xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 2462bca0)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 
129 /*
130  * RSM instance allocation
131  *   0 - Verbs
132  *   1 - User Fecn Handling
133  *   2 - Vnic
134  */
135 #define RSM_INS_VERBS             0
136 #define RSM_INS_FECN              1
137 #define RSM_INS_VNIC              2
138 
139 /* Bit offset into the GUID which carries HFI id information */
140 #define GUID_HFI_INDEX_SHIFT     39
141 
142 /* extract the emulation revision */
143 #define emulator_rev(dd) ((dd)->irev >> 8)
144 /* parallel and serial emulation versions are 3 and 4 respectively */
145 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147 
148 /* RSM fields for Verbs */
149 /* packet type */
150 #define IB_PACKET_TYPE         2ull
151 #define QW_SHIFT               6ull
152 /* QPN[7..1] */
153 #define QPN_WIDTH              7ull
154 
155 /* LRH.BTH: QW 0, OFFSET 48 - for match */
156 #define LRH_BTH_QW             0ull
157 #define LRH_BTH_BIT_OFFSET     48ull
158 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
159 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160 #define LRH_BTH_SELECT
161 #define LRH_BTH_MASK           3ull
162 #define LRH_BTH_VALUE          2ull
163 
164 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165 #define LRH_SC_QW              0ull
166 #define LRH_SC_BIT_OFFSET      56ull
167 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
168 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169 #define LRH_SC_MASK            128ull
170 #define LRH_SC_VALUE           0ull
171 
172 /* SC[n..0] QW 0, OFFSET 60 - for select */
173 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
174 
175 /* QPN[m+n:1] QW 1, OFFSET 1 */
176 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
177 
178 /* RSM fields for Vnic */
179 /* L2_TYPE: QW 0, OFFSET 61 - for match */
180 #define L2_TYPE_QW             0ull
181 #define L2_TYPE_BIT_OFFSET     61ull
182 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
183 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184 #define L2_TYPE_MASK           3ull
185 #define L2_16B_VALUE           2ull
186 
187 /* L4_TYPE QW 1, OFFSET 0 - for match */
188 #define L4_TYPE_QW              1ull
189 #define L4_TYPE_BIT_OFFSET      0ull
190 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
191 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192 #define L4_16B_TYPE_MASK        0xFFull
193 #define L4_16B_ETH_VALUE        0x78ull
194 
195 /* 16B VESWID - for select */
196 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
197 /* 16B ENTROPY - for select */
198 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
199 
200 /* defines to build power on SC2VL table */
201 #define SC2VL_VAL( \
202 	num, \
203 	sc0, sc0val, \
204 	sc1, sc1val, \
205 	sc2, sc2val, \
206 	sc3, sc3val, \
207 	sc4, sc4val, \
208 	sc5, sc5val, \
209 	sc6, sc6val, \
210 	sc7, sc7val) \
211 ( \
212 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
220 )
221 
222 #define DC_SC_VL_VAL( \
223 	range, \
224 	e0, e0val, \
225 	e1, e1val, \
226 	e2, e2val, \
227 	e3, e3val, \
228 	e4, e4val, \
229 	e5, e5val, \
230 	e6, e6val, \
231 	e7, e7val, \
232 	e8, e8val, \
233 	e9, e9val, \
234 	e10, e10val, \
235 	e11, e11val, \
236 	e12, e12val, \
237 	e13, e13val, \
238 	e14, e14val, \
239 	e15, e15val) \
240 ( \
241 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257 )
258 
259 /* all CceStatus sub-block freeze bits */
260 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 			| CCE_STATUS_RXE_FROZE_SMASK \
262 			| CCE_STATUS_TXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
264 /* all CceStatus sub-block TXE pause bits */
265 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 			| CCE_STATUS_TXE_PAUSED_SMASK \
267 			| CCE_STATUS_SDMA_PAUSED_SMASK)
268 /* all CceStatus sub-block RXE pause bits */
269 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270 
271 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273 
274 /*
275  * CCE Error flags.
276  */
277 static struct flag_table cce_err_status_flags[] = {
278 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
279 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
289 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
305 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
309 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
317 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
321 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
325 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
329 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
337 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340 /*31*/	FLAG_ENTRY0("LATriggered",
341 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
343 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
351 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
355 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
359 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360 /*41-63 reserved*/
361 };
362 
363 /*
364  * Misc Error flags
365  */
366 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367 static struct flag_table misc_err_status_flags[] = {
368 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381 };
382 
383 /*
384  * TXE PIO Error flags and consequences
385  */
386 static struct flag_table pio_err_status_flags[] = {
387 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
388 	SEC_WRITE_DROPPED,
389 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393 /* 2*/	FLAG_ENTRY("PioCsrParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
403 	SEC_SPC_FREEZE,
404 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
406 	SEC_SPC_FREEZE,
407 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
427 	0,
428 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
430 	0,
431 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438 /*17*/	FLAG_ENTRY("PioInitSmIn",
439 	0,
440 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450 /*21*/	FLAG_ENTRY("PioWriteDataParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453 /*22*/	FLAG_ENTRY("PioStateMachine",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
457 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
460 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465 /*26*/	FLAG_ENTRY("PioVlfSopParity",
466 	SEC_SPC_FREEZE,
467 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468 /*27*/	FLAG_ENTRY("PioVlFifoParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
475 	SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477 /*30-31 reserved*/
478 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
479 	SEC_SPC_FREEZE,
480 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
482 	SEC_SPC_FREEZE,
483 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
485 	SEC_SPC_FREEZE,
486 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
488 	SEC_SPC_FREEZE,
489 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490 /*36-63 reserved*/
491 };
492 
493 /* TXE PIO errors that cause an SPC freeze */
494 #define ALL_PIO_FREEZE_ERR \
495 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524 
525 /*
526  * TXE SDMA Error flags
527  */
528 static struct flag_table sdma_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
530 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
532 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537 /*04-63 reserved*/
538 };
539 
540 /* TXE SDMA errors that cause an SPC freeze */
541 #define ALL_SDMA_FREEZE_ERR  \
542 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545 
546 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547 #define PORT_DISCARD_EGRESS_ERRS \
548 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551 
552 /*
553  * TXE Egress Error flags
554  */
555 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556 static struct flag_table egress_err_status_flags[] = {
557 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559 /* 2 reserved */
560 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564 /* 6 reserved */
565 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569 /* 9-10 reserved */
570 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
578 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
580 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
582 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
584 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
586 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
588 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
590 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
592 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
594 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
596 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
598 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
600 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
602 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
604 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
606 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
608 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651 };
652 
653 /*
654  * TXE Egress Error Info flags
655  */
656 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657 static struct flag_table egress_err_info_flags[] = {
658 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
659 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
660 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
667 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680 };
681 
682 /* TXE Egress errors that cause an SPC freeze */
683 #define ALL_TXE_EGRESS_FREEZE_ERR \
684 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 	| SEES(TX_LAUNCH_CSR_PARITY) \
689 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
690 	| SEES(TX_CONFIG_PARITY) \
691 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 	| SEES(TX_CREDIT_RETURN_PARITY))
701 
702 /*
703  * TXE Send error flags
704  */
705 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706 static struct flag_table send_err_status_flags[] = {
707 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710 };
711 
712 /*
713  * TXE Send Context Error flags and consequences
714  */
715 static struct flag_table sc_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY("InconsistentSop",
717 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719 /* 1*/	FLAG_ENTRY("DisallowedPacket",
720 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
723 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725 /* 3*/	FLAG_ENTRY("WriteOverflow",
726 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
729 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731 /* 5-63 reserved*/
732 };
733 
734 /*
735  * RXE Receive Error flags
736  */
737 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738 static struct flag_table rxe_err_status_flags[] = {
739 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
761 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 		RXES(RBUF_BLOCK_LIST_READ_COR)),
763 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
767 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 		RXES(RBUF_FL_INITDONE_PARITY)),
784 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 		RXES(LOOKUP_DES_PART1_UNC_COR)),
791 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 		RXES(LOOKUP_DES_PART2_PARITY)),
793 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815 };
816 
817 /* RXE errors that will trigger an SPC freeze */
818 #define ALL_RXE_FREEZE_ERR  \
819 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863 
864 #define RXE_FREEZE_ABORT_MASK \
865 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868 
869 /*
870  * DCC Error Flags
871  */
872 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873 static struct flag_table dcc_err_flags[] = {
874 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920 };
921 
922 /*
923  * LCB error flags
924  */
925 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926 static struct flag_table lcb_err_flags[] = {
927 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
963 };
964 
965 /*
966  * DC8051 Error Flags
967  */
968 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969 static struct flag_table dc8051_err_flags[] = {
970 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981 };
982 
983 /*
984  * DC8051 Information Error flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987  */
988 static struct flag_table dc8051_info_err_flags[] = {
989 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
990 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
991 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
992 	FLAG_ENTRY0("Serdes internal loopback failure",
993 		    FAILED_SERDES_INTERNAL_LOOPBACK),
994 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
995 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
996 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
997 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
998 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
999 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1002 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1003 	FLAG_ENTRY0("External Device Request Timeout",
1004 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1005 };
1006 
1007 /*
1008  * DC8051 Information Host Information flags
1009  *
1010  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011  */
1012 static struct flag_table dc8051_info_host_msg_flags[] = {
1013 	FLAG_ENTRY0("Host request done", 0x0001),
1014 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 	FLAG_ENTRY0("BC SMA message", 0x0004),
1016 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 	FLAG_ENTRY0("External device config request", 0x0020),
1019 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 	FLAG_ENTRY0("Link going down", 0x0100),
1022 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				    u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 			    u8 *tx_polarity_inversion,
1041 			    u8 *rx_polarity_inversion, u8 *max_rate);
1042 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 				unsigned int context, u64 err_status);
1044 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045 static void handle_dcc_err(struct hfi1_devdata *dd,
1046 			   unsigned int context, u64 err_status);
1047 static void handle_lcb_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void set_partition_keys(struct hfi1_pportdata *ppd);
1058 static const char *link_state_name(u32 state);
1059 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 					  u32 state);
1061 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 			   u64 *out_data);
1063 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064 static int thermal_init(struct hfi1_devdata *dd);
1065 
1066 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 					    int msecs);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
1076 					 int msecs);
1077 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1078 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1079 static void handle_temp_err(struct hfi1_devdata *dd);
1080 static void dc_shutdown(struct hfi1_devdata *dd);
1081 static void dc_start(struct hfi1_devdata *dd);
1082 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1083 			   unsigned int *np);
1084 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1085 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1086 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1087 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1088 
1089 /*
1090  * Error interrupt table entry.  This is used as input to the interrupt
1091  * "clear down" routine used for all second tier error interrupt register.
1092  * Second tier interrupt registers have a single bit representing them
1093  * in the top-level CceIntStatus.
1094  */
1095 struct err_reg_info {
1096 	u32 status;		/* status CSR offset */
1097 	u32 clear;		/* clear CSR offset */
1098 	u32 mask;		/* mask CSR offset */
1099 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1100 	const char *desc;
1101 };
1102 
1103 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1104 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1105 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1106 
1107 /*
1108  * Helpers for building HFI and DC error interrupt table entries.  Different
1109  * helpers are needed because of inconsistent register names.
1110  */
1111 #define EE(reg, handler, desc) \
1112 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1113 		handler, desc }
1114 #define DC_EE1(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1116 #define DC_EE2(reg, handler, desc) \
1117 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1118 
1119 /*
1120  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1121  * another register containing more information.
1122  */
1123 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1124 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1125 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1126 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1127 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1128 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1129 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1130 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1131 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1132 	/* the rest are reserved */
1133 };
1134 
1135 /*
1136  * Index into the Various section of the interrupt sources
1137  * corresponding to the Critical Temperature interrupt.
1138  */
1139 #define TCRIT_INT_SOURCE 4
1140 
1141 /*
1142  * SDMA error interrupt entry - refers to another register containing more
1143  * information.
1144  */
1145 static const struct err_reg_info sdma_eng_err =
1146 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1147 
1148 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1149 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1150 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1151 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1152 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1153 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1154 	/* rest are reserved */
1155 };
1156 
1157 /*
1158  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1159  * register can not be derived from the MTU value because 10K is not
1160  * a power of 2. Therefore, we need a constant. Everything else can
1161  * be calculated.
1162  */
1163 #define DCC_CFG_PORT_MTU_CAP_10240 7
1164 
1165 /*
1166  * Table of the DC grouping of error interrupts.  Each entry refers to
1167  * another register containing more information.
1168  */
1169 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1170 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1171 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1172 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1173 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1174 	/* the rest are reserved */
1175 };
1176 
1177 struct cntr_entry {
1178 	/*
1179 	 * counter name
1180 	 */
1181 	char *name;
1182 
1183 	/*
1184 	 * csr to read for name (if applicable)
1185 	 */
1186 	u64 csr;
1187 
1188 	/*
1189 	 * offset into dd or ppd to store the counter's value
1190 	 */
1191 	int offset;
1192 
1193 	/*
1194 	 * flags
1195 	 */
1196 	u8 flags;
1197 
1198 	/*
1199 	 * accessor for stat element, context either dd or ppd
1200 	 */
1201 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1202 		       int mode, u64 data);
1203 };
1204 
1205 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1206 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1207 
1208 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1209 { \
1210 	name, \
1211 	csr, \
1212 	offset, \
1213 	flags, \
1214 	accessor \
1215 }
1216 
1217 /* 32bit RXE */
1218 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1219 CNTR_ELEM(#name, \
1220 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1221 	  0, flags | CNTR_32BIT, \
1222 	  port_access_u32_csr)
1223 
1224 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1225 CNTR_ELEM(#name, \
1226 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1227 	  0, flags | CNTR_32BIT, \
1228 	  dev_access_u32_csr)
1229 
1230 /* 64bit RXE */
1231 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1232 CNTR_ELEM(#name, \
1233 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1234 	  0, flags, \
1235 	  port_access_u64_csr)
1236 
1237 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1238 CNTR_ELEM(#name, \
1239 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1240 	  0, flags, \
1241 	  dev_access_u64_csr)
1242 
1243 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1244 #define OVR_ELM(ctx) \
1245 CNTR_ELEM("RcvHdrOvr" #ctx, \
1246 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1247 	  0, CNTR_NORMAL, port_access_u64_csr)
1248 
1249 /* 32bit TXE */
1250 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1251 CNTR_ELEM(#name, \
1252 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1253 	  0, flags | CNTR_32BIT, \
1254 	  port_access_u32_csr)
1255 
1256 /* 64bit TXE */
1257 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1258 CNTR_ELEM(#name, \
1259 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1260 	  0, flags, \
1261 	  port_access_u64_csr)
1262 
1263 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1264 CNTR_ELEM(#name,\
1265 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1266 	  0, \
1267 	  flags, \
1268 	  dev_access_u64_csr)
1269 
1270 /* CCE */
1271 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1272 CNTR_ELEM(#name, \
1273 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1274 	  0, flags | CNTR_32BIT, \
1275 	  dev_access_u32_csr)
1276 
1277 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1278 CNTR_ELEM(#name, \
1279 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1280 	  0, flags | CNTR_32BIT, \
1281 	  dev_access_u32_csr)
1282 
1283 /* DC */
1284 #define DC_PERF_CNTR(name, counter, flags) \
1285 CNTR_ELEM(#name, \
1286 	  counter, \
1287 	  0, \
1288 	  flags, \
1289 	  dev_access_u64_csr)
1290 
1291 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1292 CNTR_ELEM(#name, \
1293 	  counter, \
1294 	  0, \
1295 	  flags, \
1296 	  dc_access_lcb_cntr)
1297 
1298 /* ibp counters */
1299 #define SW_IBP_CNTR(name, cntr) \
1300 CNTR_ELEM(#name, \
1301 	  0, \
1302 	  0, \
1303 	  CNTR_SYNTH, \
1304 	  access_ibp_##cntr)
1305 
1306 /**
1307  * hfi_addr_from_offset - return addr for readq/writeq
1308  * @dd - the dd device
1309  * @offset - the offset of the CSR within bar0
1310  *
1311  * This routine selects the appropriate base address
1312  * based on the indicated offset.
1313  */
1314 static inline void __iomem *hfi1_addr_from_offset(
1315 	const struct hfi1_devdata *dd,
1316 	u32 offset)
1317 {
1318 	if (offset >= dd->base2_start)
1319 		return dd->kregbase2 + (offset - dd->base2_start);
1320 	return dd->kregbase1 + offset;
1321 }
1322 
1323 /**
1324  * read_csr - read CSR at the indicated offset
1325  * @dd - the dd device
1326  * @offset - the offset of the CSR within bar0
1327  *
1328  * Return: the value read or all FF's if there
1329  * is no mapping
1330  */
1331 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1332 {
1333 	if (dd->flags & HFI1_PRESENT)
1334 		return readq(hfi1_addr_from_offset(dd, offset));
1335 	return -1;
1336 }
1337 
1338 /**
1339  * write_csr - write CSR at the indicated offset
1340  * @dd - the dd device
1341  * @offset - the offset of the CSR within bar0
1342  * @value - value to write
1343  */
1344 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1345 {
1346 	if (dd->flags & HFI1_PRESENT) {
1347 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1348 
1349 		/* avoid write to RcvArray */
1350 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1351 			return;
1352 		writeq(value, base);
1353 	}
1354 }
1355 
1356 /**
1357  * get_csr_addr - return te iomem address for offset
1358  * @dd - the dd device
1359  * @offset - the offset of the CSR within bar0
1360  *
1361  * Return: The iomem address to use in subsequent
1362  * writeq/readq operations.
1363  */
1364 void __iomem *get_csr_addr(
1365 	const struct hfi1_devdata *dd,
1366 	u32 offset)
1367 {
1368 	if (dd->flags & HFI1_PRESENT)
1369 		return hfi1_addr_from_offset(dd, offset);
1370 	return NULL;
1371 }
1372 
1373 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1374 				 int mode, u64 value)
1375 {
1376 	u64 ret;
1377 
1378 	if (mode == CNTR_MODE_R) {
1379 		ret = read_csr(dd, csr);
1380 	} else if (mode == CNTR_MODE_W) {
1381 		write_csr(dd, csr, value);
1382 		ret = value;
1383 	} else {
1384 		dd_dev_err(dd, "Invalid cntr register access mode");
1385 		return 0;
1386 	}
1387 
1388 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1389 	return ret;
1390 }
1391 
1392 /* Dev Access */
1393 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1394 			      void *context, int vl, int mode, u64 data)
1395 {
1396 	struct hfi1_devdata *dd = context;
1397 	u64 csr = entry->csr;
1398 
1399 	if (entry->flags & CNTR_SDMA) {
1400 		if (vl == CNTR_INVALID_VL)
1401 			return 0;
1402 		csr += 0x100 * vl;
1403 	} else {
1404 		if (vl != CNTR_INVALID_VL)
1405 			return 0;
1406 	}
1407 	return read_write_csr(dd, csr, mode, data);
1408 }
1409 
1410 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1411 			      void *context, int idx, int mode, u64 data)
1412 {
1413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1414 
1415 	if (dd->per_sdma && idx < dd->num_sdma)
1416 		return dd->per_sdma[idx].err_cnt;
1417 	return 0;
1418 }
1419 
1420 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1421 			      void *context, int idx, int mode, u64 data)
1422 {
1423 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1424 
1425 	if (dd->per_sdma && idx < dd->num_sdma)
1426 		return dd->per_sdma[idx].sdma_int_cnt;
1427 	return 0;
1428 }
1429 
1430 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1431 				   void *context, int idx, int mode, u64 data)
1432 {
1433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1434 
1435 	if (dd->per_sdma && idx < dd->num_sdma)
1436 		return dd->per_sdma[idx].idle_int_cnt;
1437 	return 0;
1438 }
1439 
1440 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1441 				       void *context, int idx, int mode,
1442 				       u64 data)
1443 {
1444 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1445 
1446 	if (dd->per_sdma && idx < dd->num_sdma)
1447 		return dd->per_sdma[idx].progress_int_cnt;
1448 	return 0;
1449 }
1450 
1451 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1452 			      int vl, int mode, u64 data)
1453 {
1454 	struct hfi1_devdata *dd = context;
1455 
1456 	u64 val = 0;
1457 	u64 csr = entry->csr;
1458 
1459 	if (entry->flags & CNTR_VL) {
1460 		if (vl == CNTR_INVALID_VL)
1461 			return 0;
1462 		csr += 8 * vl;
1463 	} else {
1464 		if (vl != CNTR_INVALID_VL)
1465 			return 0;
1466 	}
1467 
1468 	val = read_write_csr(dd, csr, mode, data);
1469 	return val;
1470 }
1471 
1472 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1473 			      int vl, int mode, u64 data)
1474 {
1475 	struct hfi1_devdata *dd = context;
1476 	u32 csr = entry->csr;
1477 	int ret = 0;
1478 
1479 	if (vl != CNTR_INVALID_VL)
1480 		return 0;
1481 	if (mode == CNTR_MODE_R)
1482 		ret = read_lcb_csr(dd, csr, &data);
1483 	else if (mode == CNTR_MODE_W)
1484 		ret = write_lcb_csr(dd, csr, data);
1485 
1486 	if (ret) {
1487 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1488 		return 0;
1489 	}
1490 
1491 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1492 	return data;
1493 }
1494 
1495 /* Port Access */
1496 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1497 			       int vl, int mode, u64 data)
1498 {
1499 	struct hfi1_pportdata *ppd = context;
1500 
1501 	if (vl != CNTR_INVALID_VL)
1502 		return 0;
1503 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1504 }
1505 
1506 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1507 			       void *context, int vl, int mode, u64 data)
1508 {
1509 	struct hfi1_pportdata *ppd = context;
1510 	u64 val;
1511 	u64 csr = entry->csr;
1512 
1513 	if (entry->flags & CNTR_VL) {
1514 		if (vl == CNTR_INVALID_VL)
1515 			return 0;
1516 		csr += 8 * vl;
1517 	} else {
1518 		if (vl != CNTR_INVALID_VL)
1519 			return 0;
1520 	}
1521 	val = read_write_csr(ppd->dd, csr, mode, data);
1522 	return val;
1523 }
1524 
1525 /* Software defined */
1526 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1527 				u64 data)
1528 {
1529 	u64 ret;
1530 
1531 	if (mode == CNTR_MODE_R) {
1532 		ret = *cntr;
1533 	} else if (mode == CNTR_MODE_W) {
1534 		*cntr = data;
1535 		ret = data;
1536 	} else {
1537 		dd_dev_err(dd, "Invalid cntr sw access mode");
1538 		return 0;
1539 	}
1540 
1541 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1542 
1543 	return ret;
1544 }
1545 
1546 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1547 				 int vl, int mode, u64 data)
1548 {
1549 	struct hfi1_pportdata *ppd = context;
1550 
1551 	if (vl != CNTR_INVALID_VL)
1552 		return 0;
1553 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1554 }
1555 
1556 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1557 				 int vl, int mode, u64 data)
1558 {
1559 	struct hfi1_pportdata *ppd = context;
1560 
1561 	if (vl != CNTR_INVALID_VL)
1562 		return 0;
1563 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1564 }
1565 
1566 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1567 				       void *context, int vl, int mode,
1568 				       u64 data)
1569 {
1570 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1571 
1572 	if (vl != CNTR_INVALID_VL)
1573 		return 0;
1574 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1575 }
1576 
1577 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1578 				   void *context, int vl, int mode, u64 data)
1579 {
1580 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1581 	u64 zero = 0;
1582 	u64 *counter;
1583 
1584 	if (vl == CNTR_INVALID_VL)
1585 		counter = &ppd->port_xmit_discards;
1586 	else if (vl >= 0 && vl < C_VL_COUNT)
1587 		counter = &ppd->port_xmit_discards_vl[vl];
1588 	else
1589 		counter = &zero;
1590 
1591 	return read_write_sw(ppd->dd, counter, mode, data);
1592 }
1593 
1594 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1595 				       void *context, int vl, int mode,
1596 				       u64 data)
1597 {
1598 	struct hfi1_pportdata *ppd = context;
1599 
1600 	if (vl != CNTR_INVALID_VL)
1601 		return 0;
1602 
1603 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1604 			     mode, data);
1605 }
1606 
1607 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1608 				      void *context, int vl, int mode, u64 data)
1609 {
1610 	struct hfi1_pportdata *ppd = context;
1611 
1612 	if (vl != CNTR_INVALID_VL)
1613 		return 0;
1614 
1615 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1616 			     mode, data);
1617 }
1618 
1619 u64 get_all_cpu_total(u64 __percpu *cntr)
1620 {
1621 	int cpu;
1622 	u64 counter = 0;
1623 
1624 	for_each_possible_cpu(cpu)
1625 		counter += *per_cpu_ptr(cntr, cpu);
1626 	return counter;
1627 }
1628 
1629 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1630 			  u64 __percpu *cntr,
1631 			  int vl, int mode, u64 data)
1632 {
1633 	u64 ret = 0;
1634 
1635 	if (vl != CNTR_INVALID_VL)
1636 		return 0;
1637 
1638 	if (mode == CNTR_MODE_R) {
1639 		ret = get_all_cpu_total(cntr) - *z_val;
1640 	} else if (mode == CNTR_MODE_W) {
1641 		/* A write can only zero the counter */
1642 		if (data == 0)
1643 			*z_val = get_all_cpu_total(cntr);
1644 		else
1645 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1646 	} else {
1647 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1648 		return 0;
1649 	}
1650 
1651 	return ret;
1652 }
1653 
1654 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1655 			      void *context, int vl, int mode, u64 data)
1656 {
1657 	struct hfi1_devdata *dd = context;
1658 
1659 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1660 			      mode, data);
1661 }
1662 
1663 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1664 				   void *context, int vl, int mode, u64 data)
1665 {
1666 	struct hfi1_devdata *dd = context;
1667 
1668 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1669 			      mode, data);
1670 }
1671 
1672 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1673 			      void *context, int vl, int mode, u64 data)
1674 {
1675 	struct hfi1_devdata *dd = context;
1676 
1677 	return dd->verbs_dev.n_piowait;
1678 }
1679 
1680 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1681 			       void *context, int vl, int mode, u64 data)
1682 {
1683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1684 
1685 	return dd->verbs_dev.n_piodrain;
1686 }
1687 
1688 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1689 			      void *context, int vl, int mode, u64 data)
1690 {
1691 	struct hfi1_devdata *dd = context;
1692 
1693 	return dd->verbs_dev.n_txwait;
1694 }
1695 
1696 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1697 			       void *context, int vl, int mode, u64 data)
1698 {
1699 	struct hfi1_devdata *dd = context;
1700 
1701 	return dd->verbs_dev.n_kmem_wait;
1702 }
1703 
1704 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1705 				   void *context, int vl, int mode, u64 data)
1706 {
1707 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1708 
1709 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1710 			      mode, data);
1711 }
1712 
1713 /* Software counters for the error status bits within MISC_ERR_STATUS */
1714 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1715 					     void *context, int vl, int mode,
1716 					     u64 data)
1717 {
1718 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1719 
1720 	return dd->misc_err_status_cnt[12];
1721 }
1722 
1723 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1724 					  void *context, int vl, int mode,
1725 					  u64 data)
1726 {
1727 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1728 
1729 	return dd->misc_err_status_cnt[11];
1730 }
1731 
1732 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1733 					       void *context, int vl, int mode,
1734 					       u64 data)
1735 {
1736 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1737 
1738 	return dd->misc_err_status_cnt[10];
1739 }
1740 
1741 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1742 						 void *context, int vl,
1743 						 int mode, u64 data)
1744 {
1745 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1746 
1747 	return dd->misc_err_status_cnt[9];
1748 }
1749 
1750 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1751 					   void *context, int vl, int mode,
1752 					   u64 data)
1753 {
1754 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1755 
1756 	return dd->misc_err_status_cnt[8];
1757 }
1758 
1759 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1760 				const struct cntr_entry *entry,
1761 				void *context, int vl, int mode, u64 data)
1762 {
1763 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1764 
1765 	return dd->misc_err_status_cnt[7];
1766 }
1767 
1768 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1769 						void *context, int vl,
1770 						int mode, u64 data)
1771 {
1772 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1773 
1774 	return dd->misc_err_status_cnt[6];
1775 }
1776 
1777 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1778 					      void *context, int vl, int mode,
1779 					      u64 data)
1780 {
1781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1782 
1783 	return dd->misc_err_status_cnt[5];
1784 }
1785 
1786 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1787 					    void *context, int vl, int mode,
1788 					    u64 data)
1789 {
1790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1791 
1792 	return dd->misc_err_status_cnt[4];
1793 }
1794 
1795 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1796 						 void *context, int vl,
1797 						 int mode, u64 data)
1798 {
1799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1800 
1801 	return dd->misc_err_status_cnt[3];
1802 }
1803 
1804 static u64 access_misc_csr_write_bad_addr_err_cnt(
1805 				const struct cntr_entry *entry,
1806 				void *context, int vl, int mode, u64 data)
1807 {
1808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1809 
1810 	return dd->misc_err_status_cnt[2];
1811 }
1812 
1813 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1814 						 void *context, int vl,
1815 						 int mode, u64 data)
1816 {
1817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1818 
1819 	return dd->misc_err_status_cnt[1];
1820 }
1821 
1822 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1823 					  void *context, int vl, int mode,
1824 					  u64 data)
1825 {
1826 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1827 
1828 	return dd->misc_err_status_cnt[0];
1829 }
1830 
1831 /*
1832  * Software counter for the aggregate of
1833  * individual CceErrStatus counters
1834  */
1835 static u64 access_sw_cce_err_status_aggregated_cnt(
1836 				const struct cntr_entry *entry,
1837 				void *context, int vl, int mode, u64 data)
1838 {
1839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1840 
1841 	return dd->sw_cce_err_status_aggregate;
1842 }
1843 
1844 /*
1845  * Software counters corresponding to each of the
1846  * error status bits within CceErrStatus
1847  */
1848 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1849 					      void *context, int vl, int mode,
1850 					      u64 data)
1851 {
1852 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1853 
1854 	return dd->cce_err_status_cnt[40];
1855 }
1856 
1857 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1858 					  void *context, int vl, int mode,
1859 					  u64 data)
1860 {
1861 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1862 
1863 	return dd->cce_err_status_cnt[39];
1864 }
1865 
1866 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1867 					  void *context, int vl, int mode,
1868 					  u64 data)
1869 {
1870 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1871 
1872 	return dd->cce_err_status_cnt[38];
1873 }
1874 
1875 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1876 					     void *context, int vl, int mode,
1877 					     u64 data)
1878 {
1879 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1880 
1881 	return dd->cce_err_status_cnt[37];
1882 }
1883 
1884 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1885 					     void *context, int vl, int mode,
1886 					     u64 data)
1887 {
1888 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1889 
1890 	return dd->cce_err_status_cnt[36];
1891 }
1892 
1893 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1894 				const struct cntr_entry *entry,
1895 				void *context, int vl, int mode, u64 data)
1896 {
1897 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1898 
1899 	return dd->cce_err_status_cnt[35];
1900 }
1901 
1902 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1903 				const struct cntr_entry *entry,
1904 				void *context, int vl, int mode, u64 data)
1905 {
1906 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1907 
1908 	return dd->cce_err_status_cnt[34];
1909 }
1910 
1911 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1912 						 void *context, int vl,
1913 						 int mode, u64 data)
1914 {
1915 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1916 
1917 	return dd->cce_err_status_cnt[33];
1918 }
1919 
1920 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1921 						void *context, int vl, int mode,
1922 						u64 data)
1923 {
1924 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1925 
1926 	return dd->cce_err_status_cnt[32];
1927 }
1928 
1929 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1930 				   void *context, int vl, int mode, u64 data)
1931 {
1932 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1933 
1934 	return dd->cce_err_status_cnt[31];
1935 }
1936 
1937 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1938 					       void *context, int vl, int mode,
1939 					       u64 data)
1940 {
1941 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1942 
1943 	return dd->cce_err_status_cnt[30];
1944 }
1945 
1946 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1947 					      void *context, int vl, int mode,
1948 					      u64 data)
1949 {
1950 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1951 
1952 	return dd->cce_err_status_cnt[29];
1953 }
1954 
1955 static u64 access_pcic_transmit_back_parity_err_cnt(
1956 				const struct cntr_entry *entry,
1957 				void *context, int vl, int mode, u64 data)
1958 {
1959 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1960 
1961 	return dd->cce_err_status_cnt[28];
1962 }
1963 
1964 static u64 access_pcic_transmit_front_parity_err_cnt(
1965 				const struct cntr_entry *entry,
1966 				void *context, int vl, int mode, u64 data)
1967 {
1968 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1969 
1970 	return dd->cce_err_status_cnt[27];
1971 }
1972 
1973 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1974 					     void *context, int vl, int mode,
1975 					     u64 data)
1976 {
1977 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1978 
1979 	return dd->cce_err_status_cnt[26];
1980 }
1981 
1982 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1983 					    void *context, int vl, int mode,
1984 					    u64 data)
1985 {
1986 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1987 
1988 	return dd->cce_err_status_cnt[25];
1989 }
1990 
1991 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1992 					      void *context, int vl, int mode,
1993 					      u64 data)
1994 {
1995 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1996 
1997 	return dd->cce_err_status_cnt[24];
1998 }
1999 
2000 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
2001 					     void *context, int vl, int mode,
2002 					     u64 data)
2003 {
2004 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2005 
2006 	return dd->cce_err_status_cnt[23];
2007 }
2008 
2009 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2010 						 void *context, int vl,
2011 						 int mode, u64 data)
2012 {
2013 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2014 
2015 	return dd->cce_err_status_cnt[22];
2016 }
2017 
2018 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2019 					 void *context, int vl, int mode,
2020 					 u64 data)
2021 {
2022 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2023 
2024 	return dd->cce_err_status_cnt[21];
2025 }
2026 
2027 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2028 				const struct cntr_entry *entry,
2029 				void *context, int vl, int mode, u64 data)
2030 {
2031 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2032 
2033 	return dd->cce_err_status_cnt[20];
2034 }
2035 
2036 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2037 						 void *context, int vl,
2038 						 int mode, u64 data)
2039 {
2040 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2041 
2042 	return dd->cce_err_status_cnt[19];
2043 }
2044 
2045 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2046 					     void *context, int vl, int mode,
2047 					     u64 data)
2048 {
2049 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2050 
2051 	return dd->cce_err_status_cnt[18];
2052 }
2053 
2054 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2055 					    void *context, int vl, int mode,
2056 					    u64 data)
2057 {
2058 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2059 
2060 	return dd->cce_err_status_cnt[17];
2061 }
2062 
2063 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2064 					      void *context, int vl, int mode,
2065 					      u64 data)
2066 {
2067 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2068 
2069 	return dd->cce_err_status_cnt[16];
2070 }
2071 
2072 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2073 					     void *context, int vl, int mode,
2074 					     u64 data)
2075 {
2076 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2077 
2078 	return dd->cce_err_status_cnt[15];
2079 }
2080 
2081 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2082 						 void *context, int vl,
2083 						 int mode, u64 data)
2084 {
2085 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2086 
2087 	return dd->cce_err_status_cnt[14];
2088 }
2089 
2090 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2091 					     void *context, int vl, int mode,
2092 					     u64 data)
2093 {
2094 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2095 
2096 	return dd->cce_err_status_cnt[13];
2097 }
2098 
2099 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2100 				const struct cntr_entry *entry,
2101 				void *context, int vl, int mode, u64 data)
2102 {
2103 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2104 
2105 	return dd->cce_err_status_cnt[12];
2106 }
2107 
2108 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2109 				const struct cntr_entry *entry,
2110 				void *context, int vl, int mode, u64 data)
2111 {
2112 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2113 
2114 	return dd->cce_err_status_cnt[11];
2115 }
2116 
2117 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2118 				const struct cntr_entry *entry,
2119 				void *context, int vl, int mode, u64 data)
2120 {
2121 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2122 
2123 	return dd->cce_err_status_cnt[10];
2124 }
2125 
2126 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2127 				const struct cntr_entry *entry,
2128 				void *context, int vl, int mode, u64 data)
2129 {
2130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2131 
2132 	return dd->cce_err_status_cnt[9];
2133 }
2134 
2135 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2136 				const struct cntr_entry *entry,
2137 				void *context, int vl, int mode, u64 data)
2138 {
2139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2140 
2141 	return dd->cce_err_status_cnt[8];
2142 }
2143 
2144 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2145 						 void *context, int vl,
2146 						 int mode, u64 data)
2147 {
2148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2149 
2150 	return dd->cce_err_status_cnt[7];
2151 }
2152 
2153 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2154 				const struct cntr_entry *entry,
2155 				void *context, int vl, int mode, u64 data)
2156 {
2157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2158 
2159 	return dd->cce_err_status_cnt[6];
2160 }
2161 
2162 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2163 					       void *context, int vl, int mode,
2164 					       u64 data)
2165 {
2166 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2167 
2168 	return dd->cce_err_status_cnt[5];
2169 }
2170 
2171 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2172 					  void *context, int vl, int mode,
2173 					  u64 data)
2174 {
2175 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2176 
2177 	return dd->cce_err_status_cnt[4];
2178 }
2179 
2180 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2181 				const struct cntr_entry *entry,
2182 				void *context, int vl, int mode, u64 data)
2183 {
2184 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2185 
2186 	return dd->cce_err_status_cnt[3];
2187 }
2188 
2189 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2190 						 void *context, int vl,
2191 						 int mode, u64 data)
2192 {
2193 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2194 
2195 	return dd->cce_err_status_cnt[2];
2196 }
2197 
2198 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2199 						void *context, int vl,
2200 						int mode, u64 data)
2201 {
2202 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2203 
2204 	return dd->cce_err_status_cnt[1];
2205 }
2206 
2207 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2208 					 void *context, int vl, int mode,
2209 					 u64 data)
2210 {
2211 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2212 
2213 	return dd->cce_err_status_cnt[0];
2214 }
2215 
2216 /*
2217  * Software counters corresponding to each of the
2218  * error status bits within RcvErrStatus
2219  */
2220 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2221 					void *context, int vl, int mode,
2222 					u64 data)
2223 {
2224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2225 
2226 	return dd->rcv_err_status_cnt[63];
2227 }
2228 
2229 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2230 						void *context, int vl,
2231 						int mode, u64 data)
2232 {
2233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2234 
2235 	return dd->rcv_err_status_cnt[62];
2236 }
2237 
2238 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2239 					       void *context, int vl, int mode,
2240 					       u64 data)
2241 {
2242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2243 
2244 	return dd->rcv_err_status_cnt[61];
2245 }
2246 
2247 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2248 					 void *context, int vl, int mode,
2249 					 u64 data)
2250 {
2251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2252 
2253 	return dd->rcv_err_status_cnt[60];
2254 }
2255 
2256 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2257 						 void *context, int vl,
2258 						 int mode, u64 data)
2259 {
2260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2261 
2262 	return dd->rcv_err_status_cnt[59];
2263 }
2264 
2265 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2266 						 void *context, int vl,
2267 						 int mode, u64 data)
2268 {
2269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2270 
2271 	return dd->rcv_err_status_cnt[58];
2272 }
2273 
2274 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2275 					    void *context, int vl, int mode,
2276 					    u64 data)
2277 {
2278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2279 
2280 	return dd->rcv_err_status_cnt[57];
2281 }
2282 
2283 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2284 					   void *context, int vl, int mode,
2285 					   u64 data)
2286 {
2287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2288 
2289 	return dd->rcv_err_status_cnt[56];
2290 }
2291 
2292 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2293 					   void *context, int vl, int mode,
2294 					   u64 data)
2295 {
2296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2297 
2298 	return dd->rcv_err_status_cnt[55];
2299 }
2300 
2301 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2302 				const struct cntr_entry *entry,
2303 				void *context, int vl, int mode, u64 data)
2304 {
2305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2306 
2307 	return dd->rcv_err_status_cnt[54];
2308 }
2309 
2310 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2311 				const struct cntr_entry *entry,
2312 				void *context, int vl, int mode, u64 data)
2313 {
2314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2315 
2316 	return dd->rcv_err_status_cnt[53];
2317 }
2318 
2319 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2320 						 void *context, int vl,
2321 						 int mode, u64 data)
2322 {
2323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2324 
2325 	return dd->rcv_err_status_cnt[52];
2326 }
2327 
2328 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2329 						 void *context, int vl,
2330 						 int mode, u64 data)
2331 {
2332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2333 
2334 	return dd->rcv_err_status_cnt[51];
2335 }
2336 
2337 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2338 						 void *context, int vl,
2339 						 int mode, u64 data)
2340 {
2341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2342 
2343 	return dd->rcv_err_status_cnt[50];
2344 }
2345 
2346 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2347 						 void *context, int vl,
2348 						 int mode, u64 data)
2349 {
2350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2351 
2352 	return dd->rcv_err_status_cnt[49];
2353 }
2354 
2355 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2356 						 void *context, int vl,
2357 						 int mode, u64 data)
2358 {
2359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2360 
2361 	return dd->rcv_err_status_cnt[48];
2362 }
2363 
2364 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2365 						 void *context, int vl,
2366 						 int mode, u64 data)
2367 {
2368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2369 
2370 	return dd->rcv_err_status_cnt[47];
2371 }
2372 
2373 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2374 					 void *context, int vl, int mode,
2375 					 u64 data)
2376 {
2377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2378 
2379 	return dd->rcv_err_status_cnt[46];
2380 }
2381 
2382 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2383 				const struct cntr_entry *entry,
2384 				void *context, int vl, int mode, u64 data)
2385 {
2386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2387 
2388 	return dd->rcv_err_status_cnt[45];
2389 }
2390 
2391 static u64 access_rx_lookup_csr_parity_err_cnt(
2392 				const struct cntr_entry *entry,
2393 				void *context, int vl, int mode, u64 data)
2394 {
2395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2396 
2397 	return dd->rcv_err_status_cnt[44];
2398 }
2399 
2400 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2401 				const struct cntr_entry *entry,
2402 				void *context, int vl, int mode, u64 data)
2403 {
2404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2405 
2406 	return dd->rcv_err_status_cnt[43];
2407 }
2408 
2409 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2410 				const struct cntr_entry *entry,
2411 				void *context, int vl, int mode, u64 data)
2412 {
2413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2414 
2415 	return dd->rcv_err_status_cnt[42];
2416 }
2417 
2418 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2419 				const struct cntr_entry *entry,
2420 				void *context, int vl, int mode, u64 data)
2421 {
2422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2423 
2424 	return dd->rcv_err_status_cnt[41];
2425 }
2426 
2427 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2428 				const struct cntr_entry *entry,
2429 				void *context, int vl, int mode, u64 data)
2430 {
2431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2432 
2433 	return dd->rcv_err_status_cnt[40];
2434 }
2435 
2436 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2437 				const struct cntr_entry *entry,
2438 				void *context, int vl, int mode, u64 data)
2439 {
2440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2441 
2442 	return dd->rcv_err_status_cnt[39];
2443 }
2444 
2445 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2446 				const struct cntr_entry *entry,
2447 				void *context, int vl, int mode, u64 data)
2448 {
2449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2450 
2451 	return dd->rcv_err_status_cnt[38];
2452 }
2453 
2454 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2455 				const struct cntr_entry *entry,
2456 				void *context, int vl, int mode, u64 data)
2457 {
2458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2459 
2460 	return dd->rcv_err_status_cnt[37];
2461 }
2462 
2463 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2464 				const struct cntr_entry *entry,
2465 				void *context, int vl, int mode, u64 data)
2466 {
2467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2468 
2469 	return dd->rcv_err_status_cnt[36];
2470 }
2471 
2472 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2473 				const struct cntr_entry *entry,
2474 				void *context, int vl, int mode, u64 data)
2475 {
2476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2477 
2478 	return dd->rcv_err_status_cnt[35];
2479 }
2480 
2481 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2482 				const struct cntr_entry *entry,
2483 				void *context, int vl, int mode, u64 data)
2484 {
2485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2486 
2487 	return dd->rcv_err_status_cnt[34];
2488 }
2489 
2490 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2491 				const struct cntr_entry *entry,
2492 				void *context, int vl, int mode, u64 data)
2493 {
2494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2495 
2496 	return dd->rcv_err_status_cnt[33];
2497 }
2498 
2499 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2500 					void *context, int vl, int mode,
2501 					u64 data)
2502 {
2503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2504 
2505 	return dd->rcv_err_status_cnt[32];
2506 }
2507 
2508 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2509 				       void *context, int vl, int mode,
2510 				       u64 data)
2511 {
2512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2513 
2514 	return dd->rcv_err_status_cnt[31];
2515 }
2516 
2517 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2518 					  void *context, int vl, int mode,
2519 					  u64 data)
2520 {
2521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2522 
2523 	return dd->rcv_err_status_cnt[30];
2524 }
2525 
2526 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2527 					     void *context, int vl, int mode,
2528 					     u64 data)
2529 {
2530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2531 
2532 	return dd->rcv_err_status_cnt[29];
2533 }
2534 
2535 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2536 						 void *context, int vl,
2537 						 int mode, u64 data)
2538 {
2539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2540 
2541 	return dd->rcv_err_status_cnt[28];
2542 }
2543 
2544 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2545 				const struct cntr_entry *entry,
2546 				void *context, int vl, int mode, u64 data)
2547 {
2548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2549 
2550 	return dd->rcv_err_status_cnt[27];
2551 }
2552 
2553 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2554 				const struct cntr_entry *entry,
2555 				void *context, int vl, int mode, u64 data)
2556 {
2557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2558 
2559 	return dd->rcv_err_status_cnt[26];
2560 }
2561 
2562 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2563 				const struct cntr_entry *entry,
2564 				void *context, int vl, int mode, u64 data)
2565 {
2566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2567 
2568 	return dd->rcv_err_status_cnt[25];
2569 }
2570 
2571 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2572 				const struct cntr_entry *entry,
2573 				void *context, int vl, int mode, u64 data)
2574 {
2575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2576 
2577 	return dd->rcv_err_status_cnt[24];
2578 }
2579 
2580 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2581 				const struct cntr_entry *entry,
2582 				void *context, int vl, int mode, u64 data)
2583 {
2584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2585 
2586 	return dd->rcv_err_status_cnt[23];
2587 }
2588 
2589 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2590 				const struct cntr_entry *entry,
2591 				void *context, int vl, int mode, u64 data)
2592 {
2593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2594 
2595 	return dd->rcv_err_status_cnt[22];
2596 }
2597 
2598 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2599 				const struct cntr_entry *entry,
2600 				void *context, int vl, int mode, u64 data)
2601 {
2602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2603 
2604 	return dd->rcv_err_status_cnt[21];
2605 }
2606 
2607 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2608 				const struct cntr_entry *entry,
2609 				void *context, int vl, int mode, u64 data)
2610 {
2611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2612 
2613 	return dd->rcv_err_status_cnt[20];
2614 }
2615 
2616 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2617 				const struct cntr_entry *entry,
2618 				void *context, int vl, int mode, u64 data)
2619 {
2620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2621 
2622 	return dd->rcv_err_status_cnt[19];
2623 }
2624 
2625 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2626 						 void *context, int vl,
2627 						 int mode, u64 data)
2628 {
2629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2630 
2631 	return dd->rcv_err_status_cnt[18];
2632 }
2633 
2634 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2635 						 void *context, int vl,
2636 						 int mode, u64 data)
2637 {
2638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2639 
2640 	return dd->rcv_err_status_cnt[17];
2641 }
2642 
2643 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2644 				const struct cntr_entry *entry,
2645 				void *context, int vl, int mode, u64 data)
2646 {
2647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2648 
2649 	return dd->rcv_err_status_cnt[16];
2650 }
2651 
2652 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2653 				const struct cntr_entry *entry,
2654 				void *context, int vl, int mode, u64 data)
2655 {
2656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2657 
2658 	return dd->rcv_err_status_cnt[15];
2659 }
2660 
2661 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2662 						void *context, int vl,
2663 						int mode, u64 data)
2664 {
2665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2666 
2667 	return dd->rcv_err_status_cnt[14];
2668 }
2669 
2670 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2671 						void *context, int vl,
2672 						int mode, u64 data)
2673 {
2674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2675 
2676 	return dd->rcv_err_status_cnt[13];
2677 }
2678 
2679 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2680 					      void *context, int vl, int mode,
2681 					      u64 data)
2682 {
2683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2684 
2685 	return dd->rcv_err_status_cnt[12];
2686 }
2687 
2688 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2689 					  void *context, int vl, int mode,
2690 					  u64 data)
2691 {
2692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2693 
2694 	return dd->rcv_err_status_cnt[11];
2695 }
2696 
2697 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2698 					  void *context, int vl, int mode,
2699 					  u64 data)
2700 {
2701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2702 
2703 	return dd->rcv_err_status_cnt[10];
2704 }
2705 
2706 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2707 					       void *context, int vl, int mode,
2708 					       u64 data)
2709 {
2710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2711 
2712 	return dd->rcv_err_status_cnt[9];
2713 }
2714 
2715 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2716 					    void *context, int vl, int mode,
2717 					    u64 data)
2718 {
2719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2720 
2721 	return dd->rcv_err_status_cnt[8];
2722 }
2723 
2724 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2725 				const struct cntr_entry *entry,
2726 				void *context, int vl, int mode, u64 data)
2727 {
2728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2729 
2730 	return dd->rcv_err_status_cnt[7];
2731 }
2732 
2733 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2734 				const struct cntr_entry *entry,
2735 				void *context, int vl, int mode, u64 data)
2736 {
2737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2738 
2739 	return dd->rcv_err_status_cnt[6];
2740 }
2741 
2742 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2743 					  void *context, int vl, int mode,
2744 					  u64 data)
2745 {
2746 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2747 
2748 	return dd->rcv_err_status_cnt[5];
2749 }
2750 
2751 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2752 					  void *context, int vl, int mode,
2753 					  u64 data)
2754 {
2755 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2756 
2757 	return dd->rcv_err_status_cnt[4];
2758 }
2759 
2760 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2761 					 void *context, int vl, int mode,
2762 					 u64 data)
2763 {
2764 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2765 
2766 	return dd->rcv_err_status_cnt[3];
2767 }
2768 
2769 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2770 					 void *context, int vl, int mode,
2771 					 u64 data)
2772 {
2773 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2774 
2775 	return dd->rcv_err_status_cnt[2];
2776 }
2777 
2778 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2779 					    void *context, int vl, int mode,
2780 					    u64 data)
2781 {
2782 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2783 
2784 	return dd->rcv_err_status_cnt[1];
2785 }
2786 
2787 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2788 					 void *context, int vl, int mode,
2789 					 u64 data)
2790 {
2791 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2792 
2793 	return dd->rcv_err_status_cnt[0];
2794 }
2795 
2796 /*
2797  * Software counters corresponding to each of the
2798  * error status bits within SendPioErrStatus
2799  */
2800 static u64 access_pio_pec_sop_head_parity_err_cnt(
2801 				const struct cntr_entry *entry,
2802 				void *context, int vl, int mode, u64 data)
2803 {
2804 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2805 
2806 	return dd->send_pio_err_status_cnt[35];
2807 }
2808 
2809 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2810 				const struct cntr_entry *entry,
2811 				void *context, int vl, int mode, u64 data)
2812 {
2813 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2814 
2815 	return dd->send_pio_err_status_cnt[34];
2816 }
2817 
2818 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2819 				const struct cntr_entry *entry,
2820 				void *context, int vl, int mode, u64 data)
2821 {
2822 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2823 
2824 	return dd->send_pio_err_status_cnt[33];
2825 }
2826 
2827 static u64 access_pio_current_free_cnt_parity_err_cnt(
2828 				const struct cntr_entry *entry,
2829 				void *context, int vl, int mode, u64 data)
2830 {
2831 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2832 
2833 	return dd->send_pio_err_status_cnt[32];
2834 }
2835 
2836 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2837 					  void *context, int vl, int mode,
2838 					  u64 data)
2839 {
2840 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2841 
2842 	return dd->send_pio_err_status_cnt[31];
2843 }
2844 
2845 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2846 					  void *context, int vl, int mode,
2847 					  u64 data)
2848 {
2849 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2850 
2851 	return dd->send_pio_err_status_cnt[30];
2852 }
2853 
2854 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2855 					   void *context, int vl, int mode,
2856 					   u64 data)
2857 {
2858 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2859 
2860 	return dd->send_pio_err_status_cnt[29];
2861 }
2862 
2863 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2864 				const struct cntr_entry *entry,
2865 				void *context, int vl, int mode, u64 data)
2866 {
2867 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2868 
2869 	return dd->send_pio_err_status_cnt[28];
2870 }
2871 
2872 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2873 					     void *context, int vl, int mode,
2874 					     u64 data)
2875 {
2876 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2877 
2878 	return dd->send_pio_err_status_cnt[27];
2879 }
2880 
2881 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2882 					     void *context, int vl, int mode,
2883 					     u64 data)
2884 {
2885 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2886 
2887 	return dd->send_pio_err_status_cnt[26];
2888 }
2889 
2890 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2891 						void *context, int vl,
2892 						int mode, u64 data)
2893 {
2894 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2895 
2896 	return dd->send_pio_err_status_cnt[25];
2897 }
2898 
2899 static u64 access_pio_block_qw_count_parity_err_cnt(
2900 				const struct cntr_entry *entry,
2901 				void *context, int vl, int mode, u64 data)
2902 {
2903 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2904 
2905 	return dd->send_pio_err_status_cnt[24];
2906 }
2907 
2908 static u64 access_pio_write_qw_valid_parity_err_cnt(
2909 				const struct cntr_entry *entry,
2910 				void *context, int vl, int mode, u64 data)
2911 {
2912 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2913 
2914 	return dd->send_pio_err_status_cnt[23];
2915 }
2916 
2917 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2918 					    void *context, int vl, int mode,
2919 					    u64 data)
2920 {
2921 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2922 
2923 	return dd->send_pio_err_status_cnt[22];
2924 }
2925 
2926 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2927 						void *context, int vl,
2928 						int mode, u64 data)
2929 {
2930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2931 
2932 	return dd->send_pio_err_status_cnt[21];
2933 }
2934 
2935 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2936 						void *context, int vl,
2937 						int mode, u64 data)
2938 {
2939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2940 
2941 	return dd->send_pio_err_status_cnt[20];
2942 }
2943 
2944 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2945 						void *context, int vl,
2946 						int mode, u64 data)
2947 {
2948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2949 
2950 	return dd->send_pio_err_status_cnt[19];
2951 }
2952 
2953 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2954 				const struct cntr_entry *entry,
2955 				void *context, int vl, int mode, u64 data)
2956 {
2957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2958 
2959 	return dd->send_pio_err_status_cnt[18];
2960 }
2961 
2962 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2963 					 void *context, int vl, int mode,
2964 					 u64 data)
2965 {
2966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2967 
2968 	return dd->send_pio_err_status_cnt[17];
2969 }
2970 
2971 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2972 					    void *context, int vl, int mode,
2973 					    u64 data)
2974 {
2975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2976 
2977 	return dd->send_pio_err_status_cnt[16];
2978 }
2979 
2980 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2981 				const struct cntr_entry *entry,
2982 				void *context, int vl, int mode, u64 data)
2983 {
2984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2985 
2986 	return dd->send_pio_err_status_cnt[15];
2987 }
2988 
2989 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2990 				const struct cntr_entry *entry,
2991 				void *context, int vl, int mode, u64 data)
2992 {
2993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2994 
2995 	return dd->send_pio_err_status_cnt[14];
2996 }
2997 
2998 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2999 				const struct cntr_entry *entry,
3000 				void *context, int vl, int mode, u64 data)
3001 {
3002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3003 
3004 	return dd->send_pio_err_status_cnt[13];
3005 }
3006 
3007 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3008 				const struct cntr_entry *entry,
3009 				void *context, int vl, int mode, u64 data)
3010 {
3011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3012 
3013 	return dd->send_pio_err_status_cnt[12];
3014 }
3015 
3016 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3017 				const struct cntr_entry *entry,
3018 				void *context, int vl, int mode, u64 data)
3019 {
3020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3021 
3022 	return dd->send_pio_err_status_cnt[11];
3023 }
3024 
3025 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3026 				const struct cntr_entry *entry,
3027 				void *context, int vl, int mode, u64 data)
3028 {
3029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3030 
3031 	return dd->send_pio_err_status_cnt[10];
3032 }
3033 
3034 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3035 				const struct cntr_entry *entry,
3036 				void *context, int vl, int mode, u64 data)
3037 {
3038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3039 
3040 	return dd->send_pio_err_status_cnt[9];
3041 }
3042 
3043 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3044 				const struct cntr_entry *entry,
3045 				void *context, int vl, int mode, u64 data)
3046 {
3047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3048 
3049 	return dd->send_pio_err_status_cnt[8];
3050 }
3051 
3052 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3053 				const struct cntr_entry *entry,
3054 				void *context, int vl, int mode, u64 data)
3055 {
3056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3057 
3058 	return dd->send_pio_err_status_cnt[7];
3059 }
3060 
3061 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3062 					      void *context, int vl, int mode,
3063 					      u64 data)
3064 {
3065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3066 
3067 	return dd->send_pio_err_status_cnt[6];
3068 }
3069 
3070 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3071 					      void *context, int vl, int mode,
3072 					      u64 data)
3073 {
3074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3075 
3076 	return dd->send_pio_err_status_cnt[5];
3077 }
3078 
3079 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3080 					   void *context, int vl, int mode,
3081 					   u64 data)
3082 {
3083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3084 
3085 	return dd->send_pio_err_status_cnt[4];
3086 }
3087 
3088 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3089 					   void *context, int vl, int mode,
3090 					   u64 data)
3091 {
3092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3093 
3094 	return dd->send_pio_err_status_cnt[3];
3095 }
3096 
3097 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3098 					 void *context, int vl, int mode,
3099 					 u64 data)
3100 {
3101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3102 
3103 	return dd->send_pio_err_status_cnt[2];
3104 }
3105 
3106 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3107 						void *context, int vl,
3108 						int mode, u64 data)
3109 {
3110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3111 
3112 	return dd->send_pio_err_status_cnt[1];
3113 }
3114 
3115 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3116 					     void *context, int vl, int mode,
3117 					     u64 data)
3118 {
3119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3120 
3121 	return dd->send_pio_err_status_cnt[0];
3122 }
3123 
3124 /*
3125  * Software counters corresponding to each of the
3126  * error status bits within SendDmaErrStatus
3127  */
3128 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3129 				const struct cntr_entry *entry,
3130 				void *context, int vl, int mode, u64 data)
3131 {
3132 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3133 
3134 	return dd->send_dma_err_status_cnt[3];
3135 }
3136 
3137 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3138 				const struct cntr_entry *entry,
3139 				void *context, int vl, int mode, u64 data)
3140 {
3141 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3142 
3143 	return dd->send_dma_err_status_cnt[2];
3144 }
3145 
3146 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3147 					  void *context, int vl, int mode,
3148 					  u64 data)
3149 {
3150 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3151 
3152 	return dd->send_dma_err_status_cnt[1];
3153 }
3154 
3155 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3156 				       void *context, int vl, int mode,
3157 				       u64 data)
3158 {
3159 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3160 
3161 	return dd->send_dma_err_status_cnt[0];
3162 }
3163 
3164 /*
3165  * Software counters corresponding to each of the
3166  * error status bits within SendEgressErrStatus
3167  */
3168 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3169 				const struct cntr_entry *entry,
3170 				void *context, int vl, int mode, u64 data)
3171 {
3172 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3173 
3174 	return dd->send_egress_err_status_cnt[63];
3175 }
3176 
3177 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3178 				const struct cntr_entry *entry,
3179 				void *context, int vl, int mode, u64 data)
3180 {
3181 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3182 
3183 	return dd->send_egress_err_status_cnt[62];
3184 }
3185 
3186 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3187 					     void *context, int vl, int mode,
3188 					     u64 data)
3189 {
3190 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3191 
3192 	return dd->send_egress_err_status_cnt[61];
3193 }
3194 
3195 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3196 						 void *context, int vl,
3197 						 int mode, u64 data)
3198 {
3199 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3200 
3201 	return dd->send_egress_err_status_cnt[60];
3202 }
3203 
3204 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3205 				const struct cntr_entry *entry,
3206 				void *context, int vl, int mode, u64 data)
3207 {
3208 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3209 
3210 	return dd->send_egress_err_status_cnt[59];
3211 }
3212 
3213 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3214 					void *context, int vl, int mode,
3215 					u64 data)
3216 {
3217 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3218 
3219 	return dd->send_egress_err_status_cnt[58];
3220 }
3221 
3222 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3223 					    void *context, int vl, int mode,
3224 					    u64 data)
3225 {
3226 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3227 
3228 	return dd->send_egress_err_status_cnt[57];
3229 }
3230 
3231 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3232 					      void *context, int vl, int mode,
3233 					      u64 data)
3234 {
3235 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3236 
3237 	return dd->send_egress_err_status_cnt[56];
3238 }
3239 
3240 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3241 					      void *context, int vl, int mode,
3242 					      u64 data)
3243 {
3244 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3245 
3246 	return dd->send_egress_err_status_cnt[55];
3247 }
3248 
3249 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3250 					      void *context, int vl, int mode,
3251 					      u64 data)
3252 {
3253 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3254 
3255 	return dd->send_egress_err_status_cnt[54];
3256 }
3257 
3258 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3259 					      void *context, int vl, int mode,
3260 					      u64 data)
3261 {
3262 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3263 
3264 	return dd->send_egress_err_status_cnt[53];
3265 }
3266 
3267 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3268 					      void *context, int vl, int mode,
3269 					      u64 data)
3270 {
3271 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3272 
3273 	return dd->send_egress_err_status_cnt[52];
3274 }
3275 
3276 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3277 					      void *context, int vl, int mode,
3278 					      u64 data)
3279 {
3280 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3281 
3282 	return dd->send_egress_err_status_cnt[51];
3283 }
3284 
3285 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3286 					      void *context, int vl, int mode,
3287 					      u64 data)
3288 {
3289 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3290 
3291 	return dd->send_egress_err_status_cnt[50];
3292 }
3293 
3294 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3295 					      void *context, int vl, int mode,
3296 					      u64 data)
3297 {
3298 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3299 
3300 	return dd->send_egress_err_status_cnt[49];
3301 }
3302 
3303 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3304 					      void *context, int vl, int mode,
3305 					      u64 data)
3306 {
3307 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3308 
3309 	return dd->send_egress_err_status_cnt[48];
3310 }
3311 
3312 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3313 					      void *context, int vl, int mode,
3314 					      u64 data)
3315 {
3316 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3317 
3318 	return dd->send_egress_err_status_cnt[47];
3319 }
3320 
3321 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3322 					    void *context, int vl, int mode,
3323 					    u64 data)
3324 {
3325 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3326 
3327 	return dd->send_egress_err_status_cnt[46];
3328 }
3329 
3330 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3331 					     void *context, int vl, int mode,
3332 					     u64 data)
3333 {
3334 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3335 
3336 	return dd->send_egress_err_status_cnt[45];
3337 }
3338 
3339 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3340 						 void *context, int vl,
3341 						 int mode, u64 data)
3342 {
3343 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3344 
3345 	return dd->send_egress_err_status_cnt[44];
3346 }
3347 
3348 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3349 				const struct cntr_entry *entry,
3350 				void *context, int vl, int mode, u64 data)
3351 {
3352 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3353 
3354 	return dd->send_egress_err_status_cnt[43];
3355 }
3356 
3357 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3358 					void *context, int vl, int mode,
3359 					u64 data)
3360 {
3361 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3362 
3363 	return dd->send_egress_err_status_cnt[42];
3364 }
3365 
3366 static u64 access_tx_credit_return_partiy_err_cnt(
3367 				const struct cntr_entry *entry,
3368 				void *context, int vl, int mode, u64 data)
3369 {
3370 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3371 
3372 	return dd->send_egress_err_status_cnt[41];
3373 }
3374 
3375 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3376 				const struct cntr_entry *entry,
3377 				void *context, int vl, int mode, u64 data)
3378 {
3379 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3380 
3381 	return dd->send_egress_err_status_cnt[40];
3382 }
3383 
3384 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3385 				const struct cntr_entry *entry,
3386 				void *context, int vl, int mode, u64 data)
3387 {
3388 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3389 
3390 	return dd->send_egress_err_status_cnt[39];
3391 }
3392 
3393 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3394 				const struct cntr_entry *entry,
3395 				void *context, int vl, int mode, u64 data)
3396 {
3397 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3398 
3399 	return dd->send_egress_err_status_cnt[38];
3400 }
3401 
3402 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3403 				const struct cntr_entry *entry,
3404 				void *context, int vl, int mode, u64 data)
3405 {
3406 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3407 
3408 	return dd->send_egress_err_status_cnt[37];
3409 }
3410 
3411 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3412 				const struct cntr_entry *entry,
3413 				void *context, int vl, int mode, u64 data)
3414 {
3415 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3416 
3417 	return dd->send_egress_err_status_cnt[36];
3418 }
3419 
3420 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3421 				const struct cntr_entry *entry,
3422 				void *context, int vl, int mode, u64 data)
3423 {
3424 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3425 
3426 	return dd->send_egress_err_status_cnt[35];
3427 }
3428 
3429 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3430 				const struct cntr_entry *entry,
3431 				void *context, int vl, int mode, u64 data)
3432 {
3433 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3434 
3435 	return dd->send_egress_err_status_cnt[34];
3436 }
3437 
3438 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3439 				const struct cntr_entry *entry,
3440 				void *context, int vl, int mode, u64 data)
3441 {
3442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3443 
3444 	return dd->send_egress_err_status_cnt[33];
3445 }
3446 
3447 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3448 				const struct cntr_entry *entry,
3449 				void *context, int vl, int mode, u64 data)
3450 {
3451 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3452 
3453 	return dd->send_egress_err_status_cnt[32];
3454 }
3455 
3456 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3457 				const struct cntr_entry *entry,
3458 				void *context, int vl, int mode, u64 data)
3459 {
3460 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3461 
3462 	return dd->send_egress_err_status_cnt[31];
3463 }
3464 
3465 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3466 				const struct cntr_entry *entry,
3467 				void *context, int vl, int mode, u64 data)
3468 {
3469 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3470 
3471 	return dd->send_egress_err_status_cnt[30];
3472 }
3473 
3474 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3475 				const struct cntr_entry *entry,
3476 				void *context, int vl, int mode, u64 data)
3477 {
3478 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3479 
3480 	return dd->send_egress_err_status_cnt[29];
3481 }
3482 
3483 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3484 				const struct cntr_entry *entry,
3485 				void *context, int vl, int mode, u64 data)
3486 {
3487 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3488 
3489 	return dd->send_egress_err_status_cnt[28];
3490 }
3491 
3492 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3493 				const struct cntr_entry *entry,
3494 				void *context, int vl, int mode, u64 data)
3495 {
3496 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3497 
3498 	return dd->send_egress_err_status_cnt[27];
3499 }
3500 
3501 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3502 				const struct cntr_entry *entry,
3503 				void *context, int vl, int mode, u64 data)
3504 {
3505 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3506 
3507 	return dd->send_egress_err_status_cnt[26];
3508 }
3509 
3510 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3511 				const struct cntr_entry *entry,
3512 				void *context, int vl, int mode, u64 data)
3513 {
3514 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3515 
3516 	return dd->send_egress_err_status_cnt[25];
3517 }
3518 
3519 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3520 				const struct cntr_entry *entry,
3521 				void *context, int vl, int mode, u64 data)
3522 {
3523 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3524 
3525 	return dd->send_egress_err_status_cnt[24];
3526 }
3527 
3528 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3529 				const struct cntr_entry *entry,
3530 				void *context, int vl, int mode, u64 data)
3531 {
3532 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3533 
3534 	return dd->send_egress_err_status_cnt[23];
3535 }
3536 
3537 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3538 				const struct cntr_entry *entry,
3539 				void *context, int vl, int mode, u64 data)
3540 {
3541 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3542 
3543 	return dd->send_egress_err_status_cnt[22];
3544 }
3545 
3546 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3547 				const struct cntr_entry *entry,
3548 				void *context, int vl, int mode, u64 data)
3549 {
3550 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3551 
3552 	return dd->send_egress_err_status_cnt[21];
3553 }
3554 
3555 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3556 				const struct cntr_entry *entry,
3557 				void *context, int vl, int mode, u64 data)
3558 {
3559 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3560 
3561 	return dd->send_egress_err_status_cnt[20];
3562 }
3563 
3564 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3565 				const struct cntr_entry *entry,
3566 				void *context, int vl, int mode, u64 data)
3567 {
3568 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3569 
3570 	return dd->send_egress_err_status_cnt[19];
3571 }
3572 
3573 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3574 				const struct cntr_entry *entry,
3575 				void *context, int vl, int mode, u64 data)
3576 {
3577 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3578 
3579 	return dd->send_egress_err_status_cnt[18];
3580 }
3581 
3582 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3583 				const struct cntr_entry *entry,
3584 				void *context, int vl, int mode, u64 data)
3585 {
3586 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3587 
3588 	return dd->send_egress_err_status_cnt[17];
3589 }
3590 
3591 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3592 				const struct cntr_entry *entry,
3593 				void *context, int vl, int mode, u64 data)
3594 {
3595 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3596 
3597 	return dd->send_egress_err_status_cnt[16];
3598 }
3599 
3600 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3601 					   void *context, int vl, int mode,
3602 					   u64 data)
3603 {
3604 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3605 
3606 	return dd->send_egress_err_status_cnt[15];
3607 }
3608 
3609 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3610 						 void *context, int vl,
3611 						 int mode, u64 data)
3612 {
3613 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3614 
3615 	return dd->send_egress_err_status_cnt[14];
3616 }
3617 
3618 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3619 					       void *context, int vl, int mode,
3620 					       u64 data)
3621 {
3622 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3623 
3624 	return dd->send_egress_err_status_cnt[13];
3625 }
3626 
3627 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3628 					void *context, int vl, int mode,
3629 					u64 data)
3630 {
3631 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3632 
3633 	return dd->send_egress_err_status_cnt[12];
3634 }
3635 
3636 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3637 				const struct cntr_entry *entry,
3638 				void *context, int vl, int mode, u64 data)
3639 {
3640 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3641 
3642 	return dd->send_egress_err_status_cnt[11];
3643 }
3644 
3645 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3646 					     void *context, int vl, int mode,
3647 					     u64 data)
3648 {
3649 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3650 
3651 	return dd->send_egress_err_status_cnt[10];
3652 }
3653 
3654 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3655 					    void *context, int vl, int mode,
3656 					    u64 data)
3657 {
3658 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3659 
3660 	return dd->send_egress_err_status_cnt[9];
3661 }
3662 
3663 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3664 				const struct cntr_entry *entry,
3665 				void *context, int vl, int mode, u64 data)
3666 {
3667 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3668 
3669 	return dd->send_egress_err_status_cnt[8];
3670 }
3671 
3672 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3673 				const struct cntr_entry *entry,
3674 				void *context, int vl, int mode, u64 data)
3675 {
3676 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3677 
3678 	return dd->send_egress_err_status_cnt[7];
3679 }
3680 
3681 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3682 					    void *context, int vl, int mode,
3683 					    u64 data)
3684 {
3685 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3686 
3687 	return dd->send_egress_err_status_cnt[6];
3688 }
3689 
3690 static u64 access_tx_incorrect_link_state_err_cnt(
3691 				const struct cntr_entry *entry,
3692 				void *context, int vl, int mode, u64 data)
3693 {
3694 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3695 
3696 	return dd->send_egress_err_status_cnt[5];
3697 }
3698 
3699 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3700 				      void *context, int vl, int mode,
3701 				      u64 data)
3702 {
3703 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3704 
3705 	return dd->send_egress_err_status_cnt[4];
3706 }
3707 
3708 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3709 				const struct cntr_entry *entry,
3710 				void *context, int vl, int mode, u64 data)
3711 {
3712 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3713 
3714 	return dd->send_egress_err_status_cnt[3];
3715 }
3716 
3717 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3718 					    void *context, int vl, int mode,
3719 					    u64 data)
3720 {
3721 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3722 
3723 	return dd->send_egress_err_status_cnt[2];
3724 }
3725 
3726 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3727 				const struct cntr_entry *entry,
3728 				void *context, int vl, int mode, u64 data)
3729 {
3730 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3731 
3732 	return dd->send_egress_err_status_cnt[1];
3733 }
3734 
3735 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3736 				const struct cntr_entry *entry,
3737 				void *context, int vl, int mode, u64 data)
3738 {
3739 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3740 
3741 	return dd->send_egress_err_status_cnt[0];
3742 }
3743 
3744 /*
3745  * Software counters corresponding to each of the
3746  * error status bits within SendErrStatus
3747  */
3748 static u64 access_send_csr_write_bad_addr_err_cnt(
3749 				const struct cntr_entry *entry,
3750 				void *context, int vl, int mode, u64 data)
3751 {
3752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3753 
3754 	return dd->send_err_status_cnt[2];
3755 }
3756 
3757 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3758 						 void *context, int vl,
3759 						 int mode, u64 data)
3760 {
3761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3762 
3763 	return dd->send_err_status_cnt[1];
3764 }
3765 
3766 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3767 				      void *context, int vl, int mode,
3768 				      u64 data)
3769 {
3770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3771 
3772 	return dd->send_err_status_cnt[0];
3773 }
3774 
3775 /*
3776  * Software counters corresponding to each of the
3777  * error status bits within SendCtxtErrStatus
3778  */
3779 static u64 access_pio_write_out_of_bounds_err_cnt(
3780 				const struct cntr_entry *entry,
3781 				void *context, int vl, int mode, u64 data)
3782 {
3783 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3784 
3785 	return dd->sw_ctxt_err_status_cnt[4];
3786 }
3787 
3788 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3789 					     void *context, int vl, int mode,
3790 					     u64 data)
3791 {
3792 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3793 
3794 	return dd->sw_ctxt_err_status_cnt[3];
3795 }
3796 
3797 static u64 access_pio_write_crosses_boundary_err_cnt(
3798 				const struct cntr_entry *entry,
3799 				void *context, int vl, int mode, u64 data)
3800 {
3801 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3802 
3803 	return dd->sw_ctxt_err_status_cnt[2];
3804 }
3805 
3806 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3807 						void *context, int vl,
3808 						int mode, u64 data)
3809 {
3810 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3811 
3812 	return dd->sw_ctxt_err_status_cnt[1];
3813 }
3814 
3815 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3816 					       void *context, int vl, int mode,
3817 					       u64 data)
3818 {
3819 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3820 
3821 	return dd->sw_ctxt_err_status_cnt[0];
3822 }
3823 
3824 /*
3825  * Software counters corresponding to each of the
3826  * error status bits within SendDmaEngErrStatus
3827  */
3828 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3829 				const struct cntr_entry *entry,
3830 				void *context, int vl, int mode, u64 data)
3831 {
3832 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3833 
3834 	return dd->sw_send_dma_eng_err_status_cnt[23];
3835 }
3836 
3837 static u64 access_sdma_header_storage_cor_err_cnt(
3838 				const struct cntr_entry *entry,
3839 				void *context, int vl, int mode, u64 data)
3840 {
3841 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3842 
3843 	return dd->sw_send_dma_eng_err_status_cnt[22];
3844 }
3845 
3846 static u64 access_sdma_packet_tracking_cor_err_cnt(
3847 				const struct cntr_entry *entry,
3848 				void *context, int vl, int mode, u64 data)
3849 {
3850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3851 
3852 	return dd->sw_send_dma_eng_err_status_cnt[21];
3853 }
3854 
3855 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3856 					    void *context, int vl, int mode,
3857 					    u64 data)
3858 {
3859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3860 
3861 	return dd->sw_send_dma_eng_err_status_cnt[20];
3862 }
3863 
3864 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3865 					      void *context, int vl, int mode,
3866 					      u64 data)
3867 {
3868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3869 
3870 	return dd->sw_send_dma_eng_err_status_cnt[19];
3871 }
3872 
3873 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3874 				const struct cntr_entry *entry,
3875 				void *context, int vl, int mode, u64 data)
3876 {
3877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3878 
3879 	return dd->sw_send_dma_eng_err_status_cnt[18];
3880 }
3881 
3882 static u64 access_sdma_header_storage_unc_err_cnt(
3883 				const struct cntr_entry *entry,
3884 				void *context, int vl, int mode, u64 data)
3885 {
3886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3887 
3888 	return dd->sw_send_dma_eng_err_status_cnt[17];
3889 }
3890 
3891 static u64 access_sdma_packet_tracking_unc_err_cnt(
3892 				const struct cntr_entry *entry,
3893 				void *context, int vl, int mode, u64 data)
3894 {
3895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3896 
3897 	return dd->sw_send_dma_eng_err_status_cnt[16];
3898 }
3899 
3900 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3901 					    void *context, int vl, int mode,
3902 					    u64 data)
3903 {
3904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3905 
3906 	return dd->sw_send_dma_eng_err_status_cnt[15];
3907 }
3908 
3909 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3910 					      void *context, int vl, int mode,
3911 					      u64 data)
3912 {
3913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3914 
3915 	return dd->sw_send_dma_eng_err_status_cnt[14];
3916 }
3917 
3918 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3919 				       void *context, int vl, int mode,
3920 				       u64 data)
3921 {
3922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3923 
3924 	return dd->sw_send_dma_eng_err_status_cnt[13];
3925 }
3926 
3927 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3928 					     void *context, int vl, int mode,
3929 					     u64 data)
3930 {
3931 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3932 
3933 	return dd->sw_send_dma_eng_err_status_cnt[12];
3934 }
3935 
3936 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3937 					      void *context, int vl, int mode,
3938 					      u64 data)
3939 {
3940 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3941 
3942 	return dd->sw_send_dma_eng_err_status_cnt[11];
3943 }
3944 
3945 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3946 					     void *context, int vl, int mode,
3947 					     u64 data)
3948 {
3949 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3950 
3951 	return dd->sw_send_dma_eng_err_status_cnt[10];
3952 }
3953 
3954 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3955 					  void *context, int vl, int mode,
3956 					  u64 data)
3957 {
3958 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3959 
3960 	return dd->sw_send_dma_eng_err_status_cnt[9];
3961 }
3962 
3963 static u64 access_sdma_packet_desc_overflow_err_cnt(
3964 				const struct cntr_entry *entry,
3965 				void *context, int vl, int mode, u64 data)
3966 {
3967 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3968 
3969 	return dd->sw_send_dma_eng_err_status_cnt[8];
3970 }
3971 
3972 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3973 					       void *context, int vl,
3974 					       int mode, u64 data)
3975 {
3976 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3977 
3978 	return dd->sw_send_dma_eng_err_status_cnt[7];
3979 }
3980 
3981 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3982 				    void *context, int vl, int mode, u64 data)
3983 {
3984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3985 
3986 	return dd->sw_send_dma_eng_err_status_cnt[6];
3987 }
3988 
3989 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3990 					void *context, int vl, int mode,
3991 					u64 data)
3992 {
3993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3994 
3995 	return dd->sw_send_dma_eng_err_status_cnt[5];
3996 }
3997 
3998 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3999 					  void *context, int vl, int mode,
4000 					  u64 data)
4001 {
4002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4003 
4004 	return dd->sw_send_dma_eng_err_status_cnt[4];
4005 }
4006 
4007 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4008 				const struct cntr_entry *entry,
4009 				void *context, int vl, int mode, u64 data)
4010 {
4011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4012 
4013 	return dd->sw_send_dma_eng_err_status_cnt[3];
4014 }
4015 
4016 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4017 					void *context, int vl, int mode,
4018 					u64 data)
4019 {
4020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4021 
4022 	return dd->sw_send_dma_eng_err_status_cnt[2];
4023 }
4024 
4025 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4026 					    void *context, int vl, int mode,
4027 					    u64 data)
4028 {
4029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4030 
4031 	return dd->sw_send_dma_eng_err_status_cnt[1];
4032 }
4033 
4034 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4035 					void *context, int vl, int mode,
4036 					u64 data)
4037 {
4038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4039 
4040 	return dd->sw_send_dma_eng_err_status_cnt[0];
4041 }
4042 
4043 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4044 				 void *context, int vl, int mode,
4045 				 u64 data)
4046 {
4047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4048 
4049 	u64 val = 0;
4050 	u64 csr = entry->csr;
4051 
4052 	val = read_write_csr(dd, csr, mode, data);
4053 	if (mode == CNTR_MODE_R) {
4054 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4055 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4056 	} else if (mode == CNTR_MODE_W) {
4057 		dd->sw_rcv_bypass_packet_errors = 0;
4058 	} else {
4059 		dd_dev_err(dd, "Invalid cntr register access mode");
4060 		return 0;
4061 	}
4062 	return val;
4063 }
4064 
4065 #define def_access_sw_cpu(cntr) \
4066 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4067 			      void *context, int vl, int mode, u64 data)      \
4068 {									      \
4069 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4070 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4071 			      ppd->ibport_data.rvp.cntr, vl,		      \
4072 			      mode, data);				      \
4073 }
4074 
4075 def_access_sw_cpu(rc_acks);
4076 def_access_sw_cpu(rc_qacks);
4077 def_access_sw_cpu(rc_delayed_comp);
4078 
4079 #define def_access_ibp_counter(cntr) \
4080 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4081 				void *context, int vl, int mode, u64 data)    \
4082 {									      \
4083 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4084 									      \
4085 	if (vl != CNTR_INVALID_VL)					      \
4086 		return 0;						      \
4087 									      \
4088 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4089 			     mode, data);				      \
4090 }
4091 
4092 def_access_ibp_counter(loop_pkts);
4093 def_access_ibp_counter(rc_resends);
4094 def_access_ibp_counter(rnr_naks);
4095 def_access_ibp_counter(other_naks);
4096 def_access_ibp_counter(rc_timeouts);
4097 def_access_ibp_counter(pkt_drops);
4098 def_access_ibp_counter(dmawait);
4099 def_access_ibp_counter(rc_seqnak);
4100 def_access_ibp_counter(rc_dupreq);
4101 def_access_ibp_counter(rdma_seq);
4102 def_access_ibp_counter(unaligned);
4103 def_access_ibp_counter(seq_naks);
4104 
4105 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4106 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4107 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4110 			CNTR_NORMAL),
4111 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4112 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4113 			CNTR_NORMAL),
4114 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4115 			CNTR_NORMAL),
4116 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4117 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4119 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4120 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4131 			CNTR_NORMAL),
4132 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4133 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4134 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4135 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4136 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4137 			      CNTR_SYNTH),
4138 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4139 			    access_dc_rcv_err_cnt),
4140 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4141 				 CNTR_SYNTH),
4142 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4145 				  CNTR_SYNTH),
4146 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4147 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4148 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4149 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4150 				  CNTR_SYNTH),
4151 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4152 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4153 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4154 			       CNTR_SYNTH),
4155 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4156 			      CNTR_SYNTH),
4157 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4158 			       CNTR_SYNTH),
4159 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4160 				 CNTR_SYNTH),
4161 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4164 				CNTR_SYNTH),
4165 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4166 			       CNTR_SYNTH),
4167 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4168 				 CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4170 				CNTR_SYNTH | CNTR_VL),
4171 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4172 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4173 				 CNTR_SYNTH | CNTR_VL),
4174 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4175 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4176 				 CNTR_SYNTH | CNTR_VL),
4177 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4178 			      CNTR_SYNTH),
4179 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4180 				 CNTR_SYNTH | CNTR_VL),
4181 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4182 				CNTR_SYNTH),
4183 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4184 				   CNTR_SYNTH | CNTR_VL),
4185 [C_DC_TOTAL_CRC] =
4186 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4187 			 CNTR_SYNTH),
4188 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4195 				  CNTR_SYNTH),
4196 [C_DC_CRC_MULT_LN] =
4197 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4198 			 CNTR_SYNTH),
4199 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4202 				    CNTR_SYNTH),
4203 [C_DC_SEQ_CRC_CNT] =
4204 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4205 			 CNTR_SYNTH),
4206 [C_DC_ESC0_ONLY_CNT] =
4207 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4208 			 CNTR_SYNTH),
4209 [C_DC_ESC0_PLUS1_CNT] =
4210 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4211 			 CNTR_SYNTH),
4212 [C_DC_ESC0_PLUS2_CNT] =
4213 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4214 			 CNTR_SYNTH),
4215 [C_DC_REINIT_FROM_PEER_CNT] =
4216 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4217 			 CNTR_SYNTH),
4218 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4219 				  CNTR_SYNTH),
4220 [C_DC_MISC_FLG_CNT] =
4221 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4222 			 CNTR_SYNTH),
4223 [C_DC_PRF_GOOD_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4225 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4226 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4227 			 CNTR_SYNTH),
4228 [C_DC_PRF_RX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_TX_FLIT_CNT] =
4231 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4232 [C_DC_PRF_CLK_CNTR] =
4233 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4234 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4235 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4236 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4237 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4238 			 CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_SBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4241 [C_DC_PG_STS_TX_MBE_CNT] =
4242 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4243 			 CNTR_SYNTH),
4244 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_intr),
4246 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4247 			    access_sw_cpu_rcv_limit),
4248 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_vtx_wait),
4250 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_wait),
4252 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4253 			    access_sw_pio_drain),
4254 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4255 			    access_sw_kmem_wait),
4256 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4257 			    access_sw_send_schedule),
4258 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4259 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4260 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4261 				      dev_access_u32_csr),
4262 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4263 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4264 			     access_sde_int_cnt),
4265 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4266 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4267 			     access_sde_err_cnt),
4268 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4269 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4270 				  access_sde_idle_int_cnt),
4271 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4272 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4273 				      access_sde_progress_int_cnt),
4274 /* MISC_ERR_STATUS */
4275 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4276 				CNTR_NORMAL,
4277 				access_misc_pll_lock_fail_err_cnt),
4278 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4279 				CNTR_NORMAL,
4280 				access_misc_mbist_fail_err_cnt),
4281 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4282 				CNTR_NORMAL,
4283 				access_misc_invalid_eep_cmd_err_cnt),
4284 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4285 				CNTR_NORMAL,
4286 				access_misc_efuse_done_parity_err_cnt),
4287 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4288 				CNTR_NORMAL,
4289 				access_misc_efuse_write_err_cnt),
4290 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4291 				0, CNTR_NORMAL,
4292 				access_misc_efuse_read_bad_addr_err_cnt),
4293 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4294 				CNTR_NORMAL,
4295 				access_misc_efuse_csr_parity_err_cnt),
4296 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4297 				CNTR_NORMAL,
4298 				access_misc_fw_auth_failed_err_cnt),
4299 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4300 				CNTR_NORMAL,
4301 				access_misc_key_mismatch_err_cnt),
4302 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4303 				CNTR_NORMAL,
4304 				access_misc_sbus_write_failed_err_cnt),
4305 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4306 				CNTR_NORMAL,
4307 				access_misc_csr_write_bad_addr_err_cnt),
4308 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4309 				CNTR_NORMAL,
4310 				access_misc_csr_read_bad_addr_err_cnt),
4311 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4312 				CNTR_NORMAL,
4313 				access_misc_csr_parity_err_cnt),
4314 /* CceErrStatus */
4315 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4316 				CNTR_NORMAL,
4317 				access_sw_cce_err_status_aggregated_cnt),
4318 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4319 				CNTR_NORMAL,
4320 				access_cce_msix_csr_parity_err_cnt),
4321 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4322 				CNTR_NORMAL,
4323 				access_cce_int_map_unc_err_cnt),
4324 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4325 				CNTR_NORMAL,
4326 				access_cce_int_map_cor_err_cnt),
4327 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4328 				CNTR_NORMAL,
4329 				access_cce_msix_table_unc_err_cnt),
4330 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4331 				CNTR_NORMAL,
4332 				access_cce_msix_table_cor_err_cnt),
4333 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4334 				0, CNTR_NORMAL,
4335 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4336 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4337 				0, CNTR_NORMAL,
4338 				access_cce_rcpl_async_fifo_parity_err_cnt),
4339 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4340 				CNTR_NORMAL,
4341 				access_cce_seg_write_bad_addr_err_cnt),
4342 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4343 				CNTR_NORMAL,
4344 				access_cce_seg_read_bad_addr_err_cnt),
4345 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4346 				CNTR_NORMAL,
4347 				access_la_triggered_cnt),
4348 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4349 				CNTR_NORMAL,
4350 				access_cce_trgt_cpl_timeout_err_cnt),
4351 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4352 				CNTR_NORMAL,
4353 				access_pcic_receive_parity_err_cnt),
4354 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4355 				CNTR_NORMAL,
4356 				access_pcic_transmit_back_parity_err_cnt),
4357 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4358 				0, CNTR_NORMAL,
4359 				access_pcic_transmit_front_parity_err_cnt),
4360 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4361 				CNTR_NORMAL,
4362 				access_pcic_cpl_dat_q_unc_err_cnt),
4363 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4364 				CNTR_NORMAL,
4365 				access_pcic_cpl_hd_q_unc_err_cnt),
4366 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4367 				CNTR_NORMAL,
4368 				access_pcic_post_dat_q_unc_err_cnt),
4369 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4370 				CNTR_NORMAL,
4371 				access_pcic_post_hd_q_unc_err_cnt),
4372 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4373 				CNTR_NORMAL,
4374 				access_pcic_retry_sot_mem_unc_err_cnt),
4375 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4376 				CNTR_NORMAL,
4377 				access_pcic_retry_mem_unc_err),
4378 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4379 				CNTR_NORMAL,
4380 				access_pcic_n_post_dat_q_parity_err_cnt),
4381 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4382 				CNTR_NORMAL,
4383 				access_pcic_n_post_h_q_parity_err_cnt),
4384 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4385 				CNTR_NORMAL,
4386 				access_pcic_cpl_dat_q_cor_err_cnt),
4387 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4388 				CNTR_NORMAL,
4389 				access_pcic_cpl_hd_q_cor_err_cnt),
4390 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4391 				CNTR_NORMAL,
4392 				access_pcic_post_dat_q_cor_err_cnt),
4393 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4394 				CNTR_NORMAL,
4395 				access_pcic_post_hd_q_cor_err_cnt),
4396 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4397 				CNTR_NORMAL,
4398 				access_pcic_retry_sot_mem_cor_err_cnt),
4399 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4400 				CNTR_NORMAL,
4401 				access_pcic_retry_mem_cor_err_cnt),
4402 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4403 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4404 				CNTR_NORMAL,
4405 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4406 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4407 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4408 				CNTR_NORMAL,
4409 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4410 				),
4411 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4412 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4413 			CNTR_NORMAL,
4414 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4415 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4416 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4417 			CNTR_NORMAL,
4418 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4419 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4420 			0, CNTR_NORMAL,
4421 			access_cce_cli2_async_fifo_parity_err_cnt),
4422 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4423 			CNTR_NORMAL,
4424 			access_cce_csr_cfg_bus_parity_err_cnt),
4425 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4426 			0, CNTR_NORMAL,
4427 			access_cce_cli0_async_fifo_parity_err_cnt),
4428 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4429 			CNTR_NORMAL,
4430 			access_cce_rspd_data_parity_err_cnt),
4431 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4432 			CNTR_NORMAL,
4433 			access_cce_trgt_access_err_cnt),
4434 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4435 			0, CNTR_NORMAL,
4436 			access_cce_trgt_async_fifo_parity_err_cnt),
4437 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4438 			CNTR_NORMAL,
4439 			access_cce_csr_write_bad_addr_err_cnt),
4440 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4441 			CNTR_NORMAL,
4442 			access_cce_csr_read_bad_addr_err_cnt),
4443 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4444 			CNTR_NORMAL,
4445 			access_ccs_csr_parity_err_cnt),
4446 
4447 /* RcvErrStatus */
4448 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4449 			CNTR_NORMAL,
4450 			access_rx_csr_parity_err_cnt),
4451 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4452 			CNTR_NORMAL,
4453 			access_rx_csr_write_bad_addr_err_cnt),
4454 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4455 			CNTR_NORMAL,
4456 			access_rx_csr_read_bad_addr_err_cnt),
4457 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4458 			CNTR_NORMAL,
4459 			access_rx_dma_csr_unc_err_cnt),
4460 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4461 			CNTR_NORMAL,
4462 			access_rx_dma_dq_fsm_encoding_err_cnt),
4463 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4464 			CNTR_NORMAL,
4465 			access_rx_dma_eq_fsm_encoding_err_cnt),
4466 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4467 			CNTR_NORMAL,
4468 			access_rx_dma_csr_parity_err_cnt),
4469 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4470 			CNTR_NORMAL,
4471 			access_rx_rbuf_data_cor_err_cnt),
4472 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4473 			CNTR_NORMAL,
4474 			access_rx_rbuf_data_unc_err_cnt),
4475 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4476 			CNTR_NORMAL,
4477 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4478 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4479 			CNTR_NORMAL,
4480 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4481 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4482 			CNTR_NORMAL,
4483 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4484 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4485 			CNTR_NORMAL,
4486 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4487 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4488 			CNTR_NORMAL,
4489 			access_rx_rbuf_desc_part2_cor_err_cnt),
4490 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4491 			CNTR_NORMAL,
4492 			access_rx_rbuf_desc_part2_unc_err_cnt),
4493 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4494 			CNTR_NORMAL,
4495 			access_rx_rbuf_desc_part1_cor_err_cnt),
4496 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4497 			CNTR_NORMAL,
4498 			access_rx_rbuf_desc_part1_unc_err_cnt),
4499 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4500 			CNTR_NORMAL,
4501 			access_rx_hq_intr_fsm_err_cnt),
4502 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4503 			CNTR_NORMAL,
4504 			access_rx_hq_intr_csr_parity_err_cnt),
4505 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4506 			CNTR_NORMAL,
4507 			access_rx_lookup_csr_parity_err_cnt),
4508 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4509 			CNTR_NORMAL,
4510 			access_rx_lookup_rcv_array_cor_err_cnt),
4511 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4512 			CNTR_NORMAL,
4513 			access_rx_lookup_rcv_array_unc_err_cnt),
4514 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4515 			0, CNTR_NORMAL,
4516 			access_rx_lookup_des_part2_parity_err_cnt),
4517 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4518 			0, CNTR_NORMAL,
4519 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4520 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4521 			CNTR_NORMAL,
4522 			access_rx_lookup_des_part1_unc_err_cnt),
4523 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4524 			CNTR_NORMAL,
4525 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4526 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4527 			CNTR_NORMAL,
4528 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4529 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4530 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4531 			CNTR_NORMAL,
4532 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4533 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4534 			0, CNTR_NORMAL,
4535 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4536 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4537 			0, CNTR_NORMAL,
4538 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4539 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4540 			CNTR_NORMAL,
4541 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4542 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4543 			CNTR_NORMAL,
4544 			access_rx_rbuf_empty_err_cnt),
4545 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4546 			CNTR_NORMAL,
4547 			access_rx_rbuf_full_err_cnt),
4548 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4549 			CNTR_NORMAL,
4550 			access_rbuf_bad_lookup_err_cnt),
4551 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4552 			CNTR_NORMAL,
4553 			access_rbuf_ctx_id_parity_err_cnt),
4554 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4555 			CNTR_NORMAL,
4556 			access_rbuf_csr_qeopdw_parity_err_cnt),
4557 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4558 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4559 			CNTR_NORMAL,
4560 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4561 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4562 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4563 			CNTR_NORMAL,
4564 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4565 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4566 			0, CNTR_NORMAL,
4567 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4568 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4569 			0, CNTR_NORMAL,
4570 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4571 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4572 			0, 0, CNTR_NORMAL,
4573 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4574 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4575 			0, CNTR_NORMAL,
4576 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4577 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4578 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4579 			CNTR_NORMAL,
4580 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4581 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4582 			0, CNTR_NORMAL,
4583 			access_rx_rbuf_block_list_read_cor_err_cnt),
4584 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4585 			0, CNTR_NORMAL,
4586 			access_rx_rbuf_block_list_read_unc_err_cnt),
4587 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4588 			CNTR_NORMAL,
4589 			access_rx_rbuf_lookup_des_cor_err_cnt),
4590 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4591 			CNTR_NORMAL,
4592 			access_rx_rbuf_lookup_des_unc_err_cnt),
4593 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4594 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4595 			CNTR_NORMAL,
4596 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4597 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4598 			CNTR_NORMAL,
4599 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4600 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4601 			CNTR_NORMAL,
4602 			access_rx_rbuf_free_list_cor_err_cnt),
4603 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4604 			CNTR_NORMAL,
4605 			access_rx_rbuf_free_list_unc_err_cnt),
4606 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4607 			CNTR_NORMAL,
4608 			access_rx_rcv_fsm_encoding_err_cnt),
4609 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4610 			CNTR_NORMAL,
4611 			access_rx_dma_flag_cor_err_cnt),
4612 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4613 			CNTR_NORMAL,
4614 			access_rx_dma_flag_unc_err_cnt),
4615 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4616 			CNTR_NORMAL,
4617 			access_rx_dc_sop_eop_parity_err_cnt),
4618 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4619 			CNTR_NORMAL,
4620 			access_rx_rcv_csr_parity_err_cnt),
4621 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4622 			CNTR_NORMAL,
4623 			access_rx_rcv_qp_map_table_cor_err_cnt),
4624 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4625 			CNTR_NORMAL,
4626 			access_rx_rcv_qp_map_table_unc_err_cnt),
4627 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4628 			CNTR_NORMAL,
4629 			access_rx_rcv_data_cor_err_cnt),
4630 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4631 			CNTR_NORMAL,
4632 			access_rx_rcv_data_unc_err_cnt),
4633 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4634 			CNTR_NORMAL,
4635 			access_rx_rcv_hdr_cor_err_cnt),
4636 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4637 			CNTR_NORMAL,
4638 			access_rx_rcv_hdr_unc_err_cnt),
4639 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4640 			CNTR_NORMAL,
4641 			access_rx_dc_intf_parity_err_cnt),
4642 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4643 			CNTR_NORMAL,
4644 			access_rx_dma_csr_cor_err_cnt),
4645 /* SendPioErrStatus */
4646 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4647 			CNTR_NORMAL,
4648 			access_pio_pec_sop_head_parity_err_cnt),
4649 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4650 			CNTR_NORMAL,
4651 			access_pio_pcc_sop_head_parity_err_cnt),
4652 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4653 			0, 0, CNTR_NORMAL,
4654 			access_pio_last_returned_cnt_parity_err_cnt),
4655 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4656 			0, CNTR_NORMAL,
4657 			access_pio_current_free_cnt_parity_err_cnt),
4658 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4659 			CNTR_NORMAL,
4660 			access_pio_reserved_31_err_cnt),
4661 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4662 			CNTR_NORMAL,
4663 			access_pio_reserved_30_err_cnt),
4664 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4665 			CNTR_NORMAL,
4666 			access_pio_ppmc_sop_len_err_cnt),
4667 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4668 			CNTR_NORMAL,
4669 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4670 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4671 			CNTR_NORMAL,
4672 			access_pio_vl_fifo_parity_err_cnt),
4673 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4674 			CNTR_NORMAL,
4675 			access_pio_vlf_sop_parity_err_cnt),
4676 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4677 			CNTR_NORMAL,
4678 			access_pio_vlf_v1_len_parity_err_cnt),
4679 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4680 			CNTR_NORMAL,
4681 			access_pio_block_qw_count_parity_err_cnt),
4682 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4683 			CNTR_NORMAL,
4684 			access_pio_write_qw_valid_parity_err_cnt),
4685 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4686 			CNTR_NORMAL,
4687 			access_pio_state_machine_err_cnt),
4688 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4689 			CNTR_NORMAL,
4690 			access_pio_write_data_parity_err_cnt),
4691 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4692 			CNTR_NORMAL,
4693 			access_pio_host_addr_mem_cor_err_cnt),
4694 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4695 			CNTR_NORMAL,
4696 			access_pio_host_addr_mem_unc_err_cnt),
4697 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4698 			CNTR_NORMAL,
4699 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4700 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4701 			CNTR_NORMAL,
4702 			access_pio_init_sm_in_err_cnt),
4703 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4704 			CNTR_NORMAL,
4705 			access_pio_ppmc_pbl_fifo_err_cnt),
4706 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4707 			0, CNTR_NORMAL,
4708 			access_pio_credit_ret_fifo_parity_err_cnt),
4709 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4710 			CNTR_NORMAL,
4711 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4712 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4713 			CNTR_NORMAL,
4714 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4715 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4716 			CNTR_NORMAL,
4717 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4718 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4719 			CNTR_NORMAL,
4720 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4721 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4722 			CNTR_NORMAL,
4723 			access_pio_sm_pkt_reset_parity_err_cnt),
4724 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4725 			CNTR_NORMAL,
4726 			access_pio_pkt_evict_fifo_parity_err_cnt),
4727 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4728 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4729 			CNTR_NORMAL,
4730 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4731 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4732 			CNTR_NORMAL,
4733 			access_pio_sbrdctl_crrel_parity_err_cnt),
4734 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4735 			CNTR_NORMAL,
4736 			access_pio_pec_fifo_parity_err_cnt),
4737 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4738 			CNTR_NORMAL,
4739 			access_pio_pcc_fifo_parity_err_cnt),
4740 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4741 			CNTR_NORMAL,
4742 			access_pio_sb_mem_fifo1_err_cnt),
4743 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4744 			CNTR_NORMAL,
4745 			access_pio_sb_mem_fifo0_err_cnt),
4746 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4747 			CNTR_NORMAL,
4748 			access_pio_csr_parity_err_cnt),
4749 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4750 			CNTR_NORMAL,
4751 			access_pio_write_addr_parity_err_cnt),
4752 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4753 			CNTR_NORMAL,
4754 			access_pio_write_bad_ctxt_err_cnt),
4755 /* SendDmaErrStatus */
4756 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4757 			0, CNTR_NORMAL,
4758 			access_sdma_pcie_req_tracking_cor_err_cnt),
4759 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4760 			0, CNTR_NORMAL,
4761 			access_sdma_pcie_req_tracking_unc_err_cnt),
4762 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4763 			CNTR_NORMAL,
4764 			access_sdma_csr_parity_err_cnt),
4765 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4766 			CNTR_NORMAL,
4767 			access_sdma_rpy_tag_err_cnt),
4768 /* SendEgressErrStatus */
4769 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4770 			CNTR_NORMAL,
4771 			access_tx_read_pio_memory_csr_unc_err_cnt),
4772 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4773 			0, CNTR_NORMAL,
4774 			access_tx_read_sdma_memory_csr_err_cnt),
4775 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4776 			CNTR_NORMAL,
4777 			access_tx_egress_fifo_cor_err_cnt),
4778 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4779 			CNTR_NORMAL,
4780 			access_tx_read_pio_memory_cor_err_cnt),
4781 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4782 			CNTR_NORMAL,
4783 			access_tx_read_sdma_memory_cor_err_cnt),
4784 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4785 			CNTR_NORMAL,
4786 			access_tx_sb_hdr_cor_err_cnt),
4787 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4788 			CNTR_NORMAL,
4789 			access_tx_credit_overrun_err_cnt),
4790 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4791 			CNTR_NORMAL,
4792 			access_tx_launch_fifo8_cor_err_cnt),
4793 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4794 			CNTR_NORMAL,
4795 			access_tx_launch_fifo7_cor_err_cnt),
4796 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4797 			CNTR_NORMAL,
4798 			access_tx_launch_fifo6_cor_err_cnt),
4799 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4800 			CNTR_NORMAL,
4801 			access_tx_launch_fifo5_cor_err_cnt),
4802 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4803 			CNTR_NORMAL,
4804 			access_tx_launch_fifo4_cor_err_cnt),
4805 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4806 			CNTR_NORMAL,
4807 			access_tx_launch_fifo3_cor_err_cnt),
4808 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4809 			CNTR_NORMAL,
4810 			access_tx_launch_fifo2_cor_err_cnt),
4811 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4812 			CNTR_NORMAL,
4813 			access_tx_launch_fifo1_cor_err_cnt),
4814 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4815 			CNTR_NORMAL,
4816 			access_tx_launch_fifo0_cor_err_cnt),
4817 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4818 			CNTR_NORMAL,
4819 			access_tx_credit_return_vl_err_cnt),
4820 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4821 			CNTR_NORMAL,
4822 			access_tx_hcrc_insertion_err_cnt),
4823 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4824 			CNTR_NORMAL,
4825 			access_tx_egress_fifo_unc_err_cnt),
4826 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4827 			CNTR_NORMAL,
4828 			access_tx_read_pio_memory_unc_err_cnt),
4829 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4830 			CNTR_NORMAL,
4831 			access_tx_read_sdma_memory_unc_err_cnt),
4832 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4833 			CNTR_NORMAL,
4834 			access_tx_sb_hdr_unc_err_cnt),
4835 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4836 			CNTR_NORMAL,
4837 			access_tx_credit_return_partiy_err_cnt),
4838 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4839 			0, 0, CNTR_NORMAL,
4840 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4841 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4842 			0, 0, CNTR_NORMAL,
4843 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4844 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4845 			0, 0, CNTR_NORMAL,
4846 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4847 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4848 			0, 0, CNTR_NORMAL,
4849 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4850 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4851 			0, 0, CNTR_NORMAL,
4852 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4853 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4854 			0, 0, CNTR_NORMAL,
4855 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4856 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4857 			0, 0, CNTR_NORMAL,
4858 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4859 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4860 			0, 0, CNTR_NORMAL,
4861 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4862 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4863 			0, 0, CNTR_NORMAL,
4864 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4865 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4866 			0, 0, CNTR_NORMAL,
4867 			access_tx_sdma15_disallowed_packet_err_cnt),
4868 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4869 			0, 0, CNTR_NORMAL,
4870 			access_tx_sdma14_disallowed_packet_err_cnt),
4871 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4872 			0, 0, CNTR_NORMAL,
4873 			access_tx_sdma13_disallowed_packet_err_cnt),
4874 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4875 			0, 0, CNTR_NORMAL,
4876 			access_tx_sdma12_disallowed_packet_err_cnt),
4877 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4878 			0, 0, CNTR_NORMAL,
4879 			access_tx_sdma11_disallowed_packet_err_cnt),
4880 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4881 			0, 0, CNTR_NORMAL,
4882 			access_tx_sdma10_disallowed_packet_err_cnt),
4883 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4884 			0, 0, CNTR_NORMAL,
4885 			access_tx_sdma9_disallowed_packet_err_cnt),
4886 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4887 			0, 0, CNTR_NORMAL,
4888 			access_tx_sdma8_disallowed_packet_err_cnt),
4889 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4890 			0, 0, CNTR_NORMAL,
4891 			access_tx_sdma7_disallowed_packet_err_cnt),
4892 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4893 			0, 0, CNTR_NORMAL,
4894 			access_tx_sdma6_disallowed_packet_err_cnt),
4895 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4896 			0, 0, CNTR_NORMAL,
4897 			access_tx_sdma5_disallowed_packet_err_cnt),
4898 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4899 			0, 0, CNTR_NORMAL,
4900 			access_tx_sdma4_disallowed_packet_err_cnt),
4901 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4902 			0, 0, CNTR_NORMAL,
4903 			access_tx_sdma3_disallowed_packet_err_cnt),
4904 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4905 			0, 0, CNTR_NORMAL,
4906 			access_tx_sdma2_disallowed_packet_err_cnt),
4907 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4908 			0, 0, CNTR_NORMAL,
4909 			access_tx_sdma1_disallowed_packet_err_cnt),
4910 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4911 			0, 0, CNTR_NORMAL,
4912 			access_tx_sdma0_disallowed_packet_err_cnt),
4913 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4914 			CNTR_NORMAL,
4915 			access_tx_config_parity_err_cnt),
4916 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4917 			CNTR_NORMAL,
4918 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4919 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4920 			CNTR_NORMAL,
4921 			access_tx_launch_csr_parity_err_cnt),
4922 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4923 			CNTR_NORMAL,
4924 			access_tx_illegal_vl_err_cnt),
4925 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4926 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4927 			CNTR_NORMAL,
4928 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4929 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4930 			CNTR_NORMAL,
4931 			access_egress_reserved_10_err_cnt),
4932 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4933 			CNTR_NORMAL,
4934 			access_egress_reserved_9_err_cnt),
4935 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4936 			0, 0, CNTR_NORMAL,
4937 			access_tx_sdma_launch_intf_parity_err_cnt),
4938 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4939 			CNTR_NORMAL,
4940 			access_tx_pio_launch_intf_parity_err_cnt),
4941 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4942 			CNTR_NORMAL,
4943 			access_egress_reserved_6_err_cnt),
4944 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4945 			CNTR_NORMAL,
4946 			access_tx_incorrect_link_state_err_cnt),
4947 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4948 			CNTR_NORMAL,
4949 			access_tx_linkdown_err_cnt),
4950 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4951 			"EgressFifoUnderrunOrParityErr", 0, 0,
4952 			CNTR_NORMAL,
4953 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4954 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4955 			CNTR_NORMAL,
4956 			access_egress_reserved_2_err_cnt),
4957 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4958 			CNTR_NORMAL,
4959 			access_tx_pkt_integrity_mem_unc_err_cnt),
4960 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4961 			CNTR_NORMAL,
4962 			access_tx_pkt_integrity_mem_cor_err_cnt),
4963 /* SendErrStatus */
4964 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4965 			CNTR_NORMAL,
4966 			access_send_csr_write_bad_addr_err_cnt),
4967 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4968 			CNTR_NORMAL,
4969 			access_send_csr_read_bad_addr_err_cnt),
4970 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4971 			CNTR_NORMAL,
4972 			access_send_csr_parity_cnt),
4973 /* SendCtxtErrStatus */
4974 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4975 			CNTR_NORMAL,
4976 			access_pio_write_out_of_bounds_err_cnt),
4977 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4978 			CNTR_NORMAL,
4979 			access_pio_write_overflow_err_cnt),
4980 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4981 			0, 0, CNTR_NORMAL,
4982 			access_pio_write_crosses_boundary_err_cnt),
4983 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4984 			CNTR_NORMAL,
4985 			access_pio_disallowed_packet_err_cnt),
4986 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4987 			CNTR_NORMAL,
4988 			access_pio_inconsistent_sop_err_cnt),
4989 /* SendDmaEngErrStatus */
4990 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4991 			0, 0, CNTR_NORMAL,
4992 			access_sdma_header_request_fifo_cor_err_cnt),
4993 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4994 			CNTR_NORMAL,
4995 			access_sdma_header_storage_cor_err_cnt),
4996 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4997 			CNTR_NORMAL,
4998 			access_sdma_packet_tracking_cor_err_cnt),
4999 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
5000 			CNTR_NORMAL,
5001 			access_sdma_assembly_cor_err_cnt),
5002 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5003 			CNTR_NORMAL,
5004 			access_sdma_desc_table_cor_err_cnt),
5005 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5006 			0, 0, CNTR_NORMAL,
5007 			access_sdma_header_request_fifo_unc_err_cnt),
5008 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5009 			CNTR_NORMAL,
5010 			access_sdma_header_storage_unc_err_cnt),
5011 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5012 			CNTR_NORMAL,
5013 			access_sdma_packet_tracking_unc_err_cnt),
5014 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5015 			CNTR_NORMAL,
5016 			access_sdma_assembly_unc_err_cnt),
5017 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5018 			CNTR_NORMAL,
5019 			access_sdma_desc_table_unc_err_cnt),
5020 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5021 			CNTR_NORMAL,
5022 			access_sdma_timeout_err_cnt),
5023 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5024 			CNTR_NORMAL,
5025 			access_sdma_header_length_err_cnt),
5026 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5027 			CNTR_NORMAL,
5028 			access_sdma_header_address_err_cnt),
5029 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5030 			CNTR_NORMAL,
5031 			access_sdma_header_select_err_cnt),
5032 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5033 			CNTR_NORMAL,
5034 			access_sdma_reserved_9_err_cnt),
5035 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5036 			CNTR_NORMAL,
5037 			access_sdma_packet_desc_overflow_err_cnt),
5038 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5039 			CNTR_NORMAL,
5040 			access_sdma_length_mismatch_err_cnt),
5041 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5042 			CNTR_NORMAL,
5043 			access_sdma_halt_err_cnt),
5044 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5045 			CNTR_NORMAL,
5046 			access_sdma_mem_read_err_cnt),
5047 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5048 			CNTR_NORMAL,
5049 			access_sdma_first_desc_err_cnt),
5050 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5051 			CNTR_NORMAL,
5052 			access_sdma_tail_out_of_bounds_err_cnt),
5053 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5054 			CNTR_NORMAL,
5055 			access_sdma_too_long_err_cnt),
5056 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5057 			CNTR_NORMAL,
5058 			access_sdma_gen_mismatch_err_cnt),
5059 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5060 			CNTR_NORMAL,
5061 			access_sdma_wrong_dw_err_cnt),
5062 };
5063 
5064 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5065 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5078 			CNTR_NORMAL),
5079 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5080 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5081 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5082 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5083 				      CNTR_SYNTH | CNTR_VL),
5084 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5085 				     CNTR_SYNTH | CNTR_VL),
5086 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5087 				      CNTR_SYNTH | CNTR_VL),
5088 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5089 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5090 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			     access_sw_link_dn_cnt),
5092 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5093 			   access_sw_link_up_cnt),
5094 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5095 				 access_sw_unknown_frame_cnt),
5096 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5097 			     access_sw_xmit_discards),
5098 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5099 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5100 				access_sw_xmit_discards),
5101 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5102 				 access_xmit_constraint_errs),
5103 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5104 				access_rcv_constraint_errs),
5105 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5106 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5107 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5108 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5109 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5110 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5111 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5112 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5113 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5114 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5115 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5116 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5117 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5118 			       access_sw_cpu_rc_acks),
5119 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5120 				access_sw_cpu_rc_qacks),
5121 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5122 				       access_sw_cpu_rc_delayed_comp),
5123 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5124 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5125 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5126 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5127 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5128 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5129 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5130 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5131 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5132 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5133 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5134 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5135 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5136 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5137 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5138 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5139 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5140 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5141 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5142 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5143 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5144 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5145 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5146 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5147 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5148 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5149 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5150 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5151 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5152 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5153 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5154 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5155 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5156 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5157 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5158 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5159 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5160 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5161 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5162 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5163 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5164 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5165 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5166 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5167 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5168 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5169 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5170 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5171 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5172 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5173 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5174 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5175 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5176 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5177 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5178 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5179 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5180 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5181 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5182 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5183 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5184 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5185 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5186 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5187 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5188 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5189 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5190 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5191 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5192 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5193 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5194 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5195 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5196 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5197 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5198 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5199 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5200 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5201 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5202 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5203 };
5204 
5205 /* ======================================================================== */
5206 
5207 /* return true if this is chip revision revision a */
5208 int is_ax(struct hfi1_devdata *dd)
5209 {
5210 	u8 chip_rev_minor =
5211 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5212 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5213 	return (chip_rev_minor & 0xf0) == 0;
5214 }
5215 
5216 /* return true if this is chip revision revision b */
5217 int is_bx(struct hfi1_devdata *dd)
5218 {
5219 	u8 chip_rev_minor =
5220 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5221 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5222 	return (chip_rev_minor & 0xF0) == 0x10;
5223 }
5224 
5225 /*
5226  * Append string s to buffer buf.  Arguments curp and len are the current
5227  * position and remaining length, respectively.
5228  *
5229  * return 0 on success, 1 on out of room
5230  */
5231 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5232 {
5233 	char *p = *curp;
5234 	int len = *lenp;
5235 	int result = 0; /* success */
5236 	char c;
5237 
5238 	/* add a comma, if first in the buffer */
5239 	if (p != buf) {
5240 		if (len == 0) {
5241 			result = 1; /* out of room */
5242 			goto done;
5243 		}
5244 		*p++ = ',';
5245 		len--;
5246 	}
5247 
5248 	/* copy the string */
5249 	while ((c = *s++) != 0) {
5250 		if (len == 0) {
5251 			result = 1; /* out of room */
5252 			goto done;
5253 		}
5254 		*p++ = c;
5255 		len--;
5256 	}
5257 
5258 done:
5259 	/* write return values */
5260 	*curp = p;
5261 	*lenp = len;
5262 
5263 	return result;
5264 }
5265 
5266 /*
5267  * Using the given flag table, print a comma separated string into
5268  * the buffer.  End in '*' if the buffer is too short.
5269  */
5270 static char *flag_string(char *buf, int buf_len, u64 flags,
5271 			 struct flag_table *table, int table_size)
5272 {
5273 	char extra[32];
5274 	char *p = buf;
5275 	int len = buf_len;
5276 	int no_room = 0;
5277 	int i;
5278 
5279 	/* make sure there is at least 2 so we can form "*" */
5280 	if (len < 2)
5281 		return "";
5282 
5283 	len--;	/* leave room for a nul */
5284 	for (i = 0; i < table_size; i++) {
5285 		if (flags & table[i].flag) {
5286 			no_room = append_str(buf, &p, &len, table[i].str);
5287 			if (no_room)
5288 				break;
5289 			flags &= ~table[i].flag;
5290 		}
5291 	}
5292 
5293 	/* any undocumented bits left? */
5294 	if (!no_room && flags) {
5295 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5296 		no_room = append_str(buf, &p, &len, extra);
5297 	}
5298 
5299 	/* add * if ran out of room */
5300 	if (no_room) {
5301 		/* may need to back up to add space for a '*' */
5302 		if (len == 0)
5303 			--p;
5304 		*p++ = '*';
5305 	}
5306 
5307 	/* add final nul - space already allocated above */
5308 	*p = 0;
5309 	return buf;
5310 }
5311 
5312 /* first 8 CCE error interrupt source names */
5313 static const char * const cce_misc_names[] = {
5314 	"CceErrInt",		/* 0 */
5315 	"RxeErrInt",		/* 1 */
5316 	"MiscErrInt",		/* 2 */
5317 	"Reserved3",		/* 3 */
5318 	"PioErrInt",		/* 4 */
5319 	"SDmaErrInt",		/* 5 */
5320 	"EgressErrInt",		/* 6 */
5321 	"TxeErrInt"		/* 7 */
5322 };
5323 
5324 /*
5325  * Return the miscellaneous error interrupt name.
5326  */
5327 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5328 {
5329 	if (source < ARRAY_SIZE(cce_misc_names))
5330 		strncpy(buf, cce_misc_names[source], bsize);
5331 	else
5332 		snprintf(buf, bsize, "Reserved%u",
5333 			 source + IS_GENERAL_ERR_START);
5334 
5335 	return buf;
5336 }
5337 
5338 /*
5339  * Return the SDMA engine error interrupt name.
5340  */
5341 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5342 {
5343 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5344 	return buf;
5345 }
5346 
5347 /*
5348  * Return the send context error interrupt name.
5349  */
5350 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5351 {
5352 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5353 	return buf;
5354 }
5355 
5356 static const char * const various_names[] = {
5357 	"PbcInt",
5358 	"GpioAssertInt",
5359 	"Qsfp1Int",
5360 	"Qsfp2Int",
5361 	"TCritInt"
5362 };
5363 
5364 /*
5365  * Return the various interrupt name.
5366  */
5367 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5368 {
5369 	if (source < ARRAY_SIZE(various_names))
5370 		strncpy(buf, various_names[source], bsize);
5371 	else
5372 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5373 	return buf;
5374 }
5375 
5376 /*
5377  * Return the DC interrupt name.
5378  */
5379 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5380 {
5381 	static const char * const dc_int_names[] = {
5382 		"common",
5383 		"lcb",
5384 		"8051",
5385 		"lbm"	/* local block merge */
5386 	};
5387 
5388 	if (source < ARRAY_SIZE(dc_int_names))
5389 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5390 	else
5391 		snprintf(buf, bsize, "DCInt%u", source);
5392 	return buf;
5393 }
5394 
5395 static const char * const sdma_int_names[] = {
5396 	"SDmaInt",
5397 	"SdmaIdleInt",
5398 	"SdmaProgressInt",
5399 };
5400 
5401 /*
5402  * Return the SDMA engine interrupt name.
5403  */
5404 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5405 {
5406 	/* what interrupt */
5407 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5408 	/* which engine */
5409 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5410 
5411 	if (likely(what < 3))
5412 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5413 	else
5414 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5415 	return buf;
5416 }
5417 
5418 /*
5419  * Return the receive available interrupt name.
5420  */
5421 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5422 {
5423 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5424 	return buf;
5425 }
5426 
5427 /*
5428  * Return the receive urgent interrupt name.
5429  */
5430 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5431 {
5432 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5433 	return buf;
5434 }
5435 
5436 /*
5437  * Return the send credit interrupt name.
5438  */
5439 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5440 {
5441 	snprintf(buf, bsize, "SendCreditInt%u", source);
5442 	return buf;
5443 }
5444 
5445 /*
5446  * Return the reserved interrupt name.
5447  */
5448 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5449 {
5450 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5451 	return buf;
5452 }
5453 
5454 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5455 {
5456 	return flag_string(buf, buf_len, flags,
5457 			   cce_err_status_flags,
5458 			   ARRAY_SIZE(cce_err_status_flags));
5459 }
5460 
5461 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5462 {
5463 	return flag_string(buf, buf_len, flags,
5464 			   rxe_err_status_flags,
5465 			   ARRAY_SIZE(rxe_err_status_flags));
5466 }
5467 
5468 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5469 {
5470 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5471 			   ARRAY_SIZE(misc_err_status_flags));
5472 }
5473 
5474 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5475 {
5476 	return flag_string(buf, buf_len, flags,
5477 			   pio_err_status_flags,
5478 			   ARRAY_SIZE(pio_err_status_flags));
5479 }
5480 
5481 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5482 {
5483 	return flag_string(buf, buf_len, flags,
5484 			   sdma_err_status_flags,
5485 			   ARRAY_SIZE(sdma_err_status_flags));
5486 }
5487 
5488 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5489 {
5490 	return flag_string(buf, buf_len, flags,
5491 			   egress_err_status_flags,
5492 			   ARRAY_SIZE(egress_err_status_flags));
5493 }
5494 
5495 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5496 {
5497 	return flag_string(buf, buf_len, flags,
5498 			   egress_err_info_flags,
5499 			   ARRAY_SIZE(egress_err_info_flags));
5500 }
5501 
5502 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5503 {
5504 	return flag_string(buf, buf_len, flags,
5505 			   send_err_status_flags,
5506 			   ARRAY_SIZE(send_err_status_flags));
5507 }
5508 
5509 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5510 {
5511 	char buf[96];
5512 	int i = 0;
5513 
5514 	/*
5515 	 * For most these errors, there is nothing that can be done except
5516 	 * report or record it.
5517 	 */
5518 	dd_dev_info(dd, "CCE Error: %s\n",
5519 		    cce_err_status_string(buf, sizeof(buf), reg));
5520 
5521 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5522 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5523 		/* this error requires a manual drop into SPC freeze mode */
5524 		/* then a fix up */
5525 		start_freeze_handling(dd->pport, FREEZE_SELF);
5526 	}
5527 
5528 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5529 		if (reg & (1ull << i)) {
5530 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5531 			/* maintain a counter over all cce_err_status errors */
5532 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5533 		}
5534 	}
5535 }
5536 
5537 /*
5538  * Check counters for receive errors that do not have an interrupt
5539  * associated with them.
5540  */
5541 #define RCVERR_CHECK_TIME 10
5542 static void update_rcverr_timer(struct timer_list *t)
5543 {
5544 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5545 	struct hfi1_pportdata *ppd = dd->pport;
5546 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5547 
5548 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5549 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5550 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5551 		set_link_down_reason(
5552 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5553 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5554 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5555 	}
5556 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5557 
5558 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5559 }
5560 
5561 static int init_rcverr(struct hfi1_devdata *dd)
5562 {
5563 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5564 	/* Assume the hardware counter has been reset */
5565 	dd->rcv_ovfl_cnt = 0;
5566 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5567 }
5568 
5569 static void free_rcverr(struct hfi1_devdata *dd)
5570 {
5571 	if (dd->rcverr_timer.function)
5572 		del_timer_sync(&dd->rcverr_timer);
5573 }
5574 
5575 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5576 {
5577 	char buf[96];
5578 	int i = 0;
5579 
5580 	dd_dev_info(dd, "Receive Error: %s\n",
5581 		    rxe_err_status_string(buf, sizeof(buf), reg));
5582 
5583 	if (reg & ALL_RXE_FREEZE_ERR) {
5584 		int flags = 0;
5585 
5586 		/*
5587 		 * Freeze mode recovery is disabled for the errors
5588 		 * in RXE_FREEZE_ABORT_MASK
5589 		 */
5590 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5591 			flags = FREEZE_ABORT;
5592 
5593 		start_freeze_handling(dd->pport, flags);
5594 	}
5595 
5596 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5597 		if (reg & (1ull << i))
5598 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5599 	}
5600 }
5601 
5602 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5603 {
5604 	char buf[96];
5605 	int i = 0;
5606 
5607 	dd_dev_info(dd, "Misc Error: %s",
5608 		    misc_err_status_string(buf, sizeof(buf), reg));
5609 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5610 		if (reg & (1ull << i))
5611 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5612 	}
5613 }
5614 
5615 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5616 {
5617 	char buf[96];
5618 	int i = 0;
5619 
5620 	dd_dev_info(dd, "PIO Error: %s\n",
5621 		    pio_err_status_string(buf, sizeof(buf), reg));
5622 
5623 	if (reg & ALL_PIO_FREEZE_ERR)
5624 		start_freeze_handling(dd->pport, 0);
5625 
5626 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5627 		if (reg & (1ull << i))
5628 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5629 	}
5630 }
5631 
5632 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5633 {
5634 	char buf[96];
5635 	int i = 0;
5636 
5637 	dd_dev_info(dd, "SDMA Error: %s\n",
5638 		    sdma_err_status_string(buf, sizeof(buf), reg));
5639 
5640 	if (reg & ALL_SDMA_FREEZE_ERR)
5641 		start_freeze_handling(dd->pport, 0);
5642 
5643 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5644 		if (reg & (1ull << i))
5645 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5646 	}
5647 }
5648 
5649 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5650 {
5651 	incr_cntr64(&ppd->port_xmit_discards);
5652 }
5653 
5654 static void count_port_inactive(struct hfi1_devdata *dd)
5655 {
5656 	__count_port_discards(dd->pport);
5657 }
5658 
5659 /*
5660  * We have had a "disallowed packet" error during egress. Determine the
5661  * integrity check which failed, and update relevant error counter, etc.
5662  *
5663  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5664  * bit of state per integrity check, and so we can miss the reason for an
5665  * egress error if more than one packet fails the same integrity check
5666  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5667  */
5668 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5669 					int vl)
5670 {
5671 	struct hfi1_pportdata *ppd = dd->pport;
5672 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5673 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5674 	char buf[96];
5675 
5676 	/* clear down all observed info as quickly as possible after read */
5677 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5678 
5679 	dd_dev_info(dd,
5680 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5681 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5682 
5683 	/* Eventually add other counters for each bit */
5684 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5685 		int weight, i;
5686 
5687 		/*
5688 		 * Count all applicable bits as individual errors and
5689 		 * attribute them to the packet that triggered this handler.
5690 		 * This may not be completely accurate due to limitations
5691 		 * on the available hardware error information.  There is
5692 		 * a single information register and any number of error
5693 		 * packets may have occurred and contributed to it before
5694 		 * this routine is called.  This means that:
5695 		 * a) If multiple packets with the same error occur before
5696 		 *    this routine is called, earlier packets are missed.
5697 		 *    There is only a single bit for each error type.
5698 		 * b) Errors may not be attributed to the correct VL.
5699 		 *    The driver is attributing all bits in the info register
5700 		 *    to the packet that triggered this call, but bits
5701 		 *    could be an accumulation of different packets with
5702 		 *    different VLs.
5703 		 * c) A single error packet may have multiple counts attached
5704 		 *    to it.  There is no way for the driver to know if
5705 		 *    multiple bits set in the info register are due to a
5706 		 *    single packet or multiple packets.  The driver assumes
5707 		 *    multiple packets.
5708 		 */
5709 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5710 		for (i = 0; i < weight; i++) {
5711 			__count_port_discards(ppd);
5712 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5714 			else if (vl == 15)
5715 				incr_cntr64(&ppd->port_xmit_discards_vl
5716 					    [C_VL_15]);
5717 		}
5718 	}
5719 }
5720 
5721 /*
5722  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5723  * register. Does it represent a 'port inactive' error?
5724  */
5725 static inline int port_inactive_err(u64 posn)
5726 {
5727 	return (posn >= SEES(TX_LINKDOWN) &&
5728 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5729 }
5730 
5731 /*
5732  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5733  * register. Does it represent a 'disallowed packet' error?
5734  */
5735 static inline int disallowed_pkt_err(int posn)
5736 {
5737 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5738 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5739 }
5740 
5741 /*
5742  * Input value is a bit position of one of the SDMA engine disallowed
5743  * packet errors.  Return which engine.  Use of this must be guarded by
5744  * disallowed_pkt_err().
5745  */
5746 static inline int disallowed_pkt_engine(int posn)
5747 {
5748 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5749 }
5750 
5751 /*
5752  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5753  * be done.
5754  */
5755 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5756 {
5757 	struct sdma_vl_map *m;
5758 	int vl;
5759 
5760 	/* range check */
5761 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5762 		return -1;
5763 
5764 	rcu_read_lock();
5765 	m = rcu_dereference(dd->sdma_map);
5766 	vl = m->engine_to_vl[engine];
5767 	rcu_read_unlock();
5768 
5769 	return vl;
5770 }
5771 
5772 /*
5773  * Translate the send context (sofware index) into a VL.  Return -1 if the
5774  * translation cannot be done.
5775  */
5776 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5777 {
5778 	struct send_context_info *sci;
5779 	struct send_context *sc;
5780 	int i;
5781 
5782 	sci = &dd->send_contexts[sw_index];
5783 
5784 	/* there is no information for user (PSM) and ack contexts */
5785 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5786 		return -1;
5787 
5788 	sc = sci->sc;
5789 	if (!sc)
5790 		return -1;
5791 	if (dd->vld[15].sc == sc)
5792 		return 15;
5793 	for (i = 0; i < num_vls; i++)
5794 		if (dd->vld[i].sc == sc)
5795 			return i;
5796 
5797 	return -1;
5798 }
5799 
5800 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5801 {
5802 	u64 reg_copy = reg, handled = 0;
5803 	char buf[96];
5804 	int i = 0;
5805 
5806 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5807 		start_freeze_handling(dd->pport, 0);
5808 	else if (is_ax(dd) &&
5809 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5810 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5811 		start_freeze_handling(dd->pport, 0);
5812 
5813 	while (reg_copy) {
5814 		int posn = fls64(reg_copy);
5815 		/* fls64() returns a 1-based offset, we want it zero based */
5816 		int shift = posn - 1;
5817 		u64 mask = 1ULL << shift;
5818 
5819 		if (port_inactive_err(shift)) {
5820 			count_port_inactive(dd);
5821 			handled |= mask;
5822 		} else if (disallowed_pkt_err(shift)) {
5823 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5824 
5825 			handle_send_egress_err_info(dd, vl);
5826 			handled |= mask;
5827 		}
5828 		reg_copy &= ~mask;
5829 	}
5830 
5831 	reg &= ~handled;
5832 
5833 	if (reg)
5834 		dd_dev_info(dd, "Egress Error: %s\n",
5835 			    egress_err_status_string(buf, sizeof(buf), reg));
5836 
5837 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5838 		if (reg & (1ull << i))
5839 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5840 	}
5841 }
5842 
5843 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5844 {
5845 	char buf[96];
5846 	int i = 0;
5847 
5848 	dd_dev_info(dd, "Send Error: %s\n",
5849 		    send_err_status_string(buf, sizeof(buf), reg));
5850 
5851 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5852 		if (reg & (1ull << i))
5853 			incr_cntr64(&dd->send_err_status_cnt[i]);
5854 	}
5855 }
5856 
5857 /*
5858  * The maximum number of times the error clear down will loop before
5859  * blocking a repeating error.  This value is arbitrary.
5860  */
5861 #define MAX_CLEAR_COUNT 20
5862 
5863 /*
5864  * Clear and handle an error register.  All error interrupts are funneled
5865  * through here to have a central location to correctly handle single-
5866  * or multi-shot errors.
5867  *
5868  * For non per-context registers, call this routine with a context value
5869  * of 0 so the per-context offset is zero.
5870  *
5871  * If the handler loops too many times, assume that something is wrong
5872  * and can't be fixed, so mask the error bits.
5873  */
5874 static void interrupt_clear_down(struct hfi1_devdata *dd,
5875 				 u32 context,
5876 				 const struct err_reg_info *eri)
5877 {
5878 	u64 reg;
5879 	u32 count;
5880 
5881 	/* read in a loop until no more errors are seen */
5882 	count = 0;
5883 	while (1) {
5884 		reg = read_kctxt_csr(dd, context, eri->status);
5885 		if (reg == 0)
5886 			break;
5887 		write_kctxt_csr(dd, context, eri->clear, reg);
5888 		if (likely(eri->handler))
5889 			eri->handler(dd, context, reg);
5890 		count++;
5891 		if (count > MAX_CLEAR_COUNT) {
5892 			u64 mask;
5893 
5894 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5895 				   eri->desc, reg);
5896 			/*
5897 			 * Read-modify-write so any other masked bits
5898 			 * remain masked.
5899 			 */
5900 			mask = read_kctxt_csr(dd, context, eri->mask);
5901 			mask &= ~reg;
5902 			write_kctxt_csr(dd, context, eri->mask, mask);
5903 			break;
5904 		}
5905 	}
5906 }
5907 
5908 /*
5909  * CCE block "misc" interrupt.  Source is < 16.
5910  */
5911 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5912 {
5913 	const struct err_reg_info *eri = &misc_errs[source];
5914 
5915 	if (eri->handler) {
5916 		interrupt_clear_down(dd, 0, eri);
5917 	} else {
5918 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5919 			   source);
5920 	}
5921 }
5922 
5923 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5924 {
5925 	return flag_string(buf, buf_len, flags,
5926 			   sc_err_status_flags,
5927 			   ARRAY_SIZE(sc_err_status_flags));
5928 }
5929 
5930 /*
5931  * Send context error interrupt.  Source (hw_context) is < 160.
5932  *
5933  * All send context errors cause the send context to halt.  The normal
5934  * clear-down mechanism cannot be used because we cannot clear the
5935  * error bits until several other long-running items are done first.
5936  * This is OK because with the context halted, nothing else is going
5937  * to happen on it anyway.
5938  */
5939 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5940 				unsigned int hw_context)
5941 {
5942 	struct send_context_info *sci;
5943 	struct send_context *sc;
5944 	char flags[96];
5945 	u64 status;
5946 	u32 sw_index;
5947 	int i = 0;
5948 	unsigned long irq_flags;
5949 
5950 	sw_index = dd->hw_to_sw[hw_context];
5951 	if (sw_index >= dd->num_send_contexts) {
5952 		dd_dev_err(dd,
5953 			   "out of range sw index %u for send context %u\n",
5954 			   sw_index, hw_context);
5955 		return;
5956 	}
5957 	sci = &dd->send_contexts[sw_index];
5958 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5959 	sc = sci->sc;
5960 	if (!sc) {
5961 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5962 			   sw_index, hw_context);
5963 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5964 		return;
5965 	}
5966 
5967 	/* tell the software that a halt has begun */
5968 	sc_stop(sc, SCF_HALTED);
5969 
5970 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5971 
5972 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5973 		    send_context_err_status_string(flags, sizeof(flags),
5974 						   status));
5975 
5976 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5977 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5978 
5979 	/*
5980 	 * Automatically restart halted kernel contexts out of interrupt
5981 	 * context.  User contexts must ask the driver to restart the context.
5982 	 */
5983 	if (sc->type != SC_USER)
5984 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5985 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5986 
5987 	/*
5988 	 * Update the counters for the corresponding status bits.
5989 	 * Note that these particular counters are aggregated over all
5990 	 * 160 contexts.
5991 	 */
5992 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5993 		if (status & (1ull << i))
5994 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5995 	}
5996 }
5997 
5998 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5999 				unsigned int source, u64 status)
6000 {
6001 	struct sdma_engine *sde;
6002 	int i = 0;
6003 
6004 	sde = &dd->per_sdma[source];
6005 #ifdef CONFIG_SDMA_VERBOSITY
6006 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6007 		   slashstrip(__FILE__), __LINE__, __func__);
6008 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6009 		   sde->this_idx, source, (unsigned long long)status);
6010 #endif
6011 	sde->err_cnt++;
6012 	sdma_engine_error(sde, status);
6013 
6014 	/*
6015 	* Update the counters for the corresponding status bits.
6016 	* Note that these particular counters are aggregated over
6017 	* all 16 DMA engines.
6018 	*/
6019 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6020 		if (status & (1ull << i))
6021 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6022 	}
6023 }
6024 
6025 /*
6026  * CCE block SDMA error interrupt.  Source is < 16.
6027  */
6028 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6029 {
6030 #ifdef CONFIG_SDMA_VERBOSITY
6031 	struct sdma_engine *sde = &dd->per_sdma[source];
6032 
6033 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6034 		   slashstrip(__FILE__), __LINE__, __func__);
6035 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6036 		   source);
6037 	sdma_dumpstate(sde);
6038 #endif
6039 	interrupt_clear_down(dd, source, &sdma_eng_err);
6040 }
6041 
6042 /*
6043  * CCE block "various" interrupt.  Source is < 8.
6044  */
6045 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6046 {
6047 	const struct err_reg_info *eri = &various_err[source];
6048 
6049 	/*
6050 	 * TCritInt cannot go through interrupt_clear_down()
6051 	 * because it is not a second tier interrupt. The handler
6052 	 * should be called directly.
6053 	 */
6054 	if (source == TCRIT_INT_SOURCE)
6055 		handle_temp_err(dd);
6056 	else if (eri->handler)
6057 		interrupt_clear_down(dd, 0, eri);
6058 	else
6059 		dd_dev_info(dd,
6060 			    "%s: Unimplemented/reserved interrupt %d\n",
6061 			    __func__, source);
6062 }
6063 
6064 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6065 {
6066 	/* src_ctx is always zero */
6067 	struct hfi1_pportdata *ppd = dd->pport;
6068 	unsigned long flags;
6069 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6070 
6071 	if (reg & QSFP_HFI0_MODPRST_N) {
6072 		if (!qsfp_mod_present(ppd)) {
6073 			dd_dev_info(dd, "%s: QSFP module removed\n",
6074 				    __func__);
6075 
6076 			ppd->driver_link_ready = 0;
6077 			/*
6078 			 * Cable removed, reset all our information about the
6079 			 * cache and cable capabilities
6080 			 */
6081 
6082 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6083 			/*
6084 			 * We don't set cache_refresh_required here as we expect
6085 			 * an interrupt when a cable is inserted
6086 			 */
6087 			ppd->qsfp_info.cache_valid = 0;
6088 			ppd->qsfp_info.reset_needed = 0;
6089 			ppd->qsfp_info.limiting_active = 0;
6090 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6091 					       flags);
6092 			/* Invert the ModPresent pin now to detect plug-in */
6093 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6094 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6095 
6096 			if ((ppd->offline_disabled_reason >
6097 			  HFI1_ODR_MASK(
6098 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6099 			  (ppd->offline_disabled_reason ==
6100 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6101 				ppd->offline_disabled_reason =
6102 				HFI1_ODR_MASK(
6103 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6104 
6105 			if (ppd->host_link_state == HLS_DN_POLL) {
6106 				/*
6107 				 * The link is still in POLL. This means
6108 				 * that the normal link down processing
6109 				 * will not happen. We have to do it here
6110 				 * before turning the DC off.
6111 				 */
6112 				queue_work(ppd->link_wq, &ppd->link_down_work);
6113 			}
6114 		} else {
6115 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6116 				    __func__);
6117 
6118 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6119 			ppd->qsfp_info.cache_valid = 0;
6120 			ppd->qsfp_info.cache_refresh_required = 1;
6121 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6122 					       flags);
6123 
6124 			/*
6125 			 * Stop inversion of ModPresent pin to detect
6126 			 * removal of the cable
6127 			 */
6128 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6129 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6130 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6131 
6132 			ppd->offline_disabled_reason =
6133 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6134 		}
6135 	}
6136 
6137 	if (reg & QSFP_HFI0_INT_N) {
6138 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6139 			    __func__);
6140 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6141 		ppd->qsfp_info.check_interrupt_flags = 1;
6142 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6143 	}
6144 
6145 	/* Schedule the QSFP work only if there is a cable attached. */
6146 	if (qsfp_mod_present(ppd))
6147 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6148 }
6149 
6150 static int request_host_lcb_access(struct hfi1_devdata *dd)
6151 {
6152 	int ret;
6153 
6154 	ret = do_8051_command(dd, HCMD_MISC,
6155 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6156 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6157 	if (ret != HCMD_SUCCESS) {
6158 		dd_dev_err(dd, "%s: command failed with error %d\n",
6159 			   __func__, ret);
6160 	}
6161 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6162 }
6163 
6164 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6165 {
6166 	int ret;
6167 
6168 	ret = do_8051_command(dd, HCMD_MISC,
6169 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6170 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6171 	if (ret != HCMD_SUCCESS) {
6172 		dd_dev_err(dd, "%s: command failed with error %d\n",
6173 			   __func__, ret);
6174 	}
6175 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6176 }
6177 
6178 /*
6179  * Set the LCB selector - allow host access.  The DCC selector always
6180  * points to the host.
6181  */
6182 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6183 {
6184 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6185 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6186 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6187 }
6188 
6189 /*
6190  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6191  * points to the host.
6192  */
6193 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6194 {
6195 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6196 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6197 }
6198 
6199 /*
6200  * Acquire LCB access from the 8051.  If the host already has access,
6201  * just increment a counter.  Otherwise, inform the 8051 that the
6202  * host is taking access.
6203  *
6204  * Returns:
6205  *	0 on success
6206  *	-EBUSY if the 8051 has control and cannot be disturbed
6207  *	-errno if unable to acquire access from the 8051
6208  */
6209 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6210 {
6211 	struct hfi1_pportdata *ppd = dd->pport;
6212 	int ret = 0;
6213 
6214 	/*
6215 	 * Use the host link state lock so the operation of this routine
6216 	 * { link state check, selector change, count increment } can occur
6217 	 * as a unit against a link state change.  Otherwise there is a
6218 	 * race between the state change and the count increment.
6219 	 */
6220 	if (sleep_ok) {
6221 		mutex_lock(&ppd->hls_lock);
6222 	} else {
6223 		while (!mutex_trylock(&ppd->hls_lock))
6224 			udelay(1);
6225 	}
6226 
6227 	/* this access is valid only when the link is up */
6228 	if (ppd->host_link_state & HLS_DOWN) {
6229 		dd_dev_info(dd, "%s: link state %s not up\n",
6230 			    __func__, link_state_name(ppd->host_link_state));
6231 		ret = -EBUSY;
6232 		goto done;
6233 	}
6234 
6235 	if (dd->lcb_access_count == 0) {
6236 		ret = request_host_lcb_access(dd);
6237 		if (ret) {
6238 			dd_dev_err(dd,
6239 				   "%s: unable to acquire LCB access, err %d\n",
6240 				   __func__, ret);
6241 			goto done;
6242 		}
6243 		set_host_lcb_access(dd);
6244 	}
6245 	dd->lcb_access_count++;
6246 done:
6247 	mutex_unlock(&ppd->hls_lock);
6248 	return ret;
6249 }
6250 
6251 /*
6252  * Release LCB access by decrementing the use count.  If the count is moving
6253  * from 1 to 0, inform 8051 that it has control back.
6254  *
6255  * Returns:
6256  *	0 on success
6257  *	-errno if unable to release access to the 8051
6258  */
6259 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6260 {
6261 	int ret = 0;
6262 
6263 	/*
6264 	 * Use the host link state lock because the acquire needed it.
6265 	 * Here, we only need to keep { selector change, count decrement }
6266 	 * as a unit.
6267 	 */
6268 	if (sleep_ok) {
6269 		mutex_lock(&dd->pport->hls_lock);
6270 	} else {
6271 		while (!mutex_trylock(&dd->pport->hls_lock))
6272 			udelay(1);
6273 	}
6274 
6275 	if (dd->lcb_access_count == 0) {
6276 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6277 			   __func__);
6278 		goto done;
6279 	}
6280 
6281 	if (dd->lcb_access_count == 1) {
6282 		set_8051_lcb_access(dd);
6283 		ret = request_8051_lcb_access(dd);
6284 		if (ret) {
6285 			dd_dev_err(dd,
6286 				   "%s: unable to release LCB access, err %d\n",
6287 				   __func__, ret);
6288 			/* restore host access if the grant didn't work */
6289 			set_host_lcb_access(dd);
6290 			goto done;
6291 		}
6292 	}
6293 	dd->lcb_access_count--;
6294 done:
6295 	mutex_unlock(&dd->pport->hls_lock);
6296 	return ret;
6297 }
6298 
6299 /*
6300  * Initialize LCB access variables and state.  Called during driver load,
6301  * after most of the initialization is finished.
6302  *
6303  * The DC default is LCB access on for the host.  The driver defaults to
6304  * leaving access to the 8051.  Assign access now - this constrains the call
6305  * to this routine to be after all LCB set-up is done.  In particular, after
6306  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6307  */
6308 static void init_lcb_access(struct hfi1_devdata *dd)
6309 {
6310 	dd->lcb_access_count = 0;
6311 }
6312 
6313 /*
6314  * Write a response back to a 8051 request.
6315  */
6316 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6317 {
6318 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6319 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6320 		  (u64)return_code <<
6321 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6322 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6323 }
6324 
6325 /*
6326  * Handle host requests from the 8051.
6327  */
6328 static void handle_8051_request(struct hfi1_pportdata *ppd)
6329 {
6330 	struct hfi1_devdata *dd = ppd->dd;
6331 	u64 reg;
6332 	u16 data = 0;
6333 	u8 type;
6334 
6335 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6336 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6337 		return;	/* no request */
6338 
6339 	/* zero out COMPLETED so the response is seen */
6340 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6341 
6342 	/* extract request details */
6343 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6344 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6345 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6346 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6347 
6348 	switch (type) {
6349 	case HREQ_LOAD_CONFIG:
6350 	case HREQ_SAVE_CONFIG:
6351 	case HREQ_READ_CONFIG:
6352 	case HREQ_SET_TX_EQ_ABS:
6353 	case HREQ_SET_TX_EQ_REL:
6354 	case HREQ_ENABLE:
6355 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6356 			    type);
6357 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6358 		break;
6359 	case HREQ_LCB_RESET:
6360 		/* Put the LCB, RX FPE and TX FPE into reset */
6361 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6362 		/* Make sure the write completed */
6363 		(void)read_csr(dd, DCC_CFG_RESET);
6364 		/* Hold the reset long enough to take effect */
6365 		udelay(1);
6366 		/* Take the LCB, RX FPE and TX FPE out of reset */
6367 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6368 		hreq_response(dd, HREQ_SUCCESS, 0);
6369 
6370 		break;
6371 	case HREQ_CONFIG_DONE:
6372 		hreq_response(dd, HREQ_SUCCESS, 0);
6373 		break;
6374 
6375 	case HREQ_INTERFACE_TEST:
6376 		hreq_response(dd, HREQ_SUCCESS, data);
6377 		break;
6378 	default:
6379 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6380 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6381 		break;
6382 	}
6383 }
6384 
6385 /*
6386  * Set up allocation unit vaulue.
6387  */
6388 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6389 {
6390 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6391 
6392 	/* do not modify other values in the register */
6393 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6394 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6395 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6396 }
6397 
6398 /*
6399  * Set up initial VL15 credits of the remote.  Assumes the rest of
6400  * the CM credit registers are zero from a previous global or credit reset.
6401  * Shared limit for VL15 will always be 0.
6402  */
6403 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6404 {
6405 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6406 
6407 	/* set initial values for total and shared credit limit */
6408 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6409 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6410 
6411 	/*
6412 	 * Set total limit to be equal to VL15 credits.
6413 	 * Leave shared limit at 0.
6414 	 */
6415 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6416 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6417 
6418 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6419 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6420 }
6421 
6422 /*
6423  * Zero all credit details from the previous connection and
6424  * reset the CM manager's internal counters.
6425  */
6426 void reset_link_credits(struct hfi1_devdata *dd)
6427 {
6428 	int i;
6429 
6430 	/* remove all previous VL credit limits */
6431 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6432 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6433 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6434 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6435 	/* reset the CM block */
6436 	pio_send_control(dd, PSC_CM_RESET);
6437 	/* reset cached value */
6438 	dd->vl15buf_cached = 0;
6439 }
6440 
6441 /* convert a vCU to a CU */
6442 static u32 vcu_to_cu(u8 vcu)
6443 {
6444 	return 1 << vcu;
6445 }
6446 
6447 /* convert a CU to a vCU */
6448 static u8 cu_to_vcu(u32 cu)
6449 {
6450 	return ilog2(cu);
6451 }
6452 
6453 /* convert a vAU to an AU */
6454 static u32 vau_to_au(u8 vau)
6455 {
6456 	return 8 * (1 << vau);
6457 }
6458 
6459 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6460 {
6461 	ppd->sm_trap_qp = 0x0;
6462 	ppd->sa_qp = 0x1;
6463 }
6464 
6465 /*
6466  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6467  */
6468 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6469 {
6470 	u64 reg;
6471 
6472 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6473 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6474 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6475 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6476 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6477 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6478 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6479 	reg = read_csr(dd, DCC_CFG_RESET);
6480 	write_csr(dd, DCC_CFG_RESET, reg |
6481 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6482 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6483 	if (!abort) {
6484 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6485 		write_csr(dd, DCC_CFG_RESET, reg);
6486 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6487 	}
6488 }
6489 
6490 /*
6491  * This routine should be called after the link has been transitioned to
6492  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6493  * reset).
6494  *
6495  * The expectation is that the caller of this routine would have taken
6496  * care of properly transitioning the link into the correct state.
6497  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6498  *       before calling this function.
6499  */
6500 static void _dc_shutdown(struct hfi1_devdata *dd)
6501 {
6502 	lockdep_assert_held(&dd->dc8051_lock);
6503 
6504 	if (dd->dc_shutdown)
6505 		return;
6506 
6507 	dd->dc_shutdown = 1;
6508 	/* Shutdown the LCB */
6509 	lcb_shutdown(dd, 1);
6510 	/*
6511 	 * Going to OFFLINE would have causes the 8051 to put the
6512 	 * SerDes into reset already. Just need to shut down the 8051,
6513 	 * itself.
6514 	 */
6515 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6516 }
6517 
6518 static void dc_shutdown(struct hfi1_devdata *dd)
6519 {
6520 	mutex_lock(&dd->dc8051_lock);
6521 	_dc_shutdown(dd);
6522 	mutex_unlock(&dd->dc8051_lock);
6523 }
6524 
6525 /*
6526  * Calling this after the DC has been brought out of reset should not
6527  * do any damage.
6528  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6529  *       before calling this function.
6530  */
6531 static void _dc_start(struct hfi1_devdata *dd)
6532 {
6533 	lockdep_assert_held(&dd->dc8051_lock);
6534 
6535 	if (!dd->dc_shutdown)
6536 		return;
6537 
6538 	/* Take the 8051 out of reset */
6539 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6540 	/* Wait until 8051 is ready */
6541 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6542 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6543 			   __func__);
6544 
6545 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6546 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6547 	/* lcb_shutdown() with abort=1 does not restore these */
6548 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6549 	dd->dc_shutdown = 0;
6550 }
6551 
6552 static void dc_start(struct hfi1_devdata *dd)
6553 {
6554 	mutex_lock(&dd->dc8051_lock);
6555 	_dc_start(dd);
6556 	mutex_unlock(&dd->dc8051_lock);
6557 }
6558 
6559 /*
6560  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6561  */
6562 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6563 {
6564 	u64 rx_radr, tx_radr;
6565 	u32 version;
6566 
6567 	if (dd->icode != ICODE_FPGA_EMULATION)
6568 		return;
6569 
6570 	/*
6571 	 * These LCB defaults on emulator _s are good, nothing to do here:
6572 	 *	LCB_CFG_TX_FIFOS_RADR
6573 	 *	LCB_CFG_RX_FIFOS_RADR
6574 	 *	LCB_CFG_LN_DCLK
6575 	 *	LCB_CFG_IGNORE_LOST_RCLK
6576 	 */
6577 	if (is_emulator_s(dd))
6578 		return;
6579 	/* else this is _p */
6580 
6581 	version = emulator_rev(dd);
6582 	if (!is_ax(dd))
6583 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6584 
6585 	if (version <= 0x12) {
6586 		/* release 0x12 and below */
6587 
6588 		/*
6589 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6590 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6591 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6592 		 */
6593 		rx_radr =
6594 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6595 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6596 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6597 		/*
6598 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6599 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6600 		 */
6601 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6602 	} else if (version <= 0x18) {
6603 		/* release 0x13 up to 0x18 */
6604 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6605 		rx_radr =
6606 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6607 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6608 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6609 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6610 	} else if (version == 0x19) {
6611 		/* release 0x19 */
6612 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6613 		rx_radr =
6614 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6615 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6616 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6617 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6618 	} else if (version == 0x1a) {
6619 		/* release 0x1a */
6620 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6621 		rx_radr =
6622 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6623 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6624 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6625 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6626 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6627 	} else {
6628 		/* release 0x1b and higher */
6629 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6630 		rx_radr =
6631 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6632 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6633 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6634 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6635 	}
6636 
6637 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6638 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6639 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6640 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6641 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6642 }
6643 
6644 /*
6645  * Handle a SMA idle message
6646  *
6647  * This is a work-queue function outside of the interrupt.
6648  */
6649 void handle_sma_message(struct work_struct *work)
6650 {
6651 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6652 							sma_message_work);
6653 	struct hfi1_devdata *dd = ppd->dd;
6654 	u64 msg;
6655 	int ret;
6656 
6657 	/*
6658 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6659 	 * is stripped off
6660 	 */
6661 	ret = read_idle_sma(dd, &msg);
6662 	if (ret)
6663 		return;
6664 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6665 	/*
6666 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6667 	 */
6668 	switch (msg & 0xff) {
6669 	case SMA_IDLE_ARM:
6670 		/*
6671 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6672 		 * State Transitions
6673 		 *
6674 		 * Only expected in INIT or ARMED, discard otherwise.
6675 		 */
6676 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6677 			ppd->neighbor_normal = 1;
6678 		break;
6679 	case SMA_IDLE_ACTIVE:
6680 		/*
6681 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6682 		 * State Transitions
6683 		 *
6684 		 * Can activate the node.  Discard otherwise.
6685 		 */
6686 		if (ppd->host_link_state == HLS_UP_ARMED &&
6687 		    ppd->is_active_optimize_enabled) {
6688 			ppd->neighbor_normal = 1;
6689 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6690 			if (ret)
6691 				dd_dev_err(
6692 					dd,
6693 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6694 					__func__);
6695 		}
6696 		break;
6697 	default:
6698 		dd_dev_err(dd,
6699 			   "%s: received unexpected SMA idle message 0x%llx\n",
6700 			   __func__, msg);
6701 		break;
6702 	}
6703 }
6704 
6705 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6706 {
6707 	u64 rcvctrl;
6708 	unsigned long flags;
6709 
6710 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6711 	rcvctrl = read_csr(dd, RCV_CTRL);
6712 	rcvctrl |= add;
6713 	rcvctrl &= ~clear;
6714 	write_csr(dd, RCV_CTRL, rcvctrl);
6715 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6716 }
6717 
6718 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6719 {
6720 	adjust_rcvctrl(dd, add, 0);
6721 }
6722 
6723 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6724 {
6725 	adjust_rcvctrl(dd, 0, clear);
6726 }
6727 
6728 /*
6729  * Called from all interrupt handlers to start handling an SPC freeze.
6730  */
6731 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6732 {
6733 	struct hfi1_devdata *dd = ppd->dd;
6734 	struct send_context *sc;
6735 	int i;
6736 	int sc_flags;
6737 
6738 	if (flags & FREEZE_SELF)
6739 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6740 
6741 	/* enter frozen mode */
6742 	dd->flags |= HFI1_FROZEN;
6743 
6744 	/* notify all SDMA engines that they are going into a freeze */
6745 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6746 
6747 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6748 					      SCF_LINK_DOWN : 0);
6749 	/* do halt pre-handling on all enabled send contexts */
6750 	for (i = 0; i < dd->num_send_contexts; i++) {
6751 		sc = dd->send_contexts[i].sc;
6752 		if (sc && (sc->flags & SCF_ENABLED))
6753 			sc_stop(sc, sc_flags);
6754 	}
6755 
6756 	/* Send context are frozen. Notify user space */
6757 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6758 
6759 	if (flags & FREEZE_ABORT) {
6760 		dd_dev_err(dd,
6761 			   "Aborted freeze recovery. Please REBOOT system\n");
6762 		return;
6763 	}
6764 	/* queue non-interrupt handler */
6765 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6766 }
6767 
6768 /*
6769  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6770  * depending on the "freeze" parameter.
6771  *
6772  * No need to return an error if it times out, our only option
6773  * is to proceed anyway.
6774  */
6775 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6776 {
6777 	unsigned long timeout;
6778 	u64 reg;
6779 
6780 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6781 	while (1) {
6782 		reg = read_csr(dd, CCE_STATUS);
6783 		if (freeze) {
6784 			/* waiting until all indicators are set */
6785 			if ((reg & ALL_FROZE) == ALL_FROZE)
6786 				return;	/* all done */
6787 		} else {
6788 			/* waiting until all indicators are clear */
6789 			if ((reg & ALL_FROZE) == 0)
6790 				return; /* all done */
6791 		}
6792 
6793 		if (time_after(jiffies, timeout)) {
6794 			dd_dev_err(dd,
6795 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6796 				   freeze ? "" : "un", reg & ALL_FROZE,
6797 				   freeze ? ALL_FROZE : 0ull);
6798 			return;
6799 		}
6800 		usleep_range(80, 120);
6801 	}
6802 }
6803 
6804 /*
6805  * Do all freeze handling for the RXE block.
6806  */
6807 static void rxe_freeze(struct hfi1_devdata *dd)
6808 {
6809 	int i;
6810 	struct hfi1_ctxtdata *rcd;
6811 
6812 	/* disable port */
6813 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6814 
6815 	/* disable all receive contexts */
6816 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6817 		rcd = hfi1_rcd_get_by_index(dd, i);
6818 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6819 		hfi1_rcd_put(rcd);
6820 	}
6821 }
6822 
6823 /*
6824  * Unfreeze handling for the RXE block - kernel contexts only.
6825  * This will also enable the port.  User contexts will do unfreeze
6826  * handling on a per-context basis as they call into the driver.
6827  *
6828  */
6829 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6830 {
6831 	u32 rcvmask;
6832 	u16 i;
6833 	struct hfi1_ctxtdata *rcd;
6834 
6835 	/* enable all kernel contexts */
6836 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6837 		rcd = hfi1_rcd_get_by_index(dd, i);
6838 
6839 		/* Ensure all non-user contexts(including vnic) are enabled */
6840 		if (!rcd ||
6841 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6842 			hfi1_rcd_put(rcd);
6843 			continue;
6844 		}
6845 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6846 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6847 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6848 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6849 		hfi1_rcvctrl(dd, rcvmask, rcd);
6850 		hfi1_rcd_put(rcd);
6851 	}
6852 
6853 	/* enable port */
6854 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6855 }
6856 
6857 /*
6858  * Non-interrupt SPC freeze handling.
6859  *
6860  * This is a work-queue function outside of the triggering interrupt.
6861  */
6862 void handle_freeze(struct work_struct *work)
6863 {
6864 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6865 								freeze_work);
6866 	struct hfi1_devdata *dd = ppd->dd;
6867 
6868 	/* wait for freeze indicators on all affected blocks */
6869 	wait_for_freeze_status(dd, 1);
6870 
6871 	/* SPC is now frozen */
6872 
6873 	/* do send PIO freeze steps */
6874 	pio_freeze(dd);
6875 
6876 	/* do send DMA freeze steps */
6877 	sdma_freeze(dd);
6878 
6879 	/* do send egress freeze steps - nothing to do */
6880 
6881 	/* do receive freeze steps */
6882 	rxe_freeze(dd);
6883 
6884 	/*
6885 	 * Unfreeze the hardware - clear the freeze, wait for each
6886 	 * block's frozen bit to clear, then clear the frozen flag.
6887 	 */
6888 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6889 	wait_for_freeze_status(dd, 0);
6890 
6891 	if (is_ax(dd)) {
6892 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6893 		wait_for_freeze_status(dd, 1);
6894 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6895 		wait_for_freeze_status(dd, 0);
6896 	}
6897 
6898 	/* do send PIO unfreeze steps for kernel contexts */
6899 	pio_kernel_unfreeze(dd);
6900 
6901 	/* do send DMA unfreeze steps */
6902 	sdma_unfreeze(dd);
6903 
6904 	/* do send egress unfreeze steps - nothing to do */
6905 
6906 	/* do receive unfreeze steps for kernel contexts */
6907 	rxe_kernel_unfreeze(dd);
6908 
6909 	/*
6910 	 * The unfreeze procedure touches global device registers when
6911 	 * it disables and re-enables RXE. Mark the device unfrozen
6912 	 * after all that is done so other parts of the driver waiting
6913 	 * for the device to unfreeze don't do things out of order.
6914 	 *
6915 	 * The above implies that the meaning of HFI1_FROZEN flag is
6916 	 * "Device has gone into freeze mode and freeze mode handling
6917 	 * is still in progress."
6918 	 *
6919 	 * The flag will be removed when freeze mode processing has
6920 	 * completed.
6921 	 */
6922 	dd->flags &= ~HFI1_FROZEN;
6923 	wake_up(&dd->event_queue);
6924 
6925 	/* no longer frozen */
6926 }
6927 
6928 /**
6929  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6930  * counters.
6931  * @ppd: info of physical Hfi port
6932  * @link_width: new link width after link up or downgrade
6933  *
6934  * Update the PortXmitWait and PortVlXmitWait counters after
6935  * a link up or downgrade event to reflect a link width change.
6936  */
6937 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6938 {
6939 	int i;
6940 	u16 tx_width;
6941 	u16 link_speed;
6942 
6943 	tx_width = tx_link_width(link_width);
6944 	link_speed = get_link_speed(ppd->link_speed_active);
6945 
6946 	/*
6947 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6948 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6949 	 */
6950 	for (i = 0; i < C_VL_COUNT + 1; i++)
6951 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6952 }
6953 
6954 /*
6955  * Handle a link up interrupt from the 8051.
6956  *
6957  * This is a work-queue function outside of the interrupt.
6958  */
6959 void handle_link_up(struct work_struct *work)
6960 {
6961 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6962 						  link_up_work);
6963 	struct hfi1_devdata *dd = ppd->dd;
6964 
6965 	set_link_state(ppd, HLS_UP_INIT);
6966 
6967 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6968 	read_ltp_rtt(dd);
6969 	/*
6970 	 * OPA specifies that certain counters are cleared on a transition
6971 	 * to link up, so do that.
6972 	 */
6973 	clear_linkup_counters(dd);
6974 	/*
6975 	 * And (re)set link up default values.
6976 	 */
6977 	set_linkup_defaults(ppd);
6978 
6979 	/*
6980 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6981 	 * In case of quick linkup or simulator, vl15 value will be set by
6982 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6983 	 * called in those scenarios.
6984 	 */
6985 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6986 		set_up_vl15(dd, dd->vl15buf_cached);
6987 
6988 	/* enforce link speed enabled */
6989 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6990 		/* oops - current speed is not enabled, bounce */
6991 		dd_dev_err(dd,
6992 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6993 			   ppd->link_speed_active, ppd->link_speed_enabled);
6994 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6995 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6996 		set_link_state(ppd, HLS_DN_OFFLINE);
6997 		start_link(ppd);
6998 	}
6999 }
7000 
7001 /*
7002  * Several pieces of LNI information were cached for SMA in ppd.
7003  * Reset these on link down
7004  */
7005 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7006 {
7007 	ppd->neighbor_guid = 0;
7008 	ppd->neighbor_port_number = 0;
7009 	ppd->neighbor_type = 0;
7010 	ppd->neighbor_fm_security = 0;
7011 }
7012 
7013 static const char * const link_down_reason_strs[] = {
7014 	[OPA_LINKDOWN_REASON_NONE] = "None",
7015 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7016 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7017 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7018 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7019 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7020 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7021 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7022 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7023 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7024 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7025 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7026 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7027 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7028 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7029 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7030 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7031 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7032 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7033 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7034 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7035 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7036 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7037 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7038 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7039 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7040 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7042 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7043 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7044 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7045 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7046 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7047 					"Excessive buffer overrun",
7048 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7049 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7050 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7051 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7052 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7053 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7054 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7055 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7056 					"Local media not installed",
7057 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7058 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7059 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7060 					"End to end not installed",
7061 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7062 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7063 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7064 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7065 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7066 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7067 };
7068 
7069 /* return the neighbor link down reason string */
7070 static const char *link_down_reason_str(u8 reason)
7071 {
7072 	const char *str = NULL;
7073 
7074 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7075 		str = link_down_reason_strs[reason];
7076 	if (!str)
7077 		str = "(invalid)";
7078 
7079 	return str;
7080 }
7081 
7082 /*
7083  * Handle a link down interrupt from the 8051.
7084  *
7085  * This is a work-queue function outside of the interrupt.
7086  */
7087 void handle_link_down(struct work_struct *work)
7088 {
7089 	u8 lcl_reason, neigh_reason = 0;
7090 	u8 link_down_reason;
7091 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7092 						  link_down_work);
7093 	int was_up;
7094 	static const char ldr_str[] = "Link down reason: ";
7095 
7096 	if ((ppd->host_link_state &
7097 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7098 	     ppd->port_type == PORT_TYPE_FIXED)
7099 		ppd->offline_disabled_reason =
7100 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7101 
7102 	/* Go offline first, then deal with reading/writing through 8051 */
7103 	was_up = !!(ppd->host_link_state & HLS_UP);
7104 	set_link_state(ppd, HLS_DN_OFFLINE);
7105 	xchg(&ppd->is_link_down_queued, 0);
7106 
7107 	if (was_up) {
7108 		lcl_reason = 0;
7109 		/* link down reason is only valid if the link was up */
7110 		read_link_down_reason(ppd->dd, &link_down_reason);
7111 		switch (link_down_reason) {
7112 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7113 			/* the link went down, no idle message reason */
7114 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7115 				    ldr_str);
7116 			break;
7117 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7118 			/*
7119 			 * The neighbor reason is only valid if an idle message
7120 			 * was received for it.
7121 			 */
7122 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7123 			dd_dev_info(ppd->dd,
7124 				    "%sNeighbor link down message %d, %s\n",
7125 				    ldr_str, neigh_reason,
7126 				    link_down_reason_str(neigh_reason));
7127 			break;
7128 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7129 			dd_dev_info(ppd->dd,
7130 				    "%sHost requested link to go offline\n",
7131 				    ldr_str);
7132 			break;
7133 		default:
7134 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7135 				    ldr_str, link_down_reason);
7136 			break;
7137 		}
7138 
7139 		/*
7140 		 * If no reason, assume peer-initiated but missed
7141 		 * LinkGoingDown idle flits.
7142 		 */
7143 		if (neigh_reason == 0)
7144 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7145 	} else {
7146 		/* went down while polling or going up */
7147 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7148 	}
7149 
7150 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7151 
7152 	/* inform the SMA when the link transitions from up to down */
7153 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7154 	    ppd->neigh_link_down_reason.sma == 0) {
7155 		ppd->local_link_down_reason.sma =
7156 					ppd->local_link_down_reason.latest;
7157 		ppd->neigh_link_down_reason.sma =
7158 					ppd->neigh_link_down_reason.latest;
7159 	}
7160 
7161 	reset_neighbor_info(ppd);
7162 
7163 	/* disable the port */
7164 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7165 
7166 	/*
7167 	 * If there is no cable attached, turn the DC off. Otherwise,
7168 	 * start the link bring up.
7169 	 */
7170 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7171 		dc_shutdown(ppd->dd);
7172 	else
7173 		start_link(ppd);
7174 }
7175 
7176 void handle_link_bounce(struct work_struct *work)
7177 {
7178 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7179 							link_bounce_work);
7180 
7181 	/*
7182 	 * Only do something if the link is currently up.
7183 	 */
7184 	if (ppd->host_link_state & HLS_UP) {
7185 		set_link_state(ppd, HLS_DN_OFFLINE);
7186 		start_link(ppd);
7187 	} else {
7188 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7189 			    __func__, link_state_name(ppd->host_link_state));
7190 	}
7191 }
7192 
7193 /*
7194  * Mask conversion: Capability exchange to Port LTP.  The capability
7195  * exchange has an implicit 16b CRC that is mandatory.
7196  */
7197 static int cap_to_port_ltp(int cap)
7198 {
7199 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7200 
7201 	if (cap & CAP_CRC_14B)
7202 		port_ltp |= PORT_LTP_CRC_MODE_14;
7203 	if (cap & CAP_CRC_48B)
7204 		port_ltp |= PORT_LTP_CRC_MODE_48;
7205 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7206 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7207 
7208 	return port_ltp;
7209 }
7210 
7211 /*
7212  * Convert an OPA Port LTP mask to capability mask
7213  */
7214 int port_ltp_to_cap(int port_ltp)
7215 {
7216 	int cap_mask = 0;
7217 
7218 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7219 		cap_mask |= CAP_CRC_14B;
7220 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7221 		cap_mask |= CAP_CRC_48B;
7222 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7223 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7224 
7225 	return cap_mask;
7226 }
7227 
7228 /*
7229  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7230  */
7231 static int lcb_to_port_ltp(int lcb_crc)
7232 {
7233 	int port_ltp = 0;
7234 
7235 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7236 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7237 	else if (lcb_crc == LCB_CRC_48B)
7238 		port_ltp = PORT_LTP_CRC_MODE_48;
7239 	else if (lcb_crc == LCB_CRC_14B)
7240 		port_ltp = PORT_LTP_CRC_MODE_14;
7241 	else
7242 		port_ltp = PORT_LTP_CRC_MODE_16;
7243 
7244 	return port_ltp;
7245 }
7246 
7247 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7248 {
7249 	if (ppd->pkeys[2] != 0) {
7250 		ppd->pkeys[2] = 0;
7251 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7252 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7253 	}
7254 }
7255 
7256 /*
7257  * Convert the given link width to the OPA link width bitmask.
7258  */
7259 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7260 {
7261 	switch (width) {
7262 	case 0:
7263 		/*
7264 		 * Simulator and quick linkup do not set the width.
7265 		 * Just set it to 4x without complaint.
7266 		 */
7267 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7268 			return OPA_LINK_WIDTH_4X;
7269 		return 0; /* no lanes up */
7270 	case 1: return OPA_LINK_WIDTH_1X;
7271 	case 2: return OPA_LINK_WIDTH_2X;
7272 	case 3: return OPA_LINK_WIDTH_3X;
7273 	default:
7274 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7275 			    __func__, width);
7276 		/* fall through */
7277 	case 4: return OPA_LINK_WIDTH_4X;
7278 	}
7279 }
7280 
7281 /*
7282  * Do a population count on the bottom nibble.
7283  */
7284 static const u8 bit_counts[16] = {
7285 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7286 };
7287 
7288 static inline u8 nibble_to_count(u8 nibble)
7289 {
7290 	return bit_counts[nibble & 0xf];
7291 }
7292 
7293 /*
7294  * Read the active lane information from the 8051 registers and return
7295  * their widths.
7296  *
7297  * Active lane information is found in these 8051 registers:
7298  *	enable_lane_tx
7299  *	enable_lane_rx
7300  */
7301 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7302 			    u16 *rx_width)
7303 {
7304 	u16 tx, rx;
7305 	u8 enable_lane_rx;
7306 	u8 enable_lane_tx;
7307 	u8 tx_polarity_inversion;
7308 	u8 rx_polarity_inversion;
7309 	u8 max_rate;
7310 
7311 	/* read the active lanes */
7312 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7313 			 &rx_polarity_inversion, &max_rate);
7314 	read_local_lni(dd, &enable_lane_rx);
7315 
7316 	/* convert to counts */
7317 	tx = nibble_to_count(enable_lane_tx);
7318 	rx = nibble_to_count(enable_lane_rx);
7319 
7320 	/*
7321 	 * Set link_speed_active here, overriding what was set in
7322 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7323 	 * set the max_rate field in handle_verify_cap until v0.19.
7324 	 */
7325 	if ((dd->icode == ICODE_RTL_SILICON) &&
7326 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7327 		/* max_rate: 0 = 12.5G, 1 = 25G */
7328 		switch (max_rate) {
7329 		case 0:
7330 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7331 			break;
7332 		default:
7333 			dd_dev_err(dd,
7334 				   "%s: unexpected max rate %d, using 25Gb\n",
7335 				   __func__, (int)max_rate);
7336 			/* fall through */
7337 		case 1:
7338 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7339 			break;
7340 		}
7341 	}
7342 
7343 	dd_dev_info(dd,
7344 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7345 		    enable_lane_tx, tx, enable_lane_rx, rx);
7346 	*tx_width = link_width_to_bits(dd, tx);
7347 	*rx_width = link_width_to_bits(dd, rx);
7348 }
7349 
7350 /*
7351  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7352  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7353  * after link up.  I.e. look elsewhere for downgrade information.
7354  *
7355  * Bits are:
7356  *	+ bits [7:4] contain the number of active transmitters
7357  *	+ bits [3:0] contain the number of active receivers
7358  * These are numbers 1 through 4 and can be different values if the
7359  * link is asymmetric.
7360  *
7361  * verify_cap_local_fm_link_width[0] retains its original value.
7362  */
7363 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7364 			      u16 *rx_width)
7365 {
7366 	u16 widths, tx, rx;
7367 	u8 misc_bits, local_flags;
7368 	u16 active_tx, active_rx;
7369 
7370 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7371 	tx = widths >> 12;
7372 	rx = (widths >> 8) & 0xf;
7373 
7374 	*tx_width = link_width_to_bits(dd, tx);
7375 	*rx_width = link_width_to_bits(dd, rx);
7376 
7377 	/* print the active widths */
7378 	get_link_widths(dd, &active_tx, &active_rx);
7379 }
7380 
7381 /*
7382  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7383  * hardware information when the link first comes up.
7384  *
7385  * The link width is not available until after VerifyCap.AllFramesReceived
7386  * (the trigger for handle_verify_cap), so this is outside that routine
7387  * and should be called when the 8051 signals linkup.
7388  */
7389 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7390 {
7391 	u16 tx_width, rx_width;
7392 
7393 	/* get end-of-LNI link widths */
7394 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7395 
7396 	/* use tx_width as the link is supposed to be symmetric on link up */
7397 	ppd->link_width_active = tx_width;
7398 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7399 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7400 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7401 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7402 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7403 	/* cache the active egress rate (units {10^6 bits/sec]) */
7404 	ppd->current_egress_rate = active_egress_rate(ppd);
7405 }
7406 
7407 /*
7408  * Handle a verify capabilities interrupt from the 8051.
7409  *
7410  * This is a work-queue function outside of the interrupt.
7411  */
7412 void handle_verify_cap(struct work_struct *work)
7413 {
7414 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7415 								link_vc_work);
7416 	struct hfi1_devdata *dd = ppd->dd;
7417 	u64 reg;
7418 	u8 power_management;
7419 	u8 continuous;
7420 	u8 vcu;
7421 	u8 vau;
7422 	u8 z;
7423 	u16 vl15buf;
7424 	u16 link_widths;
7425 	u16 crc_mask;
7426 	u16 crc_val;
7427 	u16 device_id;
7428 	u16 active_tx, active_rx;
7429 	u8 partner_supported_crc;
7430 	u8 remote_tx_rate;
7431 	u8 device_rev;
7432 
7433 	set_link_state(ppd, HLS_VERIFY_CAP);
7434 
7435 	lcb_shutdown(dd, 0);
7436 	adjust_lcb_for_fpga_serdes(dd);
7437 
7438 	read_vc_remote_phy(dd, &power_management, &continuous);
7439 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7440 			      &partner_supported_crc);
7441 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7442 	read_remote_device_id(dd, &device_id, &device_rev);
7443 
7444 	/* print the active widths */
7445 	get_link_widths(dd, &active_tx, &active_rx);
7446 	dd_dev_info(dd,
7447 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7448 		    (int)power_management, (int)continuous);
7449 	dd_dev_info(dd,
7450 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7451 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7452 		    (int)partner_supported_crc);
7453 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7454 		    (u32)remote_tx_rate, (u32)link_widths);
7455 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7456 		    (u32)device_id, (u32)device_rev);
7457 	/*
7458 	 * The peer vAU value just read is the peer receiver value.  HFI does
7459 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7460 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7461 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7462 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7463 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7464 	 * subject to the Z value exception.
7465 	 */
7466 	if (vau == 0)
7467 		vau = 1;
7468 	set_up_vau(dd, vau);
7469 
7470 	/*
7471 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7472 	 * credits value and wait for link-up interrupt ot set it.
7473 	 */
7474 	set_up_vl15(dd, 0);
7475 	dd->vl15buf_cached = vl15buf;
7476 
7477 	/* set up the LCB CRC mode */
7478 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7479 
7480 	/* order is important: use the lowest bit in common */
7481 	if (crc_mask & CAP_CRC_14B)
7482 		crc_val = LCB_CRC_14B;
7483 	else if (crc_mask & CAP_CRC_48B)
7484 		crc_val = LCB_CRC_48B;
7485 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7486 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7487 	else
7488 		crc_val = LCB_CRC_16B;
7489 
7490 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7491 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7492 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7493 
7494 	/* set (14b only) or clear sideband credit */
7495 	reg = read_csr(dd, SEND_CM_CTRL);
7496 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7497 		write_csr(dd, SEND_CM_CTRL,
7498 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7499 	} else {
7500 		write_csr(dd, SEND_CM_CTRL,
7501 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7502 	}
7503 
7504 	ppd->link_speed_active = 0;	/* invalid value */
7505 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7506 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7507 		switch (remote_tx_rate) {
7508 		case 0:
7509 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7510 			break;
7511 		case 1:
7512 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7513 			break;
7514 		}
7515 	} else {
7516 		/* actual rate is highest bit of the ANDed rates */
7517 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7518 
7519 		if (rate & 2)
7520 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7521 		else if (rate & 1)
7522 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7523 	}
7524 	if (ppd->link_speed_active == 0) {
7525 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7526 			   __func__, (int)remote_tx_rate);
7527 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7528 	}
7529 
7530 	/*
7531 	 * Cache the values of the supported, enabled, and active
7532 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7533 	 * flags that are returned in the portinfo query differ from
7534 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7535 	 * variables. Convert these here.
7536 	 */
7537 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7538 		/* supported crc modes */
7539 	ppd->port_ltp_crc_mode |=
7540 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7541 		/* enabled crc modes */
7542 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7543 		/* active crc mode */
7544 
7545 	/* set up the remote credit return table */
7546 	assign_remote_cm_au_table(dd, vcu);
7547 
7548 	/*
7549 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7550 	 * be applied on every link up.
7551 	 *
7552 	 * Adjust LCB error kill enable to kill the link if
7553 	 * these RBUF errors are seen:
7554 	 *	REPLAY_BUF_MBE_SMASK
7555 	 *	FLIT_INPUT_BUF_MBE_SMASK
7556 	 */
7557 	if (is_ax(dd)) {			/* fixed in B0 */
7558 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7559 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7560 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7561 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7562 	}
7563 
7564 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7565 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7566 
7567 	/* give 8051 access to the LCB CSRs */
7568 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7569 	set_8051_lcb_access(dd);
7570 
7571 	/* tell the 8051 to go to LinkUp */
7572 	set_link_state(ppd, HLS_GOING_UP);
7573 }
7574 
7575 /**
7576  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7577  * policy against the current active link widths.
7578  * @ppd: info of physical Hfi port
7579  * @refresh_widths: True indicates link downgrade event
7580  * @return: True indicates a successful link downgrade. False indicates
7581  *	    link downgrade event failed and the link will bounce back to
7582  *	    default link width.
7583  *
7584  * Called when the enabled policy changes or the active link widths
7585  * change.
7586  * Refresh_widths indicates that a link downgrade occurred. The
7587  * link_downgraded variable is set by refresh_widths and
7588  * determines the success/failure of the policy application.
7589  */
7590 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7591 				 bool refresh_widths)
7592 {
7593 	int do_bounce = 0;
7594 	int tries;
7595 	u16 lwde;
7596 	u16 tx, rx;
7597 	bool link_downgraded = refresh_widths;
7598 
7599 	/* use the hls lock to avoid a race with actual link up */
7600 	tries = 0;
7601 retry:
7602 	mutex_lock(&ppd->hls_lock);
7603 	/* only apply if the link is up */
7604 	if (ppd->host_link_state & HLS_DOWN) {
7605 		/* still going up..wait and retry */
7606 		if (ppd->host_link_state & HLS_GOING_UP) {
7607 			if (++tries < 1000) {
7608 				mutex_unlock(&ppd->hls_lock);
7609 				usleep_range(100, 120); /* arbitrary */
7610 				goto retry;
7611 			}
7612 			dd_dev_err(ppd->dd,
7613 				   "%s: giving up waiting for link state change\n",
7614 				   __func__);
7615 		}
7616 		goto done;
7617 	}
7618 
7619 	lwde = ppd->link_width_downgrade_enabled;
7620 
7621 	if (refresh_widths) {
7622 		get_link_widths(ppd->dd, &tx, &rx);
7623 		ppd->link_width_downgrade_tx_active = tx;
7624 		ppd->link_width_downgrade_rx_active = rx;
7625 	}
7626 
7627 	if (ppd->link_width_downgrade_tx_active == 0 ||
7628 	    ppd->link_width_downgrade_rx_active == 0) {
7629 		/* the 8051 reported a dead link as a downgrade */
7630 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7631 		link_downgraded = false;
7632 	} else if (lwde == 0) {
7633 		/* downgrade is disabled */
7634 
7635 		/* bounce if not at starting active width */
7636 		if ((ppd->link_width_active !=
7637 		     ppd->link_width_downgrade_tx_active) ||
7638 		    (ppd->link_width_active !=
7639 		     ppd->link_width_downgrade_rx_active)) {
7640 			dd_dev_err(ppd->dd,
7641 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7642 			dd_dev_err(ppd->dd,
7643 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7644 				   ppd->link_width_active,
7645 				   ppd->link_width_downgrade_tx_active,
7646 				   ppd->link_width_downgrade_rx_active);
7647 			do_bounce = 1;
7648 			link_downgraded = false;
7649 		}
7650 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7651 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7652 		/* Tx or Rx is outside the enabled policy */
7653 		dd_dev_err(ppd->dd,
7654 			   "Link is outside of downgrade allowed, downing link\n");
7655 		dd_dev_err(ppd->dd,
7656 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7657 			   lwde, ppd->link_width_downgrade_tx_active,
7658 			   ppd->link_width_downgrade_rx_active);
7659 		do_bounce = 1;
7660 		link_downgraded = false;
7661 	}
7662 
7663 done:
7664 	mutex_unlock(&ppd->hls_lock);
7665 
7666 	if (do_bounce) {
7667 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7668 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7669 		set_link_state(ppd, HLS_DN_OFFLINE);
7670 		start_link(ppd);
7671 	}
7672 
7673 	return link_downgraded;
7674 }
7675 
7676 /*
7677  * Handle a link downgrade interrupt from the 8051.
7678  *
7679  * This is a work-queue function outside of the interrupt.
7680  */
7681 void handle_link_downgrade(struct work_struct *work)
7682 {
7683 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7684 							link_downgrade_work);
7685 
7686 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7687 	if (apply_link_downgrade_policy(ppd, true))
7688 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7689 }
7690 
7691 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7692 {
7693 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7694 		ARRAY_SIZE(dcc_err_flags));
7695 }
7696 
7697 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7698 {
7699 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7700 		ARRAY_SIZE(lcb_err_flags));
7701 }
7702 
7703 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7704 {
7705 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7706 		ARRAY_SIZE(dc8051_err_flags));
7707 }
7708 
7709 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7710 {
7711 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7712 		ARRAY_SIZE(dc8051_info_err_flags));
7713 }
7714 
7715 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7716 {
7717 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7718 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7719 }
7720 
7721 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7722 {
7723 	struct hfi1_pportdata *ppd = dd->pport;
7724 	u64 info, err, host_msg;
7725 	int queue_link_down = 0;
7726 	char buf[96];
7727 
7728 	/* look at the flags */
7729 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7730 		/* 8051 information set by firmware */
7731 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7732 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7733 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7734 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7735 		host_msg = (info >>
7736 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7737 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7738 
7739 		/*
7740 		 * Handle error flags.
7741 		 */
7742 		if (err & FAILED_LNI) {
7743 			/*
7744 			 * LNI error indications are cleared by the 8051
7745 			 * only when starting polling.  Only pay attention
7746 			 * to them when in the states that occur during
7747 			 * LNI.
7748 			 */
7749 			if (ppd->host_link_state
7750 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7751 				queue_link_down = 1;
7752 				dd_dev_info(dd, "Link error: %s\n",
7753 					    dc8051_info_err_string(buf,
7754 								   sizeof(buf),
7755 								   err &
7756 								   FAILED_LNI));
7757 			}
7758 			err &= ~(u64)FAILED_LNI;
7759 		}
7760 		/* unknown frames can happen durning LNI, just count */
7761 		if (err & UNKNOWN_FRAME) {
7762 			ppd->unknown_frame_count++;
7763 			err &= ~(u64)UNKNOWN_FRAME;
7764 		}
7765 		if (err) {
7766 			/* report remaining errors, but do not do anything */
7767 			dd_dev_err(dd, "8051 info error: %s\n",
7768 				   dc8051_info_err_string(buf, sizeof(buf),
7769 							  err));
7770 		}
7771 
7772 		/*
7773 		 * Handle host message flags.
7774 		 */
7775 		if (host_msg & HOST_REQ_DONE) {
7776 			/*
7777 			 * Presently, the driver does a busy wait for
7778 			 * host requests to complete.  This is only an
7779 			 * informational message.
7780 			 * NOTE: The 8051 clears the host message
7781 			 * information *on the next 8051 command*.
7782 			 * Therefore, when linkup is achieved,
7783 			 * this flag will still be set.
7784 			 */
7785 			host_msg &= ~(u64)HOST_REQ_DONE;
7786 		}
7787 		if (host_msg & BC_SMA_MSG) {
7788 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7789 			host_msg &= ~(u64)BC_SMA_MSG;
7790 		}
7791 		if (host_msg & LINKUP_ACHIEVED) {
7792 			dd_dev_info(dd, "8051: Link up\n");
7793 			queue_work(ppd->link_wq, &ppd->link_up_work);
7794 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7795 		}
7796 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7797 			handle_8051_request(ppd);
7798 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7799 		}
7800 		if (host_msg & VERIFY_CAP_FRAME) {
7801 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7802 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7803 		}
7804 		if (host_msg & LINK_GOING_DOWN) {
7805 			const char *extra = "";
7806 			/* no downgrade action needed if going down */
7807 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7808 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7809 				extra = " (ignoring downgrade)";
7810 			}
7811 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7812 			queue_link_down = 1;
7813 			host_msg &= ~(u64)LINK_GOING_DOWN;
7814 		}
7815 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7816 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7817 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7818 		}
7819 		if (host_msg) {
7820 			/* report remaining messages, but do not do anything */
7821 			dd_dev_info(dd, "8051 info host message: %s\n",
7822 				    dc8051_info_host_msg_string(buf,
7823 								sizeof(buf),
7824 								host_msg));
7825 		}
7826 
7827 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7828 	}
7829 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7830 		/*
7831 		 * Lost the 8051 heartbeat.  If this happens, we
7832 		 * receive constant interrupts about it.  Disable
7833 		 * the interrupt after the first.
7834 		 */
7835 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7836 		write_csr(dd, DC_DC8051_ERR_EN,
7837 			  read_csr(dd, DC_DC8051_ERR_EN) &
7838 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7839 
7840 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7841 	}
7842 	if (reg) {
7843 		/* report the error, but do not do anything */
7844 		dd_dev_err(dd, "8051 error: %s\n",
7845 			   dc8051_err_string(buf, sizeof(buf), reg));
7846 	}
7847 
7848 	if (queue_link_down) {
7849 		/*
7850 		 * if the link is already going down or disabled, do not
7851 		 * queue another. If there's a link down entry already
7852 		 * queued, don't queue another one.
7853 		 */
7854 		if ((ppd->host_link_state &
7855 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7856 		    ppd->link_enabled == 0) {
7857 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7858 				    __func__, ppd->host_link_state,
7859 				    ppd->link_enabled);
7860 		} else {
7861 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7862 				dd_dev_info(dd,
7863 					    "%s: link down request already queued\n",
7864 					    __func__);
7865 			else
7866 				queue_work(ppd->link_wq, &ppd->link_down_work);
7867 		}
7868 	}
7869 }
7870 
7871 static const char * const fm_config_txt[] = {
7872 [0] =
7873 	"BadHeadDist: Distance violation between two head flits",
7874 [1] =
7875 	"BadTailDist: Distance violation between two tail flits",
7876 [2] =
7877 	"BadCtrlDist: Distance violation between two credit control flits",
7878 [3] =
7879 	"BadCrdAck: Credits return for unsupported VL",
7880 [4] =
7881 	"UnsupportedVLMarker: Received VL Marker",
7882 [5] =
7883 	"BadPreempt: Exceeded the preemption nesting level",
7884 [6] =
7885 	"BadControlFlit: Received unsupported control flit",
7886 /* no 7 */
7887 [8] =
7888 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7889 };
7890 
7891 static const char * const port_rcv_txt[] = {
7892 [1] =
7893 	"BadPktLen: Illegal PktLen",
7894 [2] =
7895 	"PktLenTooLong: Packet longer than PktLen",
7896 [3] =
7897 	"PktLenTooShort: Packet shorter than PktLen",
7898 [4] =
7899 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7900 [5] =
7901 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7902 [6] =
7903 	"BadL2: Illegal L2 opcode",
7904 [7] =
7905 	"BadSC: Unsupported SC",
7906 [9] =
7907 	"BadRC: Illegal RC",
7908 [11] =
7909 	"PreemptError: Preempting with same VL",
7910 [12] =
7911 	"PreemptVL15: Preempting a VL15 packet",
7912 };
7913 
7914 #define OPA_LDR_FMCONFIG_OFFSET 16
7915 #define OPA_LDR_PORTRCV_OFFSET 0
7916 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7917 {
7918 	u64 info, hdr0, hdr1;
7919 	const char *extra;
7920 	char buf[96];
7921 	struct hfi1_pportdata *ppd = dd->pport;
7922 	u8 lcl_reason = 0;
7923 	int do_bounce = 0;
7924 
7925 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7926 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7927 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7928 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7929 			/* set status bit */
7930 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7931 		}
7932 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7933 	}
7934 
7935 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7936 		struct hfi1_pportdata *ppd = dd->pport;
7937 		/* this counter saturates at (2^32) - 1 */
7938 		if (ppd->link_downed < (u32)UINT_MAX)
7939 			ppd->link_downed++;
7940 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7941 	}
7942 
7943 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7944 		u8 reason_valid = 1;
7945 
7946 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7947 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7948 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7949 			/* set status bit */
7950 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7951 		}
7952 		switch (info) {
7953 		case 0:
7954 		case 1:
7955 		case 2:
7956 		case 3:
7957 		case 4:
7958 		case 5:
7959 		case 6:
7960 			extra = fm_config_txt[info];
7961 			break;
7962 		case 8:
7963 			extra = fm_config_txt[info];
7964 			if (ppd->port_error_action &
7965 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7966 				do_bounce = 1;
7967 				/*
7968 				 * lcl_reason cannot be derived from info
7969 				 * for this error
7970 				 */
7971 				lcl_reason =
7972 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7973 			}
7974 			break;
7975 		default:
7976 			reason_valid = 0;
7977 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7978 			extra = buf;
7979 			break;
7980 		}
7981 
7982 		if (reason_valid && !do_bounce) {
7983 			do_bounce = ppd->port_error_action &
7984 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7985 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7986 		}
7987 
7988 		/* just report this */
7989 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7990 					extra);
7991 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7992 	}
7993 
7994 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7995 		u8 reason_valid = 1;
7996 
7997 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7998 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7999 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
8000 		if (!(dd->err_info_rcvport.status_and_code &
8001 		      OPA_EI_STATUS_SMASK)) {
8002 			dd->err_info_rcvport.status_and_code =
8003 				info & OPA_EI_CODE_SMASK;
8004 			/* set status bit */
8005 			dd->err_info_rcvport.status_and_code |=
8006 				OPA_EI_STATUS_SMASK;
8007 			/*
8008 			 * save first 2 flits in the packet that caused
8009 			 * the error
8010 			 */
8011 			dd->err_info_rcvport.packet_flit1 = hdr0;
8012 			dd->err_info_rcvport.packet_flit2 = hdr1;
8013 		}
8014 		switch (info) {
8015 		case 1:
8016 		case 2:
8017 		case 3:
8018 		case 4:
8019 		case 5:
8020 		case 6:
8021 		case 7:
8022 		case 9:
8023 		case 11:
8024 		case 12:
8025 			extra = port_rcv_txt[info];
8026 			break;
8027 		default:
8028 			reason_valid = 0;
8029 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8030 			extra = buf;
8031 			break;
8032 		}
8033 
8034 		if (reason_valid && !do_bounce) {
8035 			do_bounce = ppd->port_error_action &
8036 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8037 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8038 		}
8039 
8040 		/* just report this */
8041 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8042 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8043 					extra, hdr0, hdr1);
8044 
8045 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8046 	}
8047 
8048 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8049 		/* informative only */
8050 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8051 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8052 	}
8053 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8054 		/* informative only */
8055 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8056 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8057 	}
8058 
8059 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8060 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8061 
8062 	/* report any remaining errors */
8063 	if (reg)
8064 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8065 					dcc_err_string(buf, sizeof(buf), reg));
8066 
8067 	if (lcl_reason == 0)
8068 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8069 
8070 	if (do_bounce) {
8071 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8072 					__func__);
8073 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8074 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8075 	}
8076 }
8077 
8078 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8079 {
8080 	char buf[96];
8081 
8082 	dd_dev_info(dd, "LCB Error: %s\n",
8083 		    lcb_err_string(buf, sizeof(buf), reg));
8084 }
8085 
8086 /*
8087  * CCE block DC interrupt.  Source is < 8.
8088  */
8089 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8090 {
8091 	const struct err_reg_info *eri = &dc_errs[source];
8092 
8093 	if (eri->handler) {
8094 		interrupt_clear_down(dd, 0, eri);
8095 	} else if (source == 3 /* dc_lbm_int */) {
8096 		/*
8097 		 * This indicates that a parity error has occurred on the
8098 		 * address/control lines presented to the LBM.  The error
8099 		 * is a single pulse, there is no associated error flag,
8100 		 * and it is non-maskable.  This is because if a parity
8101 		 * error occurs on the request the request is dropped.
8102 		 * This should never occur, but it is nice to know if it
8103 		 * ever does.
8104 		 */
8105 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8106 	} else {
8107 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8108 	}
8109 }
8110 
8111 /*
8112  * TX block send credit interrupt.  Source is < 160.
8113  */
8114 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8115 {
8116 	sc_group_release_update(dd, source);
8117 }
8118 
8119 /*
8120  * TX block SDMA interrupt.  Source is < 48.
8121  *
8122  * SDMA interrupts are grouped by type:
8123  *
8124  *	 0 -  N-1 = SDma
8125  *	 N - 2N-1 = SDmaProgress
8126  *	2N - 3N-1 = SDmaIdle
8127  */
8128 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8129 {
8130 	/* what interrupt */
8131 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8132 	/* which engine */
8133 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8134 
8135 #ifdef CONFIG_SDMA_VERBOSITY
8136 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8137 		   slashstrip(__FILE__), __LINE__, __func__);
8138 	sdma_dumpstate(&dd->per_sdma[which]);
8139 #endif
8140 
8141 	if (likely(what < 3 && which < dd->num_sdma)) {
8142 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8143 	} else {
8144 		/* should not happen */
8145 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8146 	}
8147 }
8148 
8149 /**
8150  * is_rcv_avail_int() - User receive context available IRQ handler
8151  * @dd: valid dd
8152  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8153  *
8154  * RX block receive available interrupt.  Source is < 160.
8155  *
8156  * This is the general interrupt handler for user (PSM) receive contexts,
8157  * and can only be used for non-threaded IRQs.
8158  */
8159 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8160 {
8161 	struct hfi1_ctxtdata *rcd;
8162 	char *err_detail;
8163 
8164 	if (likely(source < dd->num_rcv_contexts)) {
8165 		rcd = hfi1_rcd_get_by_index(dd, source);
8166 		if (rcd) {
8167 			handle_user_interrupt(rcd);
8168 			hfi1_rcd_put(rcd);
8169 			return;	/* OK */
8170 		}
8171 		/* received an interrupt, but no rcd */
8172 		err_detail = "dataless";
8173 	} else {
8174 		/* received an interrupt, but are not using that context */
8175 		err_detail = "out of range";
8176 	}
8177 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8178 		   err_detail, source);
8179 }
8180 
8181 /**
8182  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8183  * @dd: valid dd
8184  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8185  *
8186  * RX block receive urgent interrupt.  Source is < 160.
8187  *
8188  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8189  */
8190 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8191 {
8192 	struct hfi1_ctxtdata *rcd;
8193 	char *err_detail;
8194 
8195 	if (likely(source < dd->num_rcv_contexts)) {
8196 		rcd = hfi1_rcd_get_by_index(dd, source);
8197 		if (rcd) {
8198 			handle_user_interrupt(rcd);
8199 			hfi1_rcd_put(rcd);
8200 			return;	/* OK */
8201 		}
8202 		/* received an interrupt, but no rcd */
8203 		err_detail = "dataless";
8204 	} else {
8205 		/* received an interrupt, but are not using that context */
8206 		err_detail = "out of range";
8207 	}
8208 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8209 		   err_detail, source);
8210 }
8211 
8212 /*
8213  * Reserved range interrupt.  Should not be called in normal operation.
8214  */
8215 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8216 {
8217 	char name[64];
8218 
8219 	dd_dev_err(dd, "unexpected %s interrupt\n",
8220 		   is_reserved_name(name, sizeof(name), source));
8221 }
8222 
8223 static const struct is_table is_table[] = {
8224 /*
8225  * start		 end
8226  *				name func		interrupt func
8227  */
8228 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8229 				is_misc_err_name,	is_misc_err_int },
8230 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8231 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8232 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8233 				is_sendctxt_err_name,	is_sendctxt_err_int },
8234 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8235 				is_sdma_eng_name,	is_sdma_eng_int },
8236 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8237 				is_various_name,	is_various_int },
8238 { IS_DC_START,	     IS_DC_END,
8239 				is_dc_name,		is_dc_int },
8240 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8241 				is_rcv_avail_name,	is_rcv_avail_int },
8242 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8243 				is_rcv_urgent_name,	is_rcv_urgent_int },
8244 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8245 				is_send_credit_name,	is_send_credit_int},
8246 { IS_RESERVED_START,     IS_RESERVED_END,
8247 				is_reserved_name,	is_reserved_int},
8248 };
8249 
8250 /*
8251  * Interrupt source interrupt - called when the given source has an interrupt.
8252  * Source is a bit index into an array of 64-bit integers.
8253  */
8254 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8255 {
8256 	const struct is_table *entry;
8257 
8258 	/* avoids a double compare by walking the table in-order */
8259 	for (entry = &is_table[0]; entry->is_name; entry++) {
8260 		if (source <= entry->end) {
8261 			trace_hfi1_interrupt(dd, entry, source);
8262 			entry->is_int(dd, source - entry->start);
8263 			return;
8264 		}
8265 	}
8266 	/* fell off the end */
8267 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8268 }
8269 
8270 /**
8271  * gerneral_interrupt() -  General interrupt handler
8272  * @irq: MSIx IRQ vector
8273  * @data: hfi1 devdata
8274  *
8275  * This is able to correctly handle all non-threaded interrupts.  Receive
8276  * context DATA IRQs are threaded and are not supported by this handler.
8277  *
8278  */
8279 irqreturn_t general_interrupt(int irq, void *data)
8280 {
8281 	struct hfi1_devdata *dd = data;
8282 	u64 regs[CCE_NUM_INT_CSRS];
8283 	u32 bit;
8284 	int i;
8285 	irqreturn_t handled = IRQ_NONE;
8286 
8287 	this_cpu_inc(*dd->int_counter);
8288 
8289 	/* phase 1: scan and clear all handled interrupts */
8290 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8291 		if (dd->gi_mask[i] == 0) {
8292 			regs[i] = 0;	/* used later */
8293 			continue;
8294 		}
8295 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8296 				dd->gi_mask[i];
8297 		/* only clear if anything is set */
8298 		if (regs[i])
8299 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8300 	}
8301 
8302 	/* phase 2: call the appropriate handler */
8303 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8304 			 CCE_NUM_INT_CSRS * 64) {
8305 		is_interrupt(dd, bit);
8306 		handled = IRQ_HANDLED;
8307 	}
8308 
8309 	return handled;
8310 }
8311 
8312 irqreturn_t sdma_interrupt(int irq, void *data)
8313 {
8314 	struct sdma_engine *sde = data;
8315 	struct hfi1_devdata *dd = sde->dd;
8316 	u64 status;
8317 
8318 #ifdef CONFIG_SDMA_VERBOSITY
8319 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8320 		   slashstrip(__FILE__), __LINE__, __func__);
8321 	sdma_dumpstate(sde);
8322 #endif
8323 
8324 	this_cpu_inc(*dd->int_counter);
8325 
8326 	/* This read_csr is really bad in the hot path */
8327 	status = read_csr(dd,
8328 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8329 			  & sde->imask;
8330 	if (likely(status)) {
8331 		/* clear the interrupt(s) */
8332 		write_csr(dd,
8333 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8334 			  status);
8335 
8336 		/* handle the interrupt(s) */
8337 		sdma_engine_interrupt(sde, status);
8338 	} else {
8339 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8340 					sde->this_idx);
8341 	}
8342 	return IRQ_HANDLED;
8343 }
8344 
8345 /*
8346  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8347  * to insure that the write completed.  This does NOT guarantee that
8348  * queued DMA writes to memory from the chip are pushed.
8349  */
8350 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8351 {
8352 	struct hfi1_devdata *dd = rcd->dd;
8353 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8354 
8355 	mmiowb();	/* make sure everything before is written */
8356 	write_csr(dd, addr, rcd->imask);
8357 	/* force the above write on the chip and get a value back */
8358 	(void)read_csr(dd, addr);
8359 }
8360 
8361 /* force the receive interrupt */
8362 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8363 {
8364 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8365 }
8366 
8367 /*
8368  * Return non-zero if a packet is present.
8369  *
8370  * This routine is called when rechecking for packets after the RcvAvail
8371  * interrupt has been cleared down.  First, do a quick check of memory for
8372  * a packet present.  If not found, use an expensive CSR read of the context
8373  * tail to determine the actual tail.  The CSR read is necessary because there
8374  * is no method to push pending DMAs to memory other than an interrupt and we
8375  * are trying to determine if we need to force an interrupt.
8376  */
8377 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8378 {
8379 	u32 tail;
8380 	int present;
8381 
8382 	if (!rcd->rcvhdrtail_kvaddr)
8383 		present = (rcd->seq_cnt ==
8384 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8385 	else /* is RDMA rtail */
8386 		present = (rcd->head != get_rcvhdrtail(rcd));
8387 
8388 	if (present)
8389 		return 1;
8390 
8391 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8392 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8393 	return rcd->head != tail;
8394 }
8395 
8396 /*
8397  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8398  * This routine will try to handle packets immediately (latency), but if
8399  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8400  * chip receive interrupt is *not* cleared down until this or the thread (if
8401  * invoked) is finished.  The intent is to avoid extra interrupts while we
8402  * are processing packets anyway.
8403  */
8404 irqreturn_t receive_context_interrupt(int irq, void *data)
8405 {
8406 	struct hfi1_ctxtdata *rcd = data;
8407 	struct hfi1_devdata *dd = rcd->dd;
8408 	int disposition;
8409 	int present;
8410 
8411 	trace_hfi1_receive_interrupt(dd, rcd);
8412 	this_cpu_inc(*dd->int_counter);
8413 	aspm_ctx_disable(rcd);
8414 
8415 	/* receive interrupt remains blocked while processing packets */
8416 	disposition = rcd->do_interrupt(rcd, 0);
8417 
8418 	/*
8419 	 * Too many packets were seen while processing packets in this
8420 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8421 	 * remains blocked.
8422 	 */
8423 	if (disposition == RCV_PKT_LIMIT)
8424 		return IRQ_WAKE_THREAD;
8425 
8426 	/*
8427 	 * The packet processor detected no more packets.  Clear the receive
8428 	 * interrupt and recheck for a packet packet that may have arrived
8429 	 * after the previous check and interrupt clear.  If a packet arrived,
8430 	 * force another interrupt.
8431 	 */
8432 	clear_recv_intr(rcd);
8433 	present = check_packet_present(rcd);
8434 	if (present)
8435 		force_recv_intr(rcd);
8436 
8437 	return IRQ_HANDLED;
8438 }
8439 
8440 /*
8441  * Receive packet thread handler.  This expects to be invoked with the
8442  * receive interrupt still blocked.
8443  */
8444 irqreturn_t receive_context_thread(int irq, void *data)
8445 {
8446 	struct hfi1_ctxtdata *rcd = data;
8447 	int present;
8448 
8449 	/* receive interrupt is still blocked from the IRQ handler */
8450 	(void)rcd->do_interrupt(rcd, 1);
8451 
8452 	/*
8453 	 * The packet processor will only return if it detected no more
8454 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8455 	 * recheck for a packet that may have arrived after the previous
8456 	 * check and the interrupt clear.  If a packet arrived, force another
8457 	 * interrupt.
8458 	 */
8459 	local_irq_disable();
8460 	clear_recv_intr(rcd);
8461 	present = check_packet_present(rcd);
8462 	if (present)
8463 		force_recv_intr(rcd);
8464 	local_irq_enable();
8465 
8466 	return IRQ_HANDLED;
8467 }
8468 
8469 /* ========================================================================= */
8470 
8471 u32 read_physical_state(struct hfi1_devdata *dd)
8472 {
8473 	u64 reg;
8474 
8475 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8476 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8477 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8478 }
8479 
8480 u32 read_logical_state(struct hfi1_devdata *dd)
8481 {
8482 	u64 reg;
8483 
8484 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8485 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8486 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8487 }
8488 
8489 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8490 {
8491 	u64 reg;
8492 
8493 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8494 	/* clear current state, set new state */
8495 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8496 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8497 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8498 }
8499 
8500 /*
8501  * Use the 8051 to read a LCB CSR.
8502  */
8503 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8504 {
8505 	u32 regno;
8506 	int ret;
8507 
8508 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8509 		if (acquire_lcb_access(dd, 0) == 0) {
8510 			*data = read_csr(dd, addr);
8511 			release_lcb_access(dd, 0);
8512 			return 0;
8513 		}
8514 		return -EBUSY;
8515 	}
8516 
8517 	/* register is an index of LCB registers: (offset - base) / 8 */
8518 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8519 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8520 	if (ret != HCMD_SUCCESS)
8521 		return -EBUSY;
8522 	return 0;
8523 }
8524 
8525 /*
8526  * Provide a cache for some of the LCB registers in case the LCB is
8527  * unavailable.
8528  * (The LCB is unavailable in certain link states, for example.)
8529  */
8530 struct lcb_datum {
8531 	u32 off;
8532 	u64 val;
8533 };
8534 
8535 static struct lcb_datum lcb_cache[] = {
8536 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8537 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8538 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8539 };
8540 
8541 static void update_lcb_cache(struct hfi1_devdata *dd)
8542 {
8543 	int i;
8544 	int ret;
8545 	u64 val;
8546 
8547 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8548 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8549 
8550 		/* Update if we get good data */
8551 		if (likely(ret != -EBUSY))
8552 			lcb_cache[i].val = val;
8553 	}
8554 }
8555 
8556 static int read_lcb_cache(u32 off, u64 *val)
8557 {
8558 	int i;
8559 
8560 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8561 		if (lcb_cache[i].off == off) {
8562 			*val = lcb_cache[i].val;
8563 			return 0;
8564 		}
8565 	}
8566 
8567 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8568 	return -1;
8569 }
8570 
8571 /*
8572  * Read an LCB CSR.  Access may not be in host control, so check.
8573  * Return 0 on success, -EBUSY on failure.
8574  */
8575 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8576 {
8577 	struct hfi1_pportdata *ppd = dd->pport;
8578 
8579 	/* if up, go through the 8051 for the value */
8580 	if (ppd->host_link_state & HLS_UP)
8581 		return read_lcb_via_8051(dd, addr, data);
8582 	/* if going up or down, check the cache, otherwise, no access */
8583 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8584 		if (read_lcb_cache(addr, data))
8585 			return -EBUSY;
8586 		return 0;
8587 	}
8588 
8589 	/* otherwise, host has access */
8590 	*data = read_csr(dd, addr);
8591 	return 0;
8592 }
8593 
8594 /*
8595  * Use the 8051 to write a LCB CSR.
8596  */
8597 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8598 {
8599 	u32 regno;
8600 	int ret;
8601 
8602 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8603 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8604 		if (acquire_lcb_access(dd, 0) == 0) {
8605 			write_csr(dd, addr, data);
8606 			release_lcb_access(dd, 0);
8607 			return 0;
8608 		}
8609 		return -EBUSY;
8610 	}
8611 
8612 	/* register is an index of LCB registers: (offset - base) / 8 */
8613 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8614 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8615 	if (ret != HCMD_SUCCESS)
8616 		return -EBUSY;
8617 	return 0;
8618 }
8619 
8620 /*
8621  * Write an LCB CSR.  Access may not be in host control, so check.
8622  * Return 0 on success, -EBUSY on failure.
8623  */
8624 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8625 {
8626 	struct hfi1_pportdata *ppd = dd->pport;
8627 
8628 	/* if up, go through the 8051 for the value */
8629 	if (ppd->host_link_state & HLS_UP)
8630 		return write_lcb_via_8051(dd, addr, data);
8631 	/* if going up or down, no access */
8632 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8633 		return -EBUSY;
8634 	/* otherwise, host has access */
8635 	write_csr(dd, addr, data);
8636 	return 0;
8637 }
8638 
8639 /*
8640  * Returns:
8641  *	< 0 = Linux error, not able to get access
8642  *	> 0 = 8051 command RETURN_CODE
8643  */
8644 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8645 			   u64 *out_data)
8646 {
8647 	u64 reg, completed;
8648 	int return_code;
8649 	unsigned long timeout;
8650 
8651 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8652 
8653 	mutex_lock(&dd->dc8051_lock);
8654 
8655 	/* We can't send any commands to the 8051 if it's in reset */
8656 	if (dd->dc_shutdown) {
8657 		return_code = -ENODEV;
8658 		goto fail;
8659 	}
8660 
8661 	/*
8662 	 * If an 8051 host command timed out previously, then the 8051 is
8663 	 * stuck.
8664 	 *
8665 	 * On first timeout, attempt to reset and restart the entire DC
8666 	 * block (including 8051). (Is this too big of a hammer?)
8667 	 *
8668 	 * If the 8051 times out a second time, the reset did not bring it
8669 	 * back to healthy life. In that case, fail any subsequent commands.
8670 	 */
8671 	if (dd->dc8051_timed_out) {
8672 		if (dd->dc8051_timed_out > 1) {
8673 			dd_dev_err(dd,
8674 				   "Previous 8051 host command timed out, skipping command %u\n",
8675 				   type);
8676 			return_code = -ENXIO;
8677 			goto fail;
8678 		}
8679 		_dc_shutdown(dd);
8680 		_dc_start(dd);
8681 	}
8682 
8683 	/*
8684 	 * If there is no timeout, then the 8051 command interface is
8685 	 * waiting for a command.
8686 	 */
8687 
8688 	/*
8689 	 * When writing a LCB CSR, out_data contains the full value to
8690 	 * to be written, while in_data contains the relative LCB
8691 	 * address in 7:0.  Do the work here, rather than the caller,
8692 	 * of distrubting the write data to where it needs to go:
8693 	 *
8694 	 * Write data
8695 	 *   39:00 -> in_data[47:8]
8696 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8697 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8698 	 */
8699 	if (type == HCMD_WRITE_LCB_CSR) {
8700 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8701 		/* must preserve COMPLETED - it is tied to hardware */
8702 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8703 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8704 		reg |= ((((*out_data) >> 40) & 0xff) <<
8705 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8706 		      | ((((*out_data) >> 48) & 0xffff) <<
8707 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8708 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8709 	}
8710 
8711 	/*
8712 	 * Do two writes: the first to stabilize the type and req_data, the
8713 	 * second to activate.
8714 	 */
8715 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8716 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8717 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8718 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8719 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8720 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8721 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8722 
8723 	/* wait for completion, alternate: interrupt */
8724 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8725 	while (1) {
8726 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8727 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8728 		if (completed)
8729 			break;
8730 		if (time_after(jiffies, timeout)) {
8731 			dd->dc8051_timed_out++;
8732 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8733 			if (out_data)
8734 				*out_data = 0;
8735 			return_code = -ETIMEDOUT;
8736 			goto fail;
8737 		}
8738 		udelay(2);
8739 	}
8740 
8741 	if (out_data) {
8742 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8743 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8744 		if (type == HCMD_READ_LCB_CSR) {
8745 			/* top 16 bits are in a different register */
8746 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8747 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8748 				<< (48
8749 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8750 		}
8751 	}
8752 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8753 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8754 	dd->dc8051_timed_out = 0;
8755 	/*
8756 	 * Clear command for next user.
8757 	 */
8758 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8759 
8760 fail:
8761 	mutex_unlock(&dd->dc8051_lock);
8762 	return return_code;
8763 }
8764 
8765 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8766 {
8767 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8768 }
8769 
8770 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8771 		     u8 lane_id, u32 config_data)
8772 {
8773 	u64 data;
8774 	int ret;
8775 
8776 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8777 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8778 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8779 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8780 	if (ret != HCMD_SUCCESS) {
8781 		dd_dev_err(dd,
8782 			   "load 8051 config: field id %d, lane %d, err %d\n",
8783 			   (int)field_id, (int)lane_id, ret);
8784 	}
8785 	return ret;
8786 }
8787 
8788 /*
8789  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8790  * set the result, even on error.
8791  * Return 0 on success, -errno on failure
8792  */
8793 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8794 		     u32 *result)
8795 {
8796 	u64 big_data;
8797 	u32 addr;
8798 	int ret;
8799 
8800 	/* address start depends on the lane_id */
8801 	if (lane_id < 4)
8802 		addr = (4 * NUM_GENERAL_FIELDS)
8803 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8804 	else
8805 		addr = 0;
8806 	addr += field_id * 4;
8807 
8808 	/* read is in 8-byte chunks, hardware will truncate the address down */
8809 	ret = read_8051_data(dd, addr, 8, &big_data);
8810 
8811 	if (ret == 0) {
8812 		/* extract the 4 bytes we want */
8813 		if (addr & 0x4)
8814 			*result = (u32)(big_data >> 32);
8815 		else
8816 			*result = (u32)big_data;
8817 	} else {
8818 		*result = 0;
8819 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8820 			   __func__, lane_id, field_id);
8821 	}
8822 
8823 	return ret;
8824 }
8825 
8826 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8827 			      u8 continuous)
8828 {
8829 	u32 frame;
8830 
8831 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8832 		| power_management << POWER_MANAGEMENT_SHIFT;
8833 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8834 				GENERAL_CONFIG, frame);
8835 }
8836 
8837 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8838 				 u16 vl15buf, u8 crc_sizes)
8839 {
8840 	u32 frame;
8841 
8842 	frame = (u32)vau << VAU_SHIFT
8843 		| (u32)z << Z_SHIFT
8844 		| (u32)vcu << VCU_SHIFT
8845 		| (u32)vl15buf << VL15BUF_SHIFT
8846 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8847 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8848 				GENERAL_CONFIG, frame);
8849 }
8850 
8851 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8852 				    u8 *flag_bits, u16 *link_widths)
8853 {
8854 	u32 frame;
8855 
8856 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8857 			 &frame);
8858 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8859 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8860 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8861 }
8862 
8863 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8864 				    u8 misc_bits,
8865 				    u8 flag_bits,
8866 				    u16 link_widths)
8867 {
8868 	u32 frame;
8869 
8870 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8871 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8872 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8873 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8874 		     frame);
8875 }
8876 
8877 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8878 				 u8 device_rev)
8879 {
8880 	u32 frame;
8881 
8882 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8883 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8884 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8885 }
8886 
8887 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8888 				  u8 *device_rev)
8889 {
8890 	u32 frame;
8891 
8892 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8893 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8894 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8895 			& REMOTE_DEVICE_REV_MASK;
8896 }
8897 
8898 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8899 {
8900 	u32 frame;
8901 	u32 mask;
8902 
8903 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8904 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8905 	/* Clear, then set field */
8906 	frame &= ~mask;
8907 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8908 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8909 				frame);
8910 }
8911 
8912 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8913 		      u8 *ver_patch)
8914 {
8915 	u32 frame;
8916 
8917 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8918 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8919 		STS_FM_VERSION_MAJOR_MASK;
8920 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8921 		STS_FM_VERSION_MINOR_MASK;
8922 
8923 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8924 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8925 		STS_FM_VERSION_PATCH_MASK;
8926 }
8927 
8928 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8929 			       u8 *continuous)
8930 {
8931 	u32 frame;
8932 
8933 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8934 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8935 					& POWER_MANAGEMENT_MASK;
8936 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8937 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8938 }
8939 
8940 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8941 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8942 {
8943 	u32 frame;
8944 
8945 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8946 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8947 	*z = (frame >> Z_SHIFT) & Z_MASK;
8948 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8949 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8950 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8951 }
8952 
8953 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8954 				      u8 *remote_tx_rate,
8955 				      u16 *link_widths)
8956 {
8957 	u32 frame;
8958 
8959 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8960 			 &frame);
8961 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8962 				& REMOTE_TX_RATE_MASK;
8963 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8964 }
8965 
8966 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8967 {
8968 	u32 frame;
8969 
8970 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8971 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8972 }
8973 
8974 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8975 {
8976 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8977 }
8978 
8979 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8980 {
8981 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8982 }
8983 
8984 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8985 {
8986 	u32 frame;
8987 	int ret;
8988 
8989 	*link_quality = 0;
8990 	if (dd->pport->host_link_state & HLS_UP) {
8991 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8992 				       &frame);
8993 		if (ret == 0)
8994 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8995 						& LINK_QUALITY_MASK;
8996 	}
8997 }
8998 
8999 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
9000 {
9001 	u32 frame;
9002 
9003 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9004 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9005 }
9006 
9007 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9008 {
9009 	u32 frame;
9010 
9011 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9012 	*ldr = (frame & 0xff);
9013 }
9014 
9015 static int read_tx_settings(struct hfi1_devdata *dd,
9016 			    u8 *enable_lane_tx,
9017 			    u8 *tx_polarity_inversion,
9018 			    u8 *rx_polarity_inversion,
9019 			    u8 *max_rate)
9020 {
9021 	u32 frame;
9022 	int ret;
9023 
9024 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9025 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9026 				& ENABLE_LANE_TX_MASK;
9027 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9028 				& TX_POLARITY_INVERSION_MASK;
9029 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9030 				& RX_POLARITY_INVERSION_MASK;
9031 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9032 	return ret;
9033 }
9034 
9035 static int write_tx_settings(struct hfi1_devdata *dd,
9036 			     u8 enable_lane_tx,
9037 			     u8 tx_polarity_inversion,
9038 			     u8 rx_polarity_inversion,
9039 			     u8 max_rate)
9040 {
9041 	u32 frame;
9042 
9043 	/* no need to mask, all variable sizes match field widths */
9044 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9045 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9046 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9047 		| max_rate << MAX_RATE_SHIFT;
9048 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9049 }
9050 
9051 /*
9052  * Read an idle LCB message.
9053  *
9054  * Returns 0 on success, -EINVAL on error
9055  */
9056 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9057 {
9058 	int ret;
9059 
9060 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9061 	if (ret != HCMD_SUCCESS) {
9062 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9063 			   (u32)type, ret);
9064 		return -EINVAL;
9065 	}
9066 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9067 	/* return only the payload as we already know the type */
9068 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9069 	return 0;
9070 }
9071 
9072 /*
9073  * Read an idle SMA message.  To be done in response to a notification from
9074  * the 8051.
9075  *
9076  * Returns 0 on success, -EINVAL on error
9077  */
9078 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9079 {
9080 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9081 				 data);
9082 }
9083 
9084 /*
9085  * Send an idle LCB message.
9086  *
9087  * Returns 0 on success, -EINVAL on error
9088  */
9089 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9090 {
9091 	int ret;
9092 
9093 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9094 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9095 	if (ret != HCMD_SUCCESS) {
9096 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9097 			   data, ret);
9098 		return -EINVAL;
9099 	}
9100 	return 0;
9101 }
9102 
9103 /*
9104  * Send an idle SMA message.
9105  *
9106  * Returns 0 on success, -EINVAL on error
9107  */
9108 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9109 {
9110 	u64 data;
9111 
9112 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9113 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9114 	return send_idle_message(dd, data);
9115 }
9116 
9117 /*
9118  * Initialize the LCB then do a quick link up.  This may or may not be
9119  * in loopback.
9120  *
9121  * return 0 on success, -errno on error
9122  */
9123 static int do_quick_linkup(struct hfi1_devdata *dd)
9124 {
9125 	int ret;
9126 
9127 	lcb_shutdown(dd, 0);
9128 
9129 	if (loopback) {
9130 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9131 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9132 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9133 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9134 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9135 	}
9136 
9137 	/* start the LCBs */
9138 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9139 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9140 
9141 	/* simulator only loopback steps */
9142 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9143 		/* LCB_CFG_RUN.EN = 1 */
9144 		write_csr(dd, DC_LCB_CFG_RUN,
9145 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9146 
9147 		ret = wait_link_transfer_active(dd, 10);
9148 		if (ret)
9149 			return ret;
9150 
9151 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9152 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9153 	}
9154 
9155 	if (!loopback) {
9156 		/*
9157 		 * When doing quick linkup and not in loopback, both
9158 		 * sides must be done with LCB set-up before either
9159 		 * starts the quick linkup.  Put a delay here so that
9160 		 * both sides can be started and have a chance to be
9161 		 * done with LCB set up before resuming.
9162 		 */
9163 		dd_dev_err(dd,
9164 			   "Pausing for peer to be finished with LCB set up\n");
9165 		msleep(5000);
9166 		dd_dev_err(dd, "Continuing with quick linkup\n");
9167 	}
9168 
9169 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9170 	set_8051_lcb_access(dd);
9171 
9172 	/*
9173 	 * State "quick" LinkUp request sets the physical link state to
9174 	 * LinkUp without a verify capability sequence.
9175 	 * This state is in simulator v37 and later.
9176 	 */
9177 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9178 	if (ret != HCMD_SUCCESS) {
9179 		dd_dev_err(dd,
9180 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9181 			   __func__, ret);
9182 
9183 		set_host_lcb_access(dd);
9184 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9185 
9186 		if (ret >= 0)
9187 			ret = -EINVAL;
9188 		return ret;
9189 	}
9190 
9191 	return 0; /* success */
9192 }
9193 
9194 /*
9195  * Do all special steps to set up loopback.
9196  */
9197 static int init_loopback(struct hfi1_devdata *dd)
9198 {
9199 	dd_dev_info(dd, "Entering loopback mode\n");
9200 
9201 	/* all loopbacks should disable self GUID check */
9202 	write_csr(dd, DC_DC8051_CFG_MODE,
9203 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9204 
9205 	/*
9206 	 * The simulator has only one loopback option - LCB.  Switch
9207 	 * to that option, which includes quick link up.
9208 	 *
9209 	 * Accept all valid loopback values.
9210 	 */
9211 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9212 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9213 	     loopback == LOOPBACK_CABLE)) {
9214 		loopback = LOOPBACK_LCB;
9215 		quick_linkup = 1;
9216 		return 0;
9217 	}
9218 
9219 	/*
9220 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9221 	 */
9222 	if (loopback == LOOPBACK_SERDES)
9223 		return 0;
9224 
9225 	/* LCB loopback - handled at poll time */
9226 	if (loopback == LOOPBACK_LCB) {
9227 		quick_linkup = 1; /* LCB is always quick linkup */
9228 
9229 		/* not supported in emulation due to emulation RTL changes */
9230 		if (dd->icode == ICODE_FPGA_EMULATION) {
9231 			dd_dev_err(dd,
9232 				   "LCB loopback not supported in emulation\n");
9233 			return -EINVAL;
9234 		}
9235 		return 0;
9236 	}
9237 
9238 	/* external cable loopback requires no extra steps */
9239 	if (loopback == LOOPBACK_CABLE)
9240 		return 0;
9241 
9242 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9243 	return -EINVAL;
9244 }
9245 
9246 /*
9247  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9248  * used in the Verify Capability link width attribute.
9249  */
9250 static u16 opa_to_vc_link_widths(u16 opa_widths)
9251 {
9252 	int i;
9253 	u16 result = 0;
9254 
9255 	static const struct link_bits {
9256 		u16 from;
9257 		u16 to;
9258 	} opa_link_xlate[] = {
9259 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9260 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9261 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9262 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9263 	};
9264 
9265 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9266 		if (opa_widths & opa_link_xlate[i].from)
9267 			result |= opa_link_xlate[i].to;
9268 	}
9269 	return result;
9270 }
9271 
9272 /*
9273  * Set link attributes before moving to polling.
9274  */
9275 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9276 {
9277 	struct hfi1_devdata *dd = ppd->dd;
9278 	u8 enable_lane_tx;
9279 	u8 tx_polarity_inversion;
9280 	u8 rx_polarity_inversion;
9281 	int ret;
9282 	u32 misc_bits = 0;
9283 	/* reset our fabric serdes to clear any lingering problems */
9284 	fabric_serdes_reset(dd);
9285 
9286 	/* set the local tx rate - need to read-modify-write */
9287 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9288 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9289 	if (ret)
9290 		goto set_local_link_attributes_fail;
9291 
9292 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9293 		/* set the tx rate to the fastest enabled */
9294 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9295 			ppd->local_tx_rate = 1;
9296 		else
9297 			ppd->local_tx_rate = 0;
9298 	} else {
9299 		/* set the tx rate to all enabled */
9300 		ppd->local_tx_rate = 0;
9301 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9302 			ppd->local_tx_rate |= 2;
9303 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9304 			ppd->local_tx_rate |= 1;
9305 	}
9306 
9307 	enable_lane_tx = 0xF; /* enable all four lanes */
9308 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9309 				rx_polarity_inversion, ppd->local_tx_rate);
9310 	if (ret != HCMD_SUCCESS)
9311 		goto set_local_link_attributes_fail;
9312 
9313 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9314 	if (ret != HCMD_SUCCESS) {
9315 		dd_dev_err(dd,
9316 			   "Failed to set host interface version, return 0x%x\n",
9317 			   ret);
9318 		goto set_local_link_attributes_fail;
9319 	}
9320 
9321 	/*
9322 	 * DC supports continuous updates.
9323 	 */
9324 	ret = write_vc_local_phy(dd,
9325 				 0 /* no power management */,
9326 				 1 /* continuous updates */);
9327 	if (ret != HCMD_SUCCESS)
9328 		goto set_local_link_attributes_fail;
9329 
9330 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9331 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9332 				    ppd->port_crc_mode_enabled);
9333 	if (ret != HCMD_SUCCESS)
9334 		goto set_local_link_attributes_fail;
9335 
9336 	/*
9337 	 * SerDes loopback init sequence requires
9338 	 * setting bit 0 of MISC_CONFIG_BITS
9339 	 */
9340 	if (loopback == LOOPBACK_SERDES)
9341 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9342 
9343 	/*
9344 	 * An external device configuration request is used to reset the LCB
9345 	 * to retry to obtain operational lanes when the first attempt is
9346 	 * unsuccesful.
9347 	 */
9348 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9349 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9350 
9351 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9352 				       opa_to_vc_link_widths(
9353 						ppd->link_width_enabled));
9354 	if (ret != HCMD_SUCCESS)
9355 		goto set_local_link_attributes_fail;
9356 
9357 	/* let peer know who we are */
9358 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9359 	if (ret == HCMD_SUCCESS)
9360 		return 0;
9361 
9362 set_local_link_attributes_fail:
9363 	dd_dev_err(dd,
9364 		   "Failed to set local link attributes, return 0x%x\n",
9365 		   ret);
9366 	return ret;
9367 }
9368 
9369 /*
9370  * Call this to start the link.
9371  * Do not do anything if the link is disabled.
9372  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9373  */
9374 int start_link(struct hfi1_pportdata *ppd)
9375 {
9376 	/*
9377 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9378 	 * error rate.  Needs to be done before starting the link.
9379 	 */
9380 	tune_serdes(ppd);
9381 
9382 	if (!ppd->driver_link_ready) {
9383 		dd_dev_info(ppd->dd,
9384 			    "%s: stopping link start because driver is not ready\n",
9385 			    __func__);
9386 		return 0;
9387 	}
9388 
9389 	/*
9390 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9391 	 * pkey table can be configured properly if the HFI unit is connected
9392 	 * to switch port with MgmtAllowed=NO
9393 	 */
9394 	clear_full_mgmt_pkey(ppd);
9395 
9396 	return set_link_state(ppd, HLS_DN_POLL);
9397 }
9398 
9399 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9400 {
9401 	struct hfi1_devdata *dd = ppd->dd;
9402 	u64 mask;
9403 	unsigned long timeout;
9404 
9405 	/*
9406 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9407 	 * effect of power up on plug-in. We ignore this false positive
9408 	 * interrupt until the module has finished powering up by waiting for
9409 	 * a minimum timeout of the module inrush initialization time of
9410 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9411 	 * module have stabilized.
9412 	 */
9413 	msleep(500);
9414 
9415 	/*
9416 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9417 	 */
9418 	timeout = jiffies + msecs_to_jiffies(2000);
9419 	while (1) {
9420 		mask = read_csr(dd, dd->hfi1_id ?
9421 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9422 		if (!(mask & QSFP_HFI0_INT_N))
9423 			break;
9424 		if (time_after(jiffies, timeout)) {
9425 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9426 				    __func__);
9427 			break;
9428 		}
9429 		udelay(2);
9430 	}
9431 }
9432 
9433 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9434 {
9435 	struct hfi1_devdata *dd = ppd->dd;
9436 	u64 mask;
9437 
9438 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9439 	if (enable) {
9440 		/*
9441 		 * Clear the status register to avoid an immediate interrupt
9442 		 * when we re-enable the IntN pin
9443 		 */
9444 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9445 			  QSFP_HFI0_INT_N);
9446 		mask |= (u64)QSFP_HFI0_INT_N;
9447 	} else {
9448 		mask &= ~(u64)QSFP_HFI0_INT_N;
9449 	}
9450 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9451 }
9452 
9453 int reset_qsfp(struct hfi1_pportdata *ppd)
9454 {
9455 	struct hfi1_devdata *dd = ppd->dd;
9456 	u64 mask, qsfp_mask;
9457 
9458 	/* Disable INT_N from triggering QSFP interrupts */
9459 	set_qsfp_int_n(ppd, 0);
9460 
9461 	/* Reset the QSFP */
9462 	mask = (u64)QSFP_HFI0_RESET_N;
9463 
9464 	qsfp_mask = read_csr(dd,
9465 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9466 	qsfp_mask &= ~mask;
9467 	write_csr(dd,
9468 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9469 
9470 	udelay(10);
9471 
9472 	qsfp_mask |= mask;
9473 	write_csr(dd,
9474 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9475 
9476 	wait_for_qsfp_init(ppd);
9477 
9478 	/*
9479 	 * Allow INT_N to trigger the QSFP interrupt to watch
9480 	 * for alarms and warnings
9481 	 */
9482 	set_qsfp_int_n(ppd, 1);
9483 
9484 	/*
9485 	 * After the reset, AOC transmitters are enabled by default. They need
9486 	 * to be turned off to complete the QSFP setup before they can be
9487 	 * enabled again.
9488 	 */
9489 	return set_qsfp_tx(ppd, 0);
9490 }
9491 
9492 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9493 					u8 *qsfp_interrupt_status)
9494 {
9495 	struct hfi1_devdata *dd = ppd->dd;
9496 
9497 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9498 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9499 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9500 			   __func__);
9501 
9502 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9503 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9504 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9505 			   __func__);
9506 
9507 	/*
9508 	 * The remaining alarms/warnings don't matter if the link is down.
9509 	 */
9510 	if (ppd->host_link_state & HLS_DOWN)
9511 		return 0;
9512 
9513 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9514 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9515 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9516 			   __func__);
9517 
9518 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9519 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9520 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9521 			   __func__);
9522 
9523 	/* Byte 2 is vendor specific */
9524 
9525 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9526 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9527 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9528 			   __func__);
9529 
9530 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9531 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9532 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9533 			   __func__);
9534 
9535 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9536 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9537 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9538 			   __func__);
9539 
9540 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9541 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9542 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9543 			   __func__);
9544 
9545 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9546 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9547 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9548 			   __func__);
9549 
9550 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9551 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9552 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9553 			   __func__);
9554 
9555 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9556 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9557 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9558 			   __func__);
9559 
9560 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9561 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9562 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9563 			   __func__);
9564 
9565 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9566 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9567 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9568 			   __func__);
9569 
9570 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9571 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9572 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9573 			   __func__);
9574 
9575 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9576 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9577 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9578 			   __func__);
9579 
9580 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9581 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9582 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9583 			   __func__);
9584 
9585 	/* Bytes 9-10 and 11-12 are reserved */
9586 	/* Bytes 13-15 are vendor specific */
9587 
9588 	return 0;
9589 }
9590 
9591 /* This routine will only be scheduled if the QSFP module present is asserted */
9592 void qsfp_event(struct work_struct *work)
9593 {
9594 	struct qsfp_data *qd;
9595 	struct hfi1_pportdata *ppd;
9596 	struct hfi1_devdata *dd;
9597 
9598 	qd = container_of(work, struct qsfp_data, qsfp_work);
9599 	ppd = qd->ppd;
9600 	dd = ppd->dd;
9601 
9602 	/* Sanity check */
9603 	if (!qsfp_mod_present(ppd))
9604 		return;
9605 
9606 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9607 		dd_dev_info(ppd->dd,
9608 			    "%s: stopping link start because link is disabled\n",
9609 			    __func__);
9610 		return;
9611 	}
9612 
9613 	/*
9614 	 * Turn DC back on after cable has been re-inserted. Up until
9615 	 * now, the DC has been in reset to save power.
9616 	 */
9617 	dc_start(dd);
9618 
9619 	if (qd->cache_refresh_required) {
9620 		set_qsfp_int_n(ppd, 0);
9621 
9622 		wait_for_qsfp_init(ppd);
9623 
9624 		/*
9625 		 * Allow INT_N to trigger the QSFP interrupt to watch
9626 		 * for alarms and warnings
9627 		 */
9628 		set_qsfp_int_n(ppd, 1);
9629 
9630 		start_link(ppd);
9631 	}
9632 
9633 	if (qd->check_interrupt_flags) {
9634 		u8 qsfp_interrupt_status[16] = {0,};
9635 
9636 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9637 				  &qsfp_interrupt_status[0], 16) != 16) {
9638 			dd_dev_info(dd,
9639 				    "%s: Failed to read status of QSFP module\n",
9640 				    __func__);
9641 		} else {
9642 			unsigned long flags;
9643 
9644 			handle_qsfp_error_conditions(
9645 					ppd, qsfp_interrupt_status);
9646 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9647 			ppd->qsfp_info.check_interrupt_flags = 0;
9648 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9649 					       flags);
9650 		}
9651 	}
9652 }
9653 
9654 void init_qsfp_int(struct hfi1_devdata *dd)
9655 {
9656 	struct hfi1_pportdata *ppd = dd->pport;
9657 	u64 qsfp_mask;
9658 
9659 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9660 	/* Clear current status to avoid spurious interrupts */
9661 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9662 		  qsfp_mask);
9663 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9664 		  qsfp_mask);
9665 
9666 	set_qsfp_int_n(ppd, 0);
9667 
9668 	/* Handle active low nature of INT_N and MODPRST_N pins */
9669 	if (qsfp_mod_present(ppd))
9670 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9671 	write_csr(dd,
9672 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9673 		  qsfp_mask);
9674 
9675 	/* Enable the appropriate QSFP IRQ source */
9676 	if (!dd->hfi1_id)
9677 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9678 	else
9679 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9680 }
9681 
9682 /*
9683  * Do a one-time initialize of the LCB block.
9684  */
9685 static void init_lcb(struct hfi1_devdata *dd)
9686 {
9687 	/* simulator does not correctly handle LCB cclk loopback, skip */
9688 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9689 		return;
9690 
9691 	/* the DC has been reset earlier in the driver load */
9692 
9693 	/* set LCB for cclk loopback on the port */
9694 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9695 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9696 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9697 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9698 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9699 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9700 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9701 }
9702 
9703 /*
9704  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9705  * on error.
9706  */
9707 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9708 {
9709 	int ret;
9710 	u8 status;
9711 
9712 	/*
9713 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9714 	 * not present
9715 	 */
9716 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9717 		return 0;
9718 
9719 	/* read byte 2, the status byte */
9720 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9721 	if (ret < 0)
9722 		return ret;
9723 	if (ret != 1)
9724 		return -EIO;
9725 
9726 	return 0; /* success */
9727 }
9728 
9729 /*
9730  * Values for QSFP retry.
9731  *
9732  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9733  * arrived at from experience on a large cluster.
9734  */
9735 #define MAX_QSFP_RETRIES 20
9736 #define QSFP_RETRY_WAIT 500 /* msec */
9737 
9738 /*
9739  * Try a QSFP read.  If it fails, schedule a retry for later.
9740  * Called on first link activation after driver load.
9741  */
9742 static void try_start_link(struct hfi1_pportdata *ppd)
9743 {
9744 	if (test_qsfp_read(ppd)) {
9745 		/* read failed */
9746 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9747 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9748 			return;
9749 		}
9750 		dd_dev_info(ppd->dd,
9751 			    "QSFP not responding, waiting and retrying %d\n",
9752 			    (int)ppd->qsfp_retry_count);
9753 		ppd->qsfp_retry_count++;
9754 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9755 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9756 		return;
9757 	}
9758 	ppd->qsfp_retry_count = 0;
9759 
9760 	start_link(ppd);
9761 }
9762 
9763 /*
9764  * Workqueue function to start the link after a delay.
9765  */
9766 void handle_start_link(struct work_struct *work)
9767 {
9768 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9769 						  start_link_work.work);
9770 	try_start_link(ppd);
9771 }
9772 
9773 int bringup_serdes(struct hfi1_pportdata *ppd)
9774 {
9775 	struct hfi1_devdata *dd = ppd->dd;
9776 	u64 guid;
9777 	int ret;
9778 
9779 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9780 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9781 
9782 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9783 	if (!guid) {
9784 		if (dd->base_guid)
9785 			guid = dd->base_guid + ppd->port - 1;
9786 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9787 	}
9788 
9789 	/* Set linkinit_reason on power up per OPA spec */
9790 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9791 
9792 	/* one-time init of the LCB */
9793 	init_lcb(dd);
9794 
9795 	if (loopback) {
9796 		ret = init_loopback(dd);
9797 		if (ret < 0)
9798 			return ret;
9799 	}
9800 
9801 	get_port_type(ppd);
9802 	if (ppd->port_type == PORT_TYPE_QSFP) {
9803 		set_qsfp_int_n(ppd, 0);
9804 		wait_for_qsfp_init(ppd);
9805 		set_qsfp_int_n(ppd, 1);
9806 	}
9807 
9808 	try_start_link(ppd);
9809 	return 0;
9810 }
9811 
9812 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9813 {
9814 	struct hfi1_devdata *dd = ppd->dd;
9815 
9816 	/*
9817 	 * Shut down the link and keep it down.   First turn off that the
9818 	 * driver wants to allow the link to be up (driver_link_ready).
9819 	 * Then make sure the link is not automatically restarted
9820 	 * (link_enabled).  Cancel any pending restart.  And finally
9821 	 * go offline.
9822 	 */
9823 	ppd->driver_link_ready = 0;
9824 	ppd->link_enabled = 0;
9825 
9826 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9827 	flush_delayed_work(&ppd->start_link_work);
9828 	cancel_delayed_work_sync(&ppd->start_link_work);
9829 
9830 	ppd->offline_disabled_reason =
9831 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9832 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9833 			     OPA_LINKDOWN_REASON_REBOOT);
9834 	set_link_state(ppd, HLS_DN_OFFLINE);
9835 
9836 	/* disable the port */
9837 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9838 }
9839 
9840 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9841 {
9842 	struct hfi1_pportdata *ppd;
9843 	int i;
9844 
9845 	ppd = (struct hfi1_pportdata *)(dd + 1);
9846 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9847 		ppd->ibport_data.rvp.rc_acks = NULL;
9848 		ppd->ibport_data.rvp.rc_qacks = NULL;
9849 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9850 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9851 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9852 		if (!ppd->ibport_data.rvp.rc_acks ||
9853 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9854 		    !ppd->ibport_data.rvp.rc_qacks)
9855 			return -ENOMEM;
9856 	}
9857 
9858 	return 0;
9859 }
9860 
9861 /*
9862  * index is the index into the receive array
9863  */
9864 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9865 		  u32 type, unsigned long pa, u16 order)
9866 {
9867 	u64 reg;
9868 
9869 	if (!(dd->flags & HFI1_PRESENT))
9870 		goto done;
9871 
9872 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9873 		pa = 0;
9874 		order = 0;
9875 	} else if (type > PT_INVALID) {
9876 		dd_dev_err(dd,
9877 			   "unexpected receive array type %u for index %u, not handled\n",
9878 			   type, index);
9879 		goto done;
9880 	}
9881 	trace_hfi1_put_tid(dd, index, type, pa, order);
9882 
9883 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9884 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9885 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9886 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9887 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9888 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9889 	writeq(reg, dd->rcvarray_wc + (index * 8));
9890 
9891 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9892 		/*
9893 		 * Eager entries are written and flushed
9894 		 *
9895 		 * Expected entries are flushed every 4 writes
9896 		 */
9897 		flush_wc();
9898 done:
9899 	return;
9900 }
9901 
9902 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9903 {
9904 	struct hfi1_devdata *dd = rcd->dd;
9905 	u32 i;
9906 
9907 	/* this could be optimized */
9908 	for (i = rcd->eager_base; i < rcd->eager_base +
9909 		     rcd->egrbufs.alloced; i++)
9910 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9911 
9912 	for (i = rcd->expected_base;
9913 			i < rcd->expected_base + rcd->expected_count; i++)
9914 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9915 }
9916 
9917 static const char * const ib_cfg_name_strings[] = {
9918 	"HFI1_IB_CFG_LIDLMC",
9919 	"HFI1_IB_CFG_LWID_DG_ENB",
9920 	"HFI1_IB_CFG_LWID_ENB",
9921 	"HFI1_IB_CFG_LWID",
9922 	"HFI1_IB_CFG_SPD_ENB",
9923 	"HFI1_IB_CFG_SPD",
9924 	"HFI1_IB_CFG_RXPOL_ENB",
9925 	"HFI1_IB_CFG_LREV_ENB",
9926 	"HFI1_IB_CFG_LINKLATENCY",
9927 	"HFI1_IB_CFG_HRTBT",
9928 	"HFI1_IB_CFG_OP_VLS",
9929 	"HFI1_IB_CFG_VL_HIGH_CAP",
9930 	"HFI1_IB_CFG_VL_LOW_CAP",
9931 	"HFI1_IB_CFG_OVERRUN_THRESH",
9932 	"HFI1_IB_CFG_PHYERR_THRESH",
9933 	"HFI1_IB_CFG_LINKDEFAULT",
9934 	"HFI1_IB_CFG_PKEYS",
9935 	"HFI1_IB_CFG_MTU",
9936 	"HFI1_IB_CFG_LSTATE",
9937 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9938 	"HFI1_IB_CFG_PMA_TICKS",
9939 	"HFI1_IB_CFG_PORT"
9940 };
9941 
9942 static const char *ib_cfg_name(int which)
9943 {
9944 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9945 		return "invalid";
9946 	return ib_cfg_name_strings[which];
9947 }
9948 
9949 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9950 {
9951 	struct hfi1_devdata *dd = ppd->dd;
9952 	int val = 0;
9953 
9954 	switch (which) {
9955 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9956 		val = ppd->link_width_enabled;
9957 		break;
9958 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9959 		val = ppd->link_width_active;
9960 		break;
9961 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9962 		val = ppd->link_speed_enabled;
9963 		break;
9964 	case HFI1_IB_CFG_SPD: /* current Link speed */
9965 		val = ppd->link_speed_active;
9966 		break;
9967 
9968 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9969 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9970 	case HFI1_IB_CFG_LINKLATENCY:
9971 		goto unimplemented;
9972 
9973 	case HFI1_IB_CFG_OP_VLS:
9974 		val = ppd->actual_vls_operational;
9975 		break;
9976 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9977 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9978 		break;
9979 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9980 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9981 		break;
9982 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9983 		val = ppd->overrun_threshold;
9984 		break;
9985 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9986 		val = ppd->phy_error_threshold;
9987 		break;
9988 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9989 		val = HLS_DEFAULT;
9990 		break;
9991 
9992 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9993 	case HFI1_IB_CFG_PMA_TICKS:
9994 	default:
9995 unimplemented:
9996 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9997 			dd_dev_info(
9998 				dd,
9999 				"%s: which %s: not implemented\n",
10000 				__func__,
10001 				ib_cfg_name(which));
10002 		break;
10003 	}
10004 
10005 	return val;
10006 }
10007 
10008 /*
10009  * The largest MAD packet size.
10010  */
10011 #define MAX_MAD_PACKET 2048
10012 
10013 /*
10014  * Return the maximum header bytes that can go on the _wire_
10015  * for this device. This count includes the ICRC which is
10016  * not part of the packet held in memory but it is appended
10017  * by the HW.
10018  * This is dependent on the device's receive header entry size.
10019  * HFI allows this to be set per-receive context, but the
10020  * driver presently enforces a global value.
10021  */
10022 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10023 {
10024 	/*
10025 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10026 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10027 	 * plus one DW for the ICRC appended by HW.
10028 	 *
10029 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10030 	 * We use rcd[0] as all context will have the same value. Also,
10031 	 * the first kernel context would have been allocated by now so
10032 	 * we are guaranteed a valid value.
10033 	 */
10034 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10035 }
10036 
10037 /*
10038  * Set Send Length
10039  * @ppd - per port data
10040  *
10041  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10042  * registers compare against LRH.PktLen, so use the max bytes included
10043  * in the LRH.
10044  *
10045  * This routine changes all VL values except VL15, which it maintains at
10046  * the same value.
10047  */
10048 static void set_send_length(struct hfi1_pportdata *ppd)
10049 {
10050 	struct hfi1_devdata *dd = ppd->dd;
10051 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10052 	u32 maxvlmtu = dd->vld[15].mtu;
10053 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10054 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10055 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10056 	int i, j;
10057 	u32 thres;
10058 
10059 	for (i = 0; i < ppd->vls_supported; i++) {
10060 		if (dd->vld[i].mtu > maxvlmtu)
10061 			maxvlmtu = dd->vld[i].mtu;
10062 		if (i <= 3)
10063 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10064 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10065 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10066 		else
10067 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10068 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10069 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10070 	}
10071 	write_csr(dd, SEND_LEN_CHECK0, len1);
10072 	write_csr(dd, SEND_LEN_CHECK1, len2);
10073 	/* adjust kernel credit return thresholds based on new MTUs */
10074 	/* all kernel receive contexts have the same hdrqentsize */
10075 	for (i = 0; i < ppd->vls_supported; i++) {
10076 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10077 			    sc_mtu_to_threshold(dd->vld[i].sc,
10078 						dd->vld[i].mtu,
10079 						dd->rcd[0]->rcvhdrqentsize));
10080 		for (j = 0; j < INIT_SC_PER_VL; j++)
10081 			sc_set_cr_threshold(
10082 					pio_select_send_context_vl(dd, j, i),
10083 					    thres);
10084 	}
10085 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10086 		    sc_mtu_to_threshold(dd->vld[15].sc,
10087 					dd->vld[15].mtu,
10088 					dd->rcd[0]->rcvhdrqentsize));
10089 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10090 
10091 	/* Adjust maximum MTU for the port in DC */
10092 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10093 		(ilog2(maxvlmtu >> 8) + 1);
10094 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10095 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10096 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10097 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10098 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10099 }
10100 
10101 static void set_lidlmc(struct hfi1_pportdata *ppd)
10102 {
10103 	int i;
10104 	u64 sreg = 0;
10105 	struct hfi1_devdata *dd = ppd->dd;
10106 	u32 mask = ~((1U << ppd->lmc) - 1);
10107 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10108 	u32 lid;
10109 
10110 	/*
10111 	 * Program 0 in CSR if port lid is extended. This prevents
10112 	 * 9B packets being sent out for large lids.
10113 	 */
10114 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10115 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10116 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10117 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10118 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10119 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10120 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10121 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10122 
10123 	/*
10124 	 * Iterate over all the send contexts and set their SLID check
10125 	 */
10126 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10127 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10128 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10129 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10130 
10131 	for (i = 0; i < chip_send_contexts(dd); i++) {
10132 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10133 			  i, (u32)sreg);
10134 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10135 	}
10136 
10137 	/* Now we have to do the same thing for the sdma engines */
10138 	sdma_update_lmc(dd, mask, lid);
10139 }
10140 
10141 static const char *state_completed_string(u32 completed)
10142 {
10143 	static const char * const state_completed[] = {
10144 		"EstablishComm",
10145 		"OptimizeEQ",
10146 		"VerifyCap"
10147 	};
10148 
10149 	if (completed < ARRAY_SIZE(state_completed))
10150 		return state_completed[completed];
10151 
10152 	return "unknown";
10153 }
10154 
10155 static const char all_lanes_dead_timeout_expired[] =
10156 	"All lanes were inactive – was the interconnect media removed?";
10157 static const char tx_out_of_policy[] =
10158 	"Passing lanes on local port do not meet the local link width policy";
10159 static const char no_state_complete[] =
10160 	"State timeout occurred before link partner completed the state";
10161 static const char * const state_complete_reasons[] = {
10162 	[0x00] = "Reason unknown",
10163 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10164 	[0x02] = "Link partner reported failure",
10165 	[0x10] = "Unable to achieve frame sync on any lane",
10166 	[0x11] =
10167 	  "Unable to find a common bit rate with the link partner",
10168 	[0x12] =
10169 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10170 	[0x13] =
10171 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10172 	[0x14] = no_state_complete,
10173 	[0x15] =
10174 	  "State timeout occurred before link partner identified equalization presets",
10175 	[0x16] =
10176 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10177 	[0x17] = tx_out_of_policy,
10178 	[0x20] = all_lanes_dead_timeout_expired,
10179 	[0x21] =
10180 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10181 	[0x22] = no_state_complete,
10182 	[0x23] =
10183 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10184 	[0x24] = tx_out_of_policy,
10185 	[0x30] = all_lanes_dead_timeout_expired,
10186 	[0x31] =
10187 	  "State timeout occurred waiting for host to process received frames",
10188 	[0x32] = no_state_complete,
10189 	[0x33] =
10190 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10191 	[0x34] = tx_out_of_policy,
10192 	[0x35] = "Negotiated link width is mutually exclusive",
10193 	[0x36] =
10194 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10195 	[0x37] = "Unable to resolve secure data exchange",
10196 };
10197 
10198 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10199 						     u32 code)
10200 {
10201 	const char *str = NULL;
10202 
10203 	if (code < ARRAY_SIZE(state_complete_reasons))
10204 		str = state_complete_reasons[code];
10205 
10206 	if (str)
10207 		return str;
10208 	return "Reserved";
10209 }
10210 
10211 /* describe the given last state complete frame */
10212 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10213 				  const char *prefix)
10214 {
10215 	struct hfi1_devdata *dd = ppd->dd;
10216 	u32 success;
10217 	u32 state;
10218 	u32 reason;
10219 	u32 lanes;
10220 
10221 	/*
10222 	 * Decode frame:
10223 	 *  [ 0: 0] - success
10224 	 *  [ 3: 1] - state
10225 	 *  [ 7: 4] - next state timeout
10226 	 *  [15: 8] - reason code
10227 	 *  [31:16] - lanes
10228 	 */
10229 	success = frame & 0x1;
10230 	state = (frame >> 1) & 0x7;
10231 	reason = (frame >> 8) & 0xff;
10232 	lanes = (frame >> 16) & 0xffff;
10233 
10234 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10235 		   prefix, frame);
10236 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10237 		   state_completed_string(state), state);
10238 	dd_dev_err(dd, "    state successfully completed: %s\n",
10239 		   success ? "yes" : "no");
10240 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10241 		   reason, state_complete_reason_code_string(ppd, reason));
10242 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10243 }
10244 
10245 /*
10246  * Read the last state complete frames and explain them.  This routine
10247  * expects to be called if the link went down during link negotiation
10248  * and initialization (LNI).  That is, anywhere between polling and link up.
10249  */
10250 static void check_lni_states(struct hfi1_pportdata *ppd)
10251 {
10252 	u32 last_local_state;
10253 	u32 last_remote_state;
10254 
10255 	read_last_local_state(ppd->dd, &last_local_state);
10256 	read_last_remote_state(ppd->dd, &last_remote_state);
10257 
10258 	/*
10259 	 * Don't report anything if there is nothing to report.  A value of
10260 	 * 0 means the link was taken down while polling and there was no
10261 	 * training in-process.
10262 	 */
10263 	if (last_local_state == 0 && last_remote_state == 0)
10264 		return;
10265 
10266 	decode_state_complete(ppd, last_local_state, "transmitted");
10267 	decode_state_complete(ppd, last_remote_state, "received");
10268 }
10269 
10270 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10271 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10272 {
10273 	u64 reg;
10274 	unsigned long timeout;
10275 
10276 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10277 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10278 	while (1) {
10279 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10280 		if (reg)
10281 			break;
10282 		if (time_after(jiffies, timeout)) {
10283 			dd_dev_err(dd,
10284 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10285 			return -ETIMEDOUT;
10286 		}
10287 		udelay(2);
10288 	}
10289 	return 0;
10290 }
10291 
10292 /* called when the logical link state is not down as it should be */
10293 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10294 {
10295 	struct hfi1_devdata *dd = ppd->dd;
10296 
10297 	/*
10298 	 * Bring link up in LCB loopback
10299 	 */
10300 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10301 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10302 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10303 
10304 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10305 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10306 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10307 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10308 
10309 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10310 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10311 	udelay(3);
10312 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10313 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10314 
10315 	wait_link_transfer_active(dd, 100);
10316 
10317 	/*
10318 	 * Bring the link down again.
10319 	 */
10320 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10321 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10322 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10323 
10324 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10325 }
10326 
10327 /*
10328  * Helper for set_link_state().  Do not call except from that routine.
10329  * Expects ppd->hls_mutex to be held.
10330  *
10331  * @rem_reason value to be sent to the neighbor
10332  *
10333  * LinkDownReasons only set if transition succeeds.
10334  */
10335 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10336 {
10337 	struct hfi1_devdata *dd = ppd->dd;
10338 	u32 previous_state;
10339 	int offline_state_ret;
10340 	int ret;
10341 
10342 	update_lcb_cache(dd);
10343 
10344 	previous_state = ppd->host_link_state;
10345 	ppd->host_link_state = HLS_GOING_OFFLINE;
10346 
10347 	/* start offline transition */
10348 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10349 
10350 	if (ret != HCMD_SUCCESS) {
10351 		dd_dev_err(dd,
10352 			   "Failed to transition to Offline link state, return %d\n",
10353 			   ret);
10354 		return -EINVAL;
10355 	}
10356 	if (ppd->offline_disabled_reason ==
10357 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10358 		ppd->offline_disabled_reason =
10359 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10360 
10361 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10362 	if (offline_state_ret < 0)
10363 		return offline_state_ret;
10364 
10365 	/* Disabling AOC transmitters */
10366 	if (ppd->port_type == PORT_TYPE_QSFP &&
10367 	    ppd->qsfp_info.limiting_active &&
10368 	    qsfp_mod_present(ppd)) {
10369 		int ret;
10370 
10371 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10372 		if (ret == 0) {
10373 			set_qsfp_tx(ppd, 0);
10374 			release_chip_resource(dd, qsfp_resource(dd));
10375 		} else {
10376 			/* not fatal, but should warn */
10377 			dd_dev_err(dd,
10378 				   "Unable to acquire lock to turn off QSFP TX\n");
10379 		}
10380 	}
10381 
10382 	/*
10383 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10384 	 * can take a while for the link to go down.
10385 	 */
10386 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10387 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10388 		if (ret < 0)
10389 			return ret;
10390 	}
10391 
10392 	/*
10393 	 * Now in charge of LCB - must be after the physical state is
10394 	 * offline.quiet and before host_link_state is changed.
10395 	 */
10396 	set_host_lcb_access(dd);
10397 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10398 
10399 	/* make sure the logical state is also down */
10400 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10401 	if (ret)
10402 		force_logical_link_state_down(ppd);
10403 
10404 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10405 	update_statusp(ppd, IB_PORT_DOWN);
10406 
10407 	/*
10408 	 * The LNI has a mandatory wait time after the physical state
10409 	 * moves to Offline.Quiet.  The wait time may be different
10410 	 * depending on how the link went down.  The 8051 firmware
10411 	 * will observe the needed wait time and only move to ready
10412 	 * when that is completed.  The largest of the quiet timeouts
10413 	 * is 6s, so wait that long and then at least 0.5s more for
10414 	 * other transitions, and another 0.5s for a buffer.
10415 	 */
10416 	ret = wait_fm_ready(dd, 7000);
10417 	if (ret) {
10418 		dd_dev_err(dd,
10419 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10420 		/* state is really offline, so make it so */
10421 		ppd->host_link_state = HLS_DN_OFFLINE;
10422 		return ret;
10423 	}
10424 
10425 	/*
10426 	 * The state is now offline and the 8051 is ready to accept host
10427 	 * requests.
10428 	 *	- change our state
10429 	 *	- notify others if we were previously in a linkup state
10430 	 */
10431 	ppd->host_link_state = HLS_DN_OFFLINE;
10432 	if (previous_state & HLS_UP) {
10433 		/* went down while link was up */
10434 		handle_linkup_change(dd, 0);
10435 	} else if (previous_state
10436 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10437 		/* went down while attempting link up */
10438 		check_lni_states(ppd);
10439 
10440 		/* The QSFP doesn't need to be reset on LNI failure */
10441 		ppd->qsfp_info.reset_needed = 0;
10442 	}
10443 
10444 	/* the active link width (downgrade) is 0 on link down */
10445 	ppd->link_width_active = 0;
10446 	ppd->link_width_downgrade_tx_active = 0;
10447 	ppd->link_width_downgrade_rx_active = 0;
10448 	ppd->current_egress_rate = 0;
10449 	return 0;
10450 }
10451 
10452 /* return the link state name */
10453 static const char *link_state_name(u32 state)
10454 {
10455 	const char *name;
10456 	int n = ilog2(state);
10457 	static const char * const names[] = {
10458 		[__HLS_UP_INIT_BP]	 = "INIT",
10459 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10460 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10461 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10462 		[__HLS_DN_POLL_BP]	 = "POLL",
10463 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10464 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10465 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10466 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10467 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10468 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10469 	};
10470 
10471 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10472 	return name ? name : "unknown";
10473 }
10474 
10475 /* return the link state reason name */
10476 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10477 {
10478 	if (state == HLS_UP_INIT) {
10479 		switch (ppd->linkinit_reason) {
10480 		case OPA_LINKINIT_REASON_LINKUP:
10481 			return "(LINKUP)";
10482 		case OPA_LINKINIT_REASON_FLAPPING:
10483 			return "(FLAPPING)";
10484 		case OPA_LINKINIT_OUTSIDE_POLICY:
10485 			return "(OUTSIDE_POLICY)";
10486 		case OPA_LINKINIT_QUARANTINED:
10487 			return "(QUARANTINED)";
10488 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10489 			return "(INSUFIC_CAPABILITY)";
10490 		default:
10491 			break;
10492 		}
10493 	}
10494 	return "";
10495 }
10496 
10497 /*
10498  * driver_pstate - convert the driver's notion of a port's
10499  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10500  * Return -1 (converted to a u32) to indicate error.
10501  */
10502 u32 driver_pstate(struct hfi1_pportdata *ppd)
10503 {
10504 	switch (ppd->host_link_state) {
10505 	case HLS_UP_INIT:
10506 	case HLS_UP_ARMED:
10507 	case HLS_UP_ACTIVE:
10508 		return IB_PORTPHYSSTATE_LINKUP;
10509 	case HLS_DN_POLL:
10510 		return IB_PORTPHYSSTATE_POLLING;
10511 	case HLS_DN_DISABLE:
10512 		return IB_PORTPHYSSTATE_DISABLED;
10513 	case HLS_DN_OFFLINE:
10514 		return OPA_PORTPHYSSTATE_OFFLINE;
10515 	case HLS_VERIFY_CAP:
10516 		return IB_PORTPHYSSTATE_TRAINING;
10517 	case HLS_GOING_UP:
10518 		return IB_PORTPHYSSTATE_TRAINING;
10519 	case HLS_GOING_OFFLINE:
10520 		return OPA_PORTPHYSSTATE_OFFLINE;
10521 	case HLS_LINK_COOLDOWN:
10522 		return OPA_PORTPHYSSTATE_OFFLINE;
10523 	case HLS_DN_DOWNDEF:
10524 	default:
10525 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10526 			   ppd->host_link_state);
10527 		return  -1;
10528 	}
10529 }
10530 
10531 /*
10532  * driver_lstate - convert the driver's notion of a port's
10533  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10534  * (converted to a u32) to indicate error.
10535  */
10536 u32 driver_lstate(struct hfi1_pportdata *ppd)
10537 {
10538 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10539 		return IB_PORT_DOWN;
10540 
10541 	switch (ppd->host_link_state & HLS_UP) {
10542 	case HLS_UP_INIT:
10543 		return IB_PORT_INIT;
10544 	case HLS_UP_ARMED:
10545 		return IB_PORT_ARMED;
10546 	case HLS_UP_ACTIVE:
10547 		return IB_PORT_ACTIVE;
10548 	default:
10549 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10550 			   ppd->host_link_state);
10551 	return -1;
10552 	}
10553 }
10554 
10555 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10556 			  u8 neigh_reason, u8 rem_reason)
10557 {
10558 	if (ppd->local_link_down_reason.latest == 0 &&
10559 	    ppd->neigh_link_down_reason.latest == 0) {
10560 		ppd->local_link_down_reason.latest = lcl_reason;
10561 		ppd->neigh_link_down_reason.latest = neigh_reason;
10562 		ppd->remote_link_down_reason = rem_reason;
10563 	}
10564 }
10565 
10566 /**
10567  * data_vls_operational() - Verify if data VL BCT credits and MTU
10568  *			    are both set.
10569  * @ppd: pointer to hfi1_pportdata structure
10570  *
10571  * Return: true - Ok, false -otherwise.
10572  */
10573 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10574 {
10575 	int i;
10576 	u64 reg;
10577 
10578 	if (!ppd->actual_vls_operational)
10579 		return false;
10580 
10581 	for (i = 0; i < ppd->vls_supported; i++) {
10582 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10583 		if ((reg && !ppd->dd->vld[i].mtu) ||
10584 		    (!reg && ppd->dd->vld[i].mtu))
10585 			return false;
10586 	}
10587 
10588 	return true;
10589 }
10590 
10591 /*
10592  * Change the physical and/or logical link state.
10593  *
10594  * Do not call this routine while inside an interrupt.  It contains
10595  * calls to routines that can take multiple seconds to finish.
10596  *
10597  * Returns 0 on success, -errno on failure.
10598  */
10599 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10600 {
10601 	struct hfi1_devdata *dd = ppd->dd;
10602 	struct ib_event event = {.device = NULL};
10603 	int ret1, ret = 0;
10604 	int orig_new_state, poll_bounce;
10605 
10606 	mutex_lock(&ppd->hls_lock);
10607 
10608 	orig_new_state = state;
10609 	if (state == HLS_DN_DOWNDEF)
10610 		state = HLS_DEFAULT;
10611 
10612 	/* interpret poll -> poll as a link bounce */
10613 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10614 		      state == HLS_DN_POLL;
10615 
10616 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10617 		    link_state_name(ppd->host_link_state),
10618 		    link_state_name(orig_new_state),
10619 		    poll_bounce ? "(bounce) " : "",
10620 		    link_state_reason_name(ppd, state));
10621 
10622 	/*
10623 	 * If we're going to a (HLS_*) link state that implies the logical
10624 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10625 	 * reset is_sm_config_started to 0.
10626 	 */
10627 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10628 		ppd->is_sm_config_started = 0;
10629 
10630 	/*
10631 	 * Do nothing if the states match.  Let a poll to poll link bounce
10632 	 * go through.
10633 	 */
10634 	if (ppd->host_link_state == state && !poll_bounce)
10635 		goto done;
10636 
10637 	switch (state) {
10638 	case HLS_UP_INIT:
10639 		if (ppd->host_link_state == HLS_DN_POLL &&
10640 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10641 			/*
10642 			 * Quick link up jumps from polling to here.
10643 			 *
10644 			 * Whether in normal or loopback mode, the
10645 			 * simulator jumps from polling to link up.
10646 			 * Accept that here.
10647 			 */
10648 			/* OK */
10649 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10650 			goto unexpected;
10651 		}
10652 
10653 		/*
10654 		 * Wait for Link_Up physical state.
10655 		 * Physical and Logical states should already be
10656 		 * be transitioned to LinkUp and LinkInit respectively.
10657 		 */
10658 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10659 		if (ret) {
10660 			dd_dev_err(dd,
10661 				   "%s: physical state did not change to LINK-UP\n",
10662 				   __func__);
10663 			break;
10664 		}
10665 
10666 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10667 		if (ret) {
10668 			dd_dev_err(dd,
10669 				   "%s: logical state did not change to INIT\n",
10670 				   __func__);
10671 			break;
10672 		}
10673 
10674 		/* clear old transient LINKINIT_REASON code */
10675 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10676 			ppd->linkinit_reason =
10677 				OPA_LINKINIT_REASON_LINKUP;
10678 
10679 		/* enable the port */
10680 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10681 
10682 		handle_linkup_change(dd, 1);
10683 		pio_kernel_linkup(dd);
10684 
10685 		/*
10686 		 * After link up, a new link width will have been set.
10687 		 * Update the xmit counters with regards to the new
10688 		 * link width.
10689 		 */
10690 		update_xmit_counters(ppd, ppd->link_width_active);
10691 
10692 		ppd->host_link_state = HLS_UP_INIT;
10693 		update_statusp(ppd, IB_PORT_INIT);
10694 		break;
10695 	case HLS_UP_ARMED:
10696 		if (ppd->host_link_state != HLS_UP_INIT)
10697 			goto unexpected;
10698 
10699 		if (!data_vls_operational(ppd)) {
10700 			dd_dev_err(dd,
10701 				   "%s: Invalid data VL credits or mtu\n",
10702 				   __func__);
10703 			ret = -EINVAL;
10704 			break;
10705 		}
10706 
10707 		set_logical_state(dd, LSTATE_ARMED);
10708 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10709 		if (ret) {
10710 			dd_dev_err(dd,
10711 				   "%s: logical state did not change to ARMED\n",
10712 				   __func__);
10713 			break;
10714 		}
10715 		ppd->host_link_state = HLS_UP_ARMED;
10716 		update_statusp(ppd, IB_PORT_ARMED);
10717 		/*
10718 		 * The simulator does not currently implement SMA messages,
10719 		 * so neighbor_normal is not set.  Set it here when we first
10720 		 * move to Armed.
10721 		 */
10722 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10723 			ppd->neighbor_normal = 1;
10724 		break;
10725 	case HLS_UP_ACTIVE:
10726 		if (ppd->host_link_state != HLS_UP_ARMED)
10727 			goto unexpected;
10728 
10729 		set_logical_state(dd, LSTATE_ACTIVE);
10730 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10731 		if (ret) {
10732 			dd_dev_err(dd,
10733 				   "%s: logical state did not change to ACTIVE\n",
10734 				   __func__);
10735 		} else {
10736 			/* tell all engines to go running */
10737 			sdma_all_running(dd);
10738 			ppd->host_link_state = HLS_UP_ACTIVE;
10739 			update_statusp(ppd, IB_PORT_ACTIVE);
10740 
10741 			/* Signal the IB layer that the port has went active */
10742 			event.device = &dd->verbs_dev.rdi.ibdev;
10743 			event.element.port_num = ppd->port;
10744 			event.event = IB_EVENT_PORT_ACTIVE;
10745 		}
10746 		break;
10747 	case HLS_DN_POLL:
10748 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10749 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10750 		    dd->dc_shutdown)
10751 			dc_start(dd);
10752 		/* Hand LED control to the DC */
10753 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10754 
10755 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10756 			u8 tmp = ppd->link_enabled;
10757 
10758 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10759 			if (ret) {
10760 				ppd->link_enabled = tmp;
10761 				break;
10762 			}
10763 			ppd->remote_link_down_reason = 0;
10764 
10765 			if (ppd->driver_link_ready)
10766 				ppd->link_enabled = 1;
10767 		}
10768 
10769 		set_all_slowpath(ppd->dd);
10770 		ret = set_local_link_attributes(ppd);
10771 		if (ret)
10772 			break;
10773 
10774 		ppd->port_error_action = 0;
10775 
10776 		if (quick_linkup) {
10777 			/* quick linkup does not go into polling */
10778 			ret = do_quick_linkup(dd);
10779 		} else {
10780 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10781 			if (!ret1)
10782 				ret1 = wait_phys_link_out_of_offline(ppd,
10783 								     3000);
10784 			if (ret1 != HCMD_SUCCESS) {
10785 				dd_dev_err(dd,
10786 					   "Failed to transition to Polling link state, return 0x%x\n",
10787 					   ret1);
10788 				ret = -EINVAL;
10789 			}
10790 		}
10791 
10792 		/*
10793 		 * Change the host link state after requesting DC8051 to
10794 		 * change its physical state so that we can ignore any
10795 		 * interrupt with stale LNI(XX) error, which will not be
10796 		 * cleared until DC8051 transitions to Polling state.
10797 		 */
10798 		ppd->host_link_state = HLS_DN_POLL;
10799 		ppd->offline_disabled_reason =
10800 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10801 		/*
10802 		 * If an error occurred above, go back to offline.  The
10803 		 * caller may reschedule another attempt.
10804 		 */
10805 		if (ret)
10806 			goto_offline(ppd, 0);
10807 		else
10808 			log_physical_state(ppd, PLS_POLLING);
10809 		break;
10810 	case HLS_DN_DISABLE:
10811 		/* link is disabled */
10812 		ppd->link_enabled = 0;
10813 
10814 		/* allow any state to transition to disabled */
10815 
10816 		/* must transition to offline first */
10817 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10818 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10819 			if (ret)
10820 				break;
10821 			ppd->remote_link_down_reason = 0;
10822 		}
10823 
10824 		if (!dd->dc_shutdown) {
10825 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10826 			if (ret1 != HCMD_SUCCESS) {
10827 				dd_dev_err(dd,
10828 					   "Failed to transition to Disabled link state, return 0x%x\n",
10829 					   ret1);
10830 				ret = -EINVAL;
10831 				break;
10832 			}
10833 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10834 			if (ret) {
10835 				dd_dev_err(dd,
10836 					   "%s: physical state did not change to DISABLED\n",
10837 					   __func__);
10838 				break;
10839 			}
10840 			dc_shutdown(dd);
10841 		}
10842 		ppd->host_link_state = HLS_DN_DISABLE;
10843 		break;
10844 	case HLS_DN_OFFLINE:
10845 		if (ppd->host_link_state == HLS_DN_DISABLE)
10846 			dc_start(dd);
10847 
10848 		/* allow any state to transition to offline */
10849 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10850 		if (!ret)
10851 			ppd->remote_link_down_reason = 0;
10852 		break;
10853 	case HLS_VERIFY_CAP:
10854 		if (ppd->host_link_state != HLS_DN_POLL)
10855 			goto unexpected;
10856 		ppd->host_link_state = HLS_VERIFY_CAP;
10857 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10858 		break;
10859 	case HLS_GOING_UP:
10860 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10861 			goto unexpected;
10862 
10863 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10864 		if (ret1 != HCMD_SUCCESS) {
10865 			dd_dev_err(dd,
10866 				   "Failed to transition to link up state, return 0x%x\n",
10867 				   ret1);
10868 			ret = -EINVAL;
10869 			break;
10870 		}
10871 		ppd->host_link_state = HLS_GOING_UP;
10872 		break;
10873 
10874 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10875 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10876 	default:
10877 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10878 			    __func__, state);
10879 		ret = -EINVAL;
10880 		break;
10881 	}
10882 
10883 	goto done;
10884 
10885 unexpected:
10886 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10887 		   __func__, link_state_name(ppd->host_link_state),
10888 		   link_state_name(state));
10889 	ret = -EINVAL;
10890 
10891 done:
10892 	mutex_unlock(&ppd->hls_lock);
10893 
10894 	if (event.device)
10895 		ib_dispatch_event(&event);
10896 
10897 	return ret;
10898 }
10899 
10900 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10901 {
10902 	u64 reg;
10903 	int ret = 0;
10904 
10905 	switch (which) {
10906 	case HFI1_IB_CFG_LIDLMC:
10907 		set_lidlmc(ppd);
10908 		break;
10909 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10910 		/*
10911 		 * The VL Arbitrator high limit is sent in units of 4k
10912 		 * bytes, while HFI stores it in units of 64 bytes.
10913 		 */
10914 		val *= 4096 / 64;
10915 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10916 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10917 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10918 		break;
10919 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10920 		/* HFI only supports POLL as the default link down state */
10921 		if (val != HLS_DN_POLL)
10922 			ret = -EINVAL;
10923 		break;
10924 	case HFI1_IB_CFG_OP_VLS:
10925 		if (ppd->vls_operational != val) {
10926 			ppd->vls_operational = val;
10927 			if (!ppd->port)
10928 				ret = -EINVAL;
10929 		}
10930 		break;
10931 	/*
10932 	 * For link width, link width downgrade, and speed enable, always AND
10933 	 * the setting with what is actually supported.  This has two benefits.
10934 	 * First, enabled can't have unsupported values, no matter what the
10935 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10936 	 * "fill in with your supported value" have all the bits in the
10937 	 * field set, so simply ANDing with supported has the desired result.
10938 	 */
10939 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10940 		ppd->link_width_enabled = val & ppd->link_width_supported;
10941 		break;
10942 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10943 		ppd->link_width_downgrade_enabled =
10944 				val & ppd->link_width_downgrade_supported;
10945 		break;
10946 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10947 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10948 		break;
10949 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10950 		/*
10951 		 * HFI does not follow IB specs, save this value
10952 		 * so we can report it, if asked.
10953 		 */
10954 		ppd->overrun_threshold = val;
10955 		break;
10956 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10957 		/*
10958 		 * HFI does not follow IB specs, save this value
10959 		 * so we can report it, if asked.
10960 		 */
10961 		ppd->phy_error_threshold = val;
10962 		break;
10963 
10964 	case HFI1_IB_CFG_MTU:
10965 		set_send_length(ppd);
10966 		break;
10967 
10968 	case HFI1_IB_CFG_PKEYS:
10969 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10970 			set_partition_keys(ppd);
10971 		break;
10972 
10973 	default:
10974 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10975 			dd_dev_info(ppd->dd,
10976 				    "%s: which %s, val 0x%x: not implemented\n",
10977 				    __func__, ib_cfg_name(which), val);
10978 		break;
10979 	}
10980 	return ret;
10981 }
10982 
10983 /* begin functions related to vl arbitration table caching */
10984 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10985 {
10986 	int i;
10987 
10988 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10989 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10990 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10991 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10992 
10993 	/*
10994 	 * Note that we always return values directly from the
10995 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10996 	 * 'Get(VLArbTable)'. This is obviously correct after a
10997 	 * 'Set(VLArbTable)', since the cache will then be up to
10998 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10999 	 * since then both the cache, and the relevant h/w registers
11000 	 * will be zeroed.
11001 	 */
11002 
11003 	for (i = 0; i < MAX_PRIO_TABLE; i++)
11004 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
11005 }
11006 
11007 /*
11008  * vl_arb_lock_cache
11009  *
11010  * All other vl_arb_* functions should be called only after locking
11011  * the cache.
11012  */
11013 static inline struct vl_arb_cache *
11014 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11015 {
11016 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11017 		return NULL;
11018 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11019 	return &ppd->vl_arb_cache[idx];
11020 }
11021 
11022 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11023 {
11024 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11025 }
11026 
11027 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11028 			     struct ib_vl_weight_elem *vl)
11029 {
11030 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11031 }
11032 
11033 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11034 			     struct ib_vl_weight_elem *vl)
11035 {
11036 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11037 }
11038 
11039 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11040 			      struct ib_vl_weight_elem *vl)
11041 {
11042 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11043 }
11044 
11045 /* end functions related to vl arbitration table caching */
11046 
11047 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11048 			  u32 size, struct ib_vl_weight_elem *vl)
11049 {
11050 	struct hfi1_devdata *dd = ppd->dd;
11051 	u64 reg;
11052 	unsigned int i, is_up = 0;
11053 	int drain, ret = 0;
11054 
11055 	mutex_lock(&ppd->hls_lock);
11056 
11057 	if (ppd->host_link_state & HLS_UP)
11058 		is_up = 1;
11059 
11060 	drain = !is_ax(dd) && is_up;
11061 
11062 	if (drain)
11063 		/*
11064 		 * Before adjusting VL arbitration weights, empty per-VL
11065 		 * FIFOs, otherwise a packet whose VL weight is being
11066 		 * set to 0 could get stuck in a FIFO with no chance to
11067 		 * egress.
11068 		 */
11069 		ret = stop_drain_data_vls(dd);
11070 
11071 	if (ret) {
11072 		dd_dev_err(
11073 			dd,
11074 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11075 			__func__);
11076 		goto err;
11077 	}
11078 
11079 	for (i = 0; i < size; i++, vl++) {
11080 		/*
11081 		 * NOTE: The low priority shift and mask are used here, but
11082 		 * they are the same for both the low and high registers.
11083 		 */
11084 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11085 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11086 		      | (((u64)vl->weight
11087 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11088 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11089 		write_csr(dd, target + (i * 8), reg);
11090 	}
11091 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11092 
11093 	if (drain)
11094 		open_fill_data_vls(dd); /* reopen all VLs */
11095 
11096 err:
11097 	mutex_unlock(&ppd->hls_lock);
11098 
11099 	return ret;
11100 }
11101 
11102 /*
11103  * Read one credit merge VL register.
11104  */
11105 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11106 			   struct vl_limit *vll)
11107 {
11108 	u64 reg = read_csr(dd, csr);
11109 
11110 	vll->dedicated = cpu_to_be16(
11111 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11112 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11113 	vll->shared = cpu_to_be16(
11114 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11115 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11116 }
11117 
11118 /*
11119  * Read the current credit merge limits.
11120  */
11121 static int get_buffer_control(struct hfi1_devdata *dd,
11122 			      struct buffer_control *bc, u16 *overall_limit)
11123 {
11124 	u64 reg;
11125 	int i;
11126 
11127 	/* not all entries are filled in */
11128 	memset(bc, 0, sizeof(*bc));
11129 
11130 	/* OPA and HFI have a 1-1 mapping */
11131 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11132 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11133 
11134 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11135 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11136 
11137 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11138 	bc->overall_shared_limit = cpu_to_be16(
11139 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11140 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11141 	if (overall_limit)
11142 		*overall_limit = (reg
11143 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11144 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11145 	return sizeof(struct buffer_control);
11146 }
11147 
11148 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11149 {
11150 	u64 reg;
11151 	int i;
11152 
11153 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11154 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11155 	for (i = 0; i < sizeof(u64); i++) {
11156 		u8 byte = *(((u8 *)&reg) + i);
11157 
11158 		dp->vlnt[2 * i] = byte & 0xf;
11159 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11160 	}
11161 
11162 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11163 	for (i = 0; i < sizeof(u64); i++) {
11164 		u8 byte = *(((u8 *)&reg) + i);
11165 
11166 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11167 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11168 	}
11169 	return sizeof(struct sc2vlnt);
11170 }
11171 
11172 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11173 			      struct ib_vl_weight_elem *vl)
11174 {
11175 	unsigned int i;
11176 
11177 	for (i = 0; i < nelems; i++, vl++) {
11178 		vl->vl = 0xf;
11179 		vl->weight = 0;
11180 	}
11181 }
11182 
11183 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11184 {
11185 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11186 		  DC_SC_VL_VAL(15_0,
11187 			       0, dp->vlnt[0] & 0xf,
11188 			       1, dp->vlnt[1] & 0xf,
11189 			       2, dp->vlnt[2] & 0xf,
11190 			       3, dp->vlnt[3] & 0xf,
11191 			       4, dp->vlnt[4] & 0xf,
11192 			       5, dp->vlnt[5] & 0xf,
11193 			       6, dp->vlnt[6] & 0xf,
11194 			       7, dp->vlnt[7] & 0xf,
11195 			       8, dp->vlnt[8] & 0xf,
11196 			       9, dp->vlnt[9] & 0xf,
11197 			       10, dp->vlnt[10] & 0xf,
11198 			       11, dp->vlnt[11] & 0xf,
11199 			       12, dp->vlnt[12] & 0xf,
11200 			       13, dp->vlnt[13] & 0xf,
11201 			       14, dp->vlnt[14] & 0xf,
11202 			       15, dp->vlnt[15] & 0xf));
11203 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11204 		  DC_SC_VL_VAL(31_16,
11205 			       16, dp->vlnt[16] & 0xf,
11206 			       17, dp->vlnt[17] & 0xf,
11207 			       18, dp->vlnt[18] & 0xf,
11208 			       19, dp->vlnt[19] & 0xf,
11209 			       20, dp->vlnt[20] & 0xf,
11210 			       21, dp->vlnt[21] & 0xf,
11211 			       22, dp->vlnt[22] & 0xf,
11212 			       23, dp->vlnt[23] & 0xf,
11213 			       24, dp->vlnt[24] & 0xf,
11214 			       25, dp->vlnt[25] & 0xf,
11215 			       26, dp->vlnt[26] & 0xf,
11216 			       27, dp->vlnt[27] & 0xf,
11217 			       28, dp->vlnt[28] & 0xf,
11218 			       29, dp->vlnt[29] & 0xf,
11219 			       30, dp->vlnt[30] & 0xf,
11220 			       31, dp->vlnt[31] & 0xf));
11221 }
11222 
11223 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11224 			u16 limit)
11225 {
11226 	if (limit != 0)
11227 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11228 			    what, (int)limit, idx);
11229 }
11230 
11231 /* change only the shared limit portion of SendCmGLobalCredit */
11232 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11233 {
11234 	u64 reg;
11235 
11236 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11237 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11238 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11239 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11240 }
11241 
11242 /* change only the total credit limit portion of SendCmGLobalCredit */
11243 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11244 {
11245 	u64 reg;
11246 
11247 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11248 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11249 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11250 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11251 }
11252 
11253 /* set the given per-VL shared limit */
11254 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11255 {
11256 	u64 reg;
11257 	u32 addr;
11258 
11259 	if (vl < TXE_NUM_DATA_VL)
11260 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11261 	else
11262 		addr = SEND_CM_CREDIT_VL15;
11263 
11264 	reg = read_csr(dd, addr);
11265 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11266 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11267 	write_csr(dd, addr, reg);
11268 }
11269 
11270 /* set the given per-VL dedicated limit */
11271 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11272 {
11273 	u64 reg;
11274 	u32 addr;
11275 
11276 	if (vl < TXE_NUM_DATA_VL)
11277 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11278 	else
11279 		addr = SEND_CM_CREDIT_VL15;
11280 
11281 	reg = read_csr(dd, addr);
11282 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11283 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11284 	write_csr(dd, addr, reg);
11285 }
11286 
11287 /* spin until the given per-VL status mask bits clear */
11288 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11289 				     const char *which)
11290 {
11291 	unsigned long timeout;
11292 	u64 reg;
11293 
11294 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11295 	while (1) {
11296 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11297 
11298 		if (reg == 0)
11299 			return;	/* success */
11300 		if (time_after(jiffies, timeout))
11301 			break;		/* timed out */
11302 		udelay(1);
11303 	}
11304 
11305 	dd_dev_err(dd,
11306 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11307 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11308 	/*
11309 	 * If this occurs, it is likely there was a credit loss on the link.
11310 	 * The only recovery from that is a link bounce.
11311 	 */
11312 	dd_dev_err(dd,
11313 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11314 }
11315 
11316 /*
11317  * The number of credits on the VLs may be changed while everything
11318  * is "live", but the following algorithm must be followed due to
11319  * how the hardware is actually implemented.  In particular,
11320  * Return_Credit_Status[] is the only correct status check.
11321  *
11322  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11323  *     set Global_Shared_Credit_Limit = 0
11324  *     use_all_vl = 1
11325  * mask0 = all VLs that are changing either dedicated or shared limits
11326  * set Shared_Limit[mask0] = 0
11327  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11328  * if (changing any dedicated limit)
11329  *     mask1 = all VLs that are lowering dedicated limits
11330  *     lower Dedicated_Limit[mask1]
11331  *     spin until Return_Credit_Status[mask1] == 0
11332  *     raise Dedicated_Limits
11333  * raise Shared_Limits
11334  * raise Global_Shared_Credit_Limit
11335  *
11336  * lower = if the new limit is lower, set the limit to the new value
11337  * raise = if the new limit is higher than the current value (may be changed
11338  *	earlier in the algorithm), set the new limit to the new value
11339  */
11340 int set_buffer_control(struct hfi1_pportdata *ppd,
11341 		       struct buffer_control *new_bc)
11342 {
11343 	struct hfi1_devdata *dd = ppd->dd;
11344 	u64 changing_mask, ld_mask, stat_mask;
11345 	int change_count;
11346 	int i, use_all_mask;
11347 	int this_shared_changing;
11348 	int vl_count = 0, ret;
11349 	/*
11350 	 * A0: add the variable any_shared_limit_changing below and in the
11351 	 * algorithm above.  If removing A0 support, it can be removed.
11352 	 */
11353 	int any_shared_limit_changing;
11354 	struct buffer_control cur_bc;
11355 	u8 changing[OPA_MAX_VLS];
11356 	u8 lowering_dedicated[OPA_MAX_VLS];
11357 	u16 cur_total;
11358 	u32 new_total = 0;
11359 	const u64 all_mask =
11360 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11361 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11362 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11363 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11364 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11365 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11366 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11367 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11368 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11369 
11370 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11371 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11372 
11373 	/* find the new total credits, do sanity check on unused VLs */
11374 	for (i = 0; i < OPA_MAX_VLS; i++) {
11375 		if (valid_vl(i)) {
11376 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11377 			continue;
11378 		}
11379 		nonzero_msg(dd, i, "dedicated",
11380 			    be16_to_cpu(new_bc->vl[i].dedicated));
11381 		nonzero_msg(dd, i, "shared",
11382 			    be16_to_cpu(new_bc->vl[i].shared));
11383 		new_bc->vl[i].dedicated = 0;
11384 		new_bc->vl[i].shared = 0;
11385 	}
11386 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11387 
11388 	/* fetch the current values */
11389 	get_buffer_control(dd, &cur_bc, &cur_total);
11390 
11391 	/*
11392 	 * Create the masks we will use.
11393 	 */
11394 	memset(changing, 0, sizeof(changing));
11395 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11396 	/*
11397 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11398 	 * increasing order
11399 	 */
11400 	stat_mask =
11401 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11402 	changing_mask = 0;
11403 	ld_mask = 0;
11404 	change_count = 0;
11405 	any_shared_limit_changing = 0;
11406 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11407 		if (!valid_vl(i))
11408 			continue;
11409 		this_shared_changing = new_bc->vl[i].shared
11410 						!= cur_bc.vl[i].shared;
11411 		if (this_shared_changing)
11412 			any_shared_limit_changing = 1;
11413 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11414 		    this_shared_changing) {
11415 			changing[i] = 1;
11416 			changing_mask |= stat_mask;
11417 			change_count++;
11418 		}
11419 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11420 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11421 			lowering_dedicated[i] = 1;
11422 			ld_mask |= stat_mask;
11423 		}
11424 	}
11425 
11426 	/* bracket the credit change with a total adjustment */
11427 	if (new_total > cur_total)
11428 		set_global_limit(dd, new_total);
11429 
11430 	/*
11431 	 * Start the credit change algorithm.
11432 	 */
11433 	use_all_mask = 0;
11434 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11435 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11436 	    (is_ax(dd) && any_shared_limit_changing)) {
11437 		set_global_shared(dd, 0);
11438 		cur_bc.overall_shared_limit = 0;
11439 		use_all_mask = 1;
11440 	}
11441 
11442 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11443 		if (!valid_vl(i))
11444 			continue;
11445 
11446 		if (changing[i]) {
11447 			set_vl_shared(dd, i, 0);
11448 			cur_bc.vl[i].shared = 0;
11449 		}
11450 	}
11451 
11452 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11453 				 "shared");
11454 
11455 	if (change_count > 0) {
11456 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11457 			if (!valid_vl(i))
11458 				continue;
11459 
11460 			if (lowering_dedicated[i]) {
11461 				set_vl_dedicated(dd, i,
11462 						 be16_to_cpu(new_bc->
11463 							     vl[i].dedicated));
11464 				cur_bc.vl[i].dedicated =
11465 						new_bc->vl[i].dedicated;
11466 			}
11467 		}
11468 
11469 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11470 
11471 		/* now raise all dedicated that are going up */
11472 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11473 			if (!valid_vl(i))
11474 				continue;
11475 
11476 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11477 					be16_to_cpu(cur_bc.vl[i].dedicated))
11478 				set_vl_dedicated(dd, i,
11479 						 be16_to_cpu(new_bc->
11480 							     vl[i].dedicated));
11481 		}
11482 	}
11483 
11484 	/* next raise all shared that are going up */
11485 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11486 		if (!valid_vl(i))
11487 			continue;
11488 
11489 		if (be16_to_cpu(new_bc->vl[i].shared) >
11490 				be16_to_cpu(cur_bc.vl[i].shared))
11491 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11492 	}
11493 
11494 	/* finally raise the global shared */
11495 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11496 	    be16_to_cpu(cur_bc.overall_shared_limit))
11497 		set_global_shared(dd,
11498 				  be16_to_cpu(new_bc->overall_shared_limit));
11499 
11500 	/* bracket the credit change with a total adjustment */
11501 	if (new_total < cur_total)
11502 		set_global_limit(dd, new_total);
11503 
11504 	/*
11505 	 * Determine the actual number of operational VLS using the number of
11506 	 * dedicated and shared credits for each VL.
11507 	 */
11508 	if (change_count > 0) {
11509 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11510 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11511 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11512 				vl_count++;
11513 		ppd->actual_vls_operational = vl_count;
11514 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11515 				    ppd->actual_vls_operational :
11516 				    ppd->vls_operational,
11517 				    NULL);
11518 		if (ret == 0)
11519 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11520 					   ppd->actual_vls_operational :
11521 					   ppd->vls_operational, NULL);
11522 		if (ret)
11523 			return ret;
11524 	}
11525 	return 0;
11526 }
11527 
11528 /*
11529  * Read the given fabric manager table. Return the size of the
11530  * table (in bytes) on success, and a negative error code on
11531  * failure.
11532  */
11533 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11534 
11535 {
11536 	int size;
11537 	struct vl_arb_cache *vlc;
11538 
11539 	switch (which) {
11540 	case FM_TBL_VL_HIGH_ARB:
11541 		size = 256;
11542 		/*
11543 		 * OPA specifies 128 elements (of 2 bytes each), though
11544 		 * HFI supports only 16 elements in h/w.
11545 		 */
11546 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11547 		vl_arb_get_cache(vlc, t);
11548 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11549 		break;
11550 	case FM_TBL_VL_LOW_ARB:
11551 		size = 256;
11552 		/*
11553 		 * OPA specifies 128 elements (of 2 bytes each), though
11554 		 * HFI supports only 16 elements in h/w.
11555 		 */
11556 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11557 		vl_arb_get_cache(vlc, t);
11558 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11559 		break;
11560 	case FM_TBL_BUFFER_CONTROL:
11561 		size = get_buffer_control(ppd->dd, t, NULL);
11562 		break;
11563 	case FM_TBL_SC2VLNT:
11564 		size = get_sc2vlnt(ppd->dd, t);
11565 		break;
11566 	case FM_TBL_VL_PREEMPT_ELEMS:
11567 		size = 256;
11568 		/* OPA specifies 128 elements, of 2 bytes each */
11569 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11570 		break;
11571 	case FM_TBL_VL_PREEMPT_MATRIX:
11572 		size = 256;
11573 		/*
11574 		 * OPA specifies that this is the same size as the VL
11575 		 * arbitration tables (i.e., 256 bytes).
11576 		 */
11577 		break;
11578 	default:
11579 		return -EINVAL;
11580 	}
11581 	return size;
11582 }
11583 
11584 /*
11585  * Write the given fabric manager table.
11586  */
11587 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11588 {
11589 	int ret = 0;
11590 	struct vl_arb_cache *vlc;
11591 
11592 	switch (which) {
11593 	case FM_TBL_VL_HIGH_ARB:
11594 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11595 		if (vl_arb_match_cache(vlc, t)) {
11596 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11597 			break;
11598 		}
11599 		vl_arb_set_cache(vlc, t);
11600 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11601 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11602 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11603 		break;
11604 	case FM_TBL_VL_LOW_ARB:
11605 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11606 		if (vl_arb_match_cache(vlc, t)) {
11607 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11608 			break;
11609 		}
11610 		vl_arb_set_cache(vlc, t);
11611 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11612 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11613 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11614 		break;
11615 	case FM_TBL_BUFFER_CONTROL:
11616 		ret = set_buffer_control(ppd, t);
11617 		break;
11618 	case FM_TBL_SC2VLNT:
11619 		set_sc2vlnt(ppd->dd, t);
11620 		break;
11621 	default:
11622 		ret = -EINVAL;
11623 	}
11624 	return ret;
11625 }
11626 
11627 /*
11628  * Disable all data VLs.
11629  *
11630  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11631  */
11632 static int disable_data_vls(struct hfi1_devdata *dd)
11633 {
11634 	if (is_ax(dd))
11635 		return 1;
11636 
11637 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11638 
11639 	return 0;
11640 }
11641 
11642 /*
11643  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11644  * Just re-enables all data VLs (the "fill" part happens
11645  * automatically - the name was chosen for symmetry with
11646  * stop_drain_data_vls()).
11647  *
11648  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11649  */
11650 int open_fill_data_vls(struct hfi1_devdata *dd)
11651 {
11652 	if (is_ax(dd))
11653 		return 1;
11654 
11655 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11656 
11657 	return 0;
11658 }
11659 
11660 /*
11661  * drain_data_vls() - assumes that disable_data_vls() has been called,
11662  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11663  * engines to drop to 0.
11664  */
11665 static void drain_data_vls(struct hfi1_devdata *dd)
11666 {
11667 	sc_wait(dd);
11668 	sdma_wait(dd);
11669 	pause_for_credit_return(dd);
11670 }
11671 
11672 /*
11673  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11674  *
11675  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11676  * meant to be used like this:
11677  *
11678  * stop_drain_data_vls(dd);
11679  * // do things with per-VL resources
11680  * open_fill_data_vls(dd);
11681  */
11682 int stop_drain_data_vls(struct hfi1_devdata *dd)
11683 {
11684 	int ret;
11685 
11686 	ret = disable_data_vls(dd);
11687 	if (ret == 0)
11688 		drain_data_vls(dd);
11689 
11690 	return ret;
11691 }
11692 
11693 /*
11694  * Convert a nanosecond time to a cclock count.  No matter how slow
11695  * the cclock, a non-zero ns will always have a non-zero result.
11696  */
11697 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11698 {
11699 	u32 cclocks;
11700 
11701 	if (dd->icode == ICODE_FPGA_EMULATION)
11702 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11703 	else  /* simulation pretends to be ASIC */
11704 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11705 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11706 		cclocks = 1;
11707 	return cclocks;
11708 }
11709 
11710 /*
11711  * Convert a cclock count to nanoseconds. Not matter how slow
11712  * the cclock, a non-zero cclocks will always have a non-zero result.
11713  */
11714 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11715 {
11716 	u32 ns;
11717 
11718 	if (dd->icode == ICODE_FPGA_EMULATION)
11719 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11720 	else  /* simulation pretends to be ASIC */
11721 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11722 	if (cclocks && !ns)
11723 		ns = 1;
11724 	return ns;
11725 }
11726 
11727 /*
11728  * Dynamically adjust the receive interrupt timeout for a context based on
11729  * incoming packet rate.
11730  *
11731  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11732  */
11733 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11734 {
11735 	struct hfi1_devdata *dd = rcd->dd;
11736 	u32 timeout = rcd->rcvavail_timeout;
11737 
11738 	/*
11739 	 * This algorithm doubles or halves the timeout depending on whether
11740 	 * the number of packets received in this interrupt were less than or
11741 	 * greater equal the interrupt count.
11742 	 *
11743 	 * The calculations below do not allow a steady state to be achieved.
11744 	 * Only at the endpoints it is possible to have an unchanging
11745 	 * timeout.
11746 	 */
11747 	if (npkts < rcv_intr_count) {
11748 		/*
11749 		 * Not enough packets arrived before the timeout, adjust
11750 		 * timeout downward.
11751 		 */
11752 		if (timeout < 2) /* already at minimum? */
11753 			return;
11754 		timeout >>= 1;
11755 	} else {
11756 		/*
11757 		 * More than enough packets arrived before the timeout, adjust
11758 		 * timeout upward.
11759 		 */
11760 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11761 			return;
11762 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11763 	}
11764 
11765 	rcd->rcvavail_timeout = timeout;
11766 	/*
11767 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11768 	 * been verified to be in range
11769 	 */
11770 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11771 			(u64)timeout <<
11772 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11773 }
11774 
11775 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11776 		    u32 intr_adjust, u32 npkts)
11777 {
11778 	struct hfi1_devdata *dd = rcd->dd;
11779 	u64 reg;
11780 	u32 ctxt = rcd->ctxt;
11781 
11782 	/*
11783 	 * Need to write timeout register before updating RcvHdrHead to ensure
11784 	 * that a new value is used when the HW decides to restart counting.
11785 	 */
11786 	if (intr_adjust)
11787 		adjust_rcv_timeout(rcd, npkts);
11788 	if (updegr) {
11789 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11790 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11791 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11792 	}
11793 	mmiowb();
11794 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11795 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11796 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11797 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11798 	mmiowb();
11799 }
11800 
11801 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11802 {
11803 	u32 head, tail;
11804 
11805 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11806 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11807 
11808 	if (rcd->rcvhdrtail_kvaddr)
11809 		tail = get_rcvhdrtail(rcd);
11810 	else
11811 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11812 
11813 	return head == tail;
11814 }
11815 
11816 /*
11817  * Context Control and Receive Array encoding for buffer size:
11818  *	0x0 invalid
11819  *	0x1   4 KB
11820  *	0x2   8 KB
11821  *	0x3  16 KB
11822  *	0x4  32 KB
11823  *	0x5  64 KB
11824  *	0x6 128 KB
11825  *	0x7 256 KB
11826  *	0x8 512 KB (Receive Array only)
11827  *	0x9   1 MB (Receive Array only)
11828  *	0xa   2 MB (Receive Array only)
11829  *
11830  *	0xB-0xF - reserved (Receive Array only)
11831  *
11832  *
11833  * This routine assumes that the value has already been sanity checked.
11834  */
11835 static u32 encoded_size(u32 size)
11836 {
11837 	switch (size) {
11838 	case   4 * 1024: return 0x1;
11839 	case   8 * 1024: return 0x2;
11840 	case  16 * 1024: return 0x3;
11841 	case  32 * 1024: return 0x4;
11842 	case  64 * 1024: return 0x5;
11843 	case 128 * 1024: return 0x6;
11844 	case 256 * 1024: return 0x7;
11845 	case 512 * 1024: return 0x8;
11846 	case   1 * 1024 * 1024: return 0x9;
11847 	case   2 * 1024 * 1024: return 0xa;
11848 	}
11849 	return 0x1;	/* if invalid, go with the minimum size */
11850 }
11851 
11852 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11853 		  struct hfi1_ctxtdata *rcd)
11854 {
11855 	u64 rcvctrl, reg;
11856 	int did_enable = 0;
11857 	u16 ctxt;
11858 
11859 	if (!rcd)
11860 		return;
11861 
11862 	ctxt = rcd->ctxt;
11863 
11864 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11865 
11866 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11867 	/* if the context already enabled, don't do the extra steps */
11868 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11869 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11870 		/* reset the tail and hdr addresses, and sequence count */
11871 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11872 				rcd->rcvhdrq_dma);
11873 		if (rcd->rcvhdrtail_kvaddr)
11874 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11875 					rcd->rcvhdrqtailaddr_dma);
11876 		rcd->seq_cnt = 1;
11877 
11878 		/* reset the cached receive header queue head value */
11879 		rcd->head = 0;
11880 
11881 		/*
11882 		 * Zero the receive header queue so we don't get false
11883 		 * positives when checking the sequence number.  The
11884 		 * sequence numbers could land exactly on the same spot.
11885 		 * E.g. a rcd restart before the receive header wrapped.
11886 		 */
11887 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11888 
11889 		/* starting timeout */
11890 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11891 
11892 		/* enable the context */
11893 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11894 
11895 		/* clean the egr buffer size first */
11896 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11897 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11898 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11899 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11900 
11901 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11902 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11903 		did_enable = 1;
11904 
11905 		/* zero RcvEgrIndexHead */
11906 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11907 
11908 		/* set eager count and base index */
11909 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11910 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11911 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11912 			(((rcd->eager_base >> RCV_SHIFT)
11913 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11914 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11915 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11916 
11917 		/*
11918 		 * Set TID (expected) count and base index.
11919 		 * rcd->expected_count is set to individual RcvArray entries,
11920 		 * not pairs, and the CSR takes a pair-count in groups of
11921 		 * four, so divide by 8.
11922 		 */
11923 		reg = (((rcd->expected_count >> RCV_SHIFT)
11924 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11925 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11926 		      (((rcd->expected_base >> RCV_SHIFT)
11927 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11928 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11929 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11930 		if (ctxt == HFI1_CTRL_CTXT)
11931 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11932 	}
11933 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11934 		write_csr(dd, RCV_VL15, 0);
11935 		/*
11936 		 * When receive context is being disabled turn on tail
11937 		 * update with a dummy tail address and then disable
11938 		 * receive context.
11939 		 */
11940 		if (dd->rcvhdrtail_dummy_dma) {
11941 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11942 					dd->rcvhdrtail_dummy_dma);
11943 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11944 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11945 		}
11946 
11947 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11948 	}
11949 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
11950 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11951 			      IS_RCVAVAIL_START + rcd->ctxt, true);
11952 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11953 	}
11954 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
11955 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11956 			      IS_RCVAVAIL_START + rcd->ctxt, false);
11957 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11958 	}
11959 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11960 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11961 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11962 		/* See comment on RcvCtxtCtrl.TailUpd above */
11963 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11964 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11965 	}
11966 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11967 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11968 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11969 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11970 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11971 		/*
11972 		 * In one-packet-per-eager mode, the size comes from
11973 		 * the RcvArray entry.
11974 		 */
11975 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11976 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11977 	}
11978 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11979 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11980 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11981 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11982 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11983 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11984 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11985 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11986 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11987 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11988 	if (op & HFI1_RCVCTRL_URGENT_ENB)
11989 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
11990 			      IS_RCVURGENT_START + rcd->ctxt, true);
11991 	if (op & HFI1_RCVCTRL_URGENT_DIS)
11992 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
11993 			      IS_RCVURGENT_START + rcd->ctxt, false);
11994 
11995 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11996 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
11997 
11998 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11999 	if (did_enable &&
12000 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
12001 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12002 		if (reg != 0) {
12003 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
12004 				    ctxt, reg);
12005 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12006 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
12007 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
12008 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
12009 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
12010 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
12011 				    ctxt, reg, reg == 0 ? "not" : "still");
12012 		}
12013 	}
12014 
12015 	if (did_enable) {
12016 		/*
12017 		 * The interrupt timeout and count must be set after
12018 		 * the context is enabled to take effect.
12019 		 */
12020 		/* set interrupt timeout */
12021 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12022 				(u64)rcd->rcvavail_timeout <<
12023 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12024 
12025 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12026 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12027 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12028 	}
12029 
12030 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12031 		/*
12032 		 * If the context has been disabled and the Tail Update has
12033 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12034 		 * so it doesn't contain an address that is invalid.
12035 		 */
12036 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12037 				dd->rcvhdrtail_dummy_dma);
12038 }
12039 
12040 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12041 {
12042 	int ret;
12043 	u64 val = 0;
12044 
12045 	if (namep) {
12046 		ret = dd->cntrnameslen;
12047 		*namep = dd->cntrnames;
12048 	} else {
12049 		const struct cntr_entry *entry;
12050 		int i, j;
12051 
12052 		ret = (dd->ndevcntrs) * sizeof(u64);
12053 
12054 		/* Get the start of the block of counters */
12055 		*cntrp = dd->cntrs;
12056 
12057 		/*
12058 		 * Now go and fill in each counter in the block.
12059 		 */
12060 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12061 			entry = &dev_cntrs[i];
12062 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12063 			if (entry->flags & CNTR_DISABLED) {
12064 				/* Nothing */
12065 				hfi1_cdbg(CNTR, "\tDisabled\n");
12066 			} else {
12067 				if (entry->flags & CNTR_VL) {
12068 					hfi1_cdbg(CNTR, "\tPer VL\n");
12069 					for (j = 0; j < C_VL_COUNT; j++) {
12070 						val = entry->rw_cntr(entry,
12071 								  dd, j,
12072 								  CNTR_MODE_R,
12073 								  0);
12074 						hfi1_cdbg(
12075 						   CNTR,
12076 						   "\t\tRead 0x%llx for %d\n",
12077 						   val, j);
12078 						dd->cntrs[entry->offset + j] =
12079 									    val;
12080 					}
12081 				} else if (entry->flags & CNTR_SDMA) {
12082 					hfi1_cdbg(CNTR,
12083 						  "\t Per SDMA Engine\n");
12084 					for (j = 0; j < chip_sdma_engines(dd);
12085 					     j++) {
12086 						val =
12087 						entry->rw_cntr(entry, dd, j,
12088 							       CNTR_MODE_R, 0);
12089 						hfi1_cdbg(CNTR,
12090 							  "\t\tRead 0x%llx for %d\n",
12091 							  val, j);
12092 						dd->cntrs[entry->offset + j] =
12093 									val;
12094 					}
12095 				} else {
12096 					val = entry->rw_cntr(entry, dd,
12097 							CNTR_INVALID_VL,
12098 							CNTR_MODE_R, 0);
12099 					dd->cntrs[entry->offset] = val;
12100 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12101 				}
12102 			}
12103 		}
12104 	}
12105 	return ret;
12106 }
12107 
12108 /*
12109  * Used by sysfs to create files for hfi stats to read
12110  */
12111 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12112 {
12113 	int ret;
12114 	u64 val = 0;
12115 
12116 	if (namep) {
12117 		ret = ppd->dd->portcntrnameslen;
12118 		*namep = ppd->dd->portcntrnames;
12119 	} else {
12120 		const struct cntr_entry *entry;
12121 		int i, j;
12122 
12123 		ret = ppd->dd->nportcntrs * sizeof(u64);
12124 		*cntrp = ppd->cntrs;
12125 
12126 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12127 			entry = &port_cntrs[i];
12128 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12129 			if (entry->flags & CNTR_DISABLED) {
12130 				/* Nothing */
12131 				hfi1_cdbg(CNTR, "\tDisabled\n");
12132 				continue;
12133 			}
12134 
12135 			if (entry->flags & CNTR_VL) {
12136 				hfi1_cdbg(CNTR, "\tPer VL");
12137 				for (j = 0; j < C_VL_COUNT; j++) {
12138 					val = entry->rw_cntr(entry, ppd, j,
12139 							       CNTR_MODE_R,
12140 							       0);
12141 					hfi1_cdbg(
12142 					   CNTR,
12143 					   "\t\tRead 0x%llx for %d",
12144 					   val, j);
12145 					ppd->cntrs[entry->offset + j] = val;
12146 				}
12147 			} else {
12148 				val = entry->rw_cntr(entry, ppd,
12149 						       CNTR_INVALID_VL,
12150 						       CNTR_MODE_R,
12151 						       0);
12152 				ppd->cntrs[entry->offset] = val;
12153 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12154 			}
12155 		}
12156 	}
12157 	return ret;
12158 }
12159 
12160 static void free_cntrs(struct hfi1_devdata *dd)
12161 {
12162 	struct hfi1_pportdata *ppd;
12163 	int i;
12164 
12165 	if (dd->synth_stats_timer.function)
12166 		del_timer_sync(&dd->synth_stats_timer);
12167 	ppd = (struct hfi1_pportdata *)(dd + 1);
12168 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12169 		kfree(ppd->cntrs);
12170 		kfree(ppd->scntrs);
12171 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12172 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12173 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12174 		ppd->cntrs = NULL;
12175 		ppd->scntrs = NULL;
12176 		ppd->ibport_data.rvp.rc_acks = NULL;
12177 		ppd->ibport_data.rvp.rc_qacks = NULL;
12178 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12179 	}
12180 	kfree(dd->portcntrnames);
12181 	dd->portcntrnames = NULL;
12182 	kfree(dd->cntrs);
12183 	dd->cntrs = NULL;
12184 	kfree(dd->scntrs);
12185 	dd->scntrs = NULL;
12186 	kfree(dd->cntrnames);
12187 	dd->cntrnames = NULL;
12188 	if (dd->update_cntr_wq) {
12189 		destroy_workqueue(dd->update_cntr_wq);
12190 		dd->update_cntr_wq = NULL;
12191 	}
12192 }
12193 
12194 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12195 			      u64 *psval, void *context, int vl)
12196 {
12197 	u64 val;
12198 	u64 sval = *psval;
12199 
12200 	if (entry->flags & CNTR_DISABLED) {
12201 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12202 		return 0;
12203 	}
12204 
12205 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12206 
12207 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12208 
12209 	/* If its a synthetic counter there is more work we need to do */
12210 	if (entry->flags & CNTR_SYNTH) {
12211 		if (sval == CNTR_MAX) {
12212 			/* No need to read already saturated */
12213 			return CNTR_MAX;
12214 		}
12215 
12216 		if (entry->flags & CNTR_32BIT) {
12217 			/* 32bit counters can wrap multiple times */
12218 			u64 upper = sval >> 32;
12219 			u64 lower = (sval << 32) >> 32;
12220 
12221 			if (lower > val) { /* hw wrapped */
12222 				if (upper == CNTR_32BIT_MAX)
12223 					val = CNTR_MAX;
12224 				else
12225 					upper++;
12226 			}
12227 
12228 			if (val != CNTR_MAX)
12229 				val = (upper << 32) | val;
12230 
12231 		} else {
12232 			/* If we rolled we are saturated */
12233 			if ((val < sval) || (val > CNTR_MAX))
12234 				val = CNTR_MAX;
12235 		}
12236 	}
12237 
12238 	*psval = val;
12239 
12240 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12241 
12242 	return val;
12243 }
12244 
12245 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12246 			       struct cntr_entry *entry,
12247 			       u64 *psval, void *context, int vl, u64 data)
12248 {
12249 	u64 val;
12250 
12251 	if (entry->flags & CNTR_DISABLED) {
12252 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12253 		return 0;
12254 	}
12255 
12256 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12257 
12258 	if (entry->flags & CNTR_SYNTH) {
12259 		*psval = data;
12260 		if (entry->flags & CNTR_32BIT) {
12261 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12262 					     (data << 32) >> 32);
12263 			val = data; /* return the full 64bit value */
12264 		} else {
12265 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12266 					     data);
12267 		}
12268 	} else {
12269 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12270 	}
12271 
12272 	*psval = val;
12273 
12274 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12275 
12276 	return val;
12277 }
12278 
12279 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12280 {
12281 	struct cntr_entry *entry;
12282 	u64 *sval;
12283 
12284 	entry = &dev_cntrs[index];
12285 	sval = dd->scntrs + entry->offset;
12286 
12287 	if (vl != CNTR_INVALID_VL)
12288 		sval += vl;
12289 
12290 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12291 }
12292 
12293 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12294 {
12295 	struct cntr_entry *entry;
12296 	u64 *sval;
12297 
12298 	entry = &dev_cntrs[index];
12299 	sval = dd->scntrs + entry->offset;
12300 
12301 	if (vl != CNTR_INVALID_VL)
12302 		sval += vl;
12303 
12304 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12305 }
12306 
12307 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12308 {
12309 	struct cntr_entry *entry;
12310 	u64 *sval;
12311 
12312 	entry = &port_cntrs[index];
12313 	sval = ppd->scntrs + entry->offset;
12314 
12315 	if (vl != CNTR_INVALID_VL)
12316 		sval += vl;
12317 
12318 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12319 	    (index <= C_RCV_HDR_OVF_LAST)) {
12320 		/* We do not want to bother for disabled contexts */
12321 		return 0;
12322 	}
12323 
12324 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12325 }
12326 
12327 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12328 {
12329 	struct cntr_entry *entry;
12330 	u64 *sval;
12331 
12332 	entry = &port_cntrs[index];
12333 	sval = ppd->scntrs + entry->offset;
12334 
12335 	if (vl != CNTR_INVALID_VL)
12336 		sval += vl;
12337 
12338 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12339 	    (index <= C_RCV_HDR_OVF_LAST)) {
12340 		/* We do not want to bother for disabled contexts */
12341 		return 0;
12342 	}
12343 
12344 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12345 }
12346 
12347 static void do_update_synth_timer(struct work_struct *work)
12348 {
12349 	u64 cur_tx;
12350 	u64 cur_rx;
12351 	u64 total_flits;
12352 	u8 update = 0;
12353 	int i, j, vl;
12354 	struct hfi1_pportdata *ppd;
12355 	struct cntr_entry *entry;
12356 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12357 					       update_cntr_work);
12358 
12359 	/*
12360 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12361 	 * check to watch for potential roll over. We can do this by looking at
12362 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12363 	 * we have to iterate all the counters and update.
12364 	 */
12365 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12366 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12367 
12368 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12369 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12370 
12371 	hfi1_cdbg(
12372 	    CNTR,
12373 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12374 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12375 
12376 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12377 		/*
12378 		 * May not be strictly necessary to update but it won't hurt and
12379 		 * simplifies the logic here.
12380 		 */
12381 		update = 1;
12382 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12383 			  dd->unit);
12384 	} else {
12385 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12386 		hfi1_cdbg(CNTR,
12387 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12388 			  total_flits, (u64)CNTR_32BIT_MAX);
12389 		if (total_flits >= CNTR_32BIT_MAX) {
12390 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12391 				  dd->unit);
12392 			update = 1;
12393 		}
12394 	}
12395 
12396 	if (update) {
12397 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12398 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12399 			entry = &dev_cntrs[i];
12400 			if (entry->flags & CNTR_VL) {
12401 				for (vl = 0; vl < C_VL_COUNT; vl++)
12402 					read_dev_cntr(dd, i, vl);
12403 			} else {
12404 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12405 			}
12406 		}
12407 		ppd = (struct hfi1_pportdata *)(dd + 1);
12408 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12409 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12410 				entry = &port_cntrs[j];
12411 				if (entry->flags & CNTR_VL) {
12412 					for (vl = 0; vl < C_VL_COUNT; vl++)
12413 						read_port_cntr(ppd, j, vl);
12414 				} else {
12415 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12416 				}
12417 			}
12418 		}
12419 
12420 		/*
12421 		 * We want the value in the register. The goal is to keep track
12422 		 * of the number of "ticks" not the counter value. In other
12423 		 * words if the register rolls we want to notice it and go ahead
12424 		 * and force an update.
12425 		 */
12426 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12427 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12428 						CNTR_MODE_R, 0);
12429 
12430 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12431 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12432 						CNTR_MODE_R, 0);
12433 
12434 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12435 			  dd->unit, dd->last_tx, dd->last_rx);
12436 
12437 	} else {
12438 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12439 	}
12440 }
12441 
12442 static void update_synth_timer(struct timer_list *t)
12443 {
12444 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12445 
12446 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12447 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12448 }
12449 
12450 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12451 static int init_cntrs(struct hfi1_devdata *dd)
12452 {
12453 	int i, rcv_ctxts, j;
12454 	size_t sz;
12455 	char *p;
12456 	char name[C_MAX_NAME];
12457 	struct hfi1_pportdata *ppd;
12458 	const char *bit_type_32 = ",32";
12459 	const int bit_type_32_sz = strlen(bit_type_32);
12460 	u32 sdma_engines = chip_sdma_engines(dd);
12461 
12462 	/* set up the stats timer; the add_timer is done at the end */
12463 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12464 
12465 	/***********************/
12466 	/* per device counters */
12467 	/***********************/
12468 
12469 	/* size names and determine how many we have*/
12470 	dd->ndevcntrs = 0;
12471 	sz = 0;
12472 
12473 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12474 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12475 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12476 			continue;
12477 		}
12478 
12479 		if (dev_cntrs[i].flags & CNTR_VL) {
12480 			dev_cntrs[i].offset = dd->ndevcntrs;
12481 			for (j = 0; j < C_VL_COUNT; j++) {
12482 				snprintf(name, C_MAX_NAME, "%s%d",
12483 					 dev_cntrs[i].name, vl_from_idx(j));
12484 				sz += strlen(name);
12485 				/* Add ",32" for 32-bit counters */
12486 				if (dev_cntrs[i].flags & CNTR_32BIT)
12487 					sz += bit_type_32_sz;
12488 				sz++;
12489 				dd->ndevcntrs++;
12490 			}
12491 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12492 			dev_cntrs[i].offset = dd->ndevcntrs;
12493 			for (j = 0; j < sdma_engines; j++) {
12494 				snprintf(name, C_MAX_NAME, "%s%d",
12495 					 dev_cntrs[i].name, j);
12496 				sz += strlen(name);
12497 				/* Add ",32" for 32-bit counters */
12498 				if (dev_cntrs[i].flags & CNTR_32BIT)
12499 					sz += bit_type_32_sz;
12500 				sz++;
12501 				dd->ndevcntrs++;
12502 			}
12503 		} else {
12504 			/* +1 for newline. */
12505 			sz += strlen(dev_cntrs[i].name) + 1;
12506 			/* Add ",32" for 32-bit counters */
12507 			if (dev_cntrs[i].flags & CNTR_32BIT)
12508 				sz += bit_type_32_sz;
12509 			dev_cntrs[i].offset = dd->ndevcntrs;
12510 			dd->ndevcntrs++;
12511 		}
12512 	}
12513 
12514 	/* allocate space for the counter values */
12515 	dd->cntrs = kcalloc(dd->ndevcntrs + num_driver_cntrs, sizeof(u64),
12516 			    GFP_KERNEL);
12517 	if (!dd->cntrs)
12518 		goto bail;
12519 
12520 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12521 	if (!dd->scntrs)
12522 		goto bail;
12523 
12524 	/* allocate space for the counter names */
12525 	dd->cntrnameslen = sz;
12526 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12527 	if (!dd->cntrnames)
12528 		goto bail;
12529 
12530 	/* fill in the names */
12531 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12532 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12533 			/* Nothing */
12534 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12535 			for (j = 0; j < C_VL_COUNT; j++) {
12536 				snprintf(name, C_MAX_NAME, "%s%d",
12537 					 dev_cntrs[i].name,
12538 					 vl_from_idx(j));
12539 				memcpy(p, name, strlen(name));
12540 				p += strlen(name);
12541 
12542 				/* Counter is 32 bits */
12543 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12544 					memcpy(p, bit_type_32, bit_type_32_sz);
12545 					p += bit_type_32_sz;
12546 				}
12547 
12548 				*p++ = '\n';
12549 			}
12550 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12551 			for (j = 0; j < sdma_engines; j++) {
12552 				snprintf(name, C_MAX_NAME, "%s%d",
12553 					 dev_cntrs[i].name, j);
12554 				memcpy(p, name, strlen(name));
12555 				p += strlen(name);
12556 
12557 				/* Counter is 32 bits */
12558 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12559 					memcpy(p, bit_type_32, bit_type_32_sz);
12560 					p += bit_type_32_sz;
12561 				}
12562 
12563 				*p++ = '\n';
12564 			}
12565 		} else {
12566 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12567 			p += strlen(dev_cntrs[i].name);
12568 
12569 			/* Counter is 32 bits */
12570 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12571 				memcpy(p, bit_type_32, bit_type_32_sz);
12572 				p += bit_type_32_sz;
12573 			}
12574 
12575 			*p++ = '\n';
12576 		}
12577 	}
12578 
12579 	/*********************/
12580 	/* per port counters */
12581 	/*********************/
12582 
12583 	/*
12584 	 * Go through the counters for the overflows and disable the ones we
12585 	 * don't need. This varies based on platform so we need to do it
12586 	 * dynamically here.
12587 	 */
12588 	rcv_ctxts = dd->num_rcv_contexts;
12589 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12590 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12591 		port_cntrs[i].flags |= CNTR_DISABLED;
12592 	}
12593 
12594 	/* size port counter names and determine how many we have*/
12595 	sz = 0;
12596 	dd->nportcntrs = 0;
12597 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12598 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12599 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12600 			continue;
12601 		}
12602 
12603 		if (port_cntrs[i].flags & CNTR_VL) {
12604 			port_cntrs[i].offset = dd->nportcntrs;
12605 			for (j = 0; j < C_VL_COUNT; j++) {
12606 				snprintf(name, C_MAX_NAME, "%s%d",
12607 					 port_cntrs[i].name, vl_from_idx(j));
12608 				sz += strlen(name);
12609 				/* Add ",32" for 32-bit counters */
12610 				if (port_cntrs[i].flags & CNTR_32BIT)
12611 					sz += bit_type_32_sz;
12612 				sz++;
12613 				dd->nportcntrs++;
12614 			}
12615 		} else {
12616 			/* +1 for newline */
12617 			sz += strlen(port_cntrs[i].name) + 1;
12618 			/* Add ",32" for 32-bit counters */
12619 			if (port_cntrs[i].flags & CNTR_32BIT)
12620 				sz += bit_type_32_sz;
12621 			port_cntrs[i].offset = dd->nportcntrs;
12622 			dd->nportcntrs++;
12623 		}
12624 	}
12625 
12626 	/* allocate space for the counter names */
12627 	dd->portcntrnameslen = sz;
12628 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12629 	if (!dd->portcntrnames)
12630 		goto bail;
12631 
12632 	/* fill in port cntr names */
12633 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12634 		if (port_cntrs[i].flags & CNTR_DISABLED)
12635 			continue;
12636 
12637 		if (port_cntrs[i].flags & CNTR_VL) {
12638 			for (j = 0; j < C_VL_COUNT; j++) {
12639 				snprintf(name, C_MAX_NAME, "%s%d",
12640 					 port_cntrs[i].name, vl_from_idx(j));
12641 				memcpy(p, name, strlen(name));
12642 				p += strlen(name);
12643 
12644 				/* Counter is 32 bits */
12645 				if (port_cntrs[i].flags & CNTR_32BIT) {
12646 					memcpy(p, bit_type_32, bit_type_32_sz);
12647 					p += bit_type_32_sz;
12648 				}
12649 
12650 				*p++ = '\n';
12651 			}
12652 		} else {
12653 			memcpy(p, port_cntrs[i].name,
12654 			       strlen(port_cntrs[i].name));
12655 			p += strlen(port_cntrs[i].name);
12656 
12657 			/* Counter is 32 bits */
12658 			if (port_cntrs[i].flags & CNTR_32BIT) {
12659 				memcpy(p, bit_type_32, bit_type_32_sz);
12660 				p += bit_type_32_sz;
12661 			}
12662 
12663 			*p++ = '\n';
12664 		}
12665 	}
12666 
12667 	/* allocate per port storage for counter values */
12668 	ppd = (struct hfi1_pportdata *)(dd + 1);
12669 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12670 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12671 		if (!ppd->cntrs)
12672 			goto bail;
12673 
12674 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12675 		if (!ppd->scntrs)
12676 			goto bail;
12677 	}
12678 
12679 	/* CPU counters need to be allocated and zeroed */
12680 	if (init_cpu_counters(dd))
12681 		goto bail;
12682 
12683 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12684 						     WQ_MEM_RECLAIM, dd->unit);
12685 	if (!dd->update_cntr_wq)
12686 		goto bail;
12687 
12688 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12689 
12690 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12691 	return 0;
12692 bail:
12693 	free_cntrs(dd);
12694 	return -ENOMEM;
12695 }
12696 
12697 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12698 {
12699 	switch (chip_lstate) {
12700 	default:
12701 		dd_dev_err(dd,
12702 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12703 			   chip_lstate);
12704 		/* fall through */
12705 	case LSTATE_DOWN:
12706 		return IB_PORT_DOWN;
12707 	case LSTATE_INIT:
12708 		return IB_PORT_INIT;
12709 	case LSTATE_ARMED:
12710 		return IB_PORT_ARMED;
12711 	case LSTATE_ACTIVE:
12712 		return IB_PORT_ACTIVE;
12713 	}
12714 }
12715 
12716 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12717 {
12718 	/* look at the HFI meta-states only */
12719 	switch (chip_pstate & 0xf0) {
12720 	default:
12721 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12722 			   chip_pstate);
12723 		/* fall through */
12724 	case PLS_DISABLED:
12725 		return IB_PORTPHYSSTATE_DISABLED;
12726 	case PLS_OFFLINE:
12727 		return OPA_PORTPHYSSTATE_OFFLINE;
12728 	case PLS_POLLING:
12729 		return IB_PORTPHYSSTATE_POLLING;
12730 	case PLS_CONFIGPHY:
12731 		return IB_PORTPHYSSTATE_TRAINING;
12732 	case PLS_LINKUP:
12733 		return IB_PORTPHYSSTATE_LINKUP;
12734 	case PLS_PHYTEST:
12735 		return IB_PORTPHYSSTATE_PHY_TEST;
12736 	}
12737 }
12738 
12739 /* return the OPA port logical state name */
12740 const char *opa_lstate_name(u32 lstate)
12741 {
12742 	static const char * const port_logical_names[] = {
12743 		"PORT_NOP",
12744 		"PORT_DOWN",
12745 		"PORT_INIT",
12746 		"PORT_ARMED",
12747 		"PORT_ACTIVE",
12748 		"PORT_ACTIVE_DEFER",
12749 	};
12750 	if (lstate < ARRAY_SIZE(port_logical_names))
12751 		return port_logical_names[lstate];
12752 	return "unknown";
12753 }
12754 
12755 /* return the OPA port physical state name */
12756 const char *opa_pstate_name(u32 pstate)
12757 {
12758 	static const char * const port_physical_names[] = {
12759 		"PHYS_NOP",
12760 		"reserved1",
12761 		"PHYS_POLL",
12762 		"PHYS_DISABLED",
12763 		"PHYS_TRAINING",
12764 		"PHYS_LINKUP",
12765 		"PHYS_LINK_ERR_RECOVER",
12766 		"PHYS_PHY_TEST",
12767 		"reserved8",
12768 		"PHYS_OFFLINE",
12769 		"PHYS_GANGED",
12770 		"PHYS_TEST",
12771 	};
12772 	if (pstate < ARRAY_SIZE(port_physical_names))
12773 		return port_physical_names[pstate];
12774 	return "unknown";
12775 }
12776 
12777 /**
12778  * update_statusp - Update userspace status flag
12779  * @ppd: Port data structure
12780  * @state: port state information
12781  *
12782  * Actual port status is determined by the host_link_state value
12783  * in the ppd.
12784  *
12785  * host_link_state MUST be updated before updating the user space
12786  * statusp.
12787  */
12788 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12789 {
12790 	/*
12791 	 * Set port status flags in the page mapped into userspace
12792 	 * memory. Do it here to ensure a reliable state - this is
12793 	 * the only function called by all state handling code.
12794 	 * Always set the flags due to the fact that the cache value
12795 	 * might have been changed explicitly outside of this
12796 	 * function.
12797 	 */
12798 	if (ppd->statusp) {
12799 		switch (state) {
12800 		case IB_PORT_DOWN:
12801 		case IB_PORT_INIT:
12802 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12803 					   HFI1_STATUS_IB_READY);
12804 			break;
12805 		case IB_PORT_ARMED:
12806 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12807 			break;
12808 		case IB_PORT_ACTIVE:
12809 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12810 			break;
12811 		}
12812 	}
12813 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12814 		    opa_lstate_name(state), state);
12815 }
12816 
12817 /**
12818  * wait_logical_linkstate - wait for an IB link state change to occur
12819  * @ppd: port device
12820  * @state: the state to wait for
12821  * @msecs: the number of milliseconds to wait
12822  *
12823  * Wait up to msecs milliseconds for IB link state change to occur.
12824  * For now, take the easy polling route.
12825  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12826  */
12827 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12828 				  int msecs)
12829 {
12830 	unsigned long timeout;
12831 	u32 new_state;
12832 
12833 	timeout = jiffies + msecs_to_jiffies(msecs);
12834 	while (1) {
12835 		new_state = chip_to_opa_lstate(ppd->dd,
12836 					       read_logical_state(ppd->dd));
12837 		if (new_state == state)
12838 			break;
12839 		if (time_after(jiffies, timeout)) {
12840 			dd_dev_err(ppd->dd,
12841 				   "timeout waiting for link state 0x%x\n",
12842 				   state);
12843 			return -ETIMEDOUT;
12844 		}
12845 		msleep(20);
12846 	}
12847 
12848 	return 0;
12849 }
12850 
12851 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12852 {
12853 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12854 
12855 	dd_dev_info(ppd->dd,
12856 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12857 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12858 }
12859 
12860 /*
12861  * Read the physical hardware link state and check if it matches host
12862  * drivers anticipated state.
12863  */
12864 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12865 {
12866 	u32 read_state = read_physical_state(ppd->dd);
12867 
12868 	if (read_state == state) {
12869 		log_state_transition(ppd, state);
12870 	} else {
12871 		dd_dev_err(ppd->dd,
12872 			   "anticipated phy link state 0x%x, read 0x%x\n",
12873 			   state, read_state);
12874 	}
12875 }
12876 
12877 /*
12878  * wait_physical_linkstate - wait for an physical link state change to occur
12879  * @ppd: port device
12880  * @state: the state to wait for
12881  * @msecs: the number of milliseconds to wait
12882  *
12883  * Wait up to msecs milliseconds for physical link state change to occur.
12884  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12885  */
12886 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12887 				   int msecs)
12888 {
12889 	u32 read_state;
12890 	unsigned long timeout;
12891 
12892 	timeout = jiffies + msecs_to_jiffies(msecs);
12893 	while (1) {
12894 		read_state = read_physical_state(ppd->dd);
12895 		if (read_state == state)
12896 			break;
12897 		if (time_after(jiffies, timeout)) {
12898 			dd_dev_err(ppd->dd,
12899 				   "timeout waiting for phy link state 0x%x\n",
12900 				   state);
12901 			return -ETIMEDOUT;
12902 		}
12903 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12904 	}
12905 
12906 	log_state_transition(ppd, state);
12907 	return 0;
12908 }
12909 
12910 /*
12911  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12912  * @ppd: port device
12913  * @msecs: the number of milliseconds to wait
12914  *
12915  * Wait up to msecs milliseconds for any offline physical link
12916  * state change to occur.
12917  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12918  */
12919 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12920 					    int msecs)
12921 {
12922 	u32 read_state;
12923 	unsigned long timeout;
12924 
12925 	timeout = jiffies + msecs_to_jiffies(msecs);
12926 	while (1) {
12927 		read_state = read_physical_state(ppd->dd);
12928 		if ((read_state & 0xF0) == PLS_OFFLINE)
12929 			break;
12930 		if (time_after(jiffies, timeout)) {
12931 			dd_dev_err(ppd->dd,
12932 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12933 				   read_state, msecs);
12934 			return -ETIMEDOUT;
12935 		}
12936 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12937 	}
12938 
12939 	log_state_transition(ppd, read_state);
12940 	return read_state;
12941 }
12942 
12943 /*
12944  * wait_phys_link_out_of_offline - wait for any out of offline state
12945  * @ppd: port device
12946  * @msecs: the number of milliseconds to wait
12947  *
12948  * Wait up to msecs milliseconds for any out of offline physical link
12949  * state change to occur.
12950  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12951  */
12952 static int wait_phys_link_out_of_offline(struct hfi1_pportdata *ppd,
12953 					 int msecs)
12954 {
12955 	u32 read_state;
12956 	unsigned long timeout;
12957 
12958 	timeout = jiffies + msecs_to_jiffies(msecs);
12959 	while (1) {
12960 		read_state = read_physical_state(ppd->dd);
12961 		if ((read_state & 0xF0) != PLS_OFFLINE)
12962 			break;
12963 		if (time_after(jiffies, timeout)) {
12964 			dd_dev_err(ppd->dd,
12965 				   "timeout waiting for phy link out of offline. Read state 0x%x, %dms\n",
12966 				   read_state, msecs);
12967 			return -ETIMEDOUT;
12968 		}
12969 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12970 	}
12971 
12972 	log_state_transition(ppd, read_state);
12973 	return read_state;
12974 }
12975 
12976 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12977 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12978 
12979 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12980 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12981 
12982 void hfi1_init_ctxt(struct send_context *sc)
12983 {
12984 	if (sc) {
12985 		struct hfi1_devdata *dd = sc->dd;
12986 		u64 reg;
12987 		u8 set = (sc->type == SC_USER ?
12988 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12989 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12990 		reg = read_kctxt_csr(dd, sc->hw_context,
12991 				     SEND_CTXT_CHECK_ENABLE);
12992 		if (set)
12993 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12994 		else
12995 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12996 		write_kctxt_csr(dd, sc->hw_context,
12997 				SEND_CTXT_CHECK_ENABLE, reg);
12998 	}
12999 }
13000 
13001 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
13002 {
13003 	int ret = 0;
13004 	u64 reg;
13005 
13006 	if (dd->icode != ICODE_RTL_SILICON) {
13007 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
13008 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
13009 				    __func__);
13010 		return -EINVAL;
13011 	}
13012 	reg = read_csr(dd, ASIC_STS_THERM);
13013 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
13014 		      ASIC_STS_THERM_CURR_TEMP_MASK);
13015 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
13016 			ASIC_STS_THERM_LO_TEMP_MASK);
13017 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
13018 			ASIC_STS_THERM_HI_TEMP_MASK);
13019 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
13020 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
13021 	/* triggers is a 3-bit value - 1 bit per trigger. */
13022 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
13023 
13024 	return ret;
13025 }
13026 
13027 /* ========================================================================= */
13028 
13029 /**
13030  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
13031  * @dd: valid devdata
13032  * @src: IRQ source to determine register index from
13033  * @bits: the bits to set or clear
13034  * @set: true == set the bits, false == clear the bits
13035  *
13036  */
13037 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
13038 			   bool set)
13039 {
13040 	u64 reg;
13041 	u16 idx = src / BITS_PER_REGISTER;
13042 
13043 	spin_lock(&dd->irq_src_lock);
13044 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
13045 	if (set)
13046 		reg |= bits;
13047 	else
13048 		reg &= ~bits;
13049 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13050 	spin_unlock(&dd->irq_src_lock);
13051 }
13052 
13053 /**
13054  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13055  * @dd: valid devdata
13056  * @first: first IRQ source to set/clear
13057  * @last: last IRQ source (inclusive) to set/clear
13058  * @set: true == set the bits, false == clear the bits
13059  *
13060  * If first == last, set the exact source.
13061  */
13062 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13063 {
13064 	u64 bits = 0;
13065 	u64 bit;
13066 	u16 src;
13067 
13068 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13069 		return -EINVAL;
13070 
13071 	if (last < first)
13072 		return -ERANGE;
13073 
13074 	for (src = first; src <= last; src++) {
13075 		bit = src % BITS_PER_REGISTER;
13076 		/* wrapped to next register? */
13077 		if (!bit && bits) {
13078 			read_mod_write(dd, src - 1, bits, set);
13079 			bits = 0;
13080 		}
13081 		bits |= BIT_ULL(bit);
13082 	}
13083 	read_mod_write(dd, last, bits, set);
13084 
13085 	return 0;
13086 }
13087 
13088 /*
13089  * Clear all interrupt sources on the chip.
13090  */
13091 void clear_all_interrupts(struct hfi1_devdata *dd)
13092 {
13093 	int i;
13094 
13095 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13096 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13097 
13098 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13099 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13100 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13101 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13102 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13103 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13104 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13105 	for (i = 0; i < chip_send_contexts(dd); i++)
13106 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13107 	for (i = 0; i < chip_sdma_engines(dd); i++)
13108 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13109 
13110 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13111 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13112 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13113 }
13114 
13115 /*
13116  * Remap the interrupt source from the general handler to the given MSI-X
13117  * interrupt.
13118  */
13119 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13120 {
13121 	u64 reg;
13122 	int m, n;
13123 
13124 	/* clear from the handled mask of the general interrupt */
13125 	m = isrc / 64;
13126 	n = isrc % 64;
13127 	if (likely(m < CCE_NUM_INT_CSRS)) {
13128 		dd->gi_mask[m] &= ~((u64)1 << n);
13129 	} else {
13130 		dd_dev_err(dd, "remap interrupt err\n");
13131 		return;
13132 	}
13133 
13134 	/* direct the chip source to the given MSI-X interrupt */
13135 	m = isrc / 8;
13136 	n = isrc % 8;
13137 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13138 	reg &= ~((u64)0xff << (8 * n));
13139 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13140 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13141 }
13142 
13143 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13144 {
13145 	/*
13146 	 * SDMA engine interrupt sources grouped by type, rather than
13147 	 * engine.  Per-engine interrupts are as follows:
13148 	 *	SDMA
13149 	 *	SDMAProgress
13150 	 *	SDMAIdle
13151 	 */
13152 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13153 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13154 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13155 }
13156 
13157 /*
13158  * Set the general handler to accept all interrupts, remap all
13159  * chip interrupts back to MSI-X 0.
13160  */
13161 void reset_interrupts(struct hfi1_devdata *dd)
13162 {
13163 	int i;
13164 
13165 	/* all interrupts handled by the general handler */
13166 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13167 		dd->gi_mask[i] = ~(u64)0;
13168 
13169 	/* all chip interrupts map to MSI-X 0 */
13170 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13171 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13172 }
13173 
13174 /**
13175  * set_up_interrupts() - Initialize the IRQ resources and state
13176  * @dd: valid devdata
13177  *
13178  */
13179 static int set_up_interrupts(struct hfi1_devdata *dd)
13180 {
13181 	int ret;
13182 
13183 	/* mask all interrupts */
13184 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13185 
13186 	/* clear all pending interrupts */
13187 	clear_all_interrupts(dd);
13188 
13189 	/* reset general handler mask, chip MSI-X mappings */
13190 	reset_interrupts(dd);
13191 
13192 	/* ask for MSI-X interrupts */
13193 	ret = msix_initialize(dd);
13194 	if (ret)
13195 		return ret;
13196 
13197 	ret = msix_request_irqs(dd);
13198 	if (ret)
13199 		msix_clean_up_interrupts(dd);
13200 
13201 	return ret;
13202 }
13203 
13204 /*
13205  * Set up context values in dd.  Sets:
13206  *
13207  *	num_rcv_contexts - number of contexts being used
13208  *	n_krcv_queues - number of kernel contexts
13209  *	first_dyn_alloc_ctxt - first dynamically allocated context
13210  *                             in array of contexts
13211  *	freectxts  - number of free user contexts
13212  *	num_send_contexts - number of PIO send contexts being used
13213  *	num_vnic_contexts - number of contexts reserved for VNIC
13214  */
13215 static int set_up_context_variables(struct hfi1_devdata *dd)
13216 {
13217 	unsigned long num_kernel_contexts;
13218 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13219 	int total_contexts;
13220 	int ret;
13221 	unsigned ngroups;
13222 	int qos_rmt_count;
13223 	int user_rmt_reduced;
13224 	u32 n_usr_ctxts;
13225 	u32 send_contexts = chip_send_contexts(dd);
13226 	u32 rcv_contexts = chip_rcv_contexts(dd);
13227 
13228 	/*
13229 	 * Kernel receive contexts:
13230 	 * - Context 0 - control context (VL15/multicast/error)
13231 	 * - Context 1 - first kernel context
13232 	 * - Context 2 - second kernel context
13233 	 * ...
13234 	 */
13235 	if (n_krcvqs)
13236 		/*
13237 		 * n_krcvqs is the sum of module parameter kernel receive
13238 		 * contexts, krcvqs[].  It does not include the control
13239 		 * context, so add that.
13240 		 */
13241 		num_kernel_contexts = n_krcvqs + 1;
13242 	else
13243 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13244 	/*
13245 	 * Every kernel receive context needs an ACK send context.
13246 	 * one send context is allocated for each VL{0-7} and VL15
13247 	 */
13248 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13249 		dd_dev_err(dd,
13250 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13251 			   send_contexts - num_vls - 1,
13252 			   num_kernel_contexts);
13253 		num_kernel_contexts = send_contexts - num_vls - 1;
13254 	}
13255 
13256 	/* Accommodate VNIC contexts if possible */
13257 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13258 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13259 		num_vnic_contexts = 0;
13260 	}
13261 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13262 
13263 	/*
13264 	 * User contexts:
13265 	 *	- default to 1 user context per real (non-HT) CPU core if
13266 	 *	  num_user_contexts is negative
13267 	 */
13268 	if (num_user_contexts < 0)
13269 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13270 	else
13271 		n_usr_ctxts = num_user_contexts;
13272 	/*
13273 	 * Adjust the counts given a global max.
13274 	 */
13275 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13276 		dd_dev_err(dd,
13277 			   "Reducing # user receive contexts to: %d, from %u\n",
13278 			   rcv_contexts - total_contexts,
13279 			   n_usr_ctxts);
13280 		/* recalculate */
13281 		n_usr_ctxts = rcv_contexts - total_contexts;
13282 	}
13283 
13284 	/* each user context requires an entry in the RMT */
13285 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13286 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13287 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13288 		dd_dev_err(dd,
13289 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13290 			   n_usr_ctxts,
13291 			   user_rmt_reduced);
13292 		/* recalculate */
13293 		n_usr_ctxts = user_rmt_reduced;
13294 	}
13295 
13296 	total_contexts += n_usr_ctxts;
13297 
13298 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13299 	dd->num_rcv_contexts = total_contexts;
13300 	dd->n_krcv_queues = num_kernel_contexts;
13301 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13302 	dd->num_vnic_contexts = num_vnic_contexts;
13303 	dd->num_user_contexts = n_usr_ctxts;
13304 	dd->freectxts = n_usr_ctxts;
13305 	dd_dev_info(dd,
13306 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13307 		    rcv_contexts,
13308 		    (int)dd->num_rcv_contexts,
13309 		    (int)dd->n_krcv_queues,
13310 		    dd->num_vnic_contexts,
13311 		    dd->num_user_contexts);
13312 
13313 	/*
13314 	 * Receive array allocation:
13315 	 *   All RcvArray entries are divided into groups of 8. This
13316 	 *   is required by the hardware and will speed up writes to
13317 	 *   consecutive entries by using write-combining of the entire
13318 	 *   cacheline.
13319 	 *
13320 	 *   The number of groups are evenly divided among all contexts.
13321 	 *   any left over groups will be given to the first N user
13322 	 *   contexts.
13323 	 */
13324 	dd->rcv_entries.group_size = RCV_INCREMENT;
13325 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13326 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13327 	dd->rcv_entries.nctxt_extra = ngroups -
13328 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13329 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13330 		    dd->rcv_entries.ngroups,
13331 		    dd->rcv_entries.nctxt_extra);
13332 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13333 	    MAX_EAGER_ENTRIES * 2) {
13334 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13335 			dd->rcv_entries.group_size;
13336 		dd_dev_info(dd,
13337 			    "RcvArray group count too high, change to %u\n",
13338 			    dd->rcv_entries.ngroups);
13339 		dd->rcv_entries.nctxt_extra = 0;
13340 	}
13341 	/*
13342 	 * PIO send contexts
13343 	 */
13344 	ret = init_sc_pools_and_sizes(dd);
13345 	if (ret >= 0) {	/* success */
13346 		dd->num_send_contexts = ret;
13347 		dd_dev_info(
13348 			dd,
13349 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13350 			send_contexts,
13351 			dd->num_send_contexts,
13352 			dd->sc_sizes[SC_KERNEL].count,
13353 			dd->sc_sizes[SC_ACK].count,
13354 			dd->sc_sizes[SC_USER].count,
13355 			dd->sc_sizes[SC_VL15].count);
13356 		ret = 0;	/* success */
13357 	}
13358 
13359 	return ret;
13360 }
13361 
13362 /*
13363  * Set the device/port partition key table. The MAD code
13364  * will ensure that, at least, the partial management
13365  * partition key is present in the table.
13366  */
13367 static void set_partition_keys(struct hfi1_pportdata *ppd)
13368 {
13369 	struct hfi1_devdata *dd = ppd->dd;
13370 	u64 reg = 0;
13371 	int i;
13372 
13373 	dd_dev_info(dd, "Setting partition keys\n");
13374 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13375 		reg |= (ppd->pkeys[i] &
13376 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13377 			((i % 4) *
13378 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13379 		/* Each register holds 4 PKey values. */
13380 		if ((i % 4) == 3) {
13381 			write_csr(dd, RCV_PARTITION_KEY +
13382 				  ((i - 3) * 2), reg);
13383 			reg = 0;
13384 		}
13385 	}
13386 
13387 	/* Always enable HW pkeys check when pkeys table is set */
13388 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13389 }
13390 
13391 /*
13392  * These CSRs and memories are uninitialized on reset and must be
13393  * written before reading to set the ECC/parity bits.
13394  *
13395  * NOTE: All user context CSRs that are not mmaped write-only
13396  * (e.g. the TID flows) must be initialized even if the driver never
13397  * reads them.
13398  */
13399 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13400 {
13401 	int i, j;
13402 
13403 	/* CceIntMap */
13404 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13405 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13406 
13407 	/* SendCtxtCreditReturnAddr */
13408 	for (i = 0; i < chip_send_contexts(dd); i++)
13409 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13410 
13411 	/* PIO Send buffers */
13412 	/* SDMA Send buffers */
13413 	/*
13414 	 * These are not normally read, and (presently) have no method
13415 	 * to be read, so are not pre-initialized
13416 	 */
13417 
13418 	/* RcvHdrAddr */
13419 	/* RcvHdrTailAddr */
13420 	/* RcvTidFlowTable */
13421 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13422 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13423 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13424 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13425 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13426 	}
13427 
13428 	/* RcvArray */
13429 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13430 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13431 
13432 	/* RcvQPMapTable */
13433 	for (i = 0; i < 32; i++)
13434 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13435 }
13436 
13437 /*
13438  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13439  */
13440 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13441 			     u64 ctrl_bits)
13442 {
13443 	unsigned long timeout;
13444 	u64 reg;
13445 
13446 	/* is the condition present? */
13447 	reg = read_csr(dd, CCE_STATUS);
13448 	if ((reg & status_bits) == 0)
13449 		return;
13450 
13451 	/* clear the condition */
13452 	write_csr(dd, CCE_CTRL, ctrl_bits);
13453 
13454 	/* wait for the condition to clear */
13455 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13456 	while (1) {
13457 		reg = read_csr(dd, CCE_STATUS);
13458 		if ((reg & status_bits) == 0)
13459 			return;
13460 		if (time_after(jiffies, timeout)) {
13461 			dd_dev_err(dd,
13462 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13463 				   status_bits, reg & status_bits);
13464 			return;
13465 		}
13466 		udelay(1);
13467 	}
13468 }
13469 
13470 /* set CCE CSRs to chip reset defaults */
13471 static void reset_cce_csrs(struct hfi1_devdata *dd)
13472 {
13473 	int i;
13474 
13475 	/* CCE_REVISION read-only */
13476 	/* CCE_REVISION2 read-only */
13477 	/* CCE_CTRL - bits clear automatically */
13478 	/* CCE_STATUS read-only, use CceCtrl to clear */
13479 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13480 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13481 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13482 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13483 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13484 	/* CCE_ERR_STATUS read-only */
13485 	write_csr(dd, CCE_ERR_MASK, 0);
13486 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13487 	/* CCE_ERR_FORCE leave alone */
13488 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13489 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13490 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13491 	/* CCE_PCIE_CTRL leave alone */
13492 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13493 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13494 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13495 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13496 	}
13497 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13498 		/* CCE_MSIX_PBA read-only */
13499 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13500 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13501 	}
13502 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13503 		write_csr(dd, CCE_INT_MAP, 0);
13504 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13505 		/* CCE_INT_STATUS read-only */
13506 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13507 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13508 		/* CCE_INT_FORCE leave alone */
13509 		/* CCE_INT_BLOCKED read-only */
13510 	}
13511 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13512 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13513 }
13514 
13515 /* set MISC CSRs to chip reset defaults */
13516 static void reset_misc_csrs(struct hfi1_devdata *dd)
13517 {
13518 	int i;
13519 
13520 	for (i = 0; i < 32; i++) {
13521 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13522 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13523 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13524 	}
13525 	/*
13526 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13527 	 * only be written 128-byte chunks
13528 	 */
13529 	/* init RSA engine to clear lingering errors */
13530 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13531 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13532 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13533 	/* MISC_STS_8051_DIGEST read-only */
13534 	/* MISC_STS_SBM_DIGEST read-only */
13535 	/* MISC_STS_PCIE_DIGEST read-only */
13536 	/* MISC_STS_FAB_DIGEST read-only */
13537 	/* MISC_ERR_STATUS read-only */
13538 	write_csr(dd, MISC_ERR_MASK, 0);
13539 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13540 	/* MISC_ERR_FORCE leave alone */
13541 }
13542 
13543 /* set TXE CSRs to chip reset defaults */
13544 static void reset_txe_csrs(struct hfi1_devdata *dd)
13545 {
13546 	int i;
13547 
13548 	/*
13549 	 * TXE Kernel CSRs
13550 	 */
13551 	write_csr(dd, SEND_CTRL, 0);
13552 	__cm_reset(dd, 0);	/* reset CM internal state */
13553 	/* SEND_CONTEXTS read-only */
13554 	/* SEND_DMA_ENGINES read-only */
13555 	/* SEND_PIO_MEM_SIZE read-only */
13556 	/* SEND_DMA_MEM_SIZE read-only */
13557 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13558 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13559 	/* SEND_PIO_ERR_STATUS read-only */
13560 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13561 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13562 	/* SEND_PIO_ERR_FORCE leave alone */
13563 	/* SEND_DMA_ERR_STATUS read-only */
13564 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13565 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13566 	/* SEND_DMA_ERR_FORCE leave alone */
13567 	/* SEND_EGRESS_ERR_STATUS read-only */
13568 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13569 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13570 	/* SEND_EGRESS_ERR_FORCE leave alone */
13571 	write_csr(dd, SEND_BTH_QP, 0);
13572 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13573 	write_csr(dd, SEND_SC2VLT0, 0);
13574 	write_csr(dd, SEND_SC2VLT1, 0);
13575 	write_csr(dd, SEND_SC2VLT2, 0);
13576 	write_csr(dd, SEND_SC2VLT3, 0);
13577 	write_csr(dd, SEND_LEN_CHECK0, 0);
13578 	write_csr(dd, SEND_LEN_CHECK1, 0);
13579 	/* SEND_ERR_STATUS read-only */
13580 	write_csr(dd, SEND_ERR_MASK, 0);
13581 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13582 	/* SEND_ERR_FORCE read-only */
13583 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13584 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13585 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13586 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13587 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13588 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13589 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13590 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13591 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13592 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13593 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13594 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13595 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13596 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13597 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13598 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13599 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13600 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13601 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13602 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13603 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13604 	/* SEND_CM_CREDIT_USED_VL read-only */
13605 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13606 	/* SEND_EGRESS_CTXT_STATUS read-only */
13607 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13608 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13609 	/* SEND_EGRESS_ERR_INFO read-only */
13610 	/* SEND_EGRESS_ERR_SOURCE read-only */
13611 
13612 	/*
13613 	 * TXE Per-Context CSRs
13614 	 */
13615 	for (i = 0; i < chip_send_contexts(dd); i++) {
13616 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13617 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13618 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13619 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13620 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13621 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13622 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13623 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13624 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13625 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13626 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13627 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13628 	}
13629 
13630 	/*
13631 	 * TXE Per-SDMA CSRs
13632 	 */
13633 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13634 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13635 		/* SEND_DMA_STATUS read-only */
13636 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13637 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13638 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13639 		/* SEND_DMA_HEAD read-only */
13640 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13641 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13642 		/* SEND_DMA_IDLE_CNT read-only */
13643 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13644 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13645 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13646 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13647 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13648 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13649 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13650 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13651 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13652 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13653 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13654 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13655 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13656 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13657 	}
13658 }
13659 
13660 /*
13661  * Expect on entry:
13662  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13663  */
13664 static void init_rbufs(struct hfi1_devdata *dd)
13665 {
13666 	u64 reg;
13667 	int count;
13668 
13669 	/*
13670 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13671 	 * clear.
13672 	 */
13673 	count = 0;
13674 	while (1) {
13675 		reg = read_csr(dd, RCV_STATUS);
13676 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13677 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13678 			break;
13679 		/*
13680 		 * Give up after 1ms - maximum wait time.
13681 		 *
13682 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13683 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13684 		 *	136 KB / (66% * 250MB/s) = 844us
13685 		 */
13686 		if (count++ > 500) {
13687 			dd_dev_err(dd,
13688 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13689 				   __func__, reg);
13690 			break;
13691 		}
13692 		udelay(2); /* do not busy-wait the CSR */
13693 	}
13694 
13695 	/* start the init - expect RcvCtrl to be 0 */
13696 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13697 
13698 	/*
13699 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13700 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13701 	 * The delay in the first run through the loop below is sufficient and
13702 	 * required before the first read of RcvStatus.RxRbufInintDone.
13703 	 */
13704 	read_csr(dd, RCV_CTRL);
13705 
13706 	/* wait for the init to finish */
13707 	count = 0;
13708 	while (1) {
13709 		/* delay is required first time through - see above */
13710 		udelay(2); /* do not busy-wait the CSR */
13711 		reg = read_csr(dd, RCV_STATUS);
13712 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13713 			break;
13714 
13715 		/* give up after 100us - slowest possible at 33MHz is 73us */
13716 		if (count++ > 50) {
13717 			dd_dev_err(dd,
13718 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13719 				   __func__);
13720 			break;
13721 		}
13722 	}
13723 }
13724 
13725 /* set RXE CSRs to chip reset defaults */
13726 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13727 {
13728 	int i, j;
13729 
13730 	/*
13731 	 * RXE Kernel CSRs
13732 	 */
13733 	write_csr(dd, RCV_CTRL, 0);
13734 	init_rbufs(dd);
13735 	/* RCV_STATUS read-only */
13736 	/* RCV_CONTEXTS read-only */
13737 	/* RCV_ARRAY_CNT read-only */
13738 	/* RCV_BUF_SIZE read-only */
13739 	write_csr(dd, RCV_BTH_QP, 0);
13740 	write_csr(dd, RCV_MULTICAST, 0);
13741 	write_csr(dd, RCV_BYPASS, 0);
13742 	write_csr(dd, RCV_VL15, 0);
13743 	/* this is a clear-down */
13744 	write_csr(dd, RCV_ERR_INFO,
13745 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13746 	/* RCV_ERR_STATUS read-only */
13747 	write_csr(dd, RCV_ERR_MASK, 0);
13748 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13749 	/* RCV_ERR_FORCE leave alone */
13750 	for (i = 0; i < 32; i++)
13751 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13752 	for (i = 0; i < 4; i++)
13753 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13754 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13755 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13756 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13757 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13758 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13759 		clear_rsm_rule(dd, i);
13760 	for (i = 0; i < 32; i++)
13761 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13762 
13763 	/*
13764 	 * RXE Kernel and User Per-Context CSRs
13765 	 */
13766 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13767 		/* kernel */
13768 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13769 		/* RCV_CTXT_STATUS read-only */
13770 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13771 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13772 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13773 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13774 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13775 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13776 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13777 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13778 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13779 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13780 
13781 		/* user */
13782 		/* RCV_HDR_TAIL read-only */
13783 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13784 		/* RCV_EGR_INDEX_TAIL read-only */
13785 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13786 		/* RCV_EGR_OFFSET_TAIL read-only */
13787 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13788 			write_uctxt_csr(dd, i,
13789 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13790 		}
13791 	}
13792 }
13793 
13794 /*
13795  * Set sc2vl tables.
13796  *
13797  * They power on to zeros, so to avoid send context errors
13798  * they need to be set:
13799  *
13800  * SC 0-7 -> VL 0-7 (respectively)
13801  * SC 15  -> VL 15
13802  * otherwise
13803  *        -> VL 0
13804  */
13805 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13806 {
13807 	int i;
13808 	/* init per architecture spec, constrained by hardware capability */
13809 
13810 	/* HFI maps sent packets */
13811 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13812 		0,
13813 		0, 0, 1, 1,
13814 		2, 2, 3, 3,
13815 		4, 4, 5, 5,
13816 		6, 6, 7, 7));
13817 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13818 		1,
13819 		8, 0, 9, 0,
13820 		10, 0, 11, 0,
13821 		12, 0, 13, 0,
13822 		14, 0, 15, 15));
13823 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13824 		2,
13825 		16, 0, 17, 0,
13826 		18, 0, 19, 0,
13827 		20, 0, 21, 0,
13828 		22, 0, 23, 0));
13829 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13830 		3,
13831 		24, 0, 25, 0,
13832 		26, 0, 27, 0,
13833 		28, 0, 29, 0,
13834 		30, 0, 31, 0));
13835 
13836 	/* DC maps received packets */
13837 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13838 		15_0,
13839 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13840 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13841 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13842 		31_16,
13843 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13844 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13845 
13846 	/* initialize the cached sc2vl values consistently with h/w */
13847 	for (i = 0; i < 32; i++) {
13848 		if (i < 8 || i == 15)
13849 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13850 		else
13851 			*((u8 *)(dd->sc2vl) + i) = 0;
13852 	}
13853 }
13854 
13855 /*
13856  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13857  * depend on the chip going through a power-on reset - a driver may be loaded
13858  * and unloaded many times.
13859  *
13860  * Do not write any CSR values to the chip in this routine - there may be
13861  * a reset following the (possible) FLR in this routine.
13862  *
13863  */
13864 static int init_chip(struct hfi1_devdata *dd)
13865 {
13866 	int i;
13867 	int ret = 0;
13868 
13869 	/*
13870 	 * Put the HFI CSRs in a known state.
13871 	 * Combine this with a DC reset.
13872 	 *
13873 	 * Stop the device from doing anything while we do a
13874 	 * reset.  We know there are no other active users of
13875 	 * the device since we are now in charge.  Turn off
13876 	 * off all outbound and inbound traffic and make sure
13877 	 * the device does not generate any interrupts.
13878 	 */
13879 
13880 	/* disable send contexts and SDMA engines */
13881 	write_csr(dd, SEND_CTRL, 0);
13882 	for (i = 0; i < chip_send_contexts(dd); i++)
13883 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13884 	for (i = 0; i < chip_sdma_engines(dd); i++)
13885 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13886 	/* disable port (turn off RXE inbound traffic) and contexts */
13887 	write_csr(dd, RCV_CTRL, 0);
13888 	for (i = 0; i < chip_rcv_contexts(dd); i++)
13889 		write_csr(dd, RCV_CTXT_CTRL, 0);
13890 	/* mask all interrupt sources */
13891 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13892 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13893 
13894 	/*
13895 	 * DC Reset: do a full DC reset before the register clear.
13896 	 * A recommended length of time to hold is one CSR read,
13897 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13898 	 * across the clear.
13899 	 */
13900 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13901 	(void)read_csr(dd, CCE_DC_CTRL);
13902 
13903 	if (use_flr) {
13904 		/*
13905 		 * A FLR will reset the SPC core and part of the PCIe.
13906 		 * The parts that need to be restored have already been
13907 		 * saved.
13908 		 */
13909 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13910 
13911 		/* do the FLR, the DC reset will remain */
13912 		pcie_flr(dd->pcidev);
13913 
13914 		/* restore command and BARs */
13915 		ret = restore_pci_variables(dd);
13916 		if (ret) {
13917 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13918 				   __func__);
13919 			return ret;
13920 		}
13921 
13922 		if (is_ax(dd)) {
13923 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13924 			pcie_flr(dd->pcidev);
13925 			ret = restore_pci_variables(dd);
13926 			if (ret) {
13927 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13928 					   __func__);
13929 				return ret;
13930 			}
13931 		}
13932 	} else {
13933 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13934 		reset_cce_csrs(dd);
13935 		reset_txe_csrs(dd);
13936 		reset_rxe_csrs(dd);
13937 		reset_misc_csrs(dd);
13938 	}
13939 	/* clear the DC reset */
13940 	write_csr(dd, CCE_DC_CTRL, 0);
13941 
13942 	/* Set the LED off */
13943 	setextled(dd, 0);
13944 
13945 	/*
13946 	 * Clear the QSFP reset.
13947 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13948 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13949 	 * anything plugged constantly in reset, if it pays attention
13950 	 * to RESET_N.
13951 	 * Prime examples of this are optical cables. Set all pins high.
13952 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13953 	 * MODPRS_N are input only and their value is ignored.
13954 	 */
13955 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13956 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13957 	init_chip_resources(dd);
13958 	return ret;
13959 }
13960 
13961 static void init_early_variables(struct hfi1_devdata *dd)
13962 {
13963 	int i;
13964 
13965 	/* assign link credit variables */
13966 	dd->vau = CM_VAU;
13967 	dd->link_credits = CM_GLOBAL_CREDITS;
13968 	if (is_ax(dd))
13969 		dd->link_credits--;
13970 	dd->vcu = cu_to_vcu(hfi1_cu);
13971 	/* enough room for 8 MAD packets plus header - 17K */
13972 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13973 	if (dd->vl15_init > dd->link_credits)
13974 		dd->vl15_init = dd->link_credits;
13975 
13976 	write_uninitialized_csrs_and_memories(dd);
13977 
13978 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13979 		for (i = 0; i < dd->num_pports; i++) {
13980 			struct hfi1_pportdata *ppd = &dd->pport[i];
13981 
13982 			set_partition_keys(ppd);
13983 		}
13984 	init_sc2vl_tables(dd);
13985 }
13986 
13987 static void init_kdeth_qp(struct hfi1_devdata *dd)
13988 {
13989 	/* user changed the KDETH_QP */
13990 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13991 		/* out of range or illegal value */
13992 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13993 		kdeth_qp = 0;
13994 	}
13995 	if (kdeth_qp == 0)	/* not set, or failed range check */
13996 		kdeth_qp = DEFAULT_KDETH_QP;
13997 
13998 	write_csr(dd, SEND_BTH_QP,
13999 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
14000 		  SEND_BTH_QP_KDETH_QP_SHIFT);
14001 
14002 	write_csr(dd, RCV_BTH_QP,
14003 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
14004 		  RCV_BTH_QP_KDETH_QP_SHIFT);
14005 }
14006 
14007 /**
14008  * init_qpmap_table
14009  * @dd - device data
14010  * @first_ctxt - first context
14011  * @last_ctxt - first context
14012  *
14013  * This return sets the qpn mapping table that
14014  * is indexed by qpn[8:1].
14015  *
14016  * The routine will round robin the 256 settings
14017  * from first_ctxt to last_ctxt.
14018  *
14019  * The first/last looks ahead to having specialized
14020  * receive contexts for mgmt and bypass.  Normal
14021  * verbs traffic will assumed to be on a range
14022  * of receive contexts.
14023  */
14024 static void init_qpmap_table(struct hfi1_devdata *dd,
14025 			     u32 first_ctxt,
14026 			     u32 last_ctxt)
14027 {
14028 	u64 reg = 0;
14029 	u64 regno = RCV_QP_MAP_TABLE;
14030 	int i;
14031 	u64 ctxt = first_ctxt;
14032 
14033 	for (i = 0; i < 256; i++) {
14034 		reg |= ctxt << (8 * (i % 8));
14035 		ctxt++;
14036 		if (ctxt > last_ctxt)
14037 			ctxt = first_ctxt;
14038 		if (i % 8 == 7) {
14039 			write_csr(dd, regno, reg);
14040 			reg = 0;
14041 			regno += 8;
14042 		}
14043 	}
14044 
14045 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14046 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14047 }
14048 
14049 struct rsm_map_table {
14050 	u64 map[NUM_MAP_REGS];
14051 	unsigned int used;
14052 };
14053 
14054 struct rsm_rule_data {
14055 	u8 offset;
14056 	u8 pkt_type;
14057 	u32 field1_off;
14058 	u32 field2_off;
14059 	u32 index1_off;
14060 	u32 index1_width;
14061 	u32 index2_off;
14062 	u32 index2_width;
14063 	u32 mask1;
14064 	u32 value1;
14065 	u32 mask2;
14066 	u32 value2;
14067 };
14068 
14069 /*
14070  * Return an initialized RMT map table for users to fill in.  OK if it
14071  * returns NULL, indicating no table.
14072  */
14073 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14074 {
14075 	struct rsm_map_table *rmt;
14076 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14077 
14078 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14079 	if (rmt) {
14080 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14081 		rmt->used = 0;
14082 	}
14083 
14084 	return rmt;
14085 }
14086 
14087 /*
14088  * Write the final RMT map table to the chip and free the table.  OK if
14089  * table is NULL.
14090  */
14091 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14092 				   struct rsm_map_table *rmt)
14093 {
14094 	int i;
14095 
14096 	if (rmt) {
14097 		/* write table to chip */
14098 		for (i = 0; i < NUM_MAP_REGS; i++)
14099 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14100 
14101 		/* enable RSM */
14102 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14103 	}
14104 }
14105 
14106 /*
14107  * Add a receive side mapping rule.
14108  */
14109 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14110 			 struct rsm_rule_data *rrd)
14111 {
14112 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14113 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14114 		  1ull << rule_index | /* enable bit */
14115 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14116 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14117 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14118 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14119 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14120 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14121 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14122 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14123 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14124 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14125 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14126 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14127 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14128 }
14129 
14130 /*
14131  * Clear a receive side mapping rule.
14132  */
14133 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14134 {
14135 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14136 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14137 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14138 }
14139 
14140 /* return the number of RSM map table entries that will be used for QOS */
14141 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14142 			   unsigned int *np)
14143 {
14144 	int i;
14145 	unsigned int m, n;
14146 	u8 max_by_vl = 0;
14147 
14148 	/* is QOS active at all? */
14149 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14150 	    num_vls == 1 ||
14151 	    krcvqsset <= 1)
14152 		goto no_qos;
14153 
14154 	/* determine bits for qpn */
14155 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14156 		if (krcvqs[i] > max_by_vl)
14157 			max_by_vl = krcvqs[i];
14158 	if (max_by_vl > 32)
14159 		goto no_qos;
14160 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14161 
14162 	/* determine bits for vl */
14163 	n = ilog2(__roundup_pow_of_two(num_vls));
14164 
14165 	/* reject if too much is used */
14166 	if ((m + n) > 7)
14167 		goto no_qos;
14168 
14169 	if (mp)
14170 		*mp = m;
14171 	if (np)
14172 		*np = n;
14173 
14174 	return 1 << (m + n);
14175 
14176 no_qos:
14177 	if (mp)
14178 		*mp = 0;
14179 	if (np)
14180 		*np = 0;
14181 	return 0;
14182 }
14183 
14184 /**
14185  * init_qos - init RX qos
14186  * @dd - device data
14187  * @rmt - RSM map table
14188  *
14189  * This routine initializes Rule 0 and the RSM map table to implement
14190  * quality of service (qos).
14191  *
14192  * If all of the limit tests succeed, qos is applied based on the array
14193  * interpretation of krcvqs where entry 0 is VL0.
14194  *
14195  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14196  * feed both the RSM map table and the single rule.
14197  */
14198 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14199 {
14200 	struct rsm_rule_data rrd;
14201 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14202 	unsigned int rmt_entries;
14203 	u64 reg;
14204 
14205 	if (!rmt)
14206 		goto bail;
14207 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14208 	if (rmt_entries == 0)
14209 		goto bail;
14210 	qpns_per_vl = 1 << m;
14211 
14212 	/* enough room in the map table? */
14213 	rmt_entries = 1 << (m + n);
14214 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14215 		goto bail;
14216 
14217 	/* add qos entries to the the RSM map table */
14218 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14219 		unsigned tctxt;
14220 
14221 		for (qpn = 0, tctxt = ctxt;
14222 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14223 			unsigned idx, regoff, regidx;
14224 
14225 			/* generate the index the hardware will produce */
14226 			idx = rmt->used + ((qpn << n) ^ i);
14227 			regoff = (idx % 8) * 8;
14228 			regidx = idx / 8;
14229 			/* replace default with context number */
14230 			reg = rmt->map[regidx];
14231 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14232 				<< regoff);
14233 			reg |= (u64)(tctxt++) << regoff;
14234 			rmt->map[regidx] = reg;
14235 			if (tctxt == ctxt + krcvqs[i])
14236 				tctxt = ctxt;
14237 		}
14238 		ctxt += krcvqs[i];
14239 	}
14240 
14241 	rrd.offset = rmt->used;
14242 	rrd.pkt_type = 2;
14243 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14244 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14245 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14246 	rrd.index1_width = n;
14247 	rrd.index2_off = QPN_SELECT_OFFSET;
14248 	rrd.index2_width = m + n;
14249 	rrd.mask1 = LRH_BTH_MASK;
14250 	rrd.value1 = LRH_BTH_VALUE;
14251 	rrd.mask2 = LRH_SC_MASK;
14252 	rrd.value2 = LRH_SC_VALUE;
14253 
14254 	/* add rule 0 */
14255 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14256 
14257 	/* mark RSM map entries as used */
14258 	rmt->used += rmt_entries;
14259 	/* map everything else to the mcast/err/vl15 context */
14260 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14261 	dd->qos_shift = n + 1;
14262 	return;
14263 bail:
14264 	dd->qos_shift = 1;
14265 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14266 }
14267 
14268 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14269 				    struct rsm_map_table *rmt)
14270 {
14271 	struct rsm_rule_data rrd;
14272 	u64 reg;
14273 	int i, idx, regoff, regidx;
14274 	u8 offset;
14275 
14276 	/* there needs to be enough room in the map table */
14277 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14278 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14279 		return;
14280 	}
14281 
14282 	/*
14283 	 * RSM will extract the destination context as an index into the
14284 	 * map table.  The destination contexts are a sequential block
14285 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14286 	 * Map entries are accessed as offset + extracted value.  Adjust
14287 	 * the added offset so this sequence can be placed anywhere in
14288 	 * the table - as long as the entries themselves do not wrap.
14289 	 * There are only enough bits in offset for the table size, so
14290 	 * start with that to allow for a "negative" offset.
14291 	 */
14292 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14293 						(int)dd->first_dyn_alloc_ctxt);
14294 
14295 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14296 				i < dd->num_rcv_contexts; i++, idx++) {
14297 		/* replace with identity mapping */
14298 		regoff = (idx % 8) * 8;
14299 		regidx = idx / 8;
14300 		reg = rmt->map[regidx];
14301 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14302 		reg |= (u64)i << regoff;
14303 		rmt->map[regidx] = reg;
14304 	}
14305 
14306 	/*
14307 	 * For RSM intercept of Expected FECN packets:
14308 	 * o packet type 0 - expected
14309 	 * o match on F (bit 95), using select/match 1, and
14310 	 * o match on SH (bit 133), using select/match 2.
14311 	 *
14312 	 * Use index 1 to extract the 8-bit receive context from DestQP
14313 	 * (start at bit 64).  Use that as the RSM map table index.
14314 	 */
14315 	rrd.offset = offset;
14316 	rrd.pkt_type = 0;
14317 	rrd.field1_off = 95;
14318 	rrd.field2_off = 133;
14319 	rrd.index1_off = 64;
14320 	rrd.index1_width = 8;
14321 	rrd.index2_off = 0;
14322 	rrd.index2_width = 0;
14323 	rrd.mask1 = 1;
14324 	rrd.value1 = 1;
14325 	rrd.mask2 = 1;
14326 	rrd.value2 = 1;
14327 
14328 	/* add rule 1 */
14329 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14330 
14331 	rmt->used += dd->num_user_contexts;
14332 }
14333 
14334 /* Initialize RSM for VNIC */
14335 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14336 {
14337 	u8 i, j;
14338 	u8 ctx_id = 0;
14339 	u64 reg;
14340 	u32 regoff;
14341 	struct rsm_rule_data rrd;
14342 
14343 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14344 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14345 			   dd->vnic.rmt_start);
14346 		return;
14347 	}
14348 
14349 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14350 		dd->vnic.rmt_start,
14351 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14352 
14353 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14354 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14355 	reg = read_csr(dd, regoff);
14356 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14357 		/* Update map register with vnic context */
14358 		j = (dd->vnic.rmt_start + i) % 8;
14359 		reg &= ~(0xffllu << (j * 8));
14360 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14361 		/* Wrap up vnic ctx index */
14362 		ctx_id %= dd->vnic.num_ctxt;
14363 		/* Write back map register */
14364 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14365 			dev_dbg(&(dd)->pcidev->dev,
14366 				"Vnic rsm map reg[%d] =0x%llx\n",
14367 				regoff - RCV_RSM_MAP_TABLE, reg);
14368 
14369 			write_csr(dd, regoff, reg);
14370 			regoff += 8;
14371 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14372 				reg = read_csr(dd, regoff);
14373 		}
14374 	}
14375 
14376 	/* Add rule for vnic */
14377 	rrd.offset = dd->vnic.rmt_start;
14378 	rrd.pkt_type = 4;
14379 	/* Match 16B packets */
14380 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14381 	rrd.mask1 = L2_TYPE_MASK;
14382 	rrd.value1 = L2_16B_VALUE;
14383 	/* Match ETH L4 packets */
14384 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14385 	rrd.mask2 = L4_16B_TYPE_MASK;
14386 	rrd.value2 = L4_16B_ETH_VALUE;
14387 	/* Calc context from veswid and entropy */
14388 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14389 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14390 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14391 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14392 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14393 
14394 	/* Enable RSM if not already enabled */
14395 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14396 }
14397 
14398 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14399 {
14400 	clear_rsm_rule(dd, RSM_INS_VNIC);
14401 
14402 	/* Disable RSM if used only by vnic */
14403 	if (dd->vnic.rmt_start == 0)
14404 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14405 }
14406 
14407 static void init_rxe(struct hfi1_devdata *dd)
14408 {
14409 	struct rsm_map_table *rmt;
14410 	u64 val;
14411 
14412 	/* enable all receive errors */
14413 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14414 
14415 	rmt = alloc_rsm_map_table(dd);
14416 	/* set up QOS, including the QPN map table */
14417 	init_qos(dd, rmt);
14418 	init_user_fecn_handling(dd, rmt);
14419 	complete_rsm_map_table(dd, rmt);
14420 	/* record number of used rsm map entries for vnic */
14421 	dd->vnic.rmt_start = rmt->used;
14422 	kfree(rmt);
14423 
14424 	/*
14425 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14426 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14427 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14428 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14429 	 * Max_PayLoad_Size set to its minimum of 128.
14430 	 *
14431 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14432 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14433 	 * tune_pcie_caps() which is called after this routine.
14434 	 */
14435 
14436 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14437 	val = read_csr(dd, RCV_BYPASS);
14438 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14439 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14440 		RCV_BYPASS_HDR_SIZE_SHIFT);
14441 	write_csr(dd, RCV_BYPASS, val);
14442 }
14443 
14444 static void init_other(struct hfi1_devdata *dd)
14445 {
14446 	/* enable all CCE errors */
14447 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14448 	/* enable *some* Misc errors */
14449 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14450 	/* enable all DC errors, except LCB */
14451 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14452 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14453 }
14454 
14455 /*
14456  * Fill out the given AU table using the given CU.  A CU is defined in terms
14457  * AUs.  The table is a an encoding: given the index, how many AUs does that
14458  * represent?
14459  *
14460  * NOTE: Assumes that the register layout is the same for the
14461  * local and remote tables.
14462  */
14463 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14464 			       u32 csr0to3, u32 csr4to7)
14465 {
14466 	write_csr(dd, csr0to3,
14467 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14468 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14469 		  2ull * cu <<
14470 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14471 		  4ull * cu <<
14472 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14473 	write_csr(dd, csr4to7,
14474 		  8ull * cu <<
14475 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14476 		  16ull * cu <<
14477 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14478 		  32ull * cu <<
14479 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14480 		  64ull * cu <<
14481 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14482 }
14483 
14484 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14485 {
14486 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14487 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14488 }
14489 
14490 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14491 {
14492 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14493 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14494 }
14495 
14496 static void init_txe(struct hfi1_devdata *dd)
14497 {
14498 	int i;
14499 
14500 	/* enable all PIO, SDMA, general, and Egress errors */
14501 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14502 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14503 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14504 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14505 
14506 	/* enable all per-context and per-SDMA engine errors */
14507 	for (i = 0; i < chip_send_contexts(dd); i++)
14508 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14509 	for (i = 0; i < chip_sdma_engines(dd); i++)
14510 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14511 
14512 	/* set the local CU to AU mapping */
14513 	assign_local_cm_au_table(dd, dd->vcu);
14514 
14515 	/*
14516 	 * Set reasonable default for Credit Return Timer
14517 	 * Don't set on Simulator - causes it to choke.
14518 	 */
14519 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14520 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14521 }
14522 
14523 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14524 		       u16 jkey)
14525 {
14526 	u8 hw_ctxt;
14527 	u64 reg;
14528 
14529 	if (!rcd || !rcd->sc)
14530 		return -EINVAL;
14531 
14532 	hw_ctxt = rcd->sc->hw_context;
14533 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14534 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14535 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14536 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14537 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14538 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14539 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14540 	/*
14541 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14542 	 */
14543 	if (!is_ax(dd)) {
14544 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14545 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14546 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14547 	}
14548 
14549 	/* Enable J_KEY check on receive context. */
14550 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14551 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14552 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14553 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14554 
14555 	return 0;
14556 }
14557 
14558 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14559 {
14560 	u8 hw_ctxt;
14561 	u64 reg;
14562 
14563 	if (!rcd || !rcd->sc)
14564 		return -EINVAL;
14565 
14566 	hw_ctxt = rcd->sc->hw_context;
14567 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14568 	/*
14569 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14570 	 * This check would not have been enabled for A0 h/w, see
14571 	 * set_ctxt_jkey().
14572 	 */
14573 	if (!is_ax(dd)) {
14574 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14575 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14576 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14577 	}
14578 	/* Turn off the J_KEY on the receive side */
14579 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14580 
14581 	return 0;
14582 }
14583 
14584 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14585 		       u16 pkey)
14586 {
14587 	u8 hw_ctxt;
14588 	u64 reg;
14589 
14590 	if (!rcd || !rcd->sc)
14591 		return -EINVAL;
14592 
14593 	hw_ctxt = rcd->sc->hw_context;
14594 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14595 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14596 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14597 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14598 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14599 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14600 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14601 
14602 	return 0;
14603 }
14604 
14605 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14606 {
14607 	u8 hw_ctxt;
14608 	u64 reg;
14609 
14610 	if (!ctxt || !ctxt->sc)
14611 		return -EINVAL;
14612 
14613 	hw_ctxt = ctxt->sc->hw_context;
14614 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14615 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14616 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14617 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14618 
14619 	return 0;
14620 }
14621 
14622 /*
14623  * Start doing the clean up the the chip. Our clean up happens in multiple
14624  * stages and this is just the first.
14625  */
14626 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14627 {
14628 	aspm_exit(dd);
14629 	free_cntrs(dd);
14630 	free_rcverr(dd);
14631 	finish_chip_resources(dd);
14632 }
14633 
14634 #define HFI_BASE_GUID(dev) \
14635 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14636 
14637 /*
14638  * Information can be shared between the two HFIs on the same ASIC
14639  * in the same OS.  This function finds the peer device and sets
14640  * up a shared structure.
14641  */
14642 static int init_asic_data(struct hfi1_devdata *dd)
14643 {
14644 	unsigned long flags;
14645 	struct hfi1_devdata *tmp, *peer = NULL;
14646 	struct hfi1_asic_data *asic_data;
14647 	int ret = 0;
14648 
14649 	/* pre-allocate the asic structure in case we are the first device */
14650 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14651 	if (!asic_data)
14652 		return -ENOMEM;
14653 
14654 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14655 	/* Find our peer device */
14656 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14657 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14658 		    dd->unit != tmp->unit) {
14659 			peer = tmp;
14660 			break;
14661 		}
14662 	}
14663 
14664 	if (peer) {
14665 		/* use already allocated structure */
14666 		dd->asic_data = peer->asic_data;
14667 		kfree(asic_data);
14668 	} else {
14669 		dd->asic_data = asic_data;
14670 		mutex_init(&dd->asic_data->asic_resource_mutex);
14671 	}
14672 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14673 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14674 
14675 	/* first one through - set up i2c devices */
14676 	if (!peer)
14677 		ret = set_up_i2c(dd, dd->asic_data);
14678 
14679 	return ret;
14680 }
14681 
14682 /*
14683  * Set dd->boardname.  Use a generic name if a name is not returned from
14684  * EFI variable space.
14685  *
14686  * Return 0 on success, -ENOMEM if space could not be allocated.
14687  */
14688 static int obtain_boardname(struct hfi1_devdata *dd)
14689 {
14690 	/* generic board description */
14691 	const char generic[] =
14692 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14693 	unsigned long size;
14694 	int ret;
14695 
14696 	ret = read_hfi1_efi_var(dd, "description", &size,
14697 				(void **)&dd->boardname);
14698 	if (ret) {
14699 		dd_dev_info(dd, "Board description not found\n");
14700 		/* use generic description */
14701 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14702 		if (!dd->boardname)
14703 			return -ENOMEM;
14704 	}
14705 	return 0;
14706 }
14707 
14708 /*
14709  * Check the interrupt registers to make sure that they are mapped correctly.
14710  * It is intended to help user identify any mismapping by VMM when the driver
14711  * is running in a VM. This function should only be called before interrupt
14712  * is set up properly.
14713  *
14714  * Return 0 on success, -EINVAL on failure.
14715  */
14716 static int check_int_registers(struct hfi1_devdata *dd)
14717 {
14718 	u64 reg;
14719 	u64 all_bits = ~(u64)0;
14720 	u64 mask;
14721 
14722 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14723 	mask = read_csr(dd, CCE_INT_MASK);
14724 	write_csr(dd, CCE_INT_MASK, 0ull);
14725 	reg = read_csr(dd, CCE_INT_MASK);
14726 	if (reg)
14727 		goto err_exit;
14728 
14729 	/* Clear all interrupt status bits */
14730 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14731 	reg = read_csr(dd, CCE_INT_STATUS);
14732 	if (reg)
14733 		goto err_exit;
14734 
14735 	/* Set all interrupt status bits */
14736 	write_csr(dd, CCE_INT_FORCE, all_bits);
14737 	reg = read_csr(dd, CCE_INT_STATUS);
14738 	if (reg != all_bits)
14739 		goto err_exit;
14740 
14741 	/* Restore the interrupt mask */
14742 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14743 	write_csr(dd, CCE_INT_MASK, mask);
14744 
14745 	return 0;
14746 err_exit:
14747 	write_csr(dd, CCE_INT_MASK, mask);
14748 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14749 	return -EINVAL;
14750 }
14751 
14752 /**
14753  * hfi1_init_dd() - Initialize most of the dd structure.
14754  * @dev: the pci_dev for hfi1_ib device
14755  * @ent: pci_device_id struct for this dev
14756  *
14757  * This is global, and is called directly at init to set up the
14758  * chip-specific function pointers for later use.
14759  */
14760 int hfi1_init_dd(struct hfi1_devdata *dd)
14761 {
14762 	struct pci_dev *pdev = dd->pcidev;
14763 	struct hfi1_pportdata *ppd;
14764 	u64 reg;
14765 	int i, ret;
14766 	static const char * const inames[] = { /* implementation names */
14767 		"RTL silicon",
14768 		"RTL VCS simulation",
14769 		"RTL FPGA emulation",
14770 		"Functional simulator"
14771 	};
14772 	struct pci_dev *parent = pdev->bus->self;
14773 	u32 sdma_engines = chip_sdma_engines(dd);
14774 
14775 	ppd = dd->pport;
14776 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14777 		int vl;
14778 		/* init common fields */
14779 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14780 		/* DC supports 4 link widths */
14781 		ppd->link_width_supported =
14782 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14783 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14784 		ppd->link_width_downgrade_supported =
14785 			ppd->link_width_supported;
14786 		/* start out enabling only 4X */
14787 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14788 		ppd->link_width_downgrade_enabled =
14789 					ppd->link_width_downgrade_supported;
14790 		/* link width active is 0 when link is down */
14791 		/* link width downgrade active is 0 when link is down */
14792 
14793 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14794 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14795 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14796 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14797 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14798 		}
14799 		ppd->vls_supported = num_vls;
14800 		ppd->vls_operational = ppd->vls_supported;
14801 		/* Set the default MTU. */
14802 		for (vl = 0; vl < num_vls; vl++)
14803 			dd->vld[vl].mtu = hfi1_max_mtu;
14804 		dd->vld[15].mtu = MAX_MAD_PACKET;
14805 		/*
14806 		 * Set the initial values to reasonable default, will be set
14807 		 * for real when link is up.
14808 		 */
14809 		ppd->overrun_threshold = 0x4;
14810 		ppd->phy_error_threshold = 0xf;
14811 		ppd->port_crc_mode_enabled = link_crc_mask;
14812 		/* initialize supported LTP CRC mode */
14813 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14814 		/* initialize enabled LTP CRC mode */
14815 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14816 		/* start in offline */
14817 		ppd->host_link_state = HLS_DN_OFFLINE;
14818 		init_vl_arb_caches(ppd);
14819 	}
14820 
14821 	/*
14822 	 * Do remaining PCIe setup and save PCIe values in dd.
14823 	 * Any error printing is already done by the init code.
14824 	 * On return, we have the chip mapped.
14825 	 */
14826 	ret = hfi1_pcie_ddinit(dd, pdev);
14827 	if (ret < 0)
14828 		goto bail_free;
14829 
14830 	/* Save PCI space registers to rewrite after device reset */
14831 	ret = save_pci_variables(dd);
14832 	if (ret < 0)
14833 		goto bail_cleanup;
14834 
14835 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14836 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14837 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14838 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14839 
14840 	/*
14841 	 * Check interrupt registers mapping if the driver has no access to
14842 	 * the upstream component. In this case, it is likely that the driver
14843 	 * is running in a VM.
14844 	 */
14845 	if (!parent) {
14846 		ret = check_int_registers(dd);
14847 		if (ret)
14848 			goto bail_cleanup;
14849 	}
14850 
14851 	/*
14852 	 * obtain the hardware ID - NOT related to unit, which is a
14853 	 * software enumeration
14854 	 */
14855 	reg = read_csr(dd, CCE_REVISION2);
14856 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14857 					& CCE_REVISION2_HFI_ID_MASK;
14858 	/* the variable size will remove unwanted bits */
14859 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14860 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14861 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14862 		    dd->icode < ARRAY_SIZE(inames) ?
14863 		    inames[dd->icode] : "unknown", (int)dd->irev);
14864 
14865 	/* speeds the hardware can support */
14866 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14867 	/* speeds allowed to run at */
14868 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14869 	/* give a reasonable active value, will be set on link up */
14870 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14871 
14872 	/* fix up link widths for emulation _p */
14873 	ppd = dd->pport;
14874 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14875 		ppd->link_width_supported =
14876 			ppd->link_width_enabled =
14877 			ppd->link_width_downgrade_supported =
14878 			ppd->link_width_downgrade_enabled =
14879 				OPA_LINK_WIDTH_1X;
14880 	}
14881 	/* insure num_vls isn't larger than number of sdma engines */
14882 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
14883 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14884 			   num_vls, sdma_engines);
14885 		num_vls = sdma_engines;
14886 		ppd->vls_supported = sdma_engines;
14887 		ppd->vls_operational = ppd->vls_supported;
14888 	}
14889 
14890 	/*
14891 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14892 	 * Limit the max if larger than the field holds.  If timeout is
14893 	 * non-zero, then the calculated field will be at least 1.
14894 	 *
14895 	 * Must be after icode is set up - the cclock rate depends
14896 	 * on knowing the hardware being used.
14897 	 */
14898 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14899 	if (dd->rcv_intr_timeout_csr >
14900 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14901 		dd->rcv_intr_timeout_csr =
14902 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14903 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14904 		dd->rcv_intr_timeout_csr = 1;
14905 
14906 	/* needs to be done before we look for the peer device */
14907 	read_guid(dd);
14908 
14909 	/* set up shared ASIC data with peer device */
14910 	ret = init_asic_data(dd);
14911 	if (ret)
14912 		goto bail_cleanup;
14913 
14914 	/* obtain chip sizes, reset chip CSRs */
14915 	ret = init_chip(dd);
14916 	if (ret)
14917 		goto bail_cleanup;
14918 
14919 	/* read in the PCIe link speed information */
14920 	ret = pcie_speeds(dd);
14921 	if (ret)
14922 		goto bail_cleanup;
14923 
14924 	/* call before get_platform_config(), after init_chip_resources() */
14925 	ret = eprom_init(dd);
14926 	if (ret)
14927 		goto bail_free_rcverr;
14928 
14929 	/* Needs to be called before hfi1_firmware_init */
14930 	get_platform_config(dd);
14931 
14932 	/* read in firmware */
14933 	ret = hfi1_firmware_init(dd);
14934 	if (ret)
14935 		goto bail_cleanup;
14936 
14937 	/*
14938 	 * In general, the PCIe Gen3 transition must occur after the
14939 	 * chip has been idled (so it won't initiate any PCIe transactions
14940 	 * e.g. an interrupt) and before the driver changes any registers
14941 	 * (the transition will reset the registers).
14942 	 *
14943 	 * In particular, place this call after:
14944 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14945 	 * - pcie_speeds()   - reads the current link speed
14946 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14947 	 *			    downloaded
14948 	 */
14949 	ret = do_pcie_gen3_transition(dd);
14950 	if (ret)
14951 		goto bail_cleanup;
14952 
14953 	/*
14954 	 * This should probably occur in hfi1_pcie_init(), but historically
14955 	 * occurs after the do_pcie_gen3_transition() code.
14956 	 */
14957 	tune_pcie_caps(dd);
14958 
14959 	/* start setting dd values and adjusting CSRs */
14960 	init_early_variables(dd);
14961 
14962 	parse_platform_config(dd);
14963 
14964 	ret = obtain_boardname(dd);
14965 	if (ret)
14966 		goto bail_cleanup;
14967 
14968 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14969 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14970 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14971 		 (u32)dd->majrev,
14972 		 (u32)dd->minrev,
14973 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14974 		    & CCE_REVISION_SW_MASK);
14975 
14976 	ret = set_up_context_variables(dd);
14977 	if (ret)
14978 		goto bail_cleanup;
14979 
14980 	/* set initial RXE CSRs */
14981 	init_rxe(dd);
14982 	/* set initial TXE CSRs */
14983 	init_txe(dd);
14984 	/* set initial non-RXE, non-TXE CSRs */
14985 	init_other(dd);
14986 	/* set up KDETH QP prefix in both RX and TX CSRs */
14987 	init_kdeth_qp(dd);
14988 
14989 	ret = hfi1_dev_affinity_init(dd);
14990 	if (ret)
14991 		goto bail_cleanup;
14992 
14993 	/* send contexts must be set up before receive contexts */
14994 	ret = init_send_contexts(dd);
14995 	if (ret)
14996 		goto bail_cleanup;
14997 
14998 	ret = hfi1_create_kctxts(dd);
14999 	if (ret)
15000 		goto bail_cleanup;
15001 
15002 	/*
15003 	 * Initialize aspm, to be done after gen3 transition and setting up
15004 	 * contexts and before enabling interrupts
15005 	 */
15006 	aspm_init(dd);
15007 
15008 	ret = init_pervl_scs(dd);
15009 	if (ret)
15010 		goto bail_cleanup;
15011 
15012 	/* sdma init */
15013 	for (i = 0; i < dd->num_pports; ++i) {
15014 		ret = sdma_init(dd, i);
15015 		if (ret)
15016 			goto bail_cleanup;
15017 	}
15018 
15019 	/* use contexts created by hfi1_create_kctxts */
15020 	ret = set_up_interrupts(dd);
15021 	if (ret)
15022 		goto bail_cleanup;
15023 
15024 	ret = hfi1_comp_vectors_set_up(dd);
15025 	if (ret)
15026 		goto bail_clear_intr;
15027 
15028 	/* set up LCB access - must be after set_up_interrupts() */
15029 	init_lcb_access(dd);
15030 
15031 	/*
15032 	 * Serial number is created from the base guid:
15033 	 * [27:24] = base guid [38:35]
15034 	 * [23: 0] = base guid [23: 0]
15035 	 */
15036 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
15037 		 (dd->base_guid & 0xFFFFFF) |
15038 		     ((dd->base_guid >> 11) & 0xF000000));
15039 
15040 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
15041 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
15042 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
15043 
15044 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
15045 	if (ret)
15046 		goto bail_clear_intr;
15047 
15048 	thermal_init(dd);
15049 
15050 	ret = init_cntrs(dd);
15051 	if (ret)
15052 		goto bail_clear_intr;
15053 
15054 	ret = init_rcverr(dd);
15055 	if (ret)
15056 		goto bail_free_cntrs;
15057 
15058 	init_completion(&dd->user_comp);
15059 
15060 	/* The user refcount starts with one to inidicate an active device */
15061 	atomic_set(&dd->user_refcount, 1);
15062 
15063 	goto bail;
15064 
15065 bail_free_rcverr:
15066 	free_rcverr(dd);
15067 bail_free_cntrs:
15068 	free_cntrs(dd);
15069 bail_clear_intr:
15070 	hfi1_comp_vectors_clean_up(dd);
15071 	msix_clean_up_interrupts(dd);
15072 bail_cleanup:
15073 	hfi1_pcie_ddcleanup(dd);
15074 bail_free:
15075 	hfi1_free_devdata(dd);
15076 bail:
15077 	return ret;
15078 }
15079 
15080 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15081 			u32 dw_len)
15082 {
15083 	u32 delta_cycles;
15084 	u32 current_egress_rate = ppd->current_egress_rate;
15085 	/* rates here are in units of 10^6 bits/sec */
15086 
15087 	if (desired_egress_rate == -1)
15088 		return 0; /* shouldn't happen */
15089 
15090 	if (desired_egress_rate >= current_egress_rate)
15091 		return 0; /* we can't help go faster, only slower */
15092 
15093 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15094 			egress_cycles(dw_len * 4, current_egress_rate);
15095 
15096 	return (u16)delta_cycles;
15097 }
15098 
15099 /**
15100  * create_pbc - build a pbc for transmission
15101  * @flags: special case flags or-ed in built pbc
15102  * @srate: static rate
15103  * @vl: vl
15104  * @dwlen: dword length (header words + data words + pbc words)
15105  *
15106  * Create a PBC with the given flags, rate, VL, and length.
15107  *
15108  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15109  * for verbs, which does not use this PSM feature.  The lone other caller
15110  * is for the diagnostic interface which calls this if the user does not
15111  * supply their own PBC.
15112  */
15113 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15114 	       u32 dw_len)
15115 {
15116 	u64 pbc, delay = 0;
15117 
15118 	if (unlikely(srate_mbs))
15119 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15120 
15121 	pbc = flags
15122 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15123 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15124 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15125 		| (dw_len & PBC_LENGTH_DWS_MASK)
15126 			<< PBC_LENGTH_DWS_SHIFT;
15127 
15128 	return pbc;
15129 }
15130 
15131 #define SBUS_THERMAL    0x4f
15132 #define SBUS_THERM_MONITOR_MODE 0x1
15133 
15134 #define THERM_FAILURE(dev, ret, reason) \
15135 	dd_dev_err((dd),						\
15136 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15137 		   (reason), (ret))
15138 
15139 /*
15140  * Initialize the thermal sensor.
15141  *
15142  * After initialization, enable polling of thermal sensor through
15143  * SBus interface. In order for this to work, the SBus Master
15144  * firmware has to be loaded due to the fact that the HW polling
15145  * logic uses SBus interrupts, which are not supported with
15146  * default firmware. Otherwise, no data will be returned through
15147  * the ASIC_STS_THERM CSR.
15148  */
15149 static int thermal_init(struct hfi1_devdata *dd)
15150 {
15151 	int ret = 0;
15152 
15153 	if (dd->icode != ICODE_RTL_SILICON ||
15154 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15155 		return ret;
15156 
15157 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15158 	if (ret) {
15159 		THERM_FAILURE(dd, ret, "Acquire SBus");
15160 		return ret;
15161 	}
15162 
15163 	dd_dev_info(dd, "Initializing thermal sensor\n");
15164 	/* Disable polling of thermal readings */
15165 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15166 	msleep(100);
15167 	/* Thermal Sensor Initialization */
15168 	/*    Step 1: Reset the Thermal SBus Receiver */
15169 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15170 				RESET_SBUS_RECEIVER, 0);
15171 	if (ret) {
15172 		THERM_FAILURE(dd, ret, "Bus Reset");
15173 		goto done;
15174 	}
15175 	/*    Step 2: Set Reset bit in Thermal block */
15176 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15177 				WRITE_SBUS_RECEIVER, 0x1);
15178 	if (ret) {
15179 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15180 		goto done;
15181 	}
15182 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15183 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15184 				WRITE_SBUS_RECEIVER, 0x32);
15185 	if (ret) {
15186 		THERM_FAILURE(dd, ret, "Write Clock Div");
15187 		goto done;
15188 	}
15189 	/*    Step 4: Select temperature mode */
15190 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15191 				WRITE_SBUS_RECEIVER,
15192 				SBUS_THERM_MONITOR_MODE);
15193 	if (ret) {
15194 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15195 		goto done;
15196 	}
15197 	/*    Step 5: De-assert block reset and start conversion */
15198 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15199 				WRITE_SBUS_RECEIVER, 0x2);
15200 	if (ret) {
15201 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15202 		goto done;
15203 	}
15204 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15205 	msleep(22);
15206 
15207 	/* Enable polling of thermal readings */
15208 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15209 
15210 	/* Set initialized flag */
15211 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15212 	if (ret)
15213 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15214 
15215 done:
15216 	release_chip_resource(dd, CR_SBUS);
15217 	return ret;
15218 }
15219 
15220 static void handle_temp_err(struct hfi1_devdata *dd)
15221 {
15222 	struct hfi1_pportdata *ppd = &dd->pport[0];
15223 	/*
15224 	 * Thermal Critical Interrupt
15225 	 * Put the device into forced freeze mode, take link down to
15226 	 * offline, and put DC into reset.
15227 	 */
15228 	dd_dev_emerg(dd,
15229 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15230 	dd->flags |= HFI1_FORCED_FREEZE;
15231 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15232 	/*
15233 	 * Shut DC down as much and as quickly as possible.
15234 	 *
15235 	 * Step 1: Take the link down to OFFLINE. This will cause the
15236 	 *         8051 to put the Serdes in reset. However, we don't want to
15237 	 *         go through the entire link state machine since we want to
15238 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15239 	 *         but rather an attempt to save the chip.
15240 	 *         Code below is almost the same as quiet_serdes() but avoids
15241 	 *         all the extra work and the sleeps.
15242 	 */
15243 	ppd->driver_link_ready = 0;
15244 	ppd->link_enabled = 0;
15245 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15246 				PLS_OFFLINE);
15247 	/*
15248 	 * Step 2: Shutdown LCB and 8051
15249 	 *         After shutdown, do not restore DC_CFG_RESET value.
15250 	 */
15251 	dc_shutdown(dd);
15252 }
15253