;
5422 }
5423 
5424 /*
5425  * Return the receive urgent interrupt name.
5426  */
5427 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5428 {
5429 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5430 	return buf;
5431 }
5432 
5433 /*
5434  * Return the send credit interrupt name.
5435  */
5436 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5437 {
5438 	snprintf(buf, bsize, "SendCreditInt%u", source);
5439 	return buf;
5440 }
5441 
5442 /*
5443  * Return the reserved interrupt name.
5444  */
5445 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5446 {
5447 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5448 	return buf;
5449 }
5450 
5451 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5452 {
5453 	return flag_string(buf, buf_len, flags,
5454 			   cce_err_status_flags,
5455 			   ARRAY_SIZE(cce_err_status_flags));
5456 }
5457 
5458 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5459 {
5460 	return flag_string(buf, buf_len, flags,
5461 			   rxe_err_status_flags,
5462 			   ARRAY_SIZE(rxe_err_status_flags));
5463 }
5464 
5465 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5466 {
5467 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5468 			   ARRAY_SIZE(misc_err_status_flags));
5469 }
5470 
5471 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5472 {
5473 	return flag_string(buf, buf_len, flags,
5474 			   pio_err_status_flags,
5475 			   ARRAY_SIZE(pio_err_status_flags));
5476 }
5477 
5478 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5479 {
5480 	return flag_string(buf, buf_len, flags,
5481 			   sdma_err_status_flags,
5482 			   ARRAY_SIZE(sdma_err_status_flags));
5483 }
5484 
5485 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5486 {
5487 	return flag_string(buf, buf_len, flags,
5488 			   egress_err_status_flags,
5489 			   ARRAY_SIZE(egress_err_status_flags));
5490 }
5491 
5492 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5493 {
5494 	return flag_string(buf, buf_len, flags,
5495 			   egress_err_info_flags,
5496 			   ARRAY_SIZE(egress_err_info_flags));
5497 }
5498 
5499 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5500 {
5501 	return flag_string(buf, buf_len, flags,
5502 			   send_err_status_flags,
5503 			   ARRAY_SIZE(send_err_status_flags));
5504 }
5505 
5506 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5507 {
5508 	char buf[96];
5509 	int i = 0;
5510 
5511 	/*
5512 	 * For most these errors, there is nothing that can be done except
5513 	 * report or record it.
5514 	 */
5515 	dd_dev_info(dd, "CCE Error: %s\n",
5516 		    cce_err_status_string(buf, sizeof(buf), reg));
5517 
5518 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5519 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5520 		/* this error requires a manual drop into SPC freeze mode */
5521 		/* then a fix up */
5522 		start_freeze_handling(dd->pport, FREEZE_SELF);
5523 	}
5524 
5525 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5526 		if (reg & (1ull << i)) {
5527 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5528 			/* maintain a counter over all cce_err_status errors */
5529 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5530 		}
5531 	}
5532 }
5533 
5534 /*
5535  * Check counters for receive errors that do not have an interrupt
5536  * associated with them.
5537  */
5538 #define RCVERR_CHECK_TIME 10
5539 static void update_rcverr_timer(unsigned long opaque)
5540 {
5541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
5542 	struct hfi1_pportdata *ppd = dd->pport;
5543 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5544 
5545 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5546 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5547 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5548 		set_link_down_reason(
5549 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5550 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5551 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5552 	}
5553 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5554 
5555 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5556 }
5557 
5558 static int init_rcverr(struct hfi1_devdata *dd)
5559 {
5560 	setup_timer(&dd->rcverr_timer, update_rcverr_timer, (unsigned long)dd);
5561 	/* Assume the hardware counter has been reset */
5562 	dd->rcv_ovfl_cnt = 0;
5563 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5564 }
5565 
5566 static void free_rcverr(struct hfi1_devdata *dd)
5567 {
5568 	if (dd->rcverr_timer.data)
5569 		del_timer_sync(&dd->rcverr_timer);
5570 	dd->rcverr_timer.data = 0;
5571 }
5572 
5573 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5574 {
5575 	char buf[96];
5576 	int i = 0;
5577 
5578 	dd_dev_info(dd, "Receive Error: %s\n",
5579 		    rxe_err_status_string(buf, sizeof(buf), reg));
5580 
5581 	if (reg & ALL_RXE_FREEZE_ERR) {
5582 		int flags = 0;
5583 
5584 		/*
5585 		 * Freeze mode recovery is disabled for the errors
5586 		 * in RXE_FREEZE_ABORT_MASK
5587 		 */
5588 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5589 			flags = FREEZE_ABORT;
5590 
5591 		start_freeze_handling(dd->pport, flags);
5592 	}
5593 
5594 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5595 		if (reg & (1ull << i))
5596 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5597 	}
5598 }
5599 
5600 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5601 {
5602 	char buf[96];
5603 	int i = 0;
5604 
5605 	dd_dev_info(dd, "Misc Error: %s",
5606 		    misc_err_status_string(buf, sizeof(buf), reg));
5607 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5608 		if (reg & (1ull << i))
5609 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5610 	}
5611 }
5612 
5613 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5614 {
5615 	char buf[96];
5616 	int i = 0;
5617 
5618 	dd_dev_info(dd, "PIO Error: %s\n",
5619 		    pio_err_status_string(buf, sizeof(buf), reg));
5620 
5621 	if (reg & ALL_PIO_FREEZE_ERR)
5622 		start_freeze_handling(dd->pport, 0);
5623 
5624 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5625 		if (reg & (1ull << i))
5626 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5627 	}
5628 }
5629 
5630 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5631 {
5632 	char buf[96];
5633 	int i = 0;
5634 
5635 	dd_dev_info(dd, "SDMA Error: %s\n",
5636 		    sdma_err_status_string(buf, sizeof(buf), reg));
5637 
5638 	if (reg & ALL_SDMA_FREEZE_ERR)
5639 		start_freeze_handling(dd->pport, 0);
5640 
5641 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5642 		if (reg & (1ull << i))
5643 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5644 	}
5645 }
5646 
5647 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5648 {
5649 	incr_cntr64(&ppd->port_xmit_discards);
5650 }
5651 
5652 static void count_port_inactive(struct hfi1_devdata *dd)
5653 {
5654 	__count_port_discards(dd->pport);
5655 }
5656 
5657 /*
5658  * We have had a "disallowed packet" error during egress. Determine the
5659  * integrity check which failed, and update relevant error counter, etc.
5660  *
5661  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5662  * bit of state per integrity check, and so we can miss the reason for an
5663  * egress error if more than one packet fails the same integrity check
5664  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5665  */
5666 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5667 					int vl)
5668 {
5669 	struct hfi1_pportdata *ppd = dd->pport;
5670 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5671 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5672 	char buf[96];
5673 
5674 	/* clear down all observed info as quickly as possible after read */
5675 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5676 
5677 	dd_dev_info(dd,
5678 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5679 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5680 
5681 	/* Eventually add other counters for each bit */
5682 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5683 		int weight, i;
5684 
5685 		/*
5686 		 * Count all applicable bits as individual errors and
5687 		 * attribute them to the packet that triggered this handler.
5688 		 * This may not be completely accurate due to limitations
5689 		 * on the available hardware error information.  There is
5690 		 * a single information register and any number of error
5691 		 * packets may have occurred and contributed to it before
5692 		 * this routine is called.  This means that:
5693 		 * a) If multiple packets with the same error occur before
5694 		 *    this routine is called, earlier packets are missed.
5695 		 *    There is only a single bit for each error type.
5696 		 * b) Errors may not be attributed to the correct VL.
5697 		 *    The driver is attributing all bits in the info register
5698 		 *    to the packet that triggered this call, but bits
5699 		 *    could be an accumulation of different packets with
5700 		 *    different VLs.
5701 		 * c) A single error packet may have multiple counts attached
5702 		 *    to it.  There is no way for the driver to know if
5703 		 *    multiple bits set in the info register are due to a
5704 		 *    single packet or multiple packets.  The driver assumes
5705 		 *    multiple packets.
5706 		 */
5707 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5708 		for (i = 0; i < weight; i++) {
5709 			__count_port_discards(ppd);
5710 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5711 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5712 			else if (vl == 15)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl
5714 					    [C_VL_15]);
5715 		}
5716 	}
5717 }
5718 
5719 /*
5720  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5721  * register. Does it represent a 'port inactive' error?
5722  */
5723 static inline int port_inactive_err(u64 posn)
5724 {
5725 	return (posn >= SEES(TX_LINKDOWN) &&
5726 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5727 }
5728 
5729 /*
5730  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5731  * register. Does it represent a 'disallowed packet' error?
5732  */
5733 static inline int disallowed_pkt_err(int posn)
5734 {
5735 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5736 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5737 }
5738 
5739 /*
5740  * Input value is a bit position of one of the SDMA engine disallowed
5741  * packet errors.  Return which engine.  Use of this must be guarded by
5742  * disallowed_pkt_err().
5743  */
5744 static inline int disallowed_pkt_engine(int posn)
5745 {
5746 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5747 }
5748 
5749 /*
5750  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5751  * be done.
5752  */
5753 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5754 {
5755 	struct sdma_vl_map *m;
5756 	int vl;
5757 
5758 	/* range check */
5759 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5760 		return -1;
5761 
5762 	rcu_read_lock();
5763 	m = rcu_dereference(dd->sdma_map);
5764 	vl = m->engine_to_vl[engine];
5765 	rcu_read_unlock();
5766 
5767 	return vl;
5768 }
5769 
5770 /*
5771  * Translate the send context (sofware index) into a VL.  Return -1 if the
5772  * translation cannot be done.
5773  */
5774 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5775 {
5776 	struct send_context_info *sci;
5777 	struct send_context *sc;
5778 	int i;
5779 
5780 	sci = &dd->send_contexts[sw_index];
5781 
5782 	/* there is no information for user (PSM) and ack contexts */
5783 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5784 		return -1;
5785 
5786 	sc = sci->sc;
5787 	if (!sc)
5788 		return -1;
5789 	if (dd->vld[15].sc == sc)
5790 		return 15;
5791 	for (i = 0; i < num_vls; i++)
5792 		if (dd->vld[i].sc == sc)
5793 			return i;
5794 
5795 	return -1;
5796 }
5797 
5798 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5799 {
5800 	u64 reg_copy = reg, handled = 0;
5801 	char buf[96];
5802 	int i = 0;
5803 
5804 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5805 		start_freeze_handling(dd->pport, 0);
5806 	else if (is_ax(dd) &&
5807 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5808 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5809 		start_freeze_handling(dd->pport, 0);
5810 
5811 	while (reg_copy) {
5812 		int posn = fls64(reg_copy);
5813 		/* fls64() returns a 1-based offset, we want it zero based */
5814 		int shift = posn - 1;
5815 		u64 mask = 1ULL << shift;
5816 
5817 		if (port_inactive_err(shift)) {
5818 			count_port_inactive(dd);
5819 			handled |= mask;
5820 		} else if (disallowed_pkt_err(shift)) {
5821 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5822 
5823 			handle_send_egress_err_info(dd, vl);
5824 			handled |= mask;
5825 		}
5826 		reg_copy &= ~mask;
5827 	}
5828 
5829 	reg &= ~handled;
5830 
5831 	if (reg)
5832 		dd_dev_info(dd, "Egress Error: %s\n",
5833 			    egress_err_status_string(buf, sizeof(buf), reg));
5834 
5835 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5836 		if (reg & (1ull << i))
5837 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5838 	}
5839 }
5840 
5841 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5842 {
5843 	char buf[96];
5844 	int i = 0;
5845 
5846 	dd_dev_info(dd, "Send Error: %s\n",
5847 		    send_err_status_string(buf, sizeof(buf), reg));
5848 
5849 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5850 		if (reg & (1ull << i))
5851 			incr_cntr64(&dd->send_err_status_cnt[i]);
5852 	}
5853 }
5854 
5855 /*
5856  * The maximum number of times the error clear down will loop before
5857  * blocking a repeating error.  This value is arbitrary.
5858  */
5859 #define MAX_CLEAR_COUNT 20
5860 
5861 /*
5862  * Clear and handle an error register.  All error interrupts are funneled
5863  * through here to have a central location to correctly handle single-
5864  * or multi-shot errors.
5865  *
5866  * For non per-context registers, call this routine with a context value
5867  * of 0 so the per-context offset is zero.
5868  *
5869  * If the handler loops too many times, assume that something is wrong
5870  * and can't be fixed, so mask the error bits.
5871  */
5872 static void interrupt_clear_down(struct hfi1_devdata *dd,
5873 				 u32 context,
5874 				 const struct err_reg_info *eri)
5875 {
5876 	u64 reg;
5877 	u32 count;
5878 
5879 	/* read in a loop until no more errors are seen */
5880 	count = 0;
5881 	while (1) {
5882 		reg = read_kctxt_csr(dd, context, eri->status);
5883 		if (reg == 0)
5884 			break;
5885 		write_kctxt_csr(dd, context, eri->clear, reg);
5886 		if (likely(eri->handler))
5887 			eri->handler(dd, context, reg);
5888 		count++;
5889 		if (count > MAX_CLEAR_COUNT) {
5890 			u64 mask;
5891 
5892 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5893 				   eri->desc, reg);
5894 			/*
5895 			 * Read-modify-write so any other masked bits
5896 			 * remain masked.
5897 			 */
5898 			mask = read_kctxt_csr(dd, context, eri->mask);
5899 			mask &= ~reg;
5900 			write_kctxt_csr(dd, context, eri->mask, mask);
5901 			break;
5902 		}
5903 	}
5904 }
5905 
5906 /*
5907  * CCE block "misc" interrupt.  Source is < 16.
5908  */
5909 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5910 {
5911 	const struct err_reg_info *eri = &misc_errs[source];
5912 
5913 	if (eri->handler) {
5914 		interrupt_clear_down(dd, 0, eri);
5915 	} else {
5916 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5917 			   source);
5918 	}
5919 }
5920 
5921 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5922 {
5923 	return flag_string(buf, buf_len, flags,
5924 			   sc_err_status_flags,
5925 			   ARRAY_SIZE(sc_err_status_flags));
5926 }
5927 
5928 /*
5929  * Send context error interrupt.  Source (hw_context) is < 160.
5930  *
5931  * All send context errors cause the send context to halt.  The normal
5932  * clear-down mechanism cannot be used because we cannot clear the
5933  * error bits until several other long-running items are done first.
5934  * This is OK because with the context halted, nothing else is going
5935  * to happen on it anyway.
5936  */
5937 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5938 				unsigned int hw_context)
5939 {
5940 	struct send_context_info *sci;
5941 	struct send_context *sc;
5942 	char flags[96];
5943 	u64 status;
5944 	u32 sw_index;
5945 	int i = 0;
5946 
5947 	sw_index = dd->hw_to_sw[hw_context];
5948 	if (sw_index >= dd->num_send_contexts) {
5949 		dd_dev_err(dd,
5950 			   "out of range sw index %u for send context %u\n",
5951 			   sw_index, hw_context);
5952 		return;
5953 	}
5954 	sci = &dd->send_contexts[sw_index];
5955 	sc = sci->sc;
5956 	if (!sc) {
5957 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5958 			   sw_index, hw_context);
5959 		return;
5960 	}
5961 
5962 	/* tell the software that a halt has begun */
5963 	sc_stop(sc, SCF_HALTED);
5964 
5965 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5966 
5967 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5968 		    send_context_err_status_string(flags, sizeof(flags),
5969 						   status));
5970 
5971 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5972 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5973 
5974 	/*
5975 	 * Automatically restart halted kernel contexts out of interrupt
5976 	 * context.  User contexts must ask the driver to restart the context.
5977 	 */
5978 	if (sc->type != SC_USER)
5979 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5980 
5981 	/*
5982 	 * Update the counters for the corresponding status bits.
5983 	 * Note that these particular counters are aggregated over all
5984 	 * 160 contexts.
5985 	 */
5986 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5987 		if (status & (1ull << i))
5988 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5989 	}
5990 }
5991 
5992 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5993 				unsigned int source, u64 status)
5994 {
5995 	struct sdma_engine *sde;
5996 	int i = 0;
5997 
5998 	sde = &dd->per_sdma[source];
5999 #ifdef CONFIG_SDMA_VERBOSITY
6000 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6001 		   slashstrip(__FILE__), __LINE__, __func__);
6002 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6003 		   sde->this_idx, source, (unsigned long long)status);
6004 #endif
6005 	sde->err_cnt++;
6006 	sdma_engine_error(sde, status);
6007 
6008 	/*
6009 	* Update the counters for the corresponding status bits.
6010 	* Note that these particular counters are aggregated over
6011 	* all 16 DMA engines.
6012 	*/
6013 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6014 		if (status & (1ull << i))
6015 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6016 	}
6017 }
6018 
6019 /*
6020  * CCE block SDMA error interrupt.  Source is < 16.
6021  */
6022 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6023 {
6024 #ifdef CONFIG_SDMA_VERBOSITY
6025 	struct sdma_engine *sde = &dd->per_sdma[source];
6026 
6027 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6028 		   slashstrip(__FILE__), __LINE__, __func__);
6029 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6030 		   source);
6031 	sdma_dumpstate(sde);
6032 #endif
6033 	interrupt_clear_down(dd, source, &sdma_eng_err);
6034 }
6035 
6036 /*
6037  * CCE block "various" interrupt.  Source is < 8.
6038  */
6039 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6040 {
6041 	const struct err_reg_info *eri = &various_err[source];
6042 
6043 	/*
6044 	 * TCritInt cannot go through interrupt_clear_down()
6045 	 * because it is not a second tier interrupt. The handler
6046 	 * should be called directly.
6047 	 */
6048 	if (source == TCRIT_INT_SOURCE)
6049 		handle_temp_err(dd);
6050 	else if (eri->handler)
6051 		interrupt_clear_down(dd, 0, eri);
6052 	else
6053 		dd_dev_info(dd,
6054 			    "%s: Unimplemented/reserved interrupt %d\n",
6055 			    __func__, source);
6056 }
6057 
6058 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6059 {
6060 	/* src_ctx is always zero */
6061 	struct hfi1_pportdata *ppd = dd->pport;
6062 	unsigned long flags;
6063 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6064 
6065 	if (reg & QSFP_HFI0_MODPRST_N) {
6066 		if (!qsfp_mod_present(ppd)) {
6067 			dd_dev_info(dd, "%s: QSFP module removed\n",
6068 				    __func__);
6069 
6070 			ppd->driver_link_ready = 0;
6071 			/*
6072 			 * Cable removed, reset all our information about the
6073 			 * cache and cable capabilities
6074 			 */
6075 
6076 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6077 			/*
6078 			 * We don't set cache_refresh_required here as we expect
6079 			 * an interrupt when a cable is inserted
6080 			 */
6081 			ppd->qsfp_info.cache_valid = 0;
6082 			ppd->qsfp_info.reset_needed = 0;
6083 			ppd->qsfp_info.limiting_active = 0;
6084 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6085 					       flags);
6086 			/* Invert the ModPresent pin now to detect plug-in */
6087 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6088 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6089 
6090 			if ((ppd->offline_disabled_reason >
6091 			  HFI1_ODR_MASK(
6092 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6093 			  (ppd->offline_disabled_reason ==
6094 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6095 				ppd->offline_disabled_reason =
6096 				HFI1_ODR_MASK(
6097 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6098 
6099 			if (ppd->host_link_state == HLS_DN_POLL) {
6100 				/*
6101 				 * The link is still in POLL. This means
6102 				 * that the normal link down processing
6103 				 * will not happen. We have to do it here
6104 				 * before turning the DC off.
6105 				 */
6106 				queue_work(ppd->link_wq, &ppd->link_down_work);
6107 			}
6108 		} else {
6109 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6110 				    __func__);
6111 
6112 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6113 			ppd->qsfp_info.cache_valid = 0;
6114 			ppd->qsfp_info.cache_refresh_required = 1;
6115 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6116 					       flags);
6117 
6118 			/*
6119 			 * Stop inversion of ModPresent pin to detect
6120 			 * removal of the cable
6121 			 */
6122 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6123 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6124 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6125 
6126 			ppd->offline_disabled_reason =
6127 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6128 		}
6129 	}
6130 
6131 	if (reg & QSFP_HFI0_INT_N) {
6132 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6133 			    __func__);
6134 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6135 		ppd->qsfp_info.check_interrupt_flags = 1;
6136 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6137 	}
6138 
6139 	/* Schedule the QSFP work only if there is a cable attached. */
6140 	if (qsfp_mod_present(ppd))
6141 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6142 }
6143 
6144 static int request_host_lcb_access(struct hfi1_devdata *dd)
6145 {
6146 	int ret;
6147 
6148 	ret = do_8051_command(dd, HCMD_MISC,
6149 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6150 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6151 	if (ret != HCMD_SUCCESS) {
6152 		dd_dev_err(dd, "%s: command failed with error %d\n",
6153 			   __func__, ret);
6154 	}
6155 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6156 }
6157 
6158 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6159 {
6160 	int ret;
6161 
6162 	ret = do_8051_command(dd, HCMD_MISC,
6163 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6164 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6165 	if (ret != HCMD_SUCCESS) {
6166 		dd_dev_err(dd, "%s: command failed with error %d\n",
6167 			   __func__, ret);
6168 	}
6169 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6170 }
6171 
6172 /*
6173  * Set the LCB selector - allow host access.  The DCC selector always
6174  * points to the host.
6175  */
6176 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6177 {
6178 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6179 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6180 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6181 }
6182 
6183 /*
6184  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6185  * points to the host.
6186  */
6187 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6188 {
6189 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6190 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6191 }
6192 
6193 /*
6194  * Acquire LCB access from the 8051.  If the host already has access,
6195  * just increment a counter.  Otherwise, inform the 8051 that the
6196  * host is taking access.
6197  *
6198  * Returns:
6199  *	0 on success
6200  *	-EBUSY if the 8051 has control and cannot be disturbed
6201  *	-errno if unable to acquire access from the 8051
6202  */
6203 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6204 {
6205 	struct hfi1_pportdata *ppd = dd->pport;
6206 	int ret = 0;
6207 
6208 	/*
6209 	 * Use the host link state lock so the operation of this routine
6210 	 * { link state check, selector change, count increment } can occur
6211 	 * as a unit against a link state change.  Otherwise there is a
6212 	 * race between the state change and the count increment.
6213 	 */
6214 	if (sleep_ok) {
6215 		mutex_lock(&ppd->hls_lock);
6216 	} else {
6217 		while (!mutex_trylock(&ppd->hls_lock))
6218 			udelay(1);
6219 	}
6220 
6221 	/* this access is valid only when the link is up */
6222 	if (ppd->host_link_state & HLS_DOWN) {
6223 		dd_dev_info(dd, "%s: link state %s not up\n",
6224 			    __func__, link_state_name(ppd->host_link_state));
6225 		ret = -EBUSY;
6226 		goto done;
6227 	}
6228 
6229 	if (dd->lcb_access_count == 0) {
6230 		ret = request_host_lcb_access(dd);
6231 		if (ret) {
6232 			dd_dev_err(dd,
6233 				   "%s: unable to acquire LCB access, err %d\n",
6234 				   __func__, ret);
6235 			goto done;
6236 		}
6237 		set_host_lcb_access(dd);
6238 	}
6239 	dd->lcb_access_count++;
6240 done:
6241 	mutex_unlock(&ppd->hls_lock);
6242 	return ret;
6243 }
6244 
6245 /*
6246  * Release LCB access by decrementing the use count.  If the count is moving
6247  * from 1 to 0, inform 8051 that it has control back.
6248  *
6249  * Returns:
6250  *	0 on success
6251  *	-errno if unable to release access to the 8051
6252  */
6253 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6254 {
6255 	int ret = 0;
6256 
6257 	/*
6258 	 * Use the host link state lock because the acquire needed it.
6259 	 * Here, we only need to keep { selector change, count decrement }
6260 	 * as a unit.
6261 	 */
6262 	if (sleep_ok) {
6263 		mutex_lock(&dd->pport->hls_lock);
6264 	} else {
6265 		while (!mutex_trylock(&dd->pport->hls_lock))
6266 			udelay(1);
6267 	}
6268 
6269 	if (dd->lcb_access_count == 0) {
6270 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6271 			   __func__);
6272 		goto done;
6273 	}
6274 
6275 	if (dd->lcb_access_count == 1) {
6276 		set_8051_lcb_access(dd);
6277 		ret = request_8051_lcb_access(dd);
6278 		if (ret) {
6279 			dd_dev_err(dd,
6280 				   "%s: unable to release LCB access, err %d\n",
6281 				   __func__, ret);
6282 			/* restore host access if the grant didn't work */
6283 			set_host_lcb_access(dd);
6284 			goto done;
6285 		}
6286 	}
6287 	dd->lcb_access_count--;
6288 done:
6289 	mutex_unlock(&dd->pport->hls_lock);
6290 	return ret;
6291 }
6292 
6293 /*
6294  * Initialize LCB access variables and state.  Called during driver load,
6295  * after most of the initialization is finished.
6296  *
6297  * The DC default is LCB access on for the host.  The driver defaults to
6298  * leaving access to the 8051.  Assign access now - this constrains the call
6299  * to this routine to be after all LCB set-up is done.  In particular, after
6300  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6301  */
6302 static void init_lcb_access(struct hfi1_devdata *dd)
6303 {
6304 	dd->lcb_access_count = 0;
6305 }
6306 
6307 /*
6308  * Write a response back to a 8051 request.
6309  */
6310 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6311 {
6312 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6313 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6314 		  (u64)return_code <<
6315 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6316 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6317 }
6318 
6319 /*
6320  * Handle host requests from the 8051.
6321  */
6322 static void handle_8051_request(struct hfi1_pportdata *ppd)
6323 {
6324 	struct hfi1_devdata *dd = ppd->dd;
6325 	u64 reg;
6326 	u16 data = 0;
6327 	u8 type;
6328 
6329 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6330 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6331 		return;	/* no request */
6332 
6333 	/* zero out COMPLETED so the response is seen */
6334 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6335 
6336 	/* extract request details */
6337 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6338 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6339 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6340 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6341 
6342 	switch (type) {
6343 	case HREQ_LOAD_CONFIG:
6344 	case HREQ_SAVE_CONFIG:
6345 	case HREQ_READ_CONFIG:
6346 	case HREQ_SET_TX_EQ_ABS:
6347 	case HREQ_SET_TX_EQ_REL:
6348 	case HREQ_ENABLE:
6349 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6350 			    type);
6351 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6352 		break;
6353 	case HREQ_CONFIG_DONE:
6354 		hreq_response(dd, HREQ_SUCCESS, 0);
6355 		break;
6356 
6357 	case HREQ_INTERFACE_TEST:
6358 		hreq_response(dd, HREQ_SUCCESS, data);
6359 		break;
6360 	default:
6361 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6362 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6363 		break;
6364 	}
6365 }
6366 
6367 /*
6368  * Set up allocation unit vaulue.
6369  */
6370 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6371 {
6372 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6373 
6374 	/* do not modify other values in the register */
6375 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6376 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6377 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6378 }
6379 
6380 /*
6381  * Set up initial VL15 credits of the remote.  Assumes the rest of
6382  * the CM credit registers are zero from a previous global or credit reset.
6383  * Shared limit for VL15 will always be 0.
6384  */
6385 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6386 {
6387 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6388 
6389 	/* set initial values for total and shared credit limit */
6390 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6391 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6392 
6393 	/*
6394 	 * Set total limit to be equal to VL15 credits.
6395 	 * Leave shared limit at 0.
6396 	 */
6397 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6398 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6399 
6400 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6401 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6402 }
6403 
6404 /*
6405  * Zero all credit details from the previous connection and
6406  * reset the CM manager's internal counters.
6407  */
6408 void reset_link_credits(struct hfi1_devdata *dd)
6409 {
6410 	int i;
6411 
6412 	/* remove all previous VL credit limits */
6413 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6414 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6415 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6417 	/* reset the CM block */
6418 	pio_send_control(dd, PSC_CM_RESET);
6419 	/* reset cached value */
6420 	dd->vl15buf_cached = 0;
6421 }
6422 
6423 /* convert a vCU to a CU */
6424 static u32 vcu_to_cu(u8 vcu)
6425 {
6426 	return 1 << vcu;
6427 }
6428 
6429 /* convert a CU to a vCU */
6430 static u8 cu_to_vcu(u32 cu)
6431 {
6432 	return ilog2(cu);
6433 }
6434 
6435 /* convert a vAU to an AU */
6436 static u32 vau_to_au(u8 vau)
6437 {
6438 	return 8 * (1 << vau);
6439 }
6440 
6441 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6442 {
6443 	ppd->sm_trap_qp = 0x0;
6444 	ppd->sa_qp = 0x1;
6445 }
6446 
6447 /*
6448  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6449  */
6450 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6451 {
6452 	u64 reg;
6453 
6454 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6455 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6456 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6457 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6458 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6459 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6460 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6461 	reg = read_csr(dd, DCC_CFG_RESET);
6462 	write_csr(dd, DCC_CFG_RESET, reg |
6463 		  (1ull << DCC_CFG_RESET_RESET_LCB_SHIFT) |
6464 		  (1ull << DCC_CFG_RESET_RESET_RX_FPE_SHIFT));
6465 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6466 	if (!abort) {
6467 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6468 		write_csr(dd, DCC_CFG_RESET, reg);
6469 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6470 	}
6471 }
6472 
6473 /*
6474  * This routine should be called after the link has been transitioned to
6475  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6476  * reset).
6477  *
6478  * The expectation is that the caller of this routine would have taken
6479  * care of properly transitioning the link into the correct state.
6480  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6481  *       before calling this function.
6482  */
6483 static void _dc_shutdown(struct hfi1_devdata *dd)
6484 {
6485 	lockdep_assert_held(&dd->dc8051_lock);
6486 
6487 	if (dd->dc_shutdown)
6488 		return;
6489 
6490 	dd->dc_shutdown = 1;
6491 	/* Shutdown the LCB */
6492 	lcb_shutdown(dd, 1);
6493 	/*
6494 	 * Going to OFFLINE would have causes the 8051 to put the
6495 	 * SerDes into reset already. Just need to shut down the 8051,
6496 	 * itself.
6497 	 */
6498 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6499 }
6500 
6501 static void dc_shutdown(struct hfi1_devdata *dd)
6502 {
6503 	mutex_lock(&dd->dc8051_lock);
6504 	_dc_shutdown(dd);
6505 	mutex_unlock(&dd->dc8051_lock);
6506 }
6507 
6508 /*
6509  * Calling this after the DC has been brought out of reset should not
6510  * do any damage.
6511  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6512  *       before calling this function.
6513  */
6514 static void _dc_start(struct hfi1_devdata *dd)
6515 {
6516 	lockdep_assert_held(&dd->dc8051_lock);
6517 
6518 	if (!dd->dc_shutdown)
6519 		return;
6520 
6521 	/* Take the 8051 out of reset */
6522 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6523 	/* Wait until 8051 is ready */
6524 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6525 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6526 			   __func__);
6527 
6528 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6529 	write_csr(dd, DCC_CFG_RESET, 0x10);
6530 	/* lcb_shutdown() with abort=1 does not restore these */
6531 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6532 	dd->dc_shutdown = 0;
6533 }
6534 
6535 static void dc_start(struct hfi1_devdata *dd)
6536 {
6537 	mutex_lock(&dd->dc8051_lock);
6538 	_dc_start(dd);
6539 	mutex_unlock(&dd->dc8051_lock);
6540 }
6541 
6542 /*
6543  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6544  */
6545 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6546 {
6547 	u64 rx_radr, tx_radr;
6548 	u32 version;
6549 
6550 	if (dd->icode != ICODE_FPGA_EMULATION)
6551 		return;
6552 
6553 	/*
6554 	 * These LCB defaults on emulator _s are good, nothing to do here:
6555 	 *	LCB_CFG_TX_FIFOS_RADR
6556 	 *	LCB_CFG_RX_FIFOS_RADR
6557 	 *	LCB_CFG_LN_DCLK
6558 	 *	LCB_CFG_IGNORE_LOST_RCLK
6559 	 */
6560 	if (is_emulator_s(dd))
6561 		return;
6562 	/* else this is _p */
6563 
6564 	version = emulator_rev(dd);
6565 	if (!is_ax(dd))
6566 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6567 
6568 	if (version <= 0x12) {
6569 		/* release 0x12 and below */
6570 
6571 		/*
6572 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6573 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6574 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6575 		 */
6576 		rx_radr =
6577 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6578 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6579 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6580 		/*
6581 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6582 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6583 		 */
6584 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6585 	} else if (version <= 0x18) {
6586 		/* release 0x13 up to 0x18 */
6587 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6588 		rx_radr =
6589 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6590 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6591 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6592 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6593 	} else if (version == 0x19) {
6594 		/* release 0x19 */
6595 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6596 		rx_radr =
6597 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6598 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6599 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6600 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6601 	} else if (version == 0x1a) {
6602 		/* release 0x1a */
6603 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6604 		rx_radr =
6605 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6606 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6608 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6610 	} else {
6611 		/* release 0x1b and higher */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6613 		rx_radr =
6614 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	}
6619 
6620 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6621 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6622 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6623 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6624 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6625 }
6626 
6627 /*
6628  * Handle a SMA idle message
6629  *
6630  * This is a work-queue function outside of the interrupt.
6631  */
6632 void handle_sma_message(struct work_struct *work)
6633 {
6634 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6635 							sma_message_work);
6636 	struct hfi1_devdata *dd = ppd->dd;
6637 	u64 msg;
6638 	int ret;
6639 
6640 	/*
6641 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6642 	 * is stripped off
6643 	 */
6644 	ret = read_idle_sma(dd, &msg);
6645 	if (ret)
6646 		return;
6647 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6648 	/*
6649 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6650 	 */
6651 	switch (msg & 0xff) {
6652 	case SMA_IDLE_ARM:
6653 		/*
6654 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6655 		 * State Transitions
6656 		 *
6657 		 * Only expected in INIT or ARMED, discard otherwise.
6658 		 */
6659 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6660 			ppd->neighbor_normal = 1;
6661 		break;
6662 	case SMA_IDLE_ACTIVE:
6663 		/*
6664 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6665 		 * State Transitions
6666 		 *
6667 		 * Can activate the node.  Discard otherwise.
6668 		 */
6669 		if (ppd->host_link_state == HLS_UP_ARMED &&
6670 		    ppd->is_active_optimize_enabled) {
6671 			ppd->neighbor_normal = 1;
6672 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6673 			if (ret)
6674 				dd_dev_err(
6675 					dd,
6676 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6677 					__func__);
6678 		}
6679 		break;
6680 	default:
6681 		dd_dev_err(dd,
6682 			   "%s: received unexpected SMA idle message 0x%llx\n",
6683 			   __func__, msg);
6684 		break;
6685 	}
6686 }
6687 
6688 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6689 {
6690 	u64 rcvctrl;
6691 	unsigned long flags;
6692 
6693 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6694 	rcvctrl = read_csr(dd, RCV_CTRL);
6695 	rcvctrl |= add;
6696 	rcvctrl &= ~clear;
6697 	write_csr(dd, RCV_CTRL, rcvctrl);
6698 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6699 }
6700 
6701 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6702 {
6703 	adjust_rcvctrl(dd, add, 0);
6704 }
6705 
6706 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6707 {
6708 	adjust_rcvctrl(dd, 0, clear);
6709 }
6710 
6711 /*
6712  * Called from all interrupt handlers to start handling an SPC freeze.
6713  */
6714 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6715 {
6716 	struct hfi1_devdata *dd = ppd->dd;
6717 	struct send_context *sc;
6718 	int i;
6719 
6720 	if (flags & FREEZE_SELF)
6721 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6722 
6723 	/* enter frozen mode */
6724 	dd->flags |= HFI1_FROZEN;
6725 
6726 	/* notify all SDMA engines that they are going into a freeze */
6727 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6728 
6729 	/* do halt pre-handling on all enabled send contexts */
6730 	for (i = 0; i < dd->num_send_contexts; i++) {
6731 		sc = dd->send_contexts[i].sc;
6732 		if (sc && (sc->flags & SCF_ENABLED))
6733 			sc_stop(sc, SCF_FROZEN | SCF_HALTED);
6734 	}
6735 
6736 	/* Send context are frozen. Notify user space */
6737 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6738 
6739 	if (flags & FREEZE_ABORT) {
6740 		dd_dev_err(dd,
6741 			   "Aborted freeze recovery. Please REBOOT system\n");
6742 		return;
6743 	}
6744 	/* queue non-interrupt handler */
6745 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6746 }
6747 
6748 /*
6749  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6750  * depending on the "freeze" parameter.
6751  *
6752  * No need to return an error if it times out, our only option
6753  * is to proceed anyway.
6754  */
6755 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6756 {
6757 	unsigned long timeout;
6758 	u64 reg;
6759 
6760 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6761 	while (1) {
6762 		reg = read_csr(dd, CCE_STATUS);
6763 		if (freeze) {
6764 			/* waiting until all indicators are set */
6765 			if ((reg & ALL_FROZE) == ALL_FROZE)
6766 				return;	/* all done */
6767 		} else {
6768 			/* waiting until all indicators are clear */
6769 			if ((reg & ALL_FROZE) == 0)
6770 				return; /* all done */
6771 		}
6772 
6773 		if (time_after(jiffies, timeout)) {
6774 			dd_dev_err(dd,
6775 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6776 				   freeze ? "" : "un", reg & ALL_FROZE,
6777 				   freeze ? ALL_FROZE : 0ull);
6778 			return;
6779 		}
6780 		usleep_range(80, 120);
6781 	}
6782 }
6783 
6784 /*
6785  * Do all freeze handling for the RXE block.
6786  */
6787 static void rxe_freeze(struct hfi1_devdata *dd)
6788 {
6789 	int i;
6790 	struct hfi1_ctxtdata *rcd;
6791 
6792 	/* disable port */
6793 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6794 
6795 	/* disable all receive contexts */
6796 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6797 		rcd = hfi1_rcd_get_by_index(dd, i);
6798 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6799 		hfi1_rcd_put(rcd);
6800 	}
6801 }
6802 
6803 /*
6804  * Unfreeze handling for the RXE block - kernel contexts only.
6805  * This will also enable the port.  User contexts will do unfreeze
6806  * handling on a per-context basis as they call into the driver.
6807  *
6808  */
6809 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6810 {
6811 	u32 rcvmask;
6812 	u16 i;
6813 	struct hfi1_ctxtdata *rcd;
6814 
6815 	/* enable all kernel contexts */
6816 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6817 		rcd = hfi1_rcd_get_by_index(dd, i);
6818 
6819 		/* Ensure all non-user contexts(including vnic) are enabled */
6820 		if (!rcd || !rcd->sc || (rcd->sc->type == SC_USER)) {
6821 			hfi1_rcd_put(rcd);
6822 			continue;
6823 		}
6824 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6825 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6826 		rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
6827 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6828 		hfi1_rcvctrl(dd, rcvmask, rcd);
6829 		hfi1_rcd_put(rcd);
6830 	}
6831 
6832 	/* enable port */
6833 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6834 }
6835 
6836 /*
6837  * Non-interrupt SPC freeze handling.
6838  *
6839  * This is a work-queue function outside of the triggering interrupt.
6840  */
6841 void handle_freeze(struct work_struct *work)
6842 {
6843 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6844 								freeze_work);
6845 	struct hfi1_devdata *dd = ppd->dd;
6846 
6847 	/* wait for freeze indicators on all affected blocks */
6848 	wait_for_freeze_status(dd, 1);
6849 
6850 	/* SPC is now frozen */
6851 
6852 	/* do send PIO freeze steps */
6853 	pio_freeze(dd);
6854 
6855 	/* do send DMA freeze steps */
6856 	sdma_freeze(dd);
6857 
6858 	/* do send egress freeze steps - nothing to do */
6859 
6860 	/* do receive freeze steps */
6861 	rxe_freeze(dd);
6862 
6863 	/*
6864 	 * Unfreeze the hardware - clear the freeze, wait for each
6865 	 * block's frozen bit to clear, then clear the frozen flag.
6866 	 */
6867 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6868 	wait_for_freeze_status(dd, 0);
6869 
6870 	if (is_ax(dd)) {
6871 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6872 		wait_for_freeze_status(dd, 1);
6873 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6874 		wait_for_freeze_status(dd, 0);
6875 	}
6876 
6877 	/* do send PIO unfreeze steps for kernel contexts */
6878 	pio_kernel_unfreeze(dd);
6879 
6880 	/* do send DMA unfreeze steps */
6881 	sdma_unfreeze(dd);
6882 
6883 	/* do send egress unfreeze steps - nothing to do */
6884 
6885 	/* do receive unfreeze steps for kernel contexts */
6886 	rxe_kernel_unfreeze(dd);
6887 
6888 	/*
6889 	 * The unfreeze procedure touches global device registers when
6890 	 * it disables and re-enables RXE. Mark the device unfrozen
6891 	 * after all that is done so other parts of the driver waiting
6892 	 * for the device to unfreeze don't do things out of order.
6893 	 *
6894 	 * The above implies that the meaning of HFI1_FROZEN flag is
6895 	 * "Device has gone into freeze mode and freeze mode handling
6896 	 * is still in progress."
6897 	 *
6898 	 * The flag will be removed when freeze mode processing has
6899 	 * completed.
6900 	 */
6901 	dd->flags &= ~HFI1_FROZEN;
6902 	wake_up(&dd->event_queue);
6903 
6904 	/* no longer frozen */
6905 }
6906 
6907 /*
6908  * Handle a link up interrupt from the 8051.
6909  *
6910  * This is a work-queue function outside of the interrupt.
6911  */
6912 void handle_link_up(struct work_struct *work)
6913 {
6914 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6915 						  link_up_work);
6916 	struct hfi1_devdata *dd = ppd->dd;
6917 
6918 	set_link_state(ppd, HLS_UP_INIT);
6919 
6920 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6921 	read_ltp_rtt(dd);
6922 	/*
6923 	 * OPA specifies that certain counters are cleared on a transition
6924 	 * to link up, so do that.
6925 	 */
6926 	clear_linkup_counters(dd);
6927 	/*
6928 	 * And (re)set link up default values.
6929 	 */
6930 	set_linkup_defaults(ppd);
6931 
6932 	/*
6933 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6934 	 * In case of quick linkup or simulator, vl15 value will be set by
6935 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6936 	 * called in those scenarios.
6937 	 */
6938 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6939 		set_up_vl15(dd, dd->vl15buf_cached);
6940 
6941 	/* enforce link speed enabled */
6942 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6943 		/* oops - current speed is not enabled, bounce */
6944 		dd_dev_err(dd,
6945 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6946 			   ppd->link_speed_active, ppd->link_speed_enabled);
6947 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6948 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6949 		set_link_state(ppd, HLS_DN_OFFLINE);
6950 		start_link(ppd);
6951 	}
6952 }
6953 
6954 /*
6955  * Several pieces of LNI information were cached for SMA in ppd.
6956  * Reset these on link down
6957  */
6958 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
6959 {
6960 	ppd->neighbor_guid = 0;
6961 	ppd->neighbor_port_number = 0;
6962 	ppd->neighbor_type = 0;
6963 	ppd->neighbor_fm_security = 0;
6964 }
6965 
6966 static const char * const link_down_reason_strs[] = {
6967 	[OPA_LINKDOWN_REASON_NONE] = "None",
6968 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
6969 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
6970 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
6971 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
6972 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
6973 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
6974 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
6975 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
6976 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
6977 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
6978 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
6979 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
6980 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
6981 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
6982 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
6983 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
6984 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
6985 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
6986 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
6987 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
6988 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
6989 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
6990 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
6991 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
6992 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
6993 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
6994 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
6995 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
6996 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
6997 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
6998 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
6999 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7000 					"Excessive buffer overrun",
7001 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7002 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7003 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7004 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7005 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7006 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7007 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7008 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7009 					"Local media not installed",
7010 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7011 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7012 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7013 					"End to end not installed",
7014 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7015 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7016 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7017 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7018 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7019 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7020 };
7021 
7022 /* return the neighbor link down reason string */
7023 static const char *link_down_reason_str(u8 reason)
7024 {
7025 	const char *str = NULL;
7026 
7027 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7028 		str = link_down_reason_strs[reason];
7029 	if (!str)
7030 		str = "(invalid)";
7031 
7032 	return str;
7033 }
7034 
7035 /*
7036  * Handle a link down interrupt from the 8051.
7037  *
7038  * This is a work-queue function outside of the interrupt.
7039  */
7040 void handle_link_down(struct work_struct *work)
7041 {
7042 	u8 lcl_reason, neigh_reason = 0;
7043 	u8 link_down_reason;
7044 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7045 						  link_down_work);
7046 	int was_up;
7047 	static const char ldr_str[] = "Link down reason: ";
7048 
7049 	if ((ppd->host_link_state &
7050 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7051 	     ppd->port_type == PORT_TYPE_FIXED)
7052 		ppd->offline_disabled_reason =
7053 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7054 
7055 	/* Go offline first, then deal with reading/writing through 8051 */
7056 	was_up = !!(ppd->host_link_state & HLS_UP);
7057 	set_link_state(ppd, HLS_DN_OFFLINE);
7058 	xchg(&ppd->is_link_down_queued, 0);
7059 
7060 	if (was_up) {
7061 		lcl_reason = 0;
7062 		/* link down reason is only valid if the link was up */
7063 		read_link_down_reason(ppd->dd, &link_down_reason);
7064 		switch (link_down_reason) {
7065 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7066 			/* the link went down, no idle message reason */
7067 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7068 				    ldr_str);
7069 			break;
7070 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7071 			/*
7072 			 * The neighbor reason is only valid if an idle message
7073 			 * was received for it.
7074 			 */
7075 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7076 			dd_dev_info(ppd->dd,
7077 				    "%sNeighbor link down message %d, %s\n",
7078 				    ldr_str, neigh_reason,
7079 				    link_down_reason_str(neigh_reason));
7080 			break;
7081 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7082 			dd_dev_info(ppd->dd,
7083 				    "%sHost requested link to go offline\n",
7084 				    ldr_str);
7085 			break;
7086 		default:
7087 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7088 				    ldr_str, link_down_reason);
7089 			break;
7090 		}
7091 
7092 		/*
7093 		 * If no reason, assume peer-initiated but missed
7094 		 * LinkGoingDown idle flits.
7095 		 */
7096 		if (neigh_reason == 0)
7097 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7098 	} else {
7099 		/* went down while polling or going up */
7100 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7101 	}
7102 
7103 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7104 
7105 	/* inform the SMA when the link transitions from up to down */
7106 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7107 	    ppd->neigh_link_down_reason.sma == 0) {
7108 		ppd->local_link_down_reason.sma =
7109 					ppd->local_link_down_reason.latest;
7110 		ppd->neigh_link_down_reason.sma =
7111 					ppd->neigh_link_down_reason.latest;
7112 	}
7113 
7114 	reset_neighbor_info(ppd);
7115 
7116 	/* disable the port */
7117 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7118 
7119 	/*
7120 	 * If there is no cable attached, turn the DC off. Otherwise,
7121 	 * start the link bring up.
7122 	 */
7123 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7124 		dc_shutdown(ppd->dd);
7125 	else
7126 		start_link(ppd);
7127 }
7128 
7129 void handle_link_bounce(struct work_struct *work)
7130 {
7131 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7132 							link_bounce_work);
7133 
7134 	/*
7135 	 * Only do something if the link is currently up.
7136 	 */
7137 	if (ppd->host_link_state & HLS_UP) {
7138 		set_link_state(ppd, HLS_DN_OFFLINE);
7139 		start_link(ppd);
7140 	} else {
7141 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7142 			    __func__, link_state_name(ppd->host_link_state));
7143 	}
7144 }
7145 
7146 /*
7147  * Mask conversion: Capability exchange to Port LTP.  The capability
7148  * exchange has an implicit 16b CRC that is mandatory.
7149  */
7150 static int cap_to_port_ltp(int cap)
7151 {
7152 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7153 
7154 	if (cap & CAP_CRC_14B)
7155 		port_ltp |= PORT_LTP_CRC_MODE_14;
7156 	if (cap & CAP_CRC_48B)
7157 		port_ltp |= PORT_LTP_CRC_MODE_48;
7158 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7159 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7160 
7161 	return port_ltp;
7162 }
7163 
7164 /*
7165  * Convert an OPA Port LTP mask to capability mask
7166  */
7167 int port_ltp_to_cap(int port_ltp)
7168 {
7169 	int cap_mask = 0;
7170 
7171 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7172 		cap_mask |= CAP_CRC_14B;
7173 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7174 		cap_mask |= CAP_CRC_48B;
7175 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7176 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7177 
7178 	return cap_mask;
7179 }
7180 
7181 /*
7182  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7183  */
7184 static int lcb_to_port_ltp(int lcb_crc)
7185 {
7186 	int port_ltp = 0;
7187 
7188 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7189 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7190 	else if (lcb_crc == LCB_CRC_48B)
7191 		port_ltp = PORT_LTP_CRC_MODE_48;
7192 	else if (lcb_crc == LCB_CRC_14B)
7193 		port_ltp = PORT_LTP_CRC_MODE_14;
7194 	else
7195 		port_ltp = PORT_LTP_CRC_MODE_16;
7196 
7197 	return port_ltp;
7198 }
7199 
7200 /*
7201  * Our neighbor has indicated that we are allowed to act as a fabric
7202  * manager, so place the full management partition key in the second
7203  * (0-based) pkey array position (see OPAv1, section 20.2.2.6.8). Note
7204  * that we should already have the limited management partition key in
7205  * array element 1, and also that the port is not yet up when
7206  * add_full_mgmt_pkey() is invoked.
7207  */
7208 static void add_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7209 {
7210 	struct hfi1_devdata *dd = ppd->dd;
7211 
7212 	/* Sanity check - ppd->pkeys[2] should be 0, or already initialized */
7213 	if (!((ppd->pkeys[2] == 0) || (ppd->pkeys[2] == FULL_MGMT_P_KEY)))
7214 		dd_dev_warn(dd, "%s pkey[2] already set to 0x%x, resetting it to 0x%x\n",
7215 			    __func__, ppd->pkeys[2], FULL_MGMT_P_KEY);
7216 	ppd->pkeys[2] = FULL_MGMT_P_KEY;
7217 	(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7218 	hfi1_event_pkey_change(ppd->dd, ppd->port);
7219 }
7220 
7221 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7222 {
7223 	if (ppd->pkeys[2] != 0) {
7224 		ppd->pkeys[2] = 0;
7225 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7226 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7227 	}
7228 }
7229 
7230 /*
7231  * Convert the given link width to the OPA link width bitmask.
7232  */
7233 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7234 {
7235 	switch (width) {
7236 	case 0:
7237 		/*
7238 		 * Simulator and quick linkup do not set the width.
7239 		 * Just set it to 4x without complaint.
7240 		 */
7241 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7242 			return OPA_LINK_WIDTH_4X;
7243 		return 0; /* no lanes up */
7244 	case 1: return OPA_LINK_WIDTH_1X;
7245 	case 2: return OPA_LINK_WIDTH_2X;
7246 	case 3: return OPA_LINK_WIDTH_3X;
7247 	default:
7248 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7249 			    __func__, width);
7250 		/* fall through */
7251 	case 4: return OPA_LINK_WIDTH_4X;
7252 	}
7253 }
7254 
7255 /*
7256  * Do a population count on the bottom nibble.
7257  */
7258 static const u8 bit_counts[16] = {
7259 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7260 };
7261 
7262 static inline u8 nibble_to_count(u8 nibble)
7263 {
7264 	return bit_counts[nibble & 0xf];
7265 }
7266 
7267 /*
7268  * Read the active lane information from the 8051 registers and return
7269  * their widths.
7270  *
7271  * Active lane information is found in these 8051 registers:
7272  *	enable_lane_tx
7273  *	enable_lane_rx
7274  */
7275 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7276 			    u16 *rx_width)
7277 {
7278 	u16 tx, rx;
7279 	u8 enable_lane_rx;
7280 	u8 enable_lane_tx;
7281 	u8 tx_polarity_inversion;
7282 	u8 rx_polarity_inversion;
7283 	u8 max_rate;
7284 
7285 	/* read the active lanes */
7286 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7287 			 &rx_polarity_inversion, &max_rate);
7288 	read_local_lni(dd, &enable_lane_rx);
7289 
7290 	/* convert to counts */
7291 	tx = nibble_to_count(enable_lane_tx);
7292 	rx = nibble_to_count(enable_lane_rx);
7293 
7294 	/*
7295 	 * Set link_speed_active here, overriding what was set in
7296 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7297 	 * set the max_rate field in handle_verify_cap until v0.19.
7298 	 */
7299 	if ((dd->icode == ICODE_RTL_SILICON) &&
7300 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7301 		/* max_rate: 0 = 12.5G, 1 = 25G */
7302 		switch (max_rate) {
7303 		case 0:
7304 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7305 			break;
7306 		default:
7307 			dd_dev_err(dd,
7308 				   "%s: unexpected max rate %d, using 25Gb\n",
7309 				   __func__, (int)max_rate);
7310 			/* fall through */
7311 		case 1:
7312 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7313 			break;
7314 		}
7315 	}
7316 
7317 	dd_dev_info(dd,
7318 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7319 		    enable_lane_tx, tx, enable_lane_rx, rx);
7320 	*tx_width = link_width_to_bits(dd, tx);
7321 	*rx_width = link_width_to_bits(dd, rx);
7322 }
7323 
7324 /*
7325  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7326  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7327  * after link up.  I.e. look elsewhere for downgrade information.
7328  *
7329  * Bits are:
7330  *	+ bits [7:4] contain the number of active transmitters
7331  *	+ bits [3:0] contain the number of active receivers
7332  * These are numbers 1 through 4 and can be different values if the
7333  * link is asymmetric.
7334  *
7335  * verify_cap_local_fm_link_width[0] retains its original value.
7336  */
7337 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7338 			      u16 *rx_width)
7339 {
7340 	u16 widths, tx, rx;
7341 	u8 misc_bits, local_flags;
7342 	u16 active_tx, active_rx;
7343 
7344 	read_vc_local_link_width(dd, &misc_bits, &local_flags, &widths);
7345 	tx = widths >> 12;
7346 	rx = (widths >> 8) & 0xf;
7347 
7348 	*tx_width = link_width_to_bits(dd, tx);
7349 	*rx_width = link_width_to_bits(dd, rx);
7350 
7351 	/* print the active widths */
7352 	get_link_widths(dd, &active_tx, &active_rx);
7353 }
7354 
7355 /*
7356  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7357  * hardware information when the link first comes up.
7358  *
7359  * The link width is not available until after VerifyCap.AllFramesReceived
7360  * (the trigger for handle_verify_cap), so this is outside that routine
7361  * and should be called when the 8051 signals linkup.
7362  */
7363 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7364 {
7365 	u16 tx_width, rx_width;
7366 
7367 	/* get end-of-LNI link widths */
7368 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7369 
7370 	/* use tx_width as the link is supposed to be symmetric on link up */
7371 	ppd->link_width_active = tx_width;
7372 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7373 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7374 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7375 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7376 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7377 	/* cache the active egress rate (units {10^6 bits/sec]) */
7378 	ppd->current_egress_rate = active_egress_rate(ppd);
7379 }
7380 
7381 /*
7382  * Handle a verify capabilities interrupt from the 8051.
7383  *
7384  * This is a work-queue function outside of the interrupt.
7385  */
7386 void handle_verify_cap(struct work_struct *work)
7387 {
7388 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7389 								link_vc_work);
7390 	struct hfi1_devdata *dd = ppd->dd;
7391 	u64 reg;
7392 	u8 power_management;
7393 	u8 continuous;
7394 	u8 vcu;
7395 	u8 vau;
7396 	u8 z;
7397 	u16 vl15buf;
7398 	u16 link_widths;
7399 	u16 crc_mask;
7400 	u16 crc_val;
7401 	u16 device_id;
7402 	u16 active_tx, active_rx;
7403 	u8 partner_supported_crc;
7404 	u8 remote_tx_rate;
7405 	u8 device_rev;
7406 
7407 	set_link_state(ppd, HLS_VERIFY_CAP);
7408 
7409 	lcb_shutdown(dd, 0);
7410 	adjust_lcb_for_fpga_serdes(dd);
7411 
7412 	read_vc_remote_phy(dd, &power_management, &continuous);
7413 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7414 			      &partner_supported_crc);
7415 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7416 	read_remote_device_id(dd, &device_id, &device_rev);
7417 	/*
7418 	 * And the 'MgmtAllowed' information, which is exchanged during
7419 	 * LNI, is also be available at this point.
7420 	 */
7421 	read_mgmt_allowed(dd, &ppd->mgmt_allowed);
7422 	/* print the active widths */
7423 	get_link_widths(dd, &active_tx, &active_rx);
7424 	dd_dev_info(dd,
7425 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7426 		    (int)power_management, (int)continuous);
7427 	dd_dev_info(dd,
7428 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7429 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7430 		    (int)partner_supported_crc);
7431 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7432 		    (u32)remote_tx_rate, (u32)link_widths);
7433 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7434 		    (u32)device_id, (u32)device_rev);
7435 	/*
7436 	 * The peer vAU value just read is the peer receiver value.  HFI does
7437 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7438 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7439 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7440 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7441 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7442 	 * subject to the Z value exception.
7443 	 */
7444 	if (vau == 0)
7445 		vau = 1;
7446 	set_up_vau(dd, vau);
7447 
7448 	/*
7449 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7450 	 * credits value and wait for link-up interrupt ot set it.
7451 	 */
7452 	set_up_vl15(dd, 0);
7453 	dd->vl15buf_cached = vl15buf;
7454 
7455 	/* set up the LCB CRC mode */
7456 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7457 
7458 	/* order is important: use the lowest bit in common */
7459 	if (crc_mask & CAP_CRC_14B)
7460 		crc_val = LCB_CRC_14B;
7461 	else if (crc_mask & CAP_CRC_48B)
7462 		crc_val = LCB_CRC_48B;
7463 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7464 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7465 	else
7466 		crc_val = LCB_CRC_16B;
7467 
7468 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7469 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7470 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7471 
7472 	/* set (14b only) or clear sideband credit */
7473 	reg = read_csr(dd, SEND_CM_CTRL);
7474 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7475 		write_csr(dd, SEND_CM_CTRL,
7476 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7477 	} else {
7478 		write_csr(dd, SEND_CM_CTRL,
7479 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7480 	}
7481 
7482 	ppd->link_speed_active = 0;	/* invalid value */
7483 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7484 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7485 		switch (remote_tx_rate) {
7486 		case 0:
7487 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7488 			break;
7489 		case 1:
7490 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7491 			break;
7492 		}
7493 	} else {
7494 		/* actual rate is highest bit of the ANDed rates */
7495 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7496 
7497 		if (rate & 2)
7498 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7499 		else if (rate & 1)
7500 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7501 	}
7502 	if (ppd->link_speed_active == 0) {
7503 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7504 			   __func__, (int)remote_tx_rate);
7505 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7506 	}
7507 
7508 	/*
7509 	 * Cache the values of the supported, enabled, and active
7510 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7511 	 * flags that are returned in the portinfo query differ from
7512 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7513 	 * variables. Convert these here.
7514 	 */
7515 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7516 		/* supported crc modes */
7517 	ppd->port_ltp_crc_mode |=
7518 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7519 		/* enabled crc modes */
7520 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7521 		/* active crc mode */
7522 
7523 	/* set up the remote credit return table */
7524 	assign_remote_cm_au_table(dd, vcu);
7525 
7526 	/*
7527 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7528 	 * be applied on every link up.
7529 	 *
7530 	 * Adjust LCB error kill enable to kill the link if
7531 	 * these RBUF errors are seen:
7532 	 *	REPLAY_BUF_MBE_SMASK
7533 	 *	FLIT_INPUT_BUF_MBE_SMASK
7534 	 */
7535 	if (is_ax(dd)) {			/* fixed in B0 */
7536 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7537 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7538 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7539 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7540 	}
7541 
7542 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7543 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7544 
7545 	/* give 8051 access to the LCB CSRs */
7546 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7547 	set_8051_lcb_access(dd);
7548 
7549 	if (ppd->mgmt_allowed)
7550 		add_full_mgmt_pkey(ppd);
7551 
7552 	/* tell the 8051 to go to LinkUp */
7553 	set_link_state(ppd, HLS_GOING_UP);
7554 }
7555 
7556 /*
7557  * Apply the link width downgrade enabled policy against the current active
7558  * link widths.
7559  *
7560  * Called when the enabled policy changes or the active link widths change.
7561  */
7562 void apply_link_downgrade_policy(struct hfi1_pportdata *ppd, int refresh_widths)
7563 {
7564 	int do_bounce = 0;
7565 	int tries;
7566 	u16 lwde;
7567 	u16 tx, rx;
7568 
7569 	/* use the hls lock to avoid a race with actual link up */
7570 	tries = 0;
7571 retry:
7572 	mutex_lock(&ppd->hls_lock);
7573 	/* only apply if the link is up */
7574 	if (ppd->host_link_state & HLS_DOWN) {
7575 		/* still going up..wait and retry */
7576 		if (ppd->host_link_state & HLS_GOING_UP) {
7577 			if (++tries < 1000) {
7578 				mutex_unlock(&ppd->hls_lock);
7579 				usleep_range(100, 120); /* arbitrary */
7580 				goto retry;
7581 			}
7582 			dd_dev_err(ppd->dd,
7583 				   "%s: giving up waiting for link state change\n",
7584 				   __func__);
7585 		}
7586 		goto done;
7587 	}
7588 
7589 	lwde = ppd->link_width_downgrade_enabled;
7590 
7591 	if (refresh_widths) {
7592 		get_link_widths(ppd->dd, &tx, &rx);
7593 		ppd->link_width_downgrade_tx_active = tx;
7594 		ppd->link_width_downgrade_rx_active = rx;
7595 	}
7596 
7597 	if (ppd->link_width_downgrade_tx_active == 0 ||
7598 	    ppd->link_width_downgrade_rx_active == 0) {
7599 		/* the 8051 reported a dead link as a downgrade */
7600 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7601 	} else if (lwde == 0) {
7602 		/* downgrade is disabled */
7603 
7604 		/* bounce if not at starting active width */
7605 		if ((ppd->link_width_active !=
7606 		     ppd->link_width_downgrade_tx_active) ||
7607 		    (ppd->link_width_active !=
7608 		     ppd->link_width_downgrade_rx_active)) {
7609 			dd_dev_err(ppd->dd,
7610 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7611 			dd_dev_err(ppd->dd,
7612 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7613 				   ppd->link_width_active,
7614 				   ppd->link_width_downgrade_tx_active,
7615 				   ppd->link_width_downgrade_rx_active);
7616 			do_bounce = 1;
7617 		}
7618 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7619 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7620 		/* Tx or Rx is outside the enabled policy */
7621 		dd_dev_err(ppd->dd,
7622 			   "Link is outside of downgrade allowed, downing link\n");
7623 		dd_dev_err(ppd->dd,
7624 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7625 			   lwde, ppd->link_width_downgrade_tx_active,
7626 			   ppd->link_width_downgrade_rx_active);
7627 		do_bounce = 1;
7628 	}
7629 
7630 done:
7631 	mutex_unlock(&ppd->hls_lock);
7632 
7633 	if (do_bounce) {
7634 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7635 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7636 		set_link_state(ppd, HLS_DN_OFFLINE);
7637 		start_link(ppd);
7638 	}
7639 }
7640 
7641 /*
7642  * Handle a link downgrade interrupt from the 8051.
7643  *
7644  * This is a work-queue function outside of the interrupt.
7645  */
7646 void handle_link_downgrade(struct work_struct *work)
7647 {
7648 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7649 							link_downgrade_work);
7650 
7651 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7652 	apply_link_downgrade_policy(ppd, 1);
7653 }
7654 
7655 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7656 {
7657 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7658 		ARRAY_SIZE(dcc_err_flags));
7659 }
7660 
7661 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7662 {
7663 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7664 		ARRAY_SIZE(lcb_err_flags));
7665 }
7666 
7667 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7668 {
7669 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7670 		ARRAY_SIZE(dc8051_err_flags));
7671 }
7672 
7673 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7674 {
7675 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7676 		ARRAY_SIZE(dc8051_info_err_flags));
7677 }
7678 
7679 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7680 {
7681 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7682 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7683 }
7684 
7685 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7686 {
7687 	struct hfi1_pportdata *ppd = dd->pport;
7688 	u64 info, err, host_msg;
7689 	int queue_link_down = 0;
7690 	char buf[96];
7691 
7692 	/* look at the flags */
7693 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7694 		/* 8051 information set by firmware */
7695 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7696 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7697 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7698 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7699 		host_msg = (info >>
7700 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7701 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7702 
7703 		/*
7704 		 * Handle error flags.
7705 		 */
7706 		if (err & FAILED_LNI) {
7707 			/*
7708 			 * LNI error indications are cleared by the 8051
7709 			 * only when starting polling.  Only pay attention
7710 			 * to them when in the states that occur during
7711 			 * LNI.
7712 			 */
7713 			if (ppd->host_link_state
7714 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7715 				queue_link_down = 1;
7716 				dd_dev_info(dd, "Link error: %s\n",
7717 					    dc8051_info_err_string(buf,
7718 								   sizeof(buf),
7719 								   err &
7720 								   FAILED_LNI));
7721 			}
7722 			err &= ~(u64)FAILED_LNI;
7723 		}
7724 		/* unknown frames can happen durning LNI, just count */
7725 		if (err & UNKNOWN_FRAME) {
7726 			ppd->unknown_frame_count++;
7727 			err &= ~(u64)UNKNOWN_FRAME;
7728 		}
7729 		if (err) {
7730 			/* report remaining errors, but do not do anything */
7731 			dd_dev_err(dd, "8051 info error: %s\n",
7732 				   dc8051_info_err_string(buf, sizeof(buf),
7733 							  err));
7734 		}
7735 
7736 		/*
7737 		 * Handle host message flags.
7738 		 */
7739 		if (host_msg & HOST_REQ_DONE) {
7740 			/*
7741 			 * Presently, the driver does a busy wait for
7742 			 * host requests to complete.  This is only an
7743 			 * informational message.
7744 			 * NOTE: The 8051 clears the host message
7745 			 * information *on the next 8051 command*.
7746 			 * Therefore, when linkup is achieved,
7747 			 * this flag will still be set.
7748 			 */
7749 			host_msg &= ~(u64)HOST_REQ_DONE;
7750 		}
7751 		if (host_msg & BC_SMA_MSG) {
7752 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7753 			host_msg &= ~(u64)BC_SMA_MSG;
7754 		}
7755 		if (host_msg & LINKUP_ACHIEVED) {
7756 			dd_dev_info(dd, "8051: Link up\n");
7757 			queue_work(ppd->link_wq, &ppd->link_up_work);
7758 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7759 		}
7760 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7761 			handle_8051_request(ppd);
7762 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7763 		}
7764 		if (host_msg & VERIFY_CAP_FRAME) {
7765 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7766 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7767 		}
7768 		if (host_msg & LINK_GOING_DOWN) {
7769 			const char *extra = "";
7770 			/* no downgrade action needed if going down */
7771 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7772 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7773 				extra = " (ignoring downgrade)";
7774 			}
7775 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7776 			queue_link_down = 1;
7777 			host_msg &= ~(u64)LINK_GOING_DOWN;
7778 		}
7779 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7780 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7781 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7782 		}
7783 		if (host_msg) {
7784 			/* report remaining messages, but do not do anything */
7785 			dd_dev_info(dd, "8051 info host message: %s\n",
7786 				    dc8051_info_host_msg_string(buf,
7787 								sizeof(buf),
7788 								host_msg));
7789 		}
7790 
7791 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7792 	}
7793 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7794 		/*
7795 		 * Lost the 8051 heartbeat.  If this happens, we
7796 		 * receive constant interrupts about it.  Disable
7797 		 * the interrupt after the first.
7798 		 */
7799 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7800 		write_csr(dd, DC_DC8051_ERR_EN,
7801 			  read_csr(dd, DC_DC8051_ERR_EN) &
7802 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7803 
7804 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7805 	}
7806 	if (reg) {
7807 		/* report the error, but do not do anything */
7808 		dd_dev_err(dd, "8051 error: %s\n",
7809 			   dc8051_err_string(buf, sizeof(buf), reg));
7810 	}
7811 
7812 	if (queue_link_down) {
7813 		/*
7814 		 * if the link is already going down or disabled, do not
7815 		 * queue another. If there's a link down entry already
7816 		 * queued, don't queue another one.
7817 		 */
7818 		if ((ppd->host_link_state &
7819 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7820 		    ppd->link_enabled == 0) {
7821 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7822 				    __func__, ppd->host_link_state,
7823 				    ppd->link_enabled);
7824 		} else {
7825 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7826 				dd_dev_info(dd,
7827 					    "%s: link down request already queued\n",
7828 					    __func__);
7829 			else
7830 				queue_work(ppd->link_wq, &ppd->link_down_work);
7831 		}
7832 	}
7833 }
7834 
7835 static const char * const fm_config_txt[] = {
7836 [0] =
7837 	"BadHeadDist: Distance violation between two head flits",
7838 [1] =
7839 	"BadTailDist: Distance violation between two tail flits",
7840 [2] =
7841 	"BadCtrlDist: Distance violation between two credit control flits",
7842 [3] =
7843 	"BadCrdAck: Credits return for unsupported VL",
7844 [4] =
7845 	"UnsupportedVLMarker: Received VL Marker",
7846 [5] =
7847 	"BadPreempt: Exceeded the preemption nesting level",
7848 [6] =
7849 	"BadControlFlit: Received unsupported control flit",
7850 /* no 7 */
7851 [8] =
7852 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7853 };
7854 
7855 static const char * const port_rcv_txt[] = {
7856 [1] =
7857 	"BadPktLen: Illegal PktLen",
7858 [2] =
7859 	"PktLenTooLong: Packet longer than PktLen",
7860 [3] =
7861 	"PktLenTooShort: Packet shorter than PktLen",
7862 [4] =
7863 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7864 [5] =
7865 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7866 [6] =
7867 	"BadL2: Illegal L2 opcode",
7868 [7] =
7869 	"BadSC: Unsupported SC",
7870 [9] =
7871 	"BadRC: Illegal RC",
7872 [11] =
7873 	"PreemptError: Preempting with same VL",
7874 [12] =
7875 	"PreemptVL15: Preempting a VL15 packet",
7876 };
7877 
7878 #define OPA_LDR_FMCONFIG_OFFSET 16
7879 #define OPA_LDR_PORTRCV_OFFSET 0
7880 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7881 {
7882 	u64 info, hdr0, hdr1;
7883 	const char *extra;
7884 	char buf[96];
7885 	struct hfi1_pportdata *ppd = dd->pport;
7886 	u8 lcl_reason = 0;
7887 	int do_bounce = 0;
7888 
7889 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7890 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7891 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7892 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7893 			/* set status bit */
7894 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7895 		}
7896 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7897 	}
7898 
7899 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7900 		struct hfi1_pportdata *ppd = dd->pport;
7901 		/* this counter saturates at (2^32) - 1 */
7902 		if (ppd->link_downed < (u32)UINT_MAX)
7903 			ppd->link_downed++;
7904 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7905 	}
7906 
7907 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7908 		u8 reason_valid = 1;
7909 
7910 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7911 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7912 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7913 			/* set status bit */
7914 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7915 		}
7916 		switch (info) {
7917 		case 0:
7918 		case 1:
7919 		case 2:
7920 		case 3:
7921 		case 4:
7922 		case 5:
7923 		case 6:
7924 			extra = fm_config_txt[info];
7925 			break;
7926 		case 8:
7927 			extra = fm_config_txt[info];
7928 			if (ppd->port_error_action &
7929 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7930 				do_bounce = 1;
7931 				/*
7932 				 * lcl_reason cannot be derived from info
7933 				 * for this error
7934 				 */
7935 				lcl_reason =
7936 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7937 			}
7938 			break;
7939 		default:
7940 			reason_valid = 0;
7941 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7942 			extra = buf;
7943 			break;
7944 		}
7945 
7946 		if (reason_valid && !do_bounce) {
7947 			do_bounce = ppd->port_error_action &
7948 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7949 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7950 		}
7951 
7952 		/* just report this */
7953 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7954 					extra);
7955 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7956 	}
7957 
7958 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7959 		u8 reason_valid = 1;
7960 
7961 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7962 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7963 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7964 		if (!(dd->err_info_rcvport.status_and_code &
7965 		      OPA_EI_STATUS_SMASK)) {
7966 			dd->err_info_rcvport.status_and_code =
7967 				info & OPA_EI_CODE_SMASK;
7968 			/* set status bit */
7969 			dd->err_info_rcvport.status_and_code |=
7970 				OPA_EI_STATUS_SMASK;
7971 			/*
7972 			 * save first 2 flits in the packet that caused
7973 			 * the error
7974 			 */
7975 			dd->err_info_rcvport.packet_flit1 = hdr0;
7976 			dd->err_info_rcvport.packet_flit2 = hdr1;
7977 		}
7978 		switch (info) {
7979 		case 1:
7980 		case 2:
7981 		case 3:
7982 		case 4:
7983 		case 5:
7984 		case 6:
7985 		case 7:
7986 		case 9:
7987 		case 11:
7988 		case 12:
7989 			extra = port_rcv_txt[info];
7990 			break;
7991 		default:
7992 			reason_valid = 0;
7993 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7994 			extra = buf;
7995 			break;
7996 		}
7997 
7998 		if (reason_valid && !do_bounce) {
7999 			do_bounce = ppd->port_error_action &
8000 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8001 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8002 		}
8003 
8004 		/* just report this */
8005 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8006 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8007 					extra, hdr0, hdr1);
8008 
8009 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8010 	}
8011 
8012 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8013 		/* informative only */
8014 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8015 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8016 	}
8017 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8018 		/* informative only */
8019 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8020 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8021 	}
8022 
8023 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8024 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8025 
8026 	/* report any remaining errors */
8027 	if (reg)
8028 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8029 					dcc_err_string(buf, sizeof(buf), reg));
8030 
8031 	if (lcl_reason == 0)
8032 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8033 
8034 	if (do_bounce) {
8035 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8036 					__func__);
8037 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8038 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8039 	}
8040 }
8041 
8042 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8043 {
8044 	char buf[96];
8045 
8046 	dd_dev_info(dd, "LCB Error: %s\n",
8047 		    lcb_err_string(buf, sizeof(buf), reg));
8048 }
8049 
8050 /*
8051  * CCE block DC interrupt.  Source is < 8.
8052  */
8053 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8054 {
8055 	const struct err_reg_info *eri = &dc_errs[source];
8056 
8057 	if (eri->handler) {
8058 		interrupt_clear_down(dd, 0, eri);
8059 	} else if (source == 3 /* dc_lbm_int */) {
8060 		/*
8061 		 * This indicates that a parity error has occurred on the
8062 		 * address/control lines presented to the LBM.  The error
8063 		 * is a single pulse, there is no associated error flag,
8064 		 * and it is non-maskable.  This is because if a parity
8065 		 * error occurs on the request the request is dropped.
8066 		 * This should never occur, but it is nice to know if it
8067 		 * ever does.
8068 		 */
8069 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8070 	} else {
8071 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8072 	}
8073 }
8074 
8075 /*
8076  * TX block send credit interrupt.  Source is < 160.
8077  */
8078 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8079 {
8080 	sc_group_release_update(dd, source);
8081 }
8082 
8083 /*
8084  * TX block SDMA interrupt.  Source is < 48.
8085  *
8086  * SDMA interrupts are grouped by type:
8087  *
8088  *	 0 -  N-1 = SDma
8089  *	 N - 2N-1 = SDmaProgress
8090  *	2N - 3N-1 = SDmaIdle
8091  */
8092 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8093 {
8094 	/* what interrupt */
8095 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8096 	/* which engine */
8097 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8098 
8099 #ifdef CONFIG_SDMA_VERBOSITY
8100 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8101 		   slashstrip(__FILE__), __LINE__, __func__);
8102 	sdma_dumpstate(&dd->per_sdma[which]);
8103 #endif
8104 
8105 	if (likely(what < 3 && which < dd->num_sdma)) {
8106 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8107 	} else {
8108 		/* should not happen */
8109 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8110 	}
8111 }
8112 
8113 /*
8114  * RX block receive available interrupt.  Source is < 160.
8115  */
8116 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8117 {
8118 	struct hfi1_ctxtdata *rcd;
8119 	char *err_detail;
8120 
8121 	if (likely(source < dd->num_rcv_contexts)) {
8122 		rcd = hfi1_rcd_get_by_index(dd, source);
8123 		if (rcd) {
8124 			/* Check for non-user contexts, including vnic */
8125 			if ((source < dd->first_dyn_alloc_ctxt) ||
8126 			    (rcd->sc && (rcd->sc->type == SC_KERNEL)))
8127 				rcd->do_interrupt(rcd, 0);
8128 			else
8129 				handle_user_interrupt(rcd);
8130 
8131 			hfi1_rcd_put(rcd);
8132 			return;	/* OK */
8133 		}
8134 		/* received an interrupt, but no rcd */
8135 		err_detail = "dataless";
8136 	} else {
8137 		/* received an interrupt, but are not using that context */
8138 		err_detail = "out of range";
8139 	}
8140 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8141 		   err_detail, source);
8142 }
8143 
8144 /*
8145  * RX block receive urgent interrupt.  Source is < 160.
8146  */
8147 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8148 {
8149 	struct hfi1_ctxtdata *rcd;
8150 	char *err_detail;
8151 
8152 	if (likely(source < dd->num_rcv_contexts)) {
8153 		rcd = hfi1_rcd_get_by_index(dd, source);
8154 		if (rcd) {
8155 			/* only pay attention to user urgent interrupts */
8156 			if ((source >= dd->first_dyn_alloc_ctxt) &&
8157 			    (!rcd->sc || (rcd->sc->type == SC_USER)))
8158 				handle_user_interrupt(rcd);
8159 
8160 			hfi1_rcd_put(rcd);
8161 			return;	/* OK */
8162 		}
8163 		/* received an interrupt, but no rcd */
8164 		err_detail = "dataless";
8165 	} else {
8166 		/* received an interrupt, but are not using that context */
8167 		err_detail = "out of range";
8168 	}
8169 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8170 		   err_detail, source);
8171 }
8172 
8173 /*
8174  * Reserved range interrupt.  Should not be called in normal operation.
8175  */
8176 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8177 {
8178 	char name[64];
8179 
8180 	dd_dev_err(dd, "unexpected %s interrupt\n",
8181 		   is_reserved_name(name, sizeof(name), source));
8182 }
8183 
8184 static const struct is_table is_table[] = {
8185 /*
8186  * start		 end
8187  *				name func		interrupt func
8188  */
8189 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8190 				is_misc_err_name,	is_misc_err_int },
8191 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8192 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8193 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8194 				is_sendctxt_err_name,	is_sendctxt_err_int },
8195 { IS_SDMA_START,	     IS_SDMA_END,
8196 				is_sdma_eng_name,	is_sdma_eng_int },
8197 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8198 				is_various_name,	is_various_int },
8199 { IS_DC_START,	     IS_DC_END,
8200 				is_dc_name,		is_dc_int },
8201 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8202 				is_rcv_avail_name,	is_rcv_avail_int },
8203 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8204 				is_rcv_urgent_name,	is_rcv_urgent_int },
8205 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8206 				is_send_credit_name,	is_send_credit_int},
8207 { IS_RESERVED_START,     IS_RESERVED_END,
8208 				is_reserved_name,	is_reserved_int},
8209 };
8210 
8211 /*
8212  * Interrupt source interrupt - called when the given source has an interrupt.
8213  * Source is a bit index into an array of 64-bit integers.
8214  */
8215 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8216 {
8217 	const struct is_table *entry;
8218 
8219 	/* avoids a double compare by walking the table in-order */
8220 	for (entry = &is_table[0]; entry->is_name; entry++) {
8221 		if (source < entry->end) {
8222 			trace_hfi1_interrupt(dd, entry, source);
8223 			entry->is_int(dd, source - entry->start);
8224 			return;
8225 		}
8226 	}
8227 	/* fell off the end */
8228 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8229 }
8230 
8231 /*
8232  * General interrupt handler.  This is able to correctly handle
8233  * all interrupts in case INTx is used.
8234  */
8235 static irqreturn_t general_interrupt(int irq, void *data)
8236 {
8237 	struct hfi1_devdata *dd = data;
8238 	u64 regs[CCE_NUM_INT_CSRS];
8239 	u32 bit;
8240 	int i;
8241 
8242 	this_cpu_inc(*dd->int_counter);
8243 
8244 	/* phase 1: scan and clear all handled interrupts */
8245 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8246 		if (dd->gi_mask[i] == 0) {
8247 			regs[i] = 0;	/* used later */
8248 			continue;
8249 		}
8250 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8251 				dd->gi_mask[i];
8252 		/* only clear if anything is set */
8253 		if (regs[i])
8254 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8255 	}
8256 
8257 	/* phase 2: call the appropriate handler */
8258 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8259 			 CCE_NUM_INT_CSRS * 64) {
8260 		is_interrupt(dd, bit);
8261 	}
8262 
8263 	return IRQ_HANDLED;
8264 }
8265 
8266 static irqreturn_t sdma_interrupt(int irq, void *data)
8267 {
8268 	struct sdma_engine *sde = data;
8269 	struct hfi1_devdata *dd = sde->dd;
8270 	u64 status;
8271 
8272 #ifdef CONFIG_SDMA_VERBOSITY
8273 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8274 		   slashstrip(__FILE__), __LINE__, __func__);
8275 	sdma_dumpstate(sde);
8276 #endif
8277 
8278 	this_cpu_inc(*dd->int_counter);
8279 
8280 	/* This read_csr is really bad in the hot path */
8281 	status = read_csr(dd,
8282 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8283 			  & sde->imask;
8284 	if (likely(status)) {
8285 		/* clear the interrupt(s) */
8286 		write_csr(dd,
8287 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8288 			  status);
8289 
8290 		/* handle the interrupt(s) */
8291 		sdma_engine_interrupt(sde, status);
8292 	} else {
8293 		dd_dev_err_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8294 				       sde->this_idx);
8295 	}
8296 	return IRQ_HANDLED;
8297 }
8298 
8299 /*
8300  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8301  * to insure that the write completed.  This does NOT guarantee that
8302  * queued DMA writes to memory from the chip are pushed.
8303  */
8304 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8305 {
8306 	struct hfi1_devdata *dd = rcd->dd;
8307 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8308 
8309 	mmiowb();	/* make sure everything before is written */
8310 	write_csr(dd, addr, rcd->imask);
8311 	/* force the above write on the chip and get a value back */
8312 	(void)read_csr(dd, addr);
8313 }
8314 
8315 /* force the receive interrupt */
8316 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8317 {
8318 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8319 }
8320 
8321 /*
8322  * Return non-zero if a packet is present.
8323  *
8324  * This routine is called when rechecking for packets after the RcvAvail
8325  * interrupt has been cleared down.  First, do a quick check of memory for
8326  * a packet present.  If not found, use an expensive CSR read of the context
8327  * tail to determine the actual tail.  The CSR read is necessary because there
8328  * is no method to push pending DMAs to memory other than an interrupt and we
8329  * are trying to determine if we need to force an interrupt.
8330  */
8331 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8332 {
8333 	u32 tail;
8334 	int present;
8335 
8336 	if (!HFI1_CAP_IS_KSET(DMA_RTAIL))
8337 		present = (rcd->seq_cnt ==
8338 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8339 	else /* is RDMA rtail */
8340 		present = (rcd->head != get_rcvhdrtail(rcd));
8341 
8342 	if (present)
8343 		return 1;
8344 
8345 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8346 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8347 	return rcd->head != tail;
8348 }
8349 
8350 /*
8351  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8352  * This routine will try to handle packets immediately (latency), but if
8353  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8354  * chip receive interrupt is *not* cleared down until this or the thread (if
8355  * invoked) is finished.  The intent is to avoid extra interrupts while we
8356  * are processing packets anyway.
8357  */
8358 static irqreturn_t receive_context_interrupt(int irq, void *data)
8359 {
8360 	struct hfi1_ctxtdata *rcd = data;
8361 	struct hfi1_devdata *dd = rcd->dd;
8362 	int disposition;
8363 	int present;
8364 
8365 	trace_hfi1_receive_interrupt(dd, rcd);
8366 	this_cpu_inc(*dd->int_counter);
8367 	aspm_ctx_disable(rcd);
8368 
8369 	/* receive interrupt remains blocked while processing packets */
8370 	disposition = rcd->do_interrupt(rcd, 0);
8371 
8372 	/*
8373 	 * Too many packets were seen while processing packets in this
8374 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8375 	 * remains blocked.
8376 	 */
8377 	if (disposition == RCV_PKT_LIMIT)
8378 		return IRQ_WAKE_THREAD;
8379 
8380 	/*
8381 	 * The packet processor detected no more packets.  Clear the receive
8382 	 * interrupt and recheck for a packet packet that may have arrived
8383 	 * after the previous check and interrupt clear.  If a packet arrived,
8384 	 * force another interrupt.
8385 	 */
8386 	clear_recv_intr(rcd);
8387 	present = check_packet_present(rcd);
8388 	if (present)
8389 		force_recv_intr(rcd);
8390 
8391 	return IRQ_HANDLED;
8392 }
8393 
8394 /*
8395  * Receive packet thread handler.  This expects to be invoked with the
8396  * receive interrupt still blocked.
8397  */
8398 static irqreturn_t receive_context_thread(int irq, void *data)
8399 {
8400 	struct hfi1_ctxtdata *rcd = data;
8401 	int present;
8402 
8403 	/* receive interrupt is still blocked from the IRQ handler */
8404 	(void)rcd->do_interrupt(rcd, 1);
8405 
8406 	/*
8407 	 * The packet processor will only return if it detected no more
8408 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8409 	 * recheck for a packet that may have arrived after the previous
8410 	 * check and the interrupt clear.  If a packet arrived, force another
8411 	 * interrupt.
8412 	 */
8413 	local_irq_disable();
8414 	clear_recv_intr(rcd);
8415 	present = check_packet_present(rcd);
8416 	if (present)
8417 		force_recv_intr(rcd);
8418 	local_irq_enable();
8419 
8420 	return IRQ_HANDLED;
8421 }
8422 
8423 /* ========================================================================= */
8424 
8425 u32 read_physical_state(struct hfi1_devdata *dd)
8426 {
8427 	u64 reg;
8428 
8429 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8430 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8431 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8432 }
8433 
8434 u32 read_logical_state(struct hfi1_devdata *dd)
8435 {
8436 	u64 reg;
8437 
8438 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8439 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8440 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8441 }
8442 
8443 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8444 {
8445 	u64 reg;
8446 
8447 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8448 	/* clear current state, set new state */
8449 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8450 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8451 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8452 }
8453 
8454 /*
8455  * Use the 8051 to read a LCB CSR.
8456  */
8457 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8458 {
8459 	u32 regno;
8460 	int ret;
8461 
8462 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8463 		if (acquire_lcb_access(dd, 0) == 0) {
8464 			*data = read_csr(dd, addr);
8465 			release_lcb_access(dd, 0);
8466 			return 0;
8467 		}
8468 		return -EBUSY;
8469 	}
8470 
8471 	/* register is an index of LCB registers: (offset - base) / 8 */
8472 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8473 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8474 	if (ret != HCMD_SUCCESS)
8475 		return -EBUSY;
8476 	return 0;
8477 }
8478 
8479 /*
8480  * Provide a cache for some of the LCB registers in case the LCB is
8481  * unavailable.
8482  * (The LCB is unavailable in certain link states, for example.)
8483  */
8484 struct lcb_datum {
8485 	u32 off;
8486 	u64 val;
8487 };
8488 
8489 static struct lcb_datum lcb_cache[] = {
8490 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8491 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8492 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8493 };
8494 
8495 static void update_lcb_cache(struct hfi1_devdata *dd)
8496 {
8497 	int i;
8498 	int ret;
8499 	u64 val;
8500 
8501 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8502 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8503 
8504 		/* Update if we get good data */
8505 		if (likely(ret != -EBUSY))
8506 			lcb_cache[i].val = val;
8507 	}
8508 }
8509 
8510 static int read_lcb_cache(u32 off, u64 *val)
8511 {
8512 	int i;
8513 
8514 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8515 		if (lcb_cache[i].off == off) {
8516 			*val = lcb_cache[i].val;
8517 			return 0;
8518 		}
8519 	}
8520 
8521 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8522 	return -1;
8523 }
8524 
8525 /*
8526  * Read an LCB CSR.  Access may not be in host control, so check.
8527  * Return 0 on success, -EBUSY on failure.
8528  */
8529 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8530 {
8531 	struct hfi1_pportdata *ppd = dd->pport;
8532 
8533 	/* if up, go through the 8051 for the value */
8534 	if (ppd->host_link_state & HLS_UP)
8535 		return read_lcb_via_8051(dd, addr, data);
8536 	/* if going up or down, check the cache, otherwise, no access */
8537 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8538 		if (read_lcb_cache(addr, data))
8539 			return -EBUSY;
8540 		return 0;
8541 	}
8542 
8543 	/* otherwise, host has access */
8544 	*data = read_csr(dd, addr);
8545 	return 0;
8546 }
8547 
8548 /*
8549  * Use the 8051 to write a LCB CSR.
8550  */
8551 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8552 {
8553 	u32 regno;
8554 	int ret;
8555 
8556 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8557 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8558 		if (acquire_lcb_access(dd, 0) == 0) {
8559 			write_csr(dd, addr, data);
8560 			release_lcb_access(dd, 0);
8561 			return 0;
8562 		}
8563 		return -EBUSY;
8564 	}
8565 
8566 	/* register is an index of LCB registers: (offset - base) / 8 */
8567 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8568 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8569 	if (ret != HCMD_SUCCESS)
8570 		return -EBUSY;
8571 	return 0;
8572 }
8573 
8574 /*
8575  * Write an LCB CSR.  Access may not be in host control, so check.
8576  * Return 0 on success, -EBUSY on failure.
8577  */
8578 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8579 {
8580 	struct hfi1_pportdata *ppd = dd->pport;
8581 
8582 	/* if up, go through the 8051 for the value */
8583 	if (ppd->host_link_state & HLS_UP)
8584 		return write_lcb_via_8051(dd, addr, data);
8585 	/* if going up or down, no access */
8586 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8587 		return -EBUSY;
8588 	/* otherwise, host has access */
8589 	write_csr(dd, addr, data);
8590 	return 0;
8591 }
8592 
8593 /*
8594  * Returns:
8595  *	< 0 = Linux error, not able to get access
8596  *	> 0 = 8051 command RETURN_CODE
8597  */
8598 static int do_8051_command(
8599 	struct hfi1_devdata *dd,
8600 	u32 type,
8601 	u64 in_data,
8602 	u64 *out_data)
8603 {
8604 	u64 reg, completed;
8605 	int return_code;
8606 	unsigned long timeout;
8607 
8608 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8609 
8610 	mutex_lock(&dd->dc8051_lock);
8611 
8612 	/* We can't send any commands to the 8051 if it's in reset */
8613 	if (dd->dc_shutdown) {
8614 		return_code = -ENODEV;
8615 		goto fail;
8616 	}
8617 
8618 	/*
8619 	 * If an 8051 host command timed out previously, then the 8051 is
8620 	 * stuck.
8621 	 *
8622 	 * On first timeout, attempt to reset and restart the entire DC
8623 	 * block (including 8051). (Is this too big of a hammer?)
8624 	 *
8625 	 * If the 8051 times out a second time, the reset did not bring it
8626 	 * back to healthy life. In that case, fail any subsequent commands.
8627 	 */
8628 	if (dd->dc8051_timed_out) {
8629 		if (dd->dc8051_timed_out > 1) {
8630 			dd_dev_err(dd,
8631 				   "Previous 8051 host command timed out, skipping command %u\n",
8632 				   type);
8633 			return_code = -ENXIO;
8634 			goto fail;
8635 		}
8636 		_dc_shutdown(dd);
8637 		_dc_start(dd);
8638 	}
8639 
8640 	/*
8641 	 * If there is no timeout, then the 8051 command interface is
8642 	 * waiting for a command.
8643 	 */
8644 
8645 	/*
8646 	 * When writing a LCB CSR, out_data contains the full value to
8647 	 * to be written, while in_data contains the relative LCB
8648 	 * address in 7:0.  Do the work here, rather than the caller,
8649 	 * of distrubting the write data to where it needs to go:
8650 	 *
8651 	 * Write data
8652 	 *   39:00 -> in_data[47:8]
8653 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8654 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8655 	 */
8656 	if (type == HCMD_WRITE_LCB_CSR) {
8657 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8658 		/* must preserve COMPLETED - it is tied to hardware */
8659 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8660 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8661 		reg |= ((((*out_data) >> 40) & 0xff) <<
8662 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8663 		      | ((((*out_data) >> 48) & 0xffff) <<
8664 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8665 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8666 	}
8667 
8668 	/*
8669 	 * Do two writes: the first to stabilize the type and req_data, the
8670 	 * second to activate.
8671 	 */
8672 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8673 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8674 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8675 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8676 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8677 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8678 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8679 
8680 	/* wait for completion, alternate: interrupt */
8681 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8682 	while (1) {
8683 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8684 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8685 		if (completed)
8686 			break;
8687 		if (time_after(jiffies, timeout)) {
8688 			dd->dc8051_timed_out++;
8689 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8690 			if (out_data)
8691 				*out_data = 0;
8692 			return_code = -ETIMEDOUT;
8693 			goto fail;
8694 		}
8695 		udelay(2);
8696 	}
8697 
8698 	if (out_data) {
8699 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8700 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8701 		if (type == HCMD_READ_LCB_CSR) {
8702 			/* top 16 bits are in a different register */
8703 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8704 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8705 				<< (48
8706 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8707 		}
8708 	}
8709 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8710 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8711 	dd->dc8051_timed_out = 0;
8712 	/*
8713 	 * Clear command for next user.
8714 	 */
8715 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8716 
8717 fail:
8718 	mutex_unlock(&dd->dc8051_lock);
8719 	return return_code;
8720 }
8721 
8722 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8723 {
8724 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8725 }
8726 
8727 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8728 		     u8 lane_id, u32 config_data)
8729 {
8730 	u64 data;
8731 	int ret;
8732 
8733 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8734 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8735 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8736 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8737 	if (ret != HCMD_SUCCESS) {
8738 		dd_dev_err(dd,
8739 			   "load 8051 config: field id %d, lane %d, err %d\n",
8740 			   (int)field_id, (int)lane_id, ret);
8741 	}
8742 	return ret;
8743 }
8744 
8745 /*
8746  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8747  * set the result, even on error.
8748  * Return 0 on success, -errno on failure
8749  */
8750 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8751 		     u32 *result)
8752 {
8753 	u64 big_data;
8754 	u32 addr;
8755 	int ret;
8756 
8757 	/* address start depends on the lane_id */
8758 	if (lane_id < 4)
8759 		addr = (4 * NUM_GENERAL_FIELDS)
8760 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8761 	else
8762 		addr = 0;
8763 	addr += field_id * 4;
8764 
8765 	/* read is in 8-byte chunks, hardware will truncate the address down */
8766 	ret = read_8051_data(dd, addr, 8, &big_data);
8767 
8768 	if (ret == 0) {
8769 		/* extract the 4 bytes we want */
8770 		if (addr & 0x4)
8771 			*result = (u32)(big_data >> 32);
8772 		else
8773 			*result = (u32)big_data;
8774 	} else {
8775 		*result = 0;
8776 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8777 			   __func__, lane_id, field_id);
8778 	}
8779 
8780 	return ret;
8781 }
8782 
8783 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8784 			      u8 continuous)
8785 {
8786 	u32 frame;
8787 
8788 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8789 		| power_management << POWER_MANAGEMENT_SHIFT;
8790 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8791 				GENERAL_CONFIG, frame);
8792 }
8793 
8794 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8795 				 u16 vl15buf, u8 crc_sizes)
8796 {
8797 	u32 frame;
8798 
8799 	frame = (u32)vau << VAU_SHIFT
8800 		| (u32)z << Z_SHIFT
8801 		| (u32)vcu << VCU_SHIFT
8802 		| (u32)vl15buf << VL15BUF_SHIFT
8803 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8804 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8805 				GENERAL_CONFIG, frame);
8806 }
8807 
8808 static void read_vc_local_link_width(struct hfi1_devdata *dd, u8 *misc_bits,
8809 				     u8 *flag_bits, u16 *link_widths)
8810 {
8811 	u32 frame;
8812 
8813 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8814 			 &frame);
8815 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8816 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8817 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8818 }
8819 
8820 static int write_vc_local_link_width(struct hfi1_devdata *dd,
8821 				     u8 misc_bits,
8822 				     u8 flag_bits,
8823 				     u16 link_widths)
8824 {
8825 	u32 frame;
8826 
8827 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8828 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8829 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8830 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_WIDTH, GENERAL_CONFIG,
8831 		     frame);
8832 }
8833 
8834 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8835 				 u8 device_rev)
8836 {
8837 	u32 frame;
8838 
8839 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8840 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8841 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8842 }
8843 
8844 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8845 				  u8 *device_rev)
8846 {
8847 	u32 frame;
8848 
8849 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8850 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8851 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8852 			& REMOTE_DEVICE_REV_MASK;
8853 }
8854 
8855 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8856 {
8857 	u32 frame;
8858 	u32 mask;
8859 
8860 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8861 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8862 	/* Clear, then set field */
8863 	frame &= ~mask;
8864 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8865 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8866 				frame);
8867 }
8868 
8869 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8870 		      u8 *ver_patch)
8871 {
8872 	u32 frame;
8873 
8874 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8875 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8876 		STS_FM_VERSION_MAJOR_MASK;
8877 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8878 		STS_FM_VERSION_MINOR_MASK;
8879 
8880 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8881 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8882 		STS_FM_VERSION_PATCH_MASK;
8883 }
8884 
8885 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8886 			       u8 *continuous)
8887 {
8888 	u32 frame;
8889 
8890 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8891 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8892 					& POWER_MANAGEMENT_MASK;
8893 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8894 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8895 }
8896 
8897 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8898 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8899 {
8900 	u32 frame;
8901 
8902 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8903 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8904 	*z = (frame >> Z_SHIFT) & Z_MASK;
8905 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8906 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8907 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8908 }
8909 
8910 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8911 				      u8 *remote_tx_rate,
8912 				      u16 *link_widths)
8913 {
8914 	u32 frame;
8915 
8916 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8917 			 &frame);
8918 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8919 				& REMOTE_TX_RATE_MASK;
8920 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8921 }
8922 
8923 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8924 {
8925 	u32 frame;
8926 
8927 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8928 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8929 }
8930 
8931 static void read_mgmt_allowed(struct hfi1_devdata *dd, u8 *mgmt_allowed)
8932 {
8933 	u32 frame;
8934 
8935 	read_8051_config(dd, REMOTE_LNI_INFO, GENERAL_CONFIG, &frame);
8936 	*mgmt_allowed = (frame >> MGMT_ALLOWED_SHIFT) & MGMT_ALLOWED_MASK;
8937 }
8938 
8939 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8940 {
8941 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8942 }
8943 
8944 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8945 {
8946 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8947 }
8948 
8949 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8950 {
8951 	u32 frame;
8952 	int ret;
8953 
8954 	*link_quality = 0;
8955 	if (dd->pport->host_link_state & HLS_UP) {
8956 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8957 				       &frame);
8958 		if (ret == 0)
8959 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8960 						& LINK_QUALITY_MASK;
8961 	}
8962 }
8963 
8964 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8965 {
8966 	u32 frame;
8967 
8968 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
8969 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
8970 }
8971 
8972 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
8973 {
8974 	u32 frame;
8975 
8976 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
8977 	*ldr = (frame & 0xff);
8978 }
8979 
8980 static int read_tx_settings(struct hfi1_devdata *dd,
8981 			    u8 *enable_lane_tx,
8982 			    u8 *tx_polarity_inversion,
8983 			    u8 *rx_polarity_inversion,
8984 			    u8 *max_rate)
8985 {
8986 	u32 frame;
8987 	int ret;
8988 
8989 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
8990 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
8991 				& ENABLE_LANE_TX_MASK;
8992 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
8993 				& TX_POLARITY_INVERSION_MASK;
8994 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
8995 				& RX_POLARITY_INVERSION_MASK;
8996 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
8997 	return ret;
8998 }
8999 
9000 static int write_tx_settings(struct hfi1_devdata *dd,
9001 			     u8 enable_lane_tx,
9002 			     u8 tx_polarity_inversion,
9003 			     u8 rx_polarity_inversion,
9004 			     u8 max_rate)
9005 {
9006 	u32 frame;
9007 
9008 	/* no need to mask, all variable sizes match field widths */
9009 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9010 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9011 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9012 		| max_rate << MAX_RATE_SHIFT;
9013 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9014 }
9015 
9016 /*
9017  * Read an idle LCB message.
9018  *
9019  * Returns 0 on success, -EINVAL on error
9020  */
9021 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9022 {
9023 	int ret;
9024 
9025 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9026 	if (ret != HCMD_SUCCESS) {
9027 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9028 			   (u32)type, ret);
9029 		return -EINVAL;
9030 	}
9031 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9032 	/* return only the payload as we already know the type */
9033 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9034 	return 0;
9035 }
9036 
9037 /*
9038  * Read an idle SMA message.  To be done in response to a notification from
9039  * the 8051.
9040  *
9041  * Returns 0 on success, -EINVAL on error
9042  */
9043 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9044 {
9045 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9046 				 data);
9047 }
9048 
9049 /*
9050  * Send an idle LCB message.
9051  *
9052  * Returns 0 on success, -EINVAL on error
9053  */
9054 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9055 {
9056 	int ret;
9057 
9058 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9059 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9060 	if (ret != HCMD_SUCCESS) {
9061 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9062 			   data, ret);
9063 		return -EINVAL;
9064 	}
9065 	return 0;
9066 }
9067 
9068 /*
9069  * Send an idle SMA message.
9070  *
9071  * Returns 0 on success, -EINVAL on error
9072  */
9073 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9074 {
9075 	u64 data;
9076 
9077 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9078 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9079 	return send_idle_message(dd, data);
9080 }
9081 
9082 /*
9083  * Initialize the LCB then do a quick link up.  This may or may not be
9084  * in loopback.
9085  *
9086  * return 0 on success, -errno on error
9087  */
9088 static int do_quick_linkup(struct hfi1_devdata *dd)
9089 {
9090 	int ret;
9091 
9092 	lcb_shutdown(dd, 0);
9093 
9094 	if (loopback) {
9095 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9096 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9097 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9098 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9099 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9100 	}
9101 
9102 	/* start the LCBs */
9103 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9104 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9105 
9106 	/* simulator only loopback steps */
9107 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9108 		/* LCB_CFG_RUN.EN = 1 */
9109 		write_csr(dd, DC_LCB_CFG_RUN,
9110 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9111 
9112 		ret = wait_link_transfer_active(dd, 10);
9113 		if (ret)
9114 			return ret;
9115 
9116 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9117 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9118 	}
9119 
9120 	if (!loopback) {
9121 		/*
9122 		 * When doing quick linkup and not in loopback, both
9123 		 * sides must be done with LCB set-up before either
9124 		 * starts the quick linkup.  Put a delay here so that
9125 		 * both sides can be started and have a chance to be
9126 		 * done with LCB set up before resuming.
9127 		 */
9128 		dd_dev_err(dd,
9129 			   "Pausing for peer to be finished with LCB set up\n");
9130 		msleep(5000);
9131 		dd_dev_err(dd, "Continuing with quick linkup\n");
9132 	}
9133 
9134 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9135 	set_8051_lcb_access(dd);
9136 
9137 	/*
9138 	 * State "quick" LinkUp request sets the physical link state to
9139 	 * LinkUp without a verify capability sequence.
9140 	 * This state is in simulator v37 and later.
9141 	 */
9142 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9143 	if (ret != HCMD_SUCCESS) {
9144 		dd_dev_err(dd,
9145 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9146 			   __func__, ret);
9147 
9148 		set_host_lcb_access(dd);
9149 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9150 
9151 		if (ret >= 0)
9152 			ret = -EINVAL;
9153 		return ret;
9154 	}
9155 
9156 	return 0; /* success */
9157 }
9158 
9159 /*
9160  * Set the SerDes to internal loopback mode.
9161  * Returns 0 on success, -errno on error.
9162  */
9163 static int set_serdes_loopback_mode(struct hfi1_devdata *dd)
9164 {
9165 	int ret;
9166 
9167 	ret = set_physical_link_state(dd, PLS_INTERNAL_SERDES_LOOPBACK);
9168 	if (ret == HCMD_SUCCESS)
9169 		return 0;
9170 	dd_dev_err(dd,
9171 		   "Set physical link state to SerDes Loopback failed with return %d\n",
9172 		   ret);
9173 	if (ret >= 0)
9174 		ret = -EINVAL;
9175 	return ret;
9176 }
9177 
9178 /*
9179  * Do all special steps to set up loopback.
9180  */
9181 static int init_loopback(struct hfi1_devdata *dd)
9182 {
9183 	dd_dev_info(dd, "Entering loopback mode\n");
9184 
9185 	/* all loopbacks should disable self GUID check */
9186 	write_csr(dd, DC_DC8051_CFG_MODE,
9187 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9188 
9189 	/*
9190 	 * The simulator has only one loopback option - LCB.  Switch
9191 	 * to that option, which includes quick link up.
9192 	 *
9193 	 * Accept all valid loopback values.
9194 	 */
9195 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9196 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9197 	     loopback == LOOPBACK_CABLE)) {
9198 		loopback = LOOPBACK_LCB;
9199 		quick_linkup = 1;
9200 		return 0;
9201 	}
9202 
9203 	/* handle serdes loopback */
9204 	if (loopback == LOOPBACK_SERDES) {
9205 		/* internal serdes loopack needs quick linkup on RTL */
9206 		if (dd->icode == ICODE_RTL_SILICON)
9207 			quick_linkup = 1;
9208 		return set_serdes_loopback_mode(dd);
9209 	}
9210 
9211 	/* LCB loopback - handled at poll time */
9212 	if (loopback == LOOPBACK_LCB) {
9213 		quick_linkup = 1; /* LCB is always quick linkup */
9214 
9215 		/* not supported in emulation due to emulation RTL changes */
9216 		if (dd->icode == ICODE_FPGA_EMULATION) {
9217 			dd_dev_err(dd,
9218 				   "LCB loopback not supported in emulation\n");
9219 			return -EINVAL;
9220 		}
9221 		return 0;
9222 	}
9223 
9224 	/* external cable loopback requires no extra steps */
9225 	if (loopback == LOOPBACK_CABLE)
9226 		return 0;
9227 
9228 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9229 	return -EINVAL;
9230 }
9231 
9232 /*
9233  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9234  * used in the Verify Capability link width attribute.
9235  */
9236 static u16 opa_to_vc_link_widths(u16 opa_widths)
9237 {
9238 	int i;
9239 	u16 result = 0;
9240 
9241 	static const struct link_bits {
9242 		u16 from;
9243 		u16 to;
9244 	} opa_link_xlate[] = {
9245 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9246 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9247 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9248 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9249 	};
9250 
9251 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9252 		if (opa_widths & opa_link_xlate[i].from)
9253 			result |= opa_link_xlate[i].to;
9254 	}
9255 	return result;
9256 }
9257 
9258 /*
9259  * Set link attributes before moving to polling.
9260  */
9261 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9262 {
9263 	struct hfi1_devdata *dd = ppd->dd;
9264 	u8 enable_lane_tx;
9265 	u8 tx_polarity_inversion;
9266 	u8 rx_polarity_inversion;
9267 	int ret;
9268 
9269 	/* reset our fabric serdes to clear any lingering problems */
9270 	fabric_serdes_reset(dd);
9271 
9272 	/* set the local tx rate - need to read-modify-write */
9273 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9274 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9275 	if (ret)
9276 		goto set_local_link_attributes_fail;
9277 
9278 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9279 		/* set the tx rate to the fastest enabled */
9280 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9281 			ppd->local_tx_rate = 1;
9282 		else
9283 			ppd->local_tx_rate = 0;
9284 	} else {
9285 		/* set the tx rate to all enabled */
9286 		ppd->local_tx_rate = 0;
9287 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9288 			ppd->local_tx_rate |= 2;
9289 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9290 			ppd->local_tx_rate |= 1;
9291 	}
9292 
9293 	enable_lane_tx = 0xF; /* enable all four lanes */
9294 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9295 				rx_polarity_inversion, ppd->local_tx_rate);
9296 	if (ret != HCMD_SUCCESS)
9297 		goto set_local_link_attributes_fail;
9298 
9299 	/*
9300 	 * DC supports continuous updates.
9301 	 */
9302 	ret = write_vc_local_phy(dd,
9303 				 0 /* no power management */,
9304 				 1 /* continuous updates */);
9305 	if (ret != HCMD_SUCCESS)
9306 		goto set_local_link_attributes_fail;
9307 
9308 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9309 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9310 				    ppd->port_crc_mode_enabled);
9311 	if (ret != HCMD_SUCCESS)
9312 		goto set_local_link_attributes_fail;
9313 
9314 	ret = write_vc_local_link_width(dd, 0, 0,
9315 					opa_to_vc_link_widths(
9316 						ppd->link_width_enabled));
9317 	if (ret != HCMD_SUCCESS)
9318 		goto set_local_link_attributes_fail;
9319 
9320 	/* let peer know who we are */
9321 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9322 	if (ret == HCMD_SUCCESS)
9323 		return 0;
9324 
9325 set_local_link_attributes_fail:
9326 	dd_dev_err(dd,
9327 		   "Failed to set local link attributes, return 0x%x\n",
9328 		   ret);
9329 	return ret;
9330 }
9331 
9332 /*
9333  * Call this to start the link.
9334  * Do not do anything if the link is disabled.
9335  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9336  */
9337 int start_link(struct hfi1_pportdata *ppd)
9338 {
9339 	/*
9340 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9341 	 * error rate.  Needs to be done before starting the link.
9342 	 */
9343 	tune_serdes(ppd);
9344 
9345 	if (!ppd->driver_link_ready) {
9346 		dd_dev_info(ppd->dd,
9347 			    "%s: stopping link start because driver is not ready\n",
9348 			    __func__);
9349 		return 0;
9350 	}
9351 
9352 	/*
9353 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9354 	 * pkey table can be configured properly if the HFI unit is connected
9355 	 * to switch port with MgmtAllowed=NO
9356 	 */
9357 	clear_full_mgmt_pkey(ppd);
9358 
9359 	return set_link_state(ppd, HLS_DN_POLL);
9360 }
9361 
9362 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9363 {
9364 	struct hfi1_devdata *dd = ppd->dd;
9365 	u64 mask;
9366 	unsigned long timeout;
9367 
9368 	/*
9369 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9370 	 * effect of power up on plug-in. We ignore this false positive
9371 	 * interrupt until the module has finished powering up by waiting for
9372 	 * a minimum timeout of the module inrush initialization time of
9373 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9374 	 * module have stabilized.
9375 	 */
9376 	msleep(500);
9377 
9378 	/*
9379 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9380 	 */
9381 	timeout = jiffies + msecs_to_jiffies(2000);
9382 	while (1) {
9383 		mask = read_csr(dd, dd->hfi1_id ?
9384 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9385 		if (!(mask & QSFP_HFI0_INT_N))
9386 			break;
9387 		if (time_after(jiffies, timeout)) {
9388 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9389 				    __func__);
9390 			break;
9391 		}
9392 		udelay(2);
9393 	}
9394 }
9395 
9396 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9397 {
9398 	struct hfi1_devdata *dd = ppd->dd;
9399 	u64 mask;
9400 
9401 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9402 	if (enable) {
9403 		/*
9404 		 * Clear the status register to avoid an immediate interrupt
9405 		 * when we re-enable the IntN pin
9406 		 */
9407 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9408 			  QSFP_HFI0_INT_N);
9409 		mask |= (u64)QSFP_HFI0_INT_N;
9410 	} else {
9411 		mask &= ~(u64)QSFP_HFI0_INT_N;
9412 	}
9413 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9414 }
9415 
9416 void reset_qsfp(struct hfi1_pportdata *ppd)
9417 {
9418 	struct hfi1_devdata *dd = ppd->dd;
9419 	u64 mask, qsfp_mask;
9420 
9421 	/* Disable INT_N from triggering QSFP interrupts */
9422 	set_qsfp_int_n(ppd, 0);
9423 
9424 	/* Reset the QSFP */
9425 	mask = (u64)QSFP_HFI0_RESET_N;
9426 
9427 	qsfp_mask = read_csr(dd,
9428 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9429 	qsfp_mask &= ~mask;
9430 	write_csr(dd,
9431 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9432 
9433 	udelay(10);
9434 
9435 	qsfp_mask |= mask;
9436 	write_csr(dd,
9437 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9438 
9439 	wait_for_qsfp_init(ppd);
9440 
9441 	/*
9442 	 * Allow INT_N to trigger the QSFP interrupt to watch
9443 	 * for alarms and warnings
9444 	 */
9445 	set_qsfp_int_n(ppd, 1);
9446 }
9447 
9448 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9449 					u8 *qsfp_interrupt_status)
9450 {
9451 	struct hfi1_devdata *dd = ppd->dd;
9452 
9453 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9454 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9455 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9456 			   __func__);
9457 
9458 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9459 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9460 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9461 			   __func__);
9462 
9463 	/*
9464 	 * The remaining alarms/warnings don't matter if the link is down.
9465 	 */
9466 	if (ppd->host_link_state & HLS_DOWN)
9467 		return 0;
9468 
9469 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9470 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9471 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9472 			   __func__);
9473 
9474 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9475 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9476 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9477 			   __func__);
9478 
9479 	/* Byte 2 is vendor specific */
9480 
9481 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9482 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9483 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9484 			   __func__);
9485 
9486 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9487 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9488 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9489 			   __func__);
9490 
9491 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9492 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9493 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9494 			   __func__);
9495 
9496 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9497 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9498 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9499 			   __func__);
9500 
9501 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9502 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9503 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9504 			   __func__);
9505 
9506 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9507 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9508 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9509 			   __func__);
9510 
9511 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9512 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9513 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9514 			   __func__);
9515 
9516 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9517 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9518 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9519 			   __func__);
9520 
9521 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9522 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9523 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9524 			   __func__);
9525 
9526 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9527 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9528 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9529 			   __func__);
9530 
9531 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9532 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9533 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9534 			   __func__);
9535 
9536 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9537 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9538 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9539 			   __func__);
9540 
9541 	/* Bytes 9-10 and 11-12 are reserved */
9542 	/* Bytes 13-15 are vendor specific */
9543 
9544 	return 0;
9545 }
9546 
9547 /* This routine will only be scheduled if the QSFP module present is asserted */
9548 void qsfp_event(struct work_struct *work)
9549 {
9550 	struct qsfp_data *qd;
9551 	struct hfi1_pportdata *ppd;
9552 	struct hfi1_devdata *dd;
9553 
9554 	qd = container_of(work, struct qsfp_data, qsfp_work);
9555 	ppd = qd->ppd;
9556 	dd = ppd->dd;
9557 
9558 	/* Sanity check */
9559 	if (!qsfp_mod_present(ppd))
9560 		return;
9561 
9562 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9563 		dd_dev_info(ppd->dd,
9564 			    "%s: stopping link start because link is disabled\n",
9565 			    __func__);
9566 		return;
9567 	}
9568 
9569 	/*
9570 	 * Turn DC back on after cable has been re-inserted. Up until
9571 	 * now, the DC has been in reset to save power.
9572 	 */
9573 	dc_start(dd);
9574 
9575 	if (qd->cache_refresh_required) {
9576 		set_qsfp_int_n(ppd, 0);
9577 
9578 		wait_for_qsfp_init(ppd);
9579 
9580 		/*
9581 		 * Allow INT_N to trigger the QSFP interrupt to watch
9582 		 * for alarms and warnings
9583 		 */
9584 		set_qsfp_int_n(ppd, 1);
9585 
9586 		start_link(ppd);
9587 	}
9588 
9589 	if (qd->check_interrupt_flags) {
9590 		u8 qsfp_interrupt_status[16] = {0,};
9591 
9592 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9593 				  &qsfp_interrupt_status[0], 16) != 16) {
9594 			dd_dev_info(dd,
9595 				    "%s: Failed to read status of QSFP module\n",
9596 				    __func__);
9597 		} else {
9598 			unsigned long flags;
9599 
9600 			handle_qsfp_error_conditions(
9601 					ppd, qsfp_interrupt_status);
9602 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9603 			ppd->qsfp_info.check_interrupt_flags = 0;
9604 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9605 					       flags);
9606 		}
9607 	}
9608 }
9609 
9610 static void init_qsfp_int(struct hfi1_devdata *dd)
9611 {
9612 	struct hfi1_pportdata *ppd = dd->pport;
9613 	u64 qsfp_mask, cce_int_mask;
9614 	const int qsfp1_int_smask = QSFP1_INT % 64;
9615 	const int qsfp2_int_smask = QSFP2_INT % 64;
9616 
9617 	/*
9618 	 * disable QSFP1 interrupts for HFI1, QSFP2 interrupts for HFI0
9619 	 * Qsfp1Int and Qsfp2Int are adjacent bits in the same CSR,
9620 	 * therefore just one of QSFP1_INT/QSFP2_INT can be used to find
9621 	 * the index of the appropriate CSR in the CCEIntMask CSR array
9622 	 */
9623 	cce_int_mask = read_csr(dd, CCE_INT_MASK +
9624 				(8 * (QSFP1_INT / 64)));
9625 	if (dd->hfi1_id) {
9626 		cce_int_mask &= ~((u64)1 << qsfp1_int_smask);
9627 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP1_INT / 64)),
9628 			  cce_int_mask);
9629 	} else {
9630 		cce_int_mask &= ~((u64)1 << qsfp2_int_smask);
9631 		write_csr(dd, CCE_INT_MASK + (8 * (QSFP2_INT / 64)),
9632 			  cce_int_mask);
9633 	}
9634 
9635 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9636 	/* Clear current status to avoid spurious interrupts */
9637 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9638 		  qsfp_mask);
9639 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9640 		  qsfp_mask);
9641 
9642 	set_qsfp_int_n(ppd, 0);
9643 
9644 	/* Handle active low nature of INT_N and MODPRST_N pins */
9645 	if (qsfp_mod_present(ppd))
9646 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9647 	write_csr(dd,
9648 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9649 		  qsfp_mask);
9650 }
9651 
9652 /*
9653  * Do a one-time initialize of the LCB block.
9654  */
9655 static void init_lcb(struct hfi1_devdata *dd)
9656 {
9657 	/* simulator does not correctly handle LCB cclk loopback, skip */
9658 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9659 		return;
9660 
9661 	/* the DC has been reset earlier in the driver load */
9662 
9663 	/* set LCB for cclk loopback on the port */
9664 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9665 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9666 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9667 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9668 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9669 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9670 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9671 }
9672 
9673 /*
9674  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9675  * on error.
9676  */
9677 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9678 {
9679 	int ret;
9680 	u8 status;
9681 
9682 	/*
9683 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9684 	 * not present
9685 	 */
9686 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9687 		return 0;
9688 
9689 	/* read byte 2, the status byte */
9690 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9691 	if (ret < 0)
9692 		return ret;
9693 	if (ret != 1)
9694 		return -EIO;
9695 
9696 	return 0; /* success */
9697 }
9698 
9699 /*
9700  * Values for QSFP retry.
9701  *
9702  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9703  * arrived at from experience on a large cluster.
9704  */
9705 #define MAX_QSFP_RETRIES 20
9706 #define QSFP_RETRY_WAIT 500 /* msec */
9707 
9708 /*
9709  * Try a QSFP read.  If it fails, schedule a retry for later.
9710  * Called on first link activation after driver load.
9711  */
9712 static void try_start_link(struct hfi1_pportdata *ppd)
9713 {
9714 	if (test_qsfp_read(ppd)) {
9715 		/* read failed */
9716 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9717 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9718 			return;
9719 		}
9720 		dd_dev_info(ppd->dd,
9721 			    "QSFP not responding, waiting and retrying %d\n",
9722 			    (int)ppd->qsfp_retry_count);
9723 		ppd->qsfp_retry_count++;
9724 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9725 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9726 		return;
9727 	}
9728 	ppd->qsfp_retry_count = 0;
9729 
9730 	start_link(ppd);
9731 }
9732 
9733 /*
9734  * Workqueue function to start the link after a delay.
9735  */
9736 void handle_start_link(struct work_struct *work)
9737 {
9738 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9739 						  start_link_work.work);
9740 	try_start_link(ppd);
9741 }
9742 
9743 int bringup_serdes(struct hfi1_pportdata *ppd)
9744 {
9745 	struct hfi1_devdata *dd = ppd->dd;
9746 	u64 guid;
9747 	int ret;
9748 
9749 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9750 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9751 
9752 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9753 	if (!guid) {
9754 		if (dd->base_guid)
9755 			guid = dd->base_guid + ppd->port - 1;
9756 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9757 	}
9758 
9759 	/* Set linkinit_reason on power up per OPA spec */
9760 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9761 
9762 	/* one-time init of the LCB */
9763 	init_lcb(dd);
9764 
9765 	if (loopback) {
9766 		ret = init_loopback(dd);
9767 		if (ret < 0)
9768 			return ret;
9769 	}
9770 
9771 	get_port_type(ppd);
9772 	if (ppd->port_type == PORT_TYPE_QSFP) {
9773 		set_qsfp_int_n(ppd, 0);
9774 		wait_for_qsfp_init(ppd);
9775 		set_qsfp_int_n(ppd, 1);
9776 	}
9777 
9778 	try_start_link(ppd);
9779 	return 0;
9780 }
9781 
9782 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9783 {
9784 	struct hfi1_devdata *dd = ppd->dd;
9785 
9786 	/*
9787 	 * Shut down the link and keep it down.   First turn off that the
9788 	 * driver wants to allow the link to be up (driver_link_ready).
9789 	 * Then make sure the link is not automatically restarted
9790 	 * (link_enabled).  Cancel any pending restart.  And finally
9791 	 * go offline.
9792 	 */
9793 	ppd->driver_link_ready = 0;
9794 	ppd->link_enabled = 0;
9795 
9796 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9797 	flush_delayed_work(&ppd->start_link_work);
9798 	cancel_delayed_work_sync(&ppd->start_link_work);
9799 
9800 	ppd->offline_disabled_reason =
9801 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_SMA_DISABLED);
9802 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SMA_DISABLED, 0,
9803 			     OPA_LINKDOWN_REASON_SMA_DISABLED);
9804 	set_link_state(ppd, HLS_DN_OFFLINE);
9805 
9806 	/* disable the port */
9807 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9808 }
9809 
9810 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9811 {
9812 	struct hfi1_pportdata *ppd;
9813 	int i;
9814 
9815 	ppd = (struct hfi1_pportdata *)(dd + 1);
9816 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9817 		ppd->ibport_data.rvp.rc_acks = NULL;
9818 		ppd->ibport_data.rvp.rc_qacks = NULL;
9819 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9820 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9821 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9822 		if (!ppd->ibport_data.rvp.rc_acks ||
9823 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9824 		    !ppd->ibport_data.rvp.rc_qacks)
9825 			return -ENOMEM;
9826 	}
9827 
9828 	return 0;
9829 }
9830 
9831 /*
9832  * index is the index into the receive array
9833  */
9834 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9835 		  u32 type, unsigned long pa, u16 order)
9836 {
9837 	u64 reg;
9838 
9839 	if (!(dd->flags & HFI1_PRESENT))
9840 		goto done;
9841 
9842 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9843 		pa = 0;
9844 		order = 0;
9845 	} else if (type > PT_INVALID) {
9846 		dd_dev_err(dd,
9847 			   "unexpected receive array type %u for index %u, not handled\n",
9848 			   type, index);
9849 		goto done;
9850 	}
9851 	trace_hfi1_put_tid(dd, index, type, pa, order);
9852 
9853 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9854 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9855 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9856 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9857 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9858 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9859 	writeq(reg, dd->rcvarray_wc + (index * 8));
9860 
9861 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9862 		/*
9863 		 * Eager entries are written and flushed
9864 		 *
9865 		 * Expected entries are flushed every 4 writes
9866 		 */
9867 		flush_wc();
9868 done:
9869 	return;
9870 }
9871 
9872 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9873 {
9874 	struct hfi1_devdata *dd = rcd->dd;
9875 	u32 i;
9876 
9877 	/* this could be optimized */
9878 	for (i = rcd->eager_base; i < rcd->eager_base +
9879 		     rcd->egrbufs.alloced; i++)
9880 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9881 
9882 	for (i = rcd->expected_base;
9883 			i < rcd->expected_base + rcd->expected_count; i++)
9884 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9885 }
9886 
9887 static const char * const ib_cfg_name_strings[] = {
9888 	"HFI1_IB_CFG_LIDLMC",
9889 	"HFI1_IB_CFG_LWID_DG_ENB",
9890 	"HFI1_IB_CFG_LWID_ENB",
9891 	"HFI1_IB_CFG_LWID",
9892 	"HFI1_IB_CFG_SPD_ENB",
9893 	"HFI1_IB_CFG_SPD",
9894 	"HFI1_IB_CFG_RXPOL_ENB",
9895 	"HFI1_IB_CFG_LREV_ENB",
9896 	"HFI1_IB_CFG_LINKLATENCY",
9897 	"HFI1_IB_CFG_HRTBT",
9898 	"HFI1_IB_CFG_OP_VLS",
9899 	"HFI1_IB_CFG_VL_HIGH_CAP",
9900 	"HFI1_IB_CFG_VL_LOW_CAP",
9901 	"HFI1_IB_CFG_OVERRUN_THRESH",
9902 	"HFI1_IB_CFG_PHYERR_THRESH",
9903 	"HFI1_IB_CFG_LINKDEFAULT",
9904 	"HFI1_IB_CFG_PKEYS",
9905 	"HFI1_IB_CFG_MTU",
9906 	"HFI1_IB_CFG_LSTATE",
9907 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9908 	"HFI1_IB_CFG_PMA_TICKS",
9909 	"HFI1_IB_CFG_PORT"
9910 };
9911 
9912 static const char *ib_cfg_name(int which)
9913 {
9914 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9915 		return "invalid";
9916 	return ib_cfg_name_strings[which];
9917 }
9918 
9919 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9920 {
9921 	struct hfi1_devdata *dd = ppd->dd;
9922 	int val = 0;
9923 
9924 	switch (which) {
9925 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9926 		val = ppd->link_width_enabled;
9927 		break;
9928 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9929 		val = ppd->link_width_active;
9930 		break;
9931 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9932 		val = ppd->link_speed_enabled;
9933 		break;
9934 	case HFI1_IB_CFG_SPD: /* current Link speed */
9935 		val = ppd->link_speed_active;
9936 		break;
9937 
9938 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9939 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9940 	case HFI1_IB_CFG_LINKLATENCY:
9941 		goto unimplemented;
9942 
9943 	case HFI1_IB_CFG_OP_VLS:
9944 		val = ppd->vls_operational;
9945 		break;
9946 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9947 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9948 		break;
9949 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9950 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9951 		break;
9952 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9953 		val = ppd->overrun_threshold;
9954 		break;
9955 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9956 		val = ppd->phy_error_threshold;
9957 		break;
9958 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9959 		val = dd->link_default;
9960 		break;
9961 
9962 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9963 	case HFI1_IB_CFG_PMA_TICKS:
9964 	default:
9965 unimplemented:
9966 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9967 			dd_dev_info(
9968 				dd,
9969 				"%s: which %s: not implemented\n",
9970 				__func__,
9971 				ib_cfg_name(which));
9972 		break;
9973 	}
9974 
9975 	return val;
9976 }
9977 
9978 /*
9979  * The largest MAD packet size.
9980  */
9981 #define MAX_MAD_PACKET 2048
9982 
9983 /*
9984  * Return the maximum header bytes that can go on the _wire_
9985  * for this device. This count includes the ICRC which is
9986  * not part of the packet held in memory but it is appended
9987  * by the HW.
9988  * This is dependent on the device's receive header entry size.
9989  * HFI allows this to be set per-receive context, but the
9990  * driver presently enforces a global value.
9991  */
9992 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
9993 {
9994 	/*
9995 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
9996 	 * the Receive Header Entry Size minus the PBC (or RHF) size
9997 	 * plus one DW for the ICRC appended by HW.
9998 	 *
9999 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10000 	 * We use rcd[0] as all context will have the same value. Also,
10001 	 * the first kernel context would have been allocated by now so
10002 	 * we are guaranteed a valid value.
10003 	 */
10004 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10005 }
10006 
10007 /*
10008  * Set Send Length
10009  * @ppd - per port data
10010  *
10011  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10012  * registers compare against LRH.PktLen, so use the max bytes included
10013  * in the LRH.
10014  *
10015  * This routine changes all VL values except VL15, which it maintains at
10016  * the same value.
10017  */
10018 static void set_send_length(struct hfi1_pportdata *ppd)
10019 {
10020 	struct hfi1_devdata *dd = ppd->dd;
10021 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10022 	u32 maxvlmtu = dd->vld[15].mtu;
10023 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10024 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10025 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10026 	int i, j;
10027 	u32 thres;
10028 
10029 	for (i = 0; i < ppd->vls_supported; i++) {
10030 		if (dd->vld[i].mtu > maxvlmtu)
10031 			maxvlmtu = dd->vld[i].mtu;
10032 		if (i <= 3)
10033 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10034 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10035 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10036 		else
10037 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10038 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10039 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10040 	}
10041 	write_csr(dd, SEND_LEN_CHECK0, len1);
10042 	write_csr(dd, SEND_LEN_CHECK1, len2);
10043 	/* adjust kernel credit return thresholds based on new MTUs */
10044 	/* all kernel receive contexts have the same hdrqentsize */
10045 	for (i = 0; i < ppd->vls_supported; i++) {
10046 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10047 			    sc_mtu_to_threshold(dd->vld[i].sc,
10048 						dd->vld[i].mtu,
10049 						dd->rcd[0]->rcvhdrqentsize));
10050 		for (j = 0; j < INIT_SC_PER_VL; j++)
10051 			sc_set_cr_threshold(
10052 					pio_select_send_context_vl(dd, j, i),
10053 					    thres);
10054 	}
10055 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10056 		    sc_mtu_to_threshold(dd->vld[15].sc,
10057 					dd->vld[15].mtu,
10058 					dd->rcd[0]->rcvhdrqentsize));
10059 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10060 
10061 	/* Adjust maximum MTU for the port in DC */
10062 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10063 		(ilog2(maxvlmtu >> 8) + 1);
10064 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10065 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10066 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10067 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10068 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10069 }
10070 
10071 static void set_lidlmc(struct hfi1_pportdata *ppd)
10072 {
10073 	int i;
10074 	u64 sreg = 0;
10075 	struct hfi1_devdata *dd = ppd->dd;
10076 	u32 mask = ~((1U << ppd->lmc) - 1);
10077 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10078 	u32 lid;
10079 
10080 	/*
10081 	 * Program 0 in CSR if port lid is extended. This prevents
10082 	 * 9B packets being sent out for large lids.
10083 	 */
10084 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10085 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10086 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10087 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10088 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10089 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10090 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10091 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10092 
10093 	/*
10094 	 * Iterate over all the send contexts and set their SLID check
10095 	 */
10096 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10097 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10098 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10099 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10100 
10101 	for (i = 0; i < dd->chip_send_contexts; i++) {
10102 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10103 			  i, (u32)sreg);
10104 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10105 	}
10106 
10107 	/* Now we have to do the same thing for the sdma engines */
10108 	sdma_update_lmc(dd, mask, lid);
10109 }
10110 
10111 static const char *state_completed_string(u32 completed)
10112 {
10113 	static const char * const state_completed[] = {
10114 		"EstablishComm",
10115 		"OptimizeEQ",
10116 		"VerifyCap"
10117 	};
10118 
10119 	if (completed < ARRAY_SIZE(state_completed))
10120 		return state_completed[completed];
10121 
10122 	return "unknown";
10123 }
10124 
10125 static const char all_lanes_dead_timeout_expired[] =
10126 	"All lanes were inactive – was the interconnect media removed?";
10127 static const char tx_out_of_policy[] =
10128 	"Passing lanes on local port do not meet the local link width policy";
10129 static const char no_state_complete[] =
10130 	"State timeout occurred before link partner completed the state";
10131 static const char * const state_complete_reasons[] = {
10132 	[0x00] = "Reason unknown",
10133 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10134 	[0x02] = "Link partner reported failure",
10135 	[0x10] = "Unable to achieve frame sync on any lane",
10136 	[0x11] =
10137 	  "Unable to find a common bit rate with the link partner",
10138 	[0x12] =
10139 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10140 	[0x13] =
10141 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10142 	[0x14] = no_state_complete,
10143 	[0x15] =
10144 	  "State timeout occurred before link partner identified equalization presets",
10145 	[0x16] =
10146 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10147 	[0x17] = tx_out_of_policy,
10148 	[0x20] = all_lanes_dead_timeout_expired,
10149 	[0x21] =
10150 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10151 	[0x22] = no_state_complete,
10152 	[0x23] =
10153 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10154 	[0x24] = tx_out_of_policy,
10155 	[0x30] = all_lanes_dead_timeout_expired,
10156 	[0x31] =
10157 	  "State timeout occurred waiting for host to process received frames",
10158 	[0x32] = no_state_complete,
10159 	[0x33] =
10160 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10161 	[0x34] = tx_out_of_policy,
10162 };
10163 
10164 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10165 						     u32 code)
10166 {
10167 	const char *str = NULL;
10168 
10169 	if (code < ARRAY_SIZE(state_complete_reasons))
10170 		str = state_complete_reasons[code];
10171 
10172 	if (str)
10173 		return str;
10174 	return "Reserved";
10175 }
10176 
10177 /* describe the given last state complete frame */
10178 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10179 				  const char *prefix)
10180 {
10181 	struct hfi1_devdata *dd = ppd->dd;
10182 	u32 success;
10183 	u32 state;
10184 	u32 reason;
10185 	u32 lanes;
10186 
10187 	/*
10188 	 * Decode frame:
10189 	 *  [ 0: 0] - success
10190 	 *  [ 3: 1] - state
10191 	 *  [ 7: 4] - next state timeout
10192 	 *  [15: 8] - reason code
10193 	 *  [31:16] - lanes
10194 	 */
10195 	success = frame & 0x1;
10196 	state = (frame >> 1) & 0x7;
10197 	reason = (frame >> 8) & 0xff;
10198 	lanes = (frame >> 16) & 0xffff;
10199 
10200 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10201 		   prefix, frame);
10202 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10203 		   state_completed_string(state), state);
10204 	dd_dev_err(dd, "    state successfully completed: %s\n",
10205 		   success ? "yes" : "no");
10206 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10207 		   reason, state_complete_reason_code_string(ppd, reason));
10208 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10209 }
10210 
10211 /*
10212  * Read the last state complete frames and explain them.  This routine
10213  * expects to be called if the link went down during link negotiation
10214  * and initialization (LNI).  That is, anywhere between polling and link up.
10215  */
10216 static void check_lni_states(struct hfi1_pportdata *ppd)
10217 {
10218 	u32 last_local_state;
10219 	u32 last_remote_state;
10220 
10221 	read_last_local_state(ppd->dd, &last_local_state);
10222 	read_last_remote_state(ppd->dd, &last_remote_state);
10223 
10224 	/*
10225 	 * Don't report anything if there is nothing to report.  A value of
10226 	 * 0 means the link was taken down while polling and there was no
10227 	 * training in-process.
10228 	 */
10229 	if (last_local_state == 0 && last_remote_state == 0)
10230 		return;
10231 
10232 	decode_state_complete(ppd, last_local_state, "transmitted");
10233 	decode_state_complete(ppd, last_remote_state, "received");
10234 }
10235 
10236 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10237 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10238 {
10239 	u64 reg;
10240 	unsigned long timeout;
10241 
10242 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10243 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10244 	while (1) {
10245 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10246 		if (reg)
10247 			break;
10248 		if (time_after(jiffies, timeout)) {
10249 			dd_dev_err(dd,
10250 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10251 			return -ETIMEDOUT;
10252 		}
10253 		udelay(2);
10254 	}
10255 	return 0;
10256 }
10257 
10258 /* called when the logical link state is not down as it should be */
10259 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10260 {
10261 	struct hfi1_devdata *dd = ppd->dd;
10262 
10263 	/*
10264 	 * Bring link up in LCB loopback
10265 	 */
10266 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10267 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10268 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10269 
10270 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10271 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10272 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10273 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10274 
10275 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10276 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10277 	udelay(3);
10278 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10279 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10280 
10281 	wait_link_transfer_active(dd, 100);
10282 
10283 	/*
10284 	 * Bring the link down again.
10285 	 */
10286 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10287 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10288 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10289 
10290 	/* adjust ppd->statusp, if needed */
10291 	update_statusp(ppd, IB_PORT_DOWN);
10292 
10293 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10294 }
10295 
10296 /*
10297  * Helper for set_link_state().  Do not call except from that routine.
10298  * Expects ppd->hls_mutex to be held.
10299  *
10300  * @rem_reason value to be sent to the neighbor
10301  *
10302  * LinkDownReasons only set if transition succeeds.
10303  */
10304 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10305 {
10306 	struct hfi1_devdata *dd = ppd->dd;
10307 	u32 previous_state;
10308 	int ret;
10309 
10310 	update_lcb_cache(dd);
10311 
10312 	previous_state = ppd->host_link_state;
10313 	ppd->host_link_state = HLS_GOING_OFFLINE;
10314 
10315 	/* start offline transition */
10316 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10317 
10318 	if (ret != HCMD_SUCCESS) {
10319 		dd_dev_err(dd,
10320 			   "Failed to transition to Offline link state, return %d\n",
10321 			   ret);
10322 		return -EINVAL;
10323 	}
10324 	if (ppd->offline_disabled_reason ==
10325 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10326 		ppd->offline_disabled_reason =
10327 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10328 
10329 	/*
10330 	 * Wait for offline transition. It can take a while for
10331 	 * the link to go down.
10332 	 */
10333 	ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 10000);
10334 	if (ret < 0)
10335 		return ret;
10336 
10337 	/*
10338 	 * Now in charge of LCB - must be after the physical state is
10339 	 * offline.quiet and before host_link_state is changed.
10340 	 */
10341 	set_host_lcb_access(dd);
10342 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10343 
10344 	/* make sure the logical state is also down */
10345 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10346 	if (ret)
10347 		force_logical_link_state_down(ppd);
10348 
10349 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10350 
10351 	if (ppd->port_type == PORT_TYPE_QSFP &&
10352 	    ppd->qsfp_info.limiting_active &&
10353 	    qsfp_mod_present(ppd)) {
10354 		int ret;
10355 
10356 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10357 		if (ret == 0) {
10358 			set_qsfp_tx(ppd, 0);
10359 			release_chip_resource(dd, qsfp_resource(dd));
10360 		} else {
10361 			/* not fatal, but should warn */
10362 			dd_dev_err(dd,
10363 				   "Unable to acquire lock to turn off QSFP TX\n");
10364 		}
10365 	}
10366 
10367 	/*
10368 	 * The LNI has a mandatory wait time after the physical state
10369 	 * moves to Offline.Quiet.  The wait time may be different
10370 	 * depending on how the link went down.  The 8051 firmware
10371 	 * will observe the needed wait time and only move to ready
10372 	 * when that is completed.  The largest of the quiet timeouts
10373 	 * is 6s, so wait that long and then at least 0.5s more for
10374 	 * other transitions, and another 0.5s for a buffer.
10375 	 */
10376 	ret = wait_fm_ready(dd, 7000);
10377 	if (ret) {
10378 		dd_dev_err(dd,
10379 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10380 		/* state is really offline, so make it so */
10381 		ppd->host_link_state = HLS_DN_OFFLINE;
10382 		return ret;
10383 	}
10384 
10385 	/*
10386 	 * The state is now offline and the 8051 is ready to accept host
10387 	 * requests.
10388 	 *	- change our state
10389 	 *	- notify others if we were previously in a linkup state
10390 	 */
10391 	ppd->host_link_state = HLS_DN_OFFLINE;
10392 	if (previous_state & HLS_UP) {
10393 		/* went down while link was up */
10394 		handle_linkup_change(dd, 0);
10395 	} else if (previous_state
10396 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10397 		/* went down while attempting link up */
10398 		check_lni_states(ppd);
10399 	}
10400 
10401 	/* the active link width (downgrade) is 0 on link down */
10402 	ppd->link_width_active = 0;
10403 	ppd->link_width_downgrade_tx_active = 0;
10404 	ppd->link_width_downgrade_rx_active = 0;
10405 	ppd->current_egress_rate = 0;
10406 	return 0;
10407 }
10408 
10409 /* return the link state name */
10410 static const char *link_state_name(u32 state)
10411 {
10412 	const char *name;
10413 	int n = ilog2(state);
10414 	static const char * const names[] = {
10415 		[__HLS_UP_INIT_BP]	 = "INIT",
10416 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10417 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10418 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10419 		[__HLS_DN_POLL_BP]	 = "POLL",
10420 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10421 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10422 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10423 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10424 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10425 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10426 	};
10427 
10428 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10429 	return name ? name : "unknown";
10430 }
10431 
10432 /* return the link state reason name */
10433 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10434 {
10435 	if (state == HLS_UP_INIT) {
10436 		switch (ppd->linkinit_reason) {
10437 		case OPA_LINKINIT_REASON_LINKUP:
10438 			return "(LINKUP)";
10439 		case OPA_LINKINIT_REASON_FLAPPING:
10440 			return "(FLAPPING)";
10441 		case OPA_LINKINIT_OUTSIDE_POLICY:
10442 			return "(OUTSIDE_POLICY)";
10443 		case OPA_LINKINIT_QUARANTINED:
10444 			return "(QUARANTINED)";
10445 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10446 			return "(INSUFIC_CAPABILITY)";
10447 		default:
10448 			break;
10449 		}
10450 	}
10451 	return "";
10452 }
10453 
10454 /*
10455  * driver_pstate - convert the driver's notion of a port's
10456  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10457  * Return -1 (converted to a u32) to indicate error.
10458  */
10459 u32 driver_pstate(struct hfi1_pportdata *ppd)
10460 {
10461 	switch (ppd->host_link_state) {
10462 	case HLS_UP_INIT:
10463 	case HLS_UP_ARMED:
10464 	case HLS_UP_ACTIVE:
10465 		return IB_PORTPHYSSTATE_LINKUP;
10466 	case HLS_DN_POLL:
10467 		return IB_PORTPHYSSTATE_POLLING;
10468 	case HLS_DN_DISABLE:
10469 		return IB_PORTPHYSSTATE_DISABLED;
10470 	case HLS_DN_OFFLINE:
10471 		return OPA_PORTPHYSSTATE_OFFLINE;
10472 	case HLS_VERIFY_CAP:
10473 		return IB_PORTPHYSSTATE_POLLING;
10474 	case HLS_GOING_UP:
10475 		return IB_PORTPHYSSTATE_POLLING;
10476 	case HLS_GOING_OFFLINE:
10477 		return OPA_PORTPHYSSTATE_OFFLINE;
10478 	case HLS_LINK_COOLDOWN:
10479 		return OPA_PORTPHYSSTATE_OFFLINE;
10480 	case HLS_DN_DOWNDEF:
10481 	default:
10482 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10483 			   ppd->host_link_state);
10484 		return  -1;
10485 	}
10486 }
10487 
10488 /*
10489  * driver_lstate - convert the driver's notion of a port's
10490  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10491  * (converted to a u32) to indicate error.
10492  */
10493 u32 driver_lstate(struct hfi1_pportdata *ppd)
10494 {
10495 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10496 		return IB_PORT_DOWN;
10497 
10498 	switch (ppd->host_link_state & HLS_UP) {
10499 	case HLS_UP_INIT:
10500 		return IB_PORT_INIT;
10501 	case HLS_UP_ARMED:
10502 		return IB_PORT_ARMED;
10503 	case HLS_UP_ACTIVE:
10504 		return IB_PORT_ACTIVE;
10505 	default:
10506 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10507 			   ppd->host_link_state);
10508 	return -1;
10509 	}
10510 }
10511 
10512 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10513 			  u8 neigh_reason, u8 rem_reason)
10514 {
10515 	if (ppd->local_link_down_reason.latest == 0 &&
10516 	    ppd->neigh_link_down_reason.latest == 0) {
10517 		ppd->local_link_down_reason.latest = lcl_reason;
10518 		ppd->neigh_link_down_reason.latest = neigh_reason;
10519 		ppd->remote_link_down_reason = rem_reason;
10520 	}
10521 }
10522 
10523 /*
10524  * Verify if BCT for data VLs is non-zero.
10525  */
10526 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10527 {
10528 	return !!ppd->actual_vls_operational;
10529 }
10530 
10531 /*
10532  * Change the physical and/or logical link state.
10533  *
10534  * Do not call this routine while inside an interrupt.  It contains
10535  * calls to routines that can take multiple seconds to finish.
10536  *
10537  * Returns 0 on success, -errno on failure.
10538  */
10539 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10540 {
10541 	struct hfi1_devdata *dd = ppd->dd;
10542 	struct ib_event event = {.device = NULL};
10543 	int ret1, ret = 0;
10544 	int orig_new_state, poll_bounce;
10545 
10546 	mutex_lock(&ppd->hls_lock);
10547 
10548 	orig_new_state = state;
10549 	if (state == HLS_DN_DOWNDEF)
10550 		state = dd->link_default;
10551 
10552 	/* interpret poll -> poll as a link bounce */
10553 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10554 		      state == HLS_DN_POLL;
10555 
10556 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10557 		    link_state_name(ppd->host_link_state),
10558 		    link_state_name(orig_new_state),
10559 		    poll_bounce ? "(bounce) " : "",
10560 		    link_state_reason_name(ppd, state));
10561 
10562 	/*
10563 	 * If we're going to a (HLS_*) link state that implies the logical
10564 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10565 	 * reset is_sm_config_started to 0.
10566 	 */
10567 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10568 		ppd->is_sm_config_started = 0;
10569 
10570 	/*
10571 	 * Do nothing if the states match.  Let a poll to poll link bounce
10572 	 * go through.
10573 	 */
10574 	if (ppd->host_link_state == state && !poll_bounce)
10575 		goto done;
10576 
10577 	switch (state) {
10578 	case HLS_UP_INIT:
10579 		if (ppd->host_link_state == HLS_DN_POLL &&
10580 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10581 			/*
10582 			 * Quick link up jumps from polling to here.
10583 			 *
10584 			 * Whether in normal or loopback mode, the
10585 			 * simulator jumps from polling to link up.
10586 			 * Accept that here.
10587 			 */
10588 			/* OK */
10589 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10590 			goto unexpected;
10591 		}
10592 
10593 		/*
10594 		 * Wait for Link_Up physical state.
10595 		 * Physical and Logical states should already be
10596 		 * be transitioned to LinkUp and LinkInit respectively.
10597 		 */
10598 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10599 		if (ret) {
10600 			dd_dev_err(dd,
10601 				   "%s: physical state did not change to LINK-UP\n",
10602 				   __func__);
10603 			break;
10604 		}
10605 
10606 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10607 		if (ret) {
10608 			dd_dev_err(dd,
10609 				   "%s: logical state did not change to INIT\n",
10610 				   __func__);
10611 			break;
10612 		}
10613 
10614 		/* clear old transient LINKINIT_REASON code */
10615 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10616 			ppd->linkinit_reason =
10617 				OPA_LINKINIT_REASON_LINKUP;
10618 
10619 		/* enable the port */
10620 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10621 
10622 		handle_linkup_change(dd, 1);
10623 		ppd->host_link_state = HLS_UP_INIT;
10624 		break;
10625 	case HLS_UP_ARMED:
10626 		if (ppd->host_link_state != HLS_UP_INIT)
10627 			goto unexpected;
10628 
10629 		if (!data_vls_operational(ppd)) {
10630 			dd_dev_err(dd,
10631 				   "%s: data VLs not operational\n", __func__);
10632 			ret = -EINVAL;
10633 			break;
10634 		}
10635 
10636 		set_logical_state(dd, LSTATE_ARMED);
10637 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10638 		if (ret) {
10639 			dd_dev_err(dd,
10640 				   "%s: logical state did not change to ARMED\n",
10641 				   __func__);
10642 			break;
10643 		}
10644 		ppd->host_link_state = HLS_UP_ARMED;
10645 		/*
10646 		 * The simulator does not currently implement SMA messages,
10647 		 * so neighbor_normal is not set.  Set it here when we first
10648 		 * move to Armed.
10649 		 */
10650 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10651 			ppd->neighbor_normal = 1;
10652 		break;
10653 	case HLS_UP_ACTIVE:
10654 		if (ppd->host_link_state != HLS_UP_ARMED)
10655 			goto unexpected;
10656 
10657 		set_logical_state(dd, LSTATE_ACTIVE);
10658 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10659 		if (ret) {
10660 			dd_dev_err(dd,
10661 				   "%s: logical state did not change to ACTIVE\n",
10662 				   __func__);
10663 		} else {
10664 			/* tell all engines to go running */
10665 			sdma_all_running(dd);
10666 			ppd->host_link_state = HLS_UP_ACTIVE;
10667 
10668 			/* Signal the IB layer that the port has went active */
10669 			event.device = &dd->verbs_dev.rdi.ibdev;
10670 			event.element.port_num = ppd->port;
10671 			event.event = IB_EVENT_PORT_ACTIVE;
10672 		}
10673 		break;
10674 	case HLS_DN_POLL:
10675 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10676 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10677 		    dd->dc_shutdown)
10678 			dc_start(dd);
10679 		/* Hand LED control to the DC */
10680 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10681 
10682 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10683 			u8 tmp = ppd->link_enabled;
10684 
10685 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10686 			if (ret) {
10687 				ppd->link_enabled = tmp;
10688 				break;
10689 			}
10690 			ppd->remote_link_down_reason = 0;
10691 
10692 			if (ppd->driver_link_ready)
10693 				ppd->link_enabled = 1;
10694 		}
10695 
10696 		set_all_slowpath(ppd->dd);
10697 		ret = set_local_link_attributes(ppd);
10698 		if (ret)
10699 			break;
10700 
10701 		ppd->port_error_action = 0;
10702 		ppd->host_link_state = HLS_DN_POLL;
10703 
10704 		if (quick_linkup) {
10705 			/* quick linkup does not go into polling */
10706 			ret = do_quick_linkup(dd);
10707 		} else {
10708 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10709 			if (ret1 != HCMD_SUCCESS) {
10710 				dd_dev_err(dd,
10711 					   "Failed to transition to Polling link state, return 0x%x\n",
10712 					   ret1);
10713 				ret = -EINVAL;
10714 			}
10715 		}
10716 		ppd->offline_disabled_reason =
10717 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10718 		/*
10719 		 * If an error occurred above, go back to offline.  The
10720 		 * caller may reschedule another attempt.
10721 		 */
10722 		if (ret)
10723 			goto_offline(ppd, 0);
10724 		else
10725 			log_physical_state(ppd, PLS_POLLING);
10726 		break;
10727 	case HLS_DN_DISABLE:
10728 		/* link is disabled */
10729 		ppd->link_enabled = 0;
10730 
10731 		/* allow any state to transition to disabled */
10732 
10733 		/* must transition to offline first */
10734 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10735 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10736 			if (ret)
10737 				break;
10738 			ppd->remote_link_down_reason = 0;
10739 		}
10740 
10741 		if (!dd->dc_shutdown) {
10742 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10743 			if (ret1 != HCMD_SUCCESS) {
10744 				dd_dev_err(dd,
10745 					   "Failed to transition to Disabled link state, return 0x%x\n",
10746 					   ret1);
10747 				ret = -EINVAL;
10748 				break;
10749 			}
10750 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10751 			if (ret) {
10752 				dd_dev_err(dd,
10753 					   "%s: physical state did not change to DISABLED\n",
10754 					   __func__);
10755 				break;
10756 			}
10757 			dc_shutdown(dd);
10758 		}
10759 		ppd->host_link_state = HLS_DN_DISABLE;
10760 		break;
10761 	case HLS_DN_OFFLINE:
10762 		if (ppd->host_link_state == HLS_DN_DISABLE)
10763 			dc_start(dd);
10764 
10765 		/* allow any state to transition to offline */
10766 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10767 		if (!ret)
10768 			ppd->remote_link_down_reason = 0;
10769 		break;
10770 	case HLS_VERIFY_CAP:
10771 		if (ppd->host_link_state != HLS_DN_POLL)
10772 			goto unexpected;
10773 		ppd->host_link_state = HLS_VERIFY_CAP;
10774 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10775 		break;
10776 	case HLS_GOING_UP:
10777 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10778 			goto unexpected;
10779 
10780 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10781 		if (ret1 != HCMD_SUCCESS) {
10782 			dd_dev_err(dd,
10783 				   "Failed to transition to link up state, return 0x%x\n",
10784 				   ret1);
10785 			ret = -EINVAL;
10786 			break;
10787 		}
10788 		ppd->host_link_state = HLS_GOING_UP;
10789 		break;
10790 
10791 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10792 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10793 	default:
10794 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10795 			    __func__, state);
10796 		ret = -EINVAL;
10797 		break;
10798 	}
10799 
10800 	goto done;
10801 
10802 unexpected:
10803 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10804 		   __func__, link_state_name(ppd->host_link_state),
10805 		   link_state_name(state));
10806 	ret = -EINVAL;
10807 
10808 done:
10809 	mutex_unlock(&ppd->hls_lock);
10810 
10811 	if (event.device)
10812 		ib_dispatch_event(&event);
10813 
10814 	return ret;
10815 }
10816 
10817 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10818 {
10819 	u64 reg;
10820 	int ret = 0;
10821 
10822 	switch (which) {
10823 	case HFI1_IB_CFG_LIDLMC:
10824 		set_lidlmc(ppd);
10825 		break;
10826 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10827 		/*
10828 		 * The VL Arbitrator high limit is sent in units of 4k
10829 		 * bytes, while HFI stores it in units of 64 bytes.
10830 		 */
10831 		val *= 4096 / 64;
10832 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10833 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10834 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10835 		break;
10836 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10837 		/* HFI only supports POLL as the default link down state */
10838 		if (val != HLS_DN_POLL)
10839 			ret = -EINVAL;
10840 		break;
10841 	case HFI1_IB_CFG_OP_VLS:
10842 		if (ppd->vls_operational != val) {
10843 			ppd->vls_operational = val;
10844 			if (!ppd->port)
10845 				ret = -EINVAL;
10846 		}
10847 		break;
10848 	/*
10849 	 * For link width, link width downgrade, and speed enable, always AND
10850 	 * the setting with what is actually supported.  This has two benefits.
10851 	 * First, enabled can't have unsupported values, no matter what the
10852 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10853 	 * "fill in with your supported value" have all the bits in the
10854 	 * field set, so simply ANDing with supported has the desired result.
10855 	 */
10856 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10857 		ppd->link_width_enabled = val & ppd->link_width_supported;
10858 		break;
10859 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10860 		ppd->link_width_downgrade_enabled =
10861 				val & ppd->link_width_downgrade_supported;
10862 		break;
10863 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10864 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10865 		break;
10866 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10867 		/*
10868 		 * HFI does not follow IB specs, save this value
10869 		 * so we can report it, if asked.
10870 		 */
10871 		ppd->overrun_threshold = val;
10872 		break;
10873 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10874 		/*
10875 		 * HFI does not follow IB specs, save this value
10876 		 * so we can report it, if asked.
10877 		 */
10878 		ppd->phy_error_threshold = val;
10879 		break;
10880 
10881 	case HFI1_IB_CFG_MTU:
10882 		set_send_length(ppd);
10883 		break;
10884 
10885 	case HFI1_IB_CFG_PKEYS:
10886 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10887 			set_partition_keys(ppd);
10888 		break;
10889 
10890 	default:
10891 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10892 			dd_dev_info(ppd->dd,
10893 				    "%s: which %s, val 0x%x: not implemented\n",
10894 				    __func__, ib_cfg_name(which), val);
10895 		break;
10896 	}
10897 	return ret;
10898 }
10899 
10900 /* begin functions related to vl arbitration table caching */
10901 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10902 {
10903 	int i;
10904 
10905 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10906 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10907 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10908 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10909 
10910 	/*
10911 	 * Note that we always return values directly from the
10912 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10913 	 * 'Get(VLArbTable)'. This is obviously correct after a
10914 	 * 'Set(VLArbTable)', since the cache will then be up to
10915 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10916 	 * since then both the cache, and the relevant h/w registers
10917 	 * will be zeroed.
10918 	 */
10919 
10920 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10921 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10922 }
10923 
10924 /*
10925  * vl_arb_lock_cache
10926  *
10927  * All other vl_arb_* functions should be called only after locking
10928  * the cache.
10929  */
10930 static inline struct vl_arb_cache *
10931 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
10932 {
10933 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
10934 		return NULL;
10935 	spin_lock(&ppd->vl_arb_cache[idx].lock);
10936 	return &ppd->vl_arb_cache[idx];
10937 }
10938 
10939 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
10940 {
10941 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
10942 }
10943 
10944 static void vl_arb_get_cache(struct vl_arb_cache *cache,
10945 			     struct ib_vl_weight_elem *vl)
10946 {
10947 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
10948 }
10949 
10950 static void vl_arb_set_cache(struct vl_arb_cache *cache,
10951 			     struct ib_vl_weight_elem *vl)
10952 {
10953 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10954 }
10955 
10956 static int vl_arb_match_cache(struct vl_arb_cache *cache,
10957 			      struct ib_vl_weight_elem *vl)
10958 {
10959 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
10960 }
10961 
10962 /* end functions related to vl arbitration table caching */
10963 
10964 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
10965 			  u32 size, struct ib_vl_weight_elem *vl)
10966 {
10967 	struct hfi1_devdata *dd = ppd->dd;
10968 	u64 reg;
10969 	unsigned int i, is_up = 0;
10970 	int drain, ret = 0;
10971 
10972 	mutex_lock(&ppd->hls_lock);
10973 
10974 	if (ppd->host_link_state & HLS_UP)
10975 		is_up = 1;
10976 
10977 	drain = !is_ax(dd) && is_up;
10978 
10979 	if (drain)
10980 		/*
10981 		 * Before adjusting VL arbitration weights, empty per-VL
10982 		 * FIFOs, otherwise a packet whose VL weight is being
10983 		 * set to 0 could get stuck in a FIFO with no chance to
10984 		 * egress.
10985 		 */
10986 		ret = stop_drain_data_vls(dd);
10987 
10988 	if (ret) {
10989 		dd_dev_err(
10990 			dd,
10991 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
10992 			__func__);
10993 		goto err;
10994 	}
10995 
10996 	for (i = 0; i < size; i++, vl++) {
10997 		/*
10998 		 * NOTE: The low priority shift and mask are used here, but
10999 		 * they are the same for both the low and high registers.
11000 		 */
11001 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11002 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11003 		      | (((u64)vl->weight
11004 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11005 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11006 		write_csr(dd, target + (i * 8), reg);
11007 	}
11008 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11009 
11010 	if (drain)
11011 		open_fill_data_vls(dd); /* reopen all VLs */
11012 
11013 err:
11014 	mutex_unlock(&ppd->hls_lock);
11015 
11016 	return ret;
11017 }
11018 
11019 /*
11020  * Read one credit merge VL register.
11021  */
11022 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11023 			   struct vl_limit *vll)
11024 {
11025 	u64 reg = read_csr(dd, csr);
11026 
11027 	vll->dedicated = cpu_to_be16(
11028 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11029 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11030 	vll->shared = cpu_to_be16(
11031 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11032 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11033 }
11034 
11035 /*
11036  * Read the current credit merge limits.
11037  */
11038 static int get_buffer_control(struct hfi1_devdata *dd,
11039 			      struct buffer_control *bc, u16 *overall_limit)
11040 {
11041 	u64 reg;
11042 	int i;
11043 
11044 	/* not all entries are filled in */
11045 	memset(bc, 0, sizeof(*bc));
11046 
11047 	/* OPA and HFI have a 1-1 mapping */
11048 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11049 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11050 
11051 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11052 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11053 
11054 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11055 	bc->overall_shared_limit = cpu_to_be16(
11056 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11057 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11058 	if (overall_limit)
11059 		*overall_limit = (reg
11060 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11061 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11062 	return sizeof(struct buffer_control);
11063 }
11064 
11065 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11066 {
11067 	u64 reg;
11068 	int i;
11069 
11070 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11071 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11072 	for (i = 0; i < sizeof(u64); i++) {
11073 		u8 byte = *(((u8 *)&reg) + i);
11074 
11075 		dp->vlnt[2 * i] = byte & 0xf;
11076 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11077 	}
11078 
11079 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11080 	for (i = 0; i < sizeof(u64); i++) {
11081 		u8 byte = *(((u8 *)&reg) + i);
11082 
11083 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11084 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11085 	}
11086 	return sizeof(struct sc2vlnt);
11087 }
11088 
11089 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11090 			      struct ib_vl_weight_elem *vl)
11091 {
11092 	unsigned int i;
11093 
11094 	for (i = 0; i < nelems; i++, vl++) {
11095 		vl->vl = 0xf;
11096 		vl->weight = 0;
11097 	}
11098 }
11099 
11100 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11101 {
11102 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11103 		  DC_SC_VL_VAL(15_0,
11104 			       0, dp->vlnt[0] & 0xf,
11105 			       1, dp->vlnt[1] & 0xf,
11106 			       2, dp->vlnt[2] & 0xf,
11107 			       3, dp->vlnt[3] & 0xf,
11108 			       4, dp->vlnt[4] & 0xf,
11109 			       5, dp->vlnt[5] & 0xf,
11110 			       6, dp->vlnt[6] & 0xf,
11111 			       7, dp->vlnt[7] & 0xf,
11112 			       8, dp->vlnt[8] & 0xf,
11113 			       9, dp->vlnt[9] & 0xf,
11114 			       10, dp->vlnt[10] & 0xf,
11115 			       11, dp->vlnt[11] & 0xf,
11116 			       12, dp->vlnt[12] & 0xf,
11117 			       13, dp->vlnt[13] & 0xf,
11118 			       14, dp->vlnt[14] & 0xf,
11119 			       15, dp->vlnt[15] & 0xf));
11120 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11121 		  DC_SC_VL_VAL(31_16,
11122 			       16, dp->vlnt[16] & 0xf,
11123 			       17, dp->vlnt[17] & 0xf,
11124 			       18, dp->vlnt[18] & 0xf,
11125 			       19, dp->vlnt[19] & 0xf,
11126 			       20, dp->vlnt[20] & 0xf,
11127 			       21, dp->vlnt[21] & 0xf,
11128 			       22, dp->vlnt[22] & 0xf,
11129 			       23, dp->vlnt[23] & 0xf,
11130 			       24, dp->vlnt[24] & 0xf,
11131 			       25, dp->vlnt[25] & 0xf,
11132 			       26, dp->vlnt[26] & 0xf,
11133 			       27, dp->vlnt[27] & 0xf,
11134 			       28, dp->vlnt[28] & 0xf,
11135 			       29, dp->vlnt[29] & 0xf,
11136 			       30, dp->vlnt[30] & 0xf,
11137 			       31, dp->vlnt[31] & 0xf));
11138 }
11139 
11140 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11141 			u16 limit)
11142 {
11143 	if (limit != 0)
11144 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11145 			    what, (int)limit, idx);
11146 }
11147 
11148 /* change only the shared limit portion of SendCmGLobalCredit */
11149 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11150 {
11151 	u64 reg;
11152 
11153 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11154 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11155 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11156 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11157 }
11158 
11159 /* change only the total credit limit portion of SendCmGLobalCredit */
11160 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11161 {
11162 	u64 reg;
11163 
11164 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11165 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11166 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11167 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11168 }
11169 
11170 /* set the given per-VL shared limit */
11171 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11172 {
11173 	u64 reg;
11174 	u32 addr;
11175 
11176 	if (vl < TXE_NUM_DATA_VL)
11177 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11178 	else
11179 		addr = SEND_CM_CREDIT_VL15;
11180 
11181 	reg = read_csr(dd, addr);
11182 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11183 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11184 	write_csr(dd, addr, reg);
11185 }
11186 
11187 /* set the given per-VL dedicated limit */
11188 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11189 {
11190 	u64 reg;
11191 	u32 addr;
11192 
11193 	if (vl < TXE_NUM_DATA_VL)
11194 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11195 	else
11196 		addr = SEND_CM_CREDIT_VL15;
11197 
11198 	reg = read_csr(dd, addr);
11199 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11200 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11201 	write_csr(dd, addr, reg);
11202 }
11203 
11204 /* spin until the given per-VL status mask bits clear */
11205 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11206 				     const char *which)
11207 {
11208 	unsigned long timeout;
11209 	u64 reg;
11210 
11211 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11212 	while (1) {
11213 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11214 
11215 		if (reg == 0)
11216 			return;	/* success */
11217 		if (time_after(jiffies, timeout))
11218 			break;		/* timed out */
11219 		udelay(1);
11220 	}
11221 
11222 	dd_dev_err(dd,
11223 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11224 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11225 	/*
11226 	 * If this occurs, it is likely there was a credit loss on the link.
11227 	 * The only recovery from that is a link bounce.
11228 	 */
11229 	dd_dev_err(dd,
11230 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11231 }
11232 
11233 /*
11234  * The number of credits on the VLs may be changed while everything
11235  * is "live", but the following algorithm must be followed due to
11236  * how the hardware is actually implemented.  In particular,
11237  * Return_Credit_Status[] is the only correct status check.
11238  *
11239  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11240  *     set Global_Shared_Credit_Limit = 0
11241  *     use_all_vl = 1
11242  * mask0 = all VLs that are changing either dedicated or shared limits
11243  * set Shared_Limit[mask0] = 0
11244  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11245  * if (changing any dedicated limit)
11246  *     mask1 = all VLs that are lowering dedicated limits
11247  *     lower Dedicated_Limit[mask1]
11248  *     spin until Return_Credit_Status[mask1] == 0
11249  *     raise Dedicated_Limits
11250  * raise Shared_Limits
11251  * raise Global_Shared_Credit_Limit
11252  *
11253  * lower = if the new limit is lower, set the limit to the new value
11254  * raise = if the new limit is higher than the current value (may be changed
11255  *	earlier in the algorithm), set the new limit to the new value
11256  */
11257 int set_buffer_control(struct hfi1_pportdata *ppd,
11258 		       struct buffer_control *new_bc)
11259 {
11260 	struct hfi1_devdata *dd = ppd->dd;
11261 	u64 changing_mask, ld_mask, stat_mask;
11262 	int change_count;
11263 	int i, use_all_mask;
11264 	int this_shared_changing;
11265 	int vl_count = 0, ret;
11266 	/*
11267 	 * A0: add the variable any_shared_limit_changing below and in the
11268 	 * algorithm above.  If removing A0 support, it can be removed.
11269 	 */
11270 	int any_shared_limit_changing;
11271 	struct buffer_control cur_bc;
11272 	u8 changing[OPA_MAX_VLS];
11273 	u8 lowering_dedicated[OPA_MAX_VLS];
11274 	u16 cur_total;
11275 	u32 new_total = 0;
11276 	const u64 all_mask =
11277 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11278 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11279 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11280 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11281 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11282 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11283 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11284 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11285 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11286 
11287 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11288 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11289 
11290 	/* find the new total credits, do sanity check on unused VLs */
11291 	for (i = 0; i < OPA_MAX_VLS; i++) {
11292 		if (valid_vl(i)) {
11293 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11294 			continue;
11295 		}
11296 		nonzero_msg(dd, i, "dedicated",
11297 			    be16_to_cpu(new_bc->vl[i].dedicated));
11298 		nonzero_msg(dd, i, "shared",
11299 			    be16_to_cpu(new_bc->vl[i].shared));
11300 		new_bc->vl[i].dedicated = 0;
11301 		new_bc->vl[i].shared = 0;
11302 	}
11303 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11304 
11305 	/* fetch the current values */
11306 	get_buffer_control(dd, &cur_bc, &cur_total);
11307 
11308 	/*
11309 	 * Create the masks we will use.
11310 	 */
11311 	memset(changing, 0, sizeof(changing));
11312 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11313 	/*
11314 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11315 	 * increasing order
11316 	 */
11317 	stat_mask =
11318 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11319 	changing_mask = 0;
11320 	ld_mask = 0;
11321 	change_count = 0;
11322 	any_shared_limit_changing = 0;
11323 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11324 		if (!valid_vl(i))
11325 			continue;
11326 		this_shared_changing = new_bc->vl[i].shared
11327 						!= cur_bc.vl[i].shared;
11328 		if (this_shared_changing)
11329 			any_shared_limit_changing = 1;
11330 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11331 		    this_shared_changing) {
11332 			changing[i] = 1;
11333 			changing_mask |= stat_mask;
11334 			change_count++;
11335 		}
11336 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11337 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11338 			lowering_dedicated[i] = 1;
11339 			ld_mask |= stat_mask;
11340 		}
11341 	}
11342 
11343 	/* bracket the credit change with a total adjustment */
11344 	if (new_total > cur_total)
11345 		set_global_limit(dd, new_total);
11346 
11347 	/*
11348 	 * Start the credit change algorithm.
11349 	 */
11350 	use_all_mask = 0;
11351 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11352 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11353 	    (is_ax(dd) && any_shared_limit_changing)) {
11354 		set_global_shared(dd, 0);
11355 		cur_bc.overall_shared_limit = 0;
11356 		use_all_mask = 1;
11357 	}
11358 
11359 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11360 		if (!valid_vl(i))
11361 			continue;
11362 
11363 		if (changing[i]) {
11364 			set_vl_shared(dd, i, 0);
11365 			cur_bc.vl[i].shared = 0;
11366 		}
11367 	}
11368 
11369 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11370 				 "shared");
11371 
11372 	if (change_count > 0) {
11373 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11374 			if (!valid_vl(i))
11375 				continue;
11376 
11377 			if (lowering_dedicated[i]) {
11378 				set_vl_dedicated(dd, i,
11379 						 be16_to_cpu(new_bc->
11380 							     vl[i].dedicated));
11381 				cur_bc.vl[i].dedicated =
11382 						new_bc->vl[i].dedicated;
11383 			}
11384 		}
11385 
11386 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11387 
11388 		/* now raise all dedicated that are going up */
11389 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11390 			if (!valid_vl(i))
11391 				continue;
11392 
11393 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11394 					be16_to_cpu(cur_bc.vl[i].dedicated))
11395 				set_vl_dedicated(dd, i,
11396 						 be16_to_cpu(new_bc->
11397 							     vl[i].dedicated));
11398 		}
11399 	}
11400 
11401 	/* next raise all shared that are going up */
11402 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11403 		if (!valid_vl(i))
11404 			continue;
11405 
11406 		if (be16_to_cpu(new_bc->vl[i].shared) >
11407 				be16_to_cpu(cur_bc.vl[i].shared))
11408 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11409 	}
11410 
11411 	/* finally raise the global shared */
11412 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11413 	    be16_to_cpu(cur_bc.overall_shared_limit))
11414 		set_global_shared(dd,
11415 				  be16_to_cpu(new_bc->overall_shared_limit));
11416 
11417 	/* bracket the credit change with a total adjustment */
11418 	if (new_total < cur_total)
11419 		set_global_limit(dd, new_total);
11420 
11421 	/*
11422 	 * Determine the actual number of operational VLS using the number of
11423 	 * dedicated and shared credits for each VL.
11424 	 */
11425 	if (change_count > 0) {
11426 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11427 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11428 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11429 				vl_count++;
11430 		ppd->actual_vls_operational = vl_count;
11431 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11432 				    ppd->actual_vls_operational :
11433 				    ppd->vls_operational,
11434 				    NULL);
11435 		if (ret == 0)
11436 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11437 					   ppd->actual_vls_operational :
11438 					   ppd->vls_operational, NULL);
11439 		if (ret)
11440 			return ret;
11441 	}
11442 	return 0;
11443 }
11444 
11445 /*
11446  * Read the given fabric manager table. Return the size of the
11447  * table (in bytes) on success, and a negative error code on
11448  * failure.
11449  */
11450 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11451 
11452 {
11453 	int size;
11454 	struct vl_arb_cache *vlc;
11455 
11456 	switch (which) {
11457 	case FM_TBL_VL_HIGH_ARB:
11458 		size = 256;
11459 		/*
11460 		 * OPA specifies 128 elements (of 2 bytes each), though
11461 		 * HFI supports only 16 elements in h/w.
11462 		 */
11463 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11464 		vl_arb_get_cache(vlc, t);
11465 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11466 		break;
11467 	case FM_TBL_VL_LOW_ARB:
11468 		size = 256;
11469 		/*
11470 		 * OPA specifies 128 elements (of 2 bytes each), though
11471 		 * HFI supports only 16 elements in h/w.
11472 		 */
11473 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11474 		vl_arb_get_cache(vlc, t);
11475 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11476 		break;
11477 	case FM_TBL_BUFFER_CONTROL:
11478 		size = get_buffer_control(ppd->dd, t, NULL);
11479 		break;
11480 	case FM_TBL_SC2VLNT:
11481 		size = get_sc2vlnt(ppd->dd, t);
11482 		break;
11483 	case FM_TBL_VL_PREEMPT_ELEMS:
11484 		size = 256;
11485 		/* OPA specifies 128 elements, of 2 bytes each */
11486 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11487 		break;
11488 	case FM_TBL_VL_PREEMPT_MATRIX:
11489 		size = 256;
11490 		/*
11491 		 * OPA specifies that this is the same size as the VL
11492 		 * arbitration tables (i.e., 256 bytes).
11493 		 */
11494 		break;
11495 	default:
11496 		return -EINVAL;
11497 	}
11498 	return size;
11499 }
11500 
11501 /*
11502  * Write the given fabric manager table.
11503  */
11504 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11505 {
11506 	int ret = 0;
11507 	struct vl_arb_cache *vlc;
11508 
11509 	switch (which) {
11510 	case FM_TBL_VL_HIGH_ARB:
11511 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11512 		if (vl_arb_match_cache(vlc, t)) {
11513 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11514 			break;
11515 		}
11516 		vl_arb_set_cache(vlc, t);
11517 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11518 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11519 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11520 		break;
11521 	case FM_TBL_VL_LOW_ARB:
11522 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11523 		if (vl_arb_match_cache(vlc, t)) {
11524 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11525 			break;
11526 		}
11527 		vl_arb_set_cache(vlc, t);
11528 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11529 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11530 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11531 		break;
11532 	case FM_TBL_BUFFER_CONTROL:
11533 		ret = set_buffer_control(ppd, t);
11534 		break;
11535 	case FM_TBL_SC2VLNT:
11536 		set_sc2vlnt(ppd->dd, t);
11537 		break;
11538 	default:
11539 		ret = -EINVAL;
11540 	}
11541 	return ret;
11542 }
11543 
11544 /*
11545  * Disable all data VLs.
11546  *
11547  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11548  */
11549 static int disable_data_vls(struct hfi1_devdata *dd)
11550 {
11551 	if (is_ax(dd))
11552 		return 1;
11553 
11554 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11555 
11556 	return 0;
11557 }
11558 
11559 /*
11560  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11561  * Just re-enables all data VLs (the "fill" part happens
11562  * automatically - the name was chosen for symmetry with
11563  * stop_drain_data_vls()).
11564  *
11565  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11566  */
11567 int open_fill_data_vls(struct hfi1_devdata *dd)
11568 {
11569 	if (is_ax(dd))
11570 		return 1;
11571 
11572 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11573 
11574 	return 0;
11575 }
11576 
11577 /*
11578  * drain_data_vls() - assumes that disable_data_vls() has been called,
11579  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11580  * engines to drop to 0.
11581  */
11582 static void drain_data_vls(struct hfi1_devdata *dd)
11583 {
11584 	sc_wait(dd);
11585 	sdma_wait(dd);
11586 	pause_for_credit_return(dd);
11587 }
11588 
11589 /*
11590  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11591  *
11592  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11593  * meant to be used like this:
11594  *
11595  * stop_drain_data_vls(dd);
11596  * // do things with per-VL resources
11597  * open_fill_data_vls(dd);
11598  */
11599 int stop_drain_data_vls(struct hfi1_devdata *dd)
11600 {
11601 	int ret;
11602 
11603 	ret = disable_data_vls(dd);
11604 	if (ret == 0)
11605 		drain_data_vls(dd);
11606 
11607 	return ret;
11608 }
11609 
11610 /*
11611  * Convert a nanosecond time to a cclock count.  No matter how slow
11612  * the cclock, a non-zero ns will always have a non-zero result.
11613  */
11614 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11615 {
11616 	u32 cclocks;
11617 
11618 	if (dd->icode == ICODE_FPGA_EMULATION)
11619 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11620 	else  /* simulation pretends to be ASIC */
11621 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11622 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11623 		cclocks = 1;
11624 	return cclocks;
11625 }
11626 
11627 /*
11628  * Convert a cclock count to nanoseconds. Not matter how slow
11629  * the cclock, a non-zero cclocks will always have a non-zero result.
11630  */
11631 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11632 {
11633 	u32 ns;
11634 
11635 	if (dd->icode == ICODE_FPGA_EMULATION)
11636 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11637 	else  /* simulation pretends to be ASIC */
11638 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11639 	if (cclocks && !ns)
11640 		ns = 1;
11641 	return ns;
11642 }
11643 
11644 /*
11645  * Dynamically adjust the receive interrupt timeout for a context based on
11646  * incoming packet rate.
11647  *
11648  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11649  */
11650 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11651 {
11652 	struct hfi1_devdata *dd = rcd->dd;
11653 	u32 timeout = rcd->rcvavail_timeout;
11654 
11655 	/*
11656 	 * This algorithm doubles or halves the timeout depending on whether
11657 	 * the number of packets received in this interrupt were less than or
11658 	 * greater equal the interrupt count.
11659 	 *
11660 	 * The calculations below do not allow a steady state to be achieved.
11661 	 * Only at the endpoints it is possible to have an unchanging
11662 	 * timeout.
11663 	 */
11664 	if (npkts < rcv_intr_count) {
11665 		/*
11666 		 * Not enough packets arrived before the timeout, adjust
11667 		 * timeout downward.
11668 		 */
11669 		if (timeout < 2) /* already at minimum? */
11670 			return;
11671 		timeout >>= 1;
11672 	} else {
11673 		/*
11674 		 * More than enough packets arrived before the timeout, adjust
11675 		 * timeout upward.
11676 		 */
11677 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11678 			return;
11679 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11680 	}
11681 
11682 	rcd->rcvavail_timeout = timeout;
11683 	/*
11684 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11685 	 * been verified to be in range
11686 	 */
11687 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11688 			(u64)timeout <<
11689 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11690 }
11691 
11692 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11693 		    u32 intr_adjust, u32 npkts)
11694 {
11695 	struct hfi1_devdata *dd = rcd->dd;
11696 	u64 reg;
11697 	u32 ctxt = rcd->ctxt;
11698 
11699 	/*
11700 	 * Need to write timeout register before updating RcvHdrHead to ensure
11701 	 * that a new value is used when the HW decides to restart counting.
11702 	 */
11703 	if (intr_adjust)
11704 		adjust_rcv_timeout(rcd, npkts);
11705 	if (updegr) {
11706 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11707 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11708 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11709 	}
11710 	mmiowb();
11711 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11712 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11713 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11714 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11715 	mmiowb();
11716 }
11717 
11718 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11719 {
11720 	u32 head, tail;
11721 
11722 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11723 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11724 
11725 	if (rcd->rcvhdrtail_kvaddr)
11726 		tail = get_rcvhdrtail(rcd);
11727 	else
11728 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11729 
11730 	return head == tail;
11731 }
11732 
11733 /*
11734  * Context Control and Receive Array encoding for buffer size:
11735  *	0x0 invalid
11736  *	0x1   4 KB
11737  *	0x2   8 KB
11738  *	0x3  16 KB
11739  *	0x4  32 KB
11740  *	0x5  64 KB
11741  *	0x6 128 KB
11742  *	0x7 256 KB
11743  *	0x8 512 KB (Receive Array only)
11744  *	0x9   1 MB (Receive Array only)
11745  *	0xa   2 MB (Receive Array only)
11746  *
11747  *	0xB-0xF - reserved (Receive Array only)
11748  *
11749  *
11750  * This routine assumes that the value has already been sanity checked.
11751  */
11752 static u32 encoded_size(u32 size)
11753 {
11754 	switch (size) {
11755 	case   4 * 1024: return 0x1;
11756 	case   8 * 1024: return 0x2;
11757 	case  16 * 1024: return 0x3;
11758 	case  32 * 1024: return 0x4;
11759 	case  64 * 1024: return 0x5;
11760 	case 128 * 1024: return 0x6;
11761 	case 256 * 1024: return 0x7;
11762 	case 512 * 1024: return 0x8;
11763 	case   1 * 1024 * 1024: return 0x9;
11764 	case   2 * 1024 * 1024: return 0xa;
11765 	}
11766 	return 0x1;	/* if invalid, go with the minimum size */
11767 }
11768 
11769 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11770 		  struct hfi1_ctxtdata *rcd)
11771 {
11772 	u64 rcvctrl, reg;
11773 	int did_enable = 0;
11774 	u16 ctxt;
11775 
11776 	if (!rcd)
11777 		return;
11778 
11779 	ctxt = rcd->ctxt;
11780 
11781 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11782 
11783 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11784 	/* if the context already enabled, don't do the extra steps */
11785 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11786 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11787 		/* reset the tail and hdr addresses, and sequence count */
11788 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11789 				rcd->rcvhdrq_dma);
11790 		if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL))
11791 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11792 					rcd->rcvhdrqtailaddr_dma);
11793 		rcd->seq_cnt = 1;
11794 
11795 		/* reset the cached receive header queue head value */
11796 		rcd->head = 0;
11797 
11798 		/*
11799 		 * Zero the receive header queue so we don't get false
11800 		 * positives when checking the sequence number.  The
11801 		 * sequence numbers could land exactly on the same spot.
11802 		 * E.g. a rcd restart before the receive header wrapped.
11803 		 */
11804 		memset(rcd->rcvhdrq, 0, rcd->rcvhdrq_size);
11805 
11806 		/* starting timeout */
11807 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11808 
11809 		/* enable the context */
11810 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11811 
11812 		/* clean the egr buffer size first */
11813 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11814 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11815 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11816 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11817 
11818 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11819 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11820 		did_enable = 1;
11821 
11822 		/* zero RcvEgrIndexHead */
11823 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11824 
11825 		/* set eager count and base index */
11826 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11827 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11828 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11829 			(((rcd->eager_base >> RCV_SHIFT)
11830 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11831 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11832 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11833 
11834 		/*
11835 		 * Set TID (expected) count and base index.
11836 		 * rcd->expected_count is set to individual RcvArray entries,
11837 		 * not pairs, and the CSR takes a pair-count in groups of
11838 		 * four, so divide by 8.
11839 		 */
11840 		reg = (((rcd->expected_count >> RCV_SHIFT)
11841 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11842 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11843 		      (((rcd->expected_base >> RCV_SHIFT)
11844 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11845 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11846 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11847 		if (ctxt == HFI1_CTRL_CTXT)
11848 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11849 	}
11850 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11851 		write_csr(dd, RCV_VL15, 0);
11852 		/*
11853 		 * When receive context is being disabled turn on tail
11854 		 * update with a dummy tail address and then disable
11855 		 * receive context.
11856 		 */
11857 		if (dd->rcvhdrtail_dummy_dma) {
11858 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11859 					dd->rcvhdrtail_dummy_dma);
11860 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11861 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11862 		}
11863 
11864 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11865 	}
11866 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB)
11867 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11868 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS)
11869 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11870 	if (op & HFI1_RCVCTRL_TAILUPD_ENB && rcd->rcvhdrqtailaddr_dma)
11871 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11872 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11873 		/* See comment on RcvCtxtCtrl.TailUpd above */
11874 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11875 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11876 	}
11877 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11878 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11879 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11880 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11881 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11882 		/*
11883 		 * In one-packet-per-eager mode, the size comes from
11884 		 * the RcvArray entry.
11885 		 */
11886 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11887 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11888 	}
11889 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11890 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11891 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11892 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11893 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11894 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11895 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11896 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11897 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11898 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11899 	rcd->rcvctrl = rcvctrl;
11900 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11901 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcd->rcvctrl);
11902 
11903 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11904 	if (did_enable &&
11905 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11906 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11907 		if (reg != 0) {
11908 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11909 				    ctxt, reg);
11910 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11911 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11912 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11913 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11914 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11915 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11916 				    ctxt, reg, reg == 0 ? "not" : "still");
11917 		}
11918 	}
11919 
11920 	if (did_enable) {
11921 		/*
11922 		 * The interrupt timeout and count must be set after
11923 		 * the context is enabled to take effect.
11924 		 */
11925 		/* set interrupt timeout */
11926 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
11927 				(u64)rcd->rcvavail_timeout <<
11928 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11929 
11930 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
11931 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
11932 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11933 	}
11934 
11935 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
11936 		/*
11937 		 * If the context has been disabled and the Tail Update has
11938 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
11939 		 * so it doesn't contain an address that is invalid.
11940 		 */
11941 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11942 				dd->rcvhdrtail_dummy_dma);
11943 }
11944 
11945 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
11946 {
11947 	int ret;
11948 	u64 val = 0;
11949 
11950 	if (namep) {
11951 		ret = dd->cntrnameslen;
11952 		*namep = dd->cntrnames;
11953 	} else {
11954 		const struct cntr_entry *entry;
11955 		int i, j;
11956 
11957 		ret = (dd->ndevcntrs) * sizeof(u64);
11958 
11959 		/* Get the start of the block of counters */
11960 		*cntrp = dd->cntrs;
11961 
11962 		/*
11963 		 * Now go and fill in each counter in the block.
11964 		 */
11965 		for (i = 0; i < DEV_CNTR_LAST; i++) {
11966 			entry = &dev_cntrs[i];
11967 			hfi1_cdbg(CNTR, "reading %s", entry->name);
11968 			if (entry->flags & CNTR_DISABLED) {
11969 				/* Nothing */
11970 				hfi1_cdbg(CNTR, "\tDisabled\n");
11971 			} else {
11972 				if (entry->flags & CNTR_VL) {
11973 					hfi1_cdbg(CNTR, "\tPer VL\n");
11974 					for (j = 0; j < C_VL_COUNT; j++) {
11975 						val = entry->rw_cntr(entry,
11976 								  dd, j,
11977 								  CNTR_MODE_R,
11978 								  0);
11979 						hfi1_cdbg(
11980 						   CNTR,
11981 						   "\t\tRead 0x%llx for %d\n",
11982 						   val, j);
11983 						dd->cntrs[entry->offset + j] =
11984 									    val;
11985 					}
11986 				} else if (entry->flags & CNTR_SDMA) {
11987 					hfi1_cdbg(CNTR,
11988 						  "\t Per SDMA Engine\n");
11989 					for (j = 0; j < dd->chip_sdma_engines;
11990 					     j++) {
11991 						val =
11992 						entry->rw_cntr(entry, dd, j,
11993 							       CNTR_MODE_R, 0);
11994 						hfi1_cdbg(CNTR,
11995 							  "\t\tRead 0x%llx for %d\n",
11996 							  val, j);
11997 						dd->cntrs[entry->offset + j] =
11998 									val;
11999 					}
12000 				} else {
12001 					val = entry->rw_cntr(entry, dd,
12002 							CNTR_INVALID_VL,
12003 							CNTR_MODE_R, 0);
12004 					dd->cntrs[entry->offset] = val;
12005 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12006 				}
12007 			}
12008 		}
12009 	}
12010 	return ret;
12011 }
12012 
12013 /*
12014  * Used by sysfs to create files for hfi stats to read
12015  */
12016 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12017 {
12018 	int ret;
12019 	u64 val = 0;
12020 
12021 	if (namep) {
12022 		ret = ppd->dd->portcntrnameslen;
12023 		*namep = ppd->dd->portcntrnames;
12024 	} else {
12025 		const struct cntr_entry *entry;
12026 		int i, j;
12027 
12028 		ret = ppd->dd->nportcntrs * sizeof(u64);
12029 		*cntrp = ppd->cntrs;
12030 
12031 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12032 			entry = &port_cntrs[i];
12033 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12034 			if (entry->flags & CNTR_DISABLED) {
12035 				/* Nothing */
12036 				hfi1_cdbg(CNTR, "\tDisabled\n");
12037 				continue;
12038 			}
12039 
12040 			if (entry->flags & CNTR_VL) {
12041 				hfi1_cdbg(CNTR, "\tPer VL");
12042 				for (j = 0; j < C_VL_COUNT; j++) {
12043 					val = entry->rw_cntr(entry, ppd, j,
12044 							       CNTR_MODE_R,
12045 							       0);
12046 					hfi1_cdbg(
12047 					   CNTR,
12048 					   "\t\tRead 0x%llx for %d",
12049 					   val, j);
12050 					ppd->cntrs[entry->offset + j] = val;
12051 				}
12052 			} else {
12053 				val = entry->rw_cntr(entry, ppd,
12054 						       CNTR_INVALID_VL,
12055 						       CNTR_MODE_R,
12056 						       0);
12057 				ppd->cntrs[entry->offset] = val;
12058 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12059 			}
12060 		}
12061 	}
12062 	return ret;
12063 }
12064 
12065 static void free_cntrs(struct hfi1_devdata *dd)
12066 {
12067 	struct hfi1_pportdata *ppd;
12068 	int i;
12069 
12070 	if (dd->synth_stats_timer.data)
12071 		del_timer_sync(&dd->synth_stats_timer);
12072 	dd->synth_stats_timer.data = 0;
12073 	ppd = (struct hfi1_pportdata *)(dd + 1);
12074 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12075 		kfree(ppd->cntrs);
12076 		kfree(ppd->scntrs);
12077 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12078 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12079 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12080 		ppd->cntrs = NULL;
12081 		ppd->scntrs = NULL;
12082 		ppd->ibport_data.rvp.rc_acks = NULL;
12083 		ppd->ibport_data.rvp.rc_qacks = NULL;
12084 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12085 	}
12086 	kfree(dd->portcntrnames);
12087 	dd->portcntrnames = NULL;
12088 	kfree(dd->cntrs);
12089 	dd->cntrs = NULL;
12090 	kfree(dd->scntrs);
12091 	dd->scntrs = NULL;
12092 	kfree(dd->cntrnames);
12093 	dd->cntrnames = NULL;
12094 	if (dd->update_cntr_wq) {
12095 		destroy_workqueue(dd->update_cntr_wq);
12096 		dd->update_cntr_wq = NULL;
12097 	}
12098 }
12099 
12100 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12101 			      u64 *psval, void *context, int vl)
12102 {
12103 	u64 val;
12104 	u64 sval = *psval;
12105 
12106 	if (entry->flags & CNTR_DISABLED) {
12107 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12108 		return 0;
12109 	}
12110 
12111 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12112 
12113 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12114 
12115 	/* If its a synthetic counter there is more work we need to do */
12116 	if (entry->flags & CNTR_SYNTH) {
12117 		if (sval == CNTR_MAX) {
12118 			/* No need to read already saturated */
12119 			return CNTR_MAX;
12120 		}
12121 
12122 		if (entry->flags & CNTR_32BIT) {
12123 			/* 32bit counters can wrap multiple times */
12124 			u64 upper = sval >> 32;
12125 			u64 lower = (sval << 32) >> 32;
12126 
12127 			if (lower > val) { /* hw wrapped */
12128 				if (upper == CNTR_32BIT_MAX)
12129 					val = CNTR_MAX;
12130 				else
12131 					upper++;
12132 			}
12133 
12134 			if (val != CNTR_MAX)
12135 				val = (upper << 32) | val;
12136 
12137 		} else {
12138 			/* If we rolled we are saturated */
12139 			if ((val < sval) || (val > CNTR_MAX))
12140 				val = CNTR_MAX;
12141 		}
12142 	}
12143 
12144 	*psval = val;
12145 
12146 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12147 
12148 	return val;
12149 }
12150 
12151 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12152 			       struct cntr_entry *entry,
12153 			       u64 *psval, void *context, int vl, u64 data)
12154 {
12155 	u64 val;
12156 
12157 	if (entry->flags & CNTR_DISABLED) {
12158 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12159 		return 0;
12160 	}
12161 
12162 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12163 
12164 	if (entry->flags & CNTR_SYNTH) {
12165 		*psval = data;
12166 		if (entry->flags & CNTR_32BIT) {
12167 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12168 					     (data << 32) >> 32);
12169 			val = data; /* return the full 64bit value */
12170 		} else {
12171 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12172 					     data);
12173 		}
12174 	} else {
12175 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12176 	}
12177 
12178 	*psval = val;
12179 
12180 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12181 
12182 	return val;
12183 }
12184 
12185 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12186 {
12187 	struct cntr_entry *entry;
12188 	u64 *sval;
12189 
12190 	entry = &dev_cntrs[index];
12191 	sval = dd->scntrs + entry->offset;
12192 
12193 	if (vl != CNTR_INVALID_VL)
12194 		sval += vl;
12195 
12196 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12197 }
12198 
12199 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12200 {
12201 	struct cntr_entry *entry;
12202 	u64 *sval;
12203 
12204 	entry = &dev_cntrs[index];
12205 	sval = dd->scntrs + entry->offset;
12206 
12207 	if (vl != CNTR_INVALID_VL)
12208 		sval += vl;
12209 
12210 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12211 }
12212 
12213 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12214 {
12215 	struct cntr_entry *entry;
12216 	u64 *sval;
12217 
12218 	entry = &port_cntrs[index];
12219 	sval = ppd->scntrs + entry->offset;
12220 
12221 	if (vl != CNTR_INVALID_VL)
12222 		sval += vl;
12223 
12224 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12225 	    (index <= C_RCV_HDR_OVF_LAST)) {
12226 		/* We do not want to bother for disabled contexts */
12227 		return 0;
12228 	}
12229 
12230 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12231 }
12232 
12233 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12234 {
12235 	struct cntr_entry *entry;
12236 	u64 *sval;
12237 
12238 	entry = &port_cntrs[index];
12239 	sval = ppd->scntrs + entry->offset;
12240 
12241 	if (vl != CNTR_INVALID_VL)
12242 		sval += vl;
12243 
12244 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12245 	    (index <= C_RCV_HDR_OVF_LAST)) {
12246 		/* We do not want to bother for disabled contexts */
12247 		return 0;
12248 	}
12249 
12250 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12251 }
12252 
12253 static void do_update_synth_timer(struct work_struct *work)
12254 {
12255 	u64 cur_tx;
12256 	u64 cur_rx;
12257 	u64 total_flits;
12258 	u8 update = 0;
12259 	int i, j, vl;
12260 	struct hfi1_pportdata *ppd;
12261 	struct cntr_entry *entry;
12262 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12263 					       update_cntr_work);
12264 
12265 	/*
12266 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12267 	 * check to watch for potential roll over. We can do this by looking at
12268 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12269 	 * we have to iterate all the counters and update.
12270 	 */
12271 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12272 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12273 
12274 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12275 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12276 
12277 	hfi1_cdbg(
12278 	    CNTR,
12279 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12280 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12281 
12282 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12283 		/*
12284 		 * May not be strictly necessary to update but it won't hurt and
12285 		 * simplifies the logic here.
12286 		 */
12287 		update = 1;
12288 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12289 			  dd->unit);
12290 	} else {
12291 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12292 		hfi1_cdbg(CNTR,
12293 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12294 			  total_flits, (u64)CNTR_32BIT_MAX);
12295 		if (total_flits >= CNTR_32BIT_MAX) {
12296 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12297 				  dd->unit);
12298 			update = 1;
12299 		}
12300 	}
12301 
12302 	if (update) {
12303 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12304 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12305 			entry = &dev_cntrs[i];
12306 			if (entry->flags & CNTR_VL) {
12307 				for (vl = 0; vl < C_VL_COUNT; vl++)
12308 					read_dev_cntr(dd, i, vl);
12309 			} else {
12310 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12311 			}
12312 		}
12313 		ppd = (struct hfi1_pportdata *)(dd + 1);
12314 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12315 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12316 				entry = &port_cntrs[j];
12317 				if (entry->flags & CNTR_VL) {
12318 					for (vl = 0; vl < C_VL_COUNT; vl++)
12319 						read_port_cntr(ppd, j, vl);
12320 				} else {
12321 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12322 				}
12323 			}
12324 		}
12325 
12326 		/*
12327 		 * We want the value in the register. The goal is to keep track
12328 		 * of the number of "ticks" not the counter value. In other
12329 		 * words if the register rolls we want to notice it and go ahead
12330 		 * and force an update.
12331 		 */
12332 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12333 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12334 						CNTR_MODE_R, 0);
12335 
12336 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12337 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12338 						CNTR_MODE_R, 0);
12339 
12340 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12341 			  dd->unit, dd->last_tx, dd->last_rx);
12342 
12343 	} else {
12344 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12345 	}
12346 }
12347 
12348 static void update_synth_timer(unsigned long opaque)
12349 {
12350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)opaque;
12351 
12352 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12353 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12354 }
12355 
12356 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12357 static int init_cntrs(struct hfi1_devdata *dd)
12358 {
12359 	int i, rcv_ctxts, j;
12360 	size_t sz;
12361 	char *p;
12362 	char name[C_MAX_NAME];
12363 	struct hfi1_pportdata *ppd;
12364 	const char *bit_type_32 = ",32";
12365 	const int bit_type_32_sz = strlen(bit_type_32);
12366 
12367 	/* set up the stats timer; the add_timer is done at the end */
12368 	setup_timer(&dd->synth_stats_timer, update_synth_timer,
12369 		    (unsigned long)dd);
12370 
12371 	/***********************/
12372 	/* per device counters */
12373 	/***********************/
12374 
12375 	/* size names and determine how many we have*/
12376 	dd->ndevcntrs = 0;
12377 	sz = 0;
12378 
12379 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12380 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12381 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12382 			continue;
12383 		}
12384 
12385 		if (dev_cntrs[i].flags & CNTR_VL) {
12386 			dev_cntrs[i].offset = dd->ndevcntrs;
12387 			for (j = 0; j < C_VL_COUNT; j++) {
12388 				snprintf(name, C_MAX_NAME, "%s%d",
12389 					 dev_cntrs[i].name, vl_from_idx(j));
12390 				sz += strlen(name);
12391 				/* Add ",32" for 32-bit counters */
12392 				if (dev_cntrs[i].flags & CNTR_32BIT)
12393 					sz += bit_type_32_sz;
12394 				sz++;
12395 				dd->ndevcntrs++;
12396 			}
12397 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12398 			dev_cntrs[i].offset = dd->ndevcntrs;
12399 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12400 				snprintf(name, C_MAX_NAME, "%s%d",
12401 					 dev_cntrs[i].name, j);
12402 				sz += strlen(name);
12403 				/* Add ",32" for 32-bit counters */
12404 				if (dev_cntrs[i].flags & CNTR_32BIT)
12405 					sz += bit_type_32_sz;
12406 				sz++;
12407 				dd->ndevcntrs++;
12408 			}
12409 		} else {
12410 			/* +1 for newline. */
12411 			sz += strlen(dev_cntrs[i].name) + 1;
12412 			/* Add ",32" for 32-bit counters */
12413 			if (dev_cntrs[i].flags & CNTR_32BIT)
12414 				sz += bit_type_32_sz;
12415 			dev_cntrs[i].offset = dd->ndevcntrs;
12416 			dd->ndevcntrs++;
12417 		}
12418 	}
12419 
12420 	/* allocate space for the counter values */
12421 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12422 	if (!dd->cntrs)
12423 		goto bail;
12424 
12425 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12426 	if (!dd->scntrs)
12427 		goto bail;
12428 
12429 	/* allocate space for the counter names */
12430 	dd->cntrnameslen = sz;
12431 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12432 	if (!dd->cntrnames)
12433 		goto bail;
12434 
12435 	/* fill in the names */
12436 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12437 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12438 			/* Nothing */
12439 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12440 			for (j = 0; j < C_VL_COUNT; j++) {
12441 				snprintf(name, C_MAX_NAME, "%s%d",
12442 					 dev_cntrs[i].name,
12443 					 vl_from_idx(j));
12444 				memcpy(p, name, strlen(name));
12445 				p += strlen(name);
12446 
12447 				/* Counter is 32 bits */
12448 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12449 					memcpy(p, bit_type_32, bit_type_32_sz);
12450 					p += bit_type_32_sz;
12451 				}
12452 
12453 				*p++ = '\n';
12454 			}
12455 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12456 			for (j = 0; j < dd->chip_sdma_engines; j++) {
12457 				snprintf(name, C_MAX_NAME, "%s%d",
12458 					 dev_cntrs[i].name, j);
12459 				memcpy(p, name, strlen(name));
12460 				p += strlen(name);
12461 
12462 				/* Counter is 32 bits */
12463 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12464 					memcpy(p, bit_type_32, bit_type_32_sz);
12465 					p += bit_type_32_sz;
12466 				}
12467 
12468 				*p++ = '\n';
12469 			}
12470 		} else {
12471 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12472 			p += strlen(dev_cntrs[i].name);
12473 
12474 			/* Counter is 32 bits */
12475 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12476 				memcpy(p, bit_type_32, bit_type_32_sz);
12477 				p += bit_type_32_sz;
12478 			}
12479 
12480 			*p++ = '\n';
12481 		}
12482 	}
12483 
12484 	/*********************/
12485 	/* per port counters */
12486 	/*********************/
12487 
12488 	/*
12489 	 * Go through the counters for the overflows and disable the ones we
12490 	 * don't need. This varies based on platform so we need to do it
12491 	 * dynamically here.
12492 	 */
12493 	rcv_ctxts = dd->num_rcv_contexts;
12494 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12495 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12496 		port_cntrs[i].flags |= CNTR_DISABLED;
12497 	}
12498 
12499 	/* size port counter names and determine how many we have*/
12500 	sz = 0;
12501 	dd->nportcntrs = 0;
12502 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12503 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12504 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12505 			continue;
12506 		}
12507 
12508 		if (port_cntrs[i].flags & CNTR_VL) {
12509 			port_cntrs[i].offset = dd->nportcntrs;
12510 			for (j = 0; j < C_VL_COUNT; j++) {
12511 				snprintf(name, C_MAX_NAME, "%s%d",
12512 					 port_cntrs[i].name, vl_from_idx(j));
12513 				sz += strlen(name);
12514 				/* Add ",32" for 32-bit counters */
12515 				if (port_cntrs[i].flags & CNTR_32BIT)
12516 					sz += bit_type_32_sz;
12517 				sz++;
12518 				dd->nportcntrs++;
12519 			}
12520 		} else {
12521 			/* +1 for newline */
12522 			sz += strlen(port_cntrs[i].name) + 1;
12523 			/* Add ",32" for 32-bit counters */
12524 			if (port_cntrs[i].flags & CNTR_32BIT)
12525 				sz += bit_type_32_sz;
12526 			port_cntrs[i].offset = dd->nportcntrs;
12527 			dd->nportcntrs++;
12528 		}
12529 	}
12530 
12531 	/* allocate space for the counter names */
12532 	dd->portcntrnameslen = sz;
12533 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12534 	if (!dd->portcntrnames)
12535 		goto bail;
12536 
12537 	/* fill in port cntr names */
12538 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12539 		if (port_cntrs[i].flags & CNTR_DISABLED)
12540 			continue;
12541 
12542 		if (port_cntrs[i].flags & CNTR_VL) {
12543 			for (j = 0; j < C_VL_COUNT; j++) {
12544 				snprintf(name, C_MAX_NAME, "%s%d",
12545 					 port_cntrs[i].name, vl_from_idx(j));
12546 				memcpy(p, name, strlen(name));
12547 				p += strlen(name);
12548 
12549 				/* Counter is 32 bits */
12550 				if (port_cntrs[i].flags & CNTR_32BIT) {
12551 					memcpy(p, bit_type_32, bit_type_32_sz);
12552 					p += bit_type_32_sz;
12553 				}
12554 
12555 				*p++ = '\n';
12556 			}
12557 		} else {
12558 			memcpy(p, port_cntrs[i].name,
12559 			       strlen(port_cntrs[i].name));
12560 			p += strlen(port_cntrs[i].name);
12561 
12562 			/* Counter is 32 bits */
12563 			if (port_cntrs[i].flags & CNTR_32BIT) {
12564 				memcpy(p, bit_type_32, bit_type_32_sz);
12565 				p += bit_type_32_sz;
12566 			}
12567 
12568 			*p++ = '\n';
12569 		}
12570 	}
12571 
12572 	/* allocate per port storage for counter values */
12573 	ppd = (struct hfi1_pportdata *)(dd + 1);
12574 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12575 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12576 		if (!ppd->cntrs)
12577 			goto bail;
12578 
12579 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12580 		if (!ppd->scntrs)
12581 			goto bail;
12582 	}
12583 
12584 	/* CPU counters need to be allocated and zeroed */
12585 	if (init_cpu_counters(dd))
12586 		goto bail;
12587 
12588 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12589 						     WQ_MEM_RECLAIM, dd->unit);
12590 	if (!dd->update_cntr_wq)
12591 		goto bail;
12592 
12593 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12594 
12595 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12596 	return 0;
12597 bail:
12598 	free_cntrs(dd);
12599 	return -ENOMEM;
12600 }
12601 
12602 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12603 {
12604 	switch (chip_lstate) {
12605 	default:
12606 		dd_dev_err(dd,
12607 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12608 			   chip_lstate);
12609 		/* fall through */
12610 	case LSTATE_DOWN:
12611 		return IB_PORT_DOWN;
12612 	case LSTATE_INIT:
12613 		return IB_PORT_INIT;
12614 	case LSTATE_ARMED:
12615 		return IB_PORT_ARMED;
12616 	case LSTATE_ACTIVE:
12617 		return IB_PORT_ACTIVE;
12618 	}
12619 }
12620 
12621 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12622 {
12623 	/* look at the HFI meta-states only */
12624 	switch (chip_pstate & 0xf0) {
12625 	default:
12626 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12627 			   chip_pstate);
12628 		/* fall through */
12629 	case PLS_DISABLED:
12630 		return IB_PORTPHYSSTATE_DISABLED;
12631 	case PLS_OFFLINE:
12632 		return OPA_PORTPHYSSTATE_OFFLINE;
12633 	case PLS_POLLING:
12634 		return IB_PORTPHYSSTATE_POLLING;
12635 	case PLS_CONFIGPHY:
12636 		return IB_PORTPHYSSTATE_TRAINING;
12637 	case PLS_LINKUP:
12638 		return IB_PORTPHYSSTATE_LINKUP;
12639 	case PLS_PHYTEST:
12640 		return IB_PORTPHYSSTATE_PHY_TEST;
12641 	}
12642 }
12643 
12644 /* return the OPA port logical state name */
12645 const char *opa_lstate_name(u32 lstate)
12646 {
12647 	static const char * const port_logical_names[] = {
12648 		"PORT_NOP",
12649 		"PORT_DOWN",
12650 		"PORT_INIT",
12651 		"PORT_ARMED",
12652 		"PORT_ACTIVE",
12653 		"PORT_ACTIVE_DEFER",
12654 	};
12655 	if (lstate < ARRAY_SIZE(port_logical_names))
12656 		return port_logical_names[lstate];
12657 	return "unknown";
12658 }
12659 
12660 /* return the OPA port physical state name */
12661 const char *opa_pstate_name(u32 pstate)
12662 {
12663 	static const char * const port_physical_names[] = {
12664 		"PHYS_NOP",
12665 		"reserved1",
12666 		"PHYS_POLL",
12667 		"PHYS_DISABLED",
12668 		"PHYS_TRAINING",
12669 		"PHYS_LINKUP",
12670 		"PHYS_LINK_ERR_RECOVER",
12671 		"PHYS_PHY_TEST",
12672 		"reserved8",
12673 		"PHYS_OFFLINE",
12674 		"PHYS_GANGED",
12675 		"PHYS_TEST",
12676 	};
12677 	if (pstate < ARRAY_SIZE(port_physical_names))
12678 		return port_physical_names[pstate];
12679 	return "unknown";
12680 }
12681 
12682 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12683 {
12684 	/*
12685 	 * Set port status flags in the page mapped into userspace
12686 	 * memory. Do it here to ensure a reliable state - this is
12687 	 * the only function called by all state handling code.
12688 	 * Always set the flags due to the fact that the cache value
12689 	 * might have been changed explicitly outside of this
12690 	 * function.
12691 	 */
12692 	if (ppd->statusp) {
12693 		switch (state) {
12694 		case IB_PORT_DOWN:
12695 		case IB_PORT_INIT:
12696 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12697 					   HFI1_STATUS_IB_READY);
12698 			break;
12699 		case IB_PORT_ARMED:
12700 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12701 			break;
12702 		case IB_PORT_ACTIVE:
12703 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12704 			break;
12705 		}
12706 	}
12707 }
12708 
12709 /*
12710  * wait_logical_linkstate - wait for an IB link state change to occur
12711  * @ppd: port device
12712  * @state: the state to wait for
12713  * @msecs: the number of milliseconds to wait
12714  *
12715  * Wait up to msecs milliseconds for IB link state change to occur.
12716  * For now, take the easy polling route.
12717  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12718  */
12719 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12720 				  int msecs)
12721 {
12722 	unsigned long timeout;
12723 	u32 new_state;
12724 
12725 	timeout = jiffies + msecs_to_jiffies(msecs);
12726 	while (1) {
12727 		new_state = chip_to_opa_lstate(ppd->dd,
12728 					       read_logical_state(ppd->dd));
12729 		if (new_state == state)
12730 			break;
12731 		if (time_after(jiffies, timeout)) {
12732 			dd_dev_err(ppd->dd,
12733 				   "timeout waiting for link state 0x%x\n",
12734 				   state);
12735 			return -ETIMEDOUT;
12736 		}
12737 		msleep(20);
12738 	}
12739 
12740 	update_statusp(ppd, state);
12741 	dd_dev_info(ppd->dd,
12742 		    "logical state changed to %s (0x%x)\n",
12743 		    opa_lstate_name(state),
12744 		    state);
12745 	return 0;
12746 }
12747 
12748 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12749 {
12750 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12751 
12752 	dd_dev_info(ppd->dd,
12753 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12754 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12755 }
12756 
12757 /*
12758  * Read the physical hardware link state and check if it matches host
12759  * drivers anticipated state.
12760  */
12761 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12762 {
12763 	u32 read_state = read_physical_state(ppd->dd);
12764 
12765 	if (read_state == state) {
12766 		log_state_transition(ppd, state);
12767 	} else {
12768 		dd_dev_err(ppd->dd,
12769 			   "anticipated phy link state 0x%x, read 0x%x\n",
12770 			   state, read_state);
12771 	}
12772 }
12773 
12774 /*
12775  * wait_physical_linkstate - wait for an physical link state change to occur
12776  * @ppd: port device
12777  * @state: the state to wait for
12778  * @msecs: the number of milliseconds to wait
12779  *
12780  * Wait up to msecs milliseconds for physical link state change to occur.
12781  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12782  */
12783 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12784 				   int msecs)
12785 {
12786 	u32 read_state;
12787 	unsigned long timeout;
12788 
12789 	timeout = jiffies + msecs_to_jiffies(msecs);
12790 	while (1) {
12791 		read_state = read_physical_state(ppd->dd);
12792 		if (read_state == state)
12793 			break;
12794 		if (time_after(jiffies, timeout)) {
12795 			dd_dev_err(ppd->dd,
12796 				   "timeout waiting for phy link state 0x%x\n",
12797 				   state);
12798 			return -ETIMEDOUT;
12799 		}
12800 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12801 	}
12802 
12803 	log_state_transition(ppd, state);
12804 	return 0;
12805 }
12806 
12807 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12808 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12809 
12810 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12811 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12812 
12813 void hfi1_init_ctxt(struct send_context *sc)
12814 {
12815 	if (sc) {
12816 		struct hfi1_devdata *dd = sc->dd;
12817 		u64 reg;
12818 		u8 set = (sc->type == SC_USER ?
12819 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12820 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12821 		reg = read_kctxt_csr(dd, sc->hw_context,
12822 				     SEND_CTXT_CHECK_ENABLE);
12823 		if (set)
12824 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12825 		else
12826 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12827 		write_kctxt_csr(dd, sc->hw_context,
12828 				SEND_CTXT_CHECK_ENABLE, reg);
12829 	}
12830 }
12831 
12832 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12833 {
12834 	int ret = 0;
12835 	u64 reg;
12836 
12837 	if (dd->icode != ICODE_RTL_SILICON) {
12838 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12839 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12840 				    __func__);
12841 		return -EINVAL;
12842 	}
12843 	reg = read_csr(dd, ASIC_STS_THERM);
12844 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12845 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12846 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12847 			ASIC_STS_THERM_LO_TEMP_MASK);
12848 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12849 			ASIC_STS_THERM_HI_TEMP_MASK);
12850 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12851 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12852 	/* triggers is a 3-bit value - 1 bit per trigger. */
12853 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12854 
12855 	return ret;
12856 }
12857 
12858 /* ========================================================================= */
12859 
12860 /*
12861  * Enable/disable chip from delivering interrupts.
12862  */
12863 void set_intr_state(struct hfi1_devdata *dd, u32 enable)
12864 {
12865 	int i;
12866 
12867 	/*
12868 	 * In HFI, the mask needs to be 1 to allow interrupts.
12869 	 */
12870 	if (enable) {
12871 		/* enable all interrupts */
12872 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12873 			write_csr(dd, CCE_INT_MASK + (8 * i), ~(u64)0);
12874 
12875 		init_qsfp_int(dd);
12876 	} else {
12877 		for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12878 			write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
12879 	}
12880 }
12881 
12882 /*
12883  * Clear all interrupt sources on the chip.
12884  */
12885 static void clear_all_interrupts(struct hfi1_devdata *dd)
12886 {
12887 	int i;
12888 
12889 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
12890 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
12891 
12892 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
12893 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
12894 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
12895 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
12896 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
12897 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
12898 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
12899 	for (i = 0; i < dd->chip_send_contexts; i++)
12900 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
12901 	for (i = 0; i < dd->chip_sdma_engines; i++)
12902 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
12903 
12904 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
12905 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
12906 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
12907 }
12908 
12909 /* Move to pcie.c? */
12910 static void disable_intx(struct pci_dev *pdev)
12911 {
12912 	pci_intx(pdev, 0);
12913 }
12914 
12915 static void clean_up_interrupts(struct hfi1_devdata *dd)
12916 {
12917 	int i;
12918 
12919 	/* remove irqs - must happen before disabling/turning off */
12920 	if (dd->num_msix_entries) {
12921 		/* MSI-X */
12922 		struct hfi1_msix_entry *me = dd->msix_entries;
12923 
12924 		for (i = 0; i < dd->num_msix_entries; i++, me++) {
12925 			if (!me->arg) /* => no irq, no affinity */
12926 				continue;
12927 			hfi1_put_irq_affinity(dd, me);
12928 			free_irq(me->irq, me->arg);
12929 		}
12930 
12931 		/* clean structures */
12932 		kfree(dd->msix_entries);
12933 		dd->msix_entries = NULL;
12934 		dd->num_msix_entries = 0;
12935 	} else {
12936 		/* INTx */
12937 		if (dd->requested_intx_irq) {
12938 			free_irq(dd->pcidev->irq, dd);
12939 			dd->requested_intx_irq = 0;
12940 		}
12941 		disable_intx(dd->pcidev);
12942 	}
12943 
12944 	pci_free_irq_vectors(dd->pcidev);
12945 }
12946 
12947 /*
12948  * Remap the interrupt source from the general handler to the given MSI-X
12949  * interrupt.
12950  */
12951 static void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
12952 {
12953 	u64 reg;
12954 	int m, n;
12955 
12956 	/* clear from the handled mask of the general interrupt */
12957 	m = isrc / 64;
12958 	n = isrc % 64;
12959 	if (likely(m < CCE_NUM_INT_CSRS)) {
12960 		dd->gi_mask[m] &= ~((u64)1 << n);
12961 	} else {
12962 		dd_dev_err(dd, "remap interrupt err\n");
12963 		return;
12964 	}
12965 
12966 	/* direct the chip source to the given MSI-X interrupt */
12967 	m = isrc / 8;
12968 	n = isrc % 8;
12969 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
12970 	reg &= ~((u64)0xff << (8 * n));
12971 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
12972 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
12973 }
12974 
12975 static void remap_sdma_interrupts(struct hfi1_devdata *dd,
12976 				  int engine, int msix_intr)
12977 {
12978 	/*
12979 	 * SDMA engine interrupt sources grouped by type, rather than
12980 	 * engine.  Per-engine interrupts are as follows:
12981 	 *	SDMA
12982 	 *	SDMAProgress
12983 	 *	SDMAIdle
12984 	 */
12985 	remap_intr(dd, IS_SDMA_START + 0 * TXE_NUM_SDMA_ENGINES + engine,
12986 		   msix_intr);
12987 	remap_intr(dd, IS_SDMA_START + 1 * TXE_NUM_SDMA_ENGINES + engine,
12988 		   msix_intr);
12989 	remap_intr(dd, IS_SDMA_START + 2 * TXE_NUM_SDMA_ENGINES + engine,
12990 		   msix_intr);
12991 }
12992 
12993 static int request_intx_irq(struct hfi1_devdata *dd)
12994 {
12995 	int ret;
12996 
12997 	snprintf(dd->intx_name, sizeof(dd->intx_name), DRIVER_NAME "_%d",
12998 		 dd->unit);
12999 	ret = request_irq(dd->pcidev->irq, general_interrupt,
13000 			  IRQF_SHARED, dd->intx_name, dd);
13001 	if (ret)
13002 		dd_dev_err(dd, "unable to request INTx interrupt, err %d\n",
13003 			   ret);
13004 	else
13005 		dd->requested_intx_irq = 1;
13006 	return ret;
13007 }
13008 
13009 static int request_msix_irqs(struct hfi1_devdata *dd)
13010 {
13011 	int first_general, last_general;
13012 	int first_sdma, last_sdma;
13013 	int first_rx, last_rx;
13014 	int i, ret = 0;
13015 
13016 	/* calculate the ranges we are going to use */
13017 	first_general = 0;
13018 	last_general = first_general + 1;
13019 	first_sdma = last_general;
13020 	last_sdma = first_sdma + dd->num_sdma;
13021 	first_rx = last_sdma;
13022 	last_rx = first_rx + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13023 
13024 	/* VNIC MSIx interrupts get mapped when VNIC contexts are created */
13025 	dd->first_dyn_msix_idx = first_rx + dd->n_krcv_queues;
13026 
13027 	/*
13028 	 * Sanity check - the code expects all SDMA chip source
13029 	 * interrupts to be in the same CSR, starting at bit 0.  Verify
13030 	 * that this is true by checking the bit location of the start.
13031 	 */
13032 	BUILD_BUG_ON(IS_SDMA_START % 64);
13033 
13034 	for (i = 0; i < dd->num_msix_entries; i++) {
13035 		struct hfi1_msix_entry *me = &dd->msix_entries[i];
13036 		const char *err_info;
13037 		irq_handler_t handler;
13038 		irq_handler_t thread = NULL;
13039 		void *arg = NULL;
13040 		int idx;
13041 		struct hfi1_ctxtdata *rcd = NULL;
13042 		struct sdma_engine *sde = NULL;
13043 
13044 		/* obtain the arguments to request_irq */
13045 		if (first_general <= i && i < last_general) {
13046 			idx = i - first_general;
13047 			handler = general_interrupt;
13048 			arg = dd;
13049 			snprintf(me->name, sizeof(me->name),
13050 				 DRIVER_NAME "_%d", dd->unit);
13051 			err_info = "general";
13052 			me->type = IRQ_GENERAL;
13053 		} else if (first_sdma <= i && i < last_sdma) {
13054 			idx = i - first_sdma;
13055 			sde = &dd->per_sdma[idx];
13056 			handler = sdma_interrupt;
13057 			arg = sde;
13058 			snprintf(me->name, sizeof(me->name),
13059 				 DRIVER_NAME "_%d sdma%d", dd->unit, idx);
13060 			err_info = "sdma";
13061 			remap_sdma_interrupts(dd, idx, i);
13062 			me->type = IRQ_SDMA;
13063 		} else if (first_rx <= i && i < last_rx) {
13064 			idx = i - first_rx;
13065 			rcd = hfi1_rcd_get_by_index(dd, idx);
13066 			if (rcd) {
13067 				/*
13068 				 * Set the interrupt register and mask for this
13069 				 * context's interrupt.
13070 				 */
13071 				rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13072 				rcd->imask = ((u64)1) <<
13073 					  ((IS_RCVAVAIL_START + idx) % 64);
13074 				handler = receive_context_interrupt;
13075 				thread = receive_context_thread;
13076 				arg = rcd;
13077 				snprintf(me->name, sizeof(me->name),
13078 					 DRIVER_NAME "_%d kctxt%d",
13079 					 dd->unit, idx);
13080 				err_info = "receive context";
13081 				remap_intr(dd, IS_RCVAVAIL_START + idx, i);
13082 				me->type = IRQ_RCVCTXT;
13083 				rcd->msix_intr = i;
13084 				hfi1_rcd_put(rcd);
13085 			}
13086 		} else {
13087 			/* not in our expected range - complain, then
13088 			 * ignore it
13089 			 */
13090 			dd_dev_err(dd,
13091 				   "Unexpected extra MSI-X interrupt %d\n", i);
13092 			continue;
13093 		}
13094 		/* no argument, no interrupt */
13095 		if (!arg)
13096 			continue;
13097 		/* make sure the name is terminated */
13098 		me->name[sizeof(me->name) - 1] = 0;
13099 		me->irq = pci_irq_vector(dd->pcidev, i);
13100 		/*
13101 		 * On err return me->irq.  Don't need to clear this
13102 		 * because 'arg' has not been set, and cleanup will
13103 		 * do the right thing.
13104 		 */
13105 		if (me->irq < 0)
13106 			return me->irq;
13107 
13108 		ret = request_threaded_irq(me->irq, handler, thread, 0,
13109 					   me->name, arg);
13110 		if (ret) {
13111 			dd_dev_err(dd,
13112 				   "unable to allocate %s interrupt, irq %d, index %d, err %d\n",
13113 				   err_info, me->irq, idx, ret);
13114 			return ret;
13115 		}
13116 		/*
13117 		 * assign arg after request_irq call, so it will be
13118 		 * cleaned up
13119 		 */
13120 		me->arg = arg;
13121 
13122 		ret = hfi1_get_irq_affinity(dd, me);
13123 		if (ret)
13124 			dd_dev_err(dd, "unable to pin IRQ %d\n", ret);
13125 	}
13126 
13127 	return ret;
13128 }
13129 
13130 void hfi1_vnic_synchronize_irq(struct hfi1_devdata *dd)
13131 {
13132 	int i;
13133 
13134 	if (!dd->num_msix_entries) {
13135 		synchronize_irq(dd->pcidev->irq);
13136 		return;
13137 	}
13138 
13139 	for (i = 0; i < dd->vnic.num_ctxt; i++) {
13140 		struct hfi1_ctxtdata *rcd = dd->vnic.ctxt[i];
13141 		struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13142 
13143 		synchronize_irq(me->irq);
13144 	}
13145 }
13146 
13147 void hfi1_reset_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13148 {
13149 	struct hfi1_devdata *dd = rcd->dd;
13150 	struct hfi1_msix_entry *me = &dd->msix_entries[rcd->msix_intr];
13151 
13152 	if (!me->arg) /* => no irq, no affinity */
13153 		return;
13154 
13155 	hfi1_put_irq_affinity(dd, me);
13156 	free_irq(me->irq, me->arg);
13157 
13158 	me->arg = NULL;
13159 }
13160 
13161 void hfi1_set_vnic_msix_info(struct hfi1_ctxtdata *rcd)
13162 {
13163 	struct hfi1_devdata *dd = rcd->dd;
13164 	struct hfi1_msix_entry *me;
13165 	int idx = rcd->ctxt;
13166 	void *arg = rcd;
13167 	int ret;
13168 
13169 	rcd->msix_intr = dd->vnic.msix_idx++;
13170 	me = &dd->msix_entries[rcd->msix_intr];
13171 
13172 	/*
13173 	 * Set the interrupt register and mask for this
13174 	 * context's interrupt.
13175 	 */
13176 	rcd->ireg = (IS_RCVAVAIL_START + idx) / 64;
13177 	rcd->imask = ((u64)1) <<
13178 		  ((IS_RCVAVAIL_START + idx) % 64);
13179 
13180 	snprintf(me->name, sizeof(me->name),
13181 		 DRIVER_NAME "_%d kctxt%d", dd->unit, idx);
13182 	me->name[sizeof(me->name) - 1] = 0;
13183 	me->type = IRQ_RCVCTXT;
13184 	me->irq = pci_irq_vector(dd->pcidev, rcd->msix_intr);
13185 	if (me->irq < 0) {
13186 		dd_dev_err(dd, "vnic irq vector request (idx %d) fail %d\n",
13187 			   idx, me->irq);
13188 		return;
13189 	}
13190 	remap_intr(dd, IS_RCVAVAIL_START + idx, rcd->msix_intr);
13191 
13192 	ret = request_threaded_irq(me->irq, receive_context_interrupt,
13193 				   receive_context_thread, 0, me->name, arg);
13194 	if (ret) {
13195 		dd_dev_err(dd, "vnic irq request (irq %d, idx %d) fail %d\n",
13196 			   me->irq, idx, ret);
13197 		return;
13198 	}
13199 	/*
13200 	 * assign arg after request_irq call, so it will be
13201 	 * cleaned up
13202 	 */
13203 	me->arg = arg;
13204 
13205 	ret = hfi1_get_irq_affinity(dd, me);
13206 	if (ret) {
13207 		dd_dev_err(dd,
13208 			   "unable to pin IRQ %d\n", ret);
13209 		free_irq(me->irq, me->arg);
13210 	}
13211 }
13212 
13213 /*
13214  * Set the general handler to accept all interrupts, remap all
13215  * chip interrupts back to MSI-X 0.
13216  */
13217 static void reset_interrupts(struct hfi1_devdata *dd)
13218 {
13219 	int i;
13220 
13221 	/* all interrupts handled by the general handler */
13222 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13223 		dd->gi_mask[i] = ~(u64)0;
13224 
13225 	/* all chip interrupts map to MSI-X 0 */
13226 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13227 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13228 }
13229 
13230 static int set_up_interrupts(struct hfi1_devdata *dd)
13231 {
13232 	u32 total;
13233 	int ret, request;
13234 	int single_interrupt = 0; /* we expect to have all the interrupts */
13235 
13236 	/*
13237 	 * Interrupt count:
13238 	 *	1 general, "slow path" interrupt (includes the SDMA engines
13239 	 *		slow source, SDMACleanupDone)
13240 	 *	N interrupts - one per used SDMA engine
13241 	 *	M interrupt - one per kernel receive context
13242 	 */
13243 	total = 1 + dd->num_sdma + dd->n_krcv_queues + HFI1_NUM_VNIC_CTXT;
13244 
13245 	/* ask for MSI-X interrupts */
13246 	request = request_msix(dd, total);
13247 	if (request < 0) {
13248 		ret = request;
13249 		goto fail;
13250 	} else if (request == 0) {
13251 		/* using INTx */
13252 		/* dd->num_msix_entries already zero */
13253 		single_interrupt = 1;
13254 		dd_dev_err(dd, "MSI-X failed, using INTx interrupts\n");
13255 	} else if (request < total) {
13256 		/* using MSI-X, with reduced interrupts */
13257 		dd_dev_err(dd, "reduced interrupt found, wanted %u, got %u\n",
13258 			   total, request);
13259 		ret = -EINVAL;
13260 		goto fail;
13261 	} else {
13262 		dd->msix_entries = kcalloc(total, sizeof(*dd->msix_entries),
13263 					   GFP_KERNEL);
13264 		if (!dd->msix_entries) {
13265 			ret = -ENOMEM;
13266 			goto fail;
13267 		}
13268 		/* using MSI-X */
13269 		dd->num_msix_entries = total;
13270 		dd_dev_info(dd, "%u MSI-X interrupts allocated\n", total);
13271 	}
13272 
13273 	/* mask all interrupts */
13274 	set_intr_state(dd, 0);
13275 	/* clear all pending interrupts */
13276 	clear_all_interrupts(dd);
13277 
13278 	/* reset general handler mask, chip MSI-X mappings */
13279 	reset_interrupts(dd);
13280 
13281 	if (single_interrupt)
13282 		ret = request_intx_irq(dd);
13283 	else
13284 		ret = request_msix_irqs(dd);
13285 	if (ret)
13286 		goto fail;
13287 
13288 	return 0;
13289 
13290 fail:
13291 	clean_up_interrupts(dd);
13292 	return ret;
13293 }
13294 
13295 /*
13296  * Set up context values in dd.  Sets:
13297  *
13298  *	num_rcv_contexts - number of contexts being used
13299  *	n_krcv_queues - number of kernel contexts
13300  *	first_dyn_alloc_ctxt - first dynamically allocated context
13301  *                             in array of contexts
13302  *	freectxts  - number of free user contexts
13303  *	num_send_contexts - number of PIO send contexts being used
13304  */
13305 static int set_up_context_variables(struct hfi1_devdata *dd)
13306 {
13307 	unsigned long num_kernel_contexts;
13308 	int total_contexts;
13309 	int ret;
13310 	unsigned ngroups;
13311 	int qos_rmt_count;
13312 	int user_rmt_reduced;
13313 
13314 	/*
13315 	 * Kernel receive contexts:
13316 	 * - Context 0 - control context (VL15/multicast/error)
13317 	 * - Context 1 - first kernel context
13318 	 * - Context 2 - second kernel context
13319 	 * ...
13320 	 */
13321 	if (n_krcvqs)
13322 		/*
13323 		 * n_krcvqs is the sum of module parameter kernel receive
13324 		 * contexts, krcvqs[].  It does not include the control
13325 		 * context, so add that.
13326 		 */
13327 		num_kernel_contexts = n_krcvqs + 1;
13328 	else
13329 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13330 	/*
13331 	 * Every kernel receive context needs an ACK send context.
13332 	 * one send context is allocated for each VL{0-7} and VL15
13333 	 */
13334 	if (num_kernel_contexts > (dd->chip_send_contexts - num_vls - 1)) {
13335 		dd_dev_err(dd,
13336 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13337 			   (int)(dd->chip_send_contexts - num_vls - 1),
13338 			   num_kernel_contexts);
13339 		num_kernel_contexts = dd->chip_send_contexts - num_vls - 1;
13340 	}
13341 	/*
13342 	 * User contexts:
13343 	 *	- default to 1 user context per real (non-HT) CPU core if
13344 	 *	  num_user_contexts is negative
13345 	 */
13346 	if (num_user_contexts < 0)
13347 		num_user_contexts =
13348 			cpumask_weight(&node_affinity.real_cpu_mask);
13349 
13350 	total_contexts = num_kernel_contexts + num_user_contexts;
13351 
13352 	/*
13353 	 * Adjust the counts given a global max.
13354 	 */
13355 	if (total_contexts > dd->chip_rcv_contexts) {
13356 		dd_dev_err(dd,
13357 			   "Reducing # user receive contexts to: %d, from %d\n",
13358 			   (int)(dd->chip_rcv_contexts - num_kernel_contexts),
13359 			   (int)num_user_contexts);
13360 		num_user_contexts = dd->chip_rcv_contexts - num_kernel_contexts;
13361 		/* recalculate */
13362 		total_contexts = num_kernel_contexts + num_user_contexts;
13363 	}
13364 
13365 	/* each user context requires an entry in the RMT */
13366 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13367 	if (qos_rmt_count + num_user_contexts > NUM_MAP_ENTRIES) {
13368 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13369 		dd_dev_err(dd,
13370 			   "RMT size is reducing the number of user receive contexts from %d to %d\n",
13371 			   (int)num_user_contexts,
13372 			   user_rmt_reduced);
13373 		/* recalculate */
13374 		num_user_contexts = user_rmt_reduced;
13375 		total_contexts = num_kernel_contexts + num_user_contexts;
13376 	}
13377 
13378 	/* Accommodate VNIC contexts */
13379 	if ((total_contexts + HFI1_NUM_VNIC_CTXT) <= dd->chip_rcv_contexts)
13380 		total_contexts += HFI1_NUM_VNIC_CTXT;
13381 
13382 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13383 	dd->num_rcv_contexts = total_contexts;
13384 	dd->n_krcv_queues = num_kernel_contexts;
13385 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13386 	dd->num_user_contexts = num_user_contexts;
13387 	dd->freectxts = num_user_contexts;
13388 	dd_dev_info(dd,
13389 		    "rcv contexts: chip %d, used %d (kernel %d, user %d)\n",
13390 		    (int)dd->chip_rcv_contexts,
13391 		    (int)dd->num_rcv_contexts,
13392 		    (int)dd->n_krcv_queues,
13393 		    (int)dd->num_rcv_contexts - dd->n_krcv_queues);
13394 
13395 	/*
13396 	 * Receive array allocation:
13397 	 *   All RcvArray entries are divided into groups of 8. This
13398 	 *   is required by the hardware and will speed up writes to
13399 	 *   consecutive entries by using write-combining of the entire
13400 	 *   cacheline.
13401 	 *
13402 	 *   The number of groups are evenly divided among all contexts.
13403 	 *   any left over groups will be given to the first N user
13404 	 *   contexts.
13405 	 */
13406 	dd->rcv_entries.group_size = RCV_INCREMENT;
13407 	ngroups = dd->chip_rcv_array_count / dd->rcv_entries.group_size;
13408 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13409 	dd->rcv_entries.nctxt_extra = ngroups -
13410 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13411 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13412 		    dd->rcv_entries.ngroups,
13413 		    dd->rcv_entries.nctxt_extra);
13414 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13415 	    MAX_EAGER_ENTRIES * 2) {
13416 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13417 			dd->rcv_entries.group_size;
13418 		dd_dev_info(dd,
13419 			    "RcvArray group count too high, change to %u\n",
13420 			    dd->rcv_entries.ngroups);
13421 		dd->rcv_entries.nctxt_extra = 0;
13422 	}
13423 	/*
13424 	 * PIO send contexts
13425 	 */
13426 	ret = init_sc_pools_and_sizes(dd);
13427 	if (ret >= 0) {	/* success */
13428 		dd->num_send_contexts = ret;
13429 		dd_dev_info(
13430 			dd,
13431 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13432 			dd->chip_send_contexts,
13433 			dd->num_send_contexts,
13434 			dd->sc_sizes[SC_KERNEL].count,
13435 			dd->sc_sizes[SC_ACK].count,
13436 			dd->sc_sizes[SC_USER].count,
13437 			dd->sc_sizes[SC_VL15].count);
13438 		ret = 0;	/* success */
13439 	}
13440 
13441 	return ret;
13442 }
13443 
13444 /*
13445  * Set the device/port partition key table. The MAD code
13446  * will ensure that, at least, the partial management
13447  * partition key is present in the table.
13448  */
13449 static void set_partition_keys(struct hfi1_pportdata *ppd)
13450 {
13451 	struct hfi1_devdata *dd = ppd->dd;
13452 	u64 reg = 0;
13453 	int i;
13454 
13455 	dd_dev_info(dd, "Setting partition keys\n");
13456 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13457 		reg |= (ppd->pkeys[i] &
13458 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13459 			((i % 4) *
13460 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13461 		/* Each register holds 4 PKey values. */
13462 		if ((i % 4) == 3) {
13463 			write_csr(dd, RCV_PARTITION_KEY +
13464 				  ((i - 3) * 2), reg);
13465 			reg = 0;
13466 		}
13467 	}
13468 
13469 	/* Always enable HW pkeys check when pkeys table is set */
13470 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13471 }
13472 
13473 /*
13474  * These CSRs and memories are uninitialized on reset and must be
13475  * written before reading to set the ECC/parity bits.
13476  *
13477  * NOTE: All user context CSRs that are not mmaped write-only
13478  * (e.g. the TID flows) must be initialized even if the driver never
13479  * reads them.
13480  */
13481 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13482 {
13483 	int i, j;
13484 
13485 	/* CceIntMap */
13486 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13487 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13488 
13489 	/* SendCtxtCreditReturnAddr */
13490 	for (i = 0; i < dd->chip_send_contexts; i++)
13491 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13492 
13493 	/* PIO Send buffers */
13494 	/* SDMA Send buffers */
13495 	/*
13496 	 * These are not normally read, and (presently) have no method
13497 	 * to be read, so are not pre-initialized
13498 	 */
13499 
13500 	/* RcvHdrAddr */
13501 	/* RcvHdrTailAddr */
13502 	/* RcvTidFlowTable */
13503 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13504 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13505 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13506 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13507 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13508 	}
13509 
13510 	/* RcvArray */
13511 	for (i = 0; i < dd->chip_rcv_array_count; i++)
13512 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13513 
13514 	/* RcvQPMapTable */
13515 	for (i = 0; i < 32; i++)
13516 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13517 }
13518 
13519 /*
13520  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13521  */
13522 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13523 			     u64 ctrl_bits)
13524 {
13525 	unsigned long timeout;
13526 	u64 reg;
13527 
13528 	/* is the condition present? */
13529 	reg = read_csr(dd, CCE_STATUS);
13530 	if ((reg & status_bits) == 0)
13531 		return;
13532 
13533 	/* clear the condition */
13534 	write_csr(dd, CCE_CTRL, ctrl_bits);
13535 
13536 	/* wait for the condition to clear */
13537 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13538 	while (1) {
13539 		reg = read_csr(dd, CCE_STATUS);
13540 		if ((reg & status_bits) == 0)
13541 			return;
13542 		if (time_after(jiffies, timeout)) {
13543 			dd_dev_err(dd,
13544 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13545 				   status_bits, reg & status_bits);
13546 			return;
13547 		}
13548 		udelay(1);
13549 	}
13550 }
13551 
13552 /* set CCE CSRs to chip reset defaults */
13553 static void reset_cce_csrs(struct hfi1_devdata *dd)
13554 {
13555 	int i;
13556 
13557 	/* CCE_REVISION read-only */
13558 	/* CCE_REVISION2 read-only */
13559 	/* CCE_CTRL - bits clear automatically */
13560 	/* CCE_STATUS read-only, use CceCtrl to clear */
13561 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13562 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13563 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13564 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13565 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13566 	/* CCE_ERR_STATUS read-only */
13567 	write_csr(dd, CCE_ERR_MASK, 0);
13568 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13569 	/* CCE_ERR_FORCE leave alone */
13570 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13571 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13572 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13573 	/* CCE_PCIE_CTRL leave alone */
13574 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13575 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13576 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13577 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13578 	}
13579 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13580 		/* CCE_MSIX_PBA read-only */
13581 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13582 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13583 	}
13584 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13585 		write_csr(dd, CCE_INT_MAP, 0);
13586 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13587 		/* CCE_INT_STATUS read-only */
13588 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13589 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13590 		/* CCE_INT_FORCE leave alone */
13591 		/* CCE_INT_BLOCKED read-only */
13592 	}
13593 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13594 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13595 }
13596 
13597 /* set MISC CSRs to chip reset defaults */
13598 static void reset_misc_csrs(struct hfi1_devdata *dd)
13599 {
13600 	int i;
13601 
13602 	for (i = 0; i < 32; i++) {
13603 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13604 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13605 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13606 	}
13607 	/*
13608 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13609 	 * only be written 128-byte chunks
13610 	 */
13611 	/* init RSA engine to clear lingering errors */
13612 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13613 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13614 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13615 	/* MISC_STS_8051_DIGEST read-only */
13616 	/* MISC_STS_SBM_DIGEST read-only */
13617 	/* MISC_STS_PCIE_DIGEST read-only */
13618 	/* MISC_STS_FAB_DIGEST read-only */
13619 	/* MISC_ERR_STATUS read-only */
13620 	write_csr(dd, MISC_ERR_MASK, 0);
13621 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13622 	/* MISC_ERR_FORCE leave alone */
13623 }
13624 
13625 /* set TXE CSRs to chip reset defaults */
13626 static void reset_txe_csrs(struct hfi1_devdata *dd)
13627 {
13628 	int i;
13629 
13630 	/*
13631 	 * TXE Kernel CSRs
13632 	 */
13633 	write_csr(dd, SEND_CTRL, 0);
13634 	__cm_reset(dd, 0);	/* reset CM internal state */
13635 	/* SEND_CONTEXTS read-only */
13636 	/* SEND_DMA_ENGINES read-only */
13637 	/* SEND_PIO_MEM_SIZE read-only */
13638 	/* SEND_DMA_MEM_SIZE read-only */
13639 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13640 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13641 	/* SEND_PIO_ERR_STATUS read-only */
13642 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13643 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13644 	/* SEND_PIO_ERR_FORCE leave alone */
13645 	/* SEND_DMA_ERR_STATUS read-only */
13646 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13647 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13648 	/* SEND_DMA_ERR_FORCE leave alone */
13649 	/* SEND_EGRESS_ERR_STATUS read-only */
13650 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13651 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13652 	/* SEND_EGRESS_ERR_FORCE leave alone */
13653 	write_csr(dd, SEND_BTH_QP, 0);
13654 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13655 	write_csr(dd, SEND_SC2VLT0, 0);
13656 	write_csr(dd, SEND_SC2VLT1, 0);
13657 	write_csr(dd, SEND_SC2VLT2, 0);
13658 	write_csr(dd, SEND_SC2VLT3, 0);
13659 	write_csr(dd, SEND_LEN_CHECK0, 0);
13660 	write_csr(dd, SEND_LEN_CHECK1, 0);
13661 	/* SEND_ERR_STATUS read-only */
13662 	write_csr(dd, SEND_ERR_MASK, 0);
13663 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13664 	/* SEND_ERR_FORCE read-only */
13665 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13666 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13667 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13668 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13669 	for (i = 0; i < dd->chip_send_contexts / NUM_CONTEXTS_PER_SET; i++)
13670 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13671 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13672 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13673 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13674 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13675 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13676 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13677 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13678 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13679 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13680 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13681 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13682 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13683 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13684 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13685 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13686 	/* SEND_CM_CREDIT_USED_VL read-only */
13687 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13688 	/* SEND_EGRESS_CTXT_STATUS read-only */
13689 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13690 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13691 	/* SEND_EGRESS_ERR_INFO read-only */
13692 	/* SEND_EGRESS_ERR_SOURCE read-only */
13693 
13694 	/*
13695 	 * TXE Per-Context CSRs
13696 	 */
13697 	for (i = 0; i < dd->chip_send_contexts; i++) {
13698 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13699 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13700 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13701 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13702 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13703 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13704 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13705 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13706 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13707 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13708 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13709 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13710 	}
13711 
13712 	/*
13713 	 * TXE Per-SDMA CSRs
13714 	 */
13715 	for (i = 0; i < dd->chip_sdma_engines; i++) {
13716 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13717 		/* SEND_DMA_STATUS read-only */
13718 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13719 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13720 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13721 		/* SEND_DMA_HEAD read-only */
13722 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13723 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13724 		/* SEND_DMA_IDLE_CNT read-only */
13725 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13726 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13727 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13728 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13729 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13730 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13731 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13732 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13733 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13734 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13735 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13736 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13737 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13738 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13739 	}
13740 }
13741 
13742 /*
13743  * Expect on entry:
13744  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13745  */
13746 static void init_rbufs(struct hfi1_devdata *dd)
13747 {
13748 	u64 reg;
13749 	int count;
13750 
13751 	/*
13752 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13753 	 * clear.
13754 	 */
13755 	count = 0;
13756 	while (1) {
13757 		reg = read_csr(dd, RCV_STATUS);
13758 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13759 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13760 			break;
13761 		/*
13762 		 * Give up after 1ms - maximum wait time.
13763 		 *
13764 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13765 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13766 		 *	136 KB / (66% * 250MB/s) = 844us
13767 		 */
13768 		if (count++ > 500) {
13769 			dd_dev_err(dd,
13770 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13771 				   __func__, reg);
13772 			break;
13773 		}
13774 		udelay(2); /* do not busy-wait the CSR */
13775 	}
13776 
13777 	/* start the init - expect RcvCtrl to be 0 */
13778 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13779 
13780 	/*
13781 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13782 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13783 	 * The delay in the first run through the loop below is sufficient and
13784 	 * required before the first read of RcvStatus.RxRbufInintDone.
13785 	 */
13786 	read_csr(dd, RCV_CTRL);
13787 
13788 	/* wait for the init to finish */
13789 	count = 0;
13790 	while (1) {
13791 		/* delay is required first time through - see above */
13792 		udelay(2); /* do not busy-wait the CSR */
13793 		reg = read_csr(dd, RCV_STATUS);
13794 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13795 			break;
13796 
13797 		/* give up after 100us - slowest possible at 33MHz is 73us */
13798 		if (count++ > 50) {
13799 			dd_dev_err(dd,
13800 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13801 				   __func__);
13802 			break;
13803 		}
13804 	}
13805 }
13806 
13807 /* set RXE CSRs to chip reset defaults */
13808 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13809 {
13810 	int i, j;
13811 
13812 	/*
13813 	 * RXE Kernel CSRs
13814 	 */
13815 	write_csr(dd, RCV_CTRL, 0);
13816 	init_rbufs(dd);
13817 	/* RCV_STATUS read-only */
13818 	/* RCV_CONTEXTS read-only */
13819 	/* RCV_ARRAY_CNT read-only */
13820 	/* RCV_BUF_SIZE read-only */
13821 	write_csr(dd, RCV_BTH_QP, 0);
13822 	write_csr(dd, RCV_MULTICAST, 0);
13823 	write_csr(dd, RCV_BYPASS, 0);
13824 	write_csr(dd, RCV_VL15, 0);
13825 	/* this is a clear-down */
13826 	write_csr(dd, RCV_ERR_INFO,
13827 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13828 	/* RCV_ERR_STATUS read-only */
13829 	write_csr(dd, RCV_ERR_MASK, 0);
13830 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13831 	/* RCV_ERR_FORCE leave alone */
13832 	for (i = 0; i < 32; i++)
13833 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13834 	for (i = 0; i < 4; i++)
13835 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13836 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13837 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13838 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13839 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13840 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13841 		clear_rsm_rule(dd, i);
13842 	for (i = 0; i < 32; i++)
13843 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13844 
13845 	/*
13846 	 * RXE Kernel and User Per-Context CSRs
13847 	 */
13848 	for (i = 0; i < dd->chip_rcv_contexts; i++) {
13849 		/* kernel */
13850 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13851 		/* RCV_CTXT_STATUS read-only */
13852 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13853 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13854 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13855 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13856 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13857 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13858 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13859 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13860 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13861 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13862 
13863 		/* user */
13864 		/* RCV_HDR_TAIL read-only */
13865 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13866 		/* RCV_EGR_INDEX_TAIL read-only */
13867 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13868 		/* RCV_EGR_OFFSET_TAIL read-only */
13869 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13870 			write_uctxt_csr(dd, i,
13871 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13872 		}
13873 	}
13874 }
13875 
13876 /*
13877  * Set sc2vl tables.
13878  *
13879  * They power on to zeros, so to avoid send context errors
13880  * they need to be set:
13881  *
13882  * SC 0-7 -> VL 0-7 (respectively)
13883  * SC 15  -> VL 15
13884  * otherwise
13885  *        -> VL 0
13886  */
13887 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13888 {
13889 	int i;
13890 	/* init per architecture spec, constrained by hardware capability */
13891 
13892 	/* HFI maps sent packets */
13893 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13894 		0,
13895 		0, 0, 1, 1,
13896 		2, 2, 3, 3,
13897 		4, 4, 5, 5,
13898 		6, 6, 7, 7));
13899 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13900 		1,
13901 		8, 0, 9, 0,
13902 		10, 0, 11, 0,
13903 		12, 0, 13, 0,
13904 		14, 0, 15, 15));
13905 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13906 		2,
13907 		16, 0, 17, 0,
13908 		18, 0, 19, 0,
13909 		20, 0, 21, 0,
13910 		22, 0, 23, 0));
13911 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13912 		3,
13913 		24, 0, 25, 0,
13914 		26, 0, 27, 0,
13915 		28, 0, 29, 0,
13916 		30, 0, 31, 0));
13917 
13918 	/* DC maps received packets */
13919 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13920 		15_0,
13921 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13922 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13923 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13924 		31_16,
13925 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13926 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13927 
13928 	/* initialize the cached sc2vl values consistently with h/w */
13929 	for (i = 0; i < 32; i++) {
13930 		if (i < 8 || i == 15)
13931 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13932 		else
13933 			*((u8 *)(dd->sc2vl) + i) = 0;
13934 	}
13935 }
13936 
13937 /*
13938  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13939  * depend on the chip going through a power-on reset - a driver may be loaded
13940  * and unloaded many times.
13941  *
13942  * Do not write any CSR values to the chip in this routine - there may be
13943  * a reset following the (possible) FLR in this routine.
13944  *
13945  */
13946 static int init_chip(struct hfi1_devdata *dd)
13947 {
13948 	int i;
13949 	int ret = 0;
13950 
13951 	/*
13952 	 * Put the HFI CSRs in a known state.
13953 	 * Combine this with a DC reset.
13954 	 *
13955 	 * Stop the device from doing anything while we do a
13956 	 * reset.  We know there are no other active users of
13957 	 * the device since we are now in charge.  Turn off
13958 	 * off all outbound and inbound traffic and make sure
13959 	 * the device does not generate any interrupts.
13960 	 */
13961 
13962 	/* disable send contexts and SDMA engines */
13963 	write_csr(dd, SEND_CTRL, 0);
13964 	for (i = 0; i < dd->chip_send_contexts; i++)
13965 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13966 	for (i = 0; i < dd->chip_sdma_engines; i++)
13967 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13968 	/* disable port (turn off RXE inbound traffic) and contexts */
13969 	write_csr(dd, RCV_CTRL, 0);
13970 	for (i = 0; i < dd->chip_rcv_contexts; i++)
13971 		write_csr(dd, RCV_CTXT_CTRL, 0);
13972 	/* mask all interrupt sources */
13973 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13974 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13975 
13976 	/*
13977 	 * DC Reset: do a full DC reset before the register clear.
13978 	 * A recommended length of time to hold is one CSR read,
13979 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13980 	 * across the clear.
13981 	 */
13982 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13983 	(void)read_csr(dd, CCE_DC_CTRL);
13984 
13985 	if (use_flr) {
13986 		/*
13987 		 * A FLR will reset the SPC core and part of the PCIe.
13988 		 * The parts that need to be restored have already been
13989 		 * saved.
13990 		 */
13991 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13992 
13993 		/* do the FLR, the DC reset will remain */
13994 		pcie_flr(dd->pcidev);
13995 
13996 		/* restore command and BARs */
13997 		ret = restore_pci_variables(dd);
13998 		if (ret) {
13999 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14000 				   __func__);
14001 			return ret;
14002 		}
14003 
14004 		if (is_ax(dd)) {
14005 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
14006 			pcie_flr(dd->pcidev);
14007 			ret = restore_pci_variables(dd);
14008 			if (ret) {
14009 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
14010 					   __func__);
14011 				return ret;
14012 			}
14013 		}
14014 	} else {
14015 		dd_dev_info(dd, "Resetting CSRs with writes\n");
14016 		reset_cce_csrs(dd);
14017 		reset_txe_csrs(dd);
14018 		reset_rxe_csrs(dd);
14019 		reset_misc_csrs(dd);
14020 	}
14021 	/* clear the DC reset */
14022 	write_csr(dd, CCE_DC_CTRL, 0);
14023 
14024 	/* Set the LED off */
14025 	setextled(dd, 0);
14026 
14027 	/*
14028 	 * Clear the QSFP reset.
14029 	 * An FLR enforces a 0 on all out pins. The driver does not touch
14030 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
14031 	 * anything plugged constantly in reset, if it pays attention
14032 	 * to RESET_N.
14033 	 * Prime examples of this are optical cables. Set all pins high.
14034 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
14035 	 * MODPRS_N are input only and their value is ignored.
14036 	 */
14037 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
14038 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
14039 	init_chip_resources(dd);
14040 	return ret;
14041 }
14042 
14043 static void init_early_variables(struct hfi1_devdata *dd)
14044 {
14045 	int i;
14046 
14047 	/* assign link credit variables */
14048 	dd->vau = CM_VAU;
14049 	dd->link_credits = CM_GLOBAL_CREDITS;
14050 	if (is_ax(dd))
14051 		dd->link_credits--;
14052 	dd->vcu = cu_to_vcu(hfi1_cu);
14053 	/* enough room for 8 MAD packets plus header - 17K */
14054 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
14055 	if (dd->vl15_init > dd->link_credits)
14056 		dd->vl15_init = dd->link_credits;
14057 
14058 	write_uninitialized_csrs_and_memories(dd);
14059 
14060 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
14061 		for (i = 0; i < dd->num_pports; i++) {
14062 			struct hfi1_pportdata *ppd = &dd->pport[i];
14063 
14064 			set_partition_keys(ppd);
14065 		}
14066 	init_sc2vl_tables(dd);
14067 }
14068 
14069 static void init_kdeth_qp(struct hfi1_devdata *dd)
14070 {
14071 	/* user changed the KDETH_QP */
14072 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
14073 		/* out of range or illegal value */
14074 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
14075 		kdeth_qp = 0;
14076 	}
14077 	if (kdeth_qp == 0)	/* not set, or failed range check */
14078 		kdeth_qp = DEFAULT_KDETH_QP;
14079 
14080 	write_csr(dd, SEND_BTH_QP,
14081 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14082 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14083 
14084 	write_csr(dd, RCV_BTH_QP,
14085 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14086 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14087 }
14088 
14089 /**
14090  * init_qpmap_table
14091  * @dd - device data
14092  * @first_ctxt - first context
14093  * @last_ctxt - first context
14094  *
14095  * This return sets the qpn mapping table that
14096  * is indexed by qpn[8:1].
14097  *
14098  * The routine will round robin the 256 settings
14099  * from first_ctxt to last_ctxt.
14100  *
14101  * The first/last looks ahead to having specialized
14102  * receive contexts for mgmt and bypass.  Normal
14103  * verbs traffic will assumed to be on a range
14104  * of receive contexts.
14105  */
14106 static void init_qpmap_table(struct hfi1_devdata *dd,
14107 			     u32 first_ctxt,
14108 			     u32 last_ctxt)
14109 {
14110 	u64 reg = 0;
14111 	u64 regno = RCV_QP_MAP_TABLE;
14112 	int i;
14113 	u64 ctxt = first_ctxt;
14114 
14115 	for (i = 0; i < 256; i++) {
14116 		reg |= ctxt << (8 * (i % 8));
14117 		ctxt++;
14118 		if (ctxt > last_ctxt)
14119 			ctxt = first_ctxt;
14120 		if (i % 8 == 7) {
14121 			write_csr(dd, regno, reg);
14122 			reg = 0;
14123 			regno += 8;
14124 		}
14125 	}
14126 
14127 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14128 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14129 }
14130 
14131 struct rsm_map_table {
14132 	u64 map[NUM_MAP_REGS];
14133 	unsigned int used;
14134 };
14135 
14136 struct rsm_rule_data {
14137 	u8 offset;
14138 	u8 pkt_type;
14139 	u32 field1_off;
14140 	u32 field2_off;
14141 	u32 index1_off;
14142 	u32 index1_width;
14143 	u32 index2_off;
14144 	u32 index2_width;
14145 	u32 mask1;
14146 	u32 value1;
14147 	u32 mask2;
14148 	u32 value2;
14149 };
14150 
14151 /*
14152  * Return an initialized RMT map table for users to fill in.  OK if it
14153  * returns NULL, indicating no table.
14154  */
14155 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14156 {
14157 	struct rsm_map_table *rmt;
14158 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14159 
14160 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14161 	if (rmt) {
14162 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14163 		rmt->used = 0;
14164 	}
14165 
14166 	return rmt;
14167 }
14168 
14169 /*
14170  * Write the final RMT map table to the chip and free the table.  OK if
14171  * table is NULL.
14172  */
14173 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14174 				   struct rsm_map_table *rmt)
14175 {
14176 	int i;
14177 
14178 	if (rmt) {
14179 		/* write table to chip */
14180 		for (i = 0; i < NUM_MAP_REGS; i++)
14181 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14182 
14183 		/* enable RSM */
14184 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14185 	}
14186 }
14187 
14188 /*
14189  * Add a receive side mapping rule.
14190  */
14191 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14192 			 struct rsm_rule_data *rrd)
14193 {
14194 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14195 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14196 		  1ull << rule_index | /* enable bit */
14197 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14198 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14199 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14200 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14201 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14202 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14203 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14204 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14205 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14206 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14207 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14208 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14209 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14210 }
14211 
14212 /*
14213  * Clear a receive side mapping rule.
14214  */
14215 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14216 {
14217 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14218 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14219 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14220 }
14221 
14222 /* return the number of RSM map table entries that will be used for QOS */
14223 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14224 			   unsigned int *np)
14225 {
14226 	int i;
14227 	unsigned int m, n;
14228 	u8 max_by_vl = 0;
14229 
14230 	/* is QOS active at all? */
14231 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14232 	    num_vls == 1 ||
14233 	    krcvqsset <= 1)
14234 		goto no_qos;
14235 
14236 	/* determine bits for qpn */
14237 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14238 		if (krcvqs[i] > max_by_vl)
14239 			max_by_vl = krcvqs[i];
14240 	if (max_by_vl > 32)
14241 		goto no_qos;
14242 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14243 
14244 	/* determine bits for vl */
14245 	n = ilog2(__roundup_pow_of_two(num_vls));
14246 
14247 	/* reject if too much is used */
14248 	if ((m + n) > 7)
14249 		goto no_qos;
14250 
14251 	if (mp)
14252 		*mp = m;
14253 	if (np)
14254 		*np = n;
14255 
14256 	return 1 << (m + n);
14257 
14258 no_qos:
14259 	if (mp)
14260 		*mp = 0;
14261 	if (np)
14262 		*np = 0;
14263 	return 0;
14264 }
14265 
14266 /**
14267  * init_qos - init RX qos
14268  * @dd - device data
14269  * @rmt - RSM map table
14270  *
14271  * This routine initializes Rule 0 and the RSM map table to implement
14272  * quality of service (qos).
14273  *
14274  * If all of the limit tests succeed, qos is applied based on the array
14275  * interpretation of krcvqs where entry 0 is VL0.
14276  *
14277  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14278  * feed both the RSM map table and the single rule.
14279  */
14280 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14281 {
14282 	struct rsm_rule_data rrd;
14283 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14284 	unsigned int rmt_entries;
14285 	u64 reg;
14286 
14287 	if (!rmt)
14288 		goto bail;
14289 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14290 	if (rmt_entries == 0)
14291 		goto bail;
14292 	qpns_per_vl = 1 << m;
14293 
14294 	/* enough room in the map table? */
14295 	rmt_entries = 1 << (m + n);
14296 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14297 		goto bail;
14298 
14299 	/* add qos entries to the the RSM map table */
14300 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14301 		unsigned tctxt;
14302 
14303 		for (qpn = 0, tctxt = ctxt;
14304 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14305 			unsigned idx, regoff, regidx;
14306 
14307 			/* generate the index the hardware will produce */
14308 			idx = rmt->used + ((qpn << n) ^ i);
14309 			regoff = (idx % 8) * 8;
14310 			regidx = idx / 8;
14311 			/* replace default with context number */
14312 			reg = rmt->map[regidx];
14313 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14314 				<< regoff);
14315 			reg |= (u64)(tctxt++) << regoff;
14316 			rmt->map[regidx] = reg;
14317 			if (tctxt == ctxt + krcvqs[i])
14318 				tctxt = ctxt;
14319 		}
14320 		ctxt += krcvqs[i];
14321 	}
14322 
14323 	rrd.offset = rmt->used;
14324 	rrd.pkt_type = 2;
14325 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14326 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14327 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14328 	rrd.index1_width = n;
14329 	rrd.index2_off = QPN_SELECT_OFFSET;
14330 	rrd.index2_width = m + n;
14331 	rrd.mask1 = LRH_BTH_MASK;
14332 	rrd.value1 = LRH_BTH_VALUE;
14333 	rrd.mask2 = LRH_SC_MASK;
14334 	rrd.value2 = LRH_SC_VALUE;
14335 
14336 	/* add rule 0 */
14337 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14338 
14339 	/* mark RSM map entries as used */
14340 	rmt->used += rmt_entries;
14341 	/* map everything else to the mcast/err/vl15 context */
14342 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14343 	dd->qos_shift = n + 1;
14344 	return;
14345 bail:
14346 	dd->qos_shift = 1;
14347 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14348 }
14349 
14350 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14351 				    struct rsm_map_table *rmt)
14352 {
14353 	struct rsm_rule_data rrd;
14354 	u64 reg;
14355 	int i, idx, regoff, regidx;
14356 	u8 offset;
14357 
14358 	/* there needs to be enough room in the map table */
14359 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14360 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14361 		return;
14362 	}
14363 
14364 	/*
14365 	 * RSM will extract the destination context as an index into the
14366 	 * map table.  The destination contexts are a sequential block
14367 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14368 	 * Map entries are accessed as offset + extracted value.  Adjust
14369 	 * the added offset so this sequence can be placed anywhere in
14370 	 * the table - as long as the entries themselves do not wrap.
14371 	 * There are only enough bits in offset for the table size, so
14372 	 * start with that to allow for a "negative" offset.
14373 	 */
14374 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14375 						(int)dd->first_dyn_alloc_ctxt);
14376 
14377 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14378 				i < dd->num_rcv_contexts; i++, idx++) {
14379 		/* replace with identity mapping */
14380 		regoff = (idx % 8) * 8;
14381 		regidx = idx / 8;
14382 		reg = rmt->map[regidx];
14383 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14384 		reg |= (u64)i << regoff;
14385 		rmt->map[regidx] = reg;
14386 	}
14387 
14388 	/*
14389 	 * For RSM intercept of Expected FECN packets:
14390 	 * o packet type 0 - expected
14391 	 * o match on F (bit 95), using select/match 1, and
14392 	 * o match on SH (bit 133), using select/match 2.
14393 	 *
14394 	 * Use index 1 to extract the 8-bit receive context from DestQP
14395 	 * (start at bit 64).  Use that as the RSM map table index.
14396 	 */
14397 	rrd.offset = offset;
14398 	rrd.pkt_type = 0;
14399 	rrd.field1_off = 95;
14400 	rrd.field2_off = 133;
14401 	rrd.index1_off = 64;
14402 	rrd.index1_width = 8;
14403 	rrd.index2_off = 0;
14404 	rrd.index2_width = 0;
14405 	rrd.mask1 = 1;
14406 	rrd.value1 = 1;
14407 	rrd.mask2 = 1;
14408 	rrd.value2 = 1;
14409 
14410 	/* add rule 1 */
14411 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14412 
14413 	rmt->used += dd->num_user_contexts;
14414 }
14415 
14416 /* Initialize RSM for VNIC */
14417 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14418 {
14419 	u8 i, j;
14420 	u8 ctx_id = 0;
14421 	u64 reg;
14422 	u32 regoff;
14423 	struct rsm_rule_data rrd;
14424 
14425 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14426 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14427 			   dd->vnic.rmt_start);
14428 		return;
14429 	}
14430 
14431 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14432 		dd->vnic.rmt_start,
14433 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14434 
14435 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14436 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14437 	reg = read_csr(dd, regoff);
14438 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14439 		/* Update map register with vnic context */
14440 		j = (dd->vnic.rmt_start + i) % 8;
14441 		reg &= ~(0xffllu << (j * 8));
14442 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14443 		/* Wrap up vnic ctx index */
14444 		ctx_id %= dd->vnic.num_ctxt;
14445 		/* Write back map register */
14446 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14447 			dev_dbg(&(dd)->pcidev->dev,
14448 				"Vnic rsm map reg[%d] =0x%llx\n",
14449 				regoff - RCV_RSM_MAP_TABLE, reg);
14450 
14451 			write_csr(dd, regoff, reg);
14452 			regoff += 8;
14453 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14454 				reg = read_csr(dd, regoff);
14455 		}
14456 	}
14457 
14458 	/* Add rule for vnic */
14459 	rrd.offset = dd->vnic.rmt_start;
14460 	rrd.pkt_type = 4;
14461 	/* Match 16B packets */
14462 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14463 	rrd.mask1 = L2_TYPE_MASK;
14464 	rrd.value1 = L2_16B_VALUE;
14465 	/* Match ETH L4 packets */
14466 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14467 	rrd.mask2 = L4_16B_TYPE_MASK;
14468 	rrd.value2 = L4_16B_ETH_VALUE;
14469 	/* Calc context from veswid and entropy */
14470 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14471 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14472 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14473 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14474 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14475 
14476 	/* Enable RSM if not already enabled */
14477 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14478 }
14479 
14480 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14481 {
14482 	clear_rsm_rule(dd, RSM_INS_VNIC);
14483 
14484 	/* Disable RSM if used only by vnic */
14485 	if (dd->vnic.rmt_start == 0)
14486 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14487 }
14488 
14489 static void init_rxe(struct hfi1_devdata *dd)
14490 {
14491 	struct rsm_map_table *rmt;
14492 	u64 val;
14493 
14494 	/* enable all receive errors */
14495 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14496 
14497 	rmt = alloc_rsm_map_table(dd);
14498 	/* set up QOS, including the QPN map table */
14499 	init_qos(dd, rmt);
14500 	init_user_fecn_handling(dd, rmt);
14501 	complete_rsm_map_table(dd, rmt);
14502 	/* record number of used rsm map entries for vnic */
14503 	dd->vnic.rmt_start = rmt->used;
14504 	kfree(rmt);
14505 
14506 	/*
14507 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14508 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14509 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14510 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14511 	 * Max_PayLoad_Size set to its minimum of 128.
14512 	 *
14513 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14514 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14515 	 * tune_pcie_caps() which is called after this routine.
14516 	 */
14517 
14518 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14519 	val = read_csr(dd, RCV_BYPASS);
14520 	val |= (4ull << 16);
14521 	write_csr(dd, RCV_BYPASS, val);
14522 }
14523 
14524 static void init_other(struct hfi1_devdata *dd)
14525 {
14526 	/* enable all CCE errors */
14527 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14528 	/* enable *some* Misc errors */
14529 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14530 	/* enable all DC errors, except LCB */
14531 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14532 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14533 }
14534 
14535 /*
14536  * Fill out the given AU table using the given CU.  A CU is defined in terms
14537  * AUs.  The table is a an encoding: given the index, how many AUs does that
14538  * represent?
14539  *
14540  * NOTE: Assumes that the register layout is the same for the
14541  * local and remote tables.
14542  */
14543 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14544 			       u32 csr0to3, u32 csr4to7)
14545 {
14546 	write_csr(dd, csr0to3,
14547 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14548 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14549 		  2ull * cu <<
14550 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14551 		  4ull * cu <<
14552 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14553 	write_csr(dd, csr4to7,
14554 		  8ull * cu <<
14555 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14556 		  16ull * cu <<
14557 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14558 		  32ull * cu <<
14559 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14560 		  64ull * cu <<
14561 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14562 }
14563 
14564 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14565 {
14566 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14567 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14568 }
14569 
14570 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14571 {
14572 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14573 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14574 }
14575 
14576 static void init_txe(struct hfi1_devdata *dd)
14577 {
14578 	int i;
14579 
14580 	/* enable all PIO, SDMA, general, and Egress errors */
14581 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14582 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14583 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14584 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14585 
14586 	/* enable all per-context and per-SDMA engine errors */
14587 	for (i = 0; i < dd->chip_send_contexts; i++)
14588 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14589 	for (i = 0; i < dd->chip_sdma_engines; i++)
14590 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14591 
14592 	/* set the local CU to AU mapping */
14593 	assign_local_cm_au_table(dd, dd->vcu);
14594 
14595 	/*
14596 	 * Set reasonable default for Credit Return Timer
14597 	 * Don't set on Simulator - causes it to choke.
14598 	 */
14599 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14600 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14601 }
14602 
14603 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14604 		       u16 jkey)
14605 {
14606 	u8 hw_ctxt;
14607 	u64 reg;
14608 
14609 	if (!rcd || !rcd->sc)
14610 		return -EINVAL;
14611 
14612 	hw_ctxt = rcd->sc->hw_context;
14613 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14614 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14615 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14616 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14617 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14618 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14619 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14620 	/*
14621 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14622 	 */
14623 	if (!is_ax(dd)) {
14624 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14625 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14626 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14627 	}
14628 
14629 	/* Enable J_KEY check on receive context. */
14630 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14631 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14632 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14633 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14634 
14635 	return 0;
14636 }
14637 
14638 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14639 {
14640 	u8 hw_ctxt;
14641 	u64 reg;
14642 
14643 	if (!rcd || !rcd->sc)
14644 		return -EINVAL;
14645 
14646 	hw_ctxt = rcd->sc->hw_context;
14647 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14648 	/*
14649 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14650 	 * This check would not have been enabled for A0 h/w, see
14651 	 * set_ctxt_jkey().
14652 	 */
14653 	if (!is_ax(dd)) {
14654 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14655 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14656 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14657 	}
14658 	/* Turn off the J_KEY on the receive side */
14659 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14660 
14661 	return 0;
14662 }
14663 
14664 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14665 		       u16 pkey)
14666 {
14667 	u8 hw_ctxt;
14668 	u64 reg;
14669 
14670 	if (!rcd || !rcd->sc)
14671 		return -EINVAL;
14672 
14673 	hw_ctxt = rcd->sc->hw_context;
14674 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14675 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14676 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14677 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14678 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14679 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14680 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14681 
14682 	return 0;
14683 }
14684 
14685 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14686 {
14687 	u8 hw_ctxt;
14688 	u64 reg;
14689 
14690 	if (!ctxt || !ctxt->sc)
14691 		return -EINVAL;
14692 
14693 	hw_ctxt = ctxt->sc->hw_context;
14694 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14695 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14696 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14697 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14698 
14699 	return 0;
14700 }
14701 
14702 /*
14703  * Start doing the clean up the the chip. Our clean up happens in multiple
14704  * stages and this is just the first.
14705  */
14706 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14707 {
14708 	aspm_exit(dd);
14709 	free_cntrs(dd);
14710 	free_rcverr(dd);
14711 	clean_up_interrupts(dd);
14712 	finish_chip_resources(dd);
14713 }
14714 
14715 #define HFI_BASE_GUID(dev) \
14716 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14717 
14718 /*
14719  * Information can be shared between the two HFIs on the same ASIC
14720  * in the same OS.  This function finds the peer device and sets
14721  * up a shared structure.
14722  */
14723 static int init_asic_data(struct hfi1_devdata *dd)
14724 {
14725 	unsigned long flags;
14726 	struct hfi1_devdata *tmp, *peer = NULL;
14727 	struct hfi1_asic_data *asic_data;
14728 	int ret = 0;
14729 
14730 	/* pre-allocate the asic structure in case we are the first device */
14731 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14732 	if (!asic_data)
14733 		return -ENOMEM;
14734 
14735 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14736 	/* Find our peer device */
14737 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14738 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14739 		    dd->unit != tmp->unit) {
14740 			peer = tmp;
14741 			break;
14742 		}
14743 	}
14744 
14745 	if (peer) {
14746 		/* use already allocated structure */
14747 		dd->asic_data = peer->asic_data;
14748 		kfree(asic_data);
14749 	} else {
14750 		dd->asic_data = asic_data;
14751 		mutex_init(&dd->asic_data->asic_resource_mutex);
14752 	}
14753 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14754 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14755 
14756 	/* first one through - set up i2c devices */
14757 	if (!peer)
14758 		ret = set_up_i2c(dd, dd->asic_data);
14759 
14760 	return ret;
14761 }
14762 
14763 /*
14764  * Set dd->boardname.  Use a generic name if a name is not returned from
14765  * EFI variable space.
14766  *
14767  * Return 0 on success, -ENOMEM if space could not be allocated.
14768  */
14769 static int obtain_boardname(struct hfi1_devdata *dd)
14770 {
14771 	/* generic board description */
14772 	const char generic[] =
14773 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14774 	unsigned long size;
14775 	int ret;
14776 
14777 	ret = read_hfi1_efi_var(dd, "description", &size,
14778 				(void **)&dd->boardname);
14779 	if (ret) {
14780 		dd_dev_info(dd, "Board description not found\n");
14781 		/* use generic description */
14782 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14783 		if (!dd->boardname)
14784 			return -ENOMEM;
14785 	}
14786 	return 0;
14787 }
14788 
14789 /*
14790  * Check the interrupt registers to make sure that they are mapped correctly.
14791  * It is intended to help user identify any mismapping by VMM when the driver
14792  * is running in a VM. This function should only be called before interrupt
14793  * is set up properly.
14794  *
14795  * Return 0 on success, -EINVAL on failure.
14796  */
14797 static int check_int_registers(struct hfi1_devdata *dd)
14798 {
14799 	u64 reg;
14800 	u64 all_bits = ~(u64)0;
14801 	u64 mask;
14802 
14803 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14804 	mask = read_csr(dd, CCE_INT_MASK);
14805 	write_csr(dd, CCE_INT_MASK, 0ull);
14806 	reg = read_csr(dd, CCE_INT_MASK);
14807 	if (reg)
14808 		goto err_exit;
14809 
14810 	/* Clear all interrupt status bits */
14811 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14812 	reg = read_csr(dd, CCE_INT_STATUS);
14813 	if (reg)
14814 		goto err_exit;
14815 
14816 	/* Set all interrupt status bits */
14817 	write_csr(dd, CCE_INT_FORCE, all_bits);
14818 	reg = read_csr(dd, CCE_INT_STATUS);
14819 	if (reg != all_bits)
14820 		goto err_exit;
14821 
14822 	/* Restore the interrupt mask */
14823 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14824 	write_csr(dd, CCE_INT_MASK, mask);
14825 
14826 	return 0;
14827 err_exit:
14828 	write_csr(dd, CCE_INT_MASK, mask);
14829 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14830 	return -EINVAL;
14831 }
14832 
14833 /**
14834  * Allocate and initialize the device structure for the hfi.
14835  * @dev: the pci_dev for hfi1_ib device
14836  * @ent: pci_device_id struct for this dev
14837  *
14838  * Also allocates, initializes, and returns the devdata struct for this
14839  * device instance
14840  *
14841  * This is global, and is called directly at init to set up the
14842  * chip-specific function pointers for later use.
14843  */
14844 struct hfi1_devdata *hfi1_init_dd(struct pci_dev *pdev,
14845 				  const struct pci_device_id *ent)
14846 {
14847 	struct hfi1_devdata *dd;
14848 	struct hfi1_pportdata *ppd;
14849 	u64 reg;
14850 	int i, ret;
14851 	static const char * const inames[] = { /* implementation names */
14852 		"RTL silicon",
14853 		"RTL VCS simulation",
14854 		"RTL FPGA emulation",
14855 		"Functional simulator"
14856 	};
14857 	struct pci_dev *parent = pdev->bus->self;
14858 
14859 	dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
14860 				sizeof(struct hfi1_pportdata));
14861 	if (IS_ERR(dd))
14862 		goto bail;
14863 	ppd = dd->pport;
14864 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14865 		int vl;
14866 		/* init common fields */
14867 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14868 		/* DC supports 4 link widths */
14869 		ppd->link_width_supported =
14870 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14871 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14872 		ppd->link_width_downgrade_supported =
14873 			ppd->link_width_supported;
14874 		/* start out enabling only 4X */
14875 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14876 		ppd->link_width_downgrade_enabled =
14877 					ppd->link_width_downgrade_supported;
14878 		/* link width active is 0 when link is down */
14879 		/* link width downgrade active is 0 when link is down */
14880 
14881 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14882 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14883 			hfi1_early_err(&pdev->dev,
14884 				       "Invalid num_vls %u, using %u VLs\n",
14885 				    num_vls, HFI1_MAX_VLS_SUPPORTED);
14886 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14887 		}
14888 		ppd->vls_supported = num_vls;
14889 		ppd->vls_operational = ppd->vls_supported;
14890 		/* Set the default MTU. */
14891 		for (vl = 0; vl < num_vls; vl++)
14892 			dd->vld[vl].mtu = hfi1_max_mtu;
14893 		dd->vld[15].mtu = MAX_MAD_PACKET;
14894 		/*
14895 		 * Set the initial values to reasonable default, will be set
14896 		 * for real when link is up.
14897 		 */
14898 		ppd->overrun_threshold = 0x4;
14899 		ppd->phy_error_threshold = 0xf;
14900 		ppd->port_crc_mode_enabled = link_crc_mask;
14901 		/* initialize supported LTP CRC mode */
14902 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14903 		/* initialize enabled LTP CRC mode */
14904 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14905 		/* start in offline */
14906 		ppd->host_link_state = HLS_DN_OFFLINE;
14907 		init_vl_arb_caches(ppd);
14908 	}
14909 
14910 	dd->link_default = HLS_DN_POLL;
14911 
14912 	/*
14913 	 * Do remaining PCIe setup and save PCIe values in dd.
14914 	 * Any error printing is already done by the init code.
14915 	 * On return, we have the chip mapped.
14916 	 */
14917 	ret = hfi1_pcie_ddinit(dd, pdev);
14918 	if (ret < 0)
14919 		goto bail_free;
14920 
14921 	/* Save PCI space registers to rewrite after device reset */
14922 	ret = save_pci_variables(dd);
14923 	if (ret < 0)
14924 		goto bail_cleanup;
14925 
14926 	/* verify that reads actually work, save revision for reset check */
14927 	dd->revision = read_csr(dd, CCE_REVISION);
14928 	if (dd->revision == ~(u64)0) {
14929 		dd_dev_err(dd, "cannot read chip CSRs\n");
14930 		ret = -EINVAL;
14931 		goto bail_cleanup;
14932 	}
14933 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14934 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14935 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14936 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14937 
14938 	/*
14939 	 * Check interrupt registers mapping if the driver has no access to
14940 	 * the upstream component. In this case, it is likely that the driver
14941 	 * is running in a VM.
14942 	 */
14943 	if (!parent) {
14944 		ret = check_int_registers(dd);
14945 		if (ret)
14946 			goto bail_cleanup;
14947 	}
14948 
14949 	/*
14950 	 * obtain the hardware ID - NOT related to unit, which is a
14951 	 * software enumeration
14952 	 */
14953 	reg = read_csr(dd, CCE_REVISION2);
14954 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14955 					& CCE_REVISION2_HFI_ID_MASK;
14956 	/* the variable size will remove unwanted bits */
14957 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14958 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14959 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14960 		    dd->icode < ARRAY_SIZE(inames) ?
14961 		    inames[dd->icode] : "unknown", (int)dd->irev);
14962 
14963 	/* speeds the hardware can support */
14964 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14965 	/* speeds allowed to run at */
14966 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14967 	/* give a reasonable active value, will be set on link up */
14968 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14969 
14970 	dd->chip_rcv_contexts = read_csr(dd, RCV_CONTEXTS);
14971 	dd->chip_send_contexts = read_csr(dd, SEND_CONTEXTS);
14972 	dd->chip_sdma_engines = read_csr(dd, SEND_DMA_ENGINES);
14973 	dd->chip_pio_mem_size = read_csr(dd, SEND_PIO_MEM_SIZE);
14974 	dd->chip_sdma_mem_size = read_csr(dd, SEND_DMA_MEM_SIZE);
14975 	/* fix up link widths for emulation _p */
14976 	ppd = dd->pport;
14977 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14978 		ppd->link_width_supported =
14979 			ppd->link_width_enabled =
14980 			ppd->link_width_downgrade_supported =
14981 			ppd->link_width_downgrade_enabled =
14982 				OPA_LINK_WIDTH_1X;
14983 	}
14984 	/* insure num_vls isn't larger than number of sdma engines */
14985 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > dd->chip_sdma_engines) {
14986 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14987 			   num_vls, dd->chip_sdma_engines);
14988 		num_vls = dd->chip_sdma_engines;
14989 		ppd->vls_supported = dd->chip_sdma_engines;
14990 		ppd->vls_operational = ppd->vls_supported;
14991 	}
14992 
14993 	/*
14994 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14995 	 * Limit the max if larger than the field holds.  If timeout is
14996 	 * non-zero, then the calculated field will be at least 1.
14997 	 *
14998 	 * Must be after icode is set up - the cclock rate depends
14999 	 * on knowing the hardware being used.
15000 	 */
15001 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
15002 	if (dd->rcv_intr_timeout_csr >
15003 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
15004 		dd->rcv_intr_timeout_csr =
15005 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
15006 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
15007 		dd->rcv_intr_timeout_csr = 1;
15008 
15009 	/* needs to be done before we look for the peer device */
15010 	read_guid(dd);
15011 
15012 	/* set up shared ASIC data with peer device */
15013 	ret = init_asic_data(dd);
15014 	if (ret)
15015 		goto bail_cleanup;
15016 
15017 	/* obtain chip sizes, reset chip CSRs */
15018 	ret = init_chip(dd);
15019 	if (ret)
15020 		goto bail_cleanup;
15021 
15022 	/* read in the PCIe link speed information */
15023 	ret = pcie_speeds(dd);
15024 	if (ret)
15025 		goto bail_cleanup;
15026 
15027 	/* call before get_platform_config(), after init_chip_resources() */
15028 	ret = eprom_init(dd);
15029 	if (ret)
15030 		goto bail_free_rcverr;
15031 
15032 	/* Needs to be called before hfi1_firmware_init */
15033 	get_platform_config(dd);
15034 
15035 	/* read in firmware */
15036 	ret = hfi1_firmware_init(dd);
15037 	if (ret)
15038 		goto bail_cleanup;
15039 
15040 	/*
15041 	 * In general, the PCIe Gen3 transition must occur after the
15042 	 * chip has been idled (so it won't initiate any PCIe transactions
15043 	 * e.g. an interrupt) and before the driver changes any registers
15044 	 * (the transition will reset the registers).
15045 	 *
15046 	 * In particular, place this call after:
15047 	 * - init_chip()     - the chip will not initiate any PCIe transactions
15048 	 * - pcie_speeds()   - reads the current link speed
15049 	 * - hfi1_firmware_init() - the needed firmware is ready to be
15050 	 *			    downloaded
15051 	 */
15052 	ret = do_pcie_gen3_transition(dd);
15053 	if (ret)
15054 		goto bail_cleanup;
15055 
15056 	/* start setting dd values and adjusting CSRs */
15057 	init_early_variables(dd);
15058 
15059 	parse_platform_config(dd);
15060 
15061 	ret = obtain_boardname(dd);
15062 	if (ret)
15063 		goto bail_cleanup;
15064 
15065 	snprintf(dd->boardversion, BOARD_VERS_MAX,
15066 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
15067 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
15068 		 (u32)dd->majrev,
15069 		 (u32)dd->minrev,
15070 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
15071 		    & CCE_REVISION_SW_MASK);
15072 
15073 	ret = set_up_context_variables(dd);
15074 	if (ret)
15075 		goto bail_cleanup;
15076 
15077 	/* set initial RXE CSRs */
15078 	init_rxe(dd);
15079 	/* set initial TXE CSRs */
15080 	init_txe(dd);
15081 	/* set initial non-RXE, non-TXE CSRs */
15082 	init_other(dd);
15083 	/* set up KDETH QP prefix in both RX and TX CSRs */
15084 	init_kdeth_qp(dd);
15085 
15086 	ret = hfi1_dev_affinity_init(dd);
15087 	if (ret)
15088 		goto bail_cleanup;
15089 
15090 	/* send contexts must be set up before receive contexts */
15091 	ret = init_send_contexts(dd);
15092 	if (ret)
15093 		goto bail_cleanup;
15094 
15095 	ret = hfi1_create_kctxts(dd);
15096 	if (ret)
15097 		goto bail_cleanup;
15098 
15099 	/*
15100 	 * Initialize aspm, to be done after gen3 transition and setting up
15101 	 * contexts and before enabling interrupts
15102 	 */
15103 	aspm_init(dd);
15104 
15105 	dd->rcvhdrsize = DEFAULT_RCVHDRSIZE;
15106 	/*
15107 	 * rcd[0] is guaranteed to be valid by this point. Also, all
15108 	 * context are using the same value, as per the module parameter.
15109 	 */
15110 	dd->rhf_offset = dd->rcd[0]->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
15111 
15112 	ret = init_pervl_scs(dd);
15113 	if (ret)
15114 		goto bail_cleanup;
15115 
15116 	/* sdma init */
15117 	for (i = 0; i < dd->num_pports; ++i) {
15118 		ret = sdma_init(dd, i);
15119 		if (ret)
15120 			goto bail_cleanup;
15121 	}
15122 
15123 	/* use contexts created by hfi1_create_kctxts */
15124 	ret = set_up_interrupts(dd);
15125 	if (ret)
15126 		goto bail_cleanup;
15127 
15128 	/* set up LCB access - must be after set_up_interrupts() */
15129 	init_lcb_access(dd);
15130 
15131 	/*
15132 	 * Serial number is created from the base guid:
15133 	 * [27:24] = base guid [38:35]
15134 	 * [23: 0] = base guid [23: 0]
15135 	 */
15136 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15137 		 (dd->base_guid & 0xFFFFFF) |
15138 		     ((dd->base_guid >> 11) & 0xF000000));
15139 
15140 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15141 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15142 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15143 
15144 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15145 	if (ret)
15146 		goto bail_clear_intr;
15147 
15148 	thermal_init(dd);
15149 
15150 	ret = init_cntrs(dd);
15151 	if (ret)
15152 		goto bail_clear_intr;
15153 
15154 	ret = init_rcverr(dd);
15155 	if (ret)
15156 		goto bail_free_cntrs;
15157 
15158 	init_completion(&dd->user_comp);
15159 
15160 	/* The user refcount starts with one to inidicate an active device */
15161 	atomic_set(&dd->user_refcount, 1);
15162 
15163 	goto bail;
15164 
15165 bail_free_rcverr:
15166 	free_rcverr(dd);
15167 bail_free_cntrs:
15168 	free_cntrs(dd);
15169 bail_clear_intr:
15170 	clean_up_interrupts(dd);
15171 bail_cleanup:
15172 	hfi1_pcie_ddcleanup(dd);
15173 bail_free:
15174 	hfi1_free_devdata(dd);
15175 	dd = ERR_PTR(ret);
15176 bail:
15177 	return dd;
15178 }
15179 
15180 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15181 			u32 dw_len)
15182 {
15183 	u32 delta_cycles;
15184 	u32 current_egress_rate = ppd->current_egress_rate;
15185 	/* rates here are in units of 10^6 bits/sec */
15186 
15187 	if (desired_egress_rate == -1)
15188 		return 0; /* shouldn't happen */
15189 
15190 	if (desired_egress_rate >= current_egress_rate)
15191 		return 0; /* we can't help go faster, only slower */
15192 
15193 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15194 			egress_cycles(dw_len * 4, current_egress_rate);
15195 
15196 	return (u16)delta_cycles;
15197 }
15198 
15199 /**
15200  * create_pbc - build a pbc for transmission
15201  * @flags: special case flags or-ed in built pbc
15202  * @srate: static rate
15203  * @vl: vl
15204  * @dwlen: dword length (header words + data words + pbc words)
15205  *
15206  * Create a PBC with the given flags, rate, VL, and length.
15207  *
15208  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15209  * for verbs, which does not use this PSM feature.  The lone other caller
15210  * is for the diagnostic interface which calls this if the user does not
15211  * supply their own PBC.
15212  */
15213 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15214 	       u32 dw_len)
15215 {
15216 	u64 pbc, delay = 0;
15217 
15218 	if (unlikely(srate_mbs))
15219 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15220 
15221 	pbc = flags
15222 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15223 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15224 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15225 		| (dw_len & PBC_LENGTH_DWS_MASK)
15226 			<< PBC_LENGTH_DWS_SHIFT;
15227 
15228 	return pbc;
15229 }
15230 
15231 #define SBUS_THERMAL    0x4f
15232 #define SBUS_THERM_MONITOR_MODE 0x1
15233 
15234 #define THERM_FAILURE(dev, ret, reason) \
15235 	dd_dev_err((dd),						\
15236 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15237 		   (reason), (ret))
15238 
15239 /*
15240  * Initialize the thermal sensor.
15241  *
15242  * After initialization, enable polling of thermal sensor through
15243  * SBus interface. In order for this to work, the SBus Master
15244  * firmware has to be loaded due to the fact that the HW polling
15245  * logic uses SBus interrupts, which are not supported with
15246  * default firmware. Otherwise, no data will be returned through
15247  * the ASIC_STS_THERM CSR.
15248  */
15249 static int thermal_init(struct hfi1_devdata *dd)
15250 {
15251 	int ret = 0;
15252 
15253 	if (dd->icode != ICODE_RTL_SILICON ||
15254 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15255 		return ret;
15256 
15257 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15258 	if (ret) {
15259 		THERM_FAILURE(dd, ret, "Acquire SBus");
15260 		return ret;
15261 	}
15262 
15263 	dd_dev_info(dd, "Initializing thermal sensor\n");
15264 	/* Disable polling of thermal readings */
15265 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15266 	msleep(100);
15267 	/* Thermal Sensor Initialization */
15268 	/*    Step 1: Reset the Thermal SBus Receiver */
15269 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15270 				RESET_SBUS_RECEIVER, 0);
15271 	if (ret) {
15272 		THERM_FAILURE(dd, ret, "Bus Reset");
15273 		goto done;
15274 	}
15275 	/*    Step 2: Set Reset bit in Thermal block */
15276 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15277 				WRITE_SBUS_RECEIVER, 0x1);
15278 	if (ret) {
15279 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15280 		goto done;
15281 	}
15282 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15283 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15284 				WRITE_SBUS_RECEIVER, 0x32);
15285 	if (ret) {
15286 		THERM_FAILURE(dd, ret, "Write Clock Div");
15287 		goto done;
15288 	}
15289 	/*    Step 4: Select temperature mode */
15290 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15291 				WRITE_SBUS_RECEIVER,
15292 				SBUS_THERM_MONITOR_MODE);
15293 	if (ret) {
15294 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15295 		goto done;
15296 	}
15297 	/*    Step 5: De-assert block reset and start conversion */
15298 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15299 				WRITE_SBUS_RECEIVER, 0x2);
15300 	if (ret) {
15301 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15302 		goto done;
15303 	}
15304 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15305 	msleep(22);
15306 
15307 	/* Enable polling of thermal readings */
15308 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15309 
15310 	/* Set initialized flag */
15311 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15312 	if (ret)
15313 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15314 
15315 done:
15316 	release_chip_resource(dd, CR_SBUS);
15317 	return ret;
15318 }
15319 
15320 static void handle_temp_err(struct hfi1_devdata *dd)
15321 {
15322 	struct hfi1_pportdata *ppd = &dd->pport[0];
15323 	/*
15324 	 * Thermal Critical Interrupt
15325 	 * Put the device into forced freeze mode, take link down to
15326 	 * offline, and put DC into reset.
15327 	 */
15328 	dd_dev_emerg(dd,
15329 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15330 	dd->flags |= HFI1_FORCED_FREEZE;
15331 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15332 	/*
15333 	 * Shut DC down as much and as quickly as possible.
15334 	 *
15335 	 * Step 1: Take the link down to OFFLINE. This will cause the
15336 	 *         8051 to put the Serdes in reset. However, we don't want to
15337 	 *         go through the entire link state machine since we want to
15338 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15339 	 *         but rather an attempt to save the chip.
15340 	 *         Code below is almost the same as quiet_serdes() but avoids
15341 	 *         all the extra work and the sleeps.
15342 	 */
15343 	ppd->driver_link_ready = 0;
15344 	ppd->link_enabled = 0;
15345 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15346 				PLS_OFFLINE);
15347 	/*
15348 	 * Step 2: Shutdown LCB and 8051
15349 	 *         After shutdown, do not restore DC_CFG_RESET value.
15350 	 */
15351 	dc_shutdown(dd);
15352 }
15353