xref: /openbmc/linux/drivers/infiniband/hw/hfi1/chip.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 
48 /*
49  * This file contains all of the code that is specific to the HFI chip
50  */
51 
52 #include <linux/pci.h>
53 #include <linux/delay.h>
54 #include <linux/interrupt.h>
55 #include <linux/module.h>
56 
57 #include "hfi.h"
58 #include "trace.h"
59 #include "mad.h"
60 #include "pio.h"
61 #include "sdma.h"
62 #include "eprom.h"
63 #include "efivar.h"
64 #include "platform.h"
65 #include "aspm.h"
66 #include "affinity.h"
67 #include "debugfs.h"
68 #include "fault.h"
69 
70 uint kdeth_qp;
71 module_param_named(kdeth_qp, kdeth_qp, uint, S_IRUGO);
72 MODULE_PARM_DESC(kdeth_qp, "Set the KDETH queue pair prefix");
73 
74 uint num_vls = HFI1_MAX_VLS_SUPPORTED;
75 module_param(num_vls, uint, S_IRUGO);
76 MODULE_PARM_DESC(num_vls, "Set number of Virtual Lanes to use (1-8)");
77 
78 /*
79  * Default time to aggregate two 10K packets from the idle state
80  * (timer not running). The timer starts at the end of the first packet,
81  * so only the time for one 10K packet and header plus a bit extra is needed.
82  * 10 * 1024 + 64 header byte = 10304 byte
83  * 10304 byte / 12.5 GB/s = 824.32ns
84  */
85 uint rcv_intr_timeout = (824 + 16); /* 16 is for coalescing interrupt */
86 module_param(rcv_intr_timeout, uint, S_IRUGO);
87 MODULE_PARM_DESC(rcv_intr_timeout, "Receive interrupt mitigation timeout in ns");
88 
89 uint rcv_intr_count = 16; /* same as qib */
90 module_param(rcv_intr_count, uint, S_IRUGO);
91 MODULE_PARM_DESC(rcv_intr_count, "Receive interrupt mitigation count");
92 
93 ushort link_crc_mask = SUPPORTED_CRCS;
94 module_param(link_crc_mask, ushort, S_IRUGO);
95 MODULE_PARM_DESC(link_crc_mask, "CRCs to use on the link");
96 
97 uint loopback;
98 module_param_named(loopback, loopback, uint, S_IRUGO);
99 MODULE_PARM_DESC(loopback, "Put into loopback mode (1 = serdes, 3 = external cable");
100 
101 /* Other driver tunables */
102 uint rcv_intr_dynamic = 1; /* enable dynamic mode for rcv int mitigation*/
103 static ushort crc_14b_sideband = 1;
104 static uint use_flr = 1;
105 uint quick_linkup; /* skip LNI */
106 
107 struct flag_table {
108 	u64 flag;	/* the flag */
109 	char *str;	/* description string */
110 	u16 extra;	/* extra information */
111 	u16 unused0;
112 	u32 unused1;
113 };
114 
115 /* str must be a string constant */
116 #define FLAG_ENTRY(str, extra, flag) {flag, str, extra}
117 #define FLAG_ENTRY0(str, flag) {flag, str, 0}
118 
119 /* Send Error Consequences */
120 #define SEC_WRITE_DROPPED	0x1
121 #define SEC_PACKET_DROPPED	0x2
122 #define SEC_SC_HALTED		0x4	/* per-context only */
123 #define SEC_SPC_FREEZE		0x8	/* per-HFI only */
124 
125 #define DEFAULT_KRCVQS		  2
126 #define MIN_KERNEL_KCTXTS         2
127 #define FIRST_KERNEL_KCTXT        1
128 
129 /*
130  * RSM instance allocation
131  *   0 - Verbs
132  *   1 - User Fecn Handling
133  *   2 - Vnic
134  */
135 #define RSM_INS_VERBS             0
136 #define RSM_INS_FECN              1
137 #define RSM_INS_VNIC              2
138 
139 /* Bit offset into the GUID which carries HFI id information */
140 #define GUID_HFI_INDEX_SHIFT     39
141 
142 /* extract the emulation revision */
143 #define emulator_rev(dd) ((dd)->irev >> 8)
144 /* parallel and serial emulation versions are 3 and 4 respectively */
145 #define is_emulator_p(dd) ((((dd)->irev) & 0xf) == 3)
146 #define is_emulator_s(dd) ((((dd)->irev) & 0xf) == 4)
147 
148 /* RSM fields for Verbs */
149 /* packet type */
150 #define IB_PACKET_TYPE         2ull
151 #define QW_SHIFT               6ull
152 /* QPN[7..1] */
153 #define QPN_WIDTH              7ull
154 
155 /* LRH.BTH: QW 0, OFFSET 48 - for match */
156 #define LRH_BTH_QW             0ull
157 #define LRH_BTH_BIT_OFFSET     48ull
158 #define LRH_BTH_OFFSET(off)    ((LRH_BTH_QW << QW_SHIFT) | (off))
159 #define LRH_BTH_MATCH_OFFSET   LRH_BTH_OFFSET(LRH_BTH_BIT_OFFSET)
160 #define LRH_BTH_SELECT
161 #define LRH_BTH_MASK           3ull
162 #define LRH_BTH_VALUE          2ull
163 
164 /* LRH.SC[3..0] QW 0, OFFSET 56 - for match */
165 #define LRH_SC_QW              0ull
166 #define LRH_SC_BIT_OFFSET      56ull
167 #define LRH_SC_OFFSET(off)     ((LRH_SC_QW << QW_SHIFT) | (off))
168 #define LRH_SC_MATCH_OFFSET    LRH_SC_OFFSET(LRH_SC_BIT_OFFSET)
169 #define LRH_SC_MASK            128ull
170 #define LRH_SC_VALUE           0ull
171 
172 /* SC[n..0] QW 0, OFFSET 60 - for select */
173 #define LRH_SC_SELECT_OFFSET  ((LRH_SC_QW << QW_SHIFT) | (60ull))
174 
175 /* QPN[m+n:1] QW 1, OFFSET 1 */
176 #define QPN_SELECT_OFFSET      ((1ull << QW_SHIFT) | (1ull))
177 
178 /* RSM fields for Vnic */
179 /* L2_TYPE: QW 0, OFFSET 61 - for match */
180 #define L2_TYPE_QW             0ull
181 #define L2_TYPE_BIT_OFFSET     61ull
182 #define L2_TYPE_OFFSET(off)    ((L2_TYPE_QW << QW_SHIFT) | (off))
183 #define L2_TYPE_MATCH_OFFSET   L2_TYPE_OFFSET(L2_TYPE_BIT_OFFSET)
184 #define L2_TYPE_MASK           3ull
185 #define L2_16B_VALUE           2ull
186 
187 /* L4_TYPE QW 1, OFFSET 0 - for match */
188 #define L4_TYPE_QW              1ull
189 #define L4_TYPE_BIT_OFFSET      0ull
190 #define L4_TYPE_OFFSET(off)     ((L4_TYPE_QW << QW_SHIFT) | (off))
191 #define L4_TYPE_MATCH_OFFSET    L4_TYPE_OFFSET(L4_TYPE_BIT_OFFSET)
192 #define L4_16B_TYPE_MASK        0xFFull
193 #define L4_16B_ETH_VALUE        0x78ull
194 
195 /* 16B VESWID - for select */
196 #define L4_16B_HDR_VESWID_OFFSET  ((2 << QW_SHIFT) | (16ull))
197 /* 16B ENTROPY - for select */
198 #define L2_16B_ENTROPY_OFFSET     ((1 << QW_SHIFT) | (32ull))
199 
200 /* defines to build power on SC2VL table */
201 #define SC2VL_VAL( \
202 	num, \
203 	sc0, sc0val, \
204 	sc1, sc1val, \
205 	sc2, sc2val, \
206 	sc3, sc3val, \
207 	sc4, sc4val, \
208 	sc5, sc5val, \
209 	sc6, sc6val, \
210 	sc7, sc7val) \
211 ( \
212 	((u64)(sc0val) << SEND_SC2VLT##num##_SC##sc0##_SHIFT) | \
213 	((u64)(sc1val) << SEND_SC2VLT##num##_SC##sc1##_SHIFT) | \
214 	((u64)(sc2val) << SEND_SC2VLT##num##_SC##sc2##_SHIFT) | \
215 	((u64)(sc3val) << SEND_SC2VLT##num##_SC##sc3##_SHIFT) | \
216 	((u64)(sc4val) << SEND_SC2VLT##num##_SC##sc4##_SHIFT) | \
217 	((u64)(sc5val) << SEND_SC2VLT##num##_SC##sc5##_SHIFT) | \
218 	((u64)(sc6val) << SEND_SC2VLT##num##_SC##sc6##_SHIFT) | \
219 	((u64)(sc7val) << SEND_SC2VLT##num##_SC##sc7##_SHIFT)   \
220 )
221 
222 #define DC_SC_VL_VAL( \
223 	range, \
224 	e0, e0val, \
225 	e1, e1val, \
226 	e2, e2val, \
227 	e3, e3val, \
228 	e4, e4val, \
229 	e5, e5val, \
230 	e6, e6val, \
231 	e7, e7val, \
232 	e8, e8val, \
233 	e9, e9val, \
234 	e10, e10val, \
235 	e11, e11val, \
236 	e12, e12val, \
237 	e13, e13val, \
238 	e14, e14val, \
239 	e15, e15val) \
240 ( \
241 	((u64)(e0val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e0##_SHIFT) | \
242 	((u64)(e1val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e1##_SHIFT) | \
243 	((u64)(e2val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e2##_SHIFT) | \
244 	((u64)(e3val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e3##_SHIFT) | \
245 	((u64)(e4val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e4##_SHIFT) | \
246 	((u64)(e5val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e5##_SHIFT) | \
247 	((u64)(e6val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e6##_SHIFT) | \
248 	((u64)(e7val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e7##_SHIFT) | \
249 	((u64)(e8val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e8##_SHIFT) | \
250 	((u64)(e9val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e9##_SHIFT) | \
251 	((u64)(e10val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e10##_SHIFT) | \
252 	((u64)(e11val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e11##_SHIFT) | \
253 	((u64)(e12val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e12##_SHIFT) | \
254 	((u64)(e13val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e13##_SHIFT) | \
255 	((u64)(e14val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e14##_SHIFT) | \
256 	((u64)(e15val) << DCC_CFG_SC_VL_TABLE_##range##_ENTRY##e15##_SHIFT) \
257 )
258 
259 /* all CceStatus sub-block freeze bits */
260 #define ALL_FROZE (CCE_STATUS_SDMA_FROZE_SMASK \
261 			| CCE_STATUS_RXE_FROZE_SMASK \
262 			| CCE_STATUS_TXE_FROZE_SMASK \
263 			| CCE_STATUS_TXE_PIO_FROZE_SMASK)
264 /* all CceStatus sub-block TXE pause bits */
265 #define ALL_TXE_PAUSE (CCE_STATUS_TXE_PIO_PAUSED_SMASK \
266 			| CCE_STATUS_TXE_PAUSED_SMASK \
267 			| CCE_STATUS_SDMA_PAUSED_SMASK)
268 /* all CceStatus sub-block RXE pause bits */
269 #define ALL_RXE_PAUSE CCE_STATUS_RXE_PAUSED_SMASK
270 
271 #define CNTR_MAX 0xFFFFFFFFFFFFFFFFULL
272 #define CNTR_32BIT_MAX 0x00000000FFFFFFFF
273 
274 /*
275  * CCE Error flags.
276  */
277 static struct flag_table cce_err_status_flags[] = {
278 /* 0*/	FLAG_ENTRY0("CceCsrParityErr",
279 		CCE_ERR_STATUS_CCE_CSR_PARITY_ERR_SMASK),
280 /* 1*/	FLAG_ENTRY0("CceCsrReadBadAddrErr",
281 		CCE_ERR_STATUS_CCE_CSR_READ_BAD_ADDR_ERR_SMASK),
282 /* 2*/	FLAG_ENTRY0("CceCsrWriteBadAddrErr",
283 		CCE_ERR_STATUS_CCE_CSR_WRITE_BAD_ADDR_ERR_SMASK),
284 /* 3*/	FLAG_ENTRY0("CceTrgtAsyncFifoParityErr",
285 		CCE_ERR_STATUS_CCE_TRGT_ASYNC_FIFO_PARITY_ERR_SMASK),
286 /* 4*/	FLAG_ENTRY0("CceTrgtAccessErr",
287 		CCE_ERR_STATUS_CCE_TRGT_ACCESS_ERR_SMASK),
288 /* 5*/	FLAG_ENTRY0("CceRspdDataParityErr",
289 		CCE_ERR_STATUS_CCE_RSPD_DATA_PARITY_ERR_SMASK),
290 /* 6*/	FLAG_ENTRY0("CceCli0AsyncFifoParityErr",
291 		CCE_ERR_STATUS_CCE_CLI0_ASYNC_FIFO_PARITY_ERR_SMASK),
292 /* 7*/	FLAG_ENTRY0("CceCsrCfgBusParityErr",
293 		CCE_ERR_STATUS_CCE_CSR_CFG_BUS_PARITY_ERR_SMASK),
294 /* 8*/	FLAG_ENTRY0("CceCli2AsyncFifoParityErr",
295 		CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK),
296 /* 9*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
297 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR_SMASK),
298 /*10*/	FLAG_ENTRY0("CceCli1AsyncFifoPioCrdtParityErr",
299 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR_SMASK),
300 /*11*/	FLAG_ENTRY0("CceCli1AsyncFifoRxdmaParityError",
301 	    CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERROR_SMASK),
302 /*12*/	FLAG_ENTRY0("CceCli1AsyncFifoDbgParityError",
303 		CCE_ERR_STATUS_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERROR_SMASK),
304 /*13*/	FLAG_ENTRY0("PcicRetryMemCorErr",
305 		CCE_ERR_STATUS_PCIC_RETRY_MEM_COR_ERR_SMASK),
306 /*14*/	FLAG_ENTRY0("PcicRetryMemCorErr",
307 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_COR_ERR_SMASK),
308 /*15*/	FLAG_ENTRY0("PcicPostHdQCorErr",
309 		CCE_ERR_STATUS_PCIC_POST_HD_QCOR_ERR_SMASK),
310 /*16*/	FLAG_ENTRY0("PcicPostHdQCorErr",
311 		CCE_ERR_STATUS_PCIC_POST_DAT_QCOR_ERR_SMASK),
312 /*17*/	FLAG_ENTRY0("PcicPostHdQCorErr",
313 		CCE_ERR_STATUS_PCIC_CPL_HD_QCOR_ERR_SMASK),
314 /*18*/	FLAG_ENTRY0("PcicCplDatQCorErr",
315 		CCE_ERR_STATUS_PCIC_CPL_DAT_QCOR_ERR_SMASK),
316 /*19*/	FLAG_ENTRY0("PcicNPostHQParityErr",
317 		CCE_ERR_STATUS_PCIC_NPOST_HQ_PARITY_ERR_SMASK),
318 /*20*/	FLAG_ENTRY0("PcicNPostDatQParityErr",
319 		CCE_ERR_STATUS_PCIC_NPOST_DAT_QPARITY_ERR_SMASK),
320 /*21*/	FLAG_ENTRY0("PcicRetryMemUncErr",
321 		CCE_ERR_STATUS_PCIC_RETRY_MEM_UNC_ERR_SMASK),
322 /*22*/	FLAG_ENTRY0("PcicRetrySotMemUncErr",
323 		CCE_ERR_STATUS_PCIC_RETRY_SOT_MEM_UNC_ERR_SMASK),
324 /*23*/	FLAG_ENTRY0("PcicPostHdQUncErr",
325 		CCE_ERR_STATUS_PCIC_POST_HD_QUNC_ERR_SMASK),
326 /*24*/	FLAG_ENTRY0("PcicPostDatQUncErr",
327 		CCE_ERR_STATUS_PCIC_POST_DAT_QUNC_ERR_SMASK),
328 /*25*/	FLAG_ENTRY0("PcicCplHdQUncErr",
329 		CCE_ERR_STATUS_PCIC_CPL_HD_QUNC_ERR_SMASK),
330 /*26*/	FLAG_ENTRY0("PcicCplDatQUncErr",
331 		CCE_ERR_STATUS_PCIC_CPL_DAT_QUNC_ERR_SMASK),
332 /*27*/	FLAG_ENTRY0("PcicTransmitFrontParityErr",
333 		CCE_ERR_STATUS_PCIC_TRANSMIT_FRONT_PARITY_ERR_SMASK),
334 /*28*/	FLAG_ENTRY0("PcicTransmitBackParityErr",
335 		CCE_ERR_STATUS_PCIC_TRANSMIT_BACK_PARITY_ERR_SMASK),
336 /*29*/	FLAG_ENTRY0("PcicReceiveParityErr",
337 		CCE_ERR_STATUS_PCIC_RECEIVE_PARITY_ERR_SMASK),
338 /*30*/	FLAG_ENTRY0("CceTrgtCplTimeoutErr",
339 		CCE_ERR_STATUS_CCE_TRGT_CPL_TIMEOUT_ERR_SMASK),
340 /*31*/	FLAG_ENTRY0("LATriggered",
341 		CCE_ERR_STATUS_LA_TRIGGERED_SMASK),
342 /*32*/	FLAG_ENTRY0("CceSegReadBadAddrErr",
343 		CCE_ERR_STATUS_CCE_SEG_READ_BAD_ADDR_ERR_SMASK),
344 /*33*/	FLAG_ENTRY0("CceSegWriteBadAddrErr",
345 		CCE_ERR_STATUS_CCE_SEG_WRITE_BAD_ADDR_ERR_SMASK),
346 /*34*/	FLAG_ENTRY0("CceRcplAsyncFifoParityErr",
347 		CCE_ERR_STATUS_CCE_RCPL_ASYNC_FIFO_PARITY_ERR_SMASK),
348 /*35*/	FLAG_ENTRY0("CceRxdmaConvFifoParityErr",
349 		CCE_ERR_STATUS_CCE_RXDMA_CONV_FIFO_PARITY_ERR_SMASK),
350 /*36*/	FLAG_ENTRY0("CceMsixTableCorErr",
351 		CCE_ERR_STATUS_CCE_MSIX_TABLE_COR_ERR_SMASK),
352 /*37*/	FLAG_ENTRY0("CceMsixTableUncErr",
353 		CCE_ERR_STATUS_CCE_MSIX_TABLE_UNC_ERR_SMASK),
354 /*38*/	FLAG_ENTRY0("CceIntMapCorErr",
355 		CCE_ERR_STATUS_CCE_INT_MAP_COR_ERR_SMASK),
356 /*39*/	FLAG_ENTRY0("CceIntMapUncErr",
357 		CCE_ERR_STATUS_CCE_INT_MAP_UNC_ERR_SMASK),
358 /*40*/	FLAG_ENTRY0("CceMsixCsrParityErr",
359 		CCE_ERR_STATUS_CCE_MSIX_CSR_PARITY_ERR_SMASK),
360 /*41-63 reserved*/
361 };
362 
363 /*
364  * Misc Error flags
365  */
366 #define MES(text) MISC_ERR_STATUS_MISC_##text##_ERR_SMASK
367 static struct flag_table misc_err_status_flags[] = {
368 /* 0*/	FLAG_ENTRY0("CSR_PARITY", MES(CSR_PARITY)),
369 /* 1*/	FLAG_ENTRY0("CSR_READ_BAD_ADDR", MES(CSR_READ_BAD_ADDR)),
370 /* 2*/	FLAG_ENTRY0("CSR_WRITE_BAD_ADDR", MES(CSR_WRITE_BAD_ADDR)),
371 /* 3*/	FLAG_ENTRY0("SBUS_WRITE_FAILED", MES(SBUS_WRITE_FAILED)),
372 /* 4*/	FLAG_ENTRY0("KEY_MISMATCH", MES(KEY_MISMATCH)),
373 /* 5*/	FLAG_ENTRY0("FW_AUTH_FAILED", MES(FW_AUTH_FAILED)),
374 /* 6*/	FLAG_ENTRY0("EFUSE_CSR_PARITY", MES(EFUSE_CSR_PARITY)),
375 /* 7*/	FLAG_ENTRY0("EFUSE_READ_BAD_ADDR", MES(EFUSE_READ_BAD_ADDR)),
376 /* 8*/	FLAG_ENTRY0("EFUSE_WRITE", MES(EFUSE_WRITE)),
377 /* 9*/	FLAG_ENTRY0("EFUSE_DONE_PARITY", MES(EFUSE_DONE_PARITY)),
378 /*10*/	FLAG_ENTRY0("INVALID_EEP_CMD", MES(INVALID_EEP_CMD)),
379 /*11*/	FLAG_ENTRY0("MBIST_FAIL", MES(MBIST_FAIL)),
380 /*12*/	FLAG_ENTRY0("PLL_LOCK_FAIL", MES(PLL_LOCK_FAIL))
381 };
382 
383 /*
384  * TXE PIO Error flags and consequences
385  */
386 static struct flag_table pio_err_status_flags[] = {
387 /* 0*/	FLAG_ENTRY("PioWriteBadCtxt",
388 	SEC_WRITE_DROPPED,
389 	SEND_PIO_ERR_STATUS_PIO_WRITE_BAD_CTXT_ERR_SMASK),
390 /* 1*/	FLAG_ENTRY("PioWriteAddrParity",
391 	SEC_SPC_FREEZE,
392 	SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK),
393 /* 2*/	FLAG_ENTRY("PioCsrParity",
394 	SEC_SPC_FREEZE,
395 	SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK),
396 /* 3*/	FLAG_ENTRY("PioSbMemFifo0",
397 	SEC_SPC_FREEZE,
398 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK),
399 /* 4*/	FLAG_ENTRY("PioSbMemFifo1",
400 	SEC_SPC_FREEZE,
401 	SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK),
402 /* 5*/	FLAG_ENTRY("PioPccFifoParity",
403 	SEC_SPC_FREEZE,
404 	SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK),
405 /* 6*/	FLAG_ENTRY("PioPecFifoParity",
406 	SEC_SPC_FREEZE,
407 	SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK),
408 /* 7*/	FLAG_ENTRY("PioSbrdctlCrrelParity",
409 	SEC_SPC_FREEZE,
410 	SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK),
411 /* 8*/	FLAG_ENTRY("PioSbrdctrlCrrelFifoParity",
412 	SEC_SPC_FREEZE,
413 	SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK),
414 /* 9*/	FLAG_ENTRY("PioPktEvictFifoParityErr",
415 	SEC_SPC_FREEZE,
416 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK),
417 /*10*/	FLAG_ENTRY("PioSmPktResetParity",
418 	SEC_SPC_FREEZE,
419 	SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK),
420 /*11*/	FLAG_ENTRY("PioVlLenMemBank0Unc",
421 	SEC_SPC_FREEZE,
422 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK),
423 /*12*/	FLAG_ENTRY("PioVlLenMemBank1Unc",
424 	SEC_SPC_FREEZE,
425 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK),
426 /*13*/	FLAG_ENTRY("PioVlLenMemBank0Cor",
427 	0,
428 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_COR_ERR_SMASK),
429 /*14*/	FLAG_ENTRY("PioVlLenMemBank1Cor",
430 	0,
431 	SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_COR_ERR_SMASK),
432 /*15*/	FLAG_ENTRY("PioCreditRetFifoParity",
433 	SEC_SPC_FREEZE,
434 	SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK),
435 /*16*/	FLAG_ENTRY("PioPpmcPblFifo",
436 	SEC_SPC_FREEZE,
437 	SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK),
438 /*17*/	FLAG_ENTRY("PioInitSmIn",
439 	0,
440 	SEND_PIO_ERR_STATUS_PIO_INIT_SM_IN_ERR_SMASK),
441 /*18*/	FLAG_ENTRY("PioPktEvictSmOrArbSm",
442 	SEC_SPC_FREEZE,
443 	SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK),
444 /*19*/	FLAG_ENTRY("PioHostAddrMemUnc",
445 	SEC_SPC_FREEZE,
446 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK),
447 /*20*/	FLAG_ENTRY("PioHostAddrMemCor",
448 	0,
449 	SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_COR_ERR_SMASK),
450 /*21*/	FLAG_ENTRY("PioWriteDataParity",
451 	SEC_SPC_FREEZE,
452 	SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK),
453 /*22*/	FLAG_ENTRY("PioStateMachine",
454 	SEC_SPC_FREEZE,
455 	SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK),
456 /*23*/	FLAG_ENTRY("PioWriteQwValidParity",
457 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
458 	SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK),
459 /*24*/	FLAG_ENTRY("PioBlockQwCountParity",
460 	SEC_WRITE_DROPPED | SEC_SPC_FREEZE,
461 	SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK),
462 /*25*/	FLAG_ENTRY("PioVlfVlLenParity",
463 	SEC_SPC_FREEZE,
464 	SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK),
465 /*26*/	FLAG_ENTRY("PioVlfSopParity",
466 	SEC_SPC_FREEZE,
467 	SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK),
468 /*27*/	FLAG_ENTRY("PioVlFifoParity",
469 	SEC_SPC_FREEZE,
470 	SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK),
471 /*28*/	FLAG_ENTRY("PioPpmcBqcMemParity",
472 	SEC_SPC_FREEZE,
473 	SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK),
474 /*29*/	FLAG_ENTRY("PioPpmcSopLen",
475 	SEC_SPC_FREEZE,
476 	SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK),
477 /*30-31 reserved*/
478 /*32*/	FLAG_ENTRY("PioCurrentFreeCntParity",
479 	SEC_SPC_FREEZE,
480 	SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK),
481 /*33*/	FLAG_ENTRY("PioLastReturnedCntParity",
482 	SEC_SPC_FREEZE,
483 	SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK),
484 /*34*/	FLAG_ENTRY("PioPccSopHeadParity",
485 	SEC_SPC_FREEZE,
486 	SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK),
487 /*35*/	FLAG_ENTRY("PioPecSopHeadParityErr",
488 	SEC_SPC_FREEZE,
489 	SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK),
490 /*36-63 reserved*/
491 };
492 
493 /* TXE PIO errors that cause an SPC freeze */
494 #define ALL_PIO_FREEZE_ERR \
495 	(SEND_PIO_ERR_STATUS_PIO_WRITE_ADDR_PARITY_ERR_SMASK \
496 	| SEND_PIO_ERR_STATUS_PIO_CSR_PARITY_ERR_SMASK \
497 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO0_ERR_SMASK \
498 	| SEND_PIO_ERR_STATUS_PIO_SB_MEM_FIFO1_ERR_SMASK \
499 	| SEND_PIO_ERR_STATUS_PIO_PCC_FIFO_PARITY_ERR_SMASK \
500 	| SEND_PIO_ERR_STATUS_PIO_PEC_FIFO_PARITY_ERR_SMASK \
501 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTL_CRREL_PARITY_ERR_SMASK \
502 	| SEND_PIO_ERR_STATUS_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR_SMASK \
503 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_FIFO_PARITY_ERR_SMASK \
504 	| SEND_PIO_ERR_STATUS_PIO_SM_PKT_RESET_PARITY_ERR_SMASK \
505 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK0_UNC_ERR_SMASK \
506 	| SEND_PIO_ERR_STATUS_PIO_VL_LEN_MEM_BANK1_UNC_ERR_SMASK \
507 	| SEND_PIO_ERR_STATUS_PIO_CREDIT_RET_FIFO_PARITY_ERR_SMASK \
508 	| SEND_PIO_ERR_STATUS_PIO_PPMC_PBL_FIFO_ERR_SMASK \
509 	| SEND_PIO_ERR_STATUS_PIO_PKT_EVICT_SM_OR_ARB_SM_ERR_SMASK \
510 	| SEND_PIO_ERR_STATUS_PIO_HOST_ADDR_MEM_UNC_ERR_SMASK \
511 	| SEND_PIO_ERR_STATUS_PIO_WRITE_DATA_PARITY_ERR_SMASK \
512 	| SEND_PIO_ERR_STATUS_PIO_STATE_MACHINE_ERR_SMASK \
513 	| SEND_PIO_ERR_STATUS_PIO_WRITE_QW_VALID_PARITY_ERR_SMASK \
514 	| SEND_PIO_ERR_STATUS_PIO_BLOCK_QW_COUNT_PARITY_ERR_SMASK \
515 	| SEND_PIO_ERR_STATUS_PIO_VLF_VL_LEN_PARITY_ERR_SMASK \
516 	| SEND_PIO_ERR_STATUS_PIO_VLF_SOP_PARITY_ERR_SMASK \
517 	| SEND_PIO_ERR_STATUS_PIO_VL_FIFO_PARITY_ERR_SMASK \
518 	| SEND_PIO_ERR_STATUS_PIO_PPMC_BQC_MEM_PARITY_ERR_SMASK \
519 	| SEND_PIO_ERR_STATUS_PIO_PPMC_SOP_LEN_ERR_SMASK \
520 	| SEND_PIO_ERR_STATUS_PIO_CURRENT_FREE_CNT_PARITY_ERR_SMASK \
521 	| SEND_PIO_ERR_STATUS_PIO_LAST_RETURNED_CNT_PARITY_ERR_SMASK \
522 	| SEND_PIO_ERR_STATUS_PIO_PCC_SOP_HEAD_PARITY_ERR_SMASK \
523 	| SEND_PIO_ERR_STATUS_PIO_PEC_SOP_HEAD_PARITY_ERR_SMASK)
524 
525 /*
526  * TXE SDMA Error flags
527  */
528 static struct flag_table sdma_err_status_flags[] = {
529 /* 0*/	FLAG_ENTRY0("SDmaRpyTagErr",
530 		SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK),
531 /* 1*/	FLAG_ENTRY0("SDmaCsrParityErr",
532 		SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK),
533 /* 2*/	FLAG_ENTRY0("SDmaPcieReqTrackingUncErr",
534 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK),
535 /* 3*/	FLAG_ENTRY0("SDmaPcieReqTrackingCorErr",
536 		SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_COR_ERR_SMASK),
537 /*04-63 reserved*/
538 };
539 
540 /* TXE SDMA errors that cause an SPC freeze */
541 #define ALL_SDMA_FREEZE_ERR  \
542 		(SEND_DMA_ERR_STATUS_SDMA_RPY_TAG_ERR_SMASK \
543 		| SEND_DMA_ERR_STATUS_SDMA_CSR_PARITY_ERR_SMASK \
544 		| SEND_DMA_ERR_STATUS_SDMA_PCIE_REQ_TRACKING_UNC_ERR_SMASK)
545 
546 /* SendEgressErrInfo bits that correspond to a PortXmitDiscard counter */
547 #define PORT_DISCARD_EGRESS_ERRS \
548 	(SEND_EGRESS_ERR_INFO_TOO_LONG_IB_PACKET_ERR_SMASK \
549 	| SEND_EGRESS_ERR_INFO_VL_MAPPING_ERR_SMASK \
550 	| SEND_EGRESS_ERR_INFO_VL_ERR_SMASK)
551 
552 /*
553  * TXE Egress Error flags
554  */
555 #define SEES(text) SEND_EGRESS_ERR_STATUS_##text##_ERR_SMASK
556 static struct flag_table egress_err_status_flags[] = {
557 /* 0*/	FLAG_ENTRY0("TxPktIntegrityMemCorErr", SEES(TX_PKT_INTEGRITY_MEM_COR)),
558 /* 1*/	FLAG_ENTRY0("TxPktIntegrityMemUncErr", SEES(TX_PKT_INTEGRITY_MEM_UNC)),
559 /* 2 reserved */
560 /* 3*/	FLAG_ENTRY0("TxEgressFifoUnderrunOrParityErr",
561 		SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY)),
562 /* 4*/	FLAG_ENTRY0("TxLinkdownErr", SEES(TX_LINKDOWN)),
563 /* 5*/	FLAG_ENTRY0("TxIncorrectLinkStateErr", SEES(TX_INCORRECT_LINK_STATE)),
564 /* 6 reserved */
565 /* 7*/	FLAG_ENTRY0("TxPioLaunchIntfParityErr",
566 		SEES(TX_PIO_LAUNCH_INTF_PARITY)),
567 /* 8*/	FLAG_ENTRY0("TxSdmaLaunchIntfParityErr",
568 		SEES(TX_SDMA_LAUNCH_INTF_PARITY)),
569 /* 9-10 reserved */
570 /*11*/	FLAG_ENTRY0("TxSbrdCtlStateMachineParityErr",
571 		SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY)),
572 /*12*/	FLAG_ENTRY0("TxIllegalVLErr", SEES(TX_ILLEGAL_VL)),
573 /*13*/	FLAG_ENTRY0("TxLaunchCsrParityErr", SEES(TX_LAUNCH_CSR_PARITY)),
574 /*14*/	FLAG_ENTRY0("TxSbrdCtlCsrParityErr", SEES(TX_SBRD_CTL_CSR_PARITY)),
575 /*15*/	FLAG_ENTRY0("TxConfigParityErr", SEES(TX_CONFIG_PARITY)),
576 /*16*/	FLAG_ENTRY0("TxSdma0DisallowedPacketErr",
577 		SEES(TX_SDMA0_DISALLOWED_PACKET)),
578 /*17*/	FLAG_ENTRY0("TxSdma1DisallowedPacketErr",
579 		SEES(TX_SDMA1_DISALLOWED_PACKET)),
580 /*18*/	FLAG_ENTRY0("TxSdma2DisallowedPacketErr",
581 		SEES(TX_SDMA2_DISALLOWED_PACKET)),
582 /*19*/	FLAG_ENTRY0("TxSdma3DisallowedPacketErr",
583 		SEES(TX_SDMA3_DISALLOWED_PACKET)),
584 /*20*/	FLAG_ENTRY0("TxSdma4DisallowedPacketErr",
585 		SEES(TX_SDMA4_DISALLOWED_PACKET)),
586 /*21*/	FLAG_ENTRY0("TxSdma5DisallowedPacketErr",
587 		SEES(TX_SDMA5_DISALLOWED_PACKET)),
588 /*22*/	FLAG_ENTRY0("TxSdma6DisallowedPacketErr",
589 		SEES(TX_SDMA6_DISALLOWED_PACKET)),
590 /*23*/	FLAG_ENTRY0("TxSdma7DisallowedPacketErr",
591 		SEES(TX_SDMA7_DISALLOWED_PACKET)),
592 /*24*/	FLAG_ENTRY0("TxSdma8DisallowedPacketErr",
593 		SEES(TX_SDMA8_DISALLOWED_PACKET)),
594 /*25*/	FLAG_ENTRY0("TxSdma9DisallowedPacketErr",
595 		SEES(TX_SDMA9_DISALLOWED_PACKET)),
596 /*26*/	FLAG_ENTRY0("TxSdma10DisallowedPacketErr",
597 		SEES(TX_SDMA10_DISALLOWED_PACKET)),
598 /*27*/	FLAG_ENTRY0("TxSdma11DisallowedPacketErr",
599 		SEES(TX_SDMA11_DISALLOWED_PACKET)),
600 /*28*/	FLAG_ENTRY0("TxSdma12DisallowedPacketErr",
601 		SEES(TX_SDMA12_DISALLOWED_PACKET)),
602 /*29*/	FLAG_ENTRY0("TxSdma13DisallowedPacketErr",
603 		SEES(TX_SDMA13_DISALLOWED_PACKET)),
604 /*30*/	FLAG_ENTRY0("TxSdma14DisallowedPacketErr",
605 		SEES(TX_SDMA14_DISALLOWED_PACKET)),
606 /*31*/	FLAG_ENTRY0("TxSdma15DisallowedPacketErr",
607 		SEES(TX_SDMA15_DISALLOWED_PACKET)),
608 /*32*/	FLAG_ENTRY0("TxLaunchFifo0UncOrParityErr",
609 		SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY)),
610 /*33*/	FLAG_ENTRY0("TxLaunchFifo1UncOrParityErr",
611 		SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY)),
612 /*34*/	FLAG_ENTRY0("TxLaunchFifo2UncOrParityErr",
613 		SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY)),
614 /*35*/	FLAG_ENTRY0("TxLaunchFifo3UncOrParityErr",
615 		SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY)),
616 /*36*/	FLAG_ENTRY0("TxLaunchFifo4UncOrParityErr",
617 		SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY)),
618 /*37*/	FLAG_ENTRY0("TxLaunchFifo5UncOrParityErr",
619 		SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY)),
620 /*38*/	FLAG_ENTRY0("TxLaunchFifo6UncOrParityErr",
621 		SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY)),
622 /*39*/	FLAG_ENTRY0("TxLaunchFifo7UncOrParityErr",
623 		SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY)),
624 /*40*/	FLAG_ENTRY0("TxLaunchFifo8UncOrParityErr",
625 		SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY)),
626 /*41*/	FLAG_ENTRY0("TxCreditReturnParityErr", SEES(TX_CREDIT_RETURN_PARITY)),
627 /*42*/	FLAG_ENTRY0("TxSbHdrUncErr", SEES(TX_SB_HDR_UNC)),
628 /*43*/	FLAG_ENTRY0("TxReadSdmaMemoryUncErr", SEES(TX_READ_SDMA_MEMORY_UNC)),
629 /*44*/	FLAG_ENTRY0("TxReadPioMemoryUncErr", SEES(TX_READ_PIO_MEMORY_UNC)),
630 /*45*/	FLAG_ENTRY0("TxEgressFifoUncErr", SEES(TX_EGRESS_FIFO_UNC)),
631 /*46*/	FLAG_ENTRY0("TxHcrcInsertionErr", SEES(TX_HCRC_INSERTION)),
632 /*47*/	FLAG_ENTRY0("TxCreditReturnVLErr", SEES(TX_CREDIT_RETURN_VL)),
633 /*48*/	FLAG_ENTRY0("TxLaunchFifo0CorErr", SEES(TX_LAUNCH_FIFO0_COR)),
634 /*49*/	FLAG_ENTRY0("TxLaunchFifo1CorErr", SEES(TX_LAUNCH_FIFO1_COR)),
635 /*50*/	FLAG_ENTRY0("TxLaunchFifo2CorErr", SEES(TX_LAUNCH_FIFO2_COR)),
636 /*51*/	FLAG_ENTRY0("TxLaunchFifo3CorErr", SEES(TX_LAUNCH_FIFO3_COR)),
637 /*52*/	FLAG_ENTRY0("TxLaunchFifo4CorErr", SEES(TX_LAUNCH_FIFO4_COR)),
638 /*53*/	FLAG_ENTRY0("TxLaunchFifo5CorErr", SEES(TX_LAUNCH_FIFO5_COR)),
639 /*54*/	FLAG_ENTRY0("TxLaunchFifo6CorErr", SEES(TX_LAUNCH_FIFO6_COR)),
640 /*55*/	FLAG_ENTRY0("TxLaunchFifo7CorErr", SEES(TX_LAUNCH_FIFO7_COR)),
641 /*56*/	FLAG_ENTRY0("TxLaunchFifo8CorErr", SEES(TX_LAUNCH_FIFO8_COR)),
642 /*57*/	FLAG_ENTRY0("TxCreditOverrunErr", SEES(TX_CREDIT_OVERRUN)),
643 /*58*/	FLAG_ENTRY0("TxSbHdrCorErr", SEES(TX_SB_HDR_COR)),
644 /*59*/	FLAG_ENTRY0("TxReadSdmaMemoryCorErr", SEES(TX_READ_SDMA_MEMORY_COR)),
645 /*60*/	FLAG_ENTRY0("TxReadPioMemoryCorErr", SEES(TX_READ_PIO_MEMORY_COR)),
646 /*61*/	FLAG_ENTRY0("TxEgressFifoCorErr", SEES(TX_EGRESS_FIFO_COR)),
647 /*62*/	FLAG_ENTRY0("TxReadSdmaMemoryCsrUncErr",
648 		SEES(TX_READ_SDMA_MEMORY_CSR_UNC)),
649 /*63*/	FLAG_ENTRY0("TxReadPioMemoryCsrUncErr",
650 		SEES(TX_READ_PIO_MEMORY_CSR_UNC)),
651 };
652 
653 /*
654  * TXE Egress Error Info flags
655  */
656 #define SEEI(text) SEND_EGRESS_ERR_INFO_##text##_ERR_SMASK
657 static struct flag_table egress_err_info_flags[] = {
658 /* 0*/	FLAG_ENTRY0("Reserved", 0ull),
659 /* 1*/	FLAG_ENTRY0("VLErr", SEEI(VL)),
660 /* 2*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
661 /* 3*/	FLAG_ENTRY0("JobKeyErr", SEEI(JOB_KEY)),
662 /* 4*/	FLAG_ENTRY0("PartitionKeyErr", SEEI(PARTITION_KEY)),
663 /* 5*/	FLAG_ENTRY0("SLIDErr", SEEI(SLID)),
664 /* 6*/	FLAG_ENTRY0("OpcodeErr", SEEI(OPCODE)),
665 /* 7*/	FLAG_ENTRY0("VLMappingErr", SEEI(VL_MAPPING)),
666 /* 8*/	FLAG_ENTRY0("RawErr", SEEI(RAW)),
667 /* 9*/	FLAG_ENTRY0("RawIPv6Err", SEEI(RAW_IPV6)),
668 /*10*/	FLAG_ENTRY0("GRHErr", SEEI(GRH)),
669 /*11*/	FLAG_ENTRY0("BypassErr", SEEI(BYPASS)),
670 /*12*/	FLAG_ENTRY0("KDETHPacketsErr", SEEI(KDETH_PACKETS)),
671 /*13*/	FLAG_ENTRY0("NonKDETHPacketsErr", SEEI(NON_KDETH_PACKETS)),
672 /*14*/	FLAG_ENTRY0("TooSmallIBPacketsErr", SEEI(TOO_SMALL_IB_PACKETS)),
673 /*15*/	FLAG_ENTRY0("TooSmallBypassPacketsErr", SEEI(TOO_SMALL_BYPASS_PACKETS)),
674 /*16*/	FLAG_ENTRY0("PbcTestErr", SEEI(PBC_TEST)),
675 /*17*/	FLAG_ENTRY0("BadPktLenErr", SEEI(BAD_PKT_LEN)),
676 /*18*/	FLAG_ENTRY0("TooLongIBPacketErr", SEEI(TOO_LONG_IB_PACKET)),
677 /*19*/	FLAG_ENTRY0("TooLongBypassPacketsErr", SEEI(TOO_LONG_BYPASS_PACKETS)),
678 /*20*/	FLAG_ENTRY0("PbcStaticRateControlErr", SEEI(PBC_STATIC_RATE_CONTROL)),
679 /*21*/	FLAG_ENTRY0("BypassBadPktLenErr", SEEI(BAD_PKT_LEN)),
680 };
681 
682 /* TXE Egress errors that cause an SPC freeze */
683 #define ALL_TXE_EGRESS_FREEZE_ERR \
684 	(SEES(TX_EGRESS_FIFO_UNDERRUN_OR_PARITY) \
685 	| SEES(TX_PIO_LAUNCH_INTF_PARITY) \
686 	| SEES(TX_SDMA_LAUNCH_INTF_PARITY) \
687 	| SEES(TX_SBRD_CTL_STATE_MACHINE_PARITY) \
688 	| SEES(TX_LAUNCH_CSR_PARITY) \
689 	| SEES(TX_SBRD_CTL_CSR_PARITY) \
690 	| SEES(TX_CONFIG_PARITY) \
691 	| SEES(TX_LAUNCH_FIFO0_UNC_OR_PARITY) \
692 	| SEES(TX_LAUNCH_FIFO1_UNC_OR_PARITY) \
693 	| SEES(TX_LAUNCH_FIFO2_UNC_OR_PARITY) \
694 	| SEES(TX_LAUNCH_FIFO3_UNC_OR_PARITY) \
695 	| SEES(TX_LAUNCH_FIFO4_UNC_OR_PARITY) \
696 	| SEES(TX_LAUNCH_FIFO5_UNC_OR_PARITY) \
697 	| SEES(TX_LAUNCH_FIFO6_UNC_OR_PARITY) \
698 	| SEES(TX_LAUNCH_FIFO7_UNC_OR_PARITY) \
699 	| SEES(TX_LAUNCH_FIFO8_UNC_OR_PARITY) \
700 	| SEES(TX_CREDIT_RETURN_PARITY))
701 
702 /*
703  * TXE Send error flags
704  */
705 #define SES(name) SEND_ERR_STATUS_SEND_##name##_ERR_SMASK
706 static struct flag_table send_err_status_flags[] = {
707 /* 0*/	FLAG_ENTRY0("SendCsrParityErr", SES(CSR_PARITY)),
708 /* 1*/	FLAG_ENTRY0("SendCsrReadBadAddrErr", SES(CSR_READ_BAD_ADDR)),
709 /* 2*/	FLAG_ENTRY0("SendCsrWriteBadAddrErr", SES(CSR_WRITE_BAD_ADDR))
710 };
711 
712 /*
713  * TXE Send Context Error flags and consequences
714  */
715 static struct flag_table sc_err_status_flags[] = {
716 /* 0*/	FLAG_ENTRY("InconsistentSop",
717 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
718 		SEND_CTXT_ERR_STATUS_PIO_INCONSISTENT_SOP_ERR_SMASK),
719 /* 1*/	FLAG_ENTRY("DisallowedPacket",
720 		SEC_PACKET_DROPPED | SEC_SC_HALTED,
721 		SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK),
722 /* 2*/	FLAG_ENTRY("WriteCrossesBoundary",
723 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
724 		SEND_CTXT_ERR_STATUS_PIO_WRITE_CROSSES_BOUNDARY_ERR_SMASK),
725 /* 3*/	FLAG_ENTRY("WriteOverflow",
726 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
727 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OVERFLOW_ERR_SMASK),
728 /* 4*/	FLAG_ENTRY("WriteOutOfBounds",
729 		SEC_WRITE_DROPPED | SEC_SC_HALTED,
730 		SEND_CTXT_ERR_STATUS_PIO_WRITE_OUT_OF_BOUNDS_ERR_SMASK),
731 /* 5-63 reserved*/
732 };
733 
734 /*
735  * RXE Receive Error flags
736  */
737 #define RXES(name) RCV_ERR_STATUS_RX_##name##_ERR_SMASK
738 static struct flag_table rxe_err_status_flags[] = {
739 /* 0*/	FLAG_ENTRY0("RxDmaCsrCorErr", RXES(DMA_CSR_COR)),
740 /* 1*/	FLAG_ENTRY0("RxDcIntfParityErr", RXES(DC_INTF_PARITY)),
741 /* 2*/	FLAG_ENTRY0("RxRcvHdrUncErr", RXES(RCV_HDR_UNC)),
742 /* 3*/	FLAG_ENTRY0("RxRcvHdrCorErr", RXES(RCV_HDR_COR)),
743 /* 4*/	FLAG_ENTRY0("RxRcvDataUncErr", RXES(RCV_DATA_UNC)),
744 /* 5*/	FLAG_ENTRY0("RxRcvDataCorErr", RXES(RCV_DATA_COR)),
745 /* 6*/	FLAG_ENTRY0("RxRcvQpMapTableUncErr", RXES(RCV_QP_MAP_TABLE_UNC)),
746 /* 7*/	FLAG_ENTRY0("RxRcvQpMapTableCorErr", RXES(RCV_QP_MAP_TABLE_COR)),
747 /* 8*/	FLAG_ENTRY0("RxRcvCsrParityErr", RXES(RCV_CSR_PARITY)),
748 /* 9*/	FLAG_ENTRY0("RxDcSopEopParityErr", RXES(DC_SOP_EOP_PARITY)),
749 /*10*/	FLAG_ENTRY0("RxDmaFlagUncErr", RXES(DMA_FLAG_UNC)),
750 /*11*/	FLAG_ENTRY0("RxDmaFlagCorErr", RXES(DMA_FLAG_COR)),
751 /*12*/	FLAG_ENTRY0("RxRcvFsmEncodingErr", RXES(RCV_FSM_ENCODING)),
752 /*13*/	FLAG_ENTRY0("RxRbufFreeListUncErr", RXES(RBUF_FREE_LIST_UNC)),
753 /*14*/	FLAG_ENTRY0("RxRbufFreeListCorErr", RXES(RBUF_FREE_LIST_COR)),
754 /*15*/	FLAG_ENTRY0("RxRbufLookupDesRegUncErr", RXES(RBUF_LOOKUP_DES_REG_UNC)),
755 /*16*/	FLAG_ENTRY0("RxRbufLookupDesRegUncCorErr",
756 		RXES(RBUF_LOOKUP_DES_REG_UNC_COR)),
757 /*17*/	FLAG_ENTRY0("RxRbufLookupDesUncErr", RXES(RBUF_LOOKUP_DES_UNC)),
758 /*18*/	FLAG_ENTRY0("RxRbufLookupDesCorErr", RXES(RBUF_LOOKUP_DES_COR)),
759 /*19*/	FLAG_ENTRY0("RxRbufBlockListReadUncErr",
760 		RXES(RBUF_BLOCK_LIST_READ_UNC)),
761 /*20*/	FLAG_ENTRY0("RxRbufBlockListReadCorErr",
762 		RXES(RBUF_BLOCK_LIST_READ_COR)),
763 /*21*/	FLAG_ENTRY0("RxRbufCsrQHeadBufNumParityErr",
764 		RXES(RBUF_CSR_QHEAD_BUF_NUM_PARITY)),
765 /*22*/	FLAG_ENTRY0("RxRbufCsrQEntCntParityErr",
766 		RXES(RBUF_CSR_QENT_CNT_PARITY)),
767 /*23*/	FLAG_ENTRY0("RxRbufCsrQNextBufParityErr",
768 		RXES(RBUF_CSR_QNEXT_BUF_PARITY)),
769 /*24*/	FLAG_ENTRY0("RxRbufCsrQVldBitParityErr",
770 		RXES(RBUF_CSR_QVLD_BIT_PARITY)),
771 /*25*/	FLAG_ENTRY0("RxRbufCsrQHdPtrParityErr", RXES(RBUF_CSR_QHD_PTR_PARITY)),
772 /*26*/	FLAG_ENTRY0("RxRbufCsrQTlPtrParityErr", RXES(RBUF_CSR_QTL_PTR_PARITY)),
773 /*27*/	FLAG_ENTRY0("RxRbufCsrQNumOfPktParityErr",
774 		RXES(RBUF_CSR_QNUM_OF_PKT_PARITY)),
775 /*28*/	FLAG_ENTRY0("RxRbufCsrQEOPDWParityErr", RXES(RBUF_CSR_QEOPDW_PARITY)),
776 /*29*/	FLAG_ENTRY0("RxRbufCtxIdParityErr", RXES(RBUF_CTX_ID_PARITY)),
777 /*30*/	FLAG_ENTRY0("RxRBufBadLookupErr", RXES(RBUF_BAD_LOOKUP)),
778 /*31*/	FLAG_ENTRY0("RxRbufFullErr", RXES(RBUF_FULL)),
779 /*32*/	FLAG_ENTRY0("RxRbufEmptyErr", RXES(RBUF_EMPTY)),
780 /*33*/	FLAG_ENTRY0("RxRbufFlRdAddrParityErr", RXES(RBUF_FL_RD_ADDR_PARITY)),
781 /*34*/	FLAG_ENTRY0("RxRbufFlWrAddrParityErr", RXES(RBUF_FL_WR_ADDR_PARITY)),
782 /*35*/	FLAG_ENTRY0("RxRbufFlInitdoneParityErr",
783 		RXES(RBUF_FL_INITDONE_PARITY)),
784 /*36*/	FLAG_ENTRY0("RxRbufFlInitWrAddrParityErr",
785 		RXES(RBUF_FL_INIT_WR_ADDR_PARITY)),
786 /*37*/	FLAG_ENTRY0("RxRbufNextFreeBufUncErr", RXES(RBUF_NEXT_FREE_BUF_UNC)),
787 /*38*/	FLAG_ENTRY0("RxRbufNextFreeBufCorErr", RXES(RBUF_NEXT_FREE_BUF_COR)),
788 /*39*/	FLAG_ENTRY0("RxLookupDesPart1UncErr", RXES(LOOKUP_DES_PART1_UNC)),
789 /*40*/	FLAG_ENTRY0("RxLookupDesPart1UncCorErr",
790 		RXES(LOOKUP_DES_PART1_UNC_COR)),
791 /*41*/	FLAG_ENTRY0("RxLookupDesPart2ParityErr",
792 		RXES(LOOKUP_DES_PART2_PARITY)),
793 /*42*/	FLAG_ENTRY0("RxLookupRcvArrayUncErr", RXES(LOOKUP_RCV_ARRAY_UNC)),
794 /*43*/	FLAG_ENTRY0("RxLookupRcvArrayCorErr", RXES(LOOKUP_RCV_ARRAY_COR)),
795 /*44*/	FLAG_ENTRY0("RxLookupCsrParityErr", RXES(LOOKUP_CSR_PARITY)),
796 /*45*/	FLAG_ENTRY0("RxHqIntrCsrParityErr", RXES(HQ_INTR_CSR_PARITY)),
797 /*46*/	FLAG_ENTRY0("RxHqIntrFsmErr", RXES(HQ_INTR_FSM)),
798 /*47*/	FLAG_ENTRY0("RxRbufDescPart1UncErr", RXES(RBUF_DESC_PART1_UNC)),
799 /*48*/	FLAG_ENTRY0("RxRbufDescPart1CorErr", RXES(RBUF_DESC_PART1_COR)),
800 /*49*/	FLAG_ENTRY0("RxRbufDescPart2UncErr", RXES(RBUF_DESC_PART2_UNC)),
801 /*50*/	FLAG_ENTRY0("RxRbufDescPart2CorErr", RXES(RBUF_DESC_PART2_COR)),
802 /*51*/	FLAG_ENTRY0("RxDmaHdrFifoRdUncErr", RXES(DMA_HDR_FIFO_RD_UNC)),
803 /*52*/	FLAG_ENTRY0("RxDmaHdrFifoRdCorErr", RXES(DMA_HDR_FIFO_RD_COR)),
804 /*53*/	FLAG_ENTRY0("RxDmaDataFifoRdUncErr", RXES(DMA_DATA_FIFO_RD_UNC)),
805 /*54*/	FLAG_ENTRY0("RxDmaDataFifoRdCorErr", RXES(DMA_DATA_FIFO_RD_COR)),
806 /*55*/	FLAG_ENTRY0("RxRbufDataUncErr", RXES(RBUF_DATA_UNC)),
807 /*56*/	FLAG_ENTRY0("RxRbufDataCorErr", RXES(RBUF_DATA_COR)),
808 /*57*/	FLAG_ENTRY0("RxDmaCsrParityErr", RXES(DMA_CSR_PARITY)),
809 /*58*/	FLAG_ENTRY0("RxDmaEqFsmEncodingErr", RXES(DMA_EQ_FSM_ENCODING)),
810 /*59*/	FLAG_ENTRY0("RxDmaDqFsmEncodingErr", RXES(DMA_DQ_FSM_ENCODING)),
811 /*60*/	FLAG_ENTRY0("RxDmaCsrUncErr", RXES(DMA_CSR_UNC)),
812 /*61*/	FLAG_ENTRY0("RxCsrReadBadAddrErr", RXES(CSR_READ_BAD_ADDR)),
813 /*62*/	FLAG_ENTRY0("RxCsrWriteBadAddrErr", RXES(CSR_WRITE_BAD_ADDR)),
814 /*63*/	FLAG_ENTRY0("RxCsrParityErr", RXES(CSR_PARITY))
815 };
816 
817 /* RXE errors that will trigger an SPC freeze */
818 #define ALL_RXE_FREEZE_ERR  \
819 	(RCV_ERR_STATUS_RX_RCV_QP_MAP_TABLE_UNC_ERR_SMASK \
820 	| RCV_ERR_STATUS_RX_RCV_CSR_PARITY_ERR_SMASK \
821 	| RCV_ERR_STATUS_RX_DMA_FLAG_UNC_ERR_SMASK \
822 	| RCV_ERR_STATUS_RX_RCV_FSM_ENCODING_ERR_SMASK \
823 	| RCV_ERR_STATUS_RX_RBUF_FREE_LIST_UNC_ERR_SMASK \
824 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_ERR_SMASK \
825 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR_SMASK \
826 	| RCV_ERR_STATUS_RX_RBUF_LOOKUP_DES_UNC_ERR_SMASK \
827 	| RCV_ERR_STATUS_RX_RBUF_BLOCK_LIST_READ_UNC_ERR_SMASK \
828 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHEAD_BUF_NUM_PARITY_ERR_SMASK \
829 	| RCV_ERR_STATUS_RX_RBUF_CSR_QENT_CNT_PARITY_ERR_SMASK \
830 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNEXT_BUF_PARITY_ERR_SMASK \
831 	| RCV_ERR_STATUS_RX_RBUF_CSR_QVLD_BIT_PARITY_ERR_SMASK \
832 	| RCV_ERR_STATUS_RX_RBUF_CSR_QHD_PTR_PARITY_ERR_SMASK \
833 	| RCV_ERR_STATUS_RX_RBUF_CSR_QTL_PTR_PARITY_ERR_SMASK \
834 	| RCV_ERR_STATUS_RX_RBUF_CSR_QNUM_OF_PKT_PARITY_ERR_SMASK \
835 	| RCV_ERR_STATUS_RX_RBUF_CSR_QEOPDW_PARITY_ERR_SMASK \
836 	| RCV_ERR_STATUS_RX_RBUF_CTX_ID_PARITY_ERR_SMASK \
837 	| RCV_ERR_STATUS_RX_RBUF_BAD_LOOKUP_ERR_SMASK \
838 	| RCV_ERR_STATUS_RX_RBUF_FULL_ERR_SMASK \
839 	| RCV_ERR_STATUS_RX_RBUF_EMPTY_ERR_SMASK \
840 	| RCV_ERR_STATUS_RX_RBUF_FL_RD_ADDR_PARITY_ERR_SMASK \
841 	| RCV_ERR_STATUS_RX_RBUF_FL_WR_ADDR_PARITY_ERR_SMASK \
842 	| RCV_ERR_STATUS_RX_RBUF_FL_INITDONE_PARITY_ERR_SMASK \
843 	| RCV_ERR_STATUS_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR_SMASK \
844 	| RCV_ERR_STATUS_RX_RBUF_NEXT_FREE_BUF_UNC_ERR_SMASK \
845 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_ERR_SMASK \
846 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART1_UNC_COR_ERR_SMASK \
847 	| RCV_ERR_STATUS_RX_LOOKUP_DES_PART2_PARITY_ERR_SMASK \
848 	| RCV_ERR_STATUS_RX_LOOKUP_RCV_ARRAY_UNC_ERR_SMASK \
849 	| RCV_ERR_STATUS_RX_LOOKUP_CSR_PARITY_ERR_SMASK \
850 	| RCV_ERR_STATUS_RX_HQ_INTR_CSR_PARITY_ERR_SMASK \
851 	| RCV_ERR_STATUS_RX_HQ_INTR_FSM_ERR_SMASK \
852 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_UNC_ERR_SMASK \
853 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART1_COR_ERR_SMASK \
854 	| RCV_ERR_STATUS_RX_RBUF_DESC_PART2_UNC_ERR_SMASK \
855 	| RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK \
856 	| RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK \
857 	| RCV_ERR_STATUS_RX_RBUF_DATA_UNC_ERR_SMASK \
858 	| RCV_ERR_STATUS_RX_DMA_CSR_PARITY_ERR_SMASK \
859 	| RCV_ERR_STATUS_RX_DMA_EQ_FSM_ENCODING_ERR_SMASK \
860 	| RCV_ERR_STATUS_RX_DMA_DQ_FSM_ENCODING_ERR_SMASK \
861 	| RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK \
862 	| RCV_ERR_STATUS_RX_CSR_PARITY_ERR_SMASK)
863 
864 #define RXE_FREEZE_ABORT_MASK \
865 	(RCV_ERR_STATUS_RX_DMA_CSR_UNC_ERR_SMASK | \
866 	RCV_ERR_STATUS_RX_DMA_HDR_FIFO_RD_UNC_ERR_SMASK | \
867 	RCV_ERR_STATUS_RX_DMA_DATA_FIFO_RD_UNC_ERR_SMASK)
868 
869 /*
870  * DCC Error Flags
871  */
872 #define DCCE(name) DCC_ERR_FLG_##name##_SMASK
873 static struct flag_table dcc_err_flags[] = {
874 	FLAG_ENTRY0("bad_l2_err", DCCE(BAD_L2_ERR)),
875 	FLAG_ENTRY0("bad_sc_err", DCCE(BAD_SC_ERR)),
876 	FLAG_ENTRY0("bad_mid_tail_err", DCCE(BAD_MID_TAIL_ERR)),
877 	FLAG_ENTRY0("bad_preemption_err", DCCE(BAD_PREEMPTION_ERR)),
878 	FLAG_ENTRY0("preemption_err", DCCE(PREEMPTION_ERR)),
879 	FLAG_ENTRY0("preemptionvl15_err", DCCE(PREEMPTIONVL15_ERR)),
880 	FLAG_ENTRY0("bad_vl_marker_err", DCCE(BAD_VL_MARKER_ERR)),
881 	FLAG_ENTRY0("bad_dlid_target_err", DCCE(BAD_DLID_TARGET_ERR)),
882 	FLAG_ENTRY0("bad_lver_err", DCCE(BAD_LVER_ERR)),
883 	FLAG_ENTRY0("uncorrectable_err", DCCE(UNCORRECTABLE_ERR)),
884 	FLAG_ENTRY0("bad_crdt_ack_err", DCCE(BAD_CRDT_ACK_ERR)),
885 	FLAG_ENTRY0("unsup_pkt_type", DCCE(UNSUP_PKT_TYPE)),
886 	FLAG_ENTRY0("bad_ctrl_flit_err", DCCE(BAD_CTRL_FLIT_ERR)),
887 	FLAG_ENTRY0("event_cntr_parity_err", DCCE(EVENT_CNTR_PARITY_ERR)),
888 	FLAG_ENTRY0("event_cntr_rollover_err", DCCE(EVENT_CNTR_ROLLOVER_ERR)),
889 	FLAG_ENTRY0("link_err", DCCE(LINK_ERR)),
890 	FLAG_ENTRY0("misc_cntr_rollover_err", DCCE(MISC_CNTR_ROLLOVER_ERR)),
891 	FLAG_ENTRY0("bad_ctrl_dist_err", DCCE(BAD_CTRL_DIST_ERR)),
892 	FLAG_ENTRY0("bad_tail_dist_err", DCCE(BAD_TAIL_DIST_ERR)),
893 	FLAG_ENTRY0("bad_head_dist_err", DCCE(BAD_HEAD_DIST_ERR)),
894 	FLAG_ENTRY0("nonvl15_state_err", DCCE(NONVL15_STATE_ERR)),
895 	FLAG_ENTRY0("vl15_multi_err", DCCE(VL15_MULTI_ERR)),
896 	FLAG_ENTRY0("bad_pkt_length_err", DCCE(BAD_PKT_LENGTH_ERR)),
897 	FLAG_ENTRY0("unsup_vl_err", DCCE(UNSUP_VL_ERR)),
898 	FLAG_ENTRY0("perm_nvl15_err", DCCE(PERM_NVL15_ERR)),
899 	FLAG_ENTRY0("slid_zero_err", DCCE(SLID_ZERO_ERR)),
900 	FLAG_ENTRY0("dlid_zero_err", DCCE(DLID_ZERO_ERR)),
901 	FLAG_ENTRY0("length_mtu_err", DCCE(LENGTH_MTU_ERR)),
902 	FLAG_ENTRY0("rx_early_drop_err", DCCE(RX_EARLY_DROP_ERR)),
903 	FLAG_ENTRY0("late_short_err", DCCE(LATE_SHORT_ERR)),
904 	FLAG_ENTRY0("late_long_err", DCCE(LATE_LONG_ERR)),
905 	FLAG_ENTRY0("late_ebp_err", DCCE(LATE_EBP_ERR)),
906 	FLAG_ENTRY0("fpe_tx_fifo_ovflw_err", DCCE(FPE_TX_FIFO_OVFLW_ERR)),
907 	FLAG_ENTRY0("fpe_tx_fifo_unflw_err", DCCE(FPE_TX_FIFO_UNFLW_ERR)),
908 	FLAG_ENTRY0("csr_access_blocked_host", DCCE(CSR_ACCESS_BLOCKED_HOST)),
909 	FLAG_ENTRY0("csr_access_blocked_uc", DCCE(CSR_ACCESS_BLOCKED_UC)),
910 	FLAG_ENTRY0("tx_ctrl_parity_err", DCCE(TX_CTRL_PARITY_ERR)),
911 	FLAG_ENTRY0("tx_ctrl_parity_mbe_err", DCCE(TX_CTRL_PARITY_MBE_ERR)),
912 	FLAG_ENTRY0("tx_sc_parity_err", DCCE(TX_SC_PARITY_ERR)),
913 	FLAG_ENTRY0("rx_ctrl_parity_mbe_err", DCCE(RX_CTRL_PARITY_MBE_ERR)),
914 	FLAG_ENTRY0("csr_parity_err", DCCE(CSR_PARITY_ERR)),
915 	FLAG_ENTRY0("csr_inval_addr", DCCE(CSR_INVAL_ADDR)),
916 	FLAG_ENTRY0("tx_byte_shft_parity_err", DCCE(TX_BYTE_SHFT_PARITY_ERR)),
917 	FLAG_ENTRY0("rx_byte_shft_parity_err", DCCE(RX_BYTE_SHFT_PARITY_ERR)),
918 	FLAG_ENTRY0("fmconfig_err", DCCE(FMCONFIG_ERR)),
919 	FLAG_ENTRY0("rcvport_err", DCCE(RCVPORT_ERR)),
920 };
921 
922 /*
923  * LCB error flags
924  */
925 #define LCBE(name) DC_LCB_ERR_FLG_##name##_SMASK
926 static struct flag_table lcb_err_flags[] = {
927 /* 0*/	FLAG_ENTRY0("CSR_PARITY_ERR", LCBE(CSR_PARITY_ERR)),
928 /* 1*/	FLAG_ENTRY0("INVALID_CSR_ADDR", LCBE(INVALID_CSR_ADDR)),
929 /* 2*/	FLAG_ENTRY0("RST_FOR_FAILED_DESKEW", LCBE(RST_FOR_FAILED_DESKEW)),
930 /* 3*/	FLAG_ENTRY0("ALL_LNS_FAILED_REINIT_TEST",
931 		LCBE(ALL_LNS_FAILED_REINIT_TEST)),
932 /* 4*/	FLAG_ENTRY0("LOST_REINIT_STALL_OR_TOS", LCBE(LOST_REINIT_STALL_OR_TOS)),
933 /* 5*/	FLAG_ENTRY0("TX_LESS_THAN_FOUR_LNS", LCBE(TX_LESS_THAN_FOUR_LNS)),
934 /* 6*/	FLAG_ENTRY0("RX_LESS_THAN_FOUR_LNS", LCBE(RX_LESS_THAN_FOUR_LNS)),
935 /* 7*/	FLAG_ENTRY0("SEQ_CRC_ERR", LCBE(SEQ_CRC_ERR)),
936 /* 8*/	FLAG_ENTRY0("REINIT_FROM_PEER", LCBE(REINIT_FROM_PEER)),
937 /* 9*/	FLAG_ENTRY0("REINIT_FOR_LN_DEGRADE", LCBE(REINIT_FOR_LN_DEGRADE)),
938 /*10*/	FLAG_ENTRY0("CRC_ERR_CNT_HIT_LIMIT", LCBE(CRC_ERR_CNT_HIT_LIMIT)),
939 /*11*/	FLAG_ENTRY0("RCLK_STOPPED", LCBE(RCLK_STOPPED)),
940 /*12*/	FLAG_ENTRY0("UNEXPECTED_REPLAY_MARKER", LCBE(UNEXPECTED_REPLAY_MARKER)),
941 /*13*/	FLAG_ENTRY0("UNEXPECTED_ROUND_TRIP_MARKER",
942 		LCBE(UNEXPECTED_ROUND_TRIP_MARKER)),
943 /*14*/	FLAG_ENTRY0("ILLEGAL_NULL_LTP", LCBE(ILLEGAL_NULL_LTP)),
944 /*15*/	FLAG_ENTRY0("ILLEGAL_FLIT_ENCODING", LCBE(ILLEGAL_FLIT_ENCODING)),
945 /*16*/	FLAG_ENTRY0("FLIT_INPUT_BUF_OFLW", LCBE(FLIT_INPUT_BUF_OFLW)),
946 /*17*/	FLAG_ENTRY0("VL_ACK_INPUT_BUF_OFLW", LCBE(VL_ACK_INPUT_BUF_OFLW)),
947 /*18*/	FLAG_ENTRY0("VL_ACK_INPUT_PARITY_ERR", LCBE(VL_ACK_INPUT_PARITY_ERR)),
948 /*19*/	FLAG_ENTRY0("VL_ACK_INPUT_WRONG_CRC_MODE",
949 		LCBE(VL_ACK_INPUT_WRONG_CRC_MODE)),
950 /*20*/	FLAG_ENTRY0("FLIT_INPUT_BUF_MBE", LCBE(FLIT_INPUT_BUF_MBE)),
951 /*21*/	FLAG_ENTRY0("FLIT_INPUT_BUF_SBE", LCBE(FLIT_INPUT_BUF_SBE)),
952 /*22*/	FLAG_ENTRY0("REPLAY_BUF_MBE", LCBE(REPLAY_BUF_MBE)),
953 /*23*/	FLAG_ENTRY0("REPLAY_BUF_SBE", LCBE(REPLAY_BUF_SBE)),
954 /*24*/	FLAG_ENTRY0("CREDIT_RETURN_FLIT_MBE", LCBE(CREDIT_RETURN_FLIT_MBE)),
955 /*25*/	FLAG_ENTRY0("RST_FOR_LINK_TIMEOUT", LCBE(RST_FOR_LINK_TIMEOUT)),
956 /*26*/	FLAG_ENTRY0("RST_FOR_INCOMPLT_RND_TRIP",
957 		LCBE(RST_FOR_INCOMPLT_RND_TRIP)),
958 /*27*/	FLAG_ENTRY0("HOLD_REINIT", LCBE(HOLD_REINIT)),
959 /*28*/	FLAG_ENTRY0("NEG_EDGE_LINK_TRANSFER_ACTIVE",
960 		LCBE(NEG_EDGE_LINK_TRANSFER_ACTIVE)),
961 /*29*/	FLAG_ENTRY0("REDUNDANT_FLIT_PARITY_ERR",
962 		LCBE(REDUNDANT_FLIT_PARITY_ERR))
963 };
964 
965 /*
966  * DC8051 Error Flags
967  */
968 #define D8E(name) DC_DC8051_ERR_FLG_##name##_SMASK
969 static struct flag_table dc8051_err_flags[] = {
970 	FLAG_ENTRY0("SET_BY_8051", D8E(SET_BY_8051)),
971 	FLAG_ENTRY0("LOST_8051_HEART_BEAT", D8E(LOST_8051_HEART_BEAT)),
972 	FLAG_ENTRY0("CRAM_MBE", D8E(CRAM_MBE)),
973 	FLAG_ENTRY0("CRAM_SBE", D8E(CRAM_SBE)),
974 	FLAG_ENTRY0("DRAM_MBE", D8E(DRAM_MBE)),
975 	FLAG_ENTRY0("DRAM_SBE", D8E(DRAM_SBE)),
976 	FLAG_ENTRY0("IRAM_MBE", D8E(IRAM_MBE)),
977 	FLAG_ENTRY0("IRAM_SBE", D8E(IRAM_SBE)),
978 	FLAG_ENTRY0("UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES",
979 		    D8E(UNMATCHED_SECURE_MSG_ACROSS_BCC_LANES)),
980 	FLAG_ENTRY0("INVALID_CSR_ADDR", D8E(INVALID_CSR_ADDR)),
981 };
982 
983 /*
984  * DC8051 Information Error flags
985  *
986  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.ERROR field.
987  */
988 static struct flag_table dc8051_info_err_flags[] = {
989 	FLAG_ENTRY0("Spico ROM check failed",  SPICO_ROM_FAILED),
990 	FLAG_ENTRY0("Unknown frame received",  UNKNOWN_FRAME),
991 	FLAG_ENTRY0("Target BER not met",      TARGET_BER_NOT_MET),
992 	FLAG_ENTRY0("Serdes internal loopback failure",
993 		    FAILED_SERDES_INTERNAL_LOOPBACK),
994 	FLAG_ENTRY0("Failed SerDes init",      FAILED_SERDES_INIT),
995 	FLAG_ENTRY0("Failed LNI(Polling)",     FAILED_LNI_POLLING),
996 	FLAG_ENTRY0("Failed LNI(Debounce)",    FAILED_LNI_DEBOUNCE),
997 	FLAG_ENTRY0("Failed LNI(EstbComm)",    FAILED_LNI_ESTBCOMM),
998 	FLAG_ENTRY0("Failed LNI(OptEq)",       FAILED_LNI_OPTEQ),
999 	FLAG_ENTRY0("Failed LNI(VerifyCap_1)", FAILED_LNI_VERIFY_CAP1),
1000 	FLAG_ENTRY0("Failed LNI(VerifyCap_2)", FAILED_LNI_VERIFY_CAP2),
1001 	FLAG_ENTRY0("Failed LNI(ConfigLT)",    FAILED_LNI_CONFIGLT),
1002 	FLAG_ENTRY0("Host Handshake Timeout",  HOST_HANDSHAKE_TIMEOUT),
1003 	FLAG_ENTRY0("External Device Request Timeout",
1004 		    EXTERNAL_DEVICE_REQ_TIMEOUT),
1005 };
1006 
1007 /*
1008  * DC8051 Information Host Information flags
1009  *
1010  * Flags in DC8051_DBG_ERR_INFO_SET_BY_8051.HOST_MSG field.
1011  */
1012 static struct flag_table dc8051_info_host_msg_flags[] = {
1013 	FLAG_ENTRY0("Host request done", 0x0001),
1014 	FLAG_ENTRY0("BC PWR_MGM message", 0x0002),
1015 	FLAG_ENTRY0("BC SMA message", 0x0004),
1016 	FLAG_ENTRY0("BC Unknown message (BCC)", 0x0008),
1017 	FLAG_ENTRY0("BC Unknown message (LCB)", 0x0010),
1018 	FLAG_ENTRY0("External device config request", 0x0020),
1019 	FLAG_ENTRY0("VerifyCap all frames received", 0x0040),
1020 	FLAG_ENTRY0("LinkUp achieved", 0x0080),
1021 	FLAG_ENTRY0("Link going down", 0x0100),
1022 	FLAG_ENTRY0("Link width downgraded", 0x0200),
1023 };
1024 
1025 static u32 encoded_size(u32 size);
1026 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate);
1027 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state);
1028 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
1029 			       u8 *continuous);
1030 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
1031 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes);
1032 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
1033 				      u8 *remote_tx_rate, u16 *link_widths);
1034 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
1035 				    u8 *flag_bits, u16 *link_widths);
1036 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
1037 				  u8 *device_rev);
1038 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx);
1039 static int read_tx_settings(struct hfi1_devdata *dd, u8 *enable_lane_tx,
1040 			    u8 *tx_polarity_inversion,
1041 			    u8 *rx_polarity_inversion, u8 *max_rate);
1042 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
1043 				unsigned int context, u64 err_status);
1044 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 source, u64 reg);
1045 static void handle_dcc_err(struct hfi1_devdata *dd,
1046 			   unsigned int context, u64 err_status);
1047 static void handle_lcb_err(struct hfi1_devdata *dd,
1048 			   unsigned int context, u64 err_status);
1049 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg);
1050 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1051 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1052 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1053 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1054 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1055 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1056 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg);
1057 static void set_partition_keys(struct hfi1_pportdata *ppd);
1058 static const char *link_state_name(u32 state);
1059 static const char *link_state_reason_name(struct hfi1_pportdata *ppd,
1060 					  u32 state);
1061 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
1062 			   u64 *out_data);
1063 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data);
1064 static int thermal_init(struct hfi1_devdata *dd);
1065 
1066 static void update_statusp(struct hfi1_pportdata *ppd, u32 state);
1067 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
1068 					    int msecs);
1069 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1070 				  int msecs);
1071 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state);
1072 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state);
1073 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
1074 				   int msecs);
1075 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc);
1076 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr);
1077 static void handle_temp_err(struct hfi1_devdata *dd);
1078 static void dc_shutdown(struct hfi1_devdata *dd);
1079 static void dc_start(struct hfi1_devdata *dd);
1080 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
1081 			   unsigned int *np);
1082 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd);
1083 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms);
1084 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index);
1085 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width);
1086 
1087 /*
1088  * Error interrupt table entry.  This is used as input to the interrupt
1089  * "clear down" routine used for all second tier error interrupt register.
1090  * Second tier interrupt registers have a single bit representing them
1091  * in the top-level CceIntStatus.
1092  */
1093 struct err_reg_info {
1094 	u32 status;		/* status CSR offset */
1095 	u32 clear;		/* clear CSR offset */
1096 	u32 mask;		/* mask CSR offset */
1097 	void (*handler)(struct hfi1_devdata *dd, u32 source, u64 reg);
1098 	const char *desc;
1099 };
1100 
1101 #define NUM_MISC_ERRS (IS_GENERAL_ERR_END + 1 - IS_GENERAL_ERR_START)
1102 #define NUM_DC_ERRS (IS_DC_END + 1 - IS_DC_START)
1103 #define NUM_VARIOUS (IS_VARIOUS_END + 1 - IS_VARIOUS_START)
1104 
1105 /*
1106  * Helpers for building HFI and DC error interrupt table entries.  Different
1107  * helpers are needed because of inconsistent register names.
1108  */
1109 #define EE(reg, handler, desc) \
1110 	{ reg##_STATUS, reg##_CLEAR, reg##_MASK, \
1111 		handler, desc }
1112 #define DC_EE1(reg, handler, desc) \
1113 	{ reg##_FLG, reg##_FLG_CLR, reg##_FLG_EN, handler, desc }
1114 #define DC_EE2(reg, handler, desc) \
1115 	{ reg##_FLG, reg##_CLR, reg##_EN, handler, desc }
1116 
1117 /*
1118  * Table of the "misc" grouping of error interrupts.  Each entry refers to
1119  * another register containing more information.
1120  */
1121 static const struct err_reg_info misc_errs[NUM_MISC_ERRS] = {
1122 /* 0*/	EE(CCE_ERR,		handle_cce_err,    "CceErr"),
1123 /* 1*/	EE(RCV_ERR,		handle_rxe_err,    "RxeErr"),
1124 /* 2*/	EE(MISC_ERR,	handle_misc_err,   "MiscErr"),
1125 /* 3*/	{ 0, 0, 0, NULL }, /* reserved */
1126 /* 4*/	EE(SEND_PIO_ERR,    handle_pio_err,    "PioErr"),
1127 /* 5*/	EE(SEND_DMA_ERR,    handle_sdma_err,   "SDmaErr"),
1128 /* 6*/	EE(SEND_EGRESS_ERR, handle_egress_err, "EgressErr"),
1129 /* 7*/	EE(SEND_ERR,	handle_txe_err,    "TxeErr")
1130 	/* the rest are reserved */
1131 };
1132 
1133 /*
1134  * Index into the Various section of the interrupt sources
1135  * corresponding to the Critical Temperature interrupt.
1136  */
1137 #define TCRIT_INT_SOURCE 4
1138 
1139 /*
1140  * SDMA error interrupt entry - refers to another register containing more
1141  * information.
1142  */
1143 static const struct err_reg_info sdma_eng_err =
1144 	EE(SEND_DMA_ENG_ERR, handle_sdma_eng_err, "SDmaEngErr");
1145 
1146 static const struct err_reg_info various_err[NUM_VARIOUS] = {
1147 /* 0*/	{ 0, 0, 0, NULL }, /* PbcInt */
1148 /* 1*/	{ 0, 0, 0, NULL }, /* GpioAssertInt */
1149 /* 2*/	EE(ASIC_QSFP1,	handle_qsfp_int,	"QSFP1"),
1150 /* 3*/	EE(ASIC_QSFP2,	handle_qsfp_int,	"QSFP2"),
1151 /* 4*/	{ 0, 0, 0, NULL }, /* TCritInt */
1152 	/* rest are reserved */
1153 };
1154 
1155 /*
1156  * The DC encoding of mtu_cap for 10K MTU in the DCC_CFG_PORT_CONFIG
1157  * register can not be derived from the MTU value because 10K is not
1158  * a power of 2. Therefore, we need a constant. Everything else can
1159  * be calculated.
1160  */
1161 #define DCC_CFG_PORT_MTU_CAP_10240 7
1162 
1163 /*
1164  * Table of the DC grouping of error interrupts.  Each entry refers to
1165  * another register containing more information.
1166  */
1167 static const struct err_reg_info dc_errs[NUM_DC_ERRS] = {
1168 /* 0*/	DC_EE1(DCC_ERR,		handle_dcc_err,	       "DCC Err"),
1169 /* 1*/	DC_EE2(DC_LCB_ERR,	handle_lcb_err,	       "LCB Err"),
1170 /* 2*/	DC_EE2(DC_DC8051_ERR,	handle_8051_interrupt, "DC8051 Interrupt"),
1171 /* 3*/	/* dc_lbm_int - special, see is_dc_int() */
1172 	/* the rest are reserved */
1173 };
1174 
1175 struct cntr_entry {
1176 	/*
1177 	 * counter name
1178 	 */
1179 	char *name;
1180 
1181 	/*
1182 	 * csr to read for name (if applicable)
1183 	 */
1184 	u64 csr;
1185 
1186 	/*
1187 	 * offset into dd or ppd to store the counter's value
1188 	 */
1189 	int offset;
1190 
1191 	/*
1192 	 * flags
1193 	 */
1194 	u8 flags;
1195 
1196 	/*
1197 	 * accessor for stat element, context either dd or ppd
1198 	 */
1199 	u64 (*rw_cntr)(const struct cntr_entry *, void *context, int vl,
1200 		       int mode, u64 data);
1201 };
1202 
1203 #define C_RCV_HDR_OVF_FIRST C_RCV_HDR_OVF_0
1204 #define C_RCV_HDR_OVF_LAST C_RCV_HDR_OVF_159
1205 
1206 #define CNTR_ELEM(name, csr, offset, flags, accessor) \
1207 { \
1208 	name, \
1209 	csr, \
1210 	offset, \
1211 	flags, \
1212 	accessor \
1213 }
1214 
1215 /* 32bit RXE */
1216 #define RXE32_PORT_CNTR_ELEM(name, counter, flags) \
1217 CNTR_ELEM(#name, \
1218 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1219 	  0, flags | CNTR_32BIT, \
1220 	  port_access_u32_csr)
1221 
1222 #define RXE32_DEV_CNTR_ELEM(name, counter, flags) \
1223 CNTR_ELEM(#name, \
1224 	  (counter * 8 + RCV_COUNTER_ARRAY32), \
1225 	  0, flags | CNTR_32BIT, \
1226 	  dev_access_u32_csr)
1227 
1228 /* 64bit RXE */
1229 #define RXE64_PORT_CNTR_ELEM(name, counter, flags) \
1230 CNTR_ELEM(#name, \
1231 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1232 	  0, flags, \
1233 	  port_access_u64_csr)
1234 
1235 #define RXE64_DEV_CNTR_ELEM(name, counter, flags) \
1236 CNTR_ELEM(#name, \
1237 	  (counter * 8 + RCV_COUNTER_ARRAY64), \
1238 	  0, flags, \
1239 	  dev_access_u64_csr)
1240 
1241 #define OVR_LBL(ctx) C_RCV_HDR_OVF_ ## ctx
1242 #define OVR_ELM(ctx) \
1243 CNTR_ELEM("RcvHdrOvr" #ctx, \
1244 	  (RCV_HDR_OVFL_CNT + ctx * 0x100), \
1245 	  0, CNTR_NORMAL, port_access_u64_csr)
1246 
1247 /* 32bit TXE */
1248 #define TXE32_PORT_CNTR_ELEM(name, counter, flags) \
1249 CNTR_ELEM(#name, \
1250 	  (counter * 8 + SEND_COUNTER_ARRAY32), \
1251 	  0, flags | CNTR_32BIT, \
1252 	  port_access_u32_csr)
1253 
1254 /* 64bit TXE */
1255 #define TXE64_PORT_CNTR_ELEM(name, counter, flags) \
1256 CNTR_ELEM(#name, \
1257 	  (counter * 8 + SEND_COUNTER_ARRAY64), \
1258 	  0, flags, \
1259 	  port_access_u64_csr)
1260 
1261 # define TX64_DEV_CNTR_ELEM(name, counter, flags) \
1262 CNTR_ELEM(#name,\
1263 	  counter * 8 + SEND_COUNTER_ARRAY64, \
1264 	  0, \
1265 	  flags, \
1266 	  dev_access_u64_csr)
1267 
1268 /* CCE */
1269 #define CCE_PERF_DEV_CNTR_ELEM(name, counter, flags) \
1270 CNTR_ELEM(#name, \
1271 	  (counter * 8 + CCE_COUNTER_ARRAY32), \
1272 	  0, flags | CNTR_32BIT, \
1273 	  dev_access_u32_csr)
1274 
1275 #define CCE_INT_DEV_CNTR_ELEM(name, counter, flags) \
1276 CNTR_ELEM(#name, \
1277 	  (counter * 8 + CCE_INT_COUNTER_ARRAY32), \
1278 	  0, flags | CNTR_32BIT, \
1279 	  dev_access_u32_csr)
1280 
1281 /* DC */
1282 #define DC_PERF_CNTR(name, counter, flags) \
1283 CNTR_ELEM(#name, \
1284 	  counter, \
1285 	  0, \
1286 	  flags, \
1287 	  dev_access_u64_csr)
1288 
1289 #define DC_PERF_CNTR_LCB(name, counter, flags) \
1290 CNTR_ELEM(#name, \
1291 	  counter, \
1292 	  0, \
1293 	  flags, \
1294 	  dc_access_lcb_cntr)
1295 
1296 /* ibp counters */
1297 #define SW_IBP_CNTR(name, cntr) \
1298 CNTR_ELEM(#name, \
1299 	  0, \
1300 	  0, \
1301 	  CNTR_SYNTH, \
1302 	  access_ibp_##cntr)
1303 
1304 /**
1305  * hfi_addr_from_offset - return addr for readq/writeq
1306  * @dd - the dd device
1307  * @offset - the offset of the CSR within bar0
1308  *
1309  * This routine selects the appropriate base address
1310  * based on the indicated offset.
1311  */
1312 static inline void __iomem *hfi1_addr_from_offset(
1313 	const struct hfi1_devdata *dd,
1314 	u32 offset)
1315 {
1316 	if (offset >= dd->base2_start)
1317 		return dd->kregbase2 + (offset - dd->base2_start);
1318 	return dd->kregbase1 + offset;
1319 }
1320 
1321 /**
1322  * read_csr - read CSR at the indicated offset
1323  * @dd - the dd device
1324  * @offset - the offset of the CSR within bar0
1325  *
1326  * Return: the value read or all FF's if there
1327  * is no mapping
1328  */
1329 u64 read_csr(const struct hfi1_devdata *dd, u32 offset)
1330 {
1331 	if (dd->flags & HFI1_PRESENT)
1332 		return readq(hfi1_addr_from_offset(dd, offset));
1333 	return -1;
1334 }
1335 
1336 /**
1337  * write_csr - write CSR at the indicated offset
1338  * @dd - the dd device
1339  * @offset - the offset of the CSR within bar0
1340  * @value - value to write
1341  */
1342 void write_csr(const struct hfi1_devdata *dd, u32 offset, u64 value)
1343 {
1344 	if (dd->flags & HFI1_PRESENT) {
1345 		void __iomem *base = hfi1_addr_from_offset(dd, offset);
1346 
1347 		/* avoid write to RcvArray */
1348 		if (WARN_ON(offset >= RCV_ARRAY && offset < dd->base2_start))
1349 			return;
1350 		writeq(value, base);
1351 	}
1352 }
1353 
1354 /**
1355  * get_csr_addr - return te iomem address for offset
1356  * @dd - the dd device
1357  * @offset - the offset of the CSR within bar0
1358  *
1359  * Return: The iomem address to use in subsequent
1360  * writeq/readq operations.
1361  */
1362 void __iomem *get_csr_addr(
1363 	const struct hfi1_devdata *dd,
1364 	u32 offset)
1365 {
1366 	if (dd->flags & HFI1_PRESENT)
1367 		return hfi1_addr_from_offset(dd, offset);
1368 	return NULL;
1369 }
1370 
1371 static inline u64 read_write_csr(const struct hfi1_devdata *dd, u32 csr,
1372 				 int mode, u64 value)
1373 {
1374 	u64 ret;
1375 
1376 	if (mode == CNTR_MODE_R) {
1377 		ret = read_csr(dd, csr);
1378 	} else if (mode == CNTR_MODE_W) {
1379 		write_csr(dd, csr, value);
1380 		ret = value;
1381 	} else {
1382 		dd_dev_err(dd, "Invalid cntr register access mode");
1383 		return 0;
1384 	}
1385 
1386 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, ret, mode);
1387 	return ret;
1388 }
1389 
1390 /* Dev Access */
1391 static u64 dev_access_u32_csr(const struct cntr_entry *entry,
1392 			      void *context, int vl, int mode, u64 data)
1393 {
1394 	struct hfi1_devdata *dd = context;
1395 	u64 csr = entry->csr;
1396 
1397 	if (entry->flags & CNTR_SDMA) {
1398 		if (vl == CNTR_INVALID_VL)
1399 			return 0;
1400 		csr += 0x100 * vl;
1401 	} else {
1402 		if (vl != CNTR_INVALID_VL)
1403 			return 0;
1404 	}
1405 	return read_write_csr(dd, csr, mode, data);
1406 }
1407 
1408 static u64 access_sde_err_cnt(const struct cntr_entry *entry,
1409 			      void *context, int idx, int mode, u64 data)
1410 {
1411 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1412 
1413 	if (dd->per_sdma && idx < dd->num_sdma)
1414 		return dd->per_sdma[idx].err_cnt;
1415 	return 0;
1416 }
1417 
1418 static u64 access_sde_int_cnt(const struct cntr_entry *entry,
1419 			      void *context, int idx, int mode, u64 data)
1420 {
1421 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1422 
1423 	if (dd->per_sdma && idx < dd->num_sdma)
1424 		return dd->per_sdma[idx].sdma_int_cnt;
1425 	return 0;
1426 }
1427 
1428 static u64 access_sde_idle_int_cnt(const struct cntr_entry *entry,
1429 				   void *context, int idx, int mode, u64 data)
1430 {
1431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1432 
1433 	if (dd->per_sdma && idx < dd->num_sdma)
1434 		return dd->per_sdma[idx].idle_int_cnt;
1435 	return 0;
1436 }
1437 
1438 static u64 access_sde_progress_int_cnt(const struct cntr_entry *entry,
1439 				       void *context, int idx, int mode,
1440 				       u64 data)
1441 {
1442 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1443 
1444 	if (dd->per_sdma && idx < dd->num_sdma)
1445 		return dd->per_sdma[idx].progress_int_cnt;
1446 	return 0;
1447 }
1448 
1449 static u64 dev_access_u64_csr(const struct cntr_entry *entry, void *context,
1450 			      int vl, int mode, u64 data)
1451 {
1452 	struct hfi1_devdata *dd = context;
1453 
1454 	u64 val = 0;
1455 	u64 csr = entry->csr;
1456 
1457 	if (entry->flags & CNTR_VL) {
1458 		if (vl == CNTR_INVALID_VL)
1459 			return 0;
1460 		csr += 8 * vl;
1461 	} else {
1462 		if (vl != CNTR_INVALID_VL)
1463 			return 0;
1464 	}
1465 
1466 	val = read_write_csr(dd, csr, mode, data);
1467 	return val;
1468 }
1469 
1470 static u64 dc_access_lcb_cntr(const struct cntr_entry *entry, void *context,
1471 			      int vl, int mode, u64 data)
1472 {
1473 	struct hfi1_devdata *dd = context;
1474 	u32 csr = entry->csr;
1475 	int ret = 0;
1476 
1477 	if (vl != CNTR_INVALID_VL)
1478 		return 0;
1479 	if (mode == CNTR_MODE_R)
1480 		ret = read_lcb_csr(dd, csr, &data);
1481 	else if (mode == CNTR_MODE_W)
1482 		ret = write_lcb_csr(dd, csr, data);
1483 
1484 	if (ret) {
1485 		dd_dev_err(dd, "Could not acquire LCB for counter 0x%x", csr);
1486 		return 0;
1487 	}
1488 
1489 	hfi1_cdbg(CNTR, "csr 0x%x val 0x%llx mode %d", csr, data, mode);
1490 	return data;
1491 }
1492 
1493 /* Port Access */
1494 static u64 port_access_u32_csr(const struct cntr_entry *entry, void *context,
1495 			       int vl, int mode, u64 data)
1496 {
1497 	struct hfi1_pportdata *ppd = context;
1498 
1499 	if (vl != CNTR_INVALID_VL)
1500 		return 0;
1501 	return read_write_csr(ppd->dd, entry->csr, mode, data);
1502 }
1503 
1504 static u64 port_access_u64_csr(const struct cntr_entry *entry,
1505 			       void *context, int vl, int mode, u64 data)
1506 {
1507 	struct hfi1_pportdata *ppd = context;
1508 	u64 val;
1509 	u64 csr = entry->csr;
1510 
1511 	if (entry->flags & CNTR_VL) {
1512 		if (vl == CNTR_INVALID_VL)
1513 			return 0;
1514 		csr += 8 * vl;
1515 	} else {
1516 		if (vl != CNTR_INVALID_VL)
1517 			return 0;
1518 	}
1519 	val = read_write_csr(ppd->dd, csr, mode, data);
1520 	return val;
1521 }
1522 
1523 /* Software defined */
1524 static inline u64 read_write_sw(struct hfi1_devdata *dd, u64 *cntr, int mode,
1525 				u64 data)
1526 {
1527 	u64 ret;
1528 
1529 	if (mode == CNTR_MODE_R) {
1530 		ret = *cntr;
1531 	} else if (mode == CNTR_MODE_W) {
1532 		*cntr = data;
1533 		ret = data;
1534 	} else {
1535 		dd_dev_err(dd, "Invalid cntr sw access mode");
1536 		return 0;
1537 	}
1538 
1539 	hfi1_cdbg(CNTR, "val 0x%llx mode %d", ret, mode);
1540 
1541 	return ret;
1542 }
1543 
1544 static u64 access_sw_link_dn_cnt(const struct cntr_entry *entry, void *context,
1545 				 int vl, int mode, u64 data)
1546 {
1547 	struct hfi1_pportdata *ppd = context;
1548 
1549 	if (vl != CNTR_INVALID_VL)
1550 		return 0;
1551 	return read_write_sw(ppd->dd, &ppd->link_downed, mode, data);
1552 }
1553 
1554 static u64 access_sw_link_up_cnt(const struct cntr_entry *entry, void *context,
1555 				 int vl, int mode, u64 data)
1556 {
1557 	struct hfi1_pportdata *ppd = context;
1558 
1559 	if (vl != CNTR_INVALID_VL)
1560 		return 0;
1561 	return read_write_sw(ppd->dd, &ppd->link_up, mode, data);
1562 }
1563 
1564 static u64 access_sw_unknown_frame_cnt(const struct cntr_entry *entry,
1565 				       void *context, int vl, int mode,
1566 				       u64 data)
1567 {
1568 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1569 
1570 	if (vl != CNTR_INVALID_VL)
1571 		return 0;
1572 	return read_write_sw(ppd->dd, &ppd->unknown_frame_count, mode, data);
1573 }
1574 
1575 static u64 access_sw_xmit_discards(const struct cntr_entry *entry,
1576 				   void *context, int vl, int mode, u64 data)
1577 {
1578 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;
1579 	u64 zero = 0;
1580 	u64 *counter;
1581 
1582 	if (vl == CNTR_INVALID_VL)
1583 		counter = &ppd->port_xmit_discards;
1584 	else if (vl >= 0 && vl < C_VL_COUNT)
1585 		counter = &ppd->port_xmit_discards_vl[vl];
1586 	else
1587 		counter = &zero;
1588 
1589 	return read_write_sw(ppd->dd, counter, mode, data);
1590 }
1591 
1592 static u64 access_xmit_constraint_errs(const struct cntr_entry *entry,
1593 				       void *context, int vl, int mode,
1594 				       u64 data)
1595 {
1596 	struct hfi1_pportdata *ppd = context;
1597 
1598 	if (vl != CNTR_INVALID_VL)
1599 		return 0;
1600 
1601 	return read_write_sw(ppd->dd, &ppd->port_xmit_constraint_errors,
1602 			     mode, data);
1603 }
1604 
1605 static u64 access_rcv_constraint_errs(const struct cntr_entry *entry,
1606 				      void *context, int vl, int mode, u64 data)
1607 {
1608 	struct hfi1_pportdata *ppd = context;
1609 
1610 	if (vl != CNTR_INVALID_VL)
1611 		return 0;
1612 
1613 	return read_write_sw(ppd->dd, &ppd->port_rcv_constraint_errors,
1614 			     mode, data);
1615 }
1616 
1617 u64 get_all_cpu_total(u64 __percpu *cntr)
1618 {
1619 	int cpu;
1620 	u64 counter = 0;
1621 
1622 	for_each_possible_cpu(cpu)
1623 		counter += *per_cpu_ptr(cntr, cpu);
1624 	return counter;
1625 }
1626 
1627 static u64 read_write_cpu(struct hfi1_devdata *dd, u64 *z_val,
1628 			  u64 __percpu *cntr,
1629 			  int vl, int mode, u64 data)
1630 {
1631 	u64 ret = 0;
1632 
1633 	if (vl != CNTR_INVALID_VL)
1634 		return 0;
1635 
1636 	if (mode == CNTR_MODE_R) {
1637 		ret = get_all_cpu_total(cntr) - *z_val;
1638 	} else if (mode == CNTR_MODE_W) {
1639 		/* A write can only zero the counter */
1640 		if (data == 0)
1641 			*z_val = get_all_cpu_total(cntr);
1642 		else
1643 			dd_dev_err(dd, "Per CPU cntrs can only be zeroed");
1644 	} else {
1645 		dd_dev_err(dd, "Invalid cntr sw cpu access mode");
1646 		return 0;
1647 	}
1648 
1649 	return ret;
1650 }
1651 
1652 static u64 access_sw_cpu_intr(const struct cntr_entry *entry,
1653 			      void *context, int vl, int mode, u64 data)
1654 {
1655 	struct hfi1_devdata *dd = context;
1656 
1657 	return read_write_cpu(dd, &dd->z_int_counter, dd->int_counter, vl,
1658 			      mode, data);
1659 }
1660 
1661 static u64 access_sw_cpu_rcv_limit(const struct cntr_entry *entry,
1662 				   void *context, int vl, int mode, u64 data)
1663 {
1664 	struct hfi1_devdata *dd = context;
1665 
1666 	return read_write_cpu(dd, &dd->z_rcv_limit, dd->rcv_limit, vl,
1667 			      mode, data);
1668 }
1669 
1670 static u64 access_sw_pio_wait(const struct cntr_entry *entry,
1671 			      void *context, int vl, int mode, u64 data)
1672 {
1673 	struct hfi1_devdata *dd = context;
1674 
1675 	return dd->verbs_dev.n_piowait;
1676 }
1677 
1678 static u64 access_sw_pio_drain(const struct cntr_entry *entry,
1679 			       void *context, int vl, int mode, u64 data)
1680 {
1681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1682 
1683 	return dd->verbs_dev.n_piodrain;
1684 }
1685 
1686 static u64 access_sw_vtx_wait(const struct cntr_entry *entry,
1687 			      void *context, int vl, int mode, u64 data)
1688 {
1689 	struct hfi1_devdata *dd = context;
1690 
1691 	return dd->verbs_dev.n_txwait;
1692 }
1693 
1694 static u64 access_sw_kmem_wait(const struct cntr_entry *entry,
1695 			       void *context, int vl, int mode, u64 data)
1696 {
1697 	struct hfi1_devdata *dd = context;
1698 
1699 	return dd->verbs_dev.n_kmem_wait;
1700 }
1701 
1702 static u64 access_sw_send_schedule(const struct cntr_entry *entry,
1703 				   void *context, int vl, int mode, u64 data)
1704 {
1705 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1706 
1707 	return read_write_cpu(dd, &dd->z_send_schedule, dd->send_schedule, vl,
1708 			      mode, data);
1709 }
1710 
1711 /* Software counters for the error status bits within MISC_ERR_STATUS */
1712 static u64 access_misc_pll_lock_fail_err_cnt(const struct cntr_entry *entry,
1713 					     void *context, int vl, int mode,
1714 					     u64 data)
1715 {
1716 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1717 
1718 	return dd->misc_err_status_cnt[12];
1719 }
1720 
1721 static u64 access_misc_mbist_fail_err_cnt(const struct cntr_entry *entry,
1722 					  void *context, int vl, int mode,
1723 					  u64 data)
1724 {
1725 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1726 
1727 	return dd->misc_err_status_cnt[11];
1728 }
1729 
1730 static u64 access_misc_invalid_eep_cmd_err_cnt(const struct cntr_entry *entry,
1731 					       void *context, int vl, int mode,
1732 					       u64 data)
1733 {
1734 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1735 
1736 	return dd->misc_err_status_cnt[10];
1737 }
1738 
1739 static u64 access_misc_efuse_done_parity_err_cnt(const struct cntr_entry *entry,
1740 						 void *context, int vl,
1741 						 int mode, u64 data)
1742 {
1743 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1744 
1745 	return dd->misc_err_status_cnt[9];
1746 }
1747 
1748 static u64 access_misc_efuse_write_err_cnt(const struct cntr_entry *entry,
1749 					   void *context, int vl, int mode,
1750 					   u64 data)
1751 {
1752 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1753 
1754 	return dd->misc_err_status_cnt[8];
1755 }
1756 
1757 static u64 access_misc_efuse_read_bad_addr_err_cnt(
1758 				const struct cntr_entry *entry,
1759 				void *context, int vl, int mode, u64 data)
1760 {
1761 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1762 
1763 	return dd->misc_err_status_cnt[7];
1764 }
1765 
1766 static u64 access_misc_efuse_csr_parity_err_cnt(const struct cntr_entry *entry,
1767 						void *context, int vl,
1768 						int mode, u64 data)
1769 {
1770 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1771 
1772 	return dd->misc_err_status_cnt[6];
1773 }
1774 
1775 static u64 access_misc_fw_auth_failed_err_cnt(const struct cntr_entry *entry,
1776 					      void *context, int vl, int mode,
1777 					      u64 data)
1778 {
1779 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1780 
1781 	return dd->misc_err_status_cnt[5];
1782 }
1783 
1784 static u64 access_misc_key_mismatch_err_cnt(const struct cntr_entry *entry,
1785 					    void *context, int vl, int mode,
1786 					    u64 data)
1787 {
1788 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1789 
1790 	return dd->misc_err_status_cnt[4];
1791 }
1792 
1793 static u64 access_misc_sbus_write_failed_err_cnt(const struct cntr_entry *entry,
1794 						 void *context, int vl,
1795 						 int mode, u64 data)
1796 {
1797 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1798 
1799 	return dd->misc_err_status_cnt[3];
1800 }
1801 
1802 static u64 access_misc_csr_write_bad_addr_err_cnt(
1803 				const struct cntr_entry *entry,
1804 				void *context, int vl, int mode, u64 data)
1805 {
1806 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1807 
1808 	return dd->misc_err_status_cnt[2];
1809 }
1810 
1811 static u64 access_misc_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1812 						 void *context, int vl,
1813 						 int mode, u64 data)
1814 {
1815 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1816 
1817 	return dd->misc_err_status_cnt[1];
1818 }
1819 
1820 static u64 access_misc_csr_parity_err_cnt(const struct cntr_entry *entry,
1821 					  void *context, int vl, int mode,
1822 					  u64 data)
1823 {
1824 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1825 
1826 	return dd->misc_err_status_cnt[0];
1827 }
1828 
1829 /*
1830  * Software counter for the aggregate of
1831  * individual CceErrStatus counters
1832  */
1833 static u64 access_sw_cce_err_status_aggregated_cnt(
1834 				const struct cntr_entry *entry,
1835 				void *context, int vl, int mode, u64 data)
1836 {
1837 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1838 
1839 	return dd->sw_cce_err_status_aggregate;
1840 }
1841 
1842 /*
1843  * Software counters corresponding to each of the
1844  * error status bits within CceErrStatus
1845  */
1846 static u64 access_cce_msix_csr_parity_err_cnt(const struct cntr_entry *entry,
1847 					      void *context, int vl, int mode,
1848 					      u64 data)
1849 {
1850 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1851 
1852 	return dd->cce_err_status_cnt[40];
1853 }
1854 
1855 static u64 access_cce_int_map_unc_err_cnt(const struct cntr_entry *entry,
1856 					  void *context, int vl, int mode,
1857 					  u64 data)
1858 {
1859 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1860 
1861 	return dd->cce_err_status_cnt[39];
1862 }
1863 
1864 static u64 access_cce_int_map_cor_err_cnt(const struct cntr_entry *entry,
1865 					  void *context, int vl, int mode,
1866 					  u64 data)
1867 {
1868 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1869 
1870 	return dd->cce_err_status_cnt[38];
1871 }
1872 
1873 static u64 access_cce_msix_table_unc_err_cnt(const struct cntr_entry *entry,
1874 					     void *context, int vl, int mode,
1875 					     u64 data)
1876 {
1877 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1878 
1879 	return dd->cce_err_status_cnt[37];
1880 }
1881 
1882 static u64 access_cce_msix_table_cor_err_cnt(const struct cntr_entry *entry,
1883 					     void *context, int vl, int mode,
1884 					     u64 data)
1885 {
1886 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1887 
1888 	return dd->cce_err_status_cnt[36];
1889 }
1890 
1891 static u64 access_cce_rxdma_conv_fifo_parity_err_cnt(
1892 				const struct cntr_entry *entry,
1893 				void *context, int vl, int mode, u64 data)
1894 {
1895 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1896 
1897 	return dd->cce_err_status_cnt[35];
1898 }
1899 
1900 static u64 access_cce_rcpl_async_fifo_parity_err_cnt(
1901 				const struct cntr_entry *entry,
1902 				void *context, int vl, int mode, u64 data)
1903 {
1904 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1905 
1906 	return dd->cce_err_status_cnt[34];
1907 }
1908 
1909 static u64 access_cce_seg_write_bad_addr_err_cnt(const struct cntr_entry *entry,
1910 						 void *context, int vl,
1911 						 int mode, u64 data)
1912 {
1913 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1914 
1915 	return dd->cce_err_status_cnt[33];
1916 }
1917 
1918 static u64 access_cce_seg_read_bad_addr_err_cnt(const struct cntr_entry *entry,
1919 						void *context, int vl, int mode,
1920 						u64 data)
1921 {
1922 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1923 
1924 	return dd->cce_err_status_cnt[32];
1925 }
1926 
1927 static u64 access_la_triggered_cnt(const struct cntr_entry *entry,
1928 				   void *context, int vl, int mode, u64 data)
1929 {
1930 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1931 
1932 	return dd->cce_err_status_cnt[31];
1933 }
1934 
1935 static u64 access_cce_trgt_cpl_timeout_err_cnt(const struct cntr_entry *entry,
1936 					       void *context, int vl, int mode,
1937 					       u64 data)
1938 {
1939 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1940 
1941 	return dd->cce_err_status_cnt[30];
1942 }
1943 
1944 static u64 access_pcic_receive_parity_err_cnt(const struct cntr_entry *entry,
1945 					      void *context, int vl, int mode,
1946 					      u64 data)
1947 {
1948 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1949 
1950 	return dd->cce_err_status_cnt[29];
1951 }
1952 
1953 static u64 access_pcic_transmit_back_parity_err_cnt(
1954 				const struct cntr_entry *entry,
1955 				void *context, int vl, int mode, u64 data)
1956 {
1957 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1958 
1959 	return dd->cce_err_status_cnt[28];
1960 }
1961 
1962 static u64 access_pcic_transmit_front_parity_err_cnt(
1963 				const struct cntr_entry *entry,
1964 				void *context, int vl, int mode, u64 data)
1965 {
1966 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1967 
1968 	return dd->cce_err_status_cnt[27];
1969 }
1970 
1971 static u64 access_pcic_cpl_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1972 					     void *context, int vl, int mode,
1973 					     u64 data)
1974 {
1975 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1976 
1977 	return dd->cce_err_status_cnt[26];
1978 }
1979 
1980 static u64 access_pcic_cpl_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1981 					    void *context, int vl, int mode,
1982 					    u64 data)
1983 {
1984 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1985 
1986 	return dd->cce_err_status_cnt[25];
1987 }
1988 
1989 static u64 access_pcic_post_dat_q_unc_err_cnt(const struct cntr_entry *entry,
1990 					      void *context, int vl, int mode,
1991 					      u64 data)
1992 {
1993 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
1994 
1995 	return dd->cce_err_status_cnt[24];
1996 }
1997 
1998 static u64 access_pcic_post_hd_q_unc_err_cnt(const struct cntr_entry *entry,
1999 					     void *context, int vl, int mode,
2000 					     u64 data)
2001 {
2002 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2003 
2004 	return dd->cce_err_status_cnt[23];
2005 }
2006 
2007 static u64 access_pcic_retry_sot_mem_unc_err_cnt(const struct cntr_entry *entry,
2008 						 void *context, int vl,
2009 						 int mode, u64 data)
2010 {
2011 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2012 
2013 	return dd->cce_err_status_cnt[22];
2014 }
2015 
2016 static u64 access_pcic_retry_mem_unc_err(const struct cntr_entry *entry,
2017 					 void *context, int vl, int mode,
2018 					 u64 data)
2019 {
2020 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2021 
2022 	return dd->cce_err_status_cnt[21];
2023 }
2024 
2025 static u64 access_pcic_n_post_dat_q_parity_err_cnt(
2026 				const struct cntr_entry *entry,
2027 				void *context, int vl, int mode, u64 data)
2028 {
2029 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2030 
2031 	return dd->cce_err_status_cnt[20];
2032 }
2033 
2034 static u64 access_pcic_n_post_h_q_parity_err_cnt(const struct cntr_entry *entry,
2035 						 void *context, int vl,
2036 						 int mode, u64 data)
2037 {
2038 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2039 
2040 	return dd->cce_err_status_cnt[19];
2041 }
2042 
2043 static u64 access_pcic_cpl_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2044 					     void *context, int vl, int mode,
2045 					     u64 data)
2046 {
2047 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2048 
2049 	return dd->cce_err_status_cnt[18];
2050 }
2051 
2052 static u64 access_pcic_cpl_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2053 					    void *context, int vl, int mode,
2054 					    u64 data)
2055 {
2056 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2057 
2058 	return dd->cce_err_status_cnt[17];
2059 }
2060 
2061 static u64 access_pcic_post_dat_q_cor_err_cnt(const struct cntr_entry *entry,
2062 					      void *context, int vl, int mode,
2063 					      u64 data)
2064 {
2065 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2066 
2067 	return dd->cce_err_status_cnt[16];
2068 }
2069 
2070 static u64 access_pcic_post_hd_q_cor_err_cnt(const struct cntr_entry *entry,
2071 					     void *context, int vl, int mode,
2072 					     u64 data)
2073 {
2074 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2075 
2076 	return dd->cce_err_status_cnt[15];
2077 }
2078 
2079 static u64 access_pcic_retry_sot_mem_cor_err_cnt(const struct cntr_entry *entry,
2080 						 void *context, int vl,
2081 						 int mode, u64 data)
2082 {
2083 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2084 
2085 	return dd->cce_err_status_cnt[14];
2086 }
2087 
2088 static u64 access_pcic_retry_mem_cor_err_cnt(const struct cntr_entry *entry,
2089 					     void *context, int vl, int mode,
2090 					     u64 data)
2091 {
2092 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2093 
2094 	return dd->cce_err_status_cnt[13];
2095 }
2096 
2097 static u64 access_cce_cli1_async_fifo_dbg_parity_err_cnt(
2098 				const struct cntr_entry *entry,
2099 				void *context, int vl, int mode, u64 data)
2100 {
2101 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2102 
2103 	return dd->cce_err_status_cnt[12];
2104 }
2105 
2106 static u64 access_cce_cli1_async_fifo_rxdma_parity_err_cnt(
2107 				const struct cntr_entry *entry,
2108 				void *context, int vl, int mode, u64 data)
2109 {
2110 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2111 
2112 	return dd->cce_err_status_cnt[11];
2113 }
2114 
2115 static u64 access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt(
2116 				const struct cntr_entry *entry,
2117 				void *context, int vl, int mode, u64 data)
2118 {
2119 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2120 
2121 	return dd->cce_err_status_cnt[10];
2122 }
2123 
2124 static u64 access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt(
2125 				const struct cntr_entry *entry,
2126 				void *context, int vl, int mode, u64 data)
2127 {
2128 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2129 
2130 	return dd->cce_err_status_cnt[9];
2131 }
2132 
2133 static u64 access_cce_cli2_async_fifo_parity_err_cnt(
2134 				const struct cntr_entry *entry,
2135 				void *context, int vl, int mode, u64 data)
2136 {
2137 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2138 
2139 	return dd->cce_err_status_cnt[8];
2140 }
2141 
2142 static u64 access_cce_csr_cfg_bus_parity_err_cnt(const struct cntr_entry *entry,
2143 						 void *context, int vl,
2144 						 int mode, u64 data)
2145 {
2146 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2147 
2148 	return dd->cce_err_status_cnt[7];
2149 }
2150 
2151 static u64 access_cce_cli0_async_fifo_parity_err_cnt(
2152 				const struct cntr_entry *entry,
2153 				void *context, int vl, int mode, u64 data)
2154 {
2155 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2156 
2157 	return dd->cce_err_status_cnt[6];
2158 }
2159 
2160 static u64 access_cce_rspd_data_parity_err_cnt(const struct cntr_entry *entry,
2161 					       void *context, int vl, int mode,
2162 					       u64 data)
2163 {
2164 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2165 
2166 	return dd->cce_err_status_cnt[5];
2167 }
2168 
2169 static u64 access_cce_trgt_access_err_cnt(const struct cntr_entry *entry,
2170 					  void *context, int vl, int mode,
2171 					  u64 data)
2172 {
2173 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2174 
2175 	return dd->cce_err_status_cnt[4];
2176 }
2177 
2178 static u64 access_cce_trgt_async_fifo_parity_err_cnt(
2179 				const struct cntr_entry *entry,
2180 				void *context, int vl, int mode, u64 data)
2181 {
2182 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2183 
2184 	return dd->cce_err_status_cnt[3];
2185 }
2186 
2187 static u64 access_cce_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2188 						 void *context, int vl,
2189 						 int mode, u64 data)
2190 {
2191 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2192 
2193 	return dd->cce_err_status_cnt[2];
2194 }
2195 
2196 static u64 access_cce_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2197 						void *context, int vl,
2198 						int mode, u64 data)
2199 {
2200 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2201 
2202 	return dd->cce_err_status_cnt[1];
2203 }
2204 
2205 static u64 access_ccs_csr_parity_err_cnt(const struct cntr_entry *entry,
2206 					 void *context, int vl, int mode,
2207 					 u64 data)
2208 {
2209 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2210 
2211 	return dd->cce_err_status_cnt[0];
2212 }
2213 
2214 /*
2215  * Software counters corresponding to each of the
2216  * error status bits within RcvErrStatus
2217  */
2218 static u64 access_rx_csr_parity_err_cnt(const struct cntr_entry *entry,
2219 					void *context, int vl, int mode,
2220 					u64 data)
2221 {
2222 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2223 
2224 	return dd->rcv_err_status_cnt[63];
2225 }
2226 
2227 static u64 access_rx_csr_write_bad_addr_err_cnt(const struct cntr_entry *entry,
2228 						void *context, int vl,
2229 						int mode, u64 data)
2230 {
2231 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2232 
2233 	return dd->rcv_err_status_cnt[62];
2234 }
2235 
2236 static u64 access_rx_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
2237 					       void *context, int vl, int mode,
2238 					       u64 data)
2239 {
2240 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2241 
2242 	return dd->rcv_err_status_cnt[61];
2243 }
2244 
2245 static u64 access_rx_dma_csr_unc_err_cnt(const struct cntr_entry *entry,
2246 					 void *context, int vl, int mode,
2247 					 u64 data)
2248 {
2249 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2250 
2251 	return dd->rcv_err_status_cnt[60];
2252 }
2253 
2254 static u64 access_rx_dma_dq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2255 						 void *context, int vl,
2256 						 int mode, u64 data)
2257 {
2258 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2259 
2260 	return dd->rcv_err_status_cnt[59];
2261 }
2262 
2263 static u64 access_rx_dma_eq_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2264 						 void *context, int vl,
2265 						 int mode, u64 data)
2266 {
2267 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2268 
2269 	return dd->rcv_err_status_cnt[58];
2270 }
2271 
2272 static u64 access_rx_dma_csr_parity_err_cnt(const struct cntr_entry *entry,
2273 					    void *context, int vl, int mode,
2274 					    u64 data)
2275 {
2276 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2277 
2278 	return dd->rcv_err_status_cnt[57];
2279 }
2280 
2281 static u64 access_rx_rbuf_data_cor_err_cnt(const struct cntr_entry *entry,
2282 					   void *context, int vl, int mode,
2283 					   u64 data)
2284 {
2285 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2286 
2287 	return dd->rcv_err_status_cnt[56];
2288 }
2289 
2290 static u64 access_rx_rbuf_data_unc_err_cnt(const struct cntr_entry *entry,
2291 					   void *context, int vl, int mode,
2292 					   u64 data)
2293 {
2294 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2295 
2296 	return dd->rcv_err_status_cnt[55];
2297 }
2298 
2299 static u64 access_rx_dma_data_fifo_rd_cor_err_cnt(
2300 				const struct cntr_entry *entry,
2301 				void *context, int vl, int mode, u64 data)
2302 {
2303 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2304 
2305 	return dd->rcv_err_status_cnt[54];
2306 }
2307 
2308 static u64 access_rx_dma_data_fifo_rd_unc_err_cnt(
2309 				const struct cntr_entry *entry,
2310 				void *context, int vl, int mode, u64 data)
2311 {
2312 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2313 
2314 	return dd->rcv_err_status_cnt[53];
2315 }
2316 
2317 static u64 access_rx_dma_hdr_fifo_rd_cor_err_cnt(const struct cntr_entry *entry,
2318 						 void *context, int vl,
2319 						 int mode, u64 data)
2320 {
2321 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2322 
2323 	return dd->rcv_err_status_cnt[52];
2324 }
2325 
2326 static u64 access_rx_dma_hdr_fifo_rd_unc_err_cnt(const struct cntr_entry *entry,
2327 						 void *context, int vl,
2328 						 int mode, u64 data)
2329 {
2330 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2331 
2332 	return dd->rcv_err_status_cnt[51];
2333 }
2334 
2335 static u64 access_rx_rbuf_desc_part2_cor_err_cnt(const struct cntr_entry *entry,
2336 						 void *context, int vl,
2337 						 int mode, u64 data)
2338 {
2339 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2340 
2341 	return dd->rcv_err_status_cnt[50];
2342 }
2343 
2344 static u64 access_rx_rbuf_desc_part2_unc_err_cnt(const struct cntr_entry *entry,
2345 						 void *context, int vl,
2346 						 int mode, u64 data)
2347 {
2348 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2349 
2350 	return dd->rcv_err_status_cnt[49];
2351 }
2352 
2353 static u64 access_rx_rbuf_desc_part1_cor_err_cnt(const struct cntr_entry *entry,
2354 						 void *context, int vl,
2355 						 int mode, u64 data)
2356 {
2357 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2358 
2359 	return dd->rcv_err_status_cnt[48];
2360 }
2361 
2362 static u64 access_rx_rbuf_desc_part1_unc_err_cnt(const struct cntr_entry *entry,
2363 						 void *context, int vl,
2364 						 int mode, u64 data)
2365 {
2366 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2367 
2368 	return dd->rcv_err_status_cnt[47];
2369 }
2370 
2371 static u64 access_rx_hq_intr_fsm_err_cnt(const struct cntr_entry *entry,
2372 					 void *context, int vl, int mode,
2373 					 u64 data)
2374 {
2375 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2376 
2377 	return dd->rcv_err_status_cnt[46];
2378 }
2379 
2380 static u64 access_rx_hq_intr_csr_parity_err_cnt(
2381 				const struct cntr_entry *entry,
2382 				void *context, int vl, int mode, u64 data)
2383 {
2384 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2385 
2386 	return dd->rcv_err_status_cnt[45];
2387 }
2388 
2389 static u64 access_rx_lookup_csr_parity_err_cnt(
2390 				const struct cntr_entry *entry,
2391 				void *context, int vl, int mode, u64 data)
2392 {
2393 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2394 
2395 	return dd->rcv_err_status_cnt[44];
2396 }
2397 
2398 static u64 access_rx_lookup_rcv_array_cor_err_cnt(
2399 				const struct cntr_entry *entry,
2400 				void *context, int vl, int mode, u64 data)
2401 {
2402 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2403 
2404 	return dd->rcv_err_status_cnt[43];
2405 }
2406 
2407 static u64 access_rx_lookup_rcv_array_unc_err_cnt(
2408 				const struct cntr_entry *entry,
2409 				void *context, int vl, int mode, u64 data)
2410 {
2411 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2412 
2413 	return dd->rcv_err_status_cnt[42];
2414 }
2415 
2416 static u64 access_rx_lookup_des_part2_parity_err_cnt(
2417 				const struct cntr_entry *entry,
2418 				void *context, int vl, int mode, u64 data)
2419 {
2420 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2421 
2422 	return dd->rcv_err_status_cnt[41];
2423 }
2424 
2425 static u64 access_rx_lookup_des_part1_unc_cor_err_cnt(
2426 				const struct cntr_entry *entry,
2427 				void *context, int vl, int mode, u64 data)
2428 {
2429 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2430 
2431 	return dd->rcv_err_status_cnt[40];
2432 }
2433 
2434 static u64 access_rx_lookup_des_part1_unc_err_cnt(
2435 				const struct cntr_entry *entry,
2436 				void *context, int vl, int mode, u64 data)
2437 {
2438 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2439 
2440 	return dd->rcv_err_status_cnt[39];
2441 }
2442 
2443 static u64 access_rx_rbuf_next_free_buf_cor_err_cnt(
2444 				const struct cntr_entry *entry,
2445 				void *context, int vl, int mode, u64 data)
2446 {
2447 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2448 
2449 	return dd->rcv_err_status_cnt[38];
2450 }
2451 
2452 static u64 access_rx_rbuf_next_free_buf_unc_err_cnt(
2453 				const struct cntr_entry *entry,
2454 				void *context, int vl, int mode, u64 data)
2455 {
2456 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2457 
2458 	return dd->rcv_err_status_cnt[37];
2459 }
2460 
2461 static u64 access_rbuf_fl_init_wr_addr_parity_err_cnt(
2462 				const struct cntr_entry *entry,
2463 				void *context, int vl, int mode, u64 data)
2464 {
2465 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2466 
2467 	return dd->rcv_err_status_cnt[36];
2468 }
2469 
2470 static u64 access_rx_rbuf_fl_initdone_parity_err_cnt(
2471 				const struct cntr_entry *entry,
2472 				void *context, int vl, int mode, u64 data)
2473 {
2474 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2475 
2476 	return dd->rcv_err_status_cnt[35];
2477 }
2478 
2479 static u64 access_rx_rbuf_fl_write_addr_parity_err_cnt(
2480 				const struct cntr_entry *entry,
2481 				void *context, int vl, int mode, u64 data)
2482 {
2483 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2484 
2485 	return dd->rcv_err_status_cnt[34];
2486 }
2487 
2488 static u64 access_rx_rbuf_fl_rd_addr_parity_err_cnt(
2489 				const struct cntr_entry *entry,
2490 				void *context, int vl, int mode, u64 data)
2491 {
2492 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2493 
2494 	return dd->rcv_err_status_cnt[33];
2495 }
2496 
2497 static u64 access_rx_rbuf_empty_err_cnt(const struct cntr_entry *entry,
2498 					void *context, int vl, int mode,
2499 					u64 data)
2500 {
2501 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2502 
2503 	return dd->rcv_err_status_cnt[32];
2504 }
2505 
2506 static u64 access_rx_rbuf_full_err_cnt(const struct cntr_entry *entry,
2507 				       void *context, int vl, int mode,
2508 				       u64 data)
2509 {
2510 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2511 
2512 	return dd->rcv_err_status_cnt[31];
2513 }
2514 
2515 static u64 access_rbuf_bad_lookup_err_cnt(const struct cntr_entry *entry,
2516 					  void *context, int vl, int mode,
2517 					  u64 data)
2518 {
2519 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2520 
2521 	return dd->rcv_err_status_cnt[30];
2522 }
2523 
2524 static u64 access_rbuf_ctx_id_parity_err_cnt(const struct cntr_entry *entry,
2525 					     void *context, int vl, int mode,
2526 					     u64 data)
2527 {
2528 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2529 
2530 	return dd->rcv_err_status_cnt[29];
2531 }
2532 
2533 static u64 access_rbuf_csr_qeopdw_parity_err_cnt(const struct cntr_entry *entry,
2534 						 void *context, int vl,
2535 						 int mode, u64 data)
2536 {
2537 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2538 
2539 	return dd->rcv_err_status_cnt[28];
2540 }
2541 
2542 static u64 access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt(
2543 				const struct cntr_entry *entry,
2544 				void *context, int vl, int mode, u64 data)
2545 {
2546 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2547 
2548 	return dd->rcv_err_status_cnt[27];
2549 }
2550 
2551 static u64 access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt(
2552 				const struct cntr_entry *entry,
2553 				void *context, int vl, int mode, u64 data)
2554 {
2555 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2556 
2557 	return dd->rcv_err_status_cnt[26];
2558 }
2559 
2560 static u64 access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt(
2561 				const struct cntr_entry *entry,
2562 				void *context, int vl, int mode, u64 data)
2563 {
2564 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2565 
2566 	return dd->rcv_err_status_cnt[25];
2567 }
2568 
2569 static u64 access_rx_rbuf_csr_q_vld_bit_parity_err_cnt(
2570 				const struct cntr_entry *entry,
2571 				void *context, int vl, int mode, u64 data)
2572 {
2573 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2574 
2575 	return dd->rcv_err_status_cnt[24];
2576 }
2577 
2578 static u64 access_rx_rbuf_csr_q_next_buf_parity_err_cnt(
2579 				const struct cntr_entry *entry,
2580 				void *context, int vl, int mode, u64 data)
2581 {
2582 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2583 
2584 	return dd->rcv_err_status_cnt[23];
2585 }
2586 
2587 static u64 access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt(
2588 				const struct cntr_entry *entry,
2589 				void *context, int vl, int mode, u64 data)
2590 {
2591 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2592 
2593 	return dd->rcv_err_status_cnt[22];
2594 }
2595 
2596 static u64 access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt(
2597 				const struct cntr_entry *entry,
2598 				void *context, int vl, int mode, u64 data)
2599 {
2600 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2601 
2602 	return dd->rcv_err_status_cnt[21];
2603 }
2604 
2605 static u64 access_rx_rbuf_block_list_read_cor_err_cnt(
2606 				const struct cntr_entry *entry,
2607 				void *context, int vl, int mode, u64 data)
2608 {
2609 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2610 
2611 	return dd->rcv_err_status_cnt[20];
2612 }
2613 
2614 static u64 access_rx_rbuf_block_list_read_unc_err_cnt(
2615 				const struct cntr_entry *entry,
2616 				void *context, int vl, int mode, u64 data)
2617 {
2618 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2619 
2620 	return dd->rcv_err_status_cnt[19];
2621 }
2622 
2623 static u64 access_rx_rbuf_lookup_des_cor_err_cnt(const struct cntr_entry *entry,
2624 						 void *context, int vl,
2625 						 int mode, u64 data)
2626 {
2627 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2628 
2629 	return dd->rcv_err_status_cnt[18];
2630 }
2631 
2632 static u64 access_rx_rbuf_lookup_des_unc_err_cnt(const struct cntr_entry *entry,
2633 						 void *context, int vl,
2634 						 int mode, u64 data)
2635 {
2636 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2637 
2638 	return dd->rcv_err_status_cnt[17];
2639 }
2640 
2641 static u64 access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt(
2642 				const struct cntr_entry *entry,
2643 				void *context, int vl, int mode, u64 data)
2644 {
2645 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2646 
2647 	return dd->rcv_err_status_cnt[16];
2648 }
2649 
2650 static u64 access_rx_rbuf_lookup_des_reg_unc_err_cnt(
2651 				const struct cntr_entry *entry,
2652 				void *context, int vl, int mode, u64 data)
2653 {
2654 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2655 
2656 	return dd->rcv_err_status_cnt[15];
2657 }
2658 
2659 static u64 access_rx_rbuf_free_list_cor_err_cnt(const struct cntr_entry *entry,
2660 						void *context, int vl,
2661 						int mode, u64 data)
2662 {
2663 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2664 
2665 	return dd->rcv_err_status_cnt[14];
2666 }
2667 
2668 static u64 access_rx_rbuf_free_list_unc_err_cnt(const struct cntr_entry *entry,
2669 						void *context, int vl,
2670 						int mode, u64 data)
2671 {
2672 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2673 
2674 	return dd->rcv_err_status_cnt[13];
2675 }
2676 
2677 static u64 access_rx_rcv_fsm_encoding_err_cnt(const struct cntr_entry *entry,
2678 					      void *context, int vl, int mode,
2679 					      u64 data)
2680 {
2681 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2682 
2683 	return dd->rcv_err_status_cnt[12];
2684 }
2685 
2686 static u64 access_rx_dma_flag_cor_err_cnt(const struct cntr_entry *entry,
2687 					  void *context, int vl, int mode,
2688 					  u64 data)
2689 {
2690 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2691 
2692 	return dd->rcv_err_status_cnt[11];
2693 }
2694 
2695 static u64 access_rx_dma_flag_unc_err_cnt(const struct cntr_entry *entry,
2696 					  void *context, int vl, int mode,
2697 					  u64 data)
2698 {
2699 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2700 
2701 	return dd->rcv_err_status_cnt[10];
2702 }
2703 
2704 static u64 access_rx_dc_sop_eop_parity_err_cnt(const struct cntr_entry *entry,
2705 					       void *context, int vl, int mode,
2706 					       u64 data)
2707 {
2708 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2709 
2710 	return dd->rcv_err_status_cnt[9];
2711 }
2712 
2713 static u64 access_rx_rcv_csr_parity_err_cnt(const struct cntr_entry *entry,
2714 					    void *context, int vl, int mode,
2715 					    u64 data)
2716 {
2717 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2718 
2719 	return dd->rcv_err_status_cnt[8];
2720 }
2721 
2722 static u64 access_rx_rcv_qp_map_table_cor_err_cnt(
2723 				const struct cntr_entry *entry,
2724 				void *context, int vl, int mode, u64 data)
2725 {
2726 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2727 
2728 	return dd->rcv_err_status_cnt[7];
2729 }
2730 
2731 static u64 access_rx_rcv_qp_map_table_unc_err_cnt(
2732 				const struct cntr_entry *entry,
2733 				void *context, int vl, int mode, u64 data)
2734 {
2735 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2736 
2737 	return dd->rcv_err_status_cnt[6];
2738 }
2739 
2740 static u64 access_rx_rcv_data_cor_err_cnt(const struct cntr_entry *entry,
2741 					  void *context, int vl, int mode,
2742 					  u64 data)
2743 {
2744 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2745 
2746 	return dd->rcv_err_status_cnt[5];
2747 }
2748 
2749 static u64 access_rx_rcv_data_unc_err_cnt(const struct cntr_entry *entry,
2750 					  void *context, int vl, int mode,
2751 					  u64 data)
2752 {
2753 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2754 
2755 	return dd->rcv_err_status_cnt[4];
2756 }
2757 
2758 static u64 access_rx_rcv_hdr_cor_err_cnt(const struct cntr_entry *entry,
2759 					 void *context, int vl, int mode,
2760 					 u64 data)
2761 {
2762 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2763 
2764 	return dd->rcv_err_status_cnt[3];
2765 }
2766 
2767 static u64 access_rx_rcv_hdr_unc_err_cnt(const struct cntr_entry *entry,
2768 					 void *context, int vl, int mode,
2769 					 u64 data)
2770 {
2771 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2772 
2773 	return dd->rcv_err_status_cnt[2];
2774 }
2775 
2776 static u64 access_rx_dc_intf_parity_err_cnt(const struct cntr_entry *entry,
2777 					    void *context, int vl, int mode,
2778 					    u64 data)
2779 {
2780 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2781 
2782 	return dd->rcv_err_status_cnt[1];
2783 }
2784 
2785 static u64 access_rx_dma_csr_cor_err_cnt(const struct cntr_entry *entry,
2786 					 void *context, int vl, int mode,
2787 					 u64 data)
2788 {
2789 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2790 
2791 	return dd->rcv_err_status_cnt[0];
2792 }
2793 
2794 /*
2795  * Software counters corresponding to each of the
2796  * error status bits within SendPioErrStatus
2797  */
2798 static u64 access_pio_pec_sop_head_parity_err_cnt(
2799 				const struct cntr_entry *entry,
2800 				void *context, int vl, int mode, u64 data)
2801 {
2802 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2803 
2804 	return dd->send_pio_err_status_cnt[35];
2805 }
2806 
2807 static u64 access_pio_pcc_sop_head_parity_err_cnt(
2808 				const struct cntr_entry *entry,
2809 				void *context, int vl, int mode, u64 data)
2810 {
2811 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2812 
2813 	return dd->send_pio_err_status_cnt[34];
2814 }
2815 
2816 static u64 access_pio_last_returned_cnt_parity_err_cnt(
2817 				const struct cntr_entry *entry,
2818 				void *context, int vl, int mode, u64 data)
2819 {
2820 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2821 
2822 	return dd->send_pio_err_status_cnt[33];
2823 }
2824 
2825 static u64 access_pio_current_free_cnt_parity_err_cnt(
2826 				const struct cntr_entry *entry,
2827 				void *context, int vl, int mode, u64 data)
2828 {
2829 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2830 
2831 	return dd->send_pio_err_status_cnt[32];
2832 }
2833 
2834 static u64 access_pio_reserved_31_err_cnt(const struct cntr_entry *entry,
2835 					  void *context, int vl, int mode,
2836 					  u64 data)
2837 {
2838 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2839 
2840 	return dd->send_pio_err_status_cnt[31];
2841 }
2842 
2843 static u64 access_pio_reserved_30_err_cnt(const struct cntr_entry *entry,
2844 					  void *context, int vl, int mode,
2845 					  u64 data)
2846 {
2847 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2848 
2849 	return dd->send_pio_err_status_cnt[30];
2850 }
2851 
2852 static u64 access_pio_ppmc_sop_len_err_cnt(const struct cntr_entry *entry,
2853 					   void *context, int vl, int mode,
2854 					   u64 data)
2855 {
2856 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2857 
2858 	return dd->send_pio_err_status_cnt[29];
2859 }
2860 
2861 static u64 access_pio_ppmc_bqc_mem_parity_err_cnt(
2862 				const struct cntr_entry *entry,
2863 				void *context, int vl, int mode, u64 data)
2864 {
2865 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2866 
2867 	return dd->send_pio_err_status_cnt[28];
2868 }
2869 
2870 static u64 access_pio_vl_fifo_parity_err_cnt(const struct cntr_entry *entry,
2871 					     void *context, int vl, int mode,
2872 					     u64 data)
2873 {
2874 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2875 
2876 	return dd->send_pio_err_status_cnt[27];
2877 }
2878 
2879 static u64 access_pio_vlf_sop_parity_err_cnt(const struct cntr_entry *entry,
2880 					     void *context, int vl, int mode,
2881 					     u64 data)
2882 {
2883 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2884 
2885 	return dd->send_pio_err_status_cnt[26];
2886 }
2887 
2888 static u64 access_pio_vlf_v1_len_parity_err_cnt(const struct cntr_entry *entry,
2889 						void *context, int vl,
2890 						int mode, u64 data)
2891 {
2892 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2893 
2894 	return dd->send_pio_err_status_cnt[25];
2895 }
2896 
2897 static u64 access_pio_block_qw_count_parity_err_cnt(
2898 				const struct cntr_entry *entry,
2899 				void *context, int vl, int mode, u64 data)
2900 {
2901 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2902 
2903 	return dd->send_pio_err_status_cnt[24];
2904 }
2905 
2906 static u64 access_pio_write_qw_valid_parity_err_cnt(
2907 				const struct cntr_entry *entry,
2908 				void *context, int vl, int mode, u64 data)
2909 {
2910 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2911 
2912 	return dd->send_pio_err_status_cnt[23];
2913 }
2914 
2915 static u64 access_pio_state_machine_err_cnt(const struct cntr_entry *entry,
2916 					    void *context, int vl, int mode,
2917 					    u64 data)
2918 {
2919 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2920 
2921 	return dd->send_pio_err_status_cnt[22];
2922 }
2923 
2924 static u64 access_pio_write_data_parity_err_cnt(const struct cntr_entry *entry,
2925 						void *context, int vl,
2926 						int mode, u64 data)
2927 {
2928 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2929 
2930 	return dd->send_pio_err_status_cnt[21];
2931 }
2932 
2933 static u64 access_pio_host_addr_mem_cor_err_cnt(const struct cntr_entry *entry,
2934 						void *context, int vl,
2935 						int mode, u64 data)
2936 {
2937 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2938 
2939 	return dd->send_pio_err_status_cnt[20];
2940 }
2941 
2942 static u64 access_pio_host_addr_mem_unc_err_cnt(const struct cntr_entry *entry,
2943 						void *context, int vl,
2944 						int mode, u64 data)
2945 {
2946 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2947 
2948 	return dd->send_pio_err_status_cnt[19];
2949 }
2950 
2951 static u64 access_pio_pkt_evict_sm_or_arb_sm_err_cnt(
2952 				const struct cntr_entry *entry,
2953 				void *context, int vl, int mode, u64 data)
2954 {
2955 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2956 
2957 	return dd->send_pio_err_status_cnt[18];
2958 }
2959 
2960 static u64 access_pio_init_sm_in_err_cnt(const struct cntr_entry *entry,
2961 					 void *context, int vl, int mode,
2962 					 u64 data)
2963 {
2964 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2965 
2966 	return dd->send_pio_err_status_cnt[17];
2967 }
2968 
2969 static u64 access_pio_ppmc_pbl_fifo_err_cnt(const struct cntr_entry *entry,
2970 					    void *context, int vl, int mode,
2971 					    u64 data)
2972 {
2973 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2974 
2975 	return dd->send_pio_err_status_cnt[16];
2976 }
2977 
2978 static u64 access_pio_credit_ret_fifo_parity_err_cnt(
2979 				const struct cntr_entry *entry,
2980 				void *context, int vl, int mode, u64 data)
2981 {
2982 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2983 
2984 	return dd->send_pio_err_status_cnt[15];
2985 }
2986 
2987 static u64 access_pio_v1_len_mem_bank1_cor_err_cnt(
2988 				const struct cntr_entry *entry,
2989 				void *context, int vl, int mode, u64 data)
2990 {
2991 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
2992 
2993 	return dd->send_pio_err_status_cnt[14];
2994 }
2995 
2996 static u64 access_pio_v1_len_mem_bank0_cor_err_cnt(
2997 				const struct cntr_entry *entry,
2998 				void *context, int vl, int mode, u64 data)
2999 {
3000 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3001 
3002 	return dd->send_pio_err_status_cnt[13];
3003 }
3004 
3005 static u64 access_pio_v1_len_mem_bank1_unc_err_cnt(
3006 				const struct cntr_entry *entry,
3007 				void *context, int vl, int mode, u64 data)
3008 {
3009 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3010 
3011 	return dd->send_pio_err_status_cnt[12];
3012 }
3013 
3014 static u64 access_pio_v1_len_mem_bank0_unc_err_cnt(
3015 				const struct cntr_entry *entry,
3016 				void *context, int vl, int mode, u64 data)
3017 {
3018 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3019 
3020 	return dd->send_pio_err_status_cnt[11];
3021 }
3022 
3023 static u64 access_pio_sm_pkt_reset_parity_err_cnt(
3024 				const struct cntr_entry *entry,
3025 				void *context, int vl, int mode, u64 data)
3026 {
3027 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3028 
3029 	return dd->send_pio_err_status_cnt[10];
3030 }
3031 
3032 static u64 access_pio_pkt_evict_fifo_parity_err_cnt(
3033 				const struct cntr_entry *entry,
3034 				void *context, int vl, int mode, u64 data)
3035 {
3036 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3037 
3038 	return dd->send_pio_err_status_cnt[9];
3039 }
3040 
3041 static u64 access_pio_sbrdctrl_crrel_fifo_parity_err_cnt(
3042 				const struct cntr_entry *entry,
3043 				void *context, int vl, int mode, u64 data)
3044 {
3045 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3046 
3047 	return dd->send_pio_err_status_cnt[8];
3048 }
3049 
3050 static u64 access_pio_sbrdctl_crrel_parity_err_cnt(
3051 				const struct cntr_entry *entry,
3052 				void *context, int vl, int mode, u64 data)
3053 {
3054 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3055 
3056 	return dd->send_pio_err_status_cnt[7];
3057 }
3058 
3059 static u64 access_pio_pec_fifo_parity_err_cnt(const struct cntr_entry *entry,
3060 					      void *context, int vl, int mode,
3061 					      u64 data)
3062 {
3063 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3064 
3065 	return dd->send_pio_err_status_cnt[6];
3066 }
3067 
3068 static u64 access_pio_pcc_fifo_parity_err_cnt(const struct cntr_entry *entry,
3069 					      void *context, int vl, int mode,
3070 					      u64 data)
3071 {
3072 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3073 
3074 	return dd->send_pio_err_status_cnt[5];
3075 }
3076 
3077 static u64 access_pio_sb_mem_fifo1_err_cnt(const struct cntr_entry *entry,
3078 					   void *context, int vl, int mode,
3079 					   u64 data)
3080 {
3081 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3082 
3083 	return dd->send_pio_err_status_cnt[4];
3084 }
3085 
3086 static u64 access_pio_sb_mem_fifo0_err_cnt(const struct cntr_entry *entry,
3087 					   void *context, int vl, int mode,
3088 					   u64 data)
3089 {
3090 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3091 
3092 	return dd->send_pio_err_status_cnt[3];
3093 }
3094 
3095 static u64 access_pio_csr_parity_err_cnt(const struct cntr_entry *entry,
3096 					 void *context, int vl, int mode,
3097 					 u64 data)
3098 {
3099 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3100 
3101 	return dd->send_pio_err_status_cnt[2];
3102 }
3103 
3104 static u64 access_pio_write_addr_parity_err_cnt(const struct cntr_entry *entry,
3105 						void *context, int vl,
3106 						int mode, u64 data)
3107 {
3108 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3109 
3110 	return dd->send_pio_err_status_cnt[1];
3111 }
3112 
3113 static u64 access_pio_write_bad_ctxt_err_cnt(const struct cntr_entry *entry,
3114 					     void *context, int vl, int mode,
3115 					     u64 data)
3116 {
3117 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3118 
3119 	return dd->send_pio_err_status_cnt[0];
3120 }
3121 
3122 /*
3123  * Software counters corresponding to each of the
3124  * error status bits within SendDmaErrStatus
3125  */
3126 static u64 access_sdma_pcie_req_tracking_cor_err_cnt(
3127 				const struct cntr_entry *entry,
3128 				void *context, int vl, int mode, u64 data)
3129 {
3130 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3131 
3132 	return dd->send_dma_err_status_cnt[3];
3133 }
3134 
3135 static u64 access_sdma_pcie_req_tracking_unc_err_cnt(
3136 				const struct cntr_entry *entry,
3137 				void *context, int vl, int mode, u64 data)
3138 {
3139 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3140 
3141 	return dd->send_dma_err_status_cnt[2];
3142 }
3143 
3144 static u64 access_sdma_csr_parity_err_cnt(const struct cntr_entry *entry,
3145 					  void *context, int vl, int mode,
3146 					  u64 data)
3147 {
3148 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3149 
3150 	return dd->send_dma_err_status_cnt[1];
3151 }
3152 
3153 static u64 access_sdma_rpy_tag_err_cnt(const struct cntr_entry *entry,
3154 				       void *context, int vl, int mode,
3155 				       u64 data)
3156 {
3157 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3158 
3159 	return dd->send_dma_err_status_cnt[0];
3160 }
3161 
3162 /*
3163  * Software counters corresponding to each of the
3164  * error status bits within SendEgressErrStatus
3165  */
3166 static u64 access_tx_read_pio_memory_csr_unc_err_cnt(
3167 				const struct cntr_entry *entry,
3168 				void *context, int vl, int mode, u64 data)
3169 {
3170 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3171 
3172 	return dd->send_egress_err_status_cnt[63];
3173 }
3174 
3175 static u64 access_tx_read_sdma_memory_csr_err_cnt(
3176 				const struct cntr_entry *entry,
3177 				void *context, int vl, int mode, u64 data)
3178 {
3179 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3180 
3181 	return dd->send_egress_err_status_cnt[62];
3182 }
3183 
3184 static u64 access_tx_egress_fifo_cor_err_cnt(const struct cntr_entry *entry,
3185 					     void *context, int vl, int mode,
3186 					     u64 data)
3187 {
3188 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3189 
3190 	return dd->send_egress_err_status_cnt[61];
3191 }
3192 
3193 static u64 access_tx_read_pio_memory_cor_err_cnt(const struct cntr_entry *entry,
3194 						 void *context, int vl,
3195 						 int mode, u64 data)
3196 {
3197 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3198 
3199 	return dd->send_egress_err_status_cnt[60];
3200 }
3201 
3202 static u64 access_tx_read_sdma_memory_cor_err_cnt(
3203 				const struct cntr_entry *entry,
3204 				void *context, int vl, int mode, u64 data)
3205 {
3206 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3207 
3208 	return dd->send_egress_err_status_cnt[59];
3209 }
3210 
3211 static u64 access_tx_sb_hdr_cor_err_cnt(const struct cntr_entry *entry,
3212 					void *context, int vl, int mode,
3213 					u64 data)
3214 {
3215 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3216 
3217 	return dd->send_egress_err_status_cnt[58];
3218 }
3219 
3220 static u64 access_tx_credit_overrun_err_cnt(const struct cntr_entry *entry,
3221 					    void *context, int vl, int mode,
3222 					    u64 data)
3223 {
3224 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3225 
3226 	return dd->send_egress_err_status_cnt[57];
3227 }
3228 
3229 static u64 access_tx_launch_fifo8_cor_err_cnt(const struct cntr_entry *entry,
3230 					      void *context, int vl, int mode,
3231 					      u64 data)
3232 {
3233 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3234 
3235 	return dd->send_egress_err_status_cnt[56];
3236 }
3237 
3238 static u64 access_tx_launch_fifo7_cor_err_cnt(const struct cntr_entry *entry,
3239 					      void *context, int vl, int mode,
3240 					      u64 data)
3241 {
3242 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3243 
3244 	return dd->send_egress_err_status_cnt[55];
3245 }
3246 
3247 static u64 access_tx_launch_fifo6_cor_err_cnt(const struct cntr_entry *entry,
3248 					      void *context, int vl, int mode,
3249 					      u64 data)
3250 {
3251 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3252 
3253 	return dd->send_egress_err_status_cnt[54];
3254 }
3255 
3256 static u64 access_tx_launch_fifo5_cor_err_cnt(const struct cntr_entry *entry,
3257 					      void *context, int vl, int mode,
3258 					      u64 data)
3259 {
3260 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3261 
3262 	return dd->send_egress_err_status_cnt[53];
3263 }
3264 
3265 static u64 access_tx_launch_fifo4_cor_err_cnt(const struct cntr_entry *entry,
3266 					      void *context, int vl, int mode,
3267 					      u64 data)
3268 {
3269 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3270 
3271 	return dd->send_egress_err_status_cnt[52];
3272 }
3273 
3274 static u64 access_tx_launch_fifo3_cor_err_cnt(const struct cntr_entry *entry,
3275 					      void *context, int vl, int mode,
3276 					      u64 data)
3277 {
3278 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3279 
3280 	return dd->send_egress_err_status_cnt[51];
3281 }
3282 
3283 static u64 access_tx_launch_fifo2_cor_err_cnt(const struct cntr_entry *entry,
3284 					      void *context, int vl, int mode,
3285 					      u64 data)
3286 {
3287 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3288 
3289 	return dd->send_egress_err_status_cnt[50];
3290 }
3291 
3292 static u64 access_tx_launch_fifo1_cor_err_cnt(const struct cntr_entry *entry,
3293 					      void *context, int vl, int mode,
3294 					      u64 data)
3295 {
3296 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3297 
3298 	return dd->send_egress_err_status_cnt[49];
3299 }
3300 
3301 static u64 access_tx_launch_fifo0_cor_err_cnt(const struct cntr_entry *entry,
3302 					      void *context, int vl, int mode,
3303 					      u64 data)
3304 {
3305 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3306 
3307 	return dd->send_egress_err_status_cnt[48];
3308 }
3309 
3310 static u64 access_tx_credit_return_vl_err_cnt(const struct cntr_entry *entry,
3311 					      void *context, int vl, int mode,
3312 					      u64 data)
3313 {
3314 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3315 
3316 	return dd->send_egress_err_status_cnt[47];
3317 }
3318 
3319 static u64 access_tx_hcrc_insertion_err_cnt(const struct cntr_entry *entry,
3320 					    void *context, int vl, int mode,
3321 					    u64 data)
3322 {
3323 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3324 
3325 	return dd->send_egress_err_status_cnt[46];
3326 }
3327 
3328 static u64 access_tx_egress_fifo_unc_err_cnt(const struct cntr_entry *entry,
3329 					     void *context, int vl, int mode,
3330 					     u64 data)
3331 {
3332 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3333 
3334 	return dd->send_egress_err_status_cnt[45];
3335 }
3336 
3337 static u64 access_tx_read_pio_memory_unc_err_cnt(const struct cntr_entry *entry,
3338 						 void *context, int vl,
3339 						 int mode, u64 data)
3340 {
3341 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3342 
3343 	return dd->send_egress_err_status_cnt[44];
3344 }
3345 
3346 static u64 access_tx_read_sdma_memory_unc_err_cnt(
3347 				const struct cntr_entry *entry,
3348 				void *context, int vl, int mode, u64 data)
3349 {
3350 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3351 
3352 	return dd->send_egress_err_status_cnt[43];
3353 }
3354 
3355 static u64 access_tx_sb_hdr_unc_err_cnt(const struct cntr_entry *entry,
3356 					void *context, int vl, int mode,
3357 					u64 data)
3358 {
3359 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3360 
3361 	return dd->send_egress_err_status_cnt[42];
3362 }
3363 
3364 static u64 access_tx_credit_return_partiy_err_cnt(
3365 				const struct cntr_entry *entry,
3366 				void *context, int vl, int mode, u64 data)
3367 {
3368 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3369 
3370 	return dd->send_egress_err_status_cnt[41];
3371 }
3372 
3373 static u64 access_tx_launch_fifo8_unc_or_parity_err_cnt(
3374 				const struct cntr_entry *entry,
3375 				void *context, int vl, int mode, u64 data)
3376 {
3377 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3378 
3379 	return dd->send_egress_err_status_cnt[40];
3380 }
3381 
3382 static u64 access_tx_launch_fifo7_unc_or_parity_err_cnt(
3383 				const struct cntr_entry *entry,
3384 				void *context, int vl, int mode, u64 data)
3385 {
3386 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3387 
3388 	return dd->send_egress_err_status_cnt[39];
3389 }
3390 
3391 static u64 access_tx_launch_fifo6_unc_or_parity_err_cnt(
3392 				const struct cntr_entry *entry,
3393 				void *context, int vl, int mode, u64 data)
3394 {
3395 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3396 
3397 	return dd->send_egress_err_status_cnt[38];
3398 }
3399 
3400 static u64 access_tx_launch_fifo5_unc_or_parity_err_cnt(
3401 				const struct cntr_entry *entry,
3402 				void *context, int vl, int mode, u64 data)
3403 {
3404 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3405 
3406 	return dd->send_egress_err_status_cnt[37];
3407 }
3408 
3409 static u64 access_tx_launch_fifo4_unc_or_parity_err_cnt(
3410 				const struct cntr_entry *entry,
3411 				void *context, int vl, int mode, u64 data)
3412 {
3413 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3414 
3415 	return dd->send_egress_err_status_cnt[36];
3416 }
3417 
3418 static u64 access_tx_launch_fifo3_unc_or_parity_err_cnt(
3419 				const struct cntr_entry *entry,
3420 				void *context, int vl, int mode, u64 data)
3421 {
3422 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3423 
3424 	return dd->send_egress_err_status_cnt[35];
3425 }
3426 
3427 static u64 access_tx_launch_fifo2_unc_or_parity_err_cnt(
3428 				const struct cntr_entry *entry,
3429 				void *context, int vl, int mode, u64 data)
3430 {
3431 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3432 
3433 	return dd->send_egress_err_status_cnt[34];
3434 }
3435 
3436 static u64 access_tx_launch_fifo1_unc_or_parity_err_cnt(
3437 				const struct cntr_entry *entry,
3438 				void *context, int vl, int mode, u64 data)
3439 {
3440 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3441 
3442 	return dd->send_egress_err_status_cnt[33];
3443 }
3444 
3445 static u64 access_tx_launch_fifo0_unc_or_parity_err_cnt(
3446 				const struct cntr_entry *entry,
3447 				void *context, int vl, int mode, u64 data)
3448 {
3449 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3450 
3451 	return dd->send_egress_err_status_cnt[32];
3452 }
3453 
3454 static u64 access_tx_sdma15_disallowed_packet_err_cnt(
3455 				const struct cntr_entry *entry,
3456 				void *context, int vl, int mode, u64 data)
3457 {
3458 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3459 
3460 	return dd->send_egress_err_status_cnt[31];
3461 }
3462 
3463 static u64 access_tx_sdma14_disallowed_packet_err_cnt(
3464 				const struct cntr_entry *entry,
3465 				void *context, int vl, int mode, u64 data)
3466 {
3467 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3468 
3469 	return dd->send_egress_err_status_cnt[30];
3470 }
3471 
3472 static u64 access_tx_sdma13_disallowed_packet_err_cnt(
3473 				const struct cntr_entry *entry,
3474 				void *context, int vl, int mode, u64 data)
3475 {
3476 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3477 
3478 	return dd->send_egress_err_status_cnt[29];
3479 }
3480 
3481 static u64 access_tx_sdma12_disallowed_packet_err_cnt(
3482 				const struct cntr_entry *entry,
3483 				void *context, int vl, int mode, u64 data)
3484 {
3485 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3486 
3487 	return dd->send_egress_err_status_cnt[28];
3488 }
3489 
3490 static u64 access_tx_sdma11_disallowed_packet_err_cnt(
3491 				const struct cntr_entry *entry,
3492 				void *context, int vl, int mode, u64 data)
3493 {
3494 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3495 
3496 	return dd->send_egress_err_status_cnt[27];
3497 }
3498 
3499 static u64 access_tx_sdma10_disallowed_packet_err_cnt(
3500 				const struct cntr_entry *entry,
3501 				void *context, int vl, int mode, u64 data)
3502 {
3503 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3504 
3505 	return dd->send_egress_err_status_cnt[26];
3506 }
3507 
3508 static u64 access_tx_sdma9_disallowed_packet_err_cnt(
3509 				const struct cntr_entry *entry,
3510 				void *context, int vl, int mode, u64 data)
3511 {
3512 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3513 
3514 	return dd->send_egress_err_status_cnt[25];
3515 }
3516 
3517 static u64 access_tx_sdma8_disallowed_packet_err_cnt(
3518 				const struct cntr_entry *entry,
3519 				void *context, int vl, int mode, u64 data)
3520 {
3521 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3522 
3523 	return dd->send_egress_err_status_cnt[24];
3524 }
3525 
3526 static u64 access_tx_sdma7_disallowed_packet_err_cnt(
3527 				const struct cntr_entry *entry,
3528 				void *context, int vl, int mode, u64 data)
3529 {
3530 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3531 
3532 	return dd->send_egress_err_status_cnt[23];
3533 }
3534 
3535 static u64 access_tx_sdma6_disallowed_packet_err_cnt(
3536 				const struct cntr_entry *entry,
3537 				void *context, int vl, int mode, u64 data)
3538 {
3539 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3540 
3541 	return dd->send_egress_err_status_cnt[22];
3542 }
3543 
3544 static u64 access_tx_sdma5_disallowed_packet_err_cnt(
3545 				const struct cntr_entry *entry,
3546 				void *context, int vl, int mode, u64 data)
3547 {
3548 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3549 
3550 	return dd->send_egress_err_status_cnt[21];
3551 }
3552 
3553 static u64 access_tx_sdma4_disallowed_packet_err_cnt(
3554 				const struct cntr_entry *entry,
3555 				void *context, int vl, int mode, u64 data)
3556 {
3557 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3558 
3559 	return dd->send_egress_err_status_cnt[20];
3560 }
3561 
3562 static u64 access_tx_sdma3_disallowed_packet_err_cnt(
3563 				const struct cntr_entry *entry,
3564 				void *context, int vl, int mode, u64 data)
3565 {
3566 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3567 
3568 	return dd->send_egress_err_status_cnt[19];
3569 }
3570 
3571 static u64 access_tx_sdma2_disallowed_packet_err_cnt(
3572 				const struct cntr_entry *entry,
3573 				void *context, int vl, int mode, u64 data)
3574 {
3575 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3576 
3577 	return dd->send_egress_err_status_cnt[18];
3578 }
3579 
3580 static u64 access_tx_sdma1_disallowed_packet_err_cnt(
3581 				const struct cntr_entry *entry,
3582 				void *context, int vl, int mode, u64 data)
3583 {
3584 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3585 
3586 	return dd->send_egress_err_status_cnt[17];
3587 }
3588 
3589 static u64 access_tx_sdma0_disallowed_packet_err_cnt(
3590 				const struct cntr_entry *entry,
3591 				void *context, int vl, int mode, u64 data)
3592 {
3593 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3594 
3595 	return dd->send_egress_err_status_cnt[16];
3596 }
3597 
3598 static u64 access_tx_config_parity_err_cnt(const struct cntr_entry *entry,
3599 					   void *context, int vl, int mode,
3600 					   u64 data)
3601 {
3602 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3603 
3604 	return dd->send_egress_err_status_cnt[15];
3605 }
3606 
3607 static u64 access_tx_sbrd_ctl_csr_parity_err_cnt(const struct cntr_entry *entry,
3608 						 void *context, int vl,
3609 						 int mode, u64 data)
3610 {
3611 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3612 
3613 	return dd->send_egress_err_status_cnt[14];
3614 }
3615 
3616 static u64 access_tx_launch_csr_parity_err_cnt(const struct cntr_entry *entry,
3617 					       void *context, int vl, int mode,
3618 					       u64 data)
3619 {
3620 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3621 
3622 	return dd->send_egress_err_status_cnt[13];
3623 }
3624 
3625 static u64 access_tx_illegal_vl_err_cnt(const struct cntr_entry *entry,
3626 					void *context, int vl, int mode,
3627 					u64 data)
3628 {
3629 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3630 
3631 	return dd->send_egress_err_status_cnt[12];
3632 }
3633 
3634 static u64 access_tx_sbrd_ctl_state_machine_parity_err_cnt(
3635 				const struct cntr_entry *entry,
3636 				void *context, int vl, int mode, u64 data)
3637 {
3638 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3639 
3640 	return dd->send_egress_err_status_cnt[11];
3641 }
3642 
3643 static u64 access_egress_reserved_10_err_cnt(const struct cntr_entry *entry,
3644 					     void *context, int vl, int mode,
3645 					     u64 data)
3646 {
3647 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3648 
3649 	return dd->send_egress_err_status_cnt[10];
3650 }
3651 
3652 static u64 access_egress_reserved_9_err_cnt(const struct cntr_entry *entry,
3653 					    void *context, int vl, int mode,
3654 					    u64 data)
3655 {
3656 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3657 
3658 	return dd->send_egress_err_status_cnt[9];
3659 }
3660 
3661 static u64 access_tx_sdma_launch_intf_parity_err_cnt(
3662 				const struct cntr_entry *entry,
3663 				void *context, int vl, int mode, u64 data)
3664 {
3665 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3666 
3667 	return dd->send_egress_err_status_cnt[8];
3668 }
3669 
3670 static u64 access_tx_pio_launch_intf_parity_err_cnt(
3671 				const struct cntr_entry *entry,
3672 				void *context, int vl, int mode, u64 data)
3673 {
3674 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3675 
3676 	return dd->send_egress_err_status_cnt[7];
3677 }
3678 
3679 static u64 access_egress_reserved_6_err_cnt(const struct cntr_entry *entry,
3680 					    void *context, int vl, int mode,
3681 					    u64 data)
3682 {
3683 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3684 
3685 	return dd->send_egress_err_status_cnt[6];
3686 }
3687 
3688 static u64 access_tx_incorrect_link_state_err_cnt(
3689 				const struct cntr_entry *entry,
3690 				void *context, int vl, int mode, u64 data)
3691 {
3692 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3693 
3694 	return dd->send_egress_err_status_cnt[5];
3695 }
3696 
3697 static u64 access_tx_linkdown_err_cnt(const struct cntr_entry *entry,
3698 				      void *context, int vl, int mode,
3699 				      u64 data)
3700 {
3701 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3702 
3703 	return dd->send_egress_err_status_cnt[4];
3704 }
3705 
3706 static u64 access_tx_egress_fifi_underrun_or_parity_err_cnt(
3707 				const struct cntr_entry *entry,
3708 				void *context, int vl, int mode, u64 data)
3709 {
3710 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3711 
3712 	return dd->send_egress_err_status_cnt[3];
3713 }
3714 
3715 static u64 access_egress_reserved_2_err_cnt(const struct cntr_entry *entry,
3716 					    void *context, int vl, int mode,
3717 					    u64 data)
3718 {
3719 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3720 
3721 	return dd->send_egress_err_status_cnt[2];
3722 }
3723 
3724 static u64 access_tx_pkt_integrity_mem_unc_err_cnt(
3725 				const struct cntr_entry *entry,
3726 				void *context, int vl, int mode, u64 data)
3727 {
3728 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3729 
3730 	return dd->send_egress_err_status_cnt[1];
3731 }
3732 
3733 static u64 access_tx_pkt_integrity_mem_cor_err_cnt(
3734 				const struct cntr_entry *entry,
3735 				void *context, int vl, int mode, u64 data)
3736 {
3737 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3738 
3739 	return dd->send_egress_err_status_cnt[0];
3740 }
3741 
3742 /*
3743  * Software counters corresponding to each of the
3744  * error status bits within SendErrStatus
3745  */
3746 static u64 access_send_csr_write_bad_addr_err_cnt(
3747 				const struct cntr_entry *entry,
3748 				void *context, int vl, int mode, u64 data)
3749 {
3750 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3751 
3752 	return dd->send_err_status_cnt[2];
3753 }
3754 
3755 static u64 access_send_csr_read_bad_addr_err_cnt(const struct cntr_entry *entry,
3756 						 void *context, int vl,
3757 						 int mode, u64 data)
3758 {
3759 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3760 
3761 	return dd->send_err_status_cnt[1];
3762 }
3763 
3764 static u64 access_send_csr_parity_cnt(const struct cntr_entry *entry,
3765 				      void *context, int vl, int mode,
3766 				      u64 data)
3767 {
3768 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3769 
3770 	return dd->send_err_status_cnt[0];
3771 }
3772 
3773 /*
3774  * Software counters corresponding to each of the
3775  * error status bits within SendCtxtErrStatus
3776  */
3777 static u64 access_pio_write_out_of_bounds_err_cnt(
3778 				const struct cntr_entry *entry,
3779 				void *context, int vl, int mode, u64 data)
3780 {
3781 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3782 
3783 	return dd->sw_ctxt_err_status_cnt[4];
3784 }
3785 
3786 static u64 access_pio_write_overflow_err_cnt(const struct cntr_entry *entry,
3787 					     void *context, int vl, int mode,
3788 					     u64 data)
3789 {
3790 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3791 
3792 	return dd->sw_ctxt_err_status_cnt[3];
3793 }
3794 
3795 static u64 access_pio_write_crosses_boundary_err_cnt(
3796 				const struct cntr_entry *entry,
3797 				void *context, int vl, int mode, u64 data)
3798 {
3799 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3800 
3801 	return dd->sw_ctxt_err_status_cnt[2];
3802 }
3803 
3804 static u64 access_pio_disallowed_packet_err_cnt(const struct cntr_entry *entry,
3805 						void *context, int vl,
3806 						int mode, u64 data)
3807 {
3808 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3809 
3810 	return dd->sw_ctxt_err_status_cnt[1];
3811 }
3812 
3813 static u64 access_pio_inconsistent_sop_err_cnt(const struct cntr_entry *entry,
3814 					       void *context, int vl, int mode,
3815 					       u64 data)
3816 {
3817 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3818 
3819 	return dd->sw_ctxt_err_status_cnt[0];
3820 }
3821 
3822 /*
3823  * Software counters corresponding to each of the
3824  * error status bits within SendDmaEngErrStatus
3825  */
3826 static u64 access_sdma_header_request_fifo_cor_err_cnt(
3827 				const struct cntr_entry *entry,
3828 				void *context, int vl, int mode, u64 data)
3829 {
3830 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3831 
3832 	return dd->sw_send_dma_eng_err_status_cnt[23];
3833 }
3834 
3835 static u64 access_sdma_header_storage_cor_err_cnt(
3836 				const struct cntr_entry *entry,
3837 				void *context, int vl, int mode, u64 data)
3838 {
3839 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3840 
3841 	return dd->sw_send_dma_eng_err_status_cnt[22];
3842 }
3843 
3844 static u64 access_sdma_packet_tracking_cor_err_cnt(
3845 				const struct cntr_entry *entry,
3846 				void *context, int vl, int mode, u64 data)
3847 {
3848 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3849 
3850 	return dd->sw_send_dma_eng_err_status_cnt[21];
3851 }
3852 
3853 static u64 access_sdma_assembly_cor_err_cnt(const struct cntr_entry *entry,
3854 					    void *context, int vl, int mode,
3855 					    u64 data)
3856 {
3857 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3858 
3859 	return dd->sw_send_dma_eng_err_status_cnt[20];
3860 }
3861 
3862 static u64 access_sdma_desc_table_cor_err_cnt(const struct cntr_entry *entry,
3863 					      void *context, int vl, int mode,
3864 					      u64 data)
3865 {
3866 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3867 
3868 	return dd->sw_send_dma_eng_err_status_cnt[19];
3869 }
3870 
3871 static u64 access_sdma_header_request_fifo_unc_err_cnt(
3872 				const struct cntr_entry *entry,
3873 				void *context, int vl, int mode, u64 data)
3874 {
3875 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3876 
3877 	return dd->sw_send_dma_eng_err_status_cnt[18];
3878 }
3879 
3880 static u64 access_sdma_header_storage_unc_err_cnt(
3881 				const struct cntr_entry *entry,
3882 				void *context, int vl, int mode, u64 data)
3883 {
3884 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3885 
3886 	return dd->sw_send_dma_eng_err_status_cnt[17];
3887 }
3888 
3889 static u64 access_sdma_packet_tracking_unc_err_cnt(
3890 				const struct cntr_entry *entry,
3891 				void *context, int vl, int mode, u64 data)
3892 {
3893 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3894 
3895 	return dd->sw_send_dma_eng_err_status_cnt[16];
3896 }
3897 
3898 static u64 access_sdma_assembly_unc_err_cnt(const struct cntr_entry *entry,
3899 					    void *context, int vl, int mode,
3900 					    u64 data)
3901 {
3902 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3903 
3904 	return dd->sw_send_dma_eng_err_status_cnt[15];
3905 }
3906 
3907 static u64 access_sdma_desc_table_unc_err_cnt(const struct cntr_entry *entry,
3908 					      void *context, int vl, int mode,
3909 					      u64 data)
3910 {
3911 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3912 
3913 	return dd->sw_send_dma_eng_err_status_cnt[14];
3914 }
3915 
3916 static u64 access_sdma_timeout_err_cnt(const struct cntr_entry *entry,
3917 				       void *context, int vl, int mode,
3918 				       u64 data)
3919 {
3920 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3921 
3922 	return dd->sw_send_dma_eng_err_status_cnt[13];
3923 }
3924 
3925 static u64 access_sdma_header_length_err_cnt(const struct cntr_entry *entry,
3926 					     void *context, int vl, int mode,
3927 					     u64 data)
3928 {
3929 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3930 
3931 	return dd->sw_send_dma_eng_err_status_cnt[12];
3932 }
3933 
3934 static u64 access_sdma_header_address_err_cnt(const struct cntr_entry *entry,
3935 					      void *context, int vl, int mode,
3936 					      u64 data)
3937 {
3938 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3939 
3940 	return dd->sw_send_dma_eng_err_status_cnt[11];
3941 }
3942 
3943 static u64 access_sdma_header_select_err_cnt(const struct cntr_entry *entry,
3944 					     void *context, int vl, int mode,
3945 					     u64 data)
3946 {
3947 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3948 
3949 	return dd->sw_send_dma_eng_err_status_cnt[10];
3950 }
3951 
3952 static u64 access_sdma_reserved_9_err_cnt(const struct cntr_entry *entry,
3953 					  void *context, int vl, int mode,
3954 					  u64 data)
3955 {
3956 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3957 
3958 	return dd->sw_send_dma_eng_err_status_cnt[9];
3959 }
3960 
3961 static u64 access_sdma_packet_desc_overflow_err_cnt(
3962 				const struct cntr_entry *entry,
3963 				void *context, int vl, int mode, u64 data)
3964 {
3965 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3966 
3967 	return dd->sw_send_dma_eng_err_status_cnt[8];
3968 }
3969 
3970 static u64 access_sdma_length_mismatch_err_cnt(const struct cntr_entry *entry,
3971 					       void *context, int vl,
3972 					       int mode, u64 data)
3973 {
3974 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3975 
3976 	return dd->sw_send_dma_eng_err_status_cnt[7];
3977 }
3978 
3979 static u64 access_sdma_halt_err_cnt(const struct cntr_entry *entry,
3980 				    void *context, int vl, int mode, u64 data)
3981 {
3982 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3983 
3984 	return dd->sw_send_dma_eng_err_status_cnt[6];
3985 }
3986 
3987 static u64 access_sdma_mem_read_err_cnt(const struct cntr_entry *entry,
3988 					void *context, int vl, int mode,
3989 					u64 data)
3990 {
3991 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
3992 
3993 	return dd->sw_send_dma_eng_err_status_cnt[5];
3994 }
3995 
3996 static u64 access_sdma_first_desc_err_cnt(const struct cntr_entry *entry,
3997 					  void *context, int vl, int mode,
3998 					  u64 data)
3999 {
4000 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4001 
4002 	return dd->sw_send_dma_eng_err_status_cnt[4];
4003 }
4004 
4005 static u64 access_sdma_tail_out_of_bounds_err_cnt(
4006 				const struct cntr_entry *entry,
4007 				void *context, int vl, int mode, u64 data)
4008 {
4009 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4010 
4011 	return dd->sw_send_dma_eng_err_status_cnt[3];
4012 }
4013 
4014 static u64 access_sdma_too_long_err_cnt(const struct cntr_entry *entry,
4015 					void *context, int vl, int mode,
4016 					u64 data)
4017 {
4018 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4019 
4020 	return dd->sw_send_dma_eng_err_status_cnt[2];
4021 }
4022 
4023 static u64 access_sdma_gen_mismatch_err_cnt(const struct cntr_entry *entry,
4024 					    void *context, int vl, int mode,
4025 					    u64 data)
4026 {
4027 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4028 
4029 	return dd->sw_send_dma_eng_err_status_cnt[1];
4030 }
4031 
4032 static u64 access_sdma_wrong_dw_err_cnt(const struct cntr_entry *entry,
4033 					void *context, int vl, int mode,
4034 					u64 data)
4035 {
4036 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4037 
4038 	return dd->sw_send_dma_eng_err_status_cnt[0];
4039 }
4040 
4041 static u64 access_dc_rcv_err_cnt(const struct cntr_entry *entry,
4042 				 void *context, int vl, int mode,
4043 				 u64 data)
4044 {
4045 	struct hfi1_devdata *dd = (struct hfi1_devdata *)context;
4046 
4047 	u64 val = 0;
4048 	u64 csr = entry->csr;
4049 
4050 	val = read_write_csr(dd, csr, mode, data);
4051 	if (mode == CNTR_MODE_R) {
4052 		val = val > CNTR_MAX - dd->sw_rcv_bypass_packet_errors ?
4053 			CNTR_MAX : val + dd->sw_rcv_bypass_packet_errors;
4054 	} else if (mode == CNTR_MODE_W) {
4055 		dd->sw_rcv_bypass_packet_errors = 0;
4056 	} else {
4057 		dd_dev_err(dd, "Invalid cntr register access mode");
4058 		return 0;
4059 	}
4060 	return val;
4061 }
4062 
4063 #define def_access_sw_cpu(cntr) \
4064 static u64 access_sw_cpu_##cntr(const struct cntr_entry *entry,		      \
4065 			      void *context, int vl, int mode, u64 data)      \
4066 {									      \
4067 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4068 	return read_write_cpu(ppd->dd, &ppd->ibport_data.rvp.z_ ##cntr,	      \
4069 			      ppd->ibport_data.rvp.cntr, vl,		      \
4070 			      mode, data);				      \
4071 }
4072 
4073 def_access_sw_cpu(rc_acks);
4074 def_access_sw_cpu(rc_qacks);
4075 def_access_sw_cpu(rc_delayed_comp);
4076 
4077 #define def_access_ibp_counter(cntr) \
4078 static u64 access_ibp_##cntr(const struct cntr_entry *entry,		      \
4079 				void *context, int vl, int mode, u64 data)    \
4080 {									      \
4081 	struct hfi1_pportdata *ppd = (struct hfi1_pportdata *)context;	      \
4082 									      \
4083 	if (vl != CNTR_INVALID_VL)					      \
4084 		return 0;						      \
4085 									      \
4086 	return read_write_sw(ppd->dd, &ppd->ibport_data.rvp.n_ ##cntr,	      \
4087 			     mode, data);				      \
4088 }
4089 
4090 def_access_ibp_counter(loop_pkts);
4091 def_access_ibp_counter(rc_resends);
4092 def_access_ibp_counter(rnr_naks);
4093 def_access_ibp_counter(other_naks);
4094 def_access_ibp_counter(rc_timeouts);
4095 def_access_ibp_counter(pkt_drops);
4096 def_access_ibp_counter(dmawait);
4097 def_access_ibp_counter(rc_seqnak);
4098 def_access_ibp_counter(rc_dupreq);
4099 def_access_ibp_counter(rdma_seq);
4100 def_access_ibp_counter(unaligned);
4101 def_access_ibp_counter(seq_naks);
4102 
4103 static struct cntr_entry dev_cntrs[DEV_CNTR_LAST] = {
4104 [C_RCV_OVF] = RXE32_DEV_CNTR_ELEM(RcvOverflow, RCV_BUF_OVFL_CNT, CNTR_SYNTH),
4105 [C_RX_TID_FULL] = RXE32_DEV_CNTR_ELEM(RxTIDFullEr, RCV_TID_FULL_ERR_CNT,
4106 			CNTR_NORMAL),
4107 [C_RX_TID_INVALID] = RXE32_DEV_CNTR_ELEM(RxTIDInvalid, RCV_TID_VALID_ERR_CNT,
4108 			CNTR_NORMAL),
4109 [C_RX_TID_FLGMS] = RXE32_DEV_CNTR_ELEM(RxTidFLGMs,
4110 			RCV_TID_FLOW_GEN_MISMATCH_CNT,
4111 			CNTR_NORMAL),
4112 [C_RX_CTX_EGRS] = RXE32_DEV_CNTR_ELEM(RxCtxEgrS, RCV_CONTEXT_EGR_STALL,
4113 			CNTR_NORMAL),
4114 [C_RCV_TID_FLSMS] = RXE32_DEV_CNTR_ELEM(RxTidFLSMs,
4115 			RCV_TID_FLOW_SEQ_MISMATCH_CNT, CNTR_NORMAL),
4116 [C_CCE_PCI_CR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciCrSt,
4117 			CCE_PCIE_POSTED_CRDT_STALL_CNT, CNTR_NORMAL),
4118 [C_CCE_PCI_TR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePciTrSt, CCE_PCIE_TRGT_STALL_CNT,
4119 			CNTR_NORMAL),
4120 [C_CCE_PIO_WR_ST] = CCE_PERF_DEV_CNTR_ELEM(CcePioWrSt, CCE_PIO_WR_STALL_CNT,
4121 			CNTR_NORMAL),
4122 [C_CCE_ERR_INT] = CCE_INT_DEV_CNTR_ELEM(CceErrInt, CCE_ERR_INT_CNT,
4123 			CNTR_NORMAL),
4124 [C_CCE_SDMA_INT] = CCE_INT_DEV_CNTR_ELEM(CceSdmaInt, CCE_SDMA_INT_CNT,
4125 			CNTR_NORMAL),
4126 [C_CCE_MISC_INT] = CCE_INT_DEV_CNTR_ELEM(CceMiscInt, CCE_MISC_INT_CNT,
4127 			CNTR_NORMAL),
4128 [C_CCE_RCV_AV_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvAvInt, CCE_RCV_AVAIL_INT_CNT,
4129 			CNTR_NORMAL),
4130 [C_CCE_RCV_URG_INT] = CCE_INT_DEV_CNTR_ELEM(CceRcvUrgInt,
4131 			CCE_RCV_URGENT_INT_CNT,	CNTR_NORMAL),
4132 [C_CCE_SEND_CR_INT] = CCE_INT_DEV_CNTR_ELEM(CceSndCrInt,
4133 			CCE_SEND_CREDIT_INT_CNT, CNTR_NORMAL),
4134 [C_DC_UNC_ERR] = DC_PERF_CNTR(DcUnctblErr, DCC_ERR_UNCORRECTABLE_CNT,
4135 			      CNTR_SYNTH),
4136 [C_DC_RCV_ERR] = CNTR_ELEM("DcRecvErr", DCC_ERR_PORTRCV_ERR_CNT, 0, CNTR_SYNTH,
4137 			    access_dc_rcv_err_cnt),
4138 [C_DC_FM_CFG_ERR] = DC_PERF_CNTR(DcFmCfgErr, DCC_ERR_FMCONFIG_ERR_CNT,
4139 				 CNTR_SYNTH),
4140 [C_DC_RMT_PHY_ERR] = DC_PERF_CNTR(DcRmtPhyErr, DCC_ERR_RCVREMOTE_PHY_ERR_CNT,
4141 				  CNTR_SYNTH),
4142 [C_DC_DROPPED_PKT] = DC_PERF_CNTR(DcDroppedPkt, DCC_ERR_DROPPED_PKT_CNT,
4143 				  CNTR_SYNTH),
4144 [C_DC_MC_XMIT_PKTS] = DC_PERF_CNTR(DcMcXmitPkts,
4145 				   DCC_PRF_PORT_XMIT_MULTICAST_CNT, CNTR_SYNTH),
4146 [C_DC_MC_RCV_PKTS] = DC_PERF_CNTR(DcMcRcvPkts,
4147 				  DCC_PRF_PORT_RCV_MULTICAST_PKT_CNT,
4148 				  CNTR_SYNTH),
4149 [C_DC_XMIT_CERR] = DC_PERF_CNTR(DcXmitCorr,
4150 				DCC_PRF_PORT_XMIT_CORRECTABLE_CNT, CNTR_SYNTH),
4151 [C_DC_RCV_CERR] = DC_PERF_CNTR(DcRcvCorrCnt, DCC_PRF_PORT_RCV_CORRECTABLE_CNT,
4152 			       CNTR_SYNTH),
4153 [C_DC_RCV_FCC] = DC_PERF_CNTR(DcRxFCntl, DCC_PRF_RX_FLOW_CRTL_CNT,
4154 			      CNTR_SYNTH),
4155 [C_DC_XMIT_FCC] = DC_PERF_CNTR(DcXmitFCntl, DCC_PRF_TX_FLOW_CRTL_CNT,
4156 			       CNTR_SYNTH),
4157 [C_DC_XMIT_FLITS] = DC_PERF_CNTR(DcXmitFlits, DCC_PRF_PORT_XMIT_DATA_CNT,
4158 				 CNTR_SYNTH),
4159 [C_DC_RCV_FLITS] = DC_PERF_CNTR(DcRcvFlits, DCC_PRF_PORT_RCV_DATA_CNT,
4160 				CNTR_SYNTH),
4161 [C_DC_XMIT_PKTS] = DC_PERF_CNTR(DcXmitPkts, DCC_PRF_PORT_XMIT_PKTS_CNT,
4162 				CNTR_SYNTH),
4163 [C_DC_RCV_PKTS] = DC_PERF_CNTR(DcRcvPkts, DCC_PRF_PORT_RCV_PKTS_CNT,
4164 			       CNTR_SYNTH),
4165 [C_DC_RX_FLIT_VL] = DC_PERF_CNTR(DcRxFlitVl, DCC_PRF_PORT_VL_RCV_DATA_CNT,
4166 				 CNTR_SYNTH | CNTR_VL),
4167 [C_DC_RX_PKT_VL] = DC_PERF_CNTR(DcRxPktVl, DCC_PRF_PORT_VL_RCV_PKTS_CNT,
4168 				CNTR_SYNTH | CNTR_VL),
4169 [C_DC_RCV_FCN] = DC_PERF_CNTR(DcRcvFcn, DCC_PRF_PORT_RCV_FECN_CNT, CNTR_SYNTH),
4170 [C_DC_RCV_FCN_VL] = DC_PERF_CNTR(DcRcvFcnVl, DCC_PRF_PORT_VL_RCV_FECN_CNT,
4171 				 CNTR_SYNTH | CNTR_VL),
4172 [C_DC_RCV_BCN] = DC_PERF_CNTR(DcRcvBcn, DCC_PRF_PORT_RCV_BECN_CNT, CNTR_SYNTH),
4173 [C_DC_RCV_BCN_VL] = DC_PERF_CNTR(DcRcvBcnVl, DCC_PRF_PORT_VL_RCV_BECN_CNT,
4174 				 CNTR_SYNTH | CNTR_VL),
4175 [C_DC_RCV_BBL] = DC_PERF_CNTR(DcRcvBbl, DCC_PRF_PORT_RCV_BUBBLE_CNT,
4176 			      CNTR_SYNTH),
4177 [C_DC_RCV_BBL_VL] = DC_PERF_CNTR(DcRcvBblVl, DCC_PRF_PORT_VL_RCV_BUBBLE_CNT,
4178 				 CNTR_SYNTH | CNTR_VL),
4179 [C_DC_MARK_FECN] = DC_PERF_CNTR(DcMarkFcn, DCC_PRF_PORT_MARK_FECN_CNT,
4180 				CNTR_SYNTH),
4181 [C_DC_MARK_FECN_VL] = DC_PERF_CNTR(DcMarkFcnVl, DCC_PRF_PORT_VL_MARK_FECN_CNT,
4182 				   CNTR_SYNTH | CNTR_VL),
4183 [C_DC_TOTAL_CRC] =
4184 	DC_PERF_CNTR_LCB(DcTotCrc, DC_LCB_ERR_INFO_TOTAL_CRC_ERR,
4185 			 CNTR_SYNTH),
4186 [C_DC_CRC_LN0] = DC_PERF_CNTR_LCB(DcCrcLn0, DC_LCB_ERR_INFO_CRC_ERR_LN0,
4187 				  CNTR_SYNTH),
4188 [C_DC_CRC_LN1] = DC_PERF_CNTR_LCB(DcCrcLn1, DC_LCB_ERR_INFO_CRC_ERR_LN1,
4189 				  CNTR_SYNTH),
4190 [C_DC_CRC_LN2] = DC_PERF_CNTR_LCB(DcCrcLn2, DC_LCB_ERR_INFO_CRC_ERR_LN2,
4191 				  CNTR_SYNTH),
4192 [C_DC_CRC_LN3] = DC_PERF_CNTR_LCB(DcCrcLn3, DC_LCB_ERR_INFO_CRC_ERR_LN3,
4193 				  CNTR_SYNTH),
4194 [C_DC_CRC_MULT_LN] =
4195 	DC_PERF_CNTR_LCB(DcMultLn, DC_LCB_ERR_INFO_CRC_ERR_MULTI_LN,
4196 			 CNTR_SYNTH),
4197 [C_DC_TX_REPLAY] = DC_PERF_CNTR_LCB(DcTxReplay, DC_LCB_ERR_INFO_TX_REPLAY_CNT,
4198 				    CNTR_SYNTH),
4199 [C_DC_RX_REPLAY] = DC_PERF_CNTR_LCB(DcRxReplay, DC_LCB_ERR_INFO_RX_REPLAY_CNT,
4200 				    CNTR_SYNTH),
4201 [C_DC_SEQ_CRC_CNT] =
4202 	DC_PERF_CNTR_LCB(DcLinkSeqCrc, DC_LCB_ERR_INFO_SEQ_CRC_CNT,
4203 			 CNTR_SYNTH),
4204 [C_DC_ESC0_ONLY_CNT] =
4205 	DC_PERF_CNTR_LCB(DcEsc0, DC_LCB_ERR_INFO_ESCAPE_0_ONLY_CNT,
4206 			 CNTR_SYNTH),
4207 [C_DC_ESC0_PLUS1_CNT] =
4208 	DC_PERF_CNTR_LCB(DcEsc1, DC_LCB_ERR_INFO_ESCAPE_0_PLUS1_CNT,
4209 			 CNTR_SYNTH),
4210 [C_DC_ESC0_PLUS2_CNT] =
4211 	DC_PERF_CNTR_LCB(DcEsc0Plus2, DC_LCB_ERR_INFO_ESCAPE_0_PLUS2_CNT,
4212 			 CNTR_SYNTH),
4213 [C_DC_REINIT_FROM_PEER_CNT] =
4214 	DC_PERF_CNTR_LCB(DcReinitPeer, DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT,
4215 			 CNTR_SYNTH),
4216 [C_DC_SBE_CNT] = DC_PERF_CNTR_LCB(DcSbe, DC_LCB_ERR_INFO_SBE_CNT,
4217 				  CNTR_SYNTH),
4218 [C_DC_MISC_FLG_CNT] =
4219 	DC_PERF_CNTR_LCB(DcMiscFlg, DC_LCB_ERR_INFO_MISC_FLG_CNT,
4220 			 CNTR_SYNTH),
4221 [C_DC_PRF_GOOD_LTP_CNT] =
4222 	DC_PERF_CNTR_LCB(DcGoodLTP, DC_LCB_PRF_GOOD_LTP_CNT, CNTR_SYNTH),
4223 [C_DC_PRF_ACCEPTED_LTP_CNT] =
4224 	DC_PERF_CNTR_LCB(DcAccLTP, DC_LCB_PRF_ACCEPTED_LTP_CNT,
4225 			 CNTR_SYNTH),
4226 [C_DC_PRF_RX_FLIT_CNT] =
4227 	DC_PERF_CNTR_LCB(DcPrfRxFlit, DC_LCB_PRF_RX_FLIT_CNT, CNTR_SYNTH),
4228 [C_DC_PRF_TX_FLIT_CNT] =
4229 	DC_PERF_CNTR_LCB(DcPrfTxFlit, DC_LCB_PRF_TX_FLIT_CNT, CNTR_SYNTH),
4230 [C_DC_PRF_CLK_CNTR] =
4231 	DC_PERF_CNTR_LCB(DcPrfClk, DC_LCB_PRF_CLK_CNTR, CNTR_SYNTH),
4232 [C_DC_PG_DBG_FLIT_CRDTS_CNT] =
4233 	DC_PERF_CNTR_LCB(DcFltCrdts, DC_LCB_PG_DBG_FLIT_CRDTS_CNT, CNTR_SYNTH),
4234 [C_DC_PG_STS_PAUSE_COMPLETE_CNT] =
4235 	DC_PERF_CNTR_LCB(DcPauseComp, DC_LCB_PG_STS_PAUSE_COMPLETE_CNT,
4236 			 CNTR_SYNTH),
4237 [C_DC_PG_STS_TX_SBE_CNT] =
4238 	DC_PERF_CNTR_LCB(DcStsTxSbe, DC_LCB_PG_STS_TX_SBE_CNT, CNTR_SYNTH),
4239 [C_DC_PG_STS_TX_MBE_CNT] =
4240 	DC_PERF_CNTR_LCB(DcStsTxMbe, DC_LCB_PG_STS_TX_MBE_CNT,
4241 			 CNTR_SYNTH),
4242 [C_SW_CPU_INTR] = CNTR_ELEM("Intr", 0, 0, CNTR_NORMAL,
4243 			    access_sw_cpu_intr),
4244 [C_SW_CPU_RCV_LIM] = CNTR_ELEM("RcvLimit", 0, 0, CNTR_NORMAL,
4245 			    access_sw_cpu_rcv_limit),
4246 [C_SW_VTX_WAIT] = CNTR_ELEM("vTxWait", 0, 0, CNTR_NORMAL,
4247 			    access_sw_vtx_wait),
4248 [C_SW_PIO_WAIT] = CNTR_ELEM("PioWait", 0, 0, CNTR_NORMAL,
4249 			    access_sw_pio_wait),
4250 [C_SW_PIO_DRAIN] = CNTR_ELEM("PioDrain", 0, 0, CNTR_NORMAL,
4251 			    access_sw_pio_drain),
4252 [C_SW_KMEM_WAIT] = CNTR_ELEM("KmemWait", 0, 0, CNTR_NORMAL,
4253 			    access_sw_kmem_wait),
4254 [C_SW_SEND_SCHED] = CNTR_ELEM("SendSched", 0, 0, CNTR_NORMAL,
4255 			    access_sw_send_schedule),
4256 [C_SDMA_DESC_FETCHED_CNT] = CNTR_ELEM("SDEDscFdCn",
4257 				      SEND_DMA_DESC_FETCHED_CNT, 0,
4258 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4259 				      dev_access_u32_csr),
4260 [C_SDMA_INT_CNT] = CNTR_ELEM("SDMAInt", 0, 0,
4261 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4262 			     access_sde_int_cnt),
4263 [C_SDMA_ERR_CNT] = CNTR_ELEM("SDMAErrCt", 0, 0,
4264 			     CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4265 			     access_sde_err_cnt),
4266 [C_SDMA_IDLE_INT_CNT] = CNTR_ELEM("SDMAIdInt", 0, 0,
4267 				  CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4268 				  access_sde_idle_int_cnt),
4269 [C_SDMA_PROGRESS_INT_CNT] = CNTR_ELEM("SDMAPrIntCn", 0, 0,
4270 				      CNTR_NORMAL | CNTR_32BIT | CNTR_SDMA,
4271 				      access_sde_progress_int_cnt),
4272 /* MISC_ERR_STATUS */
4273 [C_MISC_PLL_LOCK_FAIL_ERR] = CNTR_ELEM("MISC_PLL_LOCK_FAIL_ERR", 0, 0,
4274 				CNTR_NORMAL,
4275 				access_misc_pll_lock_fail_err_cnt),
4276 [C_MISC_MBIST_FAIL_ERR] = CNTR_ELEM("MISC_MBIST_FAIL_ERR", 0, 0,
4277 				CNTR_NORMAL,
4278 				access_misc_mbist_fail_err_cnt),
4279 [C_MISC_INVALID_EEP_CMD_ERR] = CNTR_ELEM("MISC_INVALID_EEP_CMD_ERR", 0, 0,
4280 				CNTR_NORMAL,
4281 				access_misc_invalid_eep_cmd_err_cnt),
4282 [C_MISC_EFUSE_DONE_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_DONE_PARITY_ERR", 0, 0,
4283 				CNTR_NORMAL,
4284 				access_misc_efuse_done_parity_err_cnt),
4285 [C_MISC_EFUSE_WRITE_ERR] = CNTR_ELEM("MISC_EFUSE_WRITE_ERR", 0, 0,
4286 				CNTR_NORMAL,
4287 				access_misc_efuse_write_err_cnt),
4288 [C_MISC_EFUSE_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_EFUSE_READ_BAD_ADDR_ERR", 0,
4289 				0, CNTR_NORMAL,
4290 				access_misc_efuse_read_bad_addr_err_cnt),
4291 [C_MISC_EFUSE_CSR_PARITY_ERR] = CNTR_ELEM("MISC_EFUSE_CSR_PARITY_ERR", 0, 0,
4292 				CNTR_NORMAL,
4293 				access_misc_efuse_csr_parity_err_cnt),
4294 [C_MISC_FW_AUTH_FAILED_ERR] = CNTR_ELEM("MISC_FW_AUTH_FAILED_ERR", 0, 0,
4295 				CNTR_NORMAL,
4296 				access_misc_fw_auth_failed_err_cnt),
4297 [C_MISC_KEY_MISMATCH_ERR] = CNTR_ELEM("MISC_KEY_MISMATCH_ERR", 0, 0,
4298 				CNTR_NORMAL,
4299 				access_misc_key_mismatch_err_cnt),
4300 [C_MISC_SBUS_WRITE_FAILED_ERR] = CNTR_ELEM("MISC_SBUS_WRITE_FAILED_ERR", 0, 0,
4301 				CNTR_NORMAL,
4302 				access_misc_sbus_write_failed_err_cnt),
4303 [C_MISC_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_WRITE_BAD_ADDR_ERR", 0, 0,
4304 				CNTR_NORMAL,
4305 				access_misc_csr_write_bad_addr_err_cnt),
4306 [C_MISC_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("MISC_CSR_READ_BAD_ADDR_ERR", 0, 0,
4307 				CNTR_NORMAL,
4308 				access_misc_csr_read_bad_addr_err_cnt),
4309 [C_MISC_CSR_PARITY_ERR] = CNTR_ELEM("MISC_CSR_PARITY_ERR", 0, 0,
4310 				CNTR_NORMAL,
4311 				access_misc_csr_parity_err_cnt),
4312 /* CceErrStatus */
4313 [C_CCE_ERR_STATUS_AGGREGATED_CNT] = CNTR_ELEM("CceErrStatusAggregatedCnt", 0, 0,
4314 				CNTR_NORMAL,
4315 				access_sw_cce_err_status_aggregated_cnt),
4316 [C_CCE_MSIX_CSR_PARITY_ERR] = CNTR_ELEM("CceMsixCsrParityErr", 0, 0,
4317 				CNTR_NORMAL,
4318 				access_cce_msix_csr_parity_err_cnt),
4319 [C_CCE_INT_MAP_UNC_ERR] = CNTR_ELEM("CceIntMapUncErr", 0, 0,
4320 				CNTR_NORMAL,
4321 				access_cce_int_map_unc_err_cnt),
4322 [C_CCE_INT_MAP_COR_ERR] = CNTR_ELEM("CceIntMapCorErr", 0, 0,
4323 				CNTR_NORMAL,
4324 				access_cce_int_map_cor_err_cnt),
4325 [C_CCE_MSIX_TABLE_UNC_ERR] = CNTR_ELEM("CceMsixTableUncErr", 0, 0,
4326 				CNTR_NORMAL,
4327 				access_cce_msix_table_unc_err_cnt),
4328 [C_CCE_MSIX_TABLE_COR_ERR] = CNTR_ELEM("CceMsixTableCorErr", 0, 0,
4329 				CNTR_NORMAL,
4330 				access_cce_msix_table_cor_err_cnt),
4331 [C_CCE_RXDMA_CONV_FIFO_PARITY_ERR] = CNTR_ELEM("CceRxdmaConvFifoParityErr", 0,
4332 				0, CNTR_NORMAL,
4333 				access_cce_rxdma_conv_fifo_parity_err_cnt),
4334 [C_CCE_RCPL_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceRcplAsyncFifoParityErr", 0,
4335 				0, CNTR_NORMAL,
4336 				access_cce_rcpl_async_fifo_parity_err_cnt),
4337 [C_CCE_SEG_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceSegWriteBadAddrErr", 0, 0,
4338 				CNTR_NORMAL,
4339 				access_cce_seg_write_bad_addr_err_cnt),
4340 [C_CCE_SEG_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceSegReadBadAddrErr", 0, 0,
4341 				CNTR_NORMAL,
4342 				access_cce_seg_read_bad_addr_err_cnt),
4343 [C_LA_TRIGGERED] = CNTR_ELEM("Cce LATriggered", 0, 0,
4344 				CNTR_NORMAL,
4345 				access_la_triggered_cnt),
4346 [C_CCE_TRGT_CPL_TIMEOUT_ERR] = CNTR_ELEM("CceTrgtCplTimeoutErr", 0, 0,
4347 				CNTR_NORMAL,
4348 				access_cce_trgt_cpl_timeout_err_cnt),
4349 [C_PCIC_RECEIVE_PARITY_ERR] = CNTR_ELEM("PcicReceiveParityErr", 0, 0,
4350 				CNTR_NORMAL,
4351 				access_pcic_receive_parity_err_cnt),
4352 [C_PCIC_TRANSMIT_BACK_PARITY_ERR] = CNTR_ELEM("PcicTransmitBackParityErr", 0, 0,
4353 				CNTR_NORMAL,
4354 				access_pcic_transmit_back_parity_err_cnt),
4355 [C_PCIC_TRANSMIT_FRONT_PARITY_ERR] = CNTR_ELEM("PcicTransmitFrontParityErr", 0,
4356 				0, CNTR_NORMAL,
4357 				access_pcic_transmit_front_parity_err_cnt),
4358 [C_PCIC_CPL_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicCplDatQUncErr", 0, 0,
4359 				CNTR_NORMAL,
4360 				access_pcic_cpl_dat_q_unc_err_cnt),
4361 [C_PCIC_CPL_HD_Q_UNC_ERR] = CNTR_ELEM("PcicCplHdQUncErr", 0, 0,
4362 				CNTR_NORMAL,
4363 				access_pcic_cpl_hd_q_unc_err_cnt),
4364 [C_PCIC_POST_DAT_Q_UNC_ERR] = CNTR_ELEM("PcicPostDatQUncErr", 0, 0,
4365 				CNTR_NORMAL,
4366 				access_pcic_post_dat_q_unc_err_cnt),
4367 [C_PCIC_POST_HD_Q_UNC_ERR] = CNTR_ELEM("PcicPostHdQUncErr", 0, 0,
4368 				CNTR_NORMAL,
4369 				access_pcic_post_hd_q_unc_err_cnt),
4370 [C_PCIC_RETRY_SOT_MEM_UNC_ERR] = CNTR_ELEM("PcicRetrySotMemUncErr", 0, 0,
4371 				CNTR_NORMAL,
4372 				access_pcic_retry_sot_mem_unc_err_cnt),
4373 [C_PCIC_RETRY_MEM_UNC_ERR] = CNTR_ELEM("PcicRetryMemUncErr", 0, 0,
4374 				CNTR_NORMAL,
4375 				access_pcic_retry_mem_unc_err),
4376 [C_PCIC_N_POST_DAT_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostDatQParityErr", 0, 0,
4377 				CNTR_NORMAL,
4378 				access_pcic_n_post_dat_q_parity_err_cnt),
4379 [C_PCIC_N_POST_H_Q_PARITY_ERR] = CNTR_ELEM("PcicNPostHQParityErr", 0, 0,
4380 				CNTR_NORMAL,
4381 				access_pcic_n_post_h_q_parity_err_cnt),
4382 [C_PCIC_CPL_DAT_Q_COR_ERR] = CNTR_ELEM("PcicCplDatQCorErr", 0, 0,
4383 				CNTR_NORMAL,
4384 				access_pcic_cpl_dat_q_cor_err_cnt),
4385 [C_PCIC_CPL_HD_Q_COR_ERR] = CNTR_ELEM("PcicCplHdQCorErr", 0, 0,
4386 				CNTR_NORMAL,
4387 				access_pcic_cpl_hd_q_cor_err_cnt),
4388 [C_PCIC_POST_DAT_Q_COR_ERR] = CNTR_ELEM("PcicPostDatQCorErr", 0, 0,
4389 				CNTR_NORMAL,
4390 				access_pcic_post_dat_q_cor_err_cnt),
4391 [C_PCIC_POST_HD_Q_COR_ERR] = CNTR_ELEM("PcicPostHdQCorErr", 0, 0,
4392 				CNTR_NORMAL,
4393 				access_pcic_post_hd_q_cor_err_cnt),
4394 [C_PCIC_RETRY_SOT_MEM_COR_ERR] = CNTR_ELEM("PcicRetrySotMemCorErr", 0, 0,
4395 				CNTR_NORMAL,
4396 				access_pcic_retry_sot_mem_cor_err_cnt),
4397 [C_PCIC_RETRY_MEM_COR_ERR] = CNTR_ELEM("PcicRetryMemCorErr", 0, 0,
4398 				CNTR_NORMAL,
4399 				access_pcic_retry_mem_cor_err_cnt),
4400 [C_CCE_CLI1_ASYNC_FIFO_DBG_PARITY_ERR] = CNTR_ELEM(
4401 				"CceCli1AsyncFifoDbgParityError", 0, 0,
4402 				CNTR_NORMAL,
4403 				access_cce_cli1_async_fifo_dbg_parity_err_cnt),
4404 [C_CCE_CLI1_ASYNC_FIFO_RXDMA_PARITY_ERR] = CNTR_ELEM(
4405 				"CceCli1AsyncFifoRxdmaParityError", 0, 0,
4406 				CNTR_NORMAL,
4407 				access_cce_cli1_async_fifo_rxdma_parity_err_cnt
4408 				),
4409 [C_CCE_CLI1_ASYNC_FIFO_SDMA_HD_PARITY_ERR] = CNTR_ELEM(
4410 			"CceCli1AsyncFifoSdmaHdParityErr", 0, 0,
4411 			CNTR_NORMAL,
4412 			access_cce_cli1_async_fifo_sdma_hd_parity_err_cnt),
4413 [C_CCE_CLI1_ASYNC_FIFO_PIO_CRDT_PARITY_ERR] = CNTR_ELEM(
4414 			"CceCli1AsyncFifoPioCrdtParityErr", 0, 0,
4415 			CNTR_NORMAL,
4416 			access_cce_cl1_async_fifo_pio_crdt_parity_err_cnt),
4417 [C_CCE_CLI2_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceCli2AsyncFifoParityErr", 0,
4418 			0, CNTR_NORMAL,
4419 			access_cce_cli2_async_fifo_parity_err_cnt),
4420 [C_CCE_CSR_CFG_BUS_PARITY_ERR] = CNTR_ELEM("CceCsrCfgBusParityErr", 0, 0,
4421 			CNTR_NORMAL,
4422 			access_cce_csr_cfg_bus_parity_err_cnt),
4423 [C_CCE_CLI0_ASYNC_FIFO_PARTIY_ERR] = CNTR_ELEM("CceCli0AsyncFifoParityErr", 0,
4424 			0, CNTR_NORMAL,
4425 			access_cce_cli0_async_fifo_parity_err_cnt),
4426 [C_CCE_RSPD_DATA_PARITY_ERR] = CNTR_ELEM("CceRspdDataParityErr", 0, 0,
4427 			CNTR_NORMAL,
4428 			access_cce_rspd_data_parity_err_cnt),
4429 [C_CCE_TRGT_ACCESS_ERR] = CNTR_ELEM("CceTrgtAccessErr", 0, 0,
4430 			CNTR_NORMAL,
4431 			access_cce_trgt_access_err_cnt),
4432 [C_CCE_TRGT_ASYNC_FIFO_PARITY_ERR] = CNTR_ELEM("CceTrgtAsyncFifoParityErr", 0,
4433 			0, CNTR_NORMAL,
4434 			access_cce_trgt_async_fifo_parity_err_cnt),
4435 [C_CCE_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrWriteBadAddrErr", 0, 0,
4436 			CNTR_NORMAL,
4437 			access_cce_csr_write_bad_addr_err_cnt),
4438 [C_CCE_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("CceCsrReadBadAddrErr", 0, 0,
4439 			CNTR_NORMAL,
4440 			access_cce_csr_read_bad_addr_err_cnt),
4441 [C_CCE_CSR_PARITY_ERR] = CNTR_ELEM("CceCsrParityErr", 0, 0,
4442 			CNTR_NORMAL,
4443 			access_ccs_csr_parity_err_cnt),
4444 
4445 /* RcvErrStatus */
4446 [C_RX_CSR_PARITY_ERR] = CNTR_ELEM("RxCsrParityErr", 0, 0,
4447 			CNTR_NORMAL,
4448 			access_rx_csr_parity_err_cnt),
4449 [C_RX_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrWriteBadAddrErr", 0, 0,
4450 			CNTR_NORMAL,
4451 			access_rx_csr_write_bad_addr_err_cnt),
4452 [C_RX_CSR_READ_BAD_ADDR_ERR] = CNTR_ELEM("RxCsrReadBadAddrErr", 0, 0,
4453 			CNTR_NORMAL,
4454 			access_rx_csr_read_bad_addr_err_cnt),
4455 [C_RX_DMA_CSR_UNC_ERR] = CNTR_ELEM("RxDmaCsrUncErr", 0, 0,
4456 			CNTR_NORMAL,
4457 			access_rx_dma_csr_unc_err_cnt),
4458 [C_RX_DMA_DQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaDqFsmEncodingErr", 0, 0,
4459 			CNTR_NORMAL,
4460 			access_rx_dma_dq_fsm_encoding_err_cnt),
4461 [C_RX_DMA_EQ_FSM_ENCODING_ERR] = CNTR_ELEM("RxDmaEqFsmEncodingErr", 0, 0,
4462 			CNTR_NORMAL,
4463 			access_rx_dma_eq_fsm_encoding_err_cnt),
4464 [C_RX_DMA_CSR_PARITY_ERR] = CNTR_ELEM("RxDmaCsrParityErr", 0, 0,
4465 			CNTR_NORMAL,
4466 			access_rx_dma_csr_parity_err_cnt),
4467 [C_RX_RBUF_DATA_COR_ERR] = CNTR_ELEM("RxRbufDataCorErr", 0, 0,
4468 			CNTR_NORMAL,
4469 			access_rx_rbuf_data_cor_err_cnt),
4470 [C_RX_RBUF_DATA_UNC_ERR] = CNTR_ELEM("RxRbufDataUncErr", 0, 0,
4471 			CNTR_NORMAL,
4472 			access_rx_rbuf_data_unc_err_cnt),
4473 [C_RX_DMA_DATA_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaDataFifoRdCorErr", 0, 0,
4474 			CNTR_NORMAL,
4475 			access_rx_dma_data_fifo_rd_cor_err_cnt),
4476 [C_RX_DMA_DATA_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaDataFifoRdUncErr", 0, 0,
4477 			CNTR_NORMAL,
4478 			access_rx_dma_data_fifo_rd_unc_err_cnt),
4479 [C_RX_DMA_HDR_FIFO_RD_COR_ERR] = CNTR_ELEM("RxDmaHdrFifoRdCorErr", 0, 0,
4480 			CNTR_NORMAL,
4481 			access_rx_dma_hdr_fifo_rd_cor_err_cnt),
4482 [C_RX_DMA_HDR_FIFO_RD_UNC_ERR] = CNTR_ELEM("RxDmaHdrFifoRdUncErr", 0, 0,
4483 			CNTR_NORMAL,
4484 			access_rx_dma_hdr_fifo_rd_unc_err_cnt),
4485 [C_RX_RBUF_DESC_PART2_COR_ERR] = CNTR_ELEM("RxRbufDescPart2CorErr", 0, 0,
4486 			CNTR_NORMAL,
4487 			access_rx_rbuf_desc_part2_cor_err_cnt),
4488 [C_RX_RBUF_DESC_PART2_UNC_ERR] = CNTR_ELEM("RxRbufDescPart2UncErr", 0, 0,
4489 			CNTR_NORMAL,
4490 			access_rx_rbuf_desc_part2_unc_err_cnt),
4491 [C_RX_RBUF_DESC_PART1_COR_ERR] = CNTR_ELEM("RxRbufDescPart1CorErr", 0, 0,
4492 			CNTR_NORMAL,
4493 			access_rx_rbuf_desc_part1_cor_err_cnt),
4494 [C_RX_RBUF_DESC_PART1_UNC_ERR] = CNTR_ELEM("RxRbufDescPart1UncErr", 0, 0,
4495 			CNTR_NORMAL,
4496 			access_rx_rbuf_desc_part1_unc_err_cnt),
4497 [C_RX_HQ_INTR_FSM_ERR] = CNTR_ELEM("RxHqIntrFsmErr", 0, 0,
4498 			CNTR_NORMAL,
4499 			access_rx_hq_intr_fsm_err_cnt),
4500 [C_RX_HQ_INTR_CSR_PARITY_ERR] = CNTR_ELEM("RxHqIntrCsrParityErr", 0, 0,
4501 			CNTR_NORMAL,
4502 			access_rx_hq_intr_csr_parity_err_cnt),
4503 [C_RX_LOOKUP_CSR_PARITY_ERR] = CNTR_ELEM("RxLookupCsrParityErr", 0, 0,
4504 			CNTR_NORMAL,
4505 			access_rx_lookup_csr_parity_err_cnt),
4506 [C_RX_LOOKUP_RCV_ARRAY_COR_ERR] = CNTR_ELEM("RxLookupRcvArrayCorErr", 0, 0,
4507 			CNTR_NORMAL,
4508 			access_rx_lookup_rcv_array_cor_err_cnt),
4509 [C_RX_LOOKUP_RCV_ARRAY_UNC_ERR] = CNTR_ELEM("RxLookupRcvArrayUncErr", 0, 0,
4510 			CNTR_NORMAL,
4511 			access_rx_lookup_rcv_array_unc_err_cnt),
4512 [C_RX_LOOKUP_DES_PART2_PARITY_ERR] = CNTR_ELEM("RxLookupDesPart2ParityErr", 0,
4513 			0, CNTR_NORMAL,
4514 			access_rx_lookup_des_part2_parity_err_cnt),
4515 [C_RX_LOOKUP_DES_PART1_UNC_COR_ERR] = CNTR_ELEM("RxLookupDesPart1UncCorErr", 0,
4516 			0, CNTR_NORMAL,
4517 			access_rx_lookup_des_part1_unc_cor_err_cnt),
4518 [C_RX_LOOKUP_DES_PART1_UNC_ERR] = CNTR_ELEM("RxLookupDesPart1UncErr", 0, 0,
4519 			CNTR_NORMAL,
4520 			access_rx_lookup_des_part1_unc_err_cnt),
4521 [C_RX_RBUF_NEXT_FREE_BUF_COR_ERR] = CNTR_ELEM("RxRbufNextFreeBufCorErr", 0, 0,
4522 			CNTR_NORMAL,
4523 			access_rx_rbuf_next_free_buf_cor_err_cnt),
4524 [C_RX_RBUF_NEXT_FREE_BUF_UNC_ERR] = CNTR_ELEM("RxRbufNextFreeBufUncErr", 0, 0,
4525 			CNTR_NORMAL,
4526 			access_rx_rbuf_next_free_buf_unc_err_cnt),
4527 [C_RX_RBUF_FL_INIT_WR_ADDR_PARITY_ERR] = CNTR_ELEM(
4528 			"RxRbufFlInitWrAddrParityErr", 0, 0,
4529 			CNTR_NORMAL,
4530 			access_rbuf_fl_init_wr_addr_parity_err_cnt),
4531 [C_RX_RBUF_FL_INITDONE_PARITY_ERR] = CNTR_ELEM("RxRbufFlInitdoneParityErr", 0,
4532 			0, CNTR_NORMAL,
4533 			access_rx_rbuf_fl_initdone_parity_err_cnt),
4534 [C_RX_RBUF_FL_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlWrAddrParityErr", 0,
4535 			0, CNTR_NORMAL,
4536 			access_rx_rbuf_fl_write_addr_parity_err_cnt),
4537 [C_RX_RBUF_FL_RD_ADDR_PARITY_ERR] = CNTR_ELEM("RxRbufFlRdAddrParityErr", 0, 0,
4538 			CNTR_NORMAL,
4539 			access_rx_rbuf_fl_rd_addr_parity_err_cnt),
4540 [C_RX_RBUF_EMPTY_ERR] = CNTR_ELEM("RxRbufEmptyErr", 0, 0,
4541 			CNTR_NORMAL,
4542 			access_rx_rbuf_empty_err_cnt),
4543 [C_RX_RBUF_FULL_ERR] = CNTR_ELEM("RxRbufFullErr", 0, 0,
4544 			CNTR_NORMAL,
4545 			access_rx_rbuf_full_err_cnt),
4546 [C_RX_RBUF_BAD_LOOKUP_ERR] = CNTR_ELEM("RxRBufBadLookupErr", 0, 0,
4547 			CNTR_NORMAL,
4548 			access_rbuf_bad_lookup_err_cnt),
4549 [C_RX_RBUF_CTX_ID_PARITY_ERR] = CNTR_ELEM("RxRbufCtxIdParityErr", 0, 0,
4550 			CNTR_NORMAL,
4551 			access_rbuf_ctx_id_parity_err_cnt),
4552 [C_RX_RBUF_CSR_QEOPDW_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEOPDWParityErr", 0, 0,
4553 			CNTR_NORMAL,
4554 			access_rbuf_csr_qeopdw_parity_err_cnt),
4555 [C_RX_RBUF_CSR_Q_NUM_OF_PKT_PARITY_ERR] = CNTR_ELEM(
4556 			"RxRbufCsrQNumOfPktParityErr", 0, 0,
4557 			CNTR_NORMAL,
4558 			access_rx_rbuf_csr_q_num_of_pkt_parity_err_cnt),
4559 [C_RX_RBUF_CSR_Q_T1_PTR_PARITY_ERR] = CNTR_ELEM(
4560 			"RxRbufCsrQTlPtrParityErr", 0, 0,
4561 			CNTR_NORMAL,
4562 			access_rx_rbuf_csr_q_t1_ptr_parity_err_cnt),
4563 [C_RX_RBUF_CSR_Q_HD_PTR_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQHdPtrParityErr", 0,
4564 			0, CNTR_NORMAL,
4565 			access_rx_rbuf_csr_q_hd_ptr_parity_err_cnt),
4566 [C_RX_RBUF_CSR_Q_VLD_BIT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQVldBitParityErr", 0,
4567 			0, CNTR_NORMAL,
4568 			access_rx_rbuf_csr_q_vld_bit_parity_err_cnt),
4569 [C_RX_RBUF_CSR_Q_NEXT_BUF_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQNextBufParityErr",
4570 			0, 0, CNTR_NORMAL,
4571 			access_rx_rbuf_csr_q_next_buf_parity_err_cnt),
4572 [C_RX_RBUF_CSR_Q_ENT_CNT_PARITY_ERR] = CNTR_ELEM("RxRbufCsrQEntCntParityErr", 0,
4573 			0, CNTR_NORMAL,
4574 			access_rx_rbuf_csr_q_ent_cnt_parity_err_cnt),
4575 [C_RX_RBUF_CSR_Q_HEAD_BUF_NUM_PARITY_ERR] = CNTR_ELEM(
4576 			"RxRbufCsrQHeadBufNumParityErr", 0, 0,
4577 			CNTR_NORMAL,
4578 			access_rx_rbuf_csr_q_head_buf_num_parity_err_cnt),
4579 [C_RX_RBUF_BLOCK_LIST_READ_COR_ERR] = CNTR_ELEM("RxRbufBlockListReadCorErr", 0,
4580 			0, CNTR_NORMAL,
4581 			access_rx_rbuf_block_list_read_cor_err_cnt),
4582 [C_RX_RBUF_BLOCK_LIST_READ_UNC_ERR] = CNTR_ELEM("RxRbufBlockListReadUncErr", 0,
4583 			0, CNTR_NORMAL,
4584 			access_rx_rbuf_block_list_read_unc_err_cnt),
4585 [C_RX_RBUF_LOOKUP_DES_COR_ERR] = CNTR_ELEM("RxRbufLookupDesCorErr", 0, 0,
4586 			CNTR_NORMAL,
4587 			access_rx_rbuf_lookup_des_cor_err_cnt),
4588 [C_RX_RBUF_LOOKUP_DES_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesUncErr", 0, 0,
4589 			CNTR_NORMAL,
4590 			access_rx_rbuf_lookup_des_unc_err_cnt),
4591 [C_RX_RBUF_LOOKUP_DES_REG_UNC_COR_ERR] = CNTR_ELEM(
4592 			"RxRbufLookupDesRegUncCorErr", 0, 0,
4593 			CNTR_NORMAL,
4594 			access_rx_rbuf_lookup_des_reg_unc_cor_err_cnt),
4595 [C_RX_RBUF_LOOKUP_DES_REG_UNC_ERR] = CNTR_ELEM("RxRbufLookupDesRegUncErr", 0, 0,
4596 			CNTR_NORMAL,
4597 			access_rx_rbuf_lookup_des_reg_unc_err_cnt),
4598 [C_RX_RBUF_FREE_LIST_COR_ERR] = CNTR_ELEM("RxRbufFreeListCorErr", 0, 0,
4599 			CNTR_NORMAL,
4600 			access_rx_rbuf_free_list_cor_err_cnt),
4601 [C_RX_RBUF_FREE_LIST_UNC_ERR] = CNTR_ELEM("RxRbufFreeListUncErr", 0, 0,
4602 			CNTR_NORMAL,
4603 			access_rx_rbuf_free_list_unc_err_cnt),
4604 [C_RX_RCV_FSM_ENCODING_ERR] = CNTR_ELEM("RxRcvFsmEncodingErr", 0, 0,
4605 			CNTR_NORMAL,
4606 			access_rx_rcv_fsm_encoding_err_cnt),
4607 [C_RX_DMA_FLAG_COR_ERR] = CNTR_ELEM("RxDmaFlagCorErr", 0, 0,
4608 			CNTR_NORMAL,
4609 			access_rx_dma_flag_cor_err_cnt),
4610 [C_RX_DMA_FLAG_UNC_ERR] = CNTR_ELEM("RxDmaFlagUncErr", 0, 0,
4611 			CNTR_NORMAL,
4612 			access_rx_dma_flag_unc_err_cnt),
4613 [C_RX_DC_SOP_EOP_PARITY_ERR] = CNTR_ELEM("RxDcSopEopParityErr", 0, 0,
4614 			CNTR_NORMAL,
4615 			access_rx_dc_sop_eop_parity_err_cnt),
4616 [C_RX_RCV_CSR_PARITY_ERR] = CNTR_ELEM("RxRcvCsrParityErr", 0, 0,
4617 			CNTR_NORMAL,
4618 			access_rx_rcv_csr_parity_err_cnt),
4619 [C_RX_RCV_QP_MAP_TABLE_COR_ERR] = CNTR_ELEM("RxRcvQpMapTableCorErr", 0, 0,
4620 			CNTR_NORMAL,
4621 			access_rx_rcv_qp_map_table_cor_err_cnt),
4622 [C_RX_RCV_QP_MAP_TABLE_UNC_ERR] = CNTR_ELEM("RxRcvQpMapTableUncErr", 0, 0,
4623 			CNTR_NORMAL,
4624 			access_rx_rcv_qp_map_table_unc_err_cnt),
4625 [C_RX_RCV_DATA_COR_ERR] = CNTR_ELEM("RxRcvDataCorErr", 0, 0,
4626 			CNTR_NORMAL,
4627 			access_rx_rcv_data_cor_err_cnt),
4628 [C_RX_RCV_DATA_UNC_ERR] = CNTR_ELEM("RxRcvDataUncErr", 0, 0,
4629 			CNTR_NORMAL,
4630 			access_rx_rcv_data_unc_err_cnt),
4631 [C_RX_RCV_HDR_COR_ERR] = CNTR_ELEM("RxRcvHdrCorErr", 0, 0,
4632 			CNTR_NORMAL,
4633 			access_rx_rcv_hdr_cor_err_cnt),
4634 [C_RX_RCV_HDR_UNC_ERR] = CNTR_ELEM("RxRcvHdrUncErr", 0, 0,
4635 			CNTR_NORMAL,
4636 			access_rx_rcv_hdr_unc_err_cnt),
4637 [C_RX_DC_INTF_PARITY_ERR] = CNTR_ELEM("RxDcIntfParityErr", 0, 0,
4638 			CNTR_NORMAL,
4639 			access_rx_dc_intf_parity_err_cnt),
4640 [C_RX_DMA_CSR_COR_ERR] = CNTR_ELEM("RxDmaCsrCorErr", 0, 0,
4641 			CNTR_NORMAL,
4642 			access_rx_dma_csr_cor_err_cnt),
4643 /* SendPioErrStatus */
4644 [C_PIO_PEC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPecSopHeadParityErr", 0, 0,
4645 			CNTR_NORMAL,
4646 			access_pio_pec_sop_head_parity_err_cnt),
4647 [C_PIO_PCC_SOP_HEAD_PARITY_ERR] = CNTR_ELEM("PioPccSopHeadParityErr", 0, 0,
4648 			CNTR_NORMAL,
4649 			access_pio_pcc_sop_head_parity_err_cnt),
4650 [C_PIO_LAST_RETURNED_CNT_PARITY_ERR] = CNTR_ELEM("PioLastReturnedCntParityErr",
4651 			0, 0, CNTR_NORMAL,
4652 			access_pio_last_returned_cnt_parity_err_cnt),
4653 [C_PIO_CURRENT_FREE_CNT_PARITY_ERR] = CNTR_ELEM("PioCurrentFreeCntParityErr", 0,
4654 			0, CNTR_NORMAL,
4655 			access_pio_current_free_cnt_parity_err_cnt),
4656 [C_PIO_RSVD_31_ERR] = CNTR_ELEM("Pio Reserved 31", 0, 0,
4657 			CNTR_NORMAL,
4658 			access_pio_reserved_31_err_cnt),
4659 [C_PIO_RSVD_30_ERR] = CNTR_ELEM("Pio Reserved 30", 0, 0,
4660 			CNTR_NORMAL,
4661 			access_pio_reserved_30_err_cnt),
4662 [C_PIO_PPMC_SOP_LEN_ERR] = CNTR_ELEM("PioPpmcSopLenErr", 0, 0,
4663 			CNTR_NORMAL,
4664 			access_pio_ppmc_sop_len_err_cnt),
4665 [C_PIO_PPMC_BQC_MEM_PARITY_ERR] = CNTR_ELEM("PioPpmcBqcMemParityErr", 0, 0,
4666 			CNTR_NORMAL,
4667 			access_pio_ppmc_bqc_mem_parity_err_cnt),
4668 [C_PIO_VL_FIFO_PARITY_ERR] = CNTR_ELEM("PioVlFifoParityErr", 0, 0,
4669 			CNTR_NORMAL,
4670 			access_pio_vl_fifo_parity_err_cnt),
4671 [C_PIO_VLF_SOP_PARITY_ERR] = CNTR_ELEM("PioVlfSopParityErr", 0, 0,
4672 			CNTR_NORMAL,
4673 			access_pio_vlf_sop_parity_err_cnt),
4674 [C_PIO_VLF_V1_LEN_PARITY_ERR] = CNTR_ELEM("PioVlfVlLenParityErr", 0, 0,
4675 			CNTR_NORMAL,
4676 			access_pio_vlf_v1_len_parity_err_cnt),
4677 [C_PIO_BLOCK_QW_COUNT_PARITY_ERR] = CNTR_ELEM("PioBlockQwCountParityErr", 0, 0,
4678 			CNTR_NORMAL,
4679 			access_pio_block_qw_count_parity_err_cnt),
4680 [C_PIO_WRITE_QW_VALID_PARITY_ERR] = CNTR_ELEM("PioWriteQwValidParityErr", 0, 0,
4681 			CNTR_NORMAL,
4682 			access_pio_write_qw_valid_parity_err_cnt),
4683 [C_PIO_STATE_MACHINE_ERR] = CNTR_ELEM("PioStateMachineErr", 0, 0,
4684 			CNTR_NORMAL,
4685 			access_pio_state_machine_err_cnt),
4686 [C_PIO_WRITE_DATA_PARITY_ERR] = CNTR_ELEM("PioWriteDataParityErr", 0, 0,
4687 			CNTR_NORMAL,
4688 			access_pio_write_data_parity_err_cnt),
4689 [C_PIO_HOST_ADDR_MEM_COR_ERR] = CNTR_ELEM("PioHostAddrMemCorErr", 0, 0,
4690 			CNTR_NORMAL,
4691 			access_pio_host_addr_mem_cor_err_cnt),
4692 [C_PIO_HOST_ADDR_MEM_UNC_ERR] = CNTR_ELEM("PioHostAddrMemUncErr", 0, 0,
4693 			CNTR_NORMAL,
4694 			access_pio_host_addr_mem_unc_err_cnt),
4695 [C_PIO_PKT_EVICT_SM_OR_ARM_SM_ERR] = CNTR_ELEM("PioPktEvictSmOrArbSmErr", 0, 0,
4696 			CNTR_NORMAL,
4697 			access_pio_pkt_evict_sm_or_arb_sm_err_cnt),
4698 [C_PIO_INIT_SM_IN_ERR] = CNTR_ELEM("PioInitSmInErr", 0, 0,
4699 			CNTR_NORMAL,
4700 			access_pio_init_sm_in_err_cnt),
4701 [C_PIO_PPMC_PBL_FIFO_ERR] = CNTR_ELEM("PioPpmcPblFifoErr", 0, 0,
4702 			CNTR_NORMAL,
4703 			access_pio_ppmc_pbl_fifo_err_cnt),
4704 [C_PIO_CREDIT_RET_FIFO_PARITY_ERR] = CNTR_ELEM("PioCreditRetFifoParityErr", 0,
4705 			0, CNTR_NORMAL,
4706 			access_pio_credit_ret_fifo_parity_err_cnt),
4707 [C_PIO_V1_LEN_MEM_BANK1_COR_ERR] = CNTR_ELEM("PioVlLenMemBank1CorErr", 0, 0,
4708 			CNTR_NORMAL,
4709 			access_pio_v1_len_mem_bank1_cor_err_cnt),
4710 [C_PIO_V1_LEN_MEM_BANK0_COR_ERR] = CNTR_ELEM("PioVlLenMemBank0CorErr", 0, 0,
4711 			CNTR_NORMAL,
4712 			access_pio_v1_len_mem_bank0_cor_err_cnt),
4713 [C_PIO_V1_LEN_MEM_BANK1_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank1UncErr", 0, 0,
4714 			CNTR_NORMAL,
4715 			access_pio_v1_len_mem_bank1_unc_err_cnt),
4716 [C_PIO_V1_LEN_MEM_BANK0_UNC_ERR] = CNTR_ELEM("PioVlLenMemBank0UncErr", 0, 0,
4717 			CNTR_NORMAL,
4718 			access_pio_v1_len_mem_bank0_unc_err_cnt),
4719 [C_PIO_SM_PKT_RESET_PARITY_ERR] = CNTR_ELEM("PioSmPktResetParityErr", 0, 0,
4720 			CNTR_NORMAL,
4721 			access_pio_sm_pkt_reset_parity_err_cnt),
4722 [C_PIO_PKT_EVICT_FIFO_PARITY_ERR] = CNTR_ELEM("PioPktEvictFifoParityErr", 0, 0,
4723 			CNTR_NORMAL,
4724 			access_pio_pkt_evict_fifo_parity_err_cnt),
4725 [C_PIO_SBRDCTRL_CRREL_FIFO_PARITY_ERR] = CNTR_ELEM(
4726 			"PioSbrdctrlCrrelFifoParityErr", 0, 0,
4727 			CNTR_NORMAL,
4728 			access_pio_sbrdctrl_crrel_fifo_parity_err_cnt),
4729 [C_PIO_SBRDCTL_CRREL_PARITY_ERR] = CNTR_ELEM("PioSbrdctlCrrelParityErr", 0, 0,
4730 			CNTR_NORMAL,
4731 			access_pio_sbrdctl_crrel_parity_err_cnt),
4732 [C_PIO_PEC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPecFifoParityErr", 0, 0,
4733 			CNTR_NORMAL,
4734 			access_pio_pec_fifo_parity_err_cnt),
4735 [C_PIO_PCC_FIFO_PARITY_ERR] = CNTR_ELEM("PioPccFifoParityErr", 0, 0,
4736 			CNTR_NORMAL,
4737 			access_pio_pcc_fifo_parity_err_cnt),
4738 [C_PIO_SB_MEM_FIFO1_ERR] = CNTR_ELEM("PioSbMemFifo1Err", 0, 0,
4739 			CNTR_NORMAL,
4740 			access_pio_sb_mem_fifo1_err_cnt),
4741 [C_PIO_SB_MEM_FIFO0_ERR] = CNTR_ELEM("PioSbMemFifo0Err", 0, 0,
4742 			CNTR_NORMAL,
4743 			access_pio_sb_mem_fifo0_err_cnt),
4744 [C_PIO_CSR_PARITY_ERR] = CNTR_ELEM("PioCsrParityErr", 0, 0,
4745 			CNTR_NORMAL,
4746 			access_pio_csr_parity_err_cnt),
4747 [C_PIO_WRITE_ADDR_PARITY_ERR] = CNTR_ELEM("PioWriteAddrParityErr", 0, 0,
4748 			CNTR_NORMAL,
4749 			access_pio_write_addr_parity_err_cnt),
4750 [C_PIO_WRITE_BAD_CTXT_ERR] = CNTR_ELEM("PioWriteBadCtxtErr", 0, 0,
4751 			CNTR_NORMAL,
4752 			access_pio_write_bad_ctxt_err_cnt),
4753 /* SendDmaErrStatus */
4754 [C_SDMA_PCIE_REQ_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPcieReqTrackingCorErr", 0,
4755 			0, CNTR_NORMAL,
4756 			access_sdma_pcie_req_tracking_cor_err_cnt),
4757 [C_SDMA_PCIE_REQ_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPcieReqTrackingUncErr", 0,
4758 			0, CNTR_NORMAL,
4759 			access_sdma_pcie_req_tracking_unc_err_cnt),
4760 [C_SDMA_CSR_PARITY_ERR] = CNTR_ELEM("SDmaCsrParityErr", 0, 0,
4761 			CNTR_NORMAL,
4762 			access_sdma_csr_parity_err_cnt),
4763 [C_SDMA_RPY_TAG_ERR] = CNTR_ELEM("SDmaRpyTagErr", 0, 0,
4764 			CNTR_NORMAL,
4765 			access_sdma_rpy_tag_err_cnt),
4766 /* SendEgressErrStatus */
4767 [C_TX_READ_PIO_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryCsrUncErr", 0, 0,
4768 			CNTR_NORMAL,
4769 			access_tx_read_pio_memory_csr_unc_err_cnt),
4770 [C_TX_READ_SDMA_MEMORY_CSR_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryCsrUncErr", 0,
4771 			0, CNTR_NORMAL,
4772 			access_tx_read_sdma_memory_csr_err_cnt),
4773 [C_TX_EGRESS_FIFO_COR_ERR] = CNTR_ELEM("TxEgressFifoCorErr", 0, 0,
4774 			CNTR_NORMAL,
4775 			access_tx_egress_fifo_cor_err_cnt),
4776 [C_TX_READ_PIO_MEMORY_COR_ERR] = CNTR_ELEM("TxReadPioMemoryCorErr", 0, 0,
4777 			CNTR_NORMAL,
4778 			access_tx_read_pio_memory_cor_err_cnt),
4779 [C_TX_READ_SDMA_MEMORY_COR_ERR] = CNTR_ELEM("TxReadSdmaMemoryCorErr", 0, 0,
4780 			CNTR_NORMAL,
4781 			access_tx_read_sdma_memory_cor_err_cnt),
4782 [C_TX_SB_HDR_COR_ERR] = CNTR_ELEM("TxSbHdrCorErr", 0, 0,
4783 			CNTR_NORMAL,
4784 			access_tx_sb_hdr_cor_err_cnt),
4785 [C_TX_CREDIT_OVERRUN_ERR] = CNTR_ELEM("TxCreditOverrunErr", 0, 0,
4786 			CNTR_NORMAL,
4787 			access_tx_credit_overrun_err_cnt),
4788 [C_TX_LAUNCH_FIFO8_COR_ERR] = CNTR_ELEM("TxLaunchFifo8CorErr", 0, 0,
4789 			CNTR_NORMAL,
4790 			access_tx_launch_fifo8_cor_err_cnt),
4791 [C_TX_LAUNCH_FIFO7_COR_ERR] = CNTR_ELEM("TxLaunchFifo7CorErr", 0, 0,
4792 			CNTR_NORMAL,
4793 			access_tx_launch_fifo7_cor_err_cnt),
4794 [C_TX_LAUNCH_FIFO6_COR_ERR] = CNTR_ELEM("TxLaunchFifo6CorErr", 0, 0,
4795 			CNTR_NORMAL,
4796 			access_tx_launch_fifo6_cor_err_cnt),
4797 [C_TX_LAUNCH_FIFO5_COR_ERR] = CNTR_ELEM("TxLaunchFifo5CorErr", 0, 0,
4798 			CNTR_NORMAL,
4799 			access_tx_launch_fifo5_cor_err_cnt),
4800 [C_TX_LAUNCH_FIFO4_COR_ERR] = CNTR_ELEM("TxLaunchFifo4CorErr", 0, 0,
4801 			CNTR_NORMAL,
4802 			access_tx_launch_fifo4_cor_err_cnt),
4803 [C_TX_LAUNCH_FIFO3_COR_ERR] = CNTR_ELEM("TxLaunchFifo3CorErr", 0, 0,
4804 			CNTR_NORMAL,
4805 			access_tx_launch_fifo3_cor_err_cnt),
4806 [C_TX_LAUNCH_FIFO2_COR_ERR] = CNTR_ELEM("TxLaunchFifo2CorErr", 0, 0,
4807 			CNTR_NORMAL,
4808 			access_tx_launch_fifo2_cor_err_cnt),
4809 [C_TX_LAUNCH_FIFO1_COR_ERR] = CNTR_ELEM("TxLaunchFifo1CorErr", 0, 0,
4810 			CNTR_NORMAL,
4811 			access_tx_launch_fifo1_cor_err_cnt),
4812 [C_TX_LAUNCH_FIFO0_COR_ERR] = CNTR_ELEM("TxLaunchFifo0CorErr", 0, 0,
4813 			CNTR_NORMAL,
4814 			access_tx_launch_fifo0_cor_err_cnt),
4815 [C_TX_CREDIT_RETURN_VL_ERR] = CNTR_ELEM("TxCreditReturnVLErr", 0, 0,
4816 			CNTR_NORMAL,
4817 			access_tx_credit_return_vl_err_cnt),
4818 [C_TX_HCRC_INSERTION_ERR] = CNTR_ELEM("TxHcrcInsertionErr", 0, 0,
4819 			CNTR_NORMAL,
4820 			access_tx_hcrc_insertion_err_cnt),
4821 [C_TX_EGRESS_FIFI_UNC_ERR] = CNTR_ELEM("TxEgressFifoUncErr", 0, 0,
4822 			CNTR_NORMAL,
4823 			access_tx_egress_fifo_unc_err_cnt),
4824 [C_TX_READ_PIO_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadPioMemoryUncErr", 0, 0,
4825 			CNTR_NORMAL,
4826 			access_tx_read_pio_memory_unc_err_cnt),
4827 [C_TX_READ_SDMA_MEMORY_UNC_ERR] = CNTR_ELEM("TxReadSdmaMemoryUncErr", 0, 0,
4828 			CNTR_NORMAL,
4829 			access_tx_read_sdma_memory_unc_err_cnt),
4830 [C_TX_SB_HDR_UNC_ERR] = CNTR_ELEM("TxSbHdrUncErr", 0, 0,
4831 			CNTR_NORMAL,
4832 			access_tx_sb_hdr_unc_err_cnt),
4833 [C_TX_CREDIT_RETURN_PARITY_ERR] = CNTR_ELEM("TxCreditReturnParityErr", 0, 0,
4834 			CNTR_NORMAL,
4835 			access_tx_credit_return_partiy_err_cnt),
4836 [C_TX_LAUNCH_FIFO8_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo8UncOrParityErr",
4837 			0, 0, CNTR_NORMAL,
4838 			access_tx_launch_fifo8_unc_or_parity_err_cnt),
4839 [C_TX_LAUNCH_FIFO7_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo7UncOrParityErr",
4840 			0, 0, CNTR_NORMAL,
4841 			access_tx_launch_fifo7_unc_or_parity_err_cnt),
4842 [C_TX_LAUNCH_FIFO6_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo6UncOrParityErr",
4843 			0, 0, CNTR_NORMAL,
4844 			access_tx_launch_fifo6_unc_or_parity_err_cnt),
4845 [C_TX_LAUNCH_FIFO5_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo5UncOrParityErr",
4846 			0, 0, CNTR_NORMAL,
4847 			access_tx_launch_fifo5_unc_or_parity_err_cnt),
4848 [C_TX_LAUNCH_FIFO4_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo4UncOrParityErr",
4849 			0, 0, CNTR_NORMAL,
4850 			access_tx_launch_fifo4_unc_or_parity_err_cnt),
4851 [C_TX_LAUNCH_FIFO3_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo3UncOrParityErr",
4852 			0, 0, CNTR_NORMAL,
4853 			access_tx_launch_fifo3_unc_or_parity_err_cnt),
4854 [C_TX_LAUNCH_FIFO2_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo2UncOrParityErr",
4855 			0, 0, CNTR_NORMAL,
4856 			access_tx_launch_fifo2_unc_or_parity_err_cnt),
4857 [C_TX_LAUNCH_FIFO1_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo1UncOrParityErr",
4858 			0, 0, CNTR_NORMAL,
4859 			access_tx_launch_fifo1_unc_or_parity_err_cnt),
4860 [C_TX_LAUNCH_FIFO0_UNC_OR_PARITY_ERR] = CNTR_ELEM("TxLaunchFifo0UncOrParityErr",
4861 			0, 0, CNTR_NORMAL,
4862 			access_tx_launch_fifo0_unc_or_parity_err_cnt),
4863 [C_TX_SDMA15_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma15DisallowedPacketErr",
4864 			0, 0, CNTR_NORMAL,
4865 			access_tx_sdma15_disallowed_packet_err_cnt),
4866 [C_TX_SDMA14_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma14DisallowedPacketErr",
4867 			0, 0, CNTR_NORMAL,
4868 			access_tx_sdma14_disallowed_packet_err_cnt),
4869 [C_TX_SDMA13_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma13DisallowedPacketErr",
4870 			0, 0, CNTR_NORMAL,
4871 			access_tx_sdma13_disallowed_packet_err_cnt),
4872 [C_TX_SDMA12_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma12DisallowedPacketErr",
4873 			0, 0, CNTR_NORMAL,
4874 			access_tx_sdma12_disallowed_packet_err_cnt),
4875 [C_TX_SDMA11_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma11DisallowedPacketErr",
4876 			0, 0, CNTR_NORMAL,
4877 			access_tx_sdma11_disallowed_packet_err_cnt),
4878 [C_TX_SDMA10_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma10DisallowedPacketErr",
4879 			0, 0, CNTR_NORMAL,
4880 			access_tx_sdma10_disallowed_packet_err_cnt),
4881 [C_TX_SDMA9_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma9DisallowedPacketErr",
4882 			0, 0, CNTR_NORMAL,
4883 			access_tx_sdma9_disallowed_packet_err_cnt),
4884 [C_TX_SDMA8_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma8DisallowedPacketErr",
4885 			0, 0, CNTR_NORMAL,
4886 			access_tx_sdma8_disallowed_packet_err_cnt),
4887 [C_TX_SDMA7_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma7DisallowedPacketErr",
4888 			0, 0, CNTR_NORMAL,
4889 			access_tx_sdma7_disallowed_packet_err_cnt),
4890 [C_TX_SDMA6_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma6DisallowedPacketErr",
4891 			0, 0, CNTR_NORMAL,
4892 			access_tx_sdma6_disallowed_packet_err_cnt),
4893 [C_TX_SDMA5_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma5DisallowedPacketErr",
4894 			0, 0, CNTR_NORMAL,
4895 			access_tx_sdma5_disallowed_packet_err_cnt),
4896 [C_TX_SDMA4_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma4DisallowedPacketErr",
4897 			0, 0, CNTR_NORMAL,
4898 			access_tx_sdma4_disallowed_packet_err_cnt),
4899 [C_TX_SDMA3_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma3DisallowedPacketErr",
4900 			0, 0, CNTR_NORMAL,
4901 			access_tx_sdma3_disallowed_packet_err_cnt),
4902 [C_TX_SDMA2_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma2DisallowedPacketErr",
4903 			0, 0, CNTR_NORMAL,
4904 			access_tx_sdma2_disallowed_packet_err_cnt),
4905 [C_TX_SDMA1_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma1DisallowedPacketErr",
4906 			0, 0, CNTR_NORMAL,
4907 			access_tx_sdma1_disallowed_packet_err_cnt),
4908 [C_TX_SDMA0_DISALLOWED_PACKET_ERR] = CNTR_ELEM("TxSdma0DisallowedPacketErr",
4909 			0, 0, CNTR_NORMAL,
4910 			access_tx_sdma0_disallowed_packet_err_cnt),
4911 [C_TX_CONFIG_PARITY_ERR] = CNTR_ELEM("TxConfigParityErr", 0, 0,
4912 			CNTR_NORMAL,
4913 			access_tx_config_parity_err_cnt),
4914 [C_TX_SBRD_CTL_CSR_PARITY_ERR] = CNTR_ELEM("TxSbrdCtlCsrParityErr", 0, 0,
4915 			CNTR_NORMAL,
4916 			access_tx_sbrd_ctl_csr_parity_err_cnt),
4917 [C_TX_LAUNCH_CSR_PARITY_ERR] = CNTR_ELEM("TxLaunchCsrParityErr", 0, 0,
4918 			CNTR_NORMAL,
4919 			access_tx_launch_csr_parity_err_cnt),
4920 [C_TX_ILLEGAL_CL_ERR] = CNTR_ELEM("TxIllegalVLErr", 0, 0,
4921 			CNTR_NORMAL,
4922 			access_tx_illegal_vl_err_cnt),
4923 [C_TX_SBRD_CTL_STATE_MACHINE_PARITY_ERR] = CNTR_ELEM(
4924 			"TxSbrdCtlStateMachineParityErr", 0, 0,
4925 			CNTR_NORMAL,
4926 			access_tx_sbrd_ctl_state_machine_parity_err_cnt),
4927 [C_TX_RESERVED_10] = CNTR_ELEM("Tx Egress Reserved 10", 0, 0,
4928 			CNTR_NORMAL,
4929 			access_egress_reserved_10_err_cnt),
4930 [C_TX_RESERVED_9] = CNTR_ELEM("Tx Egress Reserved 9", 0, 0,
4931 			CNTR_NORMAL,
4932 			access_egress_reserved_9_err_cnt),
4933 [C_TX_SDMA_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxSdmaLaunchIntfParityErr",
4934 			0, 0, CNTR_NORMAL,
4935 			access_tx_sdma_launch_intf_parity_err_cnt),
4936 [C_TX_PIO_LAUNCH_INTF_PARITY_ERR] = CNTR_ELEM("TxPioLaunchIntfParityErr", 0, 0,
4937 			CNTR_NORMAL,
4938 			access_tx_pio_launch_intf_parity_err_cnt),
4939 [C_TX_RESERVED_6] = CNTR_ELEM("Tx Egress Reserved 6", 0, 0,
4940 			CNTR_NORMAL,
4941 			access_egress_reserved_6_err_cnt),
4942 [C_TX_INCORRECT_LINK_STATE_ERR] = CNTR_ELEM("TxIncorrectLinkStateErr", 0, 0,
4943 			CNTR_NORMAL,
4944 			access_tx_incorrect_link_state_err_cnt),
4945 [C_TX_LINK_DOWN_ERR] = CNTR_ELEM("TxLinkdownErr", 0, 0,
4946 			CNTR_NORMAL,
4947 			access_tx_linkdown_err_cnt),
4948 [C_TX_EGRESS_FIFO_UNDERRUN_OR_PARITY_ERR] = CNTR_ELEM(
4949 			"EgressFifoUnderrunOrParityErr", 0, 0,
4950 			CNTR_NORMAL,
4951 			access_tx_egress_fifi_underrun_or_parity_err_cnt),
4952 [C_TX_RESERVED_2] = CNTR_ELEM("Tx Egress Reserved 2", 0, 0,
4953 			CNTR_NORMAL,
4954 			access_egress_reserved_2_err_cnt),
4955 [C_TX_PKT_INTEGRITY_MEM_UNC_ERR] = CNTR_ELEM("TxPktIntegrityMemUncErr", 0, 0,
4956 			CNTR_NORMAL,
4957 			access_tx_pkt_integrity_mem_unc_err_cnt),
4958 [C_TX_PKT_INTEGRITY_MEM_COR_ERR] = CNTR_ELEM("TxPktIntegrityMemCorErr", 0, 0,
4959 			CNTR_NORMAL,
4960 			access_tx_pkt_integrity_mem_cor_err_cnt),
4961 /* SendErrStatus */
4962 [C_SEND_CSR_WRITE_BAD_ADDR_ERR] = CNTR_ELEM("SendCsrWriteBadAddrErr", 0, 0,
4963 			CNTR_NORMAL,
4964 			access_send_csr_write_bad_addr_err_cnt),
4965 [C_SEND_CSR_READ_BAD_ADD_ERR] = CNTR_ELEM("SendCsrReadBadAddrErr", 0, 0,
4966 			CNTR_NORMAL,
4967 			access_send_csr_read_bad_addr_err_cnt),
4968 [C_SEND_CSR_PARITY_ERR] = CNTR_ELEM("SendCsrParityErr", 0, 0,
4969 			CNTR_NORMAL,
4970 			access_send_csr_parity_cnt),
4971 /* SendCtxtErrStatus */
4972 [C_PIO_WRITE_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("PioWriteOutOfBoundsErr", 0, 0,
4973 			CNTR_NORMAL,
4974 			access_pio_write_out_of_bounds_err_cnt),
4975 [C_PIO_WRITE_OVERFLOW_ERR] = CNTR_ELEM("PioWriteOverflowErr", 0, 0,
4976 			CNTR_NORMAL,
4977 			access_pio_write_overflow_err_cnt),
4978 [C_PIO_WRITE_CROSSES_BOUNDARY_ERR] = CNTR_ELEM("PioWriteCrossesBoundaryErr",
4979 			0, 0, CNTR_NORMAL,
4980 			access_pio_write_crosses_boundary_err_cnt),
4981 [C_PIO_DISALLOWED_PACKET_ERR] = CNTR_ELEM("PioDisallowedPacketErr", 0, 0,
4982 			CNTR_NORMAL,
4983 			access_pio_disallowed_packet_err_cnt),
4984 [C_PIO_INCONSISTENT_SOP_ERR] = CNTR_ELEM("PioInconsistentSopErr", 0, 0,
4985 			CNTR_NORMAL,
4986 			access_pio_inconsistent_sop_err_cnt),
4987 /* SendDmaEngErrStatus */
4988 [C_SDMA_HEADER_REQUEST_FIFO_COR_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoCorErr",
4989 			0, 0, CNTR_NORMAL,
4990 			access_sdma_header_request_fifo_cor_err_cnt),
4991 [C_SDMA_HEADER_STORAGE_COR_ERR] = CNTR_ELEM("SDmaHeaderStorageCorErr", 0, 0,
4992 			CNTR_NORMAL,
4993 			access_sdma_header_storage_cor_err_cnt),
4994 [C_SDMA_PACKET_TRACKING_COR_ERR] = CNTR_ELEM("SDmaPacketTrackingCorErr", 0, 0,
4995 			CNTR_NORMAL,
4996 			access_sdma_packet_tracking_cor_err_cnt),
4997 [C_SDMA_ASSEMBLY_COR_ERR] = CNTR_ELEM("SDmaAssemblyCorErr", 0, 0,
4998 			CNTR_NORMAL,
4999 			access_sdma_assembly_cor_err_cnt),
5000 [C_SDMA_DESC_TABLE_COR_ERR] = CNTR_ELEM("SDmaDescTableCorErr", 0, 0,
5001 			CNTR_NORMAL,
5002 			access_sdma_desc_table_cor_err_cnt),
5003 [C_SDMA_HEADER_REQUEST_FIFO_UNC_ERR] = CNTR_ELEM("SDmaHeaderRequestFifoUncErr",
5004 			0, 0, CNTR_NORMAL,
5005 			access_sdma_header_request_fifo_unc_err_cnt),
5006 [C_SDMA_HEADER_STORAGE_UNC_ERR] = CNTR_ELEM("SDmaHeaderStorageUncErr", 0, 0,
5007 			CNTR_NORMAL,
5008 			access_sdma_header_storage_unc_err_cnt),
5009 [C_SDMA_PACKET_TRACKING_UNC_ERR] = CNTR_ELEM("SDmaPacketTrackingUncErr", 0, 0,
5010 			CNTR_NORMAL,
5011 			access_sdma_packet_tracking_unc_err_cnt),
5012 [C_SDMA_ASSEMBLY_UNC_ERR] = CNTR_ELEM("SDmaAssemblyUncErr", 0, 0,
5013 			CNTR_NORMAL,
5014 			access_sdma_assembly_unc_err_cnt),
5015 [C_SDMA_DESC_TABLE_UNC_ERR] = CNTR_ELEM("SDmaDescTableUncErr", 0, 0,
5016 			CNTR_NORMAL,
5017 			access_sdma_desc_table_unc_err_cnt),
5018 [C_SDMA_TIMEOUT_ERR] = CNTR_ELEM("SDmaTimeoutErr", 0, 0,
5019 			CNTR_NORMAL,
5020 			access_sdma_timeout_err_cnt),
5021 [C_SDMA_HEADER_LENGTH_ERR] = CNTR_ELEM("SDmaHeaderLengthErr", 0, 0,
5022 			CNTR_NORMAL,
5023 			access_sdma_header_length_err_cnt),
5024 [C_SDMA_HEADER_ADDRESS_ERR] = CNTR_ELEM("SDmaHeaderAddressErr", 0, 0,
5025 			CNTR_NORMAL,
5026 			access_sdma_header_address_err_cnt),
5027 [C_SDMA_HEADER_SELECT_ERR] = CNTR_ELEM("SDmaHeaderSelectErr", 0, 0,
5028 			CNTR_NORMAL,
5029 			access_sdma_header_select_err_cnt),
5030 [C_SMDA_RESERVED_9] = CNTR_ELEM("SDma Reserved 9", 0, 0,
5031 			CNTR_NORMAL,
5032 			access_sdma_reserved_9_err_cnt),
5033 [C_SDMA_PACKET_DESC_OVERFLOW_ERR] = CNTR_ELEM("SDmaPacketDescOverflowErr", 0, 0,
5034 			CNTR_NORMAL,
5035 			access_sdma_packet_desc_overflow_err_cnt),
5036 [C_SDMA_LENGTH_MISMATCH_ERR] = CNTR_ELEM("SDmaLengthMismatchErr", 0, 0,
5037 			CNTR_NORMAL,
5038 			access_sdma_length_mismatch_err_cnt),
5039 [C_SDMA_HALT_ERR] = CNTR_ELEM("SDmaHaltErr", 0, 0,
5040 			CNTR_NORMAL,
5041 			access_sdma_halt_err_cnt),
5042 [C_SDMA_MEM_READ_ERR] = CNTR_ELEM("SDmaMemReadErr", 0, 0,
5043 			CNTR_NORMAL,
5044 			access_sdma_mem_read_err_cnt),
5045 [C_SDMA_FIRST_DESC_ERR] = CNTR_ELEM("SDmaFirstDescErr", 0, 0,
5046 			CNTR_NORMAL,
5047 			access_sdma_first_desc_err_cnt),
5048 [C_SDMA_TAIL_OUT_OF_BOUNDS_ERR] = CNTR_ELEM("SDmaTailOutOfBoundsErr", 0, 0,
5049 			CNTR_NORMAL,
5050 			access_sdma_tail_out_of_bounds_err_cnt),
5051 [C_SDMA_TOO_LONG_ERR] = CNTR_ELEM("SDmaTooLongErr", 0, 0,
5052 			CNTR_NORMAL,
5053 			access_sdma_too_long_err_cnt),
5054 [C_SDMA_GEN_MISMATCH_ERR] = CNTR_ELEM("SDmaGenMismatchErr", 0, 0,
5055 			CNTR_NORMAL,
5056 			access_sdma_gen_mismatch_err_cnt),
5057 [C_SDMA_WRONG_DW_ERR] = CNTR_ELEM("SDmaWrongDwErr", 0, 0,
5058 			CNTR_NORMAL,
5059 			access_sdma_wrong_dw_err_cnt),
5060 };
5061 
5062 static struct cntr_entry port_cntrs[PORT_CNTR_LAST] = {
5063 [C_TX_UNSUP_VL] = TXE32_PORT_CNTR_ELEM(TxUnVLErr, SEND_UNSUP_VL_ERR_CNT,
5064 			CNTR_NORMAL),
5065 [C_TX_INVAL_LEN] = TXE32_PORT_CNTR_ELEM(TxInvalLen, SEND_LEN_ERR_CNT,
5066 			CNTR_NORMAL),
5067 [C_TX_MM_LEN_ERR] = TXE32_PORT_CNTR_ELEM(TxMMLenErr, SEND_MAX_MIN_LEN_ERR_CNT,
5068 			CNTR_NORMAL),
5069 [C_TX_UNDERRUN] = TXE32_PORT_CNTR_ELEM(TxUnderrun, SEND_UNDERRUN_CNT,
5070 			CNTR_NORMAL),
5071 [C_TX_FLOW_STALL] = TXE32_PORT_CNTR_ELEM(TxFlowStall, SEND_FLOW_STALL_CNT,
5072 			CNTR_NORMAL),
5073 [C_TX_DROPPED] = TXE32_PORT_CNTR_ELEM(TxDropped, SEND_DROPPED_PKT_CNT,
5074 			CNTR_NORMAL),
5075 [C_TX_HDR_ERR] = TXE32_PORT_CNTR_ELEM(TxHdrErr, SEND_HEADERS_ERR_CNT,
5076 			CNTR_NORMAL),
5077 [C_TX_PKT] = TXE64_PORT_CNTR_ELEM(TxPkt, SEND_DATA_PKT_CNT, CNTR_NORMAL),
5078 [C_TX_WORDS] = TXE64_PORT_CNTR_ELEM(TxWords, SEND_DWORD_CNT, CNTR_NORMAL),
5079 [C_TX_WAIT] = TXE64_PORT_CNTR_ELEM(TxWait, SEND_WAIT_CNT, CNTR_SYNTH),
5080 [C_TX_FLIT_VL] = TXE64_PORT_CNTR_ELEM(TxFlitVL, SEND_DATA_VL0_CNT,
5081 				      CNTR_SYNTH | CNTR_VL),
5082 [C_TX_PKT_VL] = TXE64_PORT_CNTR_ELEM(TxPktVL, SEND_DATA_PKT_VL0_CNT,
5083 				     CNTR_SYNTH | CNTR_VL),
5084 [C_TX_WAIT_VL] = TXE64_PORT_CNTR_ELEM(TxWaitVL, SEND_WAIT_VL0_CNT,
5085 				      CNTR_SYNTH | CNTR_VL),
5086 [C_RX_PKT] = RXE64_PORT_CNTR_ELEM(RxPkt, RCV_DATA_PKT_CNT, CNTR_NORMAL),
5087 [C_RX_WORDS] = RXE64_PORT_CNTR_ELEM(RxWords, RCV_DWORD_CNT, CNTR_NORMAL),
5088 [C_SW_LINK_DOWN] = CNTR_ELEM("SwLinkDown", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5089 			     access_sw_link_dn_cnt),
5090 [C_SW_LINK_UP] = CNTR_ELEM("SwLinkUp", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5091 			   access_sw_link_up_cnt),
5092 [C_SW_UNKNOWN_FRAME] = CNTR_ELEM("UnknownFrame", 0, 0, CNTR_NORMAL,
5093 				 access_sw_unknown_frame_cnt),
5094 [C_SW_XMIT_DSCD] = CNTR_ELEM("XmitDscd", 0, 0, CNTR_SYNTH | CNTR_32BIT,
5095 			     access_sw_xmit_discards),
5096 [C_SW_XMIT_DSCD_VL] = CNTR_ELEM("XmitDscdVl", 0, 0,
5097 				CNTR_SYNTH | CNTR_32BIT | CNTR_VL,
5098 				access_sw_xmit_discards),
5099 [C_SW_XMIT_CSTR_ERR] = CNTR_ELEM("XmitCstrErr", 0, 0, CNTR_SYNTH,
5100 				 access_xmit_constraint_errs),
5101 [C_SW_RCV_CSTR_ERR] = CNTR_ELEM("RcvCstrErr", 0, 0, CNTR_SYNTH,
5102 				access_rcv_constraint_errs),
5103 [C_SW_IBP_LOOP_PKTS] = SW_IBP_CNTR(LoopPkts, loop_pkts),
5104 [C_SW_IBP_RC_RESENDS] = SW_IBP_CNTR(RcResend, rc_resends),
5105 [C_SW_IBP_RNR_NAKS] = SW_IBP_CNTR(RnrNak, rnr_naks),
5106 [C_SW_IBP_OTHER_NAKS] = SW_IBP_CNTR(OtherNak, other_naks),
5107 [C_SW_IBP_RC_TIMEOUTS] = SW_IBP_CNTR(RcTimeOut, rc_timeouts),
5108 [C_SW_IBP_PKT_DROPS] = SW_IBP_CNTR(PktDrop, pkt_drops),
5109 [C_SW_IBP_DMA_WAIT] = SW_IBP_CNTR(DmaWait, dmawait),
5110 [C_SW_IBP_RC_SEQNAK] = SW_IBP_CNTR(RcSeqNak, rc_seqnak),
5111 [C_SW_IBP_RC_DUPREQ] = SW_IBP_CNTR(RcDupRew, rc_dupreq),
5112 [C_SW_IBP_RDMA_SEQ] = SW_IBP_CNTR(RdmaSeq, rdma_seq),
5113 [C_SW_IBP_UNALIGNED] = SW_IBP_CNTR(Unaligned, unaligned),
5114 [C_SW_IBP_SEQ_NAK] = SW_IBP_CNTR(SeqNak, seq_naks),
5115 [C_SW_CPU_RC_ACKS] = CNTR_ELEM("RcAcks", 0, 0, CNTR_NORMAL,
5116 			       access_sw_cpu_rc_acks),
5117 [C_SW_CPU_RC_QACKS] = CNTR_ELEM("RcQacks", 0, 0, CNTR_NORMAL,
5118 				access_sw_cpu_rc_qacks),
5119 [C_SW_CPU_RC_DELAYED_COMP] = CNTR_ELEM("RcDelayComp", 0, 0, CNTR_NORMAL,
5120 				       access_sw_cpu_rc_delayed_comp),
5121 [OVR_LBL(0)] = OVR_ELM(0), [OVR_LBL(1)] = OVR_ELM(1),
5122 [OVR_LBL(2)] = OVR_ELM(2), [OVR_LBL(3)] = OVR_ELM(3),
5123 [OVR_LBL(4)] = OVR_ELM(4), [OVR_LBL(5)] = OVR_ELM(5),
5124 [OVR_LBL(6)] = OVR_ELM(6), [OVR_LBL(7)] = OVR_ELM(7),
5125 [OVR_LBL(8)] = OVR_ELM(8), [OVR_LBL(9)] = OVR_ELM(9),
5126 [OVR_LBL(10)] = OVR_ELM(10), [OVR_LBL(11)] = OVR_ELM(11),
5127 [OVR_LBL(12)] = OVR_ELM(12), [OVR_LBL(13)] = OVR_ELM(13),
5128 [OVR_LBL(14)] = OVR_ELM(14), [OVR_LBL(15)] = OVR_ELM(15),
5129 [OVR_LBL(16)] = OVR_ELM(16), [OVR_LBL(17)] = OVR_ELM(17),
5130 [OVR_LBL(18)] = OVR_ELM(18), [OVR_LBL(19)] = OVR_ELM(19),
5131 [OVR_LBL(20)] = OVR_ELM(20), [OVR_LBL(21)] = OVR_ELM(21),
5132 [OVR_LBL(22)] = OVR_ELM(22), [OVR_LBL(23)] = OVR_ELM(23),
5133 [OVR_LBL(24)] = OVR_ELM(24), [OVR_LBL(25)] = OVR_ELM(25),
5134 [OVR_LBL(26)] = OVR_ELM(26), [OVR_LBL(27)] = OVR_ELM(27),
5135 [OVR_LBL(28)] = OVR_ELM(28), [OVR_LBL(29)] = OVR_ELM(29),
5136 [OVR_LBL(30)] = OVR_ELM(30), [OVR_LBL(31)] = OVR_ELM(31),
5137 [OVR_LBL(32)] = OVR_ELM(32), [OVR_LBL(33)] = OVR_ELM(33),
5138 [OVR_LBL(34)] = OVR_ELM(34), [OVR_LBL(35)] = OVR_ELM(35),
5139 [OVR_LBL(36)] = OVR_ELM(36), [OVR_LBL(37)] = OVR_ELM(37),
5140 [OVR_LBL(38)] = OVR_ELM(38), [OVR_LBL(39)] = OVR_ELM(39),
5141 [OVR_LBL(40)] = OVR_ELM(40), [OVR_LBL(41)] = OVR_ELM(41),
5142 [OVR_LBL(42)] = OVR_ELM(42), [OVR_LBL(43)] = OVR_ELM(43),
5143 [OVR_LBL(44)] = OVR_ELM(44), [OVR_LBL(45)] = OVR_ELM(45),
5144 [OVR_LBL(46)] = OVR_ELM(46), [OVR_LBL(47)] = OVR_ELM(47),
5145 [OVR_LBL(48)] = OVR_ELM(48), [OVR_LBL(49)] = OVR_ELM(49),
5146 [OVR_LBL(50)] = OVR_ELM(50), [OVR_LBL(51)] = OVR_ELM(51),
5147 [OVR_LBL(52)] = OVR_ELM(52), [OVR_LBL(53)] = OVR_ELM(53),
5148 [OVR_LBL(54)] = OVR_ELM(54), [OVR_LBL(55)] = OVR_ELM(55),
5149 [OVR_LBL(56)] = OVR_ELM(56), [OVR_LBL(57)] = OVR_ELM(57),
5150 [OVR_LBL(58)] = OVR_ELM(58), [OVR_LBL(59)] = OVR_ELM(59),
5151 [OVR_LBL(60)] = OVR_ELM(60), [OVR_LBL(61)] = OVR_ELM(61),
5152 [OVR_LBL(62)] = OVR_ELM(62), [OVR_LBL(63)] = OVR_ELM(63),
5153 [OVR_LBL(64)] = OVR_ELM(64), [OVR_LBL(65)] = OVR_ELM(65),
5154 [OVR_LBL(66)] = OVR_ELM(66), [OVR_LBL(67)] = OVR_ELM(67),
5155 [OVR_LBL(68)] = OVR_ELM(68), [OVR_LBL(69)] = OVR_ELM(69),
5156 [OVR_LBL(70)] = OVR_ELM(70), [OVR_LBL(71)] = OVR_ELM(71),
5157 [OVR_LBL(72)] = OVR_ELM(72), [OVR_LBL(73)] = OVR_ELM(73),
5158 [OVR_LBL(74)] = OVR_ELM(74), [OVR_LBL(75)] = OVR_ELM(75),
5159 [OVR_LBL(76)] = OVR_ELM(76), [OVR_LBL(77)] = OVR_ELM(77),
5160 [OVR_LBL(78)] = OVR_ELM(78), [OVR_LBL(79)] = OVR_ELM(79),
5161 [OVR_LBL(80)] = OVR_ELM(80), [OVR_LBL(81)] = OVR_ELM(81),
5162 [OVR_LBL(82)] = OVR_ELM(82), [OVR_LBL(83)] = OVR_ELM(83),
5163 [OVR_LBL(84)] = OVR_ELM(84), [OVR_LBL(85)] = OVR_ELM(85),
5164 [OVR_LBL(86)] = OVR_ELM(86), [OVR_LBL(87)] = OVR_ELM(87),
5165 [OVR_LBL(88)] = OVR_ELM(88), [OVR_LBL(89)] = OVR_ELM(89),
5166 [OVR_LBL(90)] = OVR_ELM(90), [OVR_LBL(91)] = OVR_ELM(91),
5167 [OVR_LBL(92)] = OVR_ELM(92), [OVR_LBL(93)] = OVR_ELM(93),
5168 [OVR_LBL(94)] = OVR_ELM(94), [OVR_LBL(95)] = OVR_ELM(95),
5169 [OVR_LBL(96)] = OVR_ELM(96), [OVR_LBL(97)] = OVR_ELM(97),
5170 [OVR_LBL(98)] = OVR_ELM(98), [OVR_LBL(99)] = OVR_ELM(99),
5171 [OVR_LBL(100)] = OVR_ELM(100), [OVR_LBL(101)] = OVR_ELM(101),
5172 [OVR_LBL(102)] = OVR_ELM(102), [OVR_LBL(103)] = OVR_ELM(103),
5173 [OVR_LBL(104)] = OVR_ELM(104), [OVR_LBL(105)] = OVR_ELM(105),
5174 [OVR_LBL(106)] = OVR_ELM(106), [OVR_LBL(107)] = OVR_ELM(107),
5175 [OVR_LBL(108)] = OVR_ELM(108), [OVR_LBL(109)] = OVR_ELM(109),
5176 [OVR_LBL(110)] = OVR_ELM(110), [OVR_LBL(111)] = OVR_ELM(111),
5177 [OVR_LBL(112)] = OVR_ELM(112), [OVR_LBL(113)] = OVR_ELM(113),
5178 [OVR_LBL(114)] = OVR_ELM(114), [OVR_LBL(115)] = OVR_ELM(115),
5179 [OVR_LBL(116)] = OVR_ELM(116), [OVR_LBL(117)] = OVR_ELM(117),
5180 [OVR_LBL(118)] = OVR_ELM(118), [OVR_LBL(119)] = OVR_ELM(119),
5181 [OVR_LBL(120)] = OVR_ELM(120), [OVR_LBL(121)] = OVR_ELM(121),
5182 [OVR_LBL(122)] = OVR_ELM(122), [OVR_LBL(123)] = OVR_ELM(123),
5183 [OVR_LBL(124)] = OVR_ELM(124), [OVR_LBL(125)] = OVR_ELM(125),
5184 [OVR_LBL(126)] = OVR_ELM(126), [OVR_LBL(127)] = OVR_ELM(127),
5185 [OVR_LBL(128)] = OVR_ELM(128), [OVR_LBL(129)] = OVR_ELM(129),
5186 [OVR_LBL(130)] = OVR_ELM(130), [OVR_LBL(131)] = OVR_ELM(131),
5187 [OVR_LBL(132)] = OVR_ELM(132), [OVR_LBL(133)] = OVR_ELM(133),
5188 [OVR_LBL(134)] = OVR_ELM(134), [OVR_LBL(135)] = OVR_ELM(135),
5189 [OVR_LBL(136)] = OVR_ELM(136), [OVR_LBL(137)] = OVR_ELM(137),
5190 [OVR_LBL(138)] = OVR_ELM(138), [OVR_LBL(139)] = OVR_ELM(139),
5191 [OVR_LBL(140)] = OVR_ELM(140), [OVR_LBL(141)] = OVR_ELM(141),
5192 [OVR_LBL(142)] = OVR_ELM(142), [OVR_LBL(143)] = OVR_ELM(143),
5193 [OVR_LBL(144)] = OVR_ELM(144), [OVR_LBL(145)] = OVR_ELM(145),
5194 [OVR_LBL(146)] = OVR_ELM(146), [OVR_LBL(147)] = OVR_ELM(147),
5195 [OVR_LBL(148)] = OVR_ELM(148), [OVR_LBL(149)] = OVR_ELM(149),
5196 [OVR_LBL(150)] = OVR_ELM(150), [OVR_LBL(151)] = OVR_ELM(151),
5197 [OVR_LBL(152)] = OVR_ELM(152), [OVR_LBL(153)] = OVR_ELM(153),
5198 [OVR_LBL(154)] = OVR_ELM(154), [OVR_LBL(155)] = OVR_ELM(155),
5199 [OVR_LBL(156)] = OVR_ELM(156), [OVR_LBL(157)] = OVR_ELM(157),
5200 [OVR_LBL(158)] = OVR_ELM(158), [OVR_LBL(159)] = OVR_ELM(159),
5201 };
5202 
5203 /* ======================================================================== */
5204 
5205 /* return true if this is chip revision revision a */
5206 int is_ax(struct hfi1_devdata *dd)
5207 {
5208 	u8 chip_rev_minor =
5209 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5210 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5211 	return (chip_rev_minor & 0xf0) == 0;
5212 }
5213 
5214 /* return true if this is chip revision revision b */
5215 int is_bx(struct hfi1_devdata *dd)
5216 {
5217 	u8 chip_rev_minor =
5218 		dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT
5219 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
5220 	return (chip_rev_minor & 0xF0) == 0x10;
5221 }
5222 
5223 /*
5224  * Append string s to buffer buf.  Arguments curp and len are the current
5225  * position and remaining length, respectively.
5226  *
5227  * return 0 on success, 1 on out of room
5228  */
5229 static int append_str(char *buf, char **curp, int *lenp, const char *s)
5230 {
5231 	char *p = *curp;
5232 	int len = *lenp;
5233 	int result = 0; /* success */
5234 	char c;
5235 
5236 	/* add a comma, if first in the buffer */
5237 	if (p != buf) {
5238 		if (len == 0) {
5239 			result = 1; /* out of room */
5240 			goto done;
5241 		}
5242 		*p++ = ',';
5243 		len--;
5244 	}
5245 
5246 	/* copy the string */
5247 	while ((c = *s++) != 0) {
5248 		if (len == 0) {
5249 			result = 1; /* out of room */
5250 			goto done;
5251 		}
5252 		*p++ = c;
5253 		len--;
5254 	}
5255 
5256 done:
5257 	/* write return values */
5258 	*curp = p;
5259 	*lenp = len;
5260 
5261 	return result;
5262 }
5263 
5264 /*
5265  * Using the given flag table, print a comma separated string into
5266  * the buffer.  End in '*' if the buffer is too short.
5267  */
5268 static char *flag_string(char *buf, int buf_len, u64 flags,
5269 			 struct flag_table *table, int table_size)
5270 {
5271 	char extra[32];
5272 	char *p = buf;
5273 	int len = buf_len;
5274 	int no_room = 0;
5275 	int i;
5276 
5277 	/* make sure there is at least 2 so we can form "*" */
5278 	if (len < 2)
5279 		return "";
5280 
5281 	len--;	/* leave room for a nul */
5282 	for (i = 0; i < table_size; i++) {
5283 		if (flags & table[i].flag) {
5284 			no_room = append_str(buf, &p, &len, table[i].str);
5285 			if (no_room)
5286 				break;
5287 			flags &= ~table[i].flag;
5288 		}
5289 	}
5290 
5291 	/* any undocumented bits left? */
5292 	if (!no_room && flags) {
5293 		snprintf(extra, sizeof(extra), "bits 0x%llx", flags);
5294 		no_room = append_str(buf, &p, &len, extra);
5295 	}
5296 
5297 	/* add * if ran out of room */
5298 	if (no_room) {
5299 		/* may need to back up to add space for a '*' */
5300 		if (len == 0)
5301 			--p;
5302 		*p++ = '*';
5303 	}
5304 
5305 	/* add final nul - space already allocated above */
5306 	*p = 0;
5307 	return buf;
5308 }
5309 
5310 /* first 8 CCE error interrupt source names */
5311 static const char * const cce_misc_names[] = {
5312 	"CceErrInt",		/* 0 */
5313 	"RxeErrInt",		/* 1 */
5314 	"MiscErrInt",		/* 2 */
5315 	"Reserved3",		/* 3 */
5316 	"PioErrInt",		/* 4 */
5317 	"SDmaErrInt",		/* 5 */
5318 	"EgressErrInt",		/* 6 */
5319 	"TxeErrInt"		/* 7 */
5320 };
5321 
5322 /*
5323  * Return the miscellaneous error interrupt name.
5324  */
5325 static char *is_misc_err_name(char *buf, size_t bsize, unsigned int source)
5326 {
5327 	if (source < ARRAY_SIZE(cce_misc_names))
5328 		strncpy(buf, cce_misc_names[source], bsize);
5329 	else
5330 		snprintf(buf, bsize, "Reserved%u",
5331 			 source + IS_GENERAL_ERR_START);
5332 
5333 	return buf;
5334 }
5335 
5336 /*
5337  * Return the SDMA engine error interrupt name.
5338  */
5339 static char *is_sdma_eng_err_name(char *buf, size_t bsize, unsigned int source)
5340 {
5341 	snprintf(buf, bsize, "SDmaEngErrInt%u", source);
5342 	return buf;
5343 }
5344 
5345 /*
5346  * Return the send context error interrupt name.
5347  */
5348 static char *is_sendctxt_err_name(char *buf, size_t bsize, unsigned int source)
5349 {
5350 	snprintf(buf, bsize, "SendCtxtErrInt%u", source);
5351 	return buf;
5352 }
5353 
5354 static const char * const various_names[] = {
5355 	"PbcInt",
5356 	"GpioAssertInt",
5357 	"Qsfp1Int",
5358 	"Qsfp2Int",
5359 	"TCritInt"
5360 };
5361 
5362 /*
5363  * Return the various interrupt name.
5364  */
5365 static char *is_various_name(char *buf, size_t bsize, unsigned int source)
5366 {
5367 	if (source < ARRAY_SIZE(various_names))
5368 		strncpy(buf, various_names[source], bsize);
5369 	else
5370 		snprintf(buf, bsize, "Reserved%u", source + IS_VARIOUS_START);
5371 	return buf;
5372 }
5373 
5374 /*
5375  * Return the DC interrupt name.
5376  */
5377 static char *is_dc_name(char *buf, size_t bsize, unsigned int source)
5378 {
5379 	static const char * const dc_int_names[] = {
5380 		"common",
5381 		"lcb",
5382 		"8051",
5383 		"lbm"	/* local block merge */
5384 	};
5385 
5386 	if (source < ARRAY_SIZE(dc_int_names))
5387 		snprintf(buf, bsize, "dc_%s_int", dc_int_names[source]);
5388 	else
5389 		snprintf(buf, bsize, "DCInt%u", source);
5390 	return buf;
5391 }
5392 
5393 static const char * const sdma_int_names[] = {
5394 	"SDmaInt",
5395 	"SdmaIdleInt",
5396 	"SdmaProgressInt",
5397 };
5398 
5399 /*
5400  * Return the SDMA engine interrupt name.
5401  */
5402 static char *is_sdma_eng_name(char *buf, size_t bsize, unsigned int source)
5403 {
5404 	/* what interrupt */
5405 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
5406 	/* which engine */
5407 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
5408 
5409 	if (likely(what < 3))
5410 		snprintf(buf, bsize, "%s%u", sdma_int_names[what], which);
5411 	else
5412 		snprintf(buf, bsize, "Invalid SDMA interrupt %u", source);
5413 	return buf;
5414 }
5415 
5416 /*
5417  * Return the receive available interrupt name.
5418  */
5419 static char *is_rcv_avail_name(char *buf, size_t bsize, unsigned int source)
5420 {
5421 	snprintf(buf, bsize, "RcvAvailInt%u", source);
5422 	return buf;
5423 }
5424 
5425 /*
5426  * Return the receive urgent interrupt name.
5427  */
5428 static char *is_rcv_urgent_name(char *buf, size_t bsize, unsigned int source)
5429 {
5430 	snprintf(buf, bsize, "RcvUrgentInt%u", source);
5431 	return buf;
5432 }
5433 
5434 /*
5435  * Return the send credit interrupt name.
5436  */
5437 static char *is_send_credit_name(char *buf, size_t bsize, unsigned int source)
5438 {
5439 	snprintf(buf, bsize, "SendCreditInt%u", source);
5440 	return buf;
5441 }
5442 
5443 /*
5444  * Return the reserved interrupt name.
5445  */
5446 static char *is_reserved_name(char *buf, size_t bsize, unsigned int source)
5447 {
5448 	snprintf(buf, bsize, "Reserved%u", source + IS_RESERVED_START);
5449 	return buf;
5450 }
5451 
5452 static char *cce_err_status_string(char *buf, int buf_len, u64 flags)
5453 {
5454 	return flag_string(buf, buf_len, flags,
5455 			   cce_err_status_flags,
5456 			   ARRAY_SIZE(cce_err_status_flags));
5457 }
5458 
5459 static char *rxe_err_status_string(char *buf, int buf_len, u64 flags)
5460 {
5461 	return flag_string(buf, buf_len, flags,
5462 			   rxe_err_status_flags,
5463 			   ARRAY_SIZE(rxe_err_status_flags));
5464 }
5465 
5466 static char *misc_err_status_string(char *buf, int buf_len, u64 flags)
5467 {
5468 	return flag_string(buf, buf_len, flags, misc_err_status_flags,
5469 			   ARRAY_SIZE(misc_err_status_flags));
5470 }
5471 
5472 static char *pio_err_status_string(char *buf, int buf_len, u64 flags)
5473 {
5474 	return flag_string(buf, buf_len, flags,
5475 			   pio_err_status_flags,
5476 			   ARRAY_SIZE(pio_err_status_flags));
5477 }
5478 
5479 static char *sdma_err_status_string(char *buf, int buf_len, u64 flags)
5480 {
5481 	return flag_string(buf, buf_len, flags,
5482 			   sdma_err_status_flags,
5483 			   ARRAY_SIZE(sdma_err_status_flags));
5484 }
5485 
5486 static char *egress_err_status_string(char *buf, int buf_len, u64 flags)
5487 {
5488 	return flag_string(buf, buf_len, flags,
5489 			   egress_err_status_flags,
5490 			   ARRAY_SIZE(egress_err_status_flags));
5491 }
5492 
5493 static char *egress_err_info_string(char *buf, int buf_len, u64 flags)
5494 {
5495 	return flag_string(buf, buf_len, flags,
5496 			   egress_err_info_flags,
5497 			   ARRAY_SIZE(egress_err_info_flags));
5498 }
5499 
5500 static char *send_err_status_string(char *buf, int buf_len, u64 flags)
5501 {
5502 	return flag_string(buf, buf_len, flags,
5503 			   send_err_status_flags,
5504 			   ARRAY_SIZE(send_err_status_flags));
5505 }
5506 
5507 static void handle_cce_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5508 {
5509 	char buf[96];
5510 	int i = 0;
5511 
5512 	/*
5513 	 * For most these errors, there is nothing that can be done except
5514 	 * report or record it.
5515 	 */
5516 	dd_dev_info(dd, "CCE Error: %s\n",
5517 		    cce_err_status_string(buf, sizeof(buf), reg));
5518 
5519 	if ((reg & CCE_ERR_STATUS_CCE_CLI2_ASYNC_FIFO_PARITY_ERR_SMASK) &&
5520 	    is_ax(dd) && (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)) {
5521 		/* this error requires a manual drop into SPC freeze mode */
5522 		/* then a fix up */
5523 		start_freeze_handling(dd->pport, FREEZE_SELF);
5524 	}
5525 
5526 	for (i = 0; i < NUM_CCE_ERR_STATUS_COUNTERS; i++) {
5527 		if (reg & (1ull << i)) {
5528 			incr_cntr64(&dd->cce_err_status_cnt[i]);
5529 			/* maintain a counter over all cce_err_status errors */
5530 			incr_cntr64(&dd->sw_cce_err_status_aggregate);
5531 		}
5532 	}
5533 }
5534 
5535 /*
5536  * Check counters for receive errors that do not have an interrupt
5537  * associated with them.
5538  */
5539 #define RCVERR_CHECK_TIME 10
5540 static void update_rcverr_timer(struct timer_list *t)
5541 {
5542 	struct hfi1_devdata *dd = from_timer(dd, t, rcverr_timer);
5543 	struct hfi1_pportdata *ppd = dd->pport;
5544 	u32 cur_ovfl_cnt = read_dev_cntr(dd, C_RCV_OVF, CNTR_INVALID_VL);
5545 
5546 	if (dd->rcv_ovfl_cnt < cur_ovfl_cnt &&
5547 	    ppd->port_error_action & OPA_PI_MASK_EX_BUFFER_OVERRUN) {
5548 		dd_dev_info(dd, "%s: PortErrorAction bounce\n", __func__);
5549 		set_link_down_reason(
5550 		ppd, OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN, 0,
5551 		OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN);
5552 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
5553 	}
5554 	dd->rcv_ovfl_cnt = (u32)cur_ovfl_cnt;
5555 
5556 	mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5557 }
5558 
5559 static int init_rcverr(struct hfi1_devdata *dd)
5560 {
5561 	timer_setup(&dd->rcverr_timer, update_rcverr_timer, 0);
5562 	/* Assume the hardware counter has been reset */
5563 	dd->rcv_ovfl_cnt = 0;
5564 	return mod_timer(&dd->rcverr_timer, jiffies + HZ * RCVERR_CHECK_TIME);
5565 }
5566 
5567 static void free_rcverr(struct hfi1_devdata *dd)
5568 {
5569 	if (dd->rcverr_timer.function)
5570 		del_timer_sync(&dd->rcverr_timer);
5571 }
5572 
5573 static void handle_rxe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5574 {
5575 	char buf[96];
5576 	int i = 0;
5577 
5578 	dd_dev_info(dd, "Receive Error: %s\n",
5579 		    rxe_err_status_string(buf, sizeof(buf), reg));
5580 
5581 	if (reg & ALL_RXE_FREEZE_ERR) {
5582 		int flags = 0;
5583 
5584 		/*
5585 		 * Freeze mode recovery is disabled for the errors
5586 		 * in RXE_FREEZE_ABORT_MASK
5587 		 */
5588 		if (is_ax(dd) && (reg & RXE_FREEZE_ABORT_MASK))
5589 			flags = FREEZE_ABORT;
5590 
5591 		start_freeze_handling(dd->pport, flags);
5592 	}
5593 
5594 	for (i = 0; i < NUM_RCV_ERR_STATUS_COUNTERS; i++) {
5595 		if (reg & (1ull << i))
5596 			incr_cntr64(&dd->rcv_err_status_cnt[i]);
5597 	}
5598 }
5599 
5600 static void handle_misc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5601 {
5602 	char buf[96];
5603 	int i = 0;
5604 
5605 	dd_dev_info(dd, "Misc Error: %s",
5606 		    misc_err_status_string(buf, sizeof(buf), reg));
5607 	for (i = 0; i < NUM_MISC_ERR_STATUS_COUNTERS; i++) {
5608 		if (reg & (1ull << i))
5609 			incr_cntr64(&dd->misc_err_status_cnt[i]);
5610 	}
5611 }
5612 
5613 static void handle_pio_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5614 {
5615 	char buf[96];
5616 	int i = 0;
5617 
5618 	dd_dev_info(dd, "PIO Error: %s\n",
5619 		    pio_err_status_string(buf, sizeof(buf), reg));
5620 
5621 	if (reg & ALL_PIO_FREEZE_ERR)
5622 		start_freeze_handling(dd->pport, 0);
5623 
5624 	for (i = 0; i < NUM_SEND_PIO_ERR_STATUS_COUNTERS; i++) {
5625 		if (reg & (1ull << i))
5626 			incr_cntr64(&dd->send_pio_err_status_cnt[i]);
5627 	}
5628 }
5629 
5630 static void handle_sdma_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5631 {
5632 	char buf[96];
5633 	int i = 0;
5634 
5635 	dd_dev_info(dd, "SDMA Error: %s\n",
5636 		    sdma_err_status_string(buf, sizeof(buf), reg));
5637 
5638 	if (reg & ALL_SDMA_FREEZE_ERR)
5639 		start_freeze_handling(dd->pport, 0);
5640 
5641 	for (i = 0; i < NUM_SEND_DMA_ERR_STATUS_COUNTERS; i++) {
5642 		if (reg & (1ull << i))
5643 			incr_cntr64(&dd->send_dma_err_status_cnt[i]);
5644 	}
5645 }
5646 
5647 static inline void __count_port_discards(struct hfi1_pportdata *ppd)
5648 {
5649 	incr_cntr64(&ppd->port_xmit_discards);
5650 }
5651 
5652 static void count_port_inactive(struct hfi1_devdata *dd)
5653 {
5654 	__count_port_discards(dd->pport);
5655 }
5656 
5657 /*
5658  * We have had a "disallowed packet" error during egress. Determine the
5659  * integrity check which failed, and update relevant error counter, etc.
5660  *
5661  * Note that the SEND_EGRESS_ERR_INFO register has only a single
5662  * bit of state per integrity check, and so we can miss the reason for an
5663  * egress error if more than one packet fails the same integrity check
5664  * since we cleared the corresponding bit in SEND_EGRESS_ERR_INFO.
5665  */
5666 static void handle_send_egress_err_info(struct hfi1_devdata *dd,
5667 					int vl)
5668 {
5669 	struct hfi1_pportdata *ppd = dd->pport;
5670 	u64 src = read_csr(dd, SEND_EGRESS_ERR_SOURCE); /* read first */
5671 	u64 info = read_csr(dd, SEND_EGRESS_ERR_INFO);
5672 	char buf[96];
5673 
5674 	/* clear down all observed info as quickly as possible after read */
5675 	write_csr(dd, SEND_EGRESS_ERR_INFO, info);
5676 
5677 	dd_dev_info(dd,
5678 		    "Egress Error Info: 0x%llx, %s Egress Error Src 0x%llx\n",
5679 		    info, egress_err_info_string(buf, sizeof(buf), info), src);
5680 
5681 	/* Eventually add other counters for each bit */
5682 	if (info & PORT_DISCARD_EGRESS_ERRS) {
5683 		int weight, i;
5684 
5685 		/*
5686 		 * Count all applicable bits as individual errors and
5687 		 * attribute them to the packet that triggered this handler.
5688 		 * This may not be completely accurate due to limitations
5689 		 * on the available hardware error information.  There is
5690 		 * a single information register and any number of error
5691 		 * packets may have occurred and contributed to it before
5692 		 * this routine is called.  This means that:
5693 		 * a) If multiple packets with the same error occur before
5694 		 *    this routine is called, earlier packets are missed.
5695 		 *    There is only a single bit for each error type.
5696 		 * b) Errors may not be attributed to the correct VL.
5697 		 *    The driver is attributing all bits in the info register
5698 		 *    to the packet that triggered this call, but bits
5699 		 *    could be an accumulation of different packets with
5700 		 *    different VLs.
5701 		 * c) A single error packet may have multiple counts attached
5702 		 *    to it.  There is no way for the driver to know if
5703 		 *    multiple bits set in the info register are due to a
5704 		 *    single packet or multiple packets.  The driver assumes
5705 		 *    multiple packets.
5706 		 */
5707 		weight = hweight64(info & PORT_DISCARD_EGRESS_ERRS);
5708 		for (i = 0; i < weight; i++) {
5709 			__count_port_discards(ppd);
5710 			if (vl >= 0 && vl < TXE_NUM_DATA_VL)
5711 				incr_cntr64(&ppd->port_xmit_discards_vl[vl]);
5712 			else if (vl == 15)
5713 				incr_cntr64(&ppd->port_xmit_discards_vl
5714 					    [C_VL_15]);
5715 		}
5716 	}
5717 }
5718 
5719 /*
5720  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5721  * register. Does it represent a 'port inactive' error?
5722  */
5723 static inline int port_inactive_err(u64 posn)
5724 {
5725 	return (posn >= SEES(TX_LINKDOWN) &&
5726 		posn <= SEES(TX_INCORRECT_LINK_STATE));
5727 }
5728 
5729 /*
5730  * Input value is a bit position within the SEND_EGRESS_ERR_STATUS
5731  * register. Does it represent a 'disallowed packet' error?
5732  */
5733 static inline int disallowed_pkt_err(int posn)
5734 {
5735 	return (posn >= SEES(TX_SDMA0_DISALLOWED_PACKET) &&
5736 		posn <= SEES(TX_SDMA15_DISALLOWED_PACKET));
5737 }
5738 
5739 /*
5740  * Input value is a bit position of one of the SDMA engine disallowed
5741  * packet errors.  Return which engine.  Use of this must be guarded by
5742  * disallowed_pkt_err().
5743  */
5744 static inline int disallowed_pkt_engine(int posn)
5745 {
5746 	return posn - SEES(TX_SDMA0_DISALLOWED_PACKET);
5747 }
5748 
5749 /*
5750  * Translate an SDMA engine to a VL.  Return -1 if the tranlation cannot
5751  * be done.
5752  */
5753 static int engine_to_vl(struct hfi1_devdata *dd, int engine)
5754 {
5755 	struct sdma_vl_map *m;
5756 	int vl;
5757 
5758 	/* range check */
5759 	if (engine < 0 || engine >= TXE_NUM_SDMA_ENGINES)
5760 		return -1;
5761 
5762 	rcu_read_lock();
5763 	m = rcu_dereference(dd->sdma_map);
5764 	vl = m->engine_to_vl[engine];
5765 	rcu_read_unlock();
5766 
5767 	return vl;
5768 }
5769 
5770 /*
5771  * Translate the send context (sofware index) into a VL.  Return -1 if the
5772  * translation cannot be done.
5773  */
5774 static int sc_to_vl(struct hfi1_devdata *dd, int sw_index)
5775 {
5776 	struct send_context_info *sci;
5777 	struct send_context *sc;
5778 	int i;
5779 
5780 	sci = &dd->send_contexts[sw_index];
5781 
5782 	/* there is no information for user (PSM) and ack contexts */
5783 	if ((sci->type != SC_KERNEL) && (sci->type != SC_VL15))
5784 		return -1;
5785 
5786 	sc = sci->sc;
5787 	if (!sc)
5788 		return -1;
5789 	if (dd->vld[15].sc == sc)
5790 		return 15;
5791 	for (i = 0; i < num_vls; i++)
5792 		if (dd->vld[i].sc == sc)
5793 			return i;
5794 
5795 	return -1;
5796 }
5797 
5798 static void handle_egress_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5799 {
5800 	u64 reg_copy = reg, handled = 0;
5801 	char buf[96];
5802 	int i = 0;
5803 
5804 	if (reg & ALL_TXE_EGRESS_FREEZE_ERR)
5805 		start_freeze_handling(dd->pport, 0);
5806 	else if (is_ax(dd) &&
5807 		 (reg & SEND_EGRESS_ERR_STATUS_TX_CREDIT_RETURN_VL_ERR_SMASK) &&
5808 		 (dd->icode != ICODE_FUNCTIONAL_SIMULATOR))
5809 		start_freeze_handling(dd->pport, 0);
5810 
5811 	while (reg_copy) {
5812 		int posn = fls64(reg_copy);
5813 		/* fls64() returns a 1-based offset, we want it zero based */
5814 		int shift = posn - 1;
5815 		u64 mask = 1ULL << shift;
5816 
5817 		if (port_inactive_err(shift)) {
5818 			count_port_inactive(dd);
5819 			handled |= mask;
5820 		} else if (disallowed_pkt_err(shift)) {
5821 			int vl = engine_to_vl(dd, disallowed_pkt_engine(shift));
5822 
5823 			handle_send_egress_err_info(dd, vl);
5824 			handled |= mask;
5825 		}
5826 		reg_copy &= ~mask;
5827 	}
5828 
5829 	reg &= ~handled;
5830 
5831 	if (reg)
5832 		dd_dev_info(dd, "Egress Error: %s\n",
5833 			    egress_err_status_string(buf, sizeof(buf), reg));
5834 
5835 	for (i = 0; i < NUM_SEND_EGRESS_ERR_STATUS_COUNTERS; i++) {
5836 		if (reg & (1ull << i))
5837 			incr_cntr64(&dd->send_egress_err_status_cnt[i]);
5838 	}
5839 }
5840 
5841 static void handle_txe_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
5842 {
5843 	char buf[96];
5844 	int i = 0;
5845 
5846 	dd_dev_info(dd, "Send Error: %s\n",
5847 		    send_err_status_string(buf, sizeof(buf), reg));
5848 
5849 	for (i = 0; i < NUM_SEND_ERR_STATUS_COUNTERS; i++) {
5850 		if (reg & (1ull << i))
5851 			incr_cntr64(&dd->send_err_status_cnt[i]);
5852 	}
5853 }
5854 
5855 /*
5856  * The maximum number of times the error clear down will loop before
5857  * blocking a repeating error.  This value is arbitrary.
5858  */
5859 #define MAX_CLEAR_COUNT 20
5860 
5861 /*
5862  * Clear and handle an error register.  All error interrupts are funneled
5863  * through here to have a central location to correctly handle single-
5864  * or multi-shot errors.
5865  *
5866  * For non per-context registers, call this routine with a context value
5867  * of 0 so the per-context offset is zero.
5868  *
5869  * If the handler loops too many times, assume that something is wrong
5870  * and can't be fixed, so mask the error bits.
5871  */
5872 static void interrupt_clear_down(struct hfi1_devdata *dd,
5873 				 u32 context,
5874 				 const struct err_reg_info *eri)
5875 {
5876 	u64 reg;
5877 	u32 count;
5878 
5879 	/* read in a loop until no more errors are seen */
5880 	count = 0;
5881 	while (1) {
5882 		reg = read_kctxt_csr(dd, context, eri->status);
5883 		if (reg == 0)
5884 			break;
5885 		write_kctxt_csr(dd, context, eri->clear, reg);
5886 		if (likely(eri->handler))
5887 			eri->handler(dd, context, reg);
5888 		count++;
5889 		if (count > MAX_CLEAR_COUNT) {
5890 			u64 mask;
5891 
5892 			dd_dev_err(dd, "Repeating %s bits 0x%llx - masking\n",
5893 				   eri->desc, reg);
5894 			/*
5895 			 * Read-modify-write so any other masked bits
5896 			 * remain masked.
5897 			 */
5898 			mask = read_kctxt_csr(dd, context, eri->mask);
5899 			mask &= ~reg;
5900 			write_kctxt_csr(dd, context, eri->mask, mask);
5901 			break;
5902 		}
5903 	}
5904 }
5905 
5906 /*
5907  * CCE block "misc" interrupt.  Source is < 16.
5908  */
5909 static void is_misc_err_int(struct hfi1_devdata *dd, unsigned int source)
5910 {
5911 	const struct err_reg_info *eri = &misc_errs[source];
5912 
5913 	if (eri->handler) {
5914 		interrupt_clear_down(dd, 0, eri);
5915 	} else {
5916 		dd_dev_err(dd, "Unexpected misc interrupt (%u) - reserved\n",
5917 			   source);
5918 	}
5919 }
5920 
5921 static char *send_context_err_status_string(char *buf, int buf_len, u64 flags)
5922 {
5923 	return flag_string(buf, buf_len, flags,
5924 			   sc_err_status_flags,
5925 			   ARRAY_SIZE(sc_err_status_flags));
5926 }
5927 
5928 /*
5929  * Send context error interrupt.  Source (hw_context) is < 160.
5930  *
5931  * All send context errors cause the send context to halt.  The normal
5932  * clear-down mechanism cannot be used because we cannot clear the
5933  * error bits until several other long-running items are done first.
5934  * This is OK because with the context halted, nothing else is going
5935  * to happen on it anyway.
5936  */
5937 static void is_sendctxt_err_int(struct hfi1_devdata *dd,
5938 				unsigned int hw_context)
5939 {
5940 	struct send_context_info *sci;
5941 	struct send_context *sc;
5942 	char flags[96];
5943 	u64 status;
5944 	u32 sw_index;
5945 	int i = 0;
5946 	unsigned long irq_flags;
5947 
5948 	sw_index = dd->hw_to_sw[hw_context];
5949 	if (sw_index >= dd->num_send_contexts) {
5950 		dd_dev_err(dd,
5951 			   "out of range sw index %u for send context %u\n",
5952 			   sw_index, hw_context);
5953 		return;
5954 	}
5955 	sci = &dd->send_contexts[sw_index];
5956 	spin_lock_irqsave(&dd->sc_lock, irq_flags);
5957 	sc = sci->sc;
5958 	if (!sc) {
5959 		dd_dev_err(dd, "%s: context %u(%u): no sc?\n", __func__,
5960 			   sw_index, hw_context);
5961 		spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5962 		return;
5963 	}
5964 
5965 	/* tell the software that a halt has begun */
5966 	sc_stop(sc, SCF_HALTED);
5967 
5968 	status = read_kctxt_csr(dd, hw_context, SEND_CTXT_ERR_STATUS);
5969 
5970 	dd_dev_info(dd, "Send Context %u(%u) Error: %s\n", sw_index, hw_context,
5971 		    send_context_err_status_string(flags, sizeof(flags),
5972 						   status));
5973 
5974 	if (status & SEND_CTXT_ERR_STATUS_PIO_DISALLOWED_PACKET_ERR_SMASK)
5975 		handle_send_egress_err_info(dd, sc_to_vl(dd, sw_index));
5976 
5977 	/*
5978 	 * Automatically restart halted kernel contexts out of interrupt
5979 	 * context.  User contexts must ask the driver to restart the context.
5980 	 */
5981 	if (sc->type != SC_USER)
5982 		queue_work(dd->pport->hfi1_wq, &sc->halt_work);
5983 	spin_unlock_irqrestore(&dd->sc_lock, irq_flags);
5984 
5985 	/*
5986 	 * Update the counters for the corresponding status bits.
5987 	 * Note that these particular counters are aggregated over all
5988 	 * 160 contexts.
5989 	 */
5990 	for (i = 0; i < NUM_SEND_CTXT_ERR_STATUS_COUNTERS; i++) {
5991 		if (status & (1ull << i))
5992 			incr_cntr64(&dd->sw_ctxt_err_status_cnt[i]);
5993 	}
5994 }
5995 
5996 static void handle_sdma_eng_err(struct hfi1_devdata *dd,
5997 				unsigned int source, u64 status)
5998 {
5999 	struct sdma_engine *sde;
6000 	int i = 0;
6001 
6002 	sde = &dd->per_sdma[source];
6003 #ifdef CONFIG_SDMA_VERBOSITY
6004 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6005 		   slashstrip(__FILE__), __LINE__, __func__);
6006 	dd_dev_err(sde->dd, "CONFIG SDMA(%u) source: %u status 0x%llx\n",
6007 		   sde->this_idx, source, (unsigned long long)status);
6008 #endif
6009 	sde->err_cnt++;
6010 	sdma_engine_error(sde, status);
6011 
6012 	/*
6013 	* Update the counters for the corresponding status bits.
6014 	* Note that these particular counters are aggregated over
6015 	* all 16 DMA engines.
6016 	*/
6017 	for (i = 0; i < NUM_SEND_DMA_ENG_ERR_STATUS_COUNTERS; i++) {
6018 		if (status & (1ull << i))
6019 			incr_cntr64(&dd->sw_send_dma_eng_err_status_cnt[i]);
6020 	}
6021 }
6022 
6023 /*
6024  * CCE block SDMA error interrupt.  Source is < 16.
6025  */
6026 static void is_sdma_eng_err_int(struct hfi1_devdata *dd, unsigned int source)
6027 {
6028 #ifdef CONFIG_SDMA_VERBOSITY
6029 	struct sdma_engine *sde = &dd->per_sdma[source];
6030 
6031 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
6032 		   slashstrip(__FILE__), __LINE__, __func__);
6033 	dd_dev_err(dd, "CONFIG SDMA(%u) source: %u\n", sde->this_idx,
6034 		   source);
6035 	sdma_dumpstate(sde);
6036 #endif
6037 	interrupt_clear_down(dd, source, &sdma_eng_err);
6038 }
6039 
6040 /*
6041  * CCE block "various" interrupt.  Source is < 8.
6042  */
6043 static void is_various_int(struct hfi1_devdata *dd, unsigned int source)
6044 {
6045 	const struct err_reg_info *eri = &various_err[source];
6046 
6047 	/*
6048 	 * TCritInt cannot go through interrupt_clear_down()
6049 	 * because it is not a second tier interrupt. The handler
6050 	 * should be called directly.
6051 	 */
6052 	if (source == TCRIT_INT_SOURCE)
6053 		handle_temp_err(dd);
6054 	else if (eri->handler)
6055 		interrupt_clear_down(dd, 0, eri);
6056 	else
6057 		dd_dev_info(dd,
6058 			    "%s: Unimplemented/reserved interrupt %d\n",
6059 			    __func__, source);
6060 }
6061 
6062 static void handle_qsfp_int(struct hfi1_devdata *dd, u32 src_ctx, u64 reg)
6063 {
6064 	/* src_ctx is always zero */
6065 	struct hfi1_pportdata *ppd = dd->pport;
6066 	unsigned long flags;
6067 	u64 qsfp_int_mgmt = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
6068 
6069 	if (reg & QSFP_HFI0_MODPRST_N) {
6070 		if (!qsfp_mod_present(ppd)) {
6071 			dd_dev_info(dd, "%s: QSFP module removed\n",
6072 				    __func__);
6073 
6074 			ppd->driver_link_ready = 0;
6075 			/*
6076 			 * Cable removed, reset all our information about the
6077 			 * cache and cable capabilities
6078 			 */
6079 
6080 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6081 			/*
6082 			 * We don't set cache_refresh_required here as we expect
6083 			 * an interrupt when a cable is inserted
6084 			 */
6085 			ppd->qsfp_info.cache_valid = 0;
6086 			ppd->qsfp_info.reset_needed = 0;
6087 			ppd->qsfp_info.limiting_active = 0;
6088 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6089 					       flags);
6090 			/* Invert the ModPresent pin now to detect plug-in */
6091 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6092 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6093 
6094 			if ((ppd->offline_disabled_reason >
6095 			  HFI1_ODR_MASK(
6096 			  OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED)) ||
6097 			  (ppd->offline_disabled_reason ==
6098 			  HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE)))
6099 				ppd->offline_disabled_reason =
6100 				HFI1_ODR_MASK(
6101 				OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED);
6102 
6103 			if (ppd->host_link_state == HLS_DN_POLL) {
6104 				/*
6105 				 * The link is still in POLL. This means
6106 				 * that the normal link down processing
6107 				 * will not happen. We have to do it here
6108 				 * before turning the DC off.
6109 				 */
6110 				queue_work(ppd->link_wq, &ppd->link_down_work);
6111 			}
6112 		} else {
6113 			dd_dev_info(dd, "%s: QSFP module inserted\n",
6114 				    __func__);
6115 
6116 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6117 			ppd->qsfp_info.cache_valid = 0;
6118 			ppd->qsfp_info.cache_refresh_required = 1;
6119 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
6120 					       flags);
6121 
6122 			/*
6123 			 * Stop inversion of ModPresent pin to detect
6124 			 * removal of the cable
6125 			 */
6126 			qsfp_int_mgmt &= ~(u64)QSFP_HFI0_MODPRST_N;
6127 			write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_INVERT :
6128 				  ASIC_QSFP1_INVERT, qsfp_int_mgmt);
6129 
6130 			ppd->offline_disabled_reason =
6131 				HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
6132 		}
6133 	}
6134 
6135 	if (reg & QSFP_HFI0_INT_N) {
6136 		dd_dev_info(dd, "%s: Interrupt received from QSFP module\n",
6137 			    __func__);
6138 		spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
6139 		ppd->qsfp_info.check_interrupt_flags = 1;
6140 		spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock, flags);
6141 	}
6142 
6143 	/* Schedule the QSFP work only if there is a cable attached. */
6144 	if (qsfp_mod_present(ppd))
6145 		queue_work(ppd->link_wq, &ppd->qsfp_info.qsfp_work);
6146 }
6147 
6148 static int request_host_lcb_access(struct hfi1_devdata *dd)
6149 {
6150 	int ret;
6151 
6152 	ret = do_8051_command(dd, HCMD_MISC,
6153 			      (u64)HCMD_MISC_REQUEST_LCB_ACCESS <<
6154 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6155 	if (ret != HCMD_SUCCESS) {
6156 		dd_dev_err(dd, "%s: command failed with error %d\n",
6157 			   __func__, ret);
6158 	}
6159 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6160 }
6161 
6162 static int request_8051_lcb_access(struct hfi1_devdata *dd)
6163 {
6164 	int ret;
6165 
6166 	ret = do_8051_command(dd, HCMD_MISC,
6167 			      (u64)HCMD_MISC_GRANT_LCB_ACCESS <<
6168 			      LOAD_DATA_FIELD_ID_SHIFT, NULL);
6169 	if (ret != HCMD_SUCCESS) {
6170 		dd_dev_err(dd, "%s: command failed with error %d\n",
6171 			   __func__, ret);
6172 	}
6173 	return ret == HCMD_SUCCESS ? 0 : -EBUSY;
6174 }
6175 
6176 /*
6177  * Set the LCB selector - allow host access.  The DCC selector always
6178  * points to the host.
6179  */
6180 static inline void set_host_lcb_access(struct hfi1_devdata *dd)
6181 {
6182 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6183 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK |
6184 		  DC_DC8051_CFG_CSR_ACCESS_SEL_LCB_SMASK);
6185 }
6186 
6187 /*
6188  * Clear the LCB selector - allow 8051 access.  The DCC selector always
6189  * points to the host.
6190  */
6191 static inline void set_8051_lcb_access(struct hfi1_devdata *dd)
6192 {
6193 	write_csr(dd, DC_DC8051_CFG_CSR_ACCESS_SEL,
6194 		  DC_DC8051_CFG_CSR_ACCESS_SEL_DCC_SMASK);
6195 }
6196 
6197 /*
6198  * Acquire LCB access from the 8051.  If the host already has access,
6199  * just increment a counter.  Otherwise, inform the 8051 that the
6200  * host is taking access.
6201  *
6202  * Returns:
6203  *	0 on success
6204  *	-EBUSY if the 8051 has control and cannot be disturbed
6205  *	-errno if unable to acquire access from the 8051
6206  */
6207 int acquire_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6208 {
6209 	struct hfi1_pportdata *ppd = dd->pport;
6210 	int ret = 0;
6211 
6212 	/*
6213 	 * Use the host link state lock so the operation of this routine
6214 	 * { link state check, selector change, count increment } can occur
6215 	 * as a unit against a link state change.  Otherwise there is a
6216 	 * race between the state change and the count increment.
6217 	 */
6218 	if (sleep_ok) {
6219 		mutex_lock(&ppd->hls_lock);
6220 	} else {
6221 		while (!mutex_trylock(&ppd->hls_lock))
6222 			udelay(1);
6223 	}
6224 
6225 	/* this access is valid only when the link is up */
6226 	if (ppd->host_link_state & HLS_DOWN) {
6227 		dd_dev_info(dd, "%s: link state %s not up\n",
6228 			    __func__, link_state_name(ppd->host_link_state));
6229 		ret = -EBUSY;
6230 		goto done;
6231 	}
6232 
6233 	if (dd->lcb_access_count == 0) {
6234 		ret = request_host_lcb_access(dd);
6235 		if (ret) {
6236 			dd_dev_err(dd,
6237 				   "%s: unable to acquire LCB access, err %d\n",
6238 				   __func__, ret);
6239 			goto done;
6240 		}
6241 		set_host_lcb_access(dd);
6242 	}
6243 	dd->lcb_access_count++;
6244 done:
6245 	mutex_unlock(&ppd->hls_lock);
6246 	return ret;
6247 }
6248 
6249 /*
6250  * Release LCB access by decrementing the use count.  If the count is moving
6251  * from 1 to 0, inform 8051 that it has control back.
6252  *
6253  * Returns:
6254  *	0 on success
6255  *	-errno if unable to release access to the 8051
6256  */
6257 int release_lcb_access(struct hfi1_devdata *dd, int sleep_ok)
6258 {
6259 	int ret = 0;
6260 
6261 	/*
6262 	 * Use the host link state lock because the acquire needed it.
6263 	 * Here, we only need to keep { selector change, count decrement }
6264 	 * as a unit.
6265 	 */
6266 	if (sleep_ok) {
6267 		mutex_lock(&dd->pport->hls_lock);
6268 	} else {
6269 		while (!mutex_trylock(&dd->pport->hls_lock))
6270 			udelay(1);
6271 	}
6272 
6273 	if (dd->lcb_access_count == 0) {
6274 		dd_dev_err(dd, "%s: LCB access count is zero.  Skipping.\n",
6275 			   __func__);
6276 		goto done;
6277 	}
6278 
6279 	if (dd->lcb_access_count == 1) {
6280 		set_8051_lcb_access(dd);
6281 		ret = request_8051_lcb_access(dd);
6282 		if (ret) {
6283 			dd_dev_err(dd,
6284 				   "%s: unable to release LCB access, err %d\n",
6285 				   __func__, ret);
6286 			/* restore host access if the grant didn't work */
6287 			set_host_lcb_access(dd);
6288 			goto done;
6289 		}
6290 	}
6291 	dd->lcb_access_count--;
6292 done:
6293 	mutex_unlock(&dd->pport->hls_lock);
6294 	return ret;
6295 }
6296 
6297 /*
6298  * Initialize LCB access variables and state.  Called during driver load,
6299  * after most of the initialization is finished.
6300  *
6301  * The DC default is LCB access on for the host.  The driver defaults to
6302  * leaving access to the 8051.  Assign access now - this constrains the call
6303  * to this routine to be after all LCB set-up is done.  In particular, after
6304  * hf1_init_dd() -> set_up_interrupts() -> clear_all_interrupts()
6305  */
6306 static void init_lcb_access(struct hfi1_devdata *dd)
6307 {
6308 	dd->lcb_access_count = 0;
6309 }
6310 
6311 /*
6312  * Write a response back to a 8051 request.
6313  */
6314 static void hreq_response(struct hfi1_devdata *dd, u8 return_code, u16 rsp_data)
6315 {
6316 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0,
6317 		  DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK |
6318 		  (u64)return_code <<
6319 		  DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT |
6320 		  (u64)rsp_data << DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
6321 }
6322 
6323 /*
6324  * Handle host requests from the 8051.
6325  */
6326 static void handle_8051_request(struct hfi1_pportdata *ppd)
6327 {
6328 	struct hfi1_devdata *dd = ppd->dd;
6329 	u64 reg;
6330 	u16 data = 0;
6331 	u8 type;
6332 
6333 	reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_1);
6334 	if ((reg & DC_DC8051_CFG_EXT_DEV_1_REQ_NEW_SMASK) == 0)
6335 		return;	/* no request */
6336 
6337 	/* zero out COMPLETED so the response is seen */
6338 	write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, 0);
6339 
6340 	/* extract request details */
6341 	type = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_SHIFT)
6342 			& DC_DC8051_CFG_EXT_DEV_1_REQ_TYPE_MASK;
6343 	data = (reg >> DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT)
6344 			& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_MASK;
6345 
6346 	switch (type) {
6347 	case HREQ_LOAD_CONFIG:
6348 	case HREQ_SAVE_CONFIG:
6349 	case HREQ_READ_CONFIG:
6350 	case HREQ_SET_TX_EQ_ABS:
6351 	case HREQ_SET_TX_EQ_REL:
6352 	case HREQ_ENABLE:
6353 		dd_dev_info(dd, "8051 request: request 0x%x not supported\n",
6354 			    type);
6355 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6356 		break;
6357 	case HREQ_LCB_RESET:
6358 		/* Put the LCB, RX FPE and TX FPE into reset */
6359 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_INTO_RESET);
6360 		/* Make sure the write completed */
6361 		(void)read_csr(dd, DCC_CFG_RESET);
6362 		/* Hold the reset long enough to take effect */
6363 		udelay(1);
6364 		/* Take the LCB, RX FPE and TX FPE out of reset */
6365 		write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6366 		hreq_response(dd, HREQ_SUCCESS, 0);
6367 
6368 		break;
6369 	case HREQ_CONFIG_DONE:
6370 		hreq_response(dd, HREQ_SUCCESS, 0);
6371 		break;
6372 
6373 	case HREQ_INTERFACE_TEST:
6374 		hreq_response(dd, HREQ_SUCCESS, data);
6375 		break;
6376 	default:
6377 		dd_dev_err(dd, "8051 request: unknown request 0x%x\n", type);
6378 		hreq_response(dd, HREQ_NOT_SUPPORTED, 0);
6379 		break;
6380 	}
6381 }
6382 
6383 /*
6384  * Set up allocation unit vaulue.
6385  */
6386 void set_up_vau(struct hfi1_devdata *dd, u8 vau)
6387 {
6388 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6389 
6390 	/* do not modify other values in the register */
6391 	reg &= ~SEND_CM_GLOBAL_CREDIT_AU_SMASK;
6392 	reg |= (u64)vau << SEND_CM_GLOBAL_CREDIT_AU_SHIFT;
6393 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6394 }
6395 
6396 /*
6397  * Set up initial VL15 credits of the remote.  Assumes the rest of
6398  * the CM credit registers are zero from a previous global or credit reset.
6399  * Shared limit for VL15 will always be 0.
6400  */
6401 void set_up_vl15(struct hfi1_devdata *dd, u16 vl15buf)
6402 {
6403 	u64 reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
6404 
6405 	/* set initial values for total and shared credit limit */
6406 	reg &= ~(SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK |
6407 		 SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK);
6408 
6409 	/*
6410 	 * Set total limit to be equal to VL15 credits.
6411 	 * Leave shared limit at 0.
6412 	 */
6413 	reg |= (u64)vl15buf << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
6414 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
6415 
6416 	write_csr(dd, SEND_CM_CREDIT_VL15, (u64)vl15buf
6417 		  << SEND_CM_CREDIT_VL15_DEDICATED_LIMIT_VL_SHIFT);
6418 }
6419 
6420 /*
6421  * Zero all credit details from the previous connection and
6422  * reset the CM manager's internal counters.
6423  */
6424 void reset_link_credits(struct hfi1_devdata *dd)
6425 {
6426 	int i;
6427 
6428 	/* remove all previous VL credit limits */
6429 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
6430 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
6431 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
6432 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, 0);
6433 	/* reset the CM block */
6434 	pio_send_control(dd, PSC_CM_RESET);
6435 	/* reset cached value */
6436 	dd->vl15buf_cached = 0;
6437 }
6438 
6439 /* convert a vCU to a CU */
6440 static u32 vcu_to_cu(u8 vcu)
6441 {
6442 	return 1 << vcu;
6443 }
6444 
6445 /* convert a CU to a vCU */
6446 static u8 cu_to_vcu(u32 cu)
6447 {
6448 	return ilog2(cu);
6449 }
6450 
6451 /* convert a vAU to an AU */
6452 static u32 vau_to_au(u8 vau)
6453 {
6454 	return 8 * (1 << vau);
6455 }
6456 
6457 static void set_linkup_defaults(struct hfi1_pportdata *ppd)
6458 {
6459 	ppd->sm_trap_qp = 0x0;
6460 	ppd->sa_qp = 0x1;
6461 }
6462 
6463 /*
6464  * Graceful LCB shutdown.  This leaves the LCB FIFOs in reset.
6465  */
6466 static void lcb_shutdown(struct hfi1_devdata *dd, int abort)
6467 {
6468 	u64 reg;
6469 
6470 	/* clear lcb run: LCB_CFG_RUN.EN = 0 */
6471 	write_csr(dd, DC_LCB_CFG_RUN, 0);
6472 	/* set tx fifo reset: LCB_CFG_TX_FIFOS_RESET.VAL = 1 */
6473 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET,
6474 		  1ull << DC_LCB_CFG_TX_FIFOS_RESET_VAL_SHIFT);
6475 	/* set dcc reset csr: DCC_CFG_RESET.{reset_lcb,reset_rx_fpe} = 1 */
6476 	dd->lcb_err_en = read_csr(dd, DC_LCB_ERR_EN);
6477 	reg = read_csr(dd, DCC_CFG_RESET);
6478 	write_csr(dd, DCC_CFG_RESET, reg |
6479 		  DCC_CFG_RESET_RESET_LCB | DCC_CFG_RESET_RESET_RX_FPE);
6480 	(void)read_csr(dd, DCC_CFG_RESET); /* make sure the write completed */
6481 	if (!abort) {
6482 		udelay(1);    /* must hold for the longer of 16cclks or 20ns */
6483 		write_csr(dd, DCC_CFG_RESET, reg);
6484 		write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6485 	}
6486 }
6487 
6488 /*
6489  * This routine should be called after the link has been transitioned to
6490  * OFFLINE (OFFLINE state has the side effect of putting the SerDes into
6491  * reset).
6492  *
6493  * The expectation is that the caller of this routine would have taken
6494  * care of properly transitioning the link into the correct state.
6495  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6496  *       before calling this function.
6497  */
6498 static void _dc_shutdown(struct hfi1_devdata *dd)
6499 {
6500 	lockdep_assert_held(&dd->dc8051_lock);
6501 
6502 	if (dd->dc_shutdown)
6503 		return;
6504 
6505 	dd->dc_shutdown = 1;
6506 	/* Shutdown the LCB */
6507 	lcb_shutdown(dd, 1);
6508 	/*
6509 	 * Going to OFFLINE would have causes the 8051 to put the
6510 	 * SerDes into reset already. Just need to shut down the 8051,
6511 	 * itself.
6512 	 */
6513 	write_csr(dd, DC_DC8051_CFG_RST, 0x1);
6514 }
6515 
6516 static void dc_shutdown(struct hfi1_devdata *dd)
6517 {
6518 	mutex_lock(&dd->dc8051_lock);
6519 	_dc_shutdown(dd);
6520 	mutex_unlock(&dd->dc8051_lock);
6521 }
6522 
6523 /*
6524  * Calling this after the DC has been brought out of reset should not
6525  * do any damage.
6526  * NOTE: the caller needs to acquire the dd->dc8051_lock lock
6527  *       before calling this function.
6528  */
6529 static void _dc_start(struct hfi1_devdata *dd)
6530 {
6531 	lockdep_assert_held(&dd->dc8051_lock);
6532 
6533 	if (!dd->dc_shutdown)
6534 		return;
6535 
6536 	/* Take the 8051 out of reset */
6537 	write_csr(dd, DC_DC8051_CFG_RST, 0ull);
6538 	/* Wait until 8051 is ready */
6539 	if (wait_fm_ready(dd, TIMEOUT_8051_START))
6540 		dd_dev_err(dd, "%s: timeout starting 8051 firmware\n",
6541 			   __func__);
6542 
6543 	/* Take away reset for LCB and RX FPE (set in lcb_shutdown). */
6544 	write_csr(dd, DCC_CFG_RESET, LCB_RX_FPE_TX_FPE_OUT_OF_RESET);
6545 	/* lcb_shutdown() with abort=1 does not restore these */
6546 	write_csr(dd, DC_LCB_ERR_EN, dd->lcb_err_en);
6547 	dd->dc_shutdown = 0;
6548 }
6549 
6550 static void dc_start(struct hfi1_devdata *dd)
6551 {
6552 	mutex_lock(&dd->dc8051_lock);
6553 	_dc_start(dd);
6554 	mutex_unlock(&dd->dc8051_lock);
6555 }
6556 
6557 /*
6558  * These LCB adjustments are for the Aurora SerDes core in the FPGA.
6559  */
6560 static void adjust_lcb_for_fpga_serdes(struct hfi1_devdata *dd)
6561 {
6562 	u64 rx_radr, tx_radr;
6563 	u32 version;
6564 
6565 	if (dd->icode != ICODE_FPGA_EMULATION)
6566 		return;
6567 
6568 	/*
6569 	 * These LCB defaults on emulator _s are good, nothing to do here:
6570 	 *	LCB_CFG_TX_FIFOS_RADR
6571 	 *	LCB_CFG_RX_FIFOS_RADR
6572 	 *	LCB_CFG_LN_DCLK
6573 	 *	LCB_CFG_IGNORE_LOST_RCLK
6574 	 */
6575 	if (is_emulator_s(dd))
6576 		return;
6577 	/* else this is _p */
6578 
6579 	version = emulator_rev(dd);
6580 	if (!is_ax(dd))
6581 		version = 0x2d;	/* all B0 use 0x2d or higher settings */
6582 
6583 	if (version <= 0x12) {
6584 		/* release 0x12 and below */
6585 
6586 		/*
6587 		 * LCB_CFG_RX_FIFOS_RADR.RST_VAL = 0x9
6588 		 * LCB_CFG_RX_FIFOS_RADR.OK_TO_JUMP_VAL = 0x9
6589 		 * LCB_CFG_RX_FIFOS_RADR.DO_NOT_JUMP_VAL = 0xa
6590 		 */
6591 		rx_radr =
6592 		      0xaull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6593 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6594 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6595 		/*
6596 		 * LCB_CFG_TX_FIFOS_RADR.ON_REINIT = 0 (default)
6597 		 * LCB_CFG_TX_FIFOS_RADR.RST_VAL = 6
6598 		 */
6599 		tx_radr = 6ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6600 	} else if (version <= 0x18) {
6601 		/* release 0x13 up to 0x18 */
6602 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6603 		rx_radr =
6604 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6605 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6606 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6607 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6608 	} else if (version == 0x19) {
6609 		/* release 0x19 */
6610 		/* LCB_CFG_RX_FIFOS_RADR = 0xa99 */
6611 		rx_radr =
6612 		      0xAull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6613 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6614 		    | 0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6615 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6616 	} else if (version == 0x1a) {
6617 		/* release 0x1a */
6618 		/* LCB_CFG_RX_FIFOS_RADR = 0x988 */
6619 		rx_radr =
6620 		      0x9ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6621 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6622 		    | 0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6623 		tx_radr = 7ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6624 		write_csr(dd, DC_LCB_CFG_LN_DCLK, 1ull);
6625 	} else {
6626 		/* release 0x1b and higher */
6627 		/* LCB_CFG_RX_FIFOS_RADR = 0x877 */
6628 		rx_radr =
6629 		      0x8ull << DC_LCB_CFG_RX_FIFOS_RADR_DO_NOT_JUMP_VAL_SHIFT
6630 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_OK_TO_JUMP_VAL_SHIFT
6631 		    | 0x7ull << DC_LCB_CFG_RX_FIFOS_RADR_RST_VAL_SHIFT;
6632 		tx_radr = 3ull << DC_LCB_CFG_TX_FIFOS_RADR_RST_VAL_SHIFT;
6633 	}
6634 
6635 	write_csr(dd, DC_LCB_CFG_RX_FIFOS_RADR, rx_radr);
6636 	/* LCB_CFG_IGNORE_LOST_RCLK.EN = 1 */
6637 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
6638 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
6639 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RADR, tx_radr);
6640 }
6641 
6642 /*
6643  * Handle a SMA idle message
6644  *
6645  * This is a work-queue function outside of the interrupt.
6646  */
6647 void handle_sma_message(struct work_struct *work)
6648 {
6649 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6650 							sma_message_work);
6651 	struct hfi1_devdata *dd = ppd->dd;
6652 	u64 msg;
6653 	int ret;
6654 
6655 	/*
6656 	 * msg is bytes 1-4 of the 40-bit idle message - the command code
6657 	 * is stripped off
6658 	 */
6659 	ret = read_idle_sma(dd, &msg);
6660 	if (ret)
6661 		return;
6662 	dd_dev_info(dd, "%s: SMA message 0x%llx\n", __func__, msg);
6663 	/*
6664 	 * React to the SMA message.  Byte[1] (0 for us) is the command.
6665 	 */
6666 	switch (msg & 0xff) {
6667 	case SMA_IDLE_ARM:
6668 		/*
6669 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6670 		 * State Transitions
6671 		 *
6672 		 * Only expected in INIT or ARMED, discard otherwise.
6673 		 */
6674 		if (ppd->host_link_state & (HLS_UP_INIT | HLS_UP_ARMED))
6675 			ppd->neighbor_normal = 1;
6676 		break;
6677 	case SMA_IDLE_ACTIVE:
6678 		/*
6679 		 * See OPAv1 table 9-14 - HFI and External Switch Ports Key
6680 		 * State Transitions
6681 		 *
6682 		 * Can activate the node.  Discard otherwise.
6683 		 */
6684 		if (ppd->host_link_state == HLS_UP_ARMED &&
6685 		    ppd->is_active_optimize_enabled) {
6686 			ppd->neighbor_normal = 1;
6687 			ret = set_link_state(ppd, HLS_UP_ACTIVE);
6688 			if (ret)
6689 				dd_dev_err(
6690 					dd,
6691 					"%s: received Active SMA idle message, couldn't set link to Active\n",
6692 					__func__);
6693 		}
6694 		break;
6695 	default:
6696 		dd_dev_err(dd,
6697 			   "%s: received unexpected SMA idle message 0x%llx\n",
6698 			   __func__, msg);
6699 		break;
6700 	}
6701 }
6702 
6703 static void adjust_rcvctrl(struct hfi1_devdata *dd, u64 add, u64 clear)
6704 {
6705 	u64 rcvctrl;
6706 	unsigned long flags;
6707 
6708 	spin_lock_irqsave(&dd->rcvctrl_lock, flags);
6709 	rcvctrl = read_csr(dd, RCV_CTRL);
6710 	rcvctrl |= add;
6711 	rcvctrl &= ~clear;
6712 	write_csr(dd, RCV_CTRL, rcvctrl);
6713 	spin_unlock_irqrestore(&dd->rcvctrl_lock, flags);
6714 }
6715 
6716 static inline void add_rcvctrl(struct hfi1_devdata *dd, u64 add)
6717 {
6718 	adjust_rcvctrl(dd, add, 0);
6719 }
6720 
6721 static inline void clear_rcvctrl(struct hfi1_devdata *dd, u64 clear)
6722 {
6723 	adjust_rcvctrl(dd, 0, clear);
6724 }
6725 
6726 /*
6727  * Called from all interrupt handlers to start handling an SPC freeze.
6728  */
6729 void start_freeze_handling(struct hfi1_pportdata *ppd, int flags)
6730 {
6731 	struct hfi1_devdata *dd = ppd->dd;
6732 	struct send_context *sc;
6733 	int i;
6734 	int sc_flags;
6735 
6736 	if (flags & FREEZE_SELF)
6737 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6738 
6739 	/* enter frozen mode */
6740 	dd->flags |= HFI1_FROZEN;
6741 
6742 	/* notify all SDMA engines that they are going into a freeze */
6743 	sdma_freeze_notify(dd, !!(flags & FREEZE_LINK_DOWN));
6744 
6745 	sc_flags = SCF_FROZEN | SCF_HALTED | (flags & FREEZE_LINK_DOWN ?
6746 					      SCF_LINK_DOWN : 0);
6747 	/* do halt pre-handling on all enabled send contexts */
6748 	for (i = 0; i < dd->num_send_contexts; i++) {
6749 		sc = dd->send_contexts[i].sc;
6750 		if (sc && (sc->flags & SCF_ENABLED))
6751 			sc_stop(sc, sc_flags);
6752 	}
6753 
6754 	/* Send context are frozen. Notify user space */
6755 	hfi1_set_uevent_bits(ppd, _HFI1_EVENT_FROZEN_BIT);
6756 
6757 	if (flags & FREEZE_ABORT) {
6758 		dd_dev_err(dd,
6759 			   "Aborted freeze recovery. Please REBOOT system\n");
6760 		return;
6761 	}
6762 	/* queue non-interrupt handler */
6763 	queue_work(ppd->hfi1_wq, &ppd->freeze_work);
6764 }
6765 
6766 /*
6767  * Wait until all 4 sub-blocks indicate that they have frozen or unfrozen,
6768  * depending on the "freeze" parameter.
6769  *
6770  * No need to return an error if it times out, our only option
6771  * is to proceed anyway.
6772  */
6773 static void wait_for_freeze_status(struct hfi1_devdata *dd, int freeze)
6774 {
6775 	unsigned long timeout;
6776 	u64 reg;
6777 
6778 	timeout = jiffies + msecs_to_jiffies(FREEZE_STATUS_TIMEOUT);
6779 	while (1) {
6780 		reg = read_csr(dd, CCE_STATUS);
6781 		if (freeze) {
6782 			/* waiting until all indicators are set */
6783 			if ((reg & ALL_FROZE) == ALL_FROZE)
6784 				return;	/* all done */
6785 		} else {
6786 			/* waiting until all indicators are clear */
6787 			if ((reg & ALL_FROZE) == 0)
6788 				return; /* all done */
6789 		}
6790 
6791 		if (time_after(jiffies, timeout)) {
6792 			dd_dev_err(dd,
6793 				   "Time out waiting for SPC %sfreeze, bits 0x%llx, expecting 0x%llx, continuing",
6794 				   freeze ? "" : "un", reg & ALL_FROZE,
6795 				   freeze ? ALL_FROZE : 0ull);
6796 			return;
6797 		}
6798 		usleep_range(80, 120);
6799 	}
6800 }
6801 
6802 /*
6803  * Do all freeze handling for the RXE block.
6804  */
6805 static void rxe_freeze(struct hfi1_devdata *dd)
6806 {
6807 	int i;
6808 	struct hfi1_ctxtdata *rcd;
6809 
6810 	/* disable port */
6811 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6812 
6813 	/* disable all receive contexts */
6814 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6815 		rcd = hfi1_rcd_get_by_index(dd, i);
6816 		hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS, rcd);
6817 		hfi1_rcd_put(rcd);
6818 	}
6819 }
6820 
6821 /*
6822  * Unfreeze handling for the RXE block - kernel contexts only.
6823  * This will also enable the port.  User contexts will do unfreeze
6824  * handling on a per-context basis as they call into the driver.
6825  *
6826  */
6827 static void rxe_kernel_unfreeze(struct hfi1_devdata *dd)
6828 {
6829 	u32 rcvmask;
6830 	u16 i;
6831 	struct hfi1_ctxtdata *rcd;
6832 
6833 	/* enable all kernel contexts */
6834 	for (i = 0; i < dd->num_rcv_contexts; i++) {
6835 		rcd = hfi1_rcd_get_by_index(dd, i);
6836 
6837 		/* Ensure all non-user contexts(including vnic) are enabled */
6838 		if (!rcd ||
6839 		    (i >= dd->first_dyn_alloc_ctxt && !rcd->is_vnic)) {
6840 			hfi1_rcd_put(rcd);
6841 			continue;
6842 		}
6843 		rcvmask = HFI1_RCVCTRL_CTXT_ENB;
6844 		/* HFI1_RCVCTRL_TAILUPD_[ENB|DIS] needs to be set explicitly */
6845 		rcvmask |= rcd->rcvhdrtail_kvaddr ?
6846 			HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
6847 		hfi1_rcvctrl(dd, rcvmask, rcd);
6848 		hfi1_rcd_put(rcd);
6849 	}
6850 
6851 	/* enable port */
6852 	add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
6853 }
6854 
6855 /*
6856  * Non-interrupt SPC freeze handling.
6857  *
6858  * This is a work-queue function outside of the triggering interrupt.
6859  */
6860 void handle_freeze(struct work_struct *work)
6861 {
6862 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6863 								freeze_work);
6864 	struct hfi1_devdata *dd = ppd->dd;
6865 
6866 	/* wait for freeze indicators on all affected blocks */
6867 	wait_for_freeze_status(dd, 1);
6868 
6869 	/* SPC is now frozen */
6870 
6871 	/* do send PIO freeze steps */
6872 	pio_freeze(dd);
6873 
6874 	/* do send DMA freeze steps */
6875 	sdma_freeze(dd);
6876 
6877 	/* do send egress freeze steps - nothing to do */
6878 
6879 	/* do receive freeze steps */
6880 	rxe_freeze(dd);
6881 
6882 	/*
6883 	 * Unfreeze the hardware - clear the freeze, wait for each
6884 	 * block's frozen bit to clear, then clear the frozen flag.
6885 	 */
6886 	write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6887 	wait_for_freeze_status(dd, 0);
6888 
6889 	if (is_ax(dd)) {
6890 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_FREEZE_SMASK);
6891 		wait_for_freeze_status(dd, 1);
6892 		write_csr(dd, CCE_CTRL, CCE_CTRL_SPC_UNFREEZE_SMASK);
6893 		wait_for_freeze_status(dd, 0);
6894 	}
6895 
6896 	/* do send PIO unfreeze steps for kernel contexts */
6897 	pio_kernel_unfreeze(dd);
6898 
6899 	/* do send DMA unfreeze steps */
6900 	sdma_unfreeze(dd);
6901 
6902 	/* do send egress unfreeze steps - nothing to do */
6903 
6904 	/* do receive unfreeze steps for kernel contexts */
6905 	rxe_kernel_unfreeze(dd);
6906 
6907 	/*
6908 	 * The unfreeze procedure touches global device registers when
6909 	 * it disables and re-enables RXE. Mark the device unfrozen
6910 	 * after all that is done so other parts of the driver waiting
6911 	 * for the device to unfreeze don't do things out of order.
6912 	 *
6913 	 * The above implies that the meaning of HFI1_FROZEN flag is
6914 	 * "Device has gone into freeze mode and freeze mode handling
6915 	 * is still in progress."
6916 	 *
6917 	 * The flag will be removed when freeze mode processing has
6918 	 * completed.
6919 	 */
6920 	dd->flags &= ~HFI1_FROZEN;
6921 	wake_up(&dd->event_queue);
6922 
6923 	/* no longer frozen */
6924 }
6925 
6926 /**
6927  * update_xmit_counters - update PortXmitWait/PortVlXmitWait
6928  * counters.
6929  * @ppd: info of physical Hfi port
6930  * @link_width: new link width after link up or downgrade
6931  *
6932  * Update the PortXmitWait and PortVlXmitWait counters after
6933  * a link up or downgrade event to reflect a link width change.
6934  */
6935 static void update_xmit_counters(struct hfi1_pportdata *ppd, u16 link_width)
6936 {
6937 	int i;
6938 	u16 tx_width;
6939 	u16 link_speed;
6940 
6941 	tx_width = tx_link_width(link_width);
6942 	link_speed = get_link_speed(ppd->link_speed_active);
6943 
6944 	/*
6945 	 * There are C_VL_COUNT number of PortVLXmitWait counters.
6946 	 * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
6947 	 */
6948 	for (i = 0; i < C_VL_COUNT + 1; i++)
6949 		get_xmit_wait_counters(ppd, tx_width, link_speed, i);
6950 }
6951 
6952 /*
6953  * Handle a link up interrupt from the 8051.
6954  *
6955  * This is a work-queue function outside of the interrupt.
6956  */
6957 void handle_link_up(struct work_struct *work)
6958 {
6959 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
6960 						  link_up_work);
6961 	struct hfi1_devdata *dd = ppd->dd;
6962 
6963 	set_link_state(ppd, HLS_UP_INIT);
6964 
6965 	/* cache the read of DC_LCB_STS_ROUND_TRIP_LTP_CNT */
6966 	read_ltp_rtt(dd);
6967 	/*
6968 	 * OPA specifies that certain counters are cleared on a transition
6969 	 * to link up, so do that.
6970 	 */
6971 	clear_linkup_counters(dd);
6972 	/*
6973 	 * And (re)set link up default values.
6974 	 */
6975 	set_linkup_defaults(ppd);
6976 
6977 	/*
6978 	 * Set VL15 credits. Use cached value from verify cap interrupt.
6979 	 * In case of quick linkup or simulator, vl15 value will be set by
6980 	 * handle_linkup_change. VerifyCap interrupt handler will not be
6981 	 * called in those scenarios.
6982 	 */
6983 	if (!(quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR))
6984 		set_up_vl15(dd, dd->vl15buf_cached);
6985 
6986 	/* enforce link speed enabled */
6987 	if ((ppd->link_speed_active & ppd->link_speed_enabled) == 0) {
6988 		/* oops - current speed is not enabled, bounce */
6989 		dd_dev_err(dd,
6990 			   "Link speed active 0x%x is outside enabled 0x%x, downing link\n",
6991 			   ppd->link_speed_active, ppd->link_speed_enabled);
6992 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_SPEED_POLICY, 0,
6993 				     OPA_LINKDOWN_REASON_SPEED_POLICY);
6994 		set_link_state(ppd, HLS_DN_OFFLINE);
6995 		start_link(ppd);
6996 	}
6997 }
6998 
6999 /*
7000  * Several pieces of LNI information were cached for SMA in ppd.
7001  * Reset these on link down
7002  */
7003 static void reset_neighbor_info(struct hfi1_pportdata *ppd)
7004 {
7005 	ppd->neighbor_guid = 0;
7006 	ppd->neighbor_port_number = 0;
7007 	ppd->neighbor_type = 0;
7008 	ppd->neighbor_fm_security = 0;
7009 }
7010 
7011 static const char * const link_down_reason_strs[] = {
7012 	[OPA_LINKDOWN_REASON_NONE] = "None",
7013 	[OPA_LINKDOWN_REASON_RCV_ERROR_0] = "Receive error 0",
7014 	[OPA_LINKDOWN_REASON_BAD_PKT_LEN] = "Bad packet length",
7015 	[OPA_LINKDOWN_REASON_PKT_TOO_LONG] = "Packet too long",
7016 	[OPA_LINKDOWN_REASON_PKT_TOO_SHORT] = "Packet too short",
7017 	[OPA_LINKDOWN_REASON_BAD_SLID] = "Bad SLID",
7018 	[OPA_LINKDOWN_REASON_BAD_DLID] = "Bad DLID",
7019 	[OPA_LINKDOWN_REASON_BAD_L2] = "Bad L2",
7020 	[OPA_LINKDOWN_REASON_BAD_SC] = "Bad SC",
7021 	[OPA_LINKDOWN_REASON_RCV_ERROR_8] = "Receive error 8",
7022 	[OPA_LINKDOWN_REASON_BAD_MID_TAIL] = "Bad mid tail",
7023 	[OPA_LINKDOWN_REASON_RCV_ERROR_10] = "Receive error 10",
7024 	[OPA_LINKDOWN_REASON_PREEMPT_ERROR] = "Preempt error",
7025 	[OPA_LINKDOWN_REASON_PREEMPT_VL15] = "Preempt vl15",
7026 	[OPA_LINKDOWN_REASON_BAD_VL_MARKER] = "Bad VL marker",
7027 	[OPA_LINKDOWN_REASON_RCV_ERROR_14] = "Receive error 14",
7028 	[OPA_LINKDOWN_REASON_RCV_ERROR_15] = "Receive error 15",
7029 	[OPA_LINKDOWN_REASON_BAD_HEAD_DIST] = "Bad head distance",
7030 	[OPA_LINKDOWN_REASON_BAD_TAIL_DIST] = "Bad tail distance",
7031 	[OPA_LINKDOWN_REASON_BAD_CTRL_DIST] = "Bad control distance",
7032 	[OPA_LINKDOWN_REASON_BAD_CREDIT_ACK] = "Bad credit ack",
7033 	[OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER] = "Unsupported VL marker",
7034 	[OPA_LINKDOWN_REASON_BAD_PREEMPT] = "Bad preempt",
7035 	[OPA_LINKDOWN_REASON_BAD_CONTROL_FLIT] = "Bad control flit",
7036 	[OPA_LINKDOWN_REASON_EXCEED_MULTICAST_LIMIT] = "Exceed multicast limit",
7037 	[OPA_LINKDOWN_REASON_RCV_ERROR_24] = "Receive error 24",
7038 	[OPA_LINKDOWN_REASON_RCV_ERROR_25] = "Receive error 25",
7039 	[OPA_LINKDOWN_REASON_RCV_ERROR_26] = "Receive error 26",
7040 	[OPA_LINKDOWN_REASON_RCV_ERROR_27] = "Receive error 27",
7041 	[OPA_LINKDOWN_REASON_RCV_ERROR_28] = "Receive error 28",
7042 	[OPA_LINKDOWN_REASON_RCV_ERROR_29] = "Receive error 29",
7043 	[OPA_LINKDOWN_REASON_RCV_ERROR_30] = "Receive error 30",
7044 	[OPA_LINKDOWN_REASON_EXCESSIVE_BUFFER_OVERRUN] =
7045 					"Excessive buffer overrun",
7046 	[OPA_LINKDOWN_REASON_UNKNOWN] = "Unknown",
7047 	[OPA_LINKDOWN_REASON_REBOOT] = "Reboot",
7048 	[OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN] = "Neighbor unknown",
7049 	[OPA_LINKDOWN_REASON_FM_BOUNCE] = "FM bounce",
7050 	[OPA_LINKDOWN_REASON_SPEED_POLICY] = "Speed policy",
7051 	[OPA_LINKDOWN_REASON_WIDTH_POLICY] = "Width policy",
7052 	[OPA_LINKDOWN_REASON_DISCONNECTED] = "Disconnected",
7053 	[OPA_LINKDOWN_REASON_LOCAL_MEDIA_NOT_INSTALLED] =
7054 					"Local media not installed",
7055 	[OPA_LINKDOWN_REASON_NOT_INSTALLED] = "Not installed",
7056 	[OPA_LINKDOWN_REASON_CHASSIS_CONFIG] = "Chassis config",
7057 	[OPA_LINKDOWN_REASON_END_TO_END_NOT_INSTALLED] =
7058 					"End to end not installed",
7059 	[OPA_LINKDOWN_REASON_POWER_POLICY] = "Power policy",
7060 	[OPA_LINKDOWN_REASON_LINKSPEED_POLICY] = "Link speed policy",
7061 	[OPA_LINKDOWN_REASON_LINKWIDTH_POLICY] = "Link width policy",
7062 	[OPA_LINKDOWN_REASON_SWITCH_MGMT] = "Switch management",
7063 	[OPA_LINKDOWN_REASON_SMA_DISABLED] = "SMA disabled",
7064 	[OPA_LINKDOWN_REASON_TRANSIENT] = "Transient"
7065 };
7066 
7067 /* return the neighbor link down reason string */
7068 static const char *link_down_reason_str(u8 reason)
7069 {
7070 	const char *str = NULL;
7071 
7072 	if (reason < ARRAY_SIZE(link_down_reason_strs))
7073 		str = link_down_reason_strs[reason];
7074 	if (!str)
7075 		str = "(invalid)";
7076 
7077 	return str;
7078 }
7079 
7080 /*
7081  * Handle a link down interrupt from the 8051.
7082  *
7083  * This is a work-queue function outside of the interrupt.
7084  */
7085 void handle_link_down(struct work_struct *work)
7086 {
7087 	u8 lcl_reason, neigh_reason = 0;
7088 	u8 link_down_reason;
7089 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7090 						  link_down_work);
7091 	int was_up;
7092 	static const char ldr_str[] = "Link down reason: ";
7093 
7094 	if ((ppd->host_link_state &
7095 	     (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) &&
7096 	     ppd->port_type == PORT_TYPE_FIXED)
7097 		ppd->offline_disabled_reason =
7098 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NOT_INSTALLED);
7099 
7100 	/* Go offline first, then deal with reading/writing through 8051 */
7101 	was_up = !!(ppd->host_link_state & HLS_UP);
7102 	set_link_state(ppd, HLS_DN_OFFLINE);
7103 	xchg(&ppd->is_link_down_queued, 0);
7104 
7105 	if (was_up) {
7106 		lcl_reason = 0;
7107 		/* link down reason is only valid if the link was up */
7108 		read_link_down_reason(ppd->dd, &link_down_reason);
7109 		switch (link_down_reason) {
7110 		case LDR_LINK_TRANSFER_ACTIVE_LOW:
7111 			/* the link went down, no idle message reason */
7112 			dd_dev_info(ppd->dd, "%sUnexpected link down\n",
7113 				    ldr_str);
7114 			break;
7115 		case LDR_RECEIVED_LINKDOWN_IDLE_MSG:
7116 			/*
7117 			 * The neighbor reason is only valid if an idle message
7118 			 * was received for it.
7119 			 */
7120 			read_planned_down_reason_code(ppd->dd, &neigh_reason);
7121 			dd_dev_info(ppd->dd,
7122 				    "%sNeighbor link down message %d, %s\n",
7123 				    ldr_str, neigh_reason,
7124 				    link_down_reason_str(neigh_reason));
7125 			break;
7126 		case LDR_RECEIVED_HOST_OFFLINE_REQ:
7127 			dd_dev_info(ppd->dd,
7128 				    "%sHost requested link to go offline\n",
7129 				    ldr_str);
7130 			break;
7131 		default:
7132 			dd_dev_info(ppd->dd, "%sUnknown reason 0x%x\n",
7133 				    ldr_str, link_down_reason);
7134 			break;
7135 		}
7136 
7137 		/*
7138 		 * If no reason, assume peer-initiated but missed
7139 		 * LinkGoingDown idle flits.
7140 		 */
7141 		if (neigh_reason == 0)
7142 			lcl_reason = OPA_LINKDOWN_REASON_NEIGHBOR_UNKNOWN;
7143 	} else {
7144 		/* went down while polling or going up */
7145 		lcl_reason = OPA_LINKDOWN_REASON_TRANSIENT;
7146 	}
7147 
7148 	set_link_down_reason(ppd, lcl_reason, neigh_reason, 0);
7149 
7150 	/* inform the SMA when the link transitions from up to down */
7151 	if (was_up && ppd->local_link_down_reason.sma == 0 &&
7152 	    ppd->neigh_link_down_reason.sma == 0) {
7153 		ppd->local_link_down_reason.sma =
7154 					ppd->local_link_down_reason.latest;
7155 		ppd->neigh_link_down_reason.sma =
7156 					ppd->neigh_link_down_reason.latest;
7157 	}
7158 
7159 	reset_neighbor_info(ppd);
7160 
7161 	/* disable the port */
7162 	clear_rcvctrl(ppd->dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
7163 
7164 	/*
7165 	 * If there is no cable attached, turn the DC off. Otherwise,
7166 	 * start the link bring up.
7167 	 */
7168 	if (ppd->port_type == PORT_TYPE_QSFP && !qsfp_mod_present(ppd))
7169 		dc_shutdown(ppd->dd);
7170 	else
7171 		start_link(ppd);
7172 }
7173 
7174 void handle_link_bounce(struct work_struct *work)
7175 {
7176 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7177 							link_bounce_work);
7178 
7179 	/*
7180 	 * Only do something if the link is currently up.
7181 	 */
7182 	if (ppd->host_link_state & HLS_UP) {
7183 		set_link_state(ppd, HLS_DN_OFFLINE);
7184 		start_link(ppd);
7185 	} else {
7186 		dd_dev_info(ppd->dd, "%s: link not up (%s), nothing to do\n",
7187 			    __func__, link_state_name(ppd->host_link_state));
7188 	}
7189 }
7190 
7191 /*
7192  * Mask conversion: Capability exchange to Port LTP.  The capability
7193  * exchange has an implicit 16b CRC that is mandatory.
7194  */
7195 static int cap_to_port_ltp(int cap)
7196 {
7197 	int port_ltp = PORT_LTP_CRC_MODE_16; /* this mode is mandatory */
7198 
7199 	if (cap & CAP_CRC_14B)
7200 		port_ltp |= PORT_LTP_CRC_MODE_14;
7201 	if (cap & CAP_CRC_48B)
7202 		port_ltp |= PORT_LTP_CRC_MODE_48;
7203 	if (cap & CAP_CRC_12B_16B_PER_LANE)
7204 		port_ltp |= PORT_LTP_CRC_MODE_PER_LANE;
7205 
7206 	return port_ltp;
7207 }
7208 
7209 /*
7210  * Convert an OPA Port LTP mask to capability mask
7211  */
7212 int port_ltp_to_cap(int port_ltp)
7213 {
7214 	int cap_mask = 0;
7215 
7216 	if (port_ltp & PORT_LTP_CRC_MODE_14)
7217 		cap_mask |= CAP_CRC_14B;
7218 	if (port_ltp & PORT_LTP_CRC_MODE_48)
7219 		cap_mask |= CAP_CRC_48B;
7220 	if (port_ltp & PORT_LTP_CRC_MODE_PER_LANE)
7221 		cap_mask |= CAP_CRC_12B_16B_PER_LANE;
7222 
7223 	return cap_mask;
7224 }
7225 
7226 /*
7227  * Convert a single DC LCB CRC mode to an OPA Port LTP mask.
7228  */
7229 static int lcb_to_port_ltp(int lcb_crc)
7230 {
7231 	int port_ltp = 0;
7232 
7233 	if (lcb_crc == LCB_CRC_12B_16B_PER_LANE)
7234 		port_ltp = PORT_LTP_CRC_MODE_PER_LANE;
7235 	else if (lcb_crc == LCB_CRC_48B)
7236 		port_ltp = PORT_LTP_CRC_MODE_48;
7237 	else if (lcb_crc == LCB_CRC_14B)
7238 		port_ltp = PORT_LTP_CRC_MODE_14;
7239 	else
7240 		port_ltp = PORT_LTP_CRC_MODE_16;
7241 
7242 	return port_ltp;
7243 }
7244 
7245 static void clear_full_mgmt_pkey(struct hfi1_pportdata *ppd)
7246 {
7247 	if (ppd->pkeys[2] != 0) {
7248 		ppd->pkeys[2] = 0;
7249 		(void)hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_PKEYS, 0);
7250 		hfi1_event_pkey_change(ppd->dd, ppd->port);
7251 	}
7252 }
7253 
7254 /*
7255  * Convert the given link width to the OPA link width bitmask.
7256  */
7257 static u16 link_width_to_bits(struct hfi1_devdata *dd, u16 width)
7258 {
7259 	switch (width) {
7260 	case 0:
7261 		/*
7262 		 * Simulator and quick linkup do not set the width.
7263 		 * Just set it to 4x without complaint.
7264 		 */
7265 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR || quick_linkup)
7266 			return OPA_LINK_WIDTH_4X;
7267 		return 0; /* no lanes up */
7268 	case 1: return OPA_LINK_WIDTH_1X;
7269 	case 2: return OPA_LINK_WIDTH_2X;
7270 	case 3: return OPA_LINK_WIDTH_3X;
7271 	default:
7272 		dd_dev_info(dd, "%s: invalid width %d, using 4\n",
7273 			    __func__, width);
7274 		/* fall through */
7275 	case 4: return OPA_LINK_WIDTH_4X;
7276 	}
7277 }
7278 
7279 /*
7280  * Do a population count on the bottom nibble.
7281  */
7282 static const u8 bit_counts[16] = {
7283 	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
7284 };
7285 
7286 static inline u8 nibble_to_count(u8 nibble)
7287 {
7288 	return bit_counts[nibble & 0xf];
7289 }
7290 
7291 /*
7292  * Read the active lane information from the 8051 registers and return
7293  * their widths.
7294  *
7295  * Active lane information is found in these 8051 registers:
7296  *	enable_lane_tx
7297  *	enable_lane_rx
7298  */
7299 static void get_link_widths(struct hfi1_devdata *dd, u16 *tx_width,
7300 			    u16 *rx_width)
7301 {
7302 	u16 tx, rx;
7303 	u8 enable_lane_rx;
7304 	u8 enable_lane_tx;
7305 	u8 tx_polarity_inversion;
7306 	u8 rx_polarity_inversion;
7307 	u8 max_rate;
7308 
7309 	/* read the active lanes */
7310 	read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
7311 			 &rx_polarity_inversion, &max_rate);
7312 	read_local_lni(dd, &enable_lane_rx);
7313 
7314 	/* convert to counts */
7315 	tx = nibble_to_count(enable_lane_tx);
7316 	rx = nibble_to_count(enable_lane_rx);
7317 
7318 	/*
7319 	 * Set link_speed_active here, overriding what was set in
7320 	 * handle_verify_cap().  The ASIC 8051 firmware does not correctly
7321 	 * set the max_rate field in handle_verify_cap until v0.19.
7322 	 */
7323 	if ((dd->icode == ICODE_RTL_SILICON) &&
7324 	    (dd->dc8051_ver < dc8051_ver(0, 19, 0))) {
7325 		/* max_rate: 0 = 12.5G, 1 = 25G */
7326 		switch (max_rate) {
7327 		case 0:
7328 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_12_5G;
7329 			break;
7330 		default:
7331 			dd_dev_err(dd,
7332 				   "%s: unexpected max rate %d, using 25Gb\n",
7333 				   __func__, (int)max_rate);
7334 			/* fall through */
7335 		case 1:
7336 			dd->pport[0].link_speed_active = OPA_LINK_SPEED_25G;
7337 			break;
7338 		}
7339 	}
7340 
7341 	dd_dev_info(dd,
7342 		    "Fabric active lanes (width): tx 0x%x (%d), rx 0x%x (%d)\n",
7343 		    enable_lane_tx, tx, enable_lane_rx, rx);
7344 	*tx_width = link_width_to_bits(dd, tx);
7345 	*rx_width = link_width_to_bits(dd, rx);
7346 }
7347 
7348 /*
7349  * Read verify_cap_local_fm_link_width[1] to obtain the link widths.
7350  * Valid after the end of VerifyCap and during LinkUp.  Does not change
7351  * after link up.  I.e. look elsewhere for downgrade information.
7352  *
7353  * Bits are:
7354  *	+ bits [7:4] contain the number of active transmitters
7355  *	+ bits [3:0] contain the number of active receivers
7356  * These are numbers 1 through 4 and can be different values if the
7357  * link is asymmetric.
7358  *
7359  * verify_cap_local_fm_link_width[0] retains its original value.
7360  */
7361 static void get_linkup_widths(struct hfi1_devdata *dd, u16 *tx_width,
7362 			      u16 *rx_width)
7363 {
7364 	u16 widths, tx, rx;
7365 	u8 misc_bits, local_flags;
7366 	u16 active_tx, active_rx;
7367 
7368 	read_vc_local_link_mode(dd, &misc_bits, &local_flags, &widths);
7369 	tx = widths >> 12;
7370 	rx = (widths >> 8) & 0xf;
7371 
7372 	*tx_width = link_width_to_bits(dd, tx);
7373 	*rx_width = link_width_to_bits(dd, rx);
7374 
7375 	/* print the active widths */
7376 	get_link_widths(dd, &active_tx, &active_rx);
7377 }
7378 
7379 /*
7380  * Set ppd->link_width_active and ppd->link_width_downgrade_active using
7381  * hardware information when the link first comes up.
7382  *
7383  * The link width is not available until after VerifyCap.AllFramesReceived
7384  * (the trigger for handle_verify_cap), so this is outside that routine
7385  * and should be called when the 8051 signals linkup.
7386  */
7387 void get_linkup_link_widths(struct hfi1_pportdata *ppd)
7388 {
7389 	u16 tx_width, rx_width;
7390 
7391 	/* get end-of-LNI link widths */
7392 	get_linkup_widths(ppd->dd, &tx_width, &rx_width);
7393 
7394 	/* use tx_width as the link is supposed to be symmetric on link up */
7395 	ppd->link_width_active = tx_width;
7396 	/* link width downgrade active (LWD.A) starts out matching LW.A */
7397 	ppd->link_width_downgrade_tx_active = ppd->link_width_active;
7398 	ppd->link_width_downgrade_rx_active = ppd->link_width_active;
7399 	/* per OPA spec, on link up LWD.E resets to LWD.S */
7400 	ppd->link_width_downgrade_enabled = ppd->link_width_downgrade_supported;
7401 	/* cache the active egress rate (units {10^6 bits/sec]) */
7402 	ppd->current_egress_rate = active_egress_rate(ppd);
7403 }
7404 
7405 /*
7406  * Handle a verify capabilities interrupt from the 8051.
7407  *
7408  * This is a work-queue function outside of the interrupt.
7409  */
7410 void handle_verify_cap(struct work_struct *work)
7411 {
7412 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7413 								link_vc_work);
7414 	struct hfi1_devdata *dd = ppd->dd;
7415 	u64 reg;
7416 	u8 power_management;
7417 	u8 continuous;
7418 	u8 vcu;
7419 	u8 vau;
7420 	u8 z;
7421 	u16 vl15buf;
7422 	u16 link_widths;
7423 	u16 crc_mask;
7424 	u16 crc_val;
7425 	u16 device_id;
7426 	u16 active_tx, active_rx;
7427 	u8 partner_supported_crc;
7428 	u8 remote_tx_rate;
7429 	u8 device_rev;
7430 
7431 	set_link_state(ppd, HLS_VERIFY_CAP);
7432 
7433 	lcb_shutdown(dd, 0);
7434 	adjust_lcb_for_fpga_serdes(dd);
7435 
7436 	read_vc_remote_phy(dd, &power_management, &continuous);
7437 	read_vc_remote_fabric(dd, &vau, &z, &vcu, &vl15buf,
7438 			      &partner_supported_crc);
7439 	read_vc_remote_link_width(dd, &remote_tx_rate, &link_widths);
7440 	read_remote_device_id(dd, &device_id, &device_rev);
7441 
7442 	/* print the active widths */
7443 	get_link_widths(dd, &active_tx, &active_rx);
7444 	dd_dev_info(dd,
7445 		    "Peer PHY: power management 0x%x, continuous updates 0x%x\n",
7446 		    (int)power_management, (int)continuous);
7447 	dd_dev_info(dd,
7448 		    "Peer Fabric: vAU %d, Z %d, vCU %d, vl15 credits 0x%x, CRC sizes 0x%x\n",
7449 		    (int)vau, (int)z, (int)vcu, (int)vl15buf,
7450 		    (int)partner_supported_crc);
7451 	dd_dev_info(dd, "Peer Link Width: tx rate 0x%x, widths 0x%x\n",
7452 		    (u32)remote_tx_rate, (u32)link_widths);
7453 	dd_dev_info(dd, "Peer Device ID: 0x%04x, Revision 0x%02x\n",
7454 		    (u32)device_id, (u32)device_rev);
7455 	/*
7456 	 * The peer vAU value just read is the peer receiver value.  HFI does
7457 	 * not support a transmit vAU of 0 (AU == 8).  We advertised that
7458 	 * with Z=1 in the fabric capabilities sent to the peer.  The peer
7459 	 * will see our Z=1, and, if it advertised a vAU of 0, will move its
7460 	 * receive to vAU of 1 (AU == 16).  Do the same here.  We do not care
7461 	 * about the peer Z value - our sent vAU is 3 (hardwired) and is not
7462 	 * subject to the Z value exception.
7463 	 */
7464 	if (vau == 0)
7465 		vau = 1;
7466 	set_up_vau(dd, vau);
7467 
7468 	/*
7469 	 * Set VL15 credits to 0 in global credit register. Cache remote VL15
7470 	 * credits value and wait for link-up interrupt ot set it.
7471 	 */
7472 	set_up_vl15(dd, 0);
7473 	dd->vl15buf_cached = vl15buf;
7474 
7475 	/* set up the LCB CRC mode */
7476 	crc_mask = ppd->port_crc_mode_enabled & partner_supported_crc;
7477 
7478 	/* order is important: use the lowest bit in common */
7479 	if (crc_mask & CAP_CRC_14B)
7480 		crc_val = LCB_CRC_14B;
7481 	else if (crc_mask & CAP_CRC_48B)
7482 		crc_val = LCB_CRC_48B;
7483 	else if (crc_mask & CAP_CRC_12B_16B_PER_LANE)
7484 		crc_val = LCB_CRC_12B_16B_PER_LANE;
7485 	else
7486 		crc_val = LCB_CRC_16B;
7487 
7488 	dd_dev_info(dd, "Final LCB CRC mode: %d\n", (int)crc_val);
7489 	write_csr(dd, DC_LCB_CFG_CRC_MODE,
7490 		  (u64)crc_val << DC_LCB_CFG_CRC_MODE_TX_VAL_SHIFT);
7491 
7492 	/* set (14b only) or clear sideband credit */
7493 	reg = read_csr(dd, SEND_CM_CTRL);
7494 	if (crc_val == LCB_CRC_14B && crc_14b_sideband) {
7495 		write_csr(dd, SEND_CM_CTRL,
7496 			  reg | SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7497 	} else {
7498 		write_csr(dd, SEND_CM_CTRL,
7499 			  reg & ~SEND_CM_CTRL_FORCE_CREDIT_MODE_SMASK);
7500 	}
7501 
7502 	ppd->link_speed_active = 0;	/* invalid value */
7503 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
7504 		/* remote_tx_rate: 0 = 12.5G, 1 = 25G */
7505 		switch (remote_tx_rate) {
7506 		case 0:
7507 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7508 			break;
7509 		case 1:
7510 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7511 			break;
7512 		}
7513 	} else {
7514 		/* actual rate is highest bit of the ANDed rates */
7515 		u8 rate = remote_tx_rate & ppd->local_tx_rate;
7516 
7517 		if (rate & 2)
7518 			ppd->link_speed_active = OPA_LINK_SPEED_25G;
7519 		else if (rate & 1)
7520 			ppd->link_speed_active = OPA_LINK_SPEED_12_5G;
7521 	}
7522 	if (ppd->link_speed_active == 0) {
7523 		dd_dev_err(dd, "%s: unexpected remote tx rate %d, using 25Gb\n",
7524 			   __func__, (int)remote_tx_rate);
7525 		ppd->link_speed_active = OPA_LINK_SPEED_25G;
7526 	}
7527 
7528 	/*
7529 	 * Cache the values of the supported, enabled, and active
7530 	 * LTP CRC modes to return in 'portinfo' queries. But the bit
7531 	 * flags that are returned in the portinfo query differ from
7532 	 * what's in the link_crc_mask, crc_sizes, and crc_val
7533 	 * variables. Convert these here.
7534 	 */
7535 	ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
7536 		/* supported crc modes */
7537 	ppd->port_ltp_crc_mode |=
7538 		cap_to_port_ltp(ppd->port_crc_mode_enabled) << 4;
7539 		/* enabled crc modes */
7540 	ppd->port_ltp_crc_mode |= lcb_to_port_ltp(crc_val);
7541 		/* active crc mode */
7542 
7543 	/* set up the remote credit return table */
7544 	assign_remote_cm_au_table(dd, vcu);
7545 
7546 	/*
7547 	 * The LCB is reset on entry to handle_verify_cap(), so this must
7548 	 * be applied on every link up.
7549 	 *
7550 	 * Adjust LCB error kill enable to kill the link if
7551 	 * these RBUF errors are seen:
7552 	 *	REPLAY_BUF_MBE_SMASK
7553 	 *	FLIT_INPUT_BUF_MBE_SMASK
7554 	 */
7555 	if (is_ax(dd)) {			/* fixed in B0 */
7556 		reg = read_csr(dd, DC_LCB_CFG_LINK_KILL_EN);
7557 		reg |= DC_LCB_CFG_LINK_KILL_EN_REPLAY_BUF_MBE_SMASK
7558 			| DC_LCB_CFG_LINK_KILL_EN_FLIT_INPUT_BUF_MBE_SMASK;
7559 		write_csr(dd, DC_LCB_CFG_LINK_KILL_EN, reg);
7560 	}
7561 
7562 	/* pull LCB fifos out of reset - all fifo clocks must be stable */
7563 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
7564 
7565 	/* give 8051 access to the LCB CSRs */
7566 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
7567 	set_8051_lcb_access(dd);
7568 
7569 	/* tell the 8051 to go to LinkUp */
7570 	set_link_state(ppd, HLS_GOING_UP);
7571 }
7572 
7573 /**
7574  * apply_link_downgrade_policy - Apply the link width downgrade enabled
7575  * policy against the current active link widths.
7576  * @ppd: info of physical Hfi port
7577  * @refresh_widths: True indicates link downgrade event
7578  * @return: True indicates a successful link downgrade. False indicates
7579  *	    link downgrade event failed and the link will bounce back to
7580  *	    default link width.
7581  *
7582  * Called when the enabled policy changes or the active link widths
7583  * change.
7584  * Refresh_widths indicates that a link downgrade occurred. The
7585  * link_downgraded variable is set by refresh_widths and
7586  * determines the success/failure of the policy application.
7587  */
7588 bool apply_link_downgrade_policy(struct hfi1_pportdata *ppd,
7589 				 bool refresh_widths)
7590 {
7591 	int do_bounce = 0;
7592 	int tries;
7593 	u16 lwde;
7594 	u16 tx, rx;
7595 	bool link_downgraded = refresh_widths;
7596 
7597 	/* use the hls lock to avoid a race with actual link up */
7598 	tries = 0;
7599 retry:
7600 	mutex_lock(&ppd->hls_lock);
7601 	/* only apply if the link is up */
7602 	if (ppd->host_link_state & HLS_DOWN) {
7603 		/* still going up..wait and retry */
7604 		if (ppd->host_link_state & HLS_GOING_UP) {
7605 			if (++tries < 1000) {
7606 				mutex_unlock(&ppd->hls_lock);
7607 				usleep_range(100, 120); /* arbitrary */
7608 				goto retry;
7609 			}
7610 			dd_dev_err(ppd->dd,
7611 				   "%s: giving up waiting for link state change\n",
7612 				   __func__);
7613 		}
7614 		goto done;
7615 	}
7616 
7617 	lwde = ppd->link_width_downgrade_enabled;
7618 
7619 	if (refresh_widths) {
7620 		get_link_widths(ppd->dd, &tx, &rx);
7621 		ppd->link_width_downgrade_tx_active = tx;
7622 		ppd->link_width_downgrade_rx_active = rx;
7623 	}
7624 
7625 	if (ppd->link_width_downgrade_tx_active == 0 ||
7626 	    ppd->link_width_downgrade_rx_active == 0) {
7627 		/* the 8051 reported a dead link as a downgrade */
7628 		dd_dev_err(ppd->dd, "Link downgrade is really a link down, ignoring\n");
7629 		link_downgraded = false;
7630 	} else if (lwde == 0) {
7631 		/* downgrade is disabled */
7632 
7633 		/* bounce if not at starting active width */
7634 		if ((ppd->link_width_active !=
7635 		     ppd->link_width_downgrade_tx_active) ||
7636 		    (ppd->link_width_active !=
7637 		     ppd->link_width_downgrade_rx_active)) {
7638 			dd_dev_err(ppd->dd,
7639 				   "Link downgrade is disabled and link has downgraded, downing link\n");
7640 			dd_dev_err(ppd->dd,
7641 				   "  original 0x%x, tx active 0x%x, rx active 0x%x\n",
7642 				   ppd->link_width_active,
7643 				   ppd->link_width_downgrade_tx_active,
7644 				   ppd->link_width_downgrade_rx_active);
7645 			do_bounce = 1;
7646 			link_downgraded = false;
7647 		}
7648 	} else if ((lwde & ppd->link_width_downgrade_tx_active) == 0 ||
7649 		   (lwde & ppd->link_width_downgrade_rx_active) == 0) {
7650 		/* Tx or Rx is outside the enabled policy */
7651 		dd_dev_err(ppd->dd,
7652 			   "Link is outside of downgrade allowed, downing link\n");
7653 		dd_dev_err(ppd->dd,
7654 			   "  enabled 0x%x, tx active 0x%x, rx active 0x%x\n",
7655 			   lwde, ppd->link_width_downgrade_tx_active,
7656 			   ppd->link_width_downgrade_rx_active);
7657 		do_bounce = 1;
7658 		link_downgraded = false;
7659 	}
7660 
7661 done:
7662 	mutex_unlock(&ppd->hls_lock);
7663 
7664 	if (do_bounce) {
7665 		set_link_down_reason(ppd, OPA_LINKDOWN_REASON_WIDTH_POLICY, 0,
7666 				     OPA_LINKDOWN_REASON_WIDTH_POLICY);
7667 		set_link_state(ppd, HLS_DN_OFFLINE);
7668 		start_link(ppd);
7669 	}
7670 
7671 	return link_downgraded;
7672 }
7673 
7674 /*
7675  * Handle a link downgrade interrupt from the 8051.
7676  *
7677  * This is a work-queue function outside of the interrupt.
7678  */
7679 void handle_link_downgrade(struct work_struct *work)
7680 {
7681 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
7682 							link_downgrade_work);
7683 
7684 	dd_dev_info(ppd->dd, "8051: Link width downgrade\n");
7685 	if (apply_link_downgrade_policy(ppd, true))
7686 		update_xmit_counters(ppd, ppd->link_width_downgrade_tx_active);
7687 }
7688 
7689 static char *dcc_err_string(char *buf, int buf_len, u64 flags)
7690 {
7691 	return flag_string(buf, buf_len, flags, dcc_err_flags,
7692 		ARRAY_SIZE(dcc_err_flags));
7693 }
7694 
7695 static char *lcb_err_string(char *buf, int buf_len, u64 flags)
7696 {
7697 	return flag_string(buf, buf_len, flags, lcb_err_flags,
7698 		ARRAY_SIZE(lcb_err_flags));
7699 }
7700 
7701 static char *dc8051_err_string(char *buf, int buf_len, u64 flags)
7702 {
7703 	return flag_string(buf, buf_len, flags, dc8051_err_flags,
7704 		ARRAY_SIZE(dc8051_err_flags));
7705 }
7706 
7707 static char *dc8051_info_err_string(char *buf, int buf_len, u64 flags)
7708 {
7709 	return flag_string(buf, buf_len, flags, dc8051_info_err_flags,
7710 		ARRAY_SIZE(dc8051_info_err_flags));
7711 }
7712 
7713 static char *dc8051_info_host_msg_string(char *buf, int buf_len, u64 flags)
7714 {
7715 	return flag_string(buf, buf_len, flags, dc8051_info_host_msg_flags,
7716 		ARRAY_SIZE(dc8051_info_host_msg_flags));
7717 }
7718 
7719 static void handle_8051_interrupt(struct hfi1_devdata *dd, u32 unused, u64 reg)
7720 {
7721 	struct hfi1_pportdata *ppd = dd->pport;
7722 	u64 info, err, host_msg;
7723 	int queue_link_down = 0;
7724 	char buf[96];
7725 
7726 	/* look at the flags */
7727 	if (reg & DC_DC8051_ERR_FLG_SET_BY_8051_SMASK) {
7728 		/* 8051 information set by firmware */
7729 		/* read DC8051_DBG_ERR_INFO_SET_BY_8051 for details */
7730 		info = read_csr(dd, DC_DC8051_DBG_ERR_INFO_SET_BY_8051);
7731 		err = (info >> DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_SHIFT)
7732 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_ERROR_MASK;
7733 		host_msg = (info >>
7734 			DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_SHIFT)
7735 			& DC_DC8051_DBG_ERR_INFO_SET_BY_8051_HOST_MSG_MASK;
7736 
7737 		/*
7738 		 * Handle error flags.
7739 		 */
7740 		if (err & FAILED_LNI) {
7741 			/*
7742 			 * LNI error indications are cleared by the 8051
7743 			 * only when starting polling.  Only pay attention
7744 			 * to them when in the states that occur during
7745 			 * LNI.
7746 			 */
7747 			if (ppd->host_link_state
7748 			    & (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
7749 				queue_link_down = 1;
7750 				dd_dev_info(dd, "Link error: %s\n",
7751 					    dc8051_info_err_string(buf,
7752 								   sizeof(buf),
7753 								   err &
7754 								   FAILED_LNI));
7755 			}
7756 			err &= ~(u64)FAILED_LNI;
7757 		}
7758 		/* unknown frames can happen durning LNI, just count */
7759 		if (err & UNKNOWN_FRAME) {
7760 			ppd->unknown_frame_count++;
7761 			err &= ~(u64)UNKNOWN_FRAME;
7762 		}
7763 		if (err) {
7764 			/* report remaining errors, but do not do anything */
7765 			dd_dev_err(dd, "8051 info error: %s\n",
7766 				   dc8051_info_err_string(buf, sizeof(buf),
7767 							  err));
7768 		}
7769 
7770 		/*
7771 		 * Handle host message flags.
7772 		 */
7773 		if (host_msg & HOST_REQ_DONE) {
7774 			/*
7775 			 * Presently, the driver does a busy wait for
7776 			 * host requests to complete.  This is only an
7777 			 * informational message.
7778 			 * NOTE: The 8051 clears the host message
7779 			 * information *on the next 8051 command*.
7780 			 * Therefore, when linkup is achieved,
7781 			 * this flag will still be set.
7782 			 */
7783 			host_msg &= ~(u64)HOST_REQ_DONE;
7784 		}
7785 		if (host_msg & BC_SMA_MSG) {
7786 			queue_work(ppd->link_wq, &ppd->sma_message_work);
7787 			host_msg &= ~(u64)BC_SMA_MSG;
7788 		}
7789 		if (host_msg & LINKUP_ACHIEVED) {
7790 			dd_dev_info(dd, "8051: Link up\n");
7791 			queue_work(ppd->link_wq, &ppd->link_up_work);
7792 			host_msg &= ~(u64)LINKUP_ACHIEVED;
7793 		}
7794 		if (host_msg & EXT_DEVICE_CFG_REQ) {
7795 			handle_8051_request(ppd);
7796 			host_msg &= ~(u64)EXT_DEVICE_CFG_REQ;
7797 		}
7798 		if (host_msg & VERIFY_CAP_FRAME) {
7799 			queue_work(ppd->link_wq, &ppd->link_vc_work);
7800 			host_msg &= ~(u64)VERIFY_CAP_FRAME;
7801 		}
7802 		if (host_msg & LINK_GOING_DOWN) {
7803 			const char *extra = "";
7804 			/* no downgrade action needed if going down */
7805 			if (host_msg & LINK_WIDTH_DOWNGRADED) {
7806 				host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7807 				extra = " (ignoring downgrade)";
7808 			}
7809 			dd_dev_info(dd, "8051: Link down%s\n", extra);
7810 			queue_link_down = 1;
7811 			host_msg &= ~(u64)LINK_GOING_DOWN;
7812 		}
7813 		if (host_msg & LINK_WIDTH_DOWNGRADED) {
7814 			queue_work(ppd->link_wq, &ppd->link_downgrade_work);
7815 			host_msg &= ~(u64)LINK_WIDTH_DOWNGRADED;
7816 		}
7817 		if (host_msg) {
7818 			/* report remaining messages, but do not do anything */
7819 			dd_dev_info(dd, "8051 info host message: %s\n",
7820 				    dc8051_info_host_msg_string(buf,
7821 								sizeof(buf),
7822 								host_msg));
7823 		}
7824 
7825 		reg &= ~DC_DC8051_ERR_FLG_SET_BY_8051_SMASK;
7826 	}
7827 	if (reg & DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK) {
7828 		/*
7829 		 * Lost the 8051 heartbeat.  If this happens, we
7830 		 * receive constant interrupts about it.  Disable
7831 		 * the interrupt after the first.
7832 		 */
7833 		dd_dev_err(dd, "Lost 8051 heartbeat\n");
7834 		write_csr(dd, DC_DC8051_ERR_EN,
7835 			  read_csr(dd, DC_DC8051_ERR_EN) &
7836 			  ~DC_DC8051_ERR_EN_LOST_8051_HEART_BEAT_SMASK);
7837 
7838 		reg &= ~DC_DC8051_ERR_FLG_LOST_8051_HEART_BEAT_SMASK;
7839 	}
7840 	if (reg) {
7841 		/* report the error, but do not do anything */
7842 		dd_dev_err(dd, "8051 error: %s\n",
7843 			   dc8051_err_string(buf, sizeof(buf), reg));
7844 	}
7845 
7846 	if (queue_link_down) {
7847 		/*
7848 		 * if the link is already going down or disabled, do not
7849 		 * queue another. If there's a link down entry already
7850 		 * queued, don't queue another one.
7851 		 */
7852 		if ((ppd->host_link_state &
7853 		    (HLS_GOING_OFFLINE | HLS_LINK_COOLDOWN)) ||
7854 		    ppd->link_enabled == 0) {
7855 			dd_dev_info(dd, "%s: not queuing link down. host_link_state %x, link_enabled %x\n",
7856 				    __func__, ppd->host_link_state,
7857 				    ppd->link_enabled);
7858 		} else {
7859 			if (xchg(&ppd->is_link_down_queued, 1) == 1)
7860 				dd_dev_info(dd,
7861 					    "%s: link down request already queued\n",
7862 					    __func__);
7863 			else
7864 				queue_work(ppd->link_wq, &ppd->link_down_work);
7865 		}
7866 	}
7867 }
7868 
7869 static const char * const fm_config_txt[] = {
7870 [0] =
7871 	"BadHeadDist: Distance violation between two head flits",
7872 [1] =
7873 	"BadTailDist: Distance violation between two tail flits",
7874 [2] =
7875 	"BadCtrlDist: Distance violation between two credit control flits",
7876 [3] =
7877 	"BadCrdAck: Credits return for unsupported VL",
7878 [4] =
7879 	"UnsupportedVLMarker: Received VL Marker",
7880 [5] =
7881 	"BadPreempt: Exceeded the preemption nesting level",
7882 [6] =
7883 	"BadControlFlit: Received unsupported control flit",
7884 /* no 7 */
7885 [8] =
7886 	"UnsupportedVLMarker: Received VL Marker for unconfigured or disabled VL",
7887 };
7888 
7889 static const char * const port_rcv_txt[] = {
7890 [1] =
7891 	"BadPktLen: Illegal PktLen",
7892 [2] =
7893 	"PktLenTooLong: Packet longer than PktLen",
7894 [3] =
7895 	"PktLenTooShort: Packet shorter than PktLen",
7896 [4] =
7897 	"BadSLID: Illegal SLID (0, using multicast as SLID, does not include security validation of SLID)",
7898 [5] =
7899 	"BadDLID: Illegal DLID (0, doesn't match HFI)",
7900 [6] =
7901 	"BadL2: Illegal L2 opcode",
7902 [7] =
7903 	"BadSC: Unsupported SC",
7904 [9] =
7905 	"BadRC: Illegal RC",
7906 [11] =
7907 	"PreemptError: Preempting with same VL",
7908 [12] =
7909 	"PreemptVL15: Preempting a VL15 packet",
7910 };
7911 
7912 #define OPA_LDR_FMCONFIG_OFFSET 16
7913 #define OPA_LDR_PORTRCV_OFFSET 0
7914 static void handle_dcc_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
7915 {
7916 	u64 info, hdr0, hdr1;
7917 	const char *extra;
7918 	char buf[96];
7919 	struct hfi1_pportdata *ppd = dd->pport;
7920 	u8 lcl_reason = 0;
7921 	int do_bounce = 0;
7922 
7923 	if (reg & DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK) {
7924 		if (!(dd->err_info_uncorrectable & OPA_EI_STATUS_SMASK)) {
7925 			info = read_csr(dd, DCC_ERR_INFO_UNCORRECTABLE);
7926 			dd->err_info_uncorrectable = info & OPA_EI_CODE_SMASK;
7927 			/* set status bit */
7928 			dd->err_info_uncorrectable |= OPA_EI_STATUS_SMASK;
7929 		}
7930 		reg &= ~DCC_ERR_FLG_UNCORRECTABLE_ERR_SMASK;
7931 	}
7932 
7933 	if (reg & DCC_ERR_FLG_LINK_ERR_SMASK) {
7934 		struct hfi1_pportdata *ppd = dd->pport;
7935 		/* this counter saturates at (2^32) - 1 */
7936 		if (ppd->link_downed < (u32)UINT_MAX)
7937 			ppd->link_downed++;
7938 		reg &= ~DCC_ERR_FLG_LINK_ERR_SMASK;
7939 	}
7940 
7941 	if (reg & DCC_ERR_FLG_FMCONFIG_ERR_SMASK) {
7942 		u8 reason_valid = 1;
7943 
7944 		info = read_csr(dd, DCC_ERR_INFO_FMCONFIG);
7945 		if (!(dd->err_info_fmconfig & OPA_EI_STATUS_SMASK)) {
7946 			dd->err_info_fmconfig = info & OPA_EI_CODE_SMASK;
7947 			/* set status bit */
7948 			dd->err_info_fmconfig |= OPA_EI_STATUS_SMASK;
7949 		}
7950 		switch (info) {
7951 		case 0:
7952 		case 1:
7953 		case 2:
7954 		case 3:
7955 		case 4:
7956 		case 5:
7957 		case 6:
7958 			extra = fm_config_txt[info];
7959 			break;
7960 		case 8:
7961 			extra = fm_config_txt[info];
7962 			if (ppd->port_error_action &
7963 			    OPA_PI_MASK_FM_CFG_UNSUPPORTED_VL_MARKER) {
7964 				do_bounce = 1;
7965 				/*
7966 				 * lcl_reason cannot be derived from info
7967 				 * for this error
7968 				 */
7969 				lcl_reason =
7970 				  OPA_LINKDOWN_REASON_UNSUPPORTED_VL_MARKER;
7971 			}
7972 			break;
7973 		default:
7974 			reason_valid = 0;
7975 			snprintf(buf, sizeof(buf), "reserved%lld", info);
7976 			extra = buf;
7977 			break;
7978 		}
7979 
7980 		if (reason_valid && !do_bounce) {
7981 			do_bounce = ppd->port_error_action &
7982 					(1 << (OPA_LDR_FMCONFIG_OFFSET + info));
7983 			lcl_reason = info + OPA_LINKDOWN_REASON_BAD_HEAD_DIST;
7984 		}
7985 
7986 		/* just report this */
7987 		dd_dev_info_ratelimited(dd, "DCC Error: fmconfig error: %s\n",
7988 					extra);
7989 		reg &= ~DCC_ERR_FLG_FMCONFIG_ERR_SMASK;
7990 	}
7991 
7992 	if (reg & DCC_ERR_FLG_RCVPORT_ERR_SMASK) {
7993 		u8 reason_valid = 1;
7994 
7995 		info = read_csr(dd, DCC_ERR_INFO_PORTRCV);
7996 		hdr0 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR0);
7997 		hdr1 = read_csr(dd, DCC_ERR_INFO_PORTRCV_HDR1);
7998 		if (!(dd->err_info_rcvport.status_and_code &
7999 		      OPA_EI_STATUS_SMASK)) {
8000 			dd->err_info_rcvport.status_and_code =
8001 				info & OPA_EI_CODE_SMASK;
8002 			/* set status bit */
8003 			dd->err_info_rcvport.status_and_code |=
8004 				OPA_EI_STATUS_SMASK;
8005 			/*
8006 			 * save first 2 flits in the packet that caused
8007 			 * the error
8008 			 */
8009 			dd->err_info_rcvport.packet_flit1 = hdr0;
8010 			dd->err_info_rcvport.packet_flit2 = hdr1;
8011 		}
8012 		switch (info) {
8013 		case 1:
8014 		case 2:
8015 		case 3:
8016 		case 4:
8017 		case 5:
8018 		case 6:
8019 		case 7:
8020 		case 9:
8021 		case 11:
8022 		case 12:
8023 			extra = port_rcv_txt[info];
8024 			break;
8025 		default:
8026 			reason_valid = 0;
8027 			snprintf(buf, sizeof(buf), "reserved%lld", info);
8028 			extra = buf;
8029 			break;
8030 		}
8031 
8032 		if (reason_valid && !do_bounce) {
8033 			do_bounce = ppd->port_error_action &
8034 					(1 << (OPA_LDR_PORTRCV_OFFSET + info));
8035 			lcl_reason = info + OPA_LINKDOWN_REASON_RCV_ERROR_0;
8036 		}
8037 
8038 		/* just report this */
8039 		dd_dev_info_ratelimited(dd, "DCC Error: PortRcv error: %s\n"
8040 					"               hdr0 0x%llx, hdr1 0x%llx\n",
8041 					extra, hdr0, hdr1);
8042 
8043 		reg &= ~DCC_ERR_FLG_RCVPORT_ERR_SMASK;
8044 	}
8045 
8046 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK) {
8047 		/* informative only */
8048 		dd_dev_info_ratelimited(dd, "8051 access to LCB blocked\n");
8049 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_UC_SMASK;
8050 	}
8051 	if (reg & DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK) {
8052 		/* informative only */
8053 		dd_dev_info_ratelimited(dd, "host access to LCB blocked\n");
8054 		reg &= ~DCC_ERR_FLG_EN_CSR_ACCESS_BLOCKED_HOST_SMASK;
8055 	}
8056 
8057 	if (unlikely(hfi1_dbg_fault_suppress_err(&dd->verbs_dev)))
8058 		reg &= ~DCC_ERR_FLG_LATE_EBP_ERR_SMASK;
8059 
8060 	/* report any remaining errors */
8061 	if (reg)
8062 		dd_dev_info_ratelimited(dd, "DCC Error: %s\n",
8063 					dcc_err_string(buf, sizeof(buf), reg));
8064 
8065 	if (lcl_reason == 0)
8066 		lcl_reason = OPA_LINKDOWN_REASON_UNKNOWN;
8067 
8068 	if (do_bounce) {
8069 		dd_dev_info_ratelimited(dd, "%s: PortErrorAction bounce\n",
8070 					__func__);
8071 		set_link_down_reason(ppd, lcl_reason, 0, lcl_reason);
8072 		queue_work(ppd->link_wq, &ppd->link_bounce_work);
8073 	}
8074 }
8075 
8076 static void handle_lcb_err(struct hfi1_devdata *dd, u32 unused, u64 reg)
8077 {
8078 	char buf[96];
8079 
8080 	dd_dev_info(dd, "LCB Error: %s\n",
8081 		    lcb_err_string(buf, sizeof(buf), reg));
8082 }
8083 
8084 /*
8085  * CCE block DC interrupt.  Source is < 8.
8086  */
8087 static void is_dc_int(struct hfi1_devdata *dd, unsigned int source)
8088 {
8089 	const struct err_reg_info *eri = &dc_errs[source];
8090 
8091 	if (eri->handler) {
8092 		interrupt_clear_down(dd, 0, eri);
8093 	} else if (source == 3 /* dc_lbm_int */) {
8094 		/*
8095 		 * This indicates that a parity error has occurred on the
8096 		 * address/control lines presented to the LBM.  The error
8097 		 * is a single pulse, there is no associated error flag,
8098 		 * and it is non-maskable.  This is because if a parity
8099 		 * error occurs on the request the request is dropped.
8100 		 * This should never occur, but it is nice to know if it
8101 		 * ever does.
8102 		 */
8103 		dd_dev_err(dd, "Parity error in DC LBM block\n");
8104 	} else {
8105 		dd_dev_err(dd, "Invalid DC interrupt %u\n", source);
8106 	}
8107 }
8108 
8109 /*
8110  * TX block send credit interrupt.  Source is < 160.
8111  */
8112 static void is_send_credit_int(struct hfi1_devdata *dd, unsigned int source)
8113 {
8114 	sc_group_release_update(dd, source);
8115 }
8116 
8117 /*
8118  * TX block SDMA interrupt.  Source is < 48.
8119  *
8120  * SDMA interrupts are grouped by type:
8121  *
8122  *	 0 -  N-1 = SDma
8123  *	 N - 2N-1 = SDmaProgress
8124  *	2N - 3N-1 = SDmaIdle
8125  */
8126 static void is_sdma_eng_int(struct hfi1_devdata *dd, unsigned int source)
8127 {
8128 	/* what interrupt */
8129 	unsigned int what  = source / TXE_NUM_SDMA_ENGINES;
8130 	/* which engine */
8131 	unsigned int which = source % TXE_NUM_SDMA_ENGINES;
8132 
8133 #ifdef CONFIG_SDMA_VERBOSITY
8134 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", which,
8135 		   slashstrip(__FILE__), __LINE__, __func__);
8136 	sdma_dumpstate(&dd->per_sdma[which]);
8137 #endif
8138 
8139 	if (likely(what < 3 && which < dd->num_sdma)) {
8140 		sdma_engine_interrupt(&dd->per_sdma[which], 1ull << source);
8141 	} else {
8142 		/* should not happen */
8143 		dd_dev_err(dd, "Invalid SDMA interrupt 0x%x\n", source);
8144 	}
8145 }
8146 
8147 /**
8148  * is_rcv_avail_int() - User receive context available IRQ handler
8149  * @dd: valid dd
8150  * @source: logical IRQ source (offset from IS_RCVAVAIL_START)
8151  *
8152  * RX block receive available interrupt.  Source is < 160.
8153  *
8154  * This is the general interrupt handler for user (PSM) receive contexts,
8155  * and can only be used for non-threaded IRQs.
8156  */
8157 static void is_rcv_avail_int(struct hfi1_devdata *dd, unsigned int source)
8158 {
8159 	struct hfi1_ctxtdata *rcd;
8160 	char *err_detail;
8161 
8162 	if (likely(source < dd->num_rcv_contexts)) {
8163 		rcd = hfi1_rcd_get_by_index(dd, source);
8164 		if (rcd) {
8165 			handle_user_interrupt(rcd);
8166 			hfi1_rcd_put(rcd);
8167 			return;	/* OK */
8168 		}
8169 		/* received an interrupt, but no rcd */
8170 		err_detail = "dataless";
8171 	} else {
8172 		/* received an interrupt, but are not using that context */
8173 		err_detail = "out of range";
8174 	}
8175 	dd_dev_err(dd, "unexpected %s receive available context interrupt %u\n",
8176 		   err_detail, source);
8177 }
8178 
8179 /**
8180  * is_rcv_urgent_int() - User receive context urgent IRQ handler
8181  * @dd: valid dd
8182  * @source: logical IRQ source (offset from IS_RCVURGENT_START)
8183  *
8184  * RX block receive urgent interrupt.  Source is < 160.
8185  *
8186  * NOTE: kernel receive contexts specifically do NOT enable this IRQ.
8187  */
8188 static void is_rcv_urgent_int(struct hfi1_devdata *dd, unsigned int source)
8189 {
8190 	struct hfi1_ctxtdata *rcd;
8191 	char *err_detail;
8192 
8193 	if (likely(source < dd->num_rcv_contexts)) {
8194 		rcd = hfi1_rcd_get_by_index(dd, source);
8195 		if (rcd) {
8196 			handle_user_interrupt(rcd);
8197 			hfi1_rcd_put(rcd);
8198 			return;	/* OK */
8199 		}
8200 		/* received an interrupt, but no rcd */
8201 		err_detail = "dataless";
8202 	} else {
8203 		/* received an interrupt, but are not using that context */
8204 		err_detail = "out of range";
8205 	}
8206 	dd_dev_err(dd, "unexpected %s receive urgent context interrupt %u\n",
8207 		   err_detail, source);
8208 }
8209 
8210 /*
8211  * Reserved range interrupt.  Should not be called in normal operation.
8212  */
8213 static void is_reserved_int(struct hfi1_devdata *dd, unsigned int source)
8214 {
8215 	char name[64];
8216 
8217 	dd_dev_err(dd, "unexpected %s interrupt\n",
8218 		   is_reserved_name(name, sizeof(name), source));
8219 }
8220 
8221 static const struct is_table is_table[] = {
8222 /*
8223  * start		 end
8224  *				name func		interrupt func
8225  */
8226 { IS_GENERAL_ERR_START,  IS_GENERAL_ERR_END,
8227 				is_misc_err_name,	is_misc_err_int },
8228 { IS_SDMAENG_ERR_START,  IS_SDMAENG_ERR_END,
8229 				is_sdma_eng_err_name,	is_sdma_eng_err_int },
8230 { IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END,
8231 				is_sendctxt_err_name,	is_sendctxt_err_int },
8232 { IS_SDMA_START,	     IS_SDMA_IDLE_END,
8233 				is_sdma_eng_name,	is_sdma_eng_int },
8234 { IS_VARIOUS_START,	     IS_VARIOUS_END,
8235 				is_various_name,	is_various_int },
8236 { IS_DC_START,	     IS_DC_END,
8237 				is_dc_name,		is_dc_int },
8238 { IS_RCVAVAIL_START,     IS_RCVAVAIL_END,
8239 				is_rcv_avail_name,	is_rcv_avail_int },
8240 { IS_RCVURGENT_START,    IS_RCVURGENT_END,
8241 				is_rcv_urgent_name,	is_rcv_urgent_int },
8242 { IS_SENDCREDIT_START,   IS_SENDCREDIT_END,
8243 				is_send_credit_name,	is_send_credit_int},
8244 { IS_RESERVED_START,     IS_RESERVED_END,
8245 				is_reserved_name,	is_reserved_int},
8246 };
8247 
8248 /*
8249  * Interrupt source interrupt - called when the given source has an interrupt.
8250  * Source is a bit index into an array of 64-bit integers.
8251  */
8252 static void is_interrupt(struct hfi1_devdata *dd, unsigned int source)
8253 {
8254 	const struct is_table *entry;
8255 
8256 	/* avoids a double compare by walking the table in-order */
8257 	for (entry = &is_table[0]; entry->is_name; entry++) {
8258 		if (source <= entry->end) {
8259 			trace_hfi1_interrupt(dd, entry, source);
8260 			entry->is_int(dd, source - entry->start);
8261 			return;
8262 		}
8263 	}
8264 	/* fell off the end */
8265 	dd_dev_err(dd, "invalid interrupt source %u\n", source);
8266 }
8267 
8268 /**
8269  * gerneral_interrupt() -  General interrupt handler
8270  * @irq: MSIx IRQ vector
8271  * @data: hfi1 devdata
8272  *
8273  * This is able to correctly handle all non-threaded interrupts.  Receive
8274  * context DATA IRQs are threaded and are not supported by this handler.
8275  *
8276  */
8277 irqreturn_t general_interrupt(int irq, void *data)
8278 {
8279 	struct hfi1_devdata *dd = data;
8280 	u64 regs[CCE_NUM_INT_CSRS];
8281 	u32 bit;
8282 	int i;
8283 	irqreturn_t handled = IRQ_NONE;
8284 
8285 	this_cpu_inc(*dd->int_counter);
8286 
8287 	/* phase 1: scan and clear all handled interrupts */
8288 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
8289 		if (dd->gi_mask[i] == 0) {
8290 			regs[i] = 0;	/* used later */
8291 			continue;
8292 		}
8293 		regs[i] = read_csr(dd, CCE_INT_STATUS + (8 * i)) &
8294 				dd->gi_mask[i];
8295 		/* only clear if anything is set */
8296 		if (regs[i])
8297 			write_csr(dd, CCE_INT_CLEAR + (8 * i), regs[i]);
8298 	}
8299 
8300 	/* phase 2: call the appropriate handler */
8301 	for_each_set_bit(bit, (unsigned long *)&regs[0],
8302 			 CCE_NUM_INT_CSRS * 64) {
8303 		is_interrupt(dd, bit);
8304 		handled = IRQ_HANDLED;
8305 	}
8306 
8307 	return handled;
8308 }
8309 
8310 irqreturn_t sdma_interrupt(int irq, void *data)
8311 {
8312 	struct sdma_engine *sde = data;
8313 	struct hfi1_devdata *dd = sde->dd;
8314 	u64 status;
8315 
8316 #ifdef CONFIG_SDMA_VERBOSITY
8317 	dd_dev_err(dd, "CONFIG SDMA(%u) %s:%d %s()\n", sde->this_idx,
8318 		   slashstrip(__FILE__), __LINE__, __func__);
8319 	sdma_dumpstate(sde);
8320 #endif
8321 
8322 	this_cpu_inc(*dd->int_counter);
8323 
8324 	/* This read_csr is really bad in the hot path */
8325 	status = read_csr(dd,
8326 			  CCE_INT_STATUS + (8 * (IS_SDMA_START / 64)))
8327 			  & sde->imask;
8328 	if (likely(status)) {
8329 		/* clear the interrupt(s) */
8330 		write_csr(dd,
8331 			  CCE_INT_CLEAR + (8 * (IS_SDMA_START / 64)),
8332 			  status);
8333 
8334 		/* handle the interrupt(s) */
8335 		sdma_engine_interrupt(sde, status);
8336 	} else {
8337 		dd_dev_info_ratelimited(dd, "SDMA engine %u interrupt, but no status bits set\n",
8338 					sde->this_idx);
8339 	}
8340 	return IRQ_HANDLED;
8341 }
8342 
8343 /*
8344  * Clear the receive interrupt.  Use a read of the interrupt clear CSR
8345  * to insure that the write completed.  This does NOT guarantee that
8346  * queued DMA writes to memory from the chip are pushed.
8347  */
8348 static inline void clear_recv_intr(struct hfi1_ctxtdata *rcd)
8349 {
8350 	struct hfi1_devdata *dd = rcd->dd;
8351 	u32 addr = CCE_INT_CLEAR + (8 * rcd->ireg);
8352 
8353 	mmiowb();	/* make sure everything before is written */
8354 	write_csr(dd, addr, rcd->imask);
8355 	/* force the above write on the chip and get a value back */
8356 	(void)read_csr(dd, addr);
8357 }
8358 
8359 /* force the receive interrupt */
8360 void force_recv_intr(struct hfi1_ctxtdata *rcd)
8361 {
8362 	write_csr(rcd->dd, CCE_INT_FORCE + (8 * rcd->ireg), rcd->imask);
8363 }
8364 
8365 /*
8366  * Return non-zero if a packet is present.
8367  *
8368  * This routine is called when rechecking for packets after the RcvAvail
8369  * interrupt has been cleared down.  First, do a quick check of memory for
8370  * a packet present.  If not found, use an expensive CSR read of the context
8371  * tail to determine the actual tail.  The CSR read is necessary because there
8372  * is no method to push pending DMAs to memory other than an interrupt and we
8373  * are trying to determine if we need to force an interrupt.
8374  */
8375 static inline int check_packet_present(struct hfi1_ctxtdata *rcd)
8376 {
8377 	u32 tail;
8378 	int present;
8379 
8380 	if (!rcd->rcvhdrtail_kvaddr)
8381 		present = (rcd->seq_cnt ==
8382 				rhf_rcv_seq(rhf_to_cpu(get_rhf_addr(rcd))));
8383 	else /* is RDMA rtail */
8384 		present = (rcd->head != get_rcvhdrtail(rcd));
8385 
8386 	if (present)
8387 		return 1;
8388 
8389 	/* fall back to a CSR read, correct indpendent of DMA_RTAIL */
8390 	tail = (u32)read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
8391 	return rcd->head != tail;
8392 }
8393 
8394 /*
8395  * Receive packet IRQ handler.  This routine expects to be on its own IRQ.
8396  * This routine will try to handle packets immediately (latency), but if
8397  * it finds too many, it will invoke the thread handler (bandwitdh).  The
8398  * chip receive interrupt is *not* cleared down until this or the thread (if
8399  * invoked) is finished.  The intent is to avoid extra interrupts while we
8400  * are processing packets anyway.
8401  */
8402 irqreturn_t receive_context_interrupt(int irq, void *data)
8403 {
8404 	struct hfi1_ctxtdata *rcd = data;
8405 	struct hfi1_devdata *dd = rcd->dd;
8406 	int disposition;
8407 	int present;
8408 
8409 	trace_hfi1_receive_interrupt(dd, rcd);
8410 	this_cpu_inc(*dd->int_counter);
8411 	aspm_ctx_disable(rcd);
8412 
8413 	/* receive interrupt remains blocked while processing packets */
8414 	disposition = rcd->do_interrupt(rcd, 0);
8415 
8416 	/*
8417 	 * Too many packets were seen while processing packets in this
8418 	 * IRQ handler.  Invoke the handler thread.  The receive interrupt
8419 	 * remains blocked.
8420 	 */
8421 	if (disposition == RCV_PKT_LIMIT)
8422 		return IRQ_WAKE_THREAD;
8423 
8424 	/*
8425 	 * The packet processor detected no more packets.  Clear the receive
8426 	 * interrupt and recheck for a packet packet that may have arrived
8427 	 * after the previous check and interrupt clear.  If a packet arrived,
8428 	 * force another interrupt.
8429 	 */
8430 	clear_recv_intr(rcd);
8431 	present = check_packet_present(rcd);
8432 	if (present)
8433 		force_recv_intr(rcd);
8434 
8435 	return IRQ_HANDLED;
8436 }
8437 
8438 /*
8439  * Receive packet thread handler.  This expects to be invoked with the
8440  * receive interrupt still blocked.
8441  */
8442 irqreturn_t receive_context_thread(int irq, void *data)
8443 {
8444 	struct hfi1_ctxtdata *rcd = data;
8445 	int present;
8446 
8447 	/* receive interrupt is still blocked from the IRQ handler */
8448 	(void)rcd->do_interrupt(rcd, 1);
8449 
8450 	/*
8451 	 * The packet processor will only return if it detected no more
8452 	 * packets.  Hold IRQs here so we can safely clear the interrupt and
8453 	 * recheck for a packet that may have arrived after the previous
8454 	 * check and the interrupt clear.  If a packet arrived, force another
8455 	 * interrupt.
8456 	 */
8457 	local_irq_disable();
8458 	clear_recv_intr(rcd);
8459 	present = check_packet_present(rcd);
8460 	if (present)
8461 		force_recv_intr(rcd);
8462 	local_irq_enable();
8463 
8464 	return IRQ_HANDLED;
8465 }
8466 
8467 /* ========================================================================= */
8468 
8469 u32 read_physical_state(struct hfi1_devdata *dd)
8470 {
8471 	u64 reg;
8472 
8473 	reg = read_csr(dd, DC_DC8051_STS_CUR_STATE);
8474 	return (reg >> DC_DC8051_STS_CUR_STATE_PORT_SHIFT)
8475 				& DC_DC8051_STS_CUR_STATE_PORT_MASK;
8476 }
8477 
8478 u32 read_logical_state(struct hfi1_devdata *dd)
8479 {
8480 	u64 reg;
8481 
8482 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8483 	return (reg >> DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT)
8484 				& DCC_CFG_PORT_CONFIG_LINK_STATE_MASK;
8485 }
8486 
8487 static void set_logical_state(struct hfi1_devdata *dd, u32 chip_lstate)
8488 {
8489 	u64 reg;
8490 
8491 	reg = read_csr(dd, DCC_CFG_PORT_CONFIG);
8492 	/* clear current state, set new state */
8493 	reg &= ~DCC_CFG_PORT_CONFIG_LINK_STATE_SMASK;
8494 	reg |= (u64)chip_lstate << DCC_CFG_PORT_CONFIG_LINK_STATE_SHIFT;
8495 	write_csr(dd, DCC_CFG_PORT_CONFIG, reg);
8496 }
8497 
8498 /*
8499  * Use the 8051 to read a LCB CSR.
8500  */
8501 static int read_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 *data)
8502 {
8503 	u32 regno;
8504 	int ret;
8505 
8506 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
8507 		if (acquire_lcb_access(dd, 0) == 0) {
8508 			*data = read_csr(dd, addr);
8509 			release_lcb_access(dd, 0);
8510 			return 0;
8511 		}
8512 		return -EBUSY;
8513 	}
8514 
8515 	/* register is an index of LCB registers: (offset - base) / 8 */
8516 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8517 	ret = do_8051_command(dd, HCMD_READ_LCB_CSR, regno, data);
8518 	if (ret != HCMD_SUCCESS)
8519 		return -EBUSY;
8520 	return 0;
8521 }
8522 
8523 /*
8524  * Provide a cache for some of the LCB registers in case the LCB is
8525  * unavailable.
8526  * (The LCB is unavailable in certain link states, for example.)
8527  */
8528 struct lcb_datum {
8529 	u32 off;
8530 	u64 val;
8531 };
8532 
8533 static struct lcb_datum lcb_cache[] = {
8534 	{ DC_LCB_ERR_INFO_RX_REPLAY_CNT, 0},
8535 	{ DC_LCB_ERR_INFO_SEQ_CRC_CNT, 0 },
8536 	{ DC_LCB_ERR_INFO_REINIT_FROM_PEER_CNT, 0 },
8537 };
8538 
8539 static void update_lcb_cache(struct hfi1_devdata *dd)
8540 {
8541 	int i;
8542 	int ret;
8543 	u64 val;
8544 
8545 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8546 		ret = read_lcb_csr(dd, lcb_cache[i].off, &val);
8547 
8548 		/* Update if we get good data */
8549 		if (likely(ret != -EBUSY))
8550 			lcb_cache[i].val = val;
8551 	}
8552 }
8553 
8554 static int read_lcb_cache(u32 off, u64 *val)
8555 {
8556 	int i;
8557 
8558 	for (i = 0; i < ARRAY_SIZE(lcb_cache); i++) {
8559 		if (lcb_cache[i].off == off) {
8560 			*val = lcb_cache[i].val;
8561 			return 0;
8562 		}
8563 	}
8564 
8565 	pr_warn("%s bad offset 0x%x\n", __func__, off);
8566 	return -1;
8567 }
8568 
8569 /*
8570  * Read an LCB CSR.  Access may not be in host control, so check.
8571  * Return 0 on success, -EBUSY on failure.
8572  */
8573 int read_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 *data)
8574 {
8575 	struct hfi1_pportdata *ppd = dd->pport;
8576 
8577 	/* if up, go through the 8051 for the value */
8578 	if (ppd->host_link_state & HLS_UP)
8579 		return read_lcb_via_8051(dd, addr, data);
8580 	/* if going up or down, check the cache, otherwise, no access */
8581 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE)) {
8582 		if (read_lcb_cache(addr, data))
8583 			return -EBUSY;
8584 		return 0;
8585 	}
8586 
8587 	/* otherwise, host has access */
8588 	*data = read_csr(dd, addr);
8589 	return 0;
8590 }
8591 
8592 /*
8593  * Use the 8051 to write a LCB CSR.
8594  */
8595 static int write_lcb_via_8051(struct hfi1_devdata *dd, u32 addr, u64 data)
8596 {
8597 	u32 regno;
8598 	int ret;
8599 
8600 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR ||
8601 	    (dd->dc8051_ver < dc8051_ver(0, 20, 0))) {
8602 		if (acquire_lcb_access(dd, 0) == 0) {
8603 			write_csr(dd, addr, data);
8604 			release_lcb_access(dd, 0);
8605 			return 0;
8606 		}
8607 		return -EBUSY;
8608 	}
8609 
8610 	/* register is an index of LCB registers: (offset - base) / 8 */
8611 	regno = (addr - DC_LCB_CFG_RUN) >> 3;
8612 	ret = do_8051_command(dd, HCMD_WRITE_LCB_CSR, regno, &data);
8613 	if (ret != HCMD_SUCCESS)
8614 		return -EBUSY;
8615 	return 0;
8616 }
8617 
8618 /*
8619  * Write an LCB CSR.  Access may not be in host control, so check.
8620  * Return 0 on success, -EBUSY on failure.
8621  */
8622 int write_lcb_csr(struct hfi1_devdata *dd, u32 addr, u64 data)
8623 {
8624 	struct hfi1_pportdata *ppd = dd->pport;
8625 
8626 	/* if up, go through the 8051 for the value */
8627 	if (ppd->host_link_state & HLS_UP)
8628 		return write_lcb_via_8051(dd, addr, data);
8629 	/* if going up or down, no access */
8630 	if (ppd->host_link_state & (HLS_GOING_UP | HLS_GOING_OFFLINE))
8631 		return -EBUSY;
8632 	/* otherwise, host has access */
8633 	write_csr(dd, addr, data);
8634 	return 0;
8635 }
8636 
8637 /*
8638  * Returns:
8639  *	< 0 = Linux error, not able to get access
8640  *	> 0 = 8051 command RETURN_CODE
8641  */
8642 static int do_8051_command(struct hfi1_devdata *dd, u32 type, u64 in_data,
8643 			   u64 *out_data)
8644 {
8645 	u64 reg, completed;
8646 	int return_code;
8647 	unsigned long timeout;
8648 
8649 	hfi1_cdbg(DC8051, "type %d, data 0x%012llx", type, in_data);
8650 
8651 	mutex_lock(&dd->dc8051_lock);
8652 
8653 	/* We can't send any commands to the 8051 if it's in reset */
8654 	if (dd->dc_shutdown) {
8655 		return_code = -ENODEV;
8656 		goto fail;
8657 	}
8658 
8659 	/*
8660 	 * If an 8051 host command timed out previously, then the 8051 is
8661 	 * stuck.
8662 	 *
8663 	 * On first timeout, attempt to reset and restart the entire DC
8664 	 * block (including 8051). (Is this too big of a hammer?)
8665 	 *
8666 	 * If the 8051 times out a second time, the reset did not bring it
8667 	 * back to healthy life. In that case, fail any subsequent commands.
8668 	 */
8669 	if (dd->dc8051_timed_out) {
8670 		if (dd->dc8051_timed_out > 1) {
8671 			dd_dev_err(dd,
8672 				   "Previous 8051 host command timed out, skipping command %u\n",
8673 				   type);
8674 			return_code = -ENXIO;
8675 			goto fail;
8676 		}
8677 		_dc_shutdown(dd);
8678 		_dc_start(dd);
8679 	}
8680 
8681 	/*
8682 	 * If there is no timeout, then the 8051 command interface is
8683 	 * waiting for a command.
8684 	 */
8685 
8686 	/*
8687 	 * When writing a LCB CSR, out_data contains the full value to
8688 	 * to be written, while in_data contains the relative LCB
8689 	 * address in 7:0.  Do the work here, rather than the caller,
8690 	 * of distrubting the write data to where it needs to go:
8691 	 *
8692 	 * Write data
8693 	 *   39:00 -> in_data[47:8]
8694 	 *   47:40 -> DC8051_CFG_EXT_DEV_0.RETURN_CODE
8695 	 *   63:48 -> DC8051_CFG_EXT_DEV_0.RSP_DATA
8696 	 */
8697 	if (type == HCMD_WRITE_LCB_CSR) {
8698 		in_data |= ((*out_data) & 0xffffffffffull) << 8;
8699 		/* must preserve COMPLETED - it is tied to hardware */
8700 		reg = read_csr(dd, DC_DC8051_CFG_EXT_DEV_0);
8701 		reg &= DC_DC8051_CFG_EXT_DEV_0_COMPLETED_SMASK;
8702 		reg |= ((((*out_data) >> 40) & 0xff) <<
8703 				DC_DC8051_CFG_EXT_DEV_0_RETURN_CODE_SHIFT)
8704 		      | ((((*out_data) >> 48) & 0xffff) <<
8705 				DC_DC8051_CFG_EXT_DEV_0_RSP_DATA_SHIFT);
8706 		write_csr(dd, DC_DC8051_CFG_EXT_DEV_0, reg);
8707 	}
8708 
8709 	/*
8710 	 * Do two writes: the first to stabilize the type and req_data, the
8711 	 * second to activate.
8712 	 */
8713 	reg = ((u64)type & DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_MASK)
8714 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_TYPE_SHIFT
8715 		| (in_data & DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_MASK)
8716 			<< DC_DC8051_CFG_HOST_CMD_0_REQ_DATA_SHIFT;
8717 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8718 	reg |= DC_DC8051_CFG_HOST_CMD_0_REQ_NEW_SMASK;
8719 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, reg);
8720 
8721 	/* wait for completion, alternate: interrupt */
8722 	timeout = jiffies + msecs_to_jiffies(DC8051_COMMAND_TIMEOUT);
8723 	while (1) {
8724 		reg = read_csr(dd, DC_DC8051_CFG_HOST_CMD_1);
8725 		completed = reg & DC_DC8051_CFG_HOST_CMD_1_COMPLETED_SMASK;
8726 		if (completed)
8727 			break;
8728 		if (time_after(jiffies, timeout)) {
8729 			dd->dc8051_timed_out++;
8730 			dd_dev_err(dd, "8051 host command %u timeout\n", type);
8731 			if (out_data)
8732 				*out_data = 0;
8733 			return_code = -ETIMEDOUT;
8734 			goto fail;
8735 		}
8736 		udelay(2);
8737 	}
8738 
8739 	if (out_data) {
8740 		*out_data = (reg >> DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_SHIFT)
8741 				& DC_DC8051_CFG_HOST_CMD_1_RSP_DATA_MASK;
8742 		if (type == HCMD_READ_LCB_CSR) {
8743 			/* top 16 bits are in a different register */
8744 			*out_data |= (read_csr(dd, DC_DC8051_CFG_EXT_DEV_1)
8745 				& DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SMASK)
8746 				<< (48
8747 				    - DC_DC8051_CFG_EXT_DEV_1_REQ_DATA_SHIFT);
8748 		}
8749 	}
8750 	return_code = (reg >> DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_SHIFT)
8751 				& DC_DC8051_CFG_HOST_CMD_1_RETURN_CODE_MASK;
8752 	dd->dc8051_timed_out = 0;
8753 	/*
8754 	 * Clear command for next user.
8755 	 */
8756 	write_csr(dd, DC_DC8051_CFG_HOST_CMD_0, 0);
8757 
8758 fail:
8759 	mutex_unlock(&dd->dc8051_lock);
8760 	return return_code;
8761 }
8762 
8763 static int set_physical_link_state(struct hfi1_devdata *dd, u64 state)
8764 {
8765 	return do_8051_command(dd, HCMD_CHANGE_PHY_STATE, state, NULL);
8766 }
8767 
8768 int load_8051_config(struct hfi1_devdata *dd, u8 field_id,
8769 		     u8 lane_id, u32 config_data)
8770 {
8771 	u64 data;
8772 	int ret;
8773 
8774 	data = (u64)field_id << LOAD_DATA_FIELD_ID_SHIFT
8775 		| (u64)lane_id << LOAD_DATA_LANE_ID_SHIFT
8776 		| (u64)config_data << LOAD_DATA_DATA_SHIFT;
8777 	ret = do_8051_command(dd, HCMD_LOAD_CONFIG_DATA, data, NULL);
8778 	if (ret != HCMD_SUCCESS) {
8779 		dd_dev_err(dd,
8780 			   "load 8051 config: field id %d, lane %d, err %d\n",
8781 			   (int)field_id, (int)lane_id, ret);
8782 	}
8783 	return ret;
8784 }
8785 
8786 /*
8787  * Read the 8051 firmware "registers".  Use the RAM directly.  Always
8788  * set the result, even on error.
8789  * Return 0 on success, -errno on failure
8790  */
8791 int read_8051_config(struct hfi1_devdata *dd, u8 field_id, u8 lane_id,
8792 		     u32 *result)
8793 {
8794 	u64 big_data;
8795 	u32 addr;
8796 	int ret;
8797 
8798 	/* address start depends on the lane_id */
8799 	if (lane_id < 4)
8800 		addr = (4 * NUM_GENERAL_FIELDS)
8801 			+ (lane_id * 4 * NUM_LANE_FIELDS);
8802 	else
8803 		addr = 0;
8804 	addr += field_id * 4;
8805 
8806 	/* read is in 8-byte chunks, hardware will truncate the address down */
8807 	ret = read_8051_data(dd, addr, 8, &big_data);
8808 
8809 	if (ret == 0) {
8810 		/* extract the 4 bytes we want */
8811 		if (addr & 0x4)
8812 			*result = (u32)(big_data >> 32);
8813 		else
8814 			*result = (u32)big_data;
8815 	} else {
8816 		*result = 0;
8817 		dd_dev_err(dd, "%s: direct read failed, lane %d, field %d!\n",
8818 			   __func__, lane_id, field_id);
8819 	}
8820 
8821 	return ret;
8822 }
8823 
8824 static int write_vc_local_phy(struct hfi1_devdata *dd, u8 power_management,
8825 			      u8 continuous)
8826 {
8827 	u32 frame;
8828 
8829 	frame = continuous << CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT
8830 		| power_management << POWER_MANAGEMENT_SHIFT;
8831 	return load_8051_config(dd, VERIFY_CAP_LOCAL_PHY,
8832 				GENERAL_CONFIG, frame);
8833 }
8834 
8835 static int write_vc_local_fabric(struct hfi1_devdata *dd, u8 vau, u8 z, u8 vcu,
8836 				 u16 vl15buf, u8 crc_sizes)
8837 {
8838 	u32 frame;
8839 
8840 	frame = (u32)vau << VAU_SHIFT
8841 		| (u32)z << Z_SHIFT
8842 		| (u32)vcu << VCU_SHIFT
8843 		| (u32)vl15buf << VL15BUF_SHIFT
8844 		| (u32)crc_sizes << CRC_SIZES_SHIFT;
8845 	return load_8051_config(dd, VERIFY_CAP_LOCAL_FABRIC,
8846 				GENERAL_CONFIG, frame);
8847 }
8848 
8849 static void read_vc_local_link_mode(struct hfi1_devdata *dd, u8 *misc_bits,
8850 				    u8 *flag_bits, u16 *link_widths)
8851 {
8852 	u32 frame;
8853 
8854 	read_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8855 			 &frame);
8856 	*misc_bits = (frame >> MISC_CONFIG_BITS_SHIFT) & MISC_CONFIG_BITS_MASK;
8857 	*flag_bits = (frame >> LOCAL_FLAG_BITS_SHIFT) & LOCAL_FLAG_BITS_MASK;
8858 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8859 }
8860 
8861 static int write_vc_local_link_mode(struct hfi1_devdata *dd,
8862 				    u8 misc_bits,
8863 				    u8 flag_bits,
8864 				    u16 link_widths)
8865 {
8866 	u32 frame;
8867 
8868 	frame = (u32)misc_bits << MISC_CONFIG_BITS_SHIFT
8869 		| (u32)flag_bits << LOCAL_FLAG_BITS_SHIFT
8870 		| (u32)link_widths << LINK_WIDTH_SHIFT;
8871 	return load_8051_config(dd, VERIFY_CAP_LOCAL_LINK_MODE, GENERAL_CONFIG,
8872 		     frame);
8873 }
8874 
8875 static int write_local_device_id(struct hfi1_devdata *dd, u16 device_id,
8876 				 u8 device_rev)
8877 {
8878 	u32 frame;
8879 
8880 	frame = ((u32)device_id << LOCAL_DEVICE_ID_SHIFT)
8881 		| ((u32)device_rev << LOCAL_DEVICE_REV_SHIFT);
8882 	return load_8051_config(dd, LOCAL_DEVICE_ID, GENERAL_CONFIG, frame);
8883 }
8884 
8885 static void read_remote_device_id(struct hfi1_devdata *dd, u16 *device_id,
8886 				  u8 *device_rev)
8887 {
8888 	u32 frame;
8889 
8890 	read_8051_config(dd, REMOTE_DEVICE_ID, GENERAL_CONFIG, &frame);
8891 	*device_id = (frame >> REMOTE_DEVICE_ID_SHIFT) & REMOTE_DEVICE_ID_MASK;
8892 	*device_rev = (frame >> REMOTE_DEVICE_REV_SHIFT)
8893 			& REMOTE_DEVICE_REV_MASK;
8894 }
8895 
8896 int write_host_interface_version(struct hfi1_devdata *dd, u8 version)
8897 {
8898 	u32 frame;
8899 	u32 mask;
8900 
8901 	mask = (HOST_INTERFACE_VERSION_MASK << HOST_INTERFACE_VERSION_SHIFT);
8902 	read_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG, &frame);
8903 	/* Clear, then set field */
8904 	frame &= ~mask;
8905 	frame |= ((u32)version << HOST_INTERFACE_VERSION_SHIFT);
8906 	return load_8051_config(dd, RESERVED_REGISTERS, GENERAL_CONFIG,
8907 				frame);
8908 }
8909 
8910 void read_misc_status(struct hfi1_devdata *dd, u8 *ver_major, u8 *ver_minor,
8911 		      u8 *ver_patch)
8912 {
8913 	u32 frame;
8914 
8915 	read_8051_config(dd, MISC_STATUS, GENERAL_CONFIG, &frame);
8916 	*ver_major = (frame >> STS_FM_VERSION_MAJOR_SHIFT) &
8917 		STS_FM_VERSION_MAJOR_MASK;
8918 	*ver_minor = (frame >> STS_FM_VERSION_MINOR_SHIFT) &
8919 		STS_FM_VERSION_MINOR_MASK;
8920 
8921 	read_8051_config(dd, VERSION_PATCH, GENERAL_CONFIG, &frame);
8922 	*ver_patch = (frame >> STS_FM_VERSION_PATCH_SHIFT) &
8923 		STS_FM_VERSION_PATCH_MASK;
8924 }
8925 
8926 static void read_vc_remote_phy(struct hfi1_devdata *dd, u8 *power_management,
8927 			       u8 *continuous)
8928 {
8929 	u32 frame;
8930 
8931 	read_8051_config(dd, VERIFY_CAP_REMOTE_PHY, GENERAL_CONFIG, &frame);
8932 	*power_management = (frame >> POWER_MANAGEMENT_SHIFT)
8933 					& POWER_MANAGEMENT_MASK;
8934 	*continuous = (frame >> CONTINIOUS_REMOTE_UPDATE_SUPPORT_SHIFT)
8935 					& CONTINIOUS_REMOTE_UPDATE_SUPPORT_MASK;
8936 }
8937 
8938 static void read_vc_remote_fabric(struct hfi1_devdata *dd, u8 *vau, u8 *z,
8939 				  u8 *vcu, u16 *vl15buf, u8 *crc_sizes)
8940 {
8941 	u32 frame;
8942 
8943 	read_8051_config(dd, VERIFY_CAP_REMOTE_FABRIC, GENERAL_CONFIG, &frame);
8944 	*vau = (frame >> VAU_SHIFT) & VAU_MASK;
8945 	*z = (frame >> Z_SHIFT) & Z_MASK;
8946 	*vcu = (frame >> VCU_SHIFT) & VCU_MASK;
8947 	*vl15buf = (frame >> VL15BUF_SHIFT) & VL15BUF_MASK;
8948 	*crc_sizes = (frame >> CRC_SIZES_SHIFT) & CRC_SIZES_MASK;
8949 }
8950 
8951 static void read_vc_remote_link_width(struct hfi1_devdata *dd,
8952 				      u8 *remote_tx_rate,
8953 				      u16 *link_widths)
8954 {
8955 	u32 frame;
8956 
8957 	read_8051_config(dd, VERIFY_CAP_REMOTE_LINK_WIDTH, GENERAL_CONFIG,
8958 			 &frame);
8959 	*remote_tx_rate = (frame >> REMOTE_TX_RATE_SHIFT)
8960 				& REMOTE_TX_RATE_MASK;
8961 	*link_widths = (frame >> LINK_WIDTH_SHIFT) & LINK_WIDTH_MASK;
8962 }
8963 
8964 static void read_local_lni(struct hfi1_devdata *dd, u8 *enable_lane_rx)
8965 {
8966 	u32 frame;
8967 
8968 	read_8051_config(dd, LOCAL_LNI_INFO, GENERAL_CONFIG, &frame);
8969 	*enable_lane_rx = (frame >> ENABLE_LANE_RX_SHIFT) & ENABLE_LANE_RX_MASK;
8970 }
8971 
8972 static void read_last_local_state(struct hfi1_devdata *dd, u32 *lls)
8973 {
8974 	read_8051_config(dd, LAST_LOCAL_STATE_COMPLETE, GENERAL_CONFIG, lls);
8975 }
8976 
8977 static void read_last_remote_state(struct hfi1_devdata *dd, u32 *lrs)
8978 {
8979 	read_8051_config(dd, LAST_REMOTE_STATE_COMPLETE, GENERAL_CONFIG, lrs);
8980 }
8981 
8982 void hfi1_read_link_quality(struct hfi1_devdata *dd, u8 *link_quality)
8983 {
8984 	u32 frame;
8985 	int ret;
8986 
8987 	*link_quality = 0;
8988 	if (dd->pport->host_link_state & HLS_UP) {
8989 		ret = read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG,
8990 				       &frame);
8991 		if (ret == 0)
8992 			*link_quality = (frame >> LINK_QUALITY_SHIFT)
8993 						& LINK_QUALITY_MASK;
8994 	}
8995 }
8996 
8997 static void read_planned_down_reason_code(struct hfi1_devdata *dd, u8 *pdrrc)
8998 {
8999 	u32 frame;
9000 
9001 	read_8051_config(dd, LINK_QUALITY_INFO, GENERAL_CONFIG, &frame);
9002 	*pdrrc = (frame >> DOWN_REMOTE_REASON_SHIFT) & DOWN_REMOTE_REASON_MASK;
9003 }
9004 
9005 static void read_link_down_reason(struct hfi1_devdata *dd, u8 *ldr)
9006 {
9007 	u32 frame;
9008 
9009 	read_8051_config(dd, LINK_DOWN_REASON, GENERAL_CONFIG, &frame);
9010 	*ldr = (frame & 0xff);
9011 }
9012 
9013 static int read_tx_settings(struct hfi1_devdata *dd,
9014 			    u8 *enable_lane_tx,
9015 			    u8 *tx_polarity_inversion,
9016 			    u8 *rx_polarity_inversion,
9017 			    u8 *max_rate)
9018 {
9019 	u32 frame;
9020 	int ret;
9021 
9022 	ret = read_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, &frame);
9023 	*enable_lane_tx = (frame >> ENABLE_LANE_TX_SHIFT)
9024 				& ENABLE_LANE_TX_MASK;
9025 	*tx_polarity_inversion = (frame >> TX_POLARITY_INVERSION_SHIFT)
9026 				& TX_POLARITY_INVERSION_MASK;
9027 	*rx_polarity_inversion = (frame >> RX_POLARITY_INVERSION_SHIFT)
9028 				& RX_POLARITY_INVERSION_MASK;
9029 	*max_rate = (frame >> MAX_RATE_SHIFT) & MAX_RATE_MASK;
9030 	return ret;
9031 }
9032 
9033 static int write_tx_settings(struct hfi1_devdata *dd,
9034 			     u8 enable_lane_tx,
9035 			     u8 tx_polarity_inversion,
9036 			     u8 rx_polarity_inversion,
9037 			     u8 max_rate)
9038 {
9039 	u32 frame;
9040 
9041 	/* no need to mask, all variable sizes match field widths */
9042 	frame = enable_lane_tx << ENABLE_LANE_TX_SHIFT
9043 		| tx_polarity_inversion << TX_POLARITY_INVERSION_SHIFT
9044 		| rx_polarity_inversion << RX_POLARITY_INVERSION_SHIFT
9045 		| max_rate << MAX_RATE_SHIFT;
9046 	return load_8051_config(dd, TX_SETTINGS, GENERAL_CONFIG, frame);
9047 }
9048 
9049 /*
9050  * Read an idle LCB message.
9051  *
9052  * Returns 0 on success, -EINVAL on error
9053  */
9054 static int read_idle_message(struct hfi1_devdata *dd, u64 type, u64 *data_out)
9055 {
9056 	int ret;
9057 
9058 	ret = do_8051_command(dd, HCMD_READ_LCB_IDLE_MSG, type, data_out);
9059 	if (ret != HCMD_SUCCESS) {
9060 		dd_dev_err(dd, "read idle message: type %d, err %d\n",
9061 			   (u32)type, ret);
9062 		return -EINVAL;
9063 	}
9064 	dd_dev_info(dd, "%s: read idle message 0x%llx\n", __func__, *data_out);
9065 	/* return only the payload as we already know the type */
9066 	*data_out >>= IDLE_PAYLOAD_SHIFT;
9067 	return 0;
9068 }
9069 
9070 /*
9071  * Read an idle SMA message.  To be done in response to a notification from
9072  * the 8051.
9073  *
9074  * Returns 0 on success, -EINVAL on error
9075  */
9076 static int read_idle_sma(struct hfi1_devdata *dd, u64 *data)
9077 {
9078 	return read_idle_message(dd, (u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT,
9079 				 data);
9080 }
9081 
9082 /*
9083  * Send an idle LCB message.
9084  *
9085  * Returns 0 on success, -EINVAL on error
9086  */
9087 static int send_idle_message(struct hfi1_devdata *dd, u64 data)
9088 {
9089 	int ret;
9090 
9091 	dd_dev_info(dd, "%s: sending idle message 0x%llx\n", __func__, data);
9092 	ret = do_8051_command(dd, HCMD_SEND_LCB_IDLE_MSG, data, NULL);
9093 	if (ret != HCMD_SUCCESS) {
9094 		dd_dev_err(dd, "send idle message: data 0x%llx, err %d\n",
9095 			   data, ret);
9096 		return -EINVAL;
9097 	}
9098 	return 0;
9099 }
9100 
9101 /*
9102  * Send an idle SMA message.
9103  *
9104  * Returns 0 on success, -EINVAL on error
9105  */
9106 int send_idle_sma(struct hfi1_devdata *dd, u64 message)
9107 {
9108 	u64 data;
9109 
9110 	data = ((message & IDLE_PAYLOAD_MASK) << IDLE_PAYLOAD_SHIFT) |
9111 		((u64)IDLE_SMA << IDLE_MSG_TYPE_SHIFT);
9112 	return send_idle_message(dd, data);
9113 }
9114 
9115 /*
9116  * Initialize the LCB then do a quick link up.  This may or may not be
9117  * in loopback.
9118  *
9119  * return 0 on success, -errno on error
9120  */
9121 static int do_quick_linkup(struct hfi1_devdata *dd)
9122 {
9123 	int ret;
9124 
9125 	lcb_shutdown(dd, 0);
9126 
9127 	if (loopback) {
9128 		/* LCB_CFG_LOOPBACK.VAL = 2 */
9129 		/* LCB_CFG_LANE_WIDTH.VAL = 0 */
9130 		write_csr(dd, DC_LCB_CFG_LOOPBACK,
9131 			  IB_PACKET_TYPE << DC_LCB_CFG_LOOPBACK_VAL_SHIFT);
9132 		write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
9133 	}
9134 
9135 	/* start the LCBs */
9136 	/* LCB_CFG_TX_FIFOS_RESET.VAL = 0 */
9137 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
9138 
9139 	/* simulator only loopback steps */
9140 	if (loopback && dd->icode == ICODE_FUNCTIONAL_SIMULATOR) {
9141 		/* LCB_CFG_RUN.EN = 1 */
9142 		write_csr(dd, DC_LCB_CFG_RUN,
9143 			  1ull << DC_LCB_CFG_RUN_EN_SHIFT);
9144 
9145 		ret = wait_link_transfer_active(dd, 10);
9146 		if (ret)
9147 			return ret;
9148 
9149 		write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP,
9150 			  1ull << DC_LCB_CFG_ALLOW_LINK_UP_VAL_SHIFT);
9151 	}
9152 
9153 	if (!loopback) {
9154 		/*
9155 		 * When doing quick linkup and not in loopback, both
9156 		 * sides must be done with LCB set-up before either
9157 		 * starts the quick linkup.  Put a delay here so that
9158 		 * both sides can be started and have a chance to be
9159 		 * done with LCB set up before resuming.
9160 		 */
9161 		dd_dev_err(dd,
9162 			   "Pausing for peer to be finished with LCB set up\n");
9163 		msleep(5000);
9164 		dd_dev_err(dd, "Continuing with quick linkup\n");
9165 	}
9166 
9167 	write_csr(dd, DC_LCB_ERR_EN, 0); /* mask LCB errors */
9168 	set_8051_lcb_access(dd);
9169 
9170 	/*
9171 	 * State "quick" LinkUp request sets the physical link state to
9172 	 * LinkUp without a verify capability sequence.
9173 	 * This state is in simulator v37 and later.
9174 	 */
9175 	ret = set_physical_link_state(dd, PLS_QUICK_LINKUP);
9176 	if (ret != HCMD_SUCCESS) {
9177 		dd_dev_err(dd,
9178 			   "%s: set physical link state to quick LinkUp failed with return %d\n",
9179 			   __func__, ret);
9180 
9181 		set_host_lcb_access(dd);
9182 		write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
9183 
9184 		if (ret >= 0)
9185 			ret = -EINVAL;
9186 		return ret;
9187 	}
9188 
9189 	return 0; /* success */
9190 }
9191 
9192 /*
9193  * Do all special steps to set up loopback.
9194  */
9195 static int init_loopback(struct hfi1_devdata *dd)
9196 {
9197 	dd_dev_info(dd, "Entering loopback mode\n");
9198 
9199 	/* all loopbacks should disable self GUID check */
9200 	write_csr(dd, DC_DC8051_CFG_MODE,
9201 		  (read_csr(dd, DC_DC8051_CFG_MODE) | DISABLE_SELF_GUID_CHECK));
9202 
9203 	/*
9204 	 * The simulator has only one loopback option - LCB.  Switch
9205 	 * to that option, which includes quick link up.
9206 	 *
9207 	 * Accept all valid loopback values.
9208 	 */
9209 	if ((dd->icode == ICODE_FUNCTIONAL_SIMULATOR) &&
9210 	    (loopback == LOOPBACK_SERDES || loopback == LOOPBACK_LCB ||
9211 	     loopback == LOOPBACK_CABLE)) {
9212 		loopback = LOOPBACK_LCB;
9213 		quick_linkup = 1;
9214 		return 0;
9215 	}
9216 
9217 	/*
9218 	 * SerDes loopback init sequence is handled in set_local_link_attributes
9219 	 */
9220 	if (loopback == LOOPBACK_SERDES)
9221 		return 0;
9222 
9223 	/* LCB loopback - handled at poll time */
9224 	if (loopback == LOOPBACK_LCB) {
9225 		quick_linkup = 1; /* LCB is always quick linkup */
9226 
9227 		/* not supported in emulation due to emulation RTL changes */
9228 		if (dd->icode == ICODE_FPGA_EMULATION) {
9229 			dd_dev_err(dd,
9230 				   "LCB loopback not supported in emulation\n");
9231 			return -EINVAL;
9232 		}
9233 		return 0;
9234 	}
9235 
9236 	/* external cable loopback requires no extra steps */
9237 	if (loopback == LOOPBACK_CABLE)
9238 		return 0;
9239 
9240 	dd_dev_err(dd, "Invalid loopback mode %d\n", loopback);
9241 	return -EINVAL;
9242 }
9243 
9244 /*
9245  * Translate from the OPA_LINK_WIDTH handed to us by the FM to bits
9246  * used in the Verify Capability link width attribute.
9247  */
9248 static u16 opa_to_vc_link_widths(u16 opa_widths)
9249 {
9250 	int i;
9251 	u16 result = 0;
9252 
9253 	static const struct link_bits {
9254 		u16 from;
9255 		u16 to;
9256 	} opa_link_xlate[] = {
9257 		{ OPA_LINK_WIDTH_1X, 1 << (1 - 1)  },
9258 		{ OPA_LINK_WIDTH_2X, 1 << (2 - 1)  },
9259 		{ OPA_LINK_WIDTH_3X, 1 << (3 - 1)  },
9260 		{ OPA_LINK_WIDTH_4X, 1 << (4 - 1)  },
9261 	};
9262 
9263 	for (i = 0; i < ARRAY_SIZE(opa_link_xlate); i++) {
9264 		if (opa_widths & opa_link_xlate[i].from)
9265 			result |= opa_link_xlate[i].to;
9266 	}
9267 	return result;
9268 }
9269 
9270 /*
9271  * Set link attributes before moving to polling.
9272  */
9273 static int set_local_link_attributes(struct hfi1_pportdata *ppd)
9274 {
9275 	struct hfi1_devdata *dd = ppd->dd;
9276 	u8 enable_lane_tx;
9277 	u8 tx_polarity_inversion;
9278 	u8 rx_polarity_inversion;
9279 	int ret;
9280 	u32 misc_bits = 0;
9281 	/* reset our fabric serdes to clear any lingering problems */
9282 	fabric_serdes_reset(dd);
9283 
9284 	/* set the local tx rate - need to read-modify-write */
9285 	ret = read_tx_settings(dd, &enable_lane_tx, &tx_polarity_inversion,
9286 			       &rx_polarity_inversion, &ppd->local_tx_rate);
9287 	if (ret)
9288 		goto set_local_link_attributes_fail;
9289 
9290 	if (dd->dc8051_ver < dc8051_ver(0, 20, 0)) {
9291 		/* set the tx rate to the fastest enabled */
9292 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9293 			ppd->local_tx_rate = 1;
9294 		else
9295 			ppd->local_tx_rate = 0;
9296 	} else {
9297 		/* set the tx rate to all enabled */
9298 		ppd->local_tx_rate = 0;
9299 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_25G)
9300 			ppd->local_tx_rate |= 2;
9301 		if (ppd->link_speed_enabled & OPA_LINK_SPEED_12_5G)
9302 			ppd->local_tx_rate |= 1;
9303 	}
9304 
9305 	enable_lane_tx = 0xF; /* enable all four lanes */
9306 	ret = write_tx_settings(dd, enable_lane_tx, tx_polarity_inversion,
9307 				rx_polarity_inversion, ppd->local_tx_rate);
9308 	if (ret != HCMD_SUCCESS)
9309 		goto set_local_link_attributes_fail;
9310 
9311 	ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION);
9312 	if (ret != HCMD_SUCCESS) {
9313 		dd_dev_err(dd,
9314 			   "Failed to set host interface version, return 0x%x\n",
9315 			   ret);
9316 		goto set_local_link_attributes_fail;
9317 	}
9318 
9319 	/*
9320 	 * DC supports continuous updates.
9321 	 */
9322 	ret = write_vc_local_phy(dd,
9323 				 0 /* no power management */,
9324 				 1 /* continuous updates */);
9325 	if (ret != HCMD_SUCCESS)
9326 		goto set_local_link_attributes_fail;
9327 
9328 	/* z=1 in the next call: AU of 0 is not supported by the hardware */
9329 	ret = write_vc_local_fabric(dd, dd->vau, 1, dd->vcu, dd->vl15_init,
9330 				    ppd->port_crc_mode_enabled);
9331 	if (ret != HCMD_SUCCESS)
9332 		goto set_local_link_attributes_fail;
9333 
9334 	/*
9335 	 * SerDes loopback init sequence requires
9336 	 * setting bit 0 of MISC_CONFIG_BITS
9337 	 */
9338 	if (loopback == LOOPBACK_SERDES)
9339 		misc_bits |= 1 << LOOPBACK_SERDES_CONFIG_BIT_MASK_SHIFT;
9340 
9341 	/*
9342 	 * An external device configuration request is used to reset the LCB
9343 	 * to retry to obtain operational lanes when the first attempt is
9344 	 * unsuccesful.
9345 	 */
9346 	if (dd->dc8051_ver >= dc8051_ver(1, 25, 0))
9347 		misc_bits |= 1 << EXT_CFG_LCB_RESET_SUPPORTED_SHIFT;
9348 
9349 	ret = write_vc_local_link_mode(dd, misc_bits, 0,
9350 				       opa_to_vc_link_widths(
9351 						ppd->link_width_enabled));
9352 	if (ret != HCMD_SUCCESS)
9353 		goto set_local_link_attributes_fail;
9354 
9355 	/* let peer know who we are */
9356 	ret = write_local_device_id(dd, dd->pcidev->device, dd->minrev);
9357 	if (ret == HCMD_SUCCESS)
9358 		return 0;
9359 
9360 set_local_link_attributes_fail:
9361 	dd_dev_err(dd,
9362 		   "Failed to set local link attributes, return 0x%x\n",
9363 		   ret);
9364 	return ret;
9365 }
9366 
9367 /*
9368  * Call this to start the link.
9369  * Do not do anything if the link is disabled.
9370  * Returns 0 if link is disabled, moved to polling, or the driver is not ready.
9371  */
9372 int start_link(struct hfi1_pportdata *ppd)
9373 {
9374 	/*
9375 	 * Tune the SerDes to a ballpark setting for optimal signal and bit
9376 	 * error rate.  Needs to be done before starting the link.
9377 	 */
9378 	tune_serdes(ppd);
9379 
9380 	if (!ppd->driver_link_ready) {
9381 		dd_dev_info(ppd->dd,
9382 			    "%s: stopping link start because driver is not ready\n",
9383 			    __func__);
9384 		return 0;
9385 	}
9386 
9387 	/*
9388 	 * FULL_MGMT_P_KEY is cleared from the pkey table, so that the
9389 	 * pkey table can be configured properly if the HFI unit is connected
9390 	 * to switch port with MgmtAllowed=NO
9391 	 */
9392 	clear_full_mgmt_pkey(ppd);
9393 
9394 	return set_link_state(ppd, HLS_DN_POLL);
9395 }
9396 
9397 static void wait_for_qsfp_init(struct hfi1_pportdata *ppd)
9398 {
9399 	struct hfi1_devdata *dd = ppd->dd;
9400 	u64 mask;
9401 	unsigned long timeout;
9402 
9403 	/*
9404 	 * Some QSFP cables have a quirk that asserts the IntN line as a side
9405 	 * effect of power up on plug-in. We ignore this false positive
9406 	 * interrupt until the module has finished powering up by waiting for
9407 	 * a minimum timeout of the module inrush initialization time of
9408 	 * 500 ms (SFF 8679 Table 5-6) to ensure the voltage rails in the
9409 	 * module have stabilized.
9410 	 */
9411 	msleep(500);
9412 
9413 	/*
9414 	 * Check for QSFP interrupt for t_init (SFF 8679 Table 8-1)
9415 	 */
9416 	timeout = jiffies + msecs_to_jiffies(2000);
9417 	while (1) {
9418 		mask = read_csr(dd, dd->hfi1_id ?
9419 				ASIC_QSFP2_IN : ASIC_QSFP1_IN);
9420 		if (!(mask & QSFP_HFI0_INT_N))
9421 			break;
9422 		if (time_after(jiffies, timeout)) {
9423 			dd_dev_info(dd, "%s: No IntN detected, reset complete\n",
9424 				    __func__);
9425 			break;
9426 		}
9427 		udelay(2);
9428 	}
9429 }
9430 
9431 static void set_qsfp_int_n(struct hfi1_pportdata *ppd, u8 enable)
9432 {
9433 	struct hfi1_devdata *dd = ppd->dd;
9434 	u64 mask;
9435 
9436 	mask = read_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK);
9437 	if (enable) {
9438 		/*
9439 		 * Clear the status register to avoid an immediate interrupt
9440 		 * when we re-enable the IntN pin
9441 		 */
9442 		write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9443 			  QSFP_HFI0_INT_N);
9444 		mask |= (u64)QSFP_HFI0_INT_N;
9445 	} else {
9446 		mask &= ~(u64)QSFP_HFI0_INT_N;
9447 	}
9448 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK, mask);
9449 }
9450 
9451 int reset_qsfp(struct hfi1_pportdata *ppd)
9452 {
9453 	struct hfi1_devdata *dd = ppd->dd;
9454 	u64 mask, qsfp_mask;
9455 
9456 	/* Disable INT_N from triggering QSFP interrupts */
9457 	set_qsfp_int_n(ppd, 0);
9458 
9459 	/* Reset the QSFP */
9460 	mask = (u64)QSFP_HFI0_RESET_N;
9461 
9462 	qsfp_mask = read_csr(dd,
9463 			     dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT);
9464 	qsfp_mask &= ~mask;
9465 	write_csr(dd,
9466 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9467 
9468 	udelay(10);
9469 
9470 	qsfp_mask |= mask;
9471 	write_csr(dd,
9472 		  dd->hfi1_id ? ASIC_QSFP2_OUT : ASIC_QSFP1_OUT, qsfp_mask);
9473 
9474 	wait_for_qsfp_init(ppd);
9475 
9476 	/*
9477 	 * Allow INT_N to trigger the QSFP interrupt to watch
9478 	 * for alarms and warnings
9479 	 */
9480 	set_qsfp_int_n(ppd, 1);
9481 
9482 	/*
9483 	 * After the reset, AOC transmitters are enabled by default. They need
9484 	 * to be turned off to complete the QSFP setup before they can be
9485 	 * enabled again.
9486 	 */
9487 	return set_qsfp_tx(ppd, 0);
9488 }
9489 
9490 static int handle_qsfp_error_conditions(struct hfi1_pportdata *ppd,
9491 					u8 *qsfp_interrupt_status)
9492 {
9493 	struct hfi1_devdata *dd = ppd->dd;
9494 
9495 	if ((qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_ALARM) ||
9496 	    (qsfp_interrupt_status[0] & QSFP_HIGH_TEMP_WARNING))
9497 		dd_dev_err(dd, "%s: QSFP cable temperature too high\n",
9498 			   __func__);
9499 
9500 	if ((qsfp_interrupt_status[0] & QSFP_LOW_TEMP_ALARM) ||
9501 	    (qsfp_interrupt_status[0] & QSFP_LOW_TEMP_WARNING))
9502 		dd_dev_err(dd, "%s: QSFP cable temperature too low\n",
9503 			   __func__);
9504 
9505 	/*
9506 	 * The remaining alarms/warnings don't matter if the link is down.
9507 	 */
9508 	if (ppd->host_link_state & HLS_DOWN)
9509 		return 0;
9510 
9511 	if ((qsfp_interrupt_status[1] & QSFP_HIGH_VCC_ALARM) ||
9512 	    (qsfp_interrupt_status[1] & QSFP_HIGH_VCC_WARNING))
9513 		dd_dev_err(dd, "%s: QSFP supply voltage too high\n",
9514 			   __func__);
9515 
9516 	if ((qsfp_interrupt_status[1] & QSFP_LOW_VCC_ALARM) ||
9517 	    (qsfp_interrupt_status[1] & QSFP_LOW_VCC_WARNING))
9518 		dd_dev_err(dd, "%s: QSFP supply voltage too low\n",
9519 			   __func__);
9520 
9521 	/* Byte 2 is vendor specific */
9522 
9523 	if ((qsfp_interrupt_status[3] & QSFP_HIGH_POWER_ALARM) ||
9524 	    (qsfp_interrupt_status[3] & QSFP_HIGH_POWER_WARNING))
9525 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too high\n",
9526 			   __func__);
9527 
9528 	if ((qsfp_interrupt_status[3] & QSFP_LOW_POWER_ALARM) ||
9529 	    (qsfp_interrupt_status[3] & QSFP_LOW_POWER_WARNING))
9530 		dd_dev_err(dd, "%s: Cable RX channel 1/2 power too low\n",
9531 			   __func__);
9532 
9533 	if ((qsfp_interrupt_status[4] & QSFP_HIGH_POWER_ALARM) ||
9534 	    (qsfp_interrupt_status[4] & QSFP_HIGH_POWER_WARNING))
9535 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too high\n",
9536 			   __func__);
9537 
9538 	if ((qsfp_interrupt_status[4] & QSFP_LOW_POWER_ALARM) ||
9539 	    (qsfp_interrupt_status[4] & QSFP_LOW_POWER_WARNING))
9540 		dd_dev_err(dd, "%s: Cable RX channel 3/4 power too low\n",
9541 			   __func__);
9542 
9543 	if ((qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_ALARM) ||
9544 	    (qsfp_interrupt_status[5] & QSFP_HIGH_BIAS_WARNING))
9545 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too high\n",
9546 			   __func__);
9547 
9548 	if ((qsfp_interrupt_status[5] & QSFP_LOW_BIAS_ALARM) ||
9549 	    (qsfp_interrupt_status[5] & QSFP_LOW_BIAS_WARNING))
9550 		dd_dev_err(dd, "%s: Cable TX channel 1/2 bias too low\n",
9551 			   __func__);
9552 
9553 	if ((qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_ALARM) ||
9554 	    (qsfp_interrupt_status[6] & QSFP_HIGH_BIAS_WARNING))
9555 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too high\n",
9556 			   __func__);
9557 
9558 	if ((qsfp_interrupt_status[6] & QSFP_LOW_BIAS_ALARM) ||
9559 	    (qsfp_interrupt_status[6] & QSFP_LOW_BIAS_WARNING))
9560 		dd_dev_err(dd, "%s: Cable TX channel 3/4 bias too low\n",
9561 			   __func__);
9562 
9563 	if ((qsfp_interrupt_status[7] & QSFP_HIGH_POWER_ALARM) ||
9564 	    (qsfp_interrupt_status[7] & QSFP_HIGH_POWER_WARNING))
9565 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too high\n",
9566 			   __func__);
9567 
9568 	if ((qsfp_interrupt_status[7] & QSFP_LOW_POWER_ALARM) ||
9569 	    (qsfp_interrupt_status[7] & QSFP_LOW_POWER_WARNING))
9570 		dd_dev_err(dd, "%s: Cable TX channel 1/2 power too low\n",
9571 			   __func__);
9572 
9573 	if ((qsfp_interrupt_status[8] & QSFP_HIGH_POWER_ALARM) ||
9574 	    (qsfp_interrupt_status[8] & QSFP_HIGH_POWER_WARNING))
9575 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too high\n",
9576 			   __func__);
9577 
9578 	if ((qsfp_interrupt_status[8] & QSFP_LOW_POWER_ALARM) ||
9579 	    (qsfp_interrupt_status[8] & QSFP_LOW_POWER_WARNING))
9580 		dd_dev_err(dd, "%s: Cable TX channel 3/4 power too low\n",
9581 			   __func__);
9582 
9583 	/* Bytes 9-10 and 11-12 are reserved */
9584 	/* Bytes 13-15 are vendor specific */
9585 
9586 	return 0;
9587 }
9588 
9589 /* This routine will only be scheduled if the QSFP module present is asserted */
9590 void qsfp_event(struct work_struct *work)
9591 {
9592 	struct qsfp_data *qd;
9593 	struct hfi1_pportdata *ppd;
9594 	struct hfi1_devdata *dd;
9595 
9596 	qd = container_of(work, struct qsfp_data, qsfp_work);
9597 	ppd = qd->ppd;
9598 	dd = ppd->dd;
9599 
9600 	/* Sanity check */
9601 	if (!qsfp_mod_present(ppd))
9602 		return;
9603 
9604 	if (ppd->host_link_state == HLS_DN_DISABLE) {
9605 		dd_dev_info(ppd->dd,
9606 			    "%s: stopping link start because link is disabled\n",
9607 			    __func__);
9608 		return;
9609 	}
9610 
9611 	/*
9612 	 * Turn DC back on after cable has been re-inserted. Up until
9613 	 * now, the DC has been in reset to save power.
9614 	 */
9615 	dc_start(dd);
9616 
9617 	if (qd->cache_refresh_required) {
9618 		set_qsfp_int_n(ppd, 0);
9619 
9620 		wait_for_qsfp_init(ppd);
9621 
9622 		/*
9623 		 * Allow INT_N to trigger the QSFP interrupt to watch
9624 		 * for alarms and warnings
9625 		 */
9626 		set_qsfp_int_n(ppd, 1);
9627 
9628 		start_link(ppd);
9629 	}
9630 
9631 	if (qd->check_interrupt_flags) {
9632 		u8 qsfp_interrupt_status[16] = {0,};
9633 
9634 		if (one_qsfp_read(ppd, dd->hfi1_id, 6,
9635 				  &qsfp_interrupt_status[0], 16) != 16) {
9636 			dd_dev_info(dd,
9637 				    "%s: Failed to read status of QSFP module\n",
9638 				    __func__);
9639 		} else {
9640 			unsigned long flags;
9641 
9642 			handle_qsfp_error_conditions(
9643 					ppd, qsfp_interrupt_status);
9644 			spin_lock_irqsave(&ppd->qsfp_info.qsfp_lock, flags);
9645 			ppd->qsfp_info.check_interrupt_flags = 0;
9646 			spin_unlock_irqrestore(&ppd->qsfp_info.qsfp_lock,
9647 					       flags);
9648 		}
9649 	}
9650 }
9651 
9652 void init_qsfp_int(struct hfi1_devdata *dd)
9653 {
9654 	struct hfi1_pportdata *ppd = dd->pport;
9655 	u64 qsfp_mask;
9656 
9657 	qsfp_mask = (u64)(QSFP_HFI0_INT_N | QSFP_HFI0_MODPRST_N);
9658 	/* Clear current status to avoid spurious interrupts */
9659 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_CLEAR : ASIC_QSFP1_CLEAR,
9660 		  qsfp_mask);
9661 	write_csr(dd, dd->hfi1_id ? ASIC_QSFP2_MASK : ASIC_QSFP1_MASK,
9662 		  qsfp_mask);
9663 
9664 	set_qsfp_int_n(ppd, 0);
9665 
9666 	/* Handle active low nature of INT_N and MODPRST_N pins */
9667 	if (qsfp_mod_present(ppd))
9668 		qsfp_mask &= ~(u64)QSFP_HFI0_MODPRST_N;
9669 	write_csr(dd,
9670 		  dd->hfi1_id ? ASIC_QSFP2_INVERT : ASIC_QSFP1_INVERT,
9671 		  qsfp_mask);
9672 
9673 	/* Enable the appropriate QSFP IRQ source */
9674 	if (!dd->hfi1_id)
9675 		set_intr_bits(dd, QSFP1_INT, QSFP1_INT, true);
9676 	else
9677 		set_intr_bits(dd, QSFP2_INT, QSFP2_INT, true);
9678 }
9679 
9680 /*
9681  * Do a one-time initialize of the LCB block.
9682  */
9683 static void init_lcb(struct hfi1_devdata *dd)
9684 {
9685 	/* simulator does not correctly handle LCB cclk loopback, skip */
9686 	if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
9687 		return;
9688 
9689 	/* the DC has been reset earlier in the driver load */
9690 
9691 	/* set LCB for cclk loopback on the port */
9692 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x01);
9693 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0x00);
9694 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0x00);
9695 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
9696 	write_csr(dd, DC_LCB_CFG_CLK_CNTR, 0x08);
9697 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x02);
9698 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0x00);
9699 }
9700 
9701 /*
9702  * Perform a test read on the QSFP.  Return 0 on success, -ERRNO
9703  * on error.
9704  */
9705 static int test_qsfp_read(struct hfi1_pportdata *ppd)
9706 {
9707 	int ret;
9708 	u8 status;
9709 
9710 	/*
9711 	 * Report success if not a QSFP or, if it is a QSFP, but the cable is
9712 	 * not present
9713 	 */
9714 	if (ppd->port_type != PORT_TYPE_QSFP || !qsfp_mod_present(ppd))
9715 		return 0;
9716 
9717 	/* read byte 2, the status byte */
9718 	ret = one_qsfp_read(ppd, ppd->dd->hfi1_id, 2, &status, 1);
9719 	if (ret < 0)
9720 		return ret;
9721 	if (ret != 1)
9722 		return -EIO;
9723 
9724 	return 0; /* success */
9725 }
9726 
9727 /*
9728  * Values for QSFP retry.
9729  *
9730  * Give up after 10s (20 x 500ms).  The overall timeout was empirically
9731  * arrived at from experience on a large cluster.
9732  */
9733 #define MAX_QSFP_RETRIES 20
9734 #define QSFP_RETRY_WAIT 500 /* msec */
9735 
9736 /*
9737  * Try a QSFP read.  If it fails, schedule a retry for later.
9738  * Called on first link activation after driver load.
9739  */
9740 static void try_start_link(struct hfi1_pportdata *ppd)
9741 {
9742 	if (test_qsfp_read(ppd)) {
9743 		/* read failed */
9744 		if (ppd->qsfp_retry_count >= MAX_QSFP_RETRIES) {
9745 			dd_dev_err(ppd->dd, "QSFP not responding, giving up\n");
9746 			return;
9747 		}
9748 		dd_dev_info(ppd->dd,
9749 			    "QSFP not responding, waiting and retrying %d\n",
9750 			    (int)ppd->qsfp_retry_count);
9751 		ppd->qsfp_retry_count++;
9752 		queue_delayed_work(ppd->link_wq, &ppd->start_link_work,
9753 				   msecs_to_jiffies(QSFP_RETRY_WAIT));
9754 		return;
9755 	}
9756 	ppd->qsfp_retry_count = 0;
9757 
9758 	start_link(ppd);
9759 }
9760 
9761 /*
9762  * Workqueue function to start the link after a delay.
9763  */
9764 void handle_start_link(struct work_struct *work)
9765 {
9766 	struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata,
9767 						  start_link_work.work);
9768 	try_start_link(ppd);
9769 }
9770 
9771 int bringup_serdes(struct hfi1_pportdata *ppd)
9772 {
9773 	struct hfi1_devdata *dd = ppd->dd;
9774 	u64 guid;
9775 	int ret;
9776 
9777 	if (HFI1_CAP_IS_KSET(EXTENDED_PSN))
9778 		add_rcvctrl(dd, RCV_CTRL_RCV_EXTENDED_PSN_ENABLE_SMASK);
9779 
9780 	guid = ppd->guids[HFI1_PORT_GUID_INDEX];
9781 	if (!guid) {
9782 		if (dd->base_guid)
9783 			guid = dd->base_guid + ppd->port - 1;
9784 		ppd->guids[HFI1_PORT_GUID_INDEX] = guid;
9785 	}
9786 
9787 	/* Set linkinit_reason on power up per OPA spec */
9788 	ppd->linkinit_reason = OPA_LINKINIT_REASON_LINKUP;
9789 
9790 	/* one-time init of the LCB */
9791 	init_lcb(dd);
9792 
9793 	if (loopback) {
9794 		ret = init_loopback(dd);
9795 		if (ret < 0)
9796 			return ret;
9797 	}
9798 
9799 	get_port_type(ppd);
9800 	if (ppd->port_type == PORT_TYPE_QSFP) {
9801 		set_qsfp_int_n(ppd, 0);
9802 		wait_for_qsfp_init(ppd);
9803 		set_qsfp_int_n(ppd, 1);
9804 	}
9805 
9806 	try_start_link(ppd);
9807 	return 0;
9808 }
9809 
9810 void hfi1_quiet_serdes(struct hfi1_pportdata *ppd)
9811 {
9812 	struct hfi1_devdata *dd = ppd->dd;
9813 
9814 	/*
9815 	 * Shut down the link and keep it down.   First turn off that the
9816 	 * driver wants to allow the link to be up (driver_link_ready).
9817 	 * Then make sure the link is not automatically restarted
9818 	 * (link_enabled).  Cancel any pending restart.  And finally
9819 	 * go offline.
9820 	 */
9821 	ppd->driver_link_ready = 0;
9822 	ppd->link_enabled = 0;
9823 
9824 	ppd->qsfp_retry_count = MAX_QSFP_RETRIES; /* prevent more retries */
9825 	flush_delayed_work(&ppd->start_link_work);
9826 	cancel_delayed_work_sync(&ppd->start_link_work);
9827 
9828 	ppd->offline_disabled_reason =
9829 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_REBOOT);
9830 	set_link_down_reason(ppd, OPA_LINKDOWN_REASON_REBOOT, 0,
9831 			     OPA_LINKDOWN_REASON_REBOOT);
9832 	set_link_state(ppd, HLS_DN_OFFLINE);
9833 
9834 	/* disable the port */
9835 	clear_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
9836 }
9837 
9838 static inline int init_cpu_counters(struct hfi1_devdata *dd)
9839 {
9840 	struct hfi1_pportdata *ppd;
9841 	int i;
9842 
9843 	ppd = (struct hfi1_pportdata *)(dd + 1);
9844 	for (i = 0; i < dd->num_pports; i++, ppd++) {
9845 		ppd->ibport_data.rvp.rc_acks = NULL;
9846 		ppd->ibport_data.rvp.rc_qacks = NULL;
9847 		ppd->ibport_data.rvp.rc_acks = alloc_percpu(u64);
9848 		ppd->ibport_data.rvp.rc_qacks = alloc_percpu(u64);
9849 		ppd->ibport_data.rvp.rc_delayed_comp = alloc_percpu(u64);
9850 		if (!ppd->ibport_data.rvp.rc_acks ||
9851 		    !ppd->ibport_data.rvp.rc_delayed_comp ||
9852 		    !ppd->ibport_data.rvp.rc_qacks)
9853 			return -ENOMEM;
9854 	}
9855 
9856 	return 0;
9857 }
9858 
9859 /*
9860  * index is the index into the receive array
9861  */
9862 void hfi1_put_tid(struct hfi1_devdata *dd, u32 index,
9863 		  u32 type, unsigned long pa, u16 order)
9864 {
9865 	u64 reg;
9866 
9867 	if (!(dd->flags & HFI1_PRESENT))
9868 		goto done;
9869 
9870 	if (type == PT_INVALID || type == PT_INVALID_FLUSH) {
9871 		pa = 0;
9872 		order = 0;
9873 	} else if (type > PT_INVALID) {
9874 		dd_dev_err(dd,
9875 			   "unexpected receive array type %u for index %u, not handled\n",
9876 			   type, index);
9877 		goto done;
9878 	}
9879 	trace_hfi1_put_tid(dd, index, type, pa, order);
9880 
9881 #define RT_ADDR_SHIFT 12	/* 4KB kernel address boundary */
9882 	reg = RCV_ARRAY_RT_WRITE_ENABLE_SMASK
9883 		| (u64)order << RCV_ARRAY_RT_BUF_SIZE_SHIFT
9884 		| ((pa >> RT_ADDR_SHIFT) & RCV_ARRAY_RT_ADDR_MASK)
9885 					<< RCV_ARRAY_RT_ADDR_SHIFT;
9886 	trace_hfi1_write_rcvarray(dd->rcvarray_wc + (index * 8), reg);
9887 	writeq(reg, dd->rcvarray_wc + (index * 8));
9888 
9889 	if (type == PT_EAGER || type == PT_INVALID_FLUSH || (index & 3) == 3)
9890 		/*
9891 		 * Eager entries are written and flushed
9892 		 *
9893 		 * Expected entries are flushed every 4 writes
9894 		 */
9895 		flush_wc();
9896 done:
9897 	return;
9898 }
9899 
9900 void hfi1_clear_tids(struct hfi1_ctxtdata *rcd)
9901 {
9902 	struct hfi1_devdata *dd = rcd->dd;
9903 	u32 i;
9904 
9905 	/* this could be optimized */
9906 	for (i = rcd->eager_base; i < rcd->eager_base +
9907 		     rcd->egrbufs.alloced; i++)
9908 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9909 
9910 	for (i = rcd->expected_base;
9911 			i < rcd->expected_base + rcd->expected_count; i++)
9912 		hfi1_put_tid(dd, i, PT_INVALID, 0, 0);
9913 }
9914 
9915 static const char * const ib_cfg_name_strings[] = {
9916 	"HFI1_IB_CFG_LIDLMC",
9917 	"HFI1_IB_CFG_LWID_DG_ENB",
9918 	"HFI1_IB_CFG_LWID_ENB",
9919 	"HFI1_IB_CFG_LWID",
9920 	"HFI1_IB_CFG_SPD_ENB",
9921 	"HFI1_IB_CFG_SPD",
9922 	"HFI1_IB_CFG_RXPOL_ENB",
9923 	"HFI1_IB_CFG_LREV_ENB",
9924 	"HFI1_IB_CFG_LINKLATENCY",
9925 	"HFI1_IB_CFG_HRTBT",
9926 	"HFI1_IB_CFG_OP_VLS",
9927 	"HFI1_IB_CFG_VL_HIGH_CAP",
9928 	"HFI1_IB_CFG_VL_LOW_CAP",
9929 	"HFI1_IB_CFG_OVERRUN_THRESH",
9930 	"HFI1_IB_CFG_PHYERR_THRESH",
9931 	"HFI1_IB_CFG_LINKDEFAULT",
9932 	"HFI1_IB_CFG_PKEYS",
9933 	"HFI1_IB_CFG_MTU",
9934 	"HFI1_IB_CFG_LSTATE",
9935 	"HFI1_IB_CFG_VL_HIGH_LIMIT",
9936 	"HFI1_IB_CFG_PMA_TICKS",
9937 	"HFI1_IB_CFG_PORT"
9938 };
9939 
9940 static const char *ib_cfg_name(int which)
9941 {
9942 	if (which < 0 || which >= ARRAY_SIZE(ib_cfg_name_strings))
9943 		return "invalid";
9944 	return ib_cfg_name_strings[which];
9945 }
9946 
9947 int hfi1_get_ib_cfg(struct hfi1_pportdata *ppd, int which)
9948 {
9949 	struct hfi1_devdata *dd = ppd->dd;
9950 	int val = 0;
9951 
9952 	switch (which) {
9953 	case HFI1_IB_CFG_LWID_ENB: /* allowed Link-width */
9954 		val = ppd->link_width_enabled;
9955 		break;
9956 	case HFI1_IB_CFG_LWID: /* currently active Link-width */
9957 		val = ppd->link_width_active;
9958 		break;
9959 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
9960 		val = ppd->link_speed_enabled;
9961 		break;
9962 	case HFI1_IB_CFG_SPD: /* current Link speed */
9963 		val = ppd->link_speed_active;
9964 		break;
9965 
9966 	case HFI1_IB_CFG_RXPOL_ENB: /* Auto-RX-polarity enable */
9967 	case HFI1_IB_CFG_LREV_ENB: /* Auto-Lane-reversal enable */
9968 	case HFI1_IB_CFG_LINKLATENCY:
9969 		goto unimplemented;
9970 
9971 	case HFI1_IB_CFG_OP_VLS:
9972 		val = ppd->actual_vls_operational;
9973 		break;
9974 	case HFI1_IB_CFG_VL_HIGH_CAP: /* VL arb high priority table size */
9975 		val = VL_ARB_HIGH_PRIO_TABLE_SIZE;
9976 		break;
9977 	case HFI1_IB_CFG_VL_LOW_CAP: /* VL arb low priority table size */
9978 		val = VL_ARB_LOW_PRIO_TABLE_SIZE;
9979 		break;
9980 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
9981 		val = ppd->overrun_threshold;
9982 		break;
9983 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
9984 		val = ppd->phy_error_threshold;
9985 		break;
9986 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
9987 		val = HLS_DEFAULT;
9988 		break;
9989 
9990 	case HFI1_IB_CFG_HRTBT: /* Heartbeat off/enable/auto */
9991 	case HFI1_IB_CFG_PMA_TICKS:
9992 	default:
9993 unimplemented:
9994 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
9995 			dd_dev_info(
9996 				dd,
9997 				"%s: which %s: not implemented\n",
9998 				__func__,
9999 				ib_cfg_name(which));
10000 		break;
10001 	}
10002 
10003 	return val;
10004 }
10005 
10006 /*
10007  * The largest MAD packet size.
10008  */
10009 #define MAX_MAD_PACKET 2048
10010 
10011 /*
10012  * Return the maximum header bytes that can go on the _wire_
10013  * for this device. This count includes the ICRC which is
10014  * not part of the packet held in memory but it is appended
10015  * by the HW.
10016  * This is dependent on the device's receive header entry size.
10017  * HFI allows this to be set per-receive context, but the
10018  * driver presently enforces a global value.
10019  */
10020 u32 lrh_max_header_bytes(struct hfi1_devdata *dd)
10021 {
10022 	/*
10023 	 * The maximum non-payload (MTU) bytes in LRH.PktLen are
10024 	 * the Receive Header Entry Size minus the PBC (or RHF) size
10025 	 * plus one DW for the ICRC appended by HW.
10026 	 *
10027 	 * dd->rcd[0].rcvhdrqentsize is in DW.
10028 	 * We use rcd[0] as all context will have the same value. Also,
10029 	 * the first kernel context would have been allocated by now so
10030 	 * we are guaranteed a valid value.
10031 	 */
10032 	return (dd->rcd[0]->rcvhdrqentsize - 2/*PBC/RHF*/ + 1/*ICRC*/) << 2;
10033 }
10034 
10035 /*
10036  * Set Send Length
10037  * @ppd - per port data
10038  *
10039  * Set the MTU by limiting how many DWs may be sent.  The SendLenCheck*
10040  * registers compare against LRH.PktLen, so use the max bytes included
10041  * in the LRH.
10042  *
10043  * This routine changes all VL values except VL15, which it maintains at
10044  * the same value.
10045  */
10046 static void set_send_length(struct hfi1_pportdata *ppd)
10047 {
10048 	struct hfi1_devdata *dd = ppd->dd;
10049 	u32 max_hb = lrh_max_header_bytes(dd), dcmtu;
10050 	u32 maxvlmtu = dd->vld[15].mtu;
10051 	u64 len1 = 0, len2 = (((dd->vld[15].mtu + max_hb) >> 2)
10052 			      & SEND_LEN_CHECK1_LEN_VL15_MASK) <<
10053 		SEND_LEN_CHECK1_LEN_VL15_SHIFT;
10054 	int i, j;
10055 	u32 thres;
10056 
10057 	for (i = 0; i < ppd->vls_supported; i++) {
10058 		if (dd->vld[i].mtu > maxvlmtu)
10059 			maxvlmtu = dd->vld[i].mtu;
10060 		if (i <= 3)
10061 			len1 |= (((dd->vld[i].mtu + max_hb) >> 2)
10062 				 & SEND_LEN_CHECK0_LEN_VL0_MASK) <<
10063 				((i % 4) * SEND_LEN_CHECK0_LEN_VL1_SHIFT);
10064 		else
10065 			len2 |= (((dd->vld[i].mtu + max_hb) >> 2)
10066 				 & SEND_LEN_CHECK1_LEN_VL4_MASK) <<
10067 				((i % 4) * SEND_LEN_CHECK1_LEN_VL5_SHIFT);
10068 	}
10069 	write_csr(dd, SEND_LEN_CHECK0, len1);
10070 	write_csr(dd, SEND_LEN_CHECK1, len2);
10071 	/* adjust kernel credit return thresholds based on new MTUs */
10072 	/* all kernel receive contexts have the same hdrqentsize */
10073 	for (i = 0; i < ppd->vls_supported; i++) {
10074 		thres = min(sc_percent_to_threshold(dd->vld[i].sc, 50),
10075 			    sc_mtu_to_threshold(dd->vld[i].sc,
10076 						dd->vld[i].mtu,
10077 						dd->rcd[0]->rcvhdrqentsize));
10078 		for (j = 0; j < INIT_SC_PER_VL; j++)
10079 			sc_set_cr_threshold(
10080 					pio_select_send_context_vl(dd, j, i),
10081 					    thres);
10082 	}
10083 	thres = min(sc_percent_to_threshold(dd->vld[15].sc, 50),
10084 		    sc_mtu_to_threshold(dd->vld[15].sc,
10085 					dd->vld[15].mtu,
10086 					dd->rcd[0]->rcvhdrqentsize));
10087 	sc_set_cr_threshold(dd->vld[15].sc, thres);
10088 
10089 	/* Adjust maximum MTU for the port in DC */
10090 	dcmtu = maxvlmtu == 10240 ? DCC_CFG_PORT_MTU_CAP_10240 :
10091 		(ilog2(maxvlmtu >> 8) + 1);
10092 	len1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG);
10093 	len1 &= ~DCC_CFG_PORT_CONFIG_MTU_CAP_SMASK;
10094 	len1 |= ((u64)dcmtu & DCC_CFG_PORT_CONFIG_MTU_CAP_MASK) <<
10095 		DCC_CFG_PORT_CONFIG_MTU_CAP_SHIFT;
10096 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG, len1);
10097 }
10098 
10099 static void set_lidlmc(struct hfi1_pportdata *ppd)
10100 {
10101 	int i;
10102 	u64 sreg = 0;
10103 	struct hfi1_devdata *dd = ppd->dd;
10104 	u32 mask = ~((1U << ppd->lmc) - 1);
10105 	u64 c1 = read_csr(ppd->dd, DCC_CFG_PORT_CONFIG1);
10106 	u32 lid;
10107 
10108 	/*
10109 	 * Program 0 in CSR if port lid is extended. This prevents
10110 	 * 9B packets being sent out for large lids.
10111 	 */
10112 	lid = (ppd->lid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) ? 0 : ppd->lid;
10113 	c1 &= ~(DCC_CFG_PORT_CONFIG1_TARGET_DLID_SMASK
10114 		| DCC_CFG_PORT_CONFIG1_DLID_MASK_SMASK);
10115 	c1 |= ((lid & DCC_CFG_PORT_CONFIG1_TARGET_DLID_MASK)
10116 			<< DCC_CFG_PORT_CONFIG1_TARGET_DLID_SHIFT) |
10117 	      ((mask & DCC_CFG_PORT_CONFIG1_DLID_MASK_MASK)
10118 			<< DCC_CFG_PORT_CONFIG1_DLID_MASK_SHIFT);
10119 	write_csr(ppd->dd, DCC_CFG_PORT_CONFIG1, c1);
10120 
10121 	/*
10122 	 * Iterate over all the send contexts and set their SLID check
10123 	 */
10124 	sreg = ((mask & SEND_CTXT_CHECK_SLID_MASK_MASK) <<
10125 			SEND_CTXT_CHECK_SLID_MASK_SHIFT) |
10126 	       (((lid & mask) & SEND_CTXT_CHECK_SLID_VALUE_MASK) <<
10127 			SEND_CTXT_CHECK_SLID_VALUE_SHIFT);
10128 
10129 	for (i = 0; i < chip_send_contexts(dd); i++) {
10130 		hfi1_cdbg(LINKVERB, "SendContext[%d].SLID_CHECK = 0x%x",
10131 			  i, (u32)sreg);
10132 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, sreg);
10133 	}
10134 
10135 	/* Now we have to do the same thing for the sdma engines */
10136 	sdma_update_lmc(dd, mask, lid);
10137 }
10138 
10139 static const char *state_completed_string(u32 completed)
10140 {
10141 	static const char * const state_completed[] = {
10142 		"EstablishComm",
10143 		"OptimizeEQ",
10144 		"VerifyCap"
10145 	};
10146 
10147 	if (completed < ARRAY_SIZE(state_completed))
10148 		return state_completed[completed];
10149 
10150 	return "unknown";
10151 }
10152 
10153 static const char all_lanes_dead_timeout_expired[] =
10154 	"All lanes were inactive – was the interconnect media removed?";
10155 static const char tx_out_of_policy[] =
10156 	"Passing lanes on local port do not meet the local link width policy";
10157 static const char no_state_complete[] =
10158 	"State timeout occurred before link partner completed the state";
10159 static const char * const state_complete_reasons[] = {
10160 	[0x00] = "Reason unknown",
10161 	[0x01] = "Link was halted by driver, refer to LinkDownReason",
10162 	[0x02] = "Link partner reported failure",
10163 	[0x10] = "Unable to achieve frame sync on any lane",
10164 	[0x11] =
10165 	  "Unable to find a common bit rate with the link partner",
10166 	[0x12] =
10167 	  "Unable to achieve frame sync on sufficient lanes to meet the local link width policy",
10168 	[0x13] =
10169 	  "Unable to identify preset equalization on sufficient lanes to meet the local link width policy",
10170 	[0x14] = no_state_complete,
10171 	[0x15] =
10172 	  "State timeout occurred before link partner identified equalization presets",
10173 	[0x16] =
10174 	  "Link partner completed the EstablishComm state, but the passing lanes do not meet the local link width policy",
10175 	[0x17] = tx_out_of_policy,
10176 	[0x20] = all_lanes_dead_timeout_expired,
10177 	[0x21] =
10178 	  "Unable to achieve acceptable BER on sufficient lanes to meet the local link width policy",
10179 	[0x22] = no_state_complete,
10180 	[0x23] =
10181 	  "Link partner completed the OptimizeEq state, but the passing lanes do not meet the local link width policy",
10182 	[0x24] = tx_out_of_policy,
10183 	[0x30] = all_lanes_dead_timeout_expired,
10184 	[0x31] =
10185 	  "State timeout occurred waiting for host to process received frames",
10186 	[0x32] = no_state_complete,
10187 	[0x33] =
10188 	  "Link partner completed the VerifyCap state, but the passing lanes do not meet the local link width policy",
10189 	[0x34] = tx_out_of_policy,
10190 	[0x35] = "Negotiated link width is mutually exclusive",
10191 	[0x36] =
10192 	  "Timed out before receiving verifycap frames in VerifyCap.Exchange",
10193 	[0x37] = "Unable to resolve secure data exchange",
10194 };
10195 
10196 static const char *state_complete_reason_code_string(struct hfi1_pportdata *ppd,
10197 						     u32 code)
10198 {
10199 	const char *str = NULL;
10200 
10201 	if (code < ARRAY_SIZE(state_complete_reasons))
10202 		str = state_complete_reasons[code];
10203 
10204 	if (str)
10205 		return str;
10206 	return "Reserved";
10207 }
10208 
10209 /* describe the given last state complete frame */
10210 static void decode_state_complete(struct hfi1_pportdata *ppd, u32 frame,
10211 				  const char *prefix)
10212 {
10213 	struct hfi1_devdata *dd = ppd->dd;
10214 	u32 success;
10215 	u32 state;
10216 	u32 reason;
10217 	u32 lanes;
10218 
10219 	/*
10220 	 * Decode frame:
10221 	 *  [ 0: 0] - success
10222 	 *  [ 3: 1] - state
10223 	 *  [ 7: 4] - next state timeout
10224 	 *  [15: 8] - reason code
10225 	 *  [31:16] - lanes
10226 	 */
10227 	success = frame & 0x1;
10228 	state = (frame >> 1) & 0x7;
10229 	reason = (frame >> 8) & 0xff;
10230 	lanes = (frame >> 16) & 0xffff;
10231 
10232 	dd_dev_err(dd, "Last %s LNI state complete frame 0x%08x:\n",
10233 		   prefix, frame);
10234 	dd_dev_err(dd, "    last reported state state: %s (0x%x)\n",
10235 		   state_completed_string(state), state);
10236 	dd_dev_err(dd, "    state successfully completed: %s\n",
10237 		   success ? "yes" : "no");
10238 	dd_dev_err(dd, "    fail reason 0x%x: %s\n",
10239 		   reason, state_complete_reason_code_string(ppd, reason));
10240 	dd_dev_err(dd, "    passing lane mask: 0x%x", lanes);
10241 }
10242 
10243 /*
10244  * Read the last state complete frames and explain them.  This routine
10245  * expects to be called if the link went down during link negotiation
10246  * and initialization (LNI).  That is, anywhere between polling and link up.
10247  */
10248 static void check_lni_states(struct hfi1_pportdata *ppd)
10249 {
10250 	u32 last_local_state;
10251 	u32 last_remote_state;
10252 
10253 	read_last_local_state(ppd->dd, &last_local_state);
10254 	read_last_remote_state(ppd->dd, &last_remote_state);
10255 
10256 	/*
10257 	 * Don't report anything if there is nothing to report.  A value of
10258 	 * 0 means the link was taken down while polling and there was no
10259 	 * training in-process.
10260 	 */
10261 	if (last_local_state == 0 && last_remote_state == 0)
10262 		return;
10263 
10264 	decode_state_complete(ppd, last_local_state, "transmitted");
10265 	decode_state_complete(ppd, last_remote_state, "received");
10266 }
10267 
10268 /* wait for wait_ms for LINK_TRANSFER_ACTIVE to go to 1 */
10269 static int wait_link_transfer_active(struct hfi1_devdata *dd, int wait_ms)
10270 {
10271 	u64 reg;
10272 	unsigned long timeout;
10273 
10274 	/* watch LCB_STS_LINK_TRANSFER_ACTIVE */
10275 	timeout = jiffies + msecs_to_jiffies(wait_ms);
10276 	while (1) {
10277 		reg = read_csr(dd, DC_LCB_STS_LINK_TRANSFER_ACTIVE);
10278 		if (reg)
10279 			break;
10280 		if (time_after(jiffies, timeout)) {
10281 			dd_dev_err(dd,
10282 				   "timeout waiting for LINK_TRANSFER_ACTIVE\n");
10283 			return -ETIMEDOUT;
10284 		}
10285 		udelay(2);
10286 	}
10287 	return 0;
10288 }
10289 
10290 /* called when the logical link state is not down as it should be */
10291 static void force_logical_link_state_down(struct hfi1_pportdata *ppd)
10292 {
10293 	struct hfi1_devdata *dd = ppd->dd;
10294 
10295 	/*
10296 	 * Bring link up in LCB loopback
10297 	 */
10298 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10299 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK,
10300 		  DC_LCB_CFG_IGNORE_LOST_RCLK_EN_SMASK);
10301 
10302 	write_csr(dd, DC_LCB_CFG_LANE_WIDTH, 0);
10303 	write_csr(dd, DC_LCB_CFG_REINIT_AS_SLAVE, 0);
10304 	write_csr(dd, DC_LCB_CFG_CNT_FOR_SKIP_STALL, 0x110);
10305 	write_csr(dd, DC_LCB_CFG_LOOPBACK, 0x2);
10306 
10307 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 0);
10308 	(void)read_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET);
10309 	udelay(3);
10310 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 1);
10311 	write_csr(dd, DC_LCB_CFG_RUN, 1ull << DC_LCB_CFG_RUN_EN_SHIFT);
10312 
10313 	wait_link_transfer_active(dd, 100);
10314 
10315 	/*
10316 	 * Bring the link down again.
10317 	 */
10318 	write_csr(dd, DC_LCB_CFG_TX_FIFOS_RESET, 1);
10319 	write_csr(dd, DC_LCB_CFG_ALLOW_LINK_UP, 0);
10320 	write_csr(dd, DC_LCB_CFG_IGNORE_LOST_RCLK, 0);
10321 
10322 	dd_dev_info(ppd->dd, "logical state forced to LINK_DOWN\n");
10323 }
10324 
10325 /*
10326  * Helper for set_link_state().  Do not call except from that routine.
10327  * Expects ppd->hls_mutex to be held.
10328  *
10329  * @rem_reason value to be sent to the neighbor
10330  *
10331  * LinkDownReasons only set if transition succeeds.
10332  */
10333 static int goto_offline(struct hfi1_pportdata *ppd, u8 rem_reason)
10334 {
10335 	struct hfi1_devdata *dd = ppd->dd;
10336 	u32 previous_state;
10337 	int offline_state_ret;
10338 	int ret;
10339 
10340 	update_lcb_cache(dd);
10341 
10342 	previous_state = ppd->host_link_state;
10343 	ppd->host_link_state = HLS_GOING_OFFLINE;
10344 
10345 	/* start offline transition */
10346 	ret = set_physical_link_state(dd, (rem_reason << 8) | PLS_OFFLINE);
10347 
10348 	if (ret != HCMD_SUCCESS) {
10349 		dd_dev_err(dd,
10350 			   "Failed to transition to Offline link state, return %d\n",
10351 			   ret);
10352 		return -EINVAL;
10353 	}
10354 	if (ppd->offline_disabled_reason ==
10355 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE))
10356 		ppd->offline_disabled_reason =
10357 		HFI1_ODR_MASK(OPA_LINKDOWN_REASON_TRANSIENT);
10358 
10359 	offline_state_ret = wait_phys_link_offline_substates(ppd, 10000);
10360 	if (offline_state_ret < 0)
10361 		return offline_state_ret;
10362 
10363 	/* Disabling AOC transmitters */
10364 	if (ppd->port_type == PORT_TYPE_QSFP &&
10365 	    ppd->qsfp_info.limiting_active &&
10366 	    qsfp_mod_present(ppd)) {
10367 		int ret;
10368 
10369 		ret = acquire_chip_resource(dd, qsfp_resource(dd), QSFP_WAIT);
10370 		if (ret == 0) {
10371 			set_qsfp_tx(ppd, 0);
10372 			release_chip_resource(dd, qsfp_resource(dd));
10373 		} else {
10374 			/* not fatal, but should warn */
10375 			dd_dev_err(dd,
10376 				   "Unable to acquire lock to turn off QSFP TX\n");
10377 		}
10378 	}
10379 
10380 	/*
10381 	 * Wait for the offline.Quiet transition if it hasn't happened yet. It
10382 	 * can take a while for the link to go down.
10383 	 */
10384 	if (offline_state_ret != PLS_OFFLINE_QUIET) {
10385 		ret = wait_physical_linkstate(ppd, PLS_OFFLINE, 30000);
10386 		if (ret < 0)
10387 			return ret;
10388 	}
10389 
10390 	/*
10391 	 * Now in charge of LCB - must be after the physical state is
10392 	 * offline.quiet and before host_link_state is changed.
10393 	 */
10394 	set_host_lcb_access(dd);
10395 	write_csr(dd, DC_LCB_ERR_EN, ~0ull); /* watch LCB errors */
10396 
10397 	/* make sure the logical state is also down */
10398 	ret = wait_logical_linkstate(ppd, IB_PORT_DOWN, 1000);
10399 	if (ret)
10400 		force_logical_link_state_down(ppd);
10401 
10402 	ppd->host_link_state = HLS_LINK_COOLDOWN; /* LCB access allowed */
10403 	update_statusp(ppd, IB_PORT_DOWN);
10404 
10405 	/*
10406 	 * The LNI has a mandatory wait time after the physical state
10407 	 * moves to Offline.Quiet.  The wait time may be different
10408 	 * depending on how the link went down.  The 8051 firmware
10409 	 * will observe the needed wait time and only move to ready
10410 	 * when that is completed.  The largest of the quiet timeouts
10411 	 * is 6s, so wait that long and then at least 0.5s more for
10412 	 * other transitions, and another 0.5s for a buffer.
10413 	 */
10414 	ret = wait_fm_ready(dd, 7000);
10415 	if (ret) {
10416 		dd_dev_err(dd,
10417 			   "After going offline, timed out waiting for the 8051 to become ready to accept host requests\n");
10418 		/* state is really offline, so make it so */
10419 		ppd->host_link_state = HLS_DN_OFFLINE;
10420 		return ret;
10421 	}
10422 
10423 	/*
10424 	 * The state is now offline and the 8051 is ready to accept host
10425 	 * requests.
10426 	 *	- change our state
10427 	 *	- notify others if we were previously in a linkup state
10428 	 */
10429 	ppd->host_link_state = HLS_DN_OFFLINE;
10430 	if (previous_state & HLS_UP) {
10431 		/* went down while link was up */
10432 		handle_linkup_change(dd, 0);
10433 	} else if (previous_state
10434 			& (HLS_DN_POLL | HLS_VERIFY_CAP | HLS_GOING_UP)) {
10435 		/* went down while attempting link up */
10436 		check_lni_states(ppd);
10437 
10438 		/* The QSFP doesn't need to be reset on LNI failure */
10439 		ppd->qsfp_info.reset_needed = 0;
10440 	}
10441 
10442 	/* the active link width (downgrade) is 0 on link down */
10443 	ppd->link_width_active = 0;
10444 	ppd->link_width_downgrade_tx_active = 0;
10445 	ppd->link_width_downgrade_rx_active = 0;
10446 	ppd->current_egress_rate = 0;
10447 	return 0;
10448 }
10449 
10450 /* return the link state name */
10451 static const char *link_state_name(u32 state)
10452 {
10453 	const char *name;
10454 	int n = ilog2(state);
10455 	static const char * const names[] = {
10456 		[__HLS_UP_INIT_BP]	 = "INIT",
10457 		[__HLS_UP_ARMED_BP]	 = "ARMED",
10458 		[__HLS_UP_ACTIVE_BP]	 = "ACTIVE",
10459 		[__HLS_DN_DOWNDEF_BP]	 = "DOWNDEF",
10460 		[__HLS_DN_POLL_BP]	 = "POLL",
10461 		[__HLS_DN_DISABLE_BP]	 = "DISABLE",
10462 		[__HLS_DN_OFFLINE_BP]	 = "OFFLINE",
10463 		[__HLS_VERIFY_CAP_BP]	 = "VERIFY_CAP",
10464 		[__HLS_GOING_UP_BP]	 = "GOING_UP",
10465 		[__HLS_GOING_OFFLINE_BP] = "GOING_OFFLINE",
10466 		[__HLS_LINK_COOLDOWN_BP] = "LINK_COOLDOWN"
10467 	};
10468 
10469 	name = n < ARRAY_SIZE(names) ? names[n] : NULL;
10470 	return name ? name : "unknown";
10471 }
10472 
10473 /* return the link state reason name */
10474 static const char *link_state_reason_name(struct hfi1_pportdata *ppd, u32 state)
10475 {
10476 	if (state == HLS_UP_INIT) {
10477 		switch (ppd->linkinit_reason) {
10478 		case OPA_LINKINIT_REASON_LINKUP:
10479 			return "(LINKUP)";
10480 		case OPA_LINKINIT_REASON_FLAPPING:
10481 			return "(FLAPPING)";
10482 		case OPA_LINKINIT_OUTSIDE_POLICY:
10483 			return "(OUTSIDE_POLICY)";
10484 		case OPA_LINKINIT_QUARANTINED:
10485 			return "(QUARANTINED)";
10486 		case OPA_LINKINIT_INSUFIC_CAPABILITY:
10487 			return "(INSUFIC_CAPABILITY)";
10488 		default:
10489 			break;
10490 		}
10491 	}
10492 	return "";
10493 }
10494 
10495 /*
10496  * driver_pstate - convert the driver's notion of a port's
10497  * state (an HLS_*) into a physical state (a {IB,OPA}_PORTPHYSSTATE_*).
10498  * Return -1 (converted to a u32) to indicate error.
10499  */
10500 u32 driver_pstate(struct hfi1_pportdata *ppd)
10501 {
10502 	switch (ppd->host_link_state) {
10503 	case HLS_UP_INIT:
10504 	case HLS_UP_ARMED:
10505 	case HLS_UP_ACTIVE:
10506 		return IB_PORTPHYSSTATE_LINKUP;
10507 	case HLS_DN_POLL:
10508 		return IB_PORTPHYSSTATE_POLLING;
10509 	case HLS_DN_DISABLE:
10510 		return IB_PORTPHYSSTATE_DISABLED;
10511 	case HLS_DN_OFFLINE:
10512 		return OPA_PORTPHYSSTATE_OFFLINE;
10513 	case HLS_VERIFY_CAP:
10514 		return IB_PORTPHYSSTATE_TRAINING;
10515 	case HLS_GOING_UP:
10516 		return IB_PORTPHYSSTATE_TRAINING;
10517 	case HLS_GOING_OFFLINE:
10518 		return OPA_PORTPHYSSTATE_OFFLINE;
10519 	case HLS_LINK_COOLDOWN:
10520 		return OPA_PORTPHYSSTATE_OFFLINE;
10521 	case HLS_DN_DOWNDEF:
10522 	default:
10523 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10524 			   ppd->host_link_state);
10525 		return  -1;
10526 	}
10527 }
10528 
10529 /*
10530  * driver_lstate - convert the driver's notion of a port's
10531  * state (an HLS_*) into a logical state (a IB_PORT_*). Return -1
10532  * (converted to a u32) to indicate error.
10533  */
10534 u32 driver_lstate(struct hfi1_pportdata *ppd)
10535 {
10536 	if (ppd->host_link_state && (ppd->host_link_state & HLS_DOWN))
10537 		return IB_PORT_DOWN;
10538 
10539 	switch (ppd->host_link_state & HLS_UP) {
10540 	case HLS_UP_INIT:
10541 		return IB_PORT_INIT;
10542 	case HLS_UP_ARMED:
10543 		return IB_PORT_ARMED;
10544 	case HLS_UP_ACTIVE:
10545 		return IB_PORT_ACTIVE;
10546 	default:
10547 		dd_dev_err(ppd->dd, "invalid host_link_state 0x%x\n",
10548 			   ppd->host_link_state);
10549 	return -1;
10550 	}
10551 }
10552 
10553 void set_link_down_reason(struct hfi1_pportdata *ppd, u8 lcl_reason,
10554 			  u8 neigh_reason, u8 rem_reason)
10555 {
10556 	if (ppd->local_link_down_reason.latest == 0 &&
10557 	    ppd->neigh_link_down_reason.latest == 0) {
10558 		ppd->local_link_down_reason.latest = lcl_reason;
10559 		ppd->neigh_link_down_reason.latest = neigh_reason;
10560 		ppd->remote_link_down_reason = rem_reason;
10561 	}
10562 }
10563 
10564 /**
10565  * data_vls_operational() - Verify if data VL BCT credits and MTU
10566  *			    are both set.
10567  * @ppd: pointer to hfi1_pportdata structure
10568  *
10569  * Return: true - Ok, false -otherwise.
10570  */
10571 static inline bool data_vls_operational(struct hfi1_pportdata *ppd)
10572 {
10573 	int i;
10574 	u64 reg;
10575 
10576 	if (!ppd->actual_vls_operational)
10577 		return false;
10578 
10579 	for (i = 0; i < ppd->vls_supported; i++) {
10580 		reg = read_csr(ppd->dd, SEND_CM_CREDIT_VL + (8 * i));
10581 		if ((reg && !ppd->dd->vld[i].mtu) ||
10582 		    (!reg && ppd->dd->vld[i].mtu))
10583 			return false;
10584 	}
10585 
10586 	return true;
10587 }
10588 
10589 /*
10590  * Change the physical and/or logical link state.
10591  *
10592  * Do not call this routine while inside an interrupt.  It contains
10593  * calls to routines that can take multiple seconds to finish.
10594  *
10595  * Returns 0 on success, -errno on failure.
10596  */
10597 int set_link_state(struct hfi1_pportdata *ppd, u32 state)
10598 {
10599 	struct hfi1_devdata *dd = ppd->dd;
10600 	struct ib_event event = {.device = NULL};
10601 	int ret1, ret = 0;
10602 	int orig_new_state, poll_bounce;
10603 
10604 	mutex_lock(&ppd->hls_lock);
10605 
10606 	orig_new_state = state;
10607 	if (state == HLS_DN_DOWNDEF)
10608 		state = HLS_DEFAULT;
10609 
10610 	/* interpret poll -> poll as a link bounce */
10611 	poll_bounce = ppd->host_link_state == HLS_DN_POLL &&
10612 		      state == HLS_DN_POLL;
10613 
10614 	dd_dev_info(dd, "%s: current %s, new %s %s%s\n", __func__,
10615 		    link_state_name(ppd->host_link_state),
10616 		    link_state_name(orig_new_state),
10617 		    poll_bounce ? "(bounce) " : "",
10618 		    link_state_reason_name(ppd, state));
10619 
10620 	/*
10621 	 * If we're going to a (HLS_*) link state that implies the logical
10622 	 * link state is neither of (IB_PORT_ARMED, IB_PORT_ACTIVE), then
10623 	 * reset is_sm_config_started to 0.
10624 	 */
10625 	if (!(state & (HLS_UP_ARMED | HLS_UP_ACTIVE)))
10626 		ppd->is_sm_config_started = 0;
10627 
10628 	/*
10629 	 * Do nothing if the states match.  Let a poll to poll link bounce
10630 	 * go through.
10631 	 */
10632 	if (ppd->host_link_state == state && !poll_bounce)
10633 		goto done;
10634 
10635 	switch (state) {
10636 	case HLS_UP_INIT:
10637 		if (ppd->host_link_state == HLS_DN_POLL &&
10638 		    (quick_linkup || dd->icode == ICODE_FUNCTIONAL_SIMULATOR)) {
10639 			/*
10640 			 * Quick link up jumps from polling to here.
10641 			 *
10642 			 * Whether in normal or loopback mode, the
10643 			 * simulator jumps from polling to link up.
10644 			 * Accept that here.
10645 			 */
10646 			/* OK */
10647 		} else if (ppd->host_link_state != HLS_GOING_UP) {
10648 			goto unexpected;
10649 		}
10650 
10651 		/*
10652 		 * Wait for Link_Up physical state.
10653 		 * Physical and Logical states should already be
10654 		 * be transitioned to LinkUp and LinkInit respectively.
10655 		 */
10656 		ret = wait_physical_linkstate(ppd, PLS_LINKUP, 1000);
10657 		if (ret) {
10658 			dd_dev_err(dd,
10659 				   "%s: physical state did not change to LINK-UP\n",
10660 				   __func__);
10661 			break;
10662 		}
10663 
10664 		ret = wait_logical_linkstate(ppd, IB_PORT_INIT, 1000);
10665 		if (ret) {
10666 			dd_dev_err(dd,
10667 				   "%s: logical state did not change to INIT\n",
10668 				   __func__);
10669 			break;
10670 		}
10671 
10672 		/* clear old transient LINKINIT_REASON code */
10673 		if (ppd->linkinit_reason >= OPA_LINKINIT_REASON_CLEAR)
10674 			ppd->linkinit_reason =
10675 				OPA_LINKINIT_REASON_LINKUP;
10676 
10677 		/* enable the port */
10678 		add_rcvctrl(dd, RCV_CTRL_RCV_PORT_ENABLE_SMASK);
10679 
10680 		handle_linkup_change(dd, 1);
10681 		pio_kernel_linkup(dd);
10682 
10683 		/*
10684 		 * After link up, a new link width will have been set.
10685 		 * Update the xmit counters with regards to the new
10686 		 * link width.
10687 		 */
10688 		update_xmit_counters(ppd, ppd->link_width_active);
10689 
10690 		ppd->host_link_state = HLS_UP_INIT;
10691 		update_statusp(ppd, IB_PORT_INIT);
10692 		break;
10693 	case HLS_UP_ARMED:
10694 		if (ppd->host_link_state != HLS_UP_INIT)
10695 			goto unexpected;
10696 
10697 		if (!data_vls_operational(ppd)) {
10698 			dd_dev_err(dd,
10699 				   "%s: Invalid data VL credits or mtu\n",
10700 				   __func__);
10701 			ret = -EINVAL;
10702 			break;
10703 		}
10704 
10705 		set_logical_state(dd, LSTATE_ARMED);
10706 		ret = wait_logical_linkstate(ppd, IB_PORT_ARMED, 1000);
10707 		if (ret) {
10708 			dd_dev_err(dd,
10709 				   "%s: logical state did not change to ARMED\n",
10710 				   __func__);
10711 			break;
10712 		}
10713 		ppd->host_link_state = HLS_UP_ARMED;
10714 		update_statusp(ppd, IB_PORT_ARMED);
10715 		/*
10716 		 * The simulator does not currently implement SMA messages,
10717 		 * so neighbor_normal is not set.  Set it here when we first
10718 		 * move to Armed.
10719 		 */
10720 		if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR)
10721 			ppd->neighbor_normal = 1;
10722 		break;
10723 	case HLS_UP_ACTIVE:
10724 		if (ppd->host_link_state != HLS_UP_ARMED)
10725 			goto unexpected;
10726 
10727 		set_logical_state(dd, LSTATE_ACTIVE);
10728 		ret = wait_logical_linkstate(ppd, IB_PORT_ACTIVE, 1000);
10729 		if (ret) {
10730 			dd_dev_err(dd,
10731 				   "%s: logical state did not change to ACTIVE\n",
10732 				   __func__);
10733 		} else {
10734 			/* tell all engines to go running */
10735 			sdma_all_running(dd);
10736 			ppd->host_link_state = HLS_UP_ACTIVE;
10737 			update_statusp(ppd, IB_PORT_ACTIVE);
10738 
10739 			/* Signal the IB layer that the port has went active */
10740 			event.device = &dd->verbs_dev.rdi.ibdev;
10741 			event.element.port_num = ppd->port;
10742 			event.event = IB_EVENT_PORT_ACTIVE;
10743 		}
10744 		break;
10745 	case HLS_DN_POLL:
10746 		if ((ppd->host_link_state == HLS_DN_DISABLE ||
10747 		     ppd->host_link_state == HLS_DN_OFFLINE) &&
10748 		    dd->dc_shutdown)
10749 			dc_start(dd);
10750 		/* Hand LED control to the DC */
10751 		write_csr(dd, DCC_CFG_LED_CNTRL, 0);
10752 
10753 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10754 			u8 tmp = ppd->link_enabled;
10755 
10756 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10757 			if (ret) {
10758 				ppd->link_enabled = tmp;
10759 				break;
10760 			}
10761 			ppd->remote_link_down_reason = 0;
10762 
10763 			if (ppd->driver_link_ready)
10764 				ppd->link_enabled = 1;
10765 		}
10766 
10767 		set_all_slowpath(ppd->dd);
10768 		ret = set_local_link_attributes(ppd);
10769 		if (ret)
10770 			break;
10771 
10772 		ppd->port_error_action = 0;
10773 		ppd->host_link_state = HLS_DN_POLL;
10774 
10775 		if (quick_linkup) {
10776 			/* quick linkup does not go into polling */
10777 			ret = do_quick_linkup(dd);
10778 		} else {
10779 			ret1 = set_physical_link_state(dd, PLS_POLLING);
10780 			if (ret1 != HCMD_SUCCESS) {
10781 				dd_dev_err(dd,
10782 					   "Failed to transition to Polling link state, return 0x%x\n",
10783 					   ret1);
10784 				ret = -EINVAL;
10785 			}
10786 		}
10787 		ppd->offline_disabled_reason =
10788 			HFI1_ODR_MASK(OPA_LINKDOWN_REASON_NONE);
10789 		/*
10790 		 * If an error occurred above, go back to offline.  The
10791 		 * caller may reschedule another attempt.
10792 		 */
10793 		if (ret)
10794 			goto_offline(ppd, 0);
10795 		else
10796 			log_physical_state(ppd, PLS_POLLING);
10797 		break;
10798 	case HLS_DN_DISABLE:
10799 		/* link is disabled */
10800 		ppd->link_enabled = 0;
10801 
10802 		/* allow any state to transition to disabled */
10803 
10804 		/* must transition to offline first */
10805 		if (ppd->host_link_state != HLS_DN_OFFLINE) {
10806 			ret = goto_offline(ppd, ppd->remote_link_down_reason);
10807 			if (ret)
10808 				break;
10809 			ppd->remote_link_down_reason = 0;
10810 		}
10811 
10812 		if (!dd->dc_shutdown) {
10813 			ret1 = set_physical_link_state(dd, PLS_DISABLED);
10814 			if (ret1 != HCMD_SUCCESS) {
10815 				dd_dev_err(dd,
10816 					   "Failed to transition to Disabled link state, return 0x%x\n",
10817 					   ret1);
10818 				ret = -EINVAL;
10819 				break;
10820 			}
10821 			ret = wait_physical_linkstate(ppd, PLS_DISABLED, 10000);
10822 			if (ret) {
10823 				dd_dev_err(dd,
10824 					   "%s: physical state did not change to DISABLED\n",
10825 					   __func__);
10826 				break;
10827 			}
10828 			dc_shutdown(dd);
10829 		}
10830 		ppd->host_link_state = HLS_DN_DISABLE;
10831 		break;
10832 	case HLS_DN_OFFLINE:
10833 		if (ppd->host_link_state == HLS_DN_DISABLE)
10834 			dc_start(dd);
10835 
10836 		/* allow any state to transition to offline */
10837 		ret = goto_offline(ppd, ppd->remote_link_down_reason);
10838 		if (!ret)
10839 			ppd->remote_link_down_reason = 0;
10840 		break;
10841 	case HLS_VERIFY_CAP:
10842 		if (ppd->host_link_state != HLS_DN_POLL)
10843 			goto unexpected;
10844 		ppd->host_link_state = HLS_VERIFY_CAP;
10845 		log_physical_state(ppd, PLS_CONFIGPHY_VERIFYCAP);
10846 		break;
10847 	case HLS_GOING_UP:
10848 		if (ppd->host_link_state != HLS_VERIFY_CAP)
10849 			goto unexpected;
10850 
10851 		ret1 = set_physical_link_state(dd, PLS_LINKUP);
10852 		if (ret1 != HCMD_SUCCESS) {
10853 			dd_dev_err(dd,
10854 				   "Failed to transition to link up state, return 0x%x\n",
10855 				   ret1);
10856 			ret = -EINVAL;
10857 			break;
10858 		}
10859 		ppd->host_link_state = HLS_GOING_UP;
10860 		break;
10861 
10862 	case HLS_GOING_OFFLINE:		/* transient within goto_offline() */
10863 	case HLS_LINK_COOLDOWN:		/* transient within goto_offline() */
10864 	default:
10865 		dd_dev_info(dd, "%s: state 0x%x: not supported\n",
10866 			    __func__, state);
10867 		ret = -EINVAL;
10868 		break;
10869 	}
10870 
10871 	goto done;
10872 
10873 unexpected:
10874 	dd_dev_err(dd, "%s: unexpected state transition from %s to %s\n",
10875 		   __func__, link_state_name(ppd->host_link_state),
10876 		   link_state_name(state));
10877 	ret = -EINVAL;
10878 
10879 done:
10880 	mutex_unlock(&ppd->hls_lock);
10881 
10882 	if (event.device)
10883 		ib_dispatch_event(&event);
10884 
10885 	return ret;
10886 }
10887 
10888 int hfi1_set_ib_cfg(struct hfi1_pportdata *ppd, int which, u32 val)
10889 {
10890 	u64 reg;
10891 	int ret = 0;
10892 
10893 	switch (which) {
10894 	case HFI1_IB_CFG_LIDLMC:
10895 		set_lidlmc(ppd);
10896 		break;
10897 	case HFI1_IB_CFG_VL_HIGH_LIMIT:
10898 		/*
10899 		 * The VL Arbitrator high limit is sent in units of 4k
10900 		 * bytes, while HFI stores it in units of 64 bytes.
10901 		 */
10902 		val *= 4096 / 64;
10903 		reg = ((u64)val & SEND_HIGH_PRIORITY_LIMIT_LIMIT_MASK)
10904 			<< SEND_HIGH_PRIORITY_LIMIT_LIMIT_SHIFT;
10905 		write_csr(ppd->dd, SEND_HIGH_PRIORITY_LIMIT, reg);
10906 		break;
10907 	case HFI1_IB_CFG_LINKDEFAULT: /* IB link default (sleep/poll) */
10908 		/* HFI only supports POLL as the default link down state */
10909 		if (val != HLS_DN_POLL)
10910 			ret = -EINVAL;
10911 		break;
10912 	case HFI1_IB_CFG_OP_VLS:
10913 		if (ppd->vls_operational != val) {
10914 			ppd->vls_operational = val;
10915 			if (!ppd->port)
10916 				ret = -EINVAL;
10917 		}
10918 		break;
10919 	/*
10920 	 * For link width, link width downgrade, and speed enable, always AND
10921 	 * the setting with what is actually supported.  This has two benefits.
10922 	 * First, enabled can't have unsupported values, no matter what the
10923 	 * SM or FM might want.  Second, the ALL_SUPPORTED wildcards that mean
10924 	 * "fill in with your supported value" have all the bits in the
10925 	 * field set, so simply ANDing with supported has the desired result.
10926 	 */
10927 	case HFI1_IB_CFG_LWID_ENB: /* set allowed Link-width */
10928 		ppd->link_width_enabled = val & ppd->link_width_supported;
10929 		break;
10930 	case HFI1_IB_CFG_LWID_DG_ENB: /* set allowed link width downgrade */
10931 		ppd->link_width_downgrade_enabled =
10932 				val & ppd->link_width_downgrade_supported;
10933 		break;
10934 	case HFI1_IB_CFG_SPD_ENB: /* allowed Link speeds */
10935 		ppd->link_speed_enabled = val & ppd->link_speed_supported;
10936 		break;
10937 	case HFI1_IB_CFG_OVERRUN_THRESH: /* IB overrun threshold */
10938 		/*
10939 		 * HFI does not follow IB specs, save this value
10940 		 * so we can report it, if asked.
10941 		 */
10942 		ppd->overrun_threshold = val;
10943 		break;
10944 	case HFI1_IB_CFG_PHYERR_THRESH: /* IB PHY error threshold */
10945 		/*
10946 		 * HFI does not follow IB specs, save this value
10947 		 * so we can report it, if asked.
10948 		 */
10949 		ppd->phy_error_threshold = val;
10950 		break;
10951 
10952 	case HFI1_IB_CFG_MTU:
10953 		set_send_length(ppd);
10954 		break;
10955 
10956 	case HFI1_IB_CFG_PKEYS:
10957 		if (HFI1_CAP_IS_KSET(PKEY_CHECK))
10958 			set_partition_keys(ppd);
10959 		break;
10960 
10961 	default:
10962 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
10963 			dd_dev_info(ppd->dd,
10964 				    "%s: which %s, val 0x%x: not implemented\n",
10965 				    __func__, ib_cfg_name(which), val);
10966 		break;
10967 	}
10968 	return ret;
10969 }
10970 
10971 /* begin functions related to vl arbitration table caching */
10972 static void init_vl_arb_caches(struct hfi1_pportdata *ppd)
10973 {
10974 	int i;
10975 
10976 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10977 			VL_ARB_LOW_PRIO_TABLE_SIZE);
10978 	BUILD_BUG_ON(VL_ARB_TABLE_SIZE !=
10979 			VL_ARB_HIGH_PRIO_TABLE_SIZE);
10980 
10981 	/*
10982 	 * Note that we always return values directly from the
10983 	 * 'vl_arb_cache' (and do no CSR reads) in response to a
10984 	 * 'Get(VLArbTable)'. This is obviously correct after a
10985 	 * 'Set(VLArbTable)', since the cache will then be up to
10986 	 * date. But it's also correct prior to any 'Set(VLArbTable)'
10987 	 * since then both the cache, and the relevant h/w registers
10988 	 * will be zeroed.
10989 	 */
10990 
10991 	for (i = 0; i < MAX_PRIO_TABLE; i++)
10992 		spin_lock_init(&ppd->vl_arb_cache[i].lock);
10993 }
10994 
10995 /*
10996  * vl_arb_lock_cache
10997  *
10998  * All other vl_arb_* functions should be called only after locking
10999  * the cache.
11000  */
11001 static inline struct vl_arb_cache *
11002 vl_arb_lock_cache(struct hfi1_pportdata *ppd, int idx)
11003 {
11004 	if (idx != LO_PRIO_TABLE && idx != HI_PRIO_TABLE)
11005 		return NULL;
11006 	spin_lock(&ppd->vl_arb_cache[idx].lock);
11007 	return &ppd->vl_arb_cache[idx];
11008 }
11009 
11010 static inline void vl_arb_unlock_cache(struct hfi1_pportdata *ppd, int idx)
11011 {
11012 	spin_unlock(&ppd->vl_arb_cache[idx].lock);
11013 }
11014 
11015 static void vl_arb_get_cache(struct vl_arb_cache *cache,
11016 			     struct ib_vl_weight_elem *vl)
11017 {
11018 	memcpy(vl, cache->table, VL_ARB_TABLE_SIZE * sizeof(*vl));
11019 }
11020 
11021 static void vl_arb_set_cache(struct vl_arb_cache *cache,
11022 			     struct ib_vl_weight_elem *vl)
11023 {
11024 	memcpy(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11025 }
11026 
11027 static int vl_arb_match_cache(struct vl_arb_cache *cache,
11028 			      struct ib_vl_weight_elem *vl)
11029 {
11030 	return !memcmp(cache->table, vl, VL_ARB_TABLE_SIZE * sizeof(*vl));
11031 }
11032 
11033 /* end functions related to vl arbitration table caching */
11034 
11035 static int set_vl_weights(struct hfi1_pportdata *ppd, u32 target,
11036 			  u32 size, struct ib_vl_weight_elem *vl)
11037 {
11038 	struct hfi1_devdata *dd = ppd->dd;
11039 	u64 reg;
11040 	unsigned int i, is_up = 0;
11041 	int drain, ret = 0;
11042 
11043 	mutex_lock(&ppd->hls_lock);
11044 
11045 	if (ppd->host_link_state & HLS_UP)
11046 		is_up = 1;
11047 
11048 	drain = !is_ax(dd) && is_up;
11049 
11050 	if (drain)
11051 		/*
11052 		 * Before adjusting VL arbitration weights, empty per-VL
11053 		 * FIFOs, otherwise a packet whose VL weight is being
11054 		 * set to 0 could get stuck in a FIFO with no chance to
11055 		 * egress.
11056 		 */
11057 		ret = stop_drain_data_vls(dd);
11058 
11059 	if (ret) {
11060 		dd_dev_err(
11061 			dd,
11062 			"%s: cannot stop/drain VLs - refusing to change VL arbitration weights\n",
11063 			__func__);
11064 		goto err;
11065 	}
11066 
11067 	for (i = 0; i < size; i++, vl++) {
11068 		/*
11069 		 * NOTE: The low priority shift and mask are used here, but
11070 		 * they are the same for both the low and high registers.
11071 		 */
11072 		reg = (((u64)vl->vl & SEND_LOW_PRIORITY_LIST_VL_MASK)
11073 				<< SEND_LOW_PRIORITY_LIST_VL_SHIFT)
11074 		      | (((u64)vl->weight
11075 				& SEND_LOW_PRIORITY_LIST_WEIGHT_MASK)
11076 				<< SEND_LOW_PRIORITY_LIST_WEIGHT_SHIFT);
11077 		write_csr(dd, target + (i * 8), reg);
11078 	}
11079 	pio_send_control(dd, PSC_GLOBAL_VLARB_ENABLE);
11080 
11081 	if (drain)
11082 		open_fill_data_vls(dd); /* reopen all VLs */
11083 
11084 err:
11085 	mutex_unlock(&ppd->hls_lock);
11086 
11087 	return ret;
11088 }
11089 
11090 /*
11091  * Read one credit merge VL register.
11092  */
11093 static void read_one_cm_vl(struct hfi1_devdata *dd, u32 csr,
11094 			   struct vl_limit *vll)
11095 {
11096 	u64 reg = read_csr(dd, csr);
11097 
11098 	vll->dedicated = cpu_to_be16(
11099 		(reg >> SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT)
11100 		& SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_MASK);
11101 	vll->shared = cpu_to_be16(
11102 		(reg >> SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT)
11103 		& SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_MASK);
11104 }
11105 
11106 /*
11107  * Read the current credit merge limits.
11108  */
11109 static int get_buffer_control(struct hfi1_devdata *dd,
11110 			      struct buffer_control *bc, u16 *overall_limit)
11111 {
11112 	u64 reg;
11113 	int i;
11114 
11115 	/* not all entries are filled in */
11116 	memset(bc, 0, sizeof(*bc));
11117 
11118 	/* OPA and HFI have a 1-1 mapping */
11119 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
11120 		read_one_cm_vl(dd, SEND_CM_CREDIT_VL + (8 * i), &bc->vl[i]);
11121 
11122 	/* NOTE: assumes that VL* and VL15 CSRs are bit-wise identical */
11123 	read_one_cm_vl(dd, SEND_CM_CREDIT_VL15, &bc->vl[15]);
11124 
11125 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11126 	bc->overall_shared_limit = cpu_to_be16(
11127 		(reg >> SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT)
11128 		& SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_MASK);
11129 	if (overall_limit)
11130 		*overall_limit = (reg
11131 			>> SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT)
11132 			& SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_MASK;
11133 	return sizeof(struct buffer_control);
11134 }
11135 
11136 static int get_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11137 {
11138 	u64 reg;
11139 	int i;
11140 
11141 	/* each register contains 16 SC->VLnt mappings, 4 bits each */
11142 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_15_0);
11143 	for (i = 0; i < sizeof(u64); i++) {
11144 		u8 byte = *(((u8 *)&reg) + i);
11145 
11146 		dp->vlnt[2 * i] = byte & 0xf;
11147 		dp->vlnt[(2 * i) + 1] = (byte & 0xf0) >> 4;
11148 	}
11149 
11150 	reg = read_csr(dd, DCC_CFG_SC_VL_TABLE_31_16);
11151 	for (i = 0; i < sizeof(u64); i++) {
11152 		u8 byte = *(((u8 *)&reg) + i);
11153 
11154 		dp->vlnt[16 + (2 * i)] = byte & 0xf;
11155 		dp->vlnt[16 + (2 * i) + 1] = (byte & 0xf0) >> 4;
11156 	}
11157 	return sizeof(struct sc2vlnt);
11158 }
11159 
11160 static void get_vlarb_preempt(struct hfi1_devdata *dd, u32 nelems,
11161 			      struct ib_vl_weight_elem *vl)
11162 {
11163 	unsigned int i;
11164 
11165 	for (i = 0; i < nelems; i++, vl++) {
11166 		vl->vl = 0xf;
11167 		vl->weight = 0;
11168 	}
11169 }
11170 
11171 static void set_sc2vlnt(struct hfi1_devdata *dd, struct sc2vlnt *dp)
11172 {
11173 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0,
11174 		  DC_SC_VL_VAL(15_0,
11175 			       0, dp->vlnt[0] & 0xf,
11176 			       1, dp->vlnt[1] & 0xf,
11177 			       2, dp->vlnt[2] & 0xf,
11178 			       3, dp->vlnt[3] & 0xf,
11179 			       4, dp->vlnt[4] & 0xf,
11180 			       5, dp->vlnt[5] & 0xf,
11181 			       6, dp->vlnt[6] & 0xf,
11182 			       7, dp->vlnt[7] & 0xf,
11183 			       8, dp->vlnt[8] & 0xf,
11184 			       9, dp->vlnt[9] & 0xf,
11185 			       10, dp->vlnt[10] & 0xf,
11186 			       11, dp->vlnt[11] & 0xf,
11187 			       12, dp->vlnt[12] & 0xf,
11188 			       13, dp->vlnt[13] & 0xf,
11189 			       14, dp->vlnt[14] & 0xf,
11190 			       15, dp->vlnt[15] & 0xf));
11191 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16,
11192 		  DC_SC_VL_VAL(31_16,
11193 			       16, dp->vlnt[16] & 0xf,
11194 			       17, dp->vlnt[17] & 0xf,
11195 			       18, dp->vlnt[18] & 0xf,
11196 			       19, dp->vlnt[19] & 0xf,
11197 			       20, dp->vlnt[20] & 0xf,
11198 			       21, dp->vlnt[21] & 0xf,
11199 			       22, dp->vlnt[22] & 0xf,
11200 			       23, dp->vlnt[23] & 0xf,
11201 			       24, dp->vlnt[24] & 0xf,
11202 			       25, dp->vlnt[25] & 0xf,
11203 			       26, dp->vlnt[26] & 0xf,
11204 			       27, dp->vlnt[27] & 0xf,
11205 			       28, dp->vlnt[28] & 0xf,
11206 			       29, dp->vlnt[29] & 0xf,
11207 			       30, dp->vlnt[30] & 0xf,
11208 			       31, dp->vlnt[31] & 0xf));
11209 }
11210 
11211 static void nonzero_msg(struct hfi1_devdata *dd, int idx, const char *what,
11212 			u16 limit)
11213 {
11214 	if (limit != 0)
11215 		dd_dev_info(dd, "Invalid %s limit %d on VL %d, ignoring\n",
11216 			    what, (int)limit, idx);
11217 }
11218 
11219 /* change only the shared limit portion of SendCmGLobalCredit */
11220 static void set_global_shared(struct hfi1_devdata *dd, u16 limit)
11221 {
11222 	u64 reg;
11223 
11224 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11225 	reg &= ~SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SMASK;
11226 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_SHARED_LIMIT_SHIFT;
11227 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11228 }
11229 
11230 /* change only the total credit limit portion of SendCmGLobalCredit */
11231 static void set_global_limit(struct hfi1_devdata *dd, u16 limit)
11232 {
11233 	u64 reg;
11234 
11235 	reg = read_csr(dd, SEND_CM_GLOBAL_CREDIT);
11236 	reg &= ~SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SMASK;
11237 	reg |= (u64)limit << SEND_CM_GLOBAL_CREDIT_TOTAL_CREDIT_LIMIT_SHIFT;
11238 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, reg);
11239 }
11240 
11241 /* set the given per-VL shared limit */
11242 static void set_vl_shared(struct hfi1_devdata *dd, int vl, u16 limit)
11243 {
11244 	u64 reg;
11245 	u32 addr;
11246 
11247 	if (vl < TXE_NUM_DATA_VL)
11248 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11249 	else
11250 		addr = SEND_CM_CREDIT_VL15;
11251 
11252 	reg = read_csr(dd, addr);
11253 	reg &= ~SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SMASK;
11254 	reg |= (u64)limit << SEND_CM_CREDIT_VL_SHARED_LIMIT_VL_SHIFT;
11255 	write_csr(dd, addr, reg);
11256 }
11257 
11258 /* set the given per-VL dedicated limit */
11259 static void set_vl_dedicated(struct hfi1_devdata *dd, int vl, u16 limit)
11260 {
11261 	u64 reg;
11262 	u32 addr;
11263 
11264 	if (vl < TXE_NUM_DATA_VL)
11265 		addr = SEND_CM_CREDIT_VL + (8 * vl);
11266 	else
11267 		addr = SEND_CM_CREDIT_VL15;
11268 
11269 	reg = read_csr(dd, addr);
11270 	reg &= ~SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SMASK;
11271 	reg |= (u64)limit << SEND_CM_CREDIT_VL_DEDICATED_LIMIT_VL_SHIFT;
11272 	write_csr(dd, addr, reg);
11273 }
11274 
11275 /* spin until the given per-VL status mask bits clear */
11276 static void wait_for_vl_status_clear(struct hfi1_devdata *dd, u64 mask,
11277 				     const char *which)
11278 {
11279 	unsigned long timeout;
11280 	u64 reg;
11281 
11282 	timeout = jiffies + msecs_to_jiffies(VL_STATUS_CLEAR_TIMEOUT);
11283 	while (1) {
11284 		reg = read_csr(dd, SEND_CM_CREDIT_USED_STATUS) & mask;
11285 
11286 		if (reg == 0)
11287 			return;	/* success */
11288 		if (time_after(jiffies, timeout))
11289 			break;		/* timed out */
11290 		udelay(1);
11291 	}
11292 
11293 	dd_dev_err(dd,
11294 		   "%s credit change status not clearing after %dms, mask 0x%llx, not clear 0x%llx\n",
11295 		   which, VL_STATUS_CLEAR_TIMEOUT, mask, reg);
11296 	/*
11297 	 * If this occurs, it is likely there was a credit loss on the link.
11298 	 * The only recovery from that is a link bounce.
11299 	 */
11300 	dd_dev_err(dd,
11301 		   "Continuing anyway.  A credit loss may occur.  Suggest a link bounce\n");
11302 }
11303 
11304 /*
11305  * The number of credits on the VLs may be changed while everything
11306  * is "live", but the following algorithm must be followed due to
11307  * how the hardware is actually implemented.  In particular,
11308  * Return_Credit_Status[] is the only correct status check.
11309  *
11310  * if (reducing Global_Shared_Credit_Limit or any shared limit changing)
11311  *     set Global_Shared_Credit_Limit = 0
11312  *     use_all_vl = 1
11313  * mask0 = all VLs that are changing either dedicated or shared limits
11314  * set Shared_Limit[mask0] = 0
11315  * spin until Return_Credit_Status[use_all_vl ? all VL : mask0] == 0
11316  * if (changing any dedicated limit)
11317  *     mask1 = all VLs that are lowering dedicated limits
11318  *     lower Dedicated_Limit[mask1]
11319  *     spin until Return_Credit_Status[mask1] == 0
11320  *     raise Dedicated_Limits
11321  * raise Shared_Limits
11322  * raise Global_Shared_Credit_Limit
11323  *
11324  * lower = if the new limit is lower, set the limit to the new value
11325  * raise = if the new limit is higher than the current value (may be changed
11326  *	earlier in the algorithm), set the new limit to the new value
11327  */
11328 int set_buffer_control(struct hfi1_pportdata *ppd,
11329 		       struct buffer_control *new_bc)
11330 {
11331 	struct hfi1_devdata *dd = ppd->dd;
11332 	u64 changing_mask, ld_mask, stat_mask;
11333 	int change_count;
11334 	int i, use_all_mask;
11335 	int this_shared_changing;
11336 	int vl_count = 0, ret;
11337 	/*
11338 	 * A0: add the variable any_shared_limit_changing below and in the
11339 	 * algorithm above.  If removing A0 support, it can be removed.
11340 	 */
11341 	int any_shared_limit_changing;
11342 	struct buffer_control cur_bc;
11343 	u8 changing[OPA_MAX_VLS];
11344 	u8 lowering_dedicated[OPA_MAX_VLS];
11345 	u16 cur_total;
11346 	u32 new_total = 0;
11347 	const u64 all_mask =
11348 	SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK
11349 	 | SEND_CM_CREDIT_USED_STATUS_VL1_RETURN_CREDIT_STATUS_SMASK
11350 	 | SEND_CM_CREDIT_USED_STATUS_VL2_RETURN_CREDIT_STATUS_SMASK
11351 	 | SEND_CM_CREDIT_USED_STATUS_VL3_RETURN_CREDIT_STATUS_SMASK
11352 	 | SEND_CM_CREDIT_USED_STATUS_VL4_RETURN_CREDIT_STATUS_SMASK
11353 	 | SEND_CM_CREDIT_USED_STATUS_VL5_RETURN_CREDIT_STATUS_SMASK
11354 	 | SEND_CM_CREDIT_USED_STATUS_VL6_RETURN_CREDIT_STATUS_SMASK
11355 	 | SEND_CM_CREDIT_USED_STATUS_VL7_RETURN_CREDIT_STATUS_SMASK
11356 	 | SEND_CM_CREDIT_USED_STATUS_VL15_RETURN_CREDIT_STATUS_SMASK;
11357 
11358 #define valid_vl(idx) ((idx) < TXE_NUM_DATA_VL || (idx) == 15)
11359 #define NUM_USABLE_VLS 16	/* look at VL15 and less */
11360 
11361 	/* find the new total credits, do sanity check on unused VLs */
11362 	for (i = 0; i < OPA_MAX_VLS; i++) {
11363 		if (valid_vl(i)) {
11364 			new_total += be16_to_cpu(new_bc->vl[i].dedicated);
11365 			continue;
11366 		}
11367 		nonzero_msg(dd, i, "dedicated",
11368 			    be16_to_cpu(new_bc->vl[i].dedicated));
11369 		nonzero_msg(dd, i, "shared",
11370 			    be16_to_cpu(new_bc->vl[i].shared));
11371 		new_bc->vl[i].dedicated = 0;
11372 		new_bc->vl[i].shared = 0;
11373 	}
11374 	new_total += be16_to_cpu(new_bc->overall_shared_limit);
11375 
11376 	/* fetch the current values */
11377 	get_buffer_control(dd, &cur_bc, &cur_total);
11378 
11379 	/*
11380 	 * Create the masks we will use.
11381 	 */
11382 	memset(changing, 0, sizeof(changing));
11383 	memset(lowering_dedicated, 0, sizeof(lowering_dedicated));
11384 	/*
11385 	 * NOTE: Assumes that the individual VL bits are adjacent and in
11386 	 * increasing order
11387 	 */
11388 	stat_mask =
11389 		SEND_CM_CREDIT_USED_STATUS_VL0_RETURN_CREDIT_STATUS_SMASK;
11390 	changing_mask = 0;
11391 	ld_mask = 0;
11392 	change_count = 0;
11393 	any_shared_limit_changing = 0;
11394 	for (i = 0; i < NUM_USABLE_VLS; i++, stat_mask <<= 1) {
11395 		if (!valid_vl(i))
11396 			continue;
11397 		this_shared_changing = new_bc->vl[i].shared
11398 						!= cur_bc.vl[i].shared;
11399 		if (this_shared_changing)
11400 			any_shared_limit_changing = 1;
11401 		if (new_bc->vl[i].dedicated != cur_bc.vl[i].dedicated ||
11402 		    this_shared_changing) {
11403 			changing[i] = 1;
11404 			changing_mask |= stat_mask;
11405 			change_count++;
11406 		}
11407 		if (be16_to_cpu(new_bc->vl[i].dedicated) <
11408 					be16_to_cpu(cur_bc.vl[i].dedicated)) {
11409 			lowering_dedicated[i] = 1;
11410 			ld_mask |= stat_mask;
11411 		}
11412 	}
11413 
11414 	/* bracket the credit change with a total adjustment */
11415 	if (new_total > cur_total)
11416 		set_global_limit(dd, new_total);
11417 
11418 	/*
11419 	 * Start the credit change algorithm.
11420 	 */
11421 	use_all_mask = 0;
11422 	if ((be16_to_cpu(new_bc->overall_shared_limit) <
11423 	     be16_to_cpu(cur_bc.overall_shared_limit)) ||
11424 	    (is_ax(dd) && any_shared_limit_changing)) {
11425 		set_global_shared(dd, 0);
11426 		cur_bc.overall_shared_limit = 0;
11427 		use_all_mask = 1;
11428 	}
11429 
11430 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11431 		if (!valid_vl(i))
11432 			continue;
11433 
11434 		if (changing[i]) {
11435 			set_vl_shared(dd, i, 0);
11436 			cur_bc.vl[i].shared = 0;
11437 		}
11438 	}
11439 
11440 	wait_for_vl_status_clear(dd, use_all_mask ? all_mask : changing_mask,
11441 				 "shared");
11442 
11443 	if (change_count > 0) {
11444 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11445 			if (!valid_vl(i))
11446 				continue;
11447 
11448 			if (lowering_dedicated[i]) {
11449 				set_vl_dedicated(dd, i,
11450 						 be16_to_cpu(new_bc->
11451 							     vl[i].dedicated));
11452 				cur_bc.vl[i].dedicated =
11453 						new_bc->vl[i].dedicated;
11454 			}
11455 		}
11456 
11457 		wait_for_vl_status_clear(dd, ld_mask, "dedicated");
11458 
11459 		/* now raise all dedicated that are going up */
11460 		for (i = 0; i < NUM_USABLE_VLS; i++) {
11461 			if (!valid_vl(i))
11462 				continue;
11463 
11464 			if (be16_to_cpu(new_bc->vl[i].dedicated) >
11465 					be16_to_cpu(cur_bc.vl[i].dedicated))
11466 				set_vl_dedicated(dd, i,
11467 						 be16_to_cpu(new_bc->
11468 							     vl[i].dedicated));
11469 		}
11470 	}
11471 
11472 	/* next raise all shared that are going up */
11473 	for (i = 0; i < NUM_USABLE_VLS; i++) {
11474 		if (!valid_vl(i))
11475 			continue;
11476 
11477 		if (be16_to_cpu(new_bc->vl[i].shared) >
11478 				be16_to_cpu(cur_bc.vl[i].shared))
11479 			set_vl_shared(dd, i, be16_to_cpu(new_bc->vl[i].shared));
11480 	}
11481 
11482 	/* finally raise the global shared */
11483 	if (be16_to_cpu(new_bc->overall_shared_limit) >
11484 	    be16_to_cpu(cur_bc.overall_shared_limit))
11485 		set_global_shared(dd,
11486 				  be16_to_cpu(new_bc->overall_shared_limit));
11487 
11488 	/* bracket the credit change with a total adjustment */
11489 	if (new_total < cur_total)
11490 		set_global_limit(dd, new_total);
11491 
11492 	/*
11493 	 * Determine the actual number of operational VLS using the number of
11494 	 * dedicated and shared credits for each VL.
11495 	 */
11496 	if (change_count > 0) {
11497 		for (i = 0; i < TXE_NUM_DATA_VL; i++)
11498 			if (be16_to_cpu(new_bc->vl[i].dedicated) > 0 ||
11499 			    be16_to_cpu(new_bc->vl[i].shared) > 0)
11500 				vl_count++;
11501 		ppd->actual_vls_operational = vl_count;
11502 		ret = sdma_map_init(dd, ppd->port - 1, vl_count ?
11503 				    ppd->actual_vls_operational :
11504 				    ppd->vls_operational,
11505 				    NULL);
11506 		if (ret == 0)
11507 			ret = pio_map_init(dd, ppd->port - 1, vl_count ?
11508 					   ppd->actual_vls_operational :
11509 					   ppd->vls_operational, NULL);
11510 		if (ret)
11511 			return ret;
11512 	}
11513 	return 0;
11514 }
11515 
11516 /*
11517  * Read the given fabric manager table. Return the size of the
11518  * table (in bytes) on success, and a negative error code on
11519  * failure.
11520  */
11521 int fm_get_table(struct hfi1_pportdata *ppd, int which, void *t)
11522 
11523 {
11524 	int size;
11525 	struct vl_arb_cache *vlc;
11526 
11527 	switch (which) {
11528 	case FM_TBL_VL_HIGH_ARB:
11529 		size = 256;
11530 		/*
11531 		 * OPA specifies 128 elements (of 2 bytes each), though
11532 		 * HFI supports only 16 elements in h/w.
11533 		 */
11534 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11535 		vl_arb_get_cache(vlc, t);
11536 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11537 		break;
11538 	case FM_TBL_VL_LOW_ARB:
11539 		size = 256;
11540 		/*
11541 		 * OPA specifies 128 elements (of 2 bytes each), though
11542 		 * HFI supports only 16 elements in h/w.
11543 		 */
11544 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11545 		vl_arb_get_cache(vlc, t);
11546 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11547 		break;
11548 	case FM_TBL_BUFFER_CONTROL:
11549 		size = get_buffer_control(ppd->dd, t, NULL);
11550 		break;
11551 	case FM_TBL_SC2VLNT:
11552 		size = get_sc2vlnt(ppd->dd, t);
11553 		break;
11554 	case FM_TBL_VL_PREEMPT_ELEMS:
11555 		size = 256;
11556 		/* OPA specifies 128 elements, of 2 bytes each */
11557 		get_vlarb_preempt(ppd->dd, OPA_MAX_VLS, t);
11558 		break;
11559 	case FM_TBL_VL_PREEMPT_MATRIX:
11560 		size = 256;
11561 		/*
11562 		 * OPA specifies that this is the same size as the VL
11563 		 * arbitration tables (i.e., 256 bytes).
11564 		 */
11565 		break;
11566 	default:
11567 		return -EINVAL;
11568 	}
11569 	return size;
11570 }
11571 
11572 /*
11573  * Write the given fabric manager table.
11574  */
11575 int fm_set_table(struct hfi1_pportdata *ppd, int which, void *t)
11576 {
11577 	int ret = 0;
11578 	struct vl_arb_cache *vlc;
11579 
11580 	switch (which) {
11581 	case FM_TBL_VL_HIGH_ARB:
11582 		vlc = vl_arb_lock_cache(ppd, HI_PRIO_TABLE);
11583 		if (vl_arb_match_cache(vlc, t)) {
11584 			vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11585 			break;
11586 		}
11587 		vl_arb_set_cache(vlc, t);
11588 		vl_arb_unlock_cache(ppd, HI_PRIO_TABLE);
11589 		ret = set_vl_weights(ppd, SEND_HIGH_PRIORITY_LIST,
11590 				     VL_ARB_HIGH_PRIO_TABLE_SIZE, t);
11591 		break;
11592 	case FM_TBL_VL_LOW_ARB:
11593 		vlc = vl_arb_lock_cache(ppd, LO_PRIO_TABLE);
11594 		if (vl_arb_match_cache(vlc, t)) {
11595 			vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11596 			break;
11597 		}
11598 		vl_arb_set_cache(vlc, t);
11599 		vl_arb_unlock_cache(ppd, LO_PRIO_TABLE);
11600 		ret = set_vl_weights(ppd, SEND_LOW_PRIORITY_LIST,
11601 				     VL_ARB_LOW_PRIO_TABLE_SIZE, t);
11602 		break;
11603 	case FM_TBL_BUFFER_CONTROL:
11604 		ret = set_buffer_control(ppd, t);
11605 		break;
11606 	case FM_TBL_SC2VLNT:
11607 		set_sc2vlnt(ppd->dd, t);
11608 		break;
11609 	default:
11610 		ret = -EINVAL;
11611 	}
11612 	return ret;
11613 }
11614 
11615 /*
11616  * Disable all data VLs.
11617  *
11618  * Return 0 if disabled, non-zero if the VLs cannot be disabled.
11619  */
11620 static int disable_data_vls(struct hfi1_devdata *dd)
11621 {
11622 	if (is_ax(dd))
11623 		return 1;
11624 
11625 	pio_send_control(dd, PSC_DATA_VL_DISABLE);
11626 
11627 	return 0;
11628 }
11629 
11630 /*
11631  * open_fill_data_vls() - the counterpart to stop_drain_data_vls().
11632  * Just re-enables all data VLs (the "fill" part happens
11633  * automatically - the name was chosen for symmetry with
11634  * stop_drain_data_vls()).
11635  *
11636  * Return 0 if successful, non-zero if the VLs cannot be enabled.
11637  */
11638 int open_fill_data_vls(struct hfi1_devdata *dd)
11639 {
11640 	if (is_ax(dd))
11641 		return 1;
11642 
11643 	pio_send_control(dd, PSC_DATA_VL_ENABLE);
11644 
11645 	return 0;
11646 }
11647 
11648 /*
11649  * drain_data_vls() - assumes that disable_data_vls() has been called,
11650  * wait for occupancy (of per-VL FIFOs) for all contexts, and SDMA
11651  * engines to drop to 0.
11652  */
11653 static void drain_data_vls(struct hfi1_devdata *dd)
11654 {
11655 	sc_wait(dd);
11656 	sdma_wait(dd);
11657 	pause_for_credit_return(dd);
11658 }
11659 
11660 /*
11661  * stop_drain_data_vls() - disable, then drain all per-VL fifos.
11662  *
11663  * Use open_fill_data_vls() to resume using data VLs.  This pair is
11664  * meant to be used like this:
11665  *
11666  * stop_drain_data_vls(dd);
11667  * // do things with per-VL resources
11668  * open_fill_data_vls(dd);
11669  */
11670 int stop_drain_data_vls(struct hfi1_devdata *dd)
11671 {
11672 	int ret;
11673 
11674 	ret = disable_data_vls(dd);
11675 	if (ret == 0)
11676 		drain_data_vls(dd);
11677 
11678 	return ret;
11679 }
11680 
11681 /*
11682  * Convert a nanosecond time to a cclock count.  No matter how slow
11683  * the cclock, a non-zero ns will always have a non-zero result.
11684  */
11685 u32 ns_to_cclock(struct hfi1_devdata *dd, u32 ns)
11686 {
11687 	u32 cclocks;
11688 
11689 	if (dd->icode == ICODE_FPGA_EMULATION)
11690 		cclocks = (ns * 1000) / FPGA_CCLOCK_PS;
11691 	else  /* simulation pretends to be ASIC */
11692 		cclocks = (ns * 1000) / ASIC_CCLOCK_PS;
11693 	if (ns && !cclocks)	/* if ns nonzero, must be at least 1 */
11694 		cclocks = 1;
11695 	return cclocks;
11696 }
11697 
11698 /*
11699  * Convert a cclock count to nanoseconds. Not matter how slow
11700  * the cclock, a non-zero cclocks will always have a non-zero result.
11701  */
11702 u32 cclock_to_ns(struct hfi1_devdata *dd, u32 cclocks)
11703 {
11704 	u32 ns;
11705 
11706 	if (dd->icode == ICODE_FPGA_EMULATION)
11707 		ns = (cclocks * FPGA_CCLOCK_PS) / 1000;
11708 	else  /* simulation pretends to be ASIC */
11709 		ns = (cclocks * ASIC_CCLOCK_PS) / 1000;
11710 	if (cclocks && !ns)
11711 		ns = 1;
11712 	return ns;
11713 }
11714 
11715 /*
11716  * Dynamically adjust the receive interrupt timeout for a context based on
11717  * incoming packet rate.
11718  *
11719  * NOTE: Dynamic adjustment does not allow rcv_intr_count to be zero.
11720  */
11721 static void adjust_rcv_timeout(struct hfi1_ctxtdata *rcd, u32 npkts)
11722 {
11723 	struct hfi1_devdata *dd = rcd->dd;
11724 	u32 timeout = rcd->rcvavail_timeout;
11725 
11726 	/*
11727 	 * This algorithm doubles or halves the timeout depending on whether
11728 	 * the number of packets received in this interrupt were less than or
11729 	 * greater equal the interrupt count.
11730 	 *
11731 	 * The calculations below do not allow a steady state to be achieved.
11732 	 * Only at the endpoints it is possible to have an unchanging
11733 	 * timeout.
11734 	 */
11735 	if (npkts < rcv_intr_count) {
11736 		/*
11737 		 * Not enough packets arrived before the timeout, adjust
11738 		 * timeout downward.
11739 		 */
11740 		if (timeout < 2) /* already at minimum? */
11741 			return;
11742 		timeout >>= 1;
11743 	} else {
11744 		/*
11745 		 * More than enough packets arrived before the timeout, adjust
11746 		 * timeout upward.
11747 		 */
11748 		if (timeout >= dd->rcv_intr_timeout_csr) /* already at max? */
11749 			return;
11750 		timeout = min(timeout << 1, dd->rcv_intr_timeout_csr);
11751 	}
11752 
11753 	rcd->rcvavail_timeout = timeout;
11754 	/*
11755 	 * timeout cannot be larger than rcv_intr_timeout_csr which has already
11756 	 * been verified to be in range
11757 	 */
11758 	write_kctxt_csr(dd, rcd->ctxt, RCV_AVAIL_TIME_OUT,
11759 			(u64)timeout <<
11760 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
11761 }
11762 
11763 void update_usrhead(struct hfi1_ctxtdata *rcd, u32 hd, u32 updegr, u32 egrhd,
11764 		    u32 intr_adjust, u32 npkts)
11765 {
11766 	struct hfi1_devdata *dd = rcd->dd;
11767 	u64 reg;
11768 	u32 ctxt = rcd->ctxt;
11769 
11770 	/*
11771 	 * Need to write timeout register before updating RcvHdrHead to ensure
11772 	 * that a new value is used when the HW decides to restart counting.
11773 	 */
11774 	if (intr_adjust)
11775 		adjust_rcv_timeout(rcd, npkts);
11776 	if (updegr) {
11777 		reg = (egrhd & RCV_EGR_INDEX_HEAD_HEAD_MASK)
11778 			<< RCV_EGR_INDEX_HEAD_HEAD_SHIFT;
11779 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, reg);
11780 	}
11781 	mmiowb();
11782 	reg = ((u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT) |
11783 		(((u64)hd & RCV_HDR_HEAD_HEAD_MASK)
11784 			<< RCV_HDR_HEAD_HEAD_SHIFT);
11785 	write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
11786 	mmiowb();
11787 }
11788 
11789 u32 hdrqempty(struct hfi1_ctxtdata *rcd)
11790 {
11791 	u32 head, tail;
11792 
11793 	head = (read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD)
11794 		& RCV_HDR_HEAD_HEAD_SMASK) >> RCV_HDR_HEAD_HEAD_SHIFT;
11795 
11796 	if (rcd->rcvhdrtail_kvaddr)
11797 		tail = get_rcvhdrtail(rcd);
11798 	else
11799 		tail = read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL);
11800 
11801 	return head == tail;
11802 }
11803 
11804 /*
11805  * Context Control and Receive Array encoding for buffer size:
11806  *	0x0 invalid
11807  *	0x1   4 KB
11808  *	0x2   8 KB
11809  *	0x3  16 KB
11810  *	0x4  32 KB
11811  *	0x5  64 KB
11812  *	0x6 128 KB
11813  *	0x7 256 KB
11814  *	0x8 512 KB (Receive Array only)
11815  *	0x9   1 MB (Receive Array only)
11816  *	0xa   2 MB (Receive Array only)
11817  *
11818  *	0xB-0xF - reserved (Receive Array only)
11819  *
11820  *
11821  * This routine assumes that the value has already been sanity checked.
11822  */
11823 static u32 encoded_size(u32 size)
11824 {
11825 	switch (size) {
11826 	case   4 * 1024: return 0x1;
11827 	case   8 * 1024: return 0x2;
11828 	case  16 * 1024: return 0x3;
11829 	case  32 * 1024: return 0x4;
11830 	case  64 * 1024: return 0x5;
11831 	case 128 * 1024: return 0x6;
11832 	case 256 * 1024: return 0x7;
11833 	case 512 * 1024: return 0x8;
11834 	case   1 * 1024 * 1024: return 0x9;
11835 	case   2 * 1024 * 1024: return 0xa;
11836 	}
11837 	return 0x1;	/* if invalid, go with the minimum size */
11838 }
11839 
11840 void hfi1_rcvctrl(struct hfi1_devdata *dd, unsigned int op,
11841 		  struct hfi1_ctxtdata *rcd)
11842 {
11843 	u64 rcvctrl, reg;
11844 	int did_enable = 0;
11845 	u16 ctxt;
11846 
11847 	if (!rcd)
11848 		return;
11849 
11850 	ctxt = rcd->ctxt;
11851 
11852 	hfi1_cdbg(RCVCTRL, "ctxt %d op 0x%x", ctxt, op);
11853 
11854 	rcvctrl = read_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL);
11855 	/* if the context already enabled, don't do the extra steps */
11856 	if ((op & HFI1_RCVCTRL_CTXT_ENB) &&
11857 	    !(rcvctrl & RCV_CTXT_CTRL_ENABLE_SMASK)) {
11858 		/* reset the tail and hdr addresses, and sequence count */
11859 		write_kctxt_csr(dd, ctxt, RCV_HDR_ADDR,
11860 				rcd->rcvhdrq_dma);
11861 		if (rcd->rcvhdrtail_kvaddr)
11862 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11863 					rcd->rcvhdrqtailaddr_dma);
11864 		rcd->seq_cnt = 1;
11865 
11866 		/* reset the cached receive header queue head value */
11867 		rcd->head = 0;
11868 
11869 		/*
11870 		 * Zero the receive header queue so we don't get false
11871 		 * positives when checking the sequence number.  The
11872 		 * sequence numbers could land exactly on the same spot.
11873 		 * E.g. a rcd restart before the receive header wrapped.
11874 		 */
11875 		memset(rcd->rcvhdrq, 0, rcvhdrq_size(rcd));
11876 
11877 		/* starting timeout */
11878 		rcd->rcvavail_timeout = dd->rcv_intr_timeout_csr;
11879 
11880 		/* enable the context */
11881 		rcvctrl |= RCV_CTXT_CTRL_ENABLE_SMASK;
11882 
11883 		/* clean the egr buffer size first */
11884 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11885 		rcvctrl |= ((u64)encoded_size(rcd->egrbufs.rcvtid_size)
11886 				& RCV_CTXT_CTRL_EGR_BUF_SIZE_MASK)
11887 					<< RCV_CTXT_CTRL_EGR_BUF_SIZE_SHIFT;
11888 
11889 		/* zero RcvHdrHead - set RcvHdrHead.Counter after enable */
11890 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0);
11891 		did_enable = 1;
11892 
11893 		/* zero RcvEgrIndexHead */
11894 		write_uctxt_csr(dd, ctxt, RCV_EGR_INDEX_HEAD, 0);
11895 
11896 		/* set eager count and base index */
11897 		reg = (((u64)(rcd->egrbufs.alloced >> RCV_SHIFT)
11898 			& RCV_EGR_CTRL_EGR_CNT_MASK)
11899 		       << RCV_EGR_CTRL_EGR_CNT_SHIFT) |
11900 			(((rcd->eager_base >> RCV_SHIFT)
11901 			  & RCV_EGR_CTRL_EGR_BASE_INDEX_MASK)
11902 			 << RCV_EGR_CTRL_EGR_BASE_INDEX_SHIFT);
11903 		write_kctxt_csr(dd, ctxt, RCV_EGR_CTRL, reg);
11904 
11905 		/*
11906 		 * Set TID (expected) count and base index.
11907 		 * rcd->expected_count is set to individual RcvArray entries,
11908 		 * not pairs, and the CSR takes a pair-count in groups of
11909 		 * four, so divide by 8.
11910 		 */
11911 		reg = (((rcd->expected_count >> RCV_SHIFT)
11912 					& RCV_TID_CTRL_TID_PAIR_CNT_MASK)
11913 				<< RCV_TID_CTRL_TID_PAIR_CNT_SHIFT) |
11914 		      (((rcd->expected_base >> RCV_SHIFT)
11915 					& RCV_TID_CTRL_TID_BASE_INDEX_MASK)
11916 				<< RCV_TID_CTRL_TID_BASE_INDEX_SHIFT);
11917 		write_kctxt_csr(dd, ctxt, RCV_TID_CTRL, reg);
11918 		if (ctxt == HFI1_CTRL_CTXT)
11919 			write_csr(dd, RCV_VL15, HFI1_CTRL_CTXT);
11920 	}
11921 	if (op & HFI1_RCVCTRL_CTXT_DIS) {
11922 		write_csr(dd, RCV_VL15, 0);
11923 		/*
11924 		 * When receive context is being disabled turn on tail
11925 		 * update with a dummy tail address and then disable
11926 		 * receive context.
11927 		 */
11928 		if (dd->rcvhdrtail_dummy_dma) {
11929 			write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
11930 					dd->rcvhdrtail_dummy_dma);
11931 			/* Enabling RcvCtxtCtrl.TailUpd is intentional. */
11932 			rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11933 		}
11934 
11935 		rcvctrl &= ~RCV_CTXT_CTRL_ENABLE_SMASK;
11936 	}
11937 	if (op & HFI1_RCVCTRL_INTRAVAIL_ENB) {
11938 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11939 			      IS_RCVAVAIL_START + rcd->ctxt, true);
11940 		rcvctrl |= RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11941 	}
11942 	if (op & HFI1_RCVCTRL_INTRAVAIL_DIS) {
11943 		set_intr_bits(dd, IS_RCVAVAIL_START + rcd->ctxt,
11944 			      IS_RCVAVAIL_START + rcd->ctxt, false);
11945 		rcvctrl &= ~RCV_CTXT_CTRL_INTR_AVAIL_SMASK;
11946 	}
11947 	if ((op & HFI1_RCVCTRL_TAILUPD_ENB) && rcd->rcvhdrtail_kvaddr)
11948 		rcvctrl |= RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11949 	if (op & HFI1_RCVCTRL_TAILUPD_DIS) {
11950 		/* See comment on RcvCtxtCtrl.TailUpd above */
11951 		if (!(op & HFI1_RCVCTRL_CTXT_DIS))
11952 			rcvctrl &= ~RCV_CTXT_CTRL_TAIL_UPD_SMASK;
11953 	}
11954 	if (op & HFI1_RCVCTRL_TIDFLOW_ENB)
11955 		rcvctrl |= RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11956 	if (op & HFI1_RCVCTRL_TIDFLOW_DIS)
11957 		rcvctrl &= ~RCV_CTXT_CTRL_TID_FLOW_ENABLE_SMASK;
11958 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_ENB) {
11959 		/*
11960 		 * In one-packet-per-eager mode, the size comes from
11961 		 * the RcvArray entry.
11962 		 */
11963 		rcvctrl &= ~RCV_CTXT_CTRL_EGR_BUF_SIZE_SMASK;
11964 		rcvctrl |= RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11965 	}
11966 	if (op & HFI1_RCVCTRL_ONE_PKT_EGR_DIS)
11967 		rcvctrl &= ~RCV_CTXT_CTRL_ONE_PACKET_PER_EGR_BUFFER_SMASK;
11968 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_ENB)
11969 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11970 	if (op & HFI1_RCVCTRL_NO_RHQ_DROP_DIS)
11971 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK;
11972 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_ENB)
11973 		rcvctrl |= RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11974 	if (op & HFI1_RCVCTRL_NO_EGR_DROP_DIS)
11975 		rcvctrl &= ~RCV_CTXT_CTRL_DONT_DROP_EGR_FULL_SMASK;
11976 	if (op & HFI1_RCVCTRL_URGENT_ENB)
11977 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
11978 			      IS_RCVURGENT_START + rcd->ctxt, true);
11979 	if (op & HFI1_RCVCTRL_URGENT_DIS)
11980 		set_intr_bits(dd, IS_RCVURGENT_START + rcd->ctxt,
11981 			      IS_RCVURGENT_START + rcd->ctxt, false);
11982 
11983 	hfi1_cdbg(RCVCTRL, "ctxt %d rcvctrl 0x%llx\n", ctxt, rcvctrl);
11984 	write_kctxt_csr(dd, ctxt, RCV_CTXT_CTRL, rcvctrl);
11985 
11986 	/* work around sticky RcvCtxtStatus.BlockedRHQFull */
11987 	if (did_enable &&
11988 	    (rcvctrl & RCV_CTXT_CTRL_DONT_DROP_RHQ_FULL_SMASK)) {
11989 		reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11990 		if (reg != 0) {
11991 			dd_dev_info(dd, "ctxt %d status %lld (blocked)\n",
11992 				    ctxt, reg);
11993 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11994 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x10);
11995 			write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, 0x00);
11996 			read_uctxt_csr(dd, ctxt, RCV_HDR_HEAD);
11997 			reg = read_kctxt_csr(dd, ctxt, RCV_CTXT_STATUS);
11998 			dd_dev_info(dd, "ctxt %d status %lld (%s blocked)\n",
11999 				    ctxt, reg, reg == 0 ? "not" : "still");
12000 		}
12001 	}
12002 
12003 	if (did_enable) {
12004 		/*
12005 		 * The interrupt timeout and count must be set after
12006 		 * the context is enabled to take effect.
12007 		 */
12008 		/* set interrupt timeout */
12009 		write_kctxt_csr(dd, ctxt, RCV_AVAIL_TIME_OUT,
12010 				(u64)rcd->rcvavail_timeout <<
12011 				RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_SHIFT);
12012 
12013 		/* set RcvHdrHead.Counter, zero RcvHdrHead.Head (again) */
12014 		reg = (u64)rcv_intr_count << RCV_HDR_HEAD_COUNTER_SHIFT;
12015 		write_uctxt_csr(dd, ctxt, RCV_HDR_HEAD, reg);
12016 	}
12017 
12018 	if (op & (HFI1_RCVCTRL_TAILUPD_DIS | HFI1_RCVCTRL_CTXT_DIS))
12019 		/*
12020 		 * If the context has been disabled and the Tail Update has
12021 		 * been cleared, set the RCV_HDR_TAIL_ADDR CSR to dummy address
12022 		 * so it doesn't contain an address that is invalid.
12023 		 */
12024 		write_kctxt_csr(dd, ctxt, RCV_HDR_TAIL_ADDR,
12025 				dd->rcvhdrtail_dummy_dma);
12026 }
12027 
12028 u32 hfi1_read_cntrs(struct hfi1_devdata *dd, char **namep, u64 **cntrp)
12029 {
12030 	int ret;
12031 	u64 val = 0;
12032 
12033 	if (namep) {
12034 		ret = dd->cntrnameslen;
12035 		*namep = dd->cntrnames;
12036 	} else {
12037 		const struct cntr_entry *entry;
12038 		int i, j;
12039 
12040 		ret = (dd->ndevcntrs) * sizeof(u64);
12041 
12042 		/* Get the start of the block of counters */
12043 		*cntrp = dd->cntrs;
12044 
12045 		/*
12046 		 * Now go and fill in each counter in the block.
12047 		 */
12048 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12049 			entry = &dev_cntrs[i];
12050 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12051 			if (entry->flags & CNTR_DISABLED) {
12052 				/* Nothing */
12053 				hfi1_cdbg(CNTR, "\tDisabled\n");
12054 			} else {
12055 				if (entry->flags & CNTR_VL) {
12056 					hfi1_cdbg(CNTR, "\tPer VL\n");
12057 					for (j = 0; j < C_VL_COUNT; j++) {
12058 						val = entry->rw_cntr(entry,
12059 								  dd, j,
12060 								  CNTR_MODE_R,
12061 								  0);
12062 						hfi1_cdbg(
12063 						   CNTR,
12064 						   "\t\tRead 0x%llx for %d\n",
12065 						   val, j);
12066 						dd->cntrs[entry->offset + j] =
12067 									    val;
12068 					}
12069 				} else if (entry->flags & CNTR_SDMA) {
12070 					hfi1_cdbg(CNTR,
12071 						  "\t Per SDMA Engine\n");
12072 					for (j = 0; j < chip_sdma_engines(dd);
12073 					     j++) {
12074 						val =
12075 						entry->rw_cntr(entry, dd, j,
12076 							       CNTR_MODE_R, 0);
12077 						hfi1_cdbg(CNTR,
12078 							  "\t\tRead 0x%llx for %d\n",
12079 							  val, j);
12080 						dd->cntrs[entry->offset + j] =
12081 									val;
12082 					}
12083 				} else {
12084 					val = entry->rw_cntr(entry, dd,
12085 							CNTR_INVALID_VL,
12086 							CNTR_MODE_R, 0);
12087 					dd->cntrs[entry->offset] = val;
12088 					hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12089 				}
12090 			}
12091 		}
12092 	}
12093 	return ret;
12094 }
12095 
12096 /*
12097  * Used by sysfs to create files for hfi stats to read
12098  */
12099 u32 hfi1_read_portcntrs(struct hfi1_pportdata *ppd, char **namep, u64 **cntrp)
12100 {
12101 	int ret;
12102 	u64 val = 0;
12103 
12104 	if (namep) {
12105 		ret = ppd->dd->portcntrnameslen;
12106 		*namep = ppd->dd->portcntrnames;
12107 	} else {
12108 		const struct cntr_entry *entry;
12109 		int i, j;
12110 
12111 		ret = ppd->dd->nportcntrs * sizeof(u64);
12112 		*cntrp = ppd->cntrs;
12113 
12114 		for (i = 0; i < PORT_CNTR_LAST; i++) {
12115 			entry = &port_cntrs[i];
12116 			hfi1_cdbg(CNTR, "reading %s", entry->name);
12117 			if (entry->flags & CNTR_DISABLED) {
12118 				/* Nothing */
12119 				hfi1_cdbg(CNTR, "\tDisabled\n");
12120 				continue;
12121 			}
12122 
12123 			if (entry->flags & CNTR_VL) {
12124 				hfi1_cdbg(CNTR, "\tPer VL");
12125 				for (j = 0; j < C_VL_COUNT; j++) {
12126 					val = entry->rw_cntr(entry, ppd, j,
12127 							       CNTR_MODE_R,
12128 							       0);
12129 					hfi1_cdbg(
12130 					   CNTR,
12131 					   "\t\tRead 0x%llx for %d",
12132 					   val, j);
12133 					ppd->cntrs[entry->offset + j] = val;
12134 				}
12135 			} else {
12136 				val = entry->rw_cntr(entry, ppd,
12137 						       CNTR_INVALID_VL,
12138 						       CNTR_MODE_R,
12139 						       0);
12140 				ppd->cntrs[entry->offset] = val;
12141 				hfi1_cdbg(CNTR, "\tRead 0x%llx", val);
12142 			}
12143 		}
12144 	}
12145 	return ret;
12146 }
12147 
12148 static void free_cntrs(struct hfi1_devdata *dd)
12149 {
12150 	struct hfi1_pportdata *ppd;
12151 	int i;
12152 
12153 	if (dd->synth_stats_timer.function)
12154 		del_timer_sync(&dd->synth_stats_timer);
12155 	ppd = (struct hfi1_pportdata *)(dd + 1);
12156 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12157 		kfree(ppd->cntrs);
12158 		kfree(ppd->scntrs);
12159 		free_percpu(ppd->ibport_data.rvp.rc_acks);
12160 		free_percpu(ppd->ibport_data.rvp.rc_qacks);
12161 		free_percpu(ppd->ibport_data.rvp.rc_delayed_comp);
12162 		ppd->cntrs = NULL;
12163 		ppd->scntrs = NULL;
12164 		ppd->ibport_data.rvp.rc_acks = NULL;
12165 		ppd->ibport_data.rvp.rc_qacks = NULL;
12166 		ppd->ibport_data.rvp.rc_delayed_comp = NULL;
12167 	}
12168 	kfree(dd->portcntrnames);
12169 	dd->portcntrnames = NULL;
12170 	kfree(dd->cntrs);
12171 	dd->cntrs = NULL;
12172 	kfree(dd->scntrs);
12173 	dd->scntrs = NULL;
12174 	kfree(dd->cntrnames);
12175 	dd->cntrnames = NULL;
12176 	if (dd->update_cntr_wq) {
12177 		destroy_workqueue(dd->update_cntr_wq);
12178 		dd->update_cntr_wq = NULL;
12179 	}
12180 }
12181 
12182 static u64 read_dev_port_cntr(struct hfi1_devdata *dd, struct cntr_entry *entry,
12183 			      u64 *psval, void *context, int vl)
12184 {
12185 	u64 val;
12186 	u64 sval = *psval;
12187 
12188 	if (entry->flags & CNTR_DISABLED) {
12189 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12190 		return 0;
12191 	}
12192 
12193 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12194 
12195 	val = entry->rw_cntr(entry, context, vl, CNTR_MODE_R, 0);
12196 
12197 	/* If its a synthetic counter there is more work we need to do */
12198 	if (entry->flags & CNTR_SYNTH) {
12199 		if (sval == CNTR_MAX) {
12200 			/* No need to read already saturated */
12201 			return CNTR_MAX;
12202 		}
12203 
12204 		if (entry->flags & CNTR_32BIT) {
12205 			/* 32bit counters can wrap multiple times */
12206 			u64 upper = sval >> 32;
12207 			u64 lower = (sval << 32) >> 32;
12208 
12209 			if (lower > val) { /* hw wrapped */
12210 				if (upper == CNTR_32BIT_MAX)
12211 					val = CNTR_MAX;
12212 				else
12213 					upper++;
12214 			}
12215 
12216 			if (val != CNTR_MAX)
12217 				val = (upper << 32) | val;
12218 
12219 		} else {
12220 			/* If we rolled we are saturated */
12221 			if ((val < sval) || (val > CNTR_MAX))
12222 				val = CNTR_MAX;
12223 		}
12224 	}
12225 
12226 	*psval = val;
12227 
12228 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12229 
12230 	return val;
12231 }
12232 
12233 static u64 write_dev_port_cntr(struct hfi1_devdata *dd,
12234 			       struct cntr_entry *entry,
12235 			       u64 *psval, void *context, int vl, u64 data)
12236 {
12237 	u64 val;
12238 
12239 	if (entry->flags & CNTR_DISABLED) {
12240 		dd_dev_err(dd, "Counter %s not enabled", entry->name);
12241 		return 0;
12242 	}
12243 
12244 	hfi1_cdbg(CNTR, "cntr: %s vl %d psval 0x%llx", entry->name, vl, *psval);
12245 
12246 	if (entry->flags & CNTR_SYNTH) {
12247 		*psval = data;
12248 		if (entry->flags & CNTR_32BIT) {
12249 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12250 					     (data << 32) >> 32);
12251 			val = data; /* return the full 64bit value */
12252 		} else {
12253 			val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W,
12254 					     data);
12255 		}
12256 	} else {
12257 		val = entry->rw_cntr(entry, context, vl, CNTR_MODE_W, data);
12258 	}
12259 
12260 	*psval = val;
12261 
12262 	hfi1_cdbg(CNTR, "\tNew val=0x%llx", val);
12263 
12264 	return val;
12265 }
12266 
12267 u64 read_dev_cntr(struct hfi1_devdata *dd, int index, int vl)
12268 {
12269 	struct cntr_entry *entry;
12270 	u64 *sval;
12271 
12272 	entry = &dev_cntrs[index];
12273 	sval = dd->scntrs + entry->offset;
12274 
12275 	if (vl != CNTR_INVALID_VL)
12276 		sval += vl;
12277 
12278 	return read_dev_port_cntr(dd, entry, sval, dd, vl);
12279 }
12280 
12281 u64 write_dev_cntr(struct hfi1_devdata *dd, int index, int vl, u64 data)
12282 {
12283 	struct cntr_entry *entry;
12284 	u64 *sval;
12285 
12286 	entry = &dev_cntrs[index];
12287 	sval = dd->scntrs + entry->offset;
12288 
12289 	if (vl != CNTR_INVALID_VL)
12290 		sval += vl;
12291 
12292 	return write_dev_port_cntr(dd, entry, sval, dd, vl, data);
12293 }
12294 
12295 u64 read_port_cntr(struct hfi1_pportdata *ppd, int index, int vl)
12296 {
12297 	struct cntr_entry *entry;
12298 	u64 *sval;
12299 
12300 	entry = &port_cntrs[index];
12301 	sval = ppd->scntrs + entry->offset;
12302 
12303 	if (vl != CNTR_INVALID_VL)
12304 		sval += vl;
12305 
12306 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12307 	    (index <= C_RCV_HDR_OVF_LAST)) {
12308 		/* We do not want to bother for disabled contexts */
12309 		return 0;
12310 	}
12311 
12312 	return read_dev_port_cntr(ppd->dd, entry, sval, ppd, vl);
12313 }
12314 
12315 u64 write_port_cntr(struct hfi1_pportdata *ppd, int index, int vl, u64 data)
12316 {
12317 	struct cntr_entry *entry;
12318 	u64 *sval;
12319 
12320 	entry = &port_cntrs[index];
12321 	sval = ppd->scntrs + entry->offset;
12322 
12323 	if (vl != CNTR_INVALID_VL)
12324 		sval += vl;
12325 
12326 	if ((index >= C_RCV_HDR_OVF_FIRST + ppd->dd->num_rcv_contexts) &&
12327 	    (index <= C_RCV_HDR_OVF_LAST)) {
12328 		/* We do not want to bother for disabled contexts */
12329 		return 0;
12330 	}
12331 
12332 	return write_dev_port_cntr(ppd->dd, entry, sval, ppd, vl, data);
12333 }
12334 
12335 static void do_update_synth_timer(struct work_struct *work)
12336 {
12337 	u64 cur_tx;
12338 	u64 cur_rx;
12339 	u64 total_flits;
12340 	u8 update = 0;
12341 	int i, j, vl;
12342 	struct hfi1_pportdata *ppd;
12343 	struct cntr_entry *entry;
12344 	struct hfi1_devdata *dd = container_of(work, struct hfi1_devdata,
12345 					       update_cntr_work);
12346 
12347 	/*
12348 	 * Rather than keep beating on the CSRs pick a minimal set that we can
12349 	 * check to watch for potential roll over. We can do this by looking at
12350 	 * the number of flits sent/recv. If the total flits exceeds 32bits then
12351 	 * we have to iterate all the counters and update.
12352 	 */
12353 	entry = &dev_cntrs[C_DC_RCV_FLITS];
12354 	cur_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12355 
12356 	entry = &dev_cntrs[C_DC_XMIT_FLITS];
12357 	cur_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL, CNTR_MODE_R, 0);
12358 
12359 	hfi1_cdbg(
12360 	    CNTR,
12361 	    "[%d] curr tx=0x%llx rx=0x%llx :: last tx=0x%llx rx=0x%llx\n",
12362 	    dd->unit, cur_tx, cur_rx, dd->last_tx, dd->last_rx);
12363 
12364 	if ((cur_tx < dd->last_tx) || (cur_rx < dd->last_rx)) {
12365 		/*
12366 		 * May not be strictly necessary to update but it won't hurt and
12367 		 * simplifies the logic here.
12368 		 */
12369 		update = 1;
12370 		hfi1_cdbg(CNTR, "[%d] Tripwire counter rolled, updating",
12371 			  dd->unit);
12372 	} else {
12373 		total_flits = (cur_tx - dd->last_tx) + (cur_rx - dd->last_rx);
12374 		hfi1_cdbg(CNTR,
12375 			  "[%d] total flits 0x%llx limit 0x%llx\n", dd->unit,
12376 			  total_flits, (u64)CNTR_32BIT_MAX);
12377 		if (total_flits >= CNTR_32BIT_MAX) {
12378 			hfi1_cdbg(CNTR, "[%d] 32bit limit hit, updating",
12379 				  dd->unit);
12380 			update = 1;
12381 		}
12382 	}
12383 
12384 	if (update) {
12385 		hfi1_cdbg(CNTR, "[%d] Updating dd and ppd counters", dd->unit);
12386 		for (i = 0; i < DEV_CNTR_LAST; i++) {
12387 			entry = &dev_cntrs[i];
12388 			if (entry->flags & CNTR_VL) {
12389 				for (vl = 0; vl < C_VL_COUNT; vl++)
12390 					read_dev_cntr(dd, i, vl);
12391 			} else {
12392 				read_dev_cntr(dd, i, CNTR_INVALID_VL);
12393 			}
12394 		}
12395 		ppd = (struct hfi1_pportdata *)(dd + 1);
12396 		for (i = 0; i < dd->num_pports; i++, ppd++) {
12397 			for (j = 0; j < PORT_CNTR_LAST; j++) {
12398 				entry = &port_cntrs[j];
12399 				if (entry->flags & CNTR_VL) {
12400 					for (vl = 0; vl < C_VL_COUNT; vl++)
12401 						read_port_cntr(ppd, j, vl);
12402 				} else {
12403 					read_port_cntr(ppd, j, CNTR_INVALID_VL);
12404 				}
12405 			}
12406 		}
12407 
12408 		/*
12409 		 * We want the value in the register. The goal is to keep track
12410 		 * of the number of "ticks" not the counter value. In other
12411 		 * words if the register rolls we want to notice it and go ahead
12412 		 * and force an update.
12413 		 */
12414 		entry = &dev_cntrs[C_DC_XMIT_FLITS];
12415 		dd->last_tx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12416 						CNTR_MODE_R, 0);
12417 
12418 		entry = &dev_cntrs[C_DC_RCV_FLITS];
12419 		dd->last_rx = entry->rw_cntr(entry, dd, CNTR_INVALID_VL,
12420 						CNTR_MODE_R, 0);
12421 
12422 		hfi1_cdbg(CNTR, "[%d] setting last tx/rx to 0x%llx 0x%llx",
12423 			  dd->unit, dd->last_tx, dd->last_rx);
12424 
12425 	} else {
12426 		hfi1_cdbg(CNTR, "[%d] No update necessary", dd->unit);
12427 	}
12428 }
12429 
12430 static void update_synth_timer(struct timer_list *t)
12431 {
12432 	struct hfi1_devdata *dd = from_timer(dd, t, synth_stats_timer);
12433 
12434 	queue_work(dd->update_cntr_wq, &dd->update_cntr_work);
12435 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12436 }
12437 
12438 #define C_MAX_NAME 16 /* 15 chars + one for /0 */
12439 static int init_cntrs(struct hfi1_devdata *dd)
12440 {
12441 	int i, rcv_ctxts, j;
12442 	size_t sz;
12443 	char *p;
12444 	char name[C_MAX_NAME];
12445 	struct hfi1_pportdata *ppd;
12446 	const char *bit_type_32 = ",32";
12447 	const int bit_type_32_sz = strlen(bit_type_32);
12448 	u32 sdma_engines = chip_sdma_engines(dd);
12449 
12450 	/* set up the stats timer; the add_timer is done at the end */
12451 	timer_setup(&dd->synth_stats_timer, update_synth_timer, 0);
12452 
12453 	/***********************/
12454 	/* per device counters */
12455 	/***********************/
12456 
12457 	/* size names and determine how many we have*/
12458 	dd->ndevcntrs = 0;
12459 	sz = 0;
12460 
12461 	for (i = 0; i < DEV_CNTR_LAST; i++) {
12462 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12463 			hfi1_dbg_early("\tSkipping %s\n", dev_cntrs[i].name);
12464 			continue;
12465 		}
12466 
12467 		if (dev_cntrs[i].flags & CNTR_VL) {
12468 			dev_cntrs[i].offset = dd->ndevcntrs;
12469 			for (j = 0; j < C_VL_COUNT; j++) {
12470 				snprintf(name, C_MAX_NAME, "%s%d",
12471 					 dev_cntrs[i].name, vl_from_idx(j));
12472 				sz += strlen(name);
12473 				/* Add ",32" for 32-bit counters */
12474 				if (dev_cntrs[i].flags & CNTR_32BIT)
12475 					sz += bit_type_32_sz;
12476 				sz++;
12477 				dd->ndevcntrs++;
12478 			}
12479 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12480 			dev_cntrs[i].offset = dd->ndevcntrs;
12481 			for (j = 0; j < sdma_engines; j++) {
12482 				snprintf(name, C_MAX_NAME, "%s%d",
12483 					 dev_cntrs[i].name, j);
12484 				sz += strlen(name);
12485 				/* Add ",32" for 32-bit counters */
12486 				if (dev_cntrs[i].flags & CNTR_32BIT)
12487 					sz += bit_type_32_sz;
12488 				sz++;
12489 				dd->ndevcntrs++;
12490 			}
12491 		} else {
12492 			/* +1 for newline. */
12493 			sz += strlen(dev_cntrs[i].name) + 1;
12494 			/* Add ",32" for 32-bit counters */
12495 			if (dev_cntrs[i].flags & CNTR_32BIT)
12496 				sz += bit_type_32_sz;
12497 			dev_cntrs[i].offset = dd->ndevcntrs;
12498 			dd->ndevcntrs++;
12499 		}
12500 	}
12501 
12502 	/* allocate space for the counter values */
12503 	dd->cntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12504 	if (!dd->cntrs)
12505 		goto bail;
12506 
12507 	dd->scntrs = kcalloc(dd->ndevcntrs, sizeof(u64), GFP_KERNEL);
12508 	if (!dd->scntrs)
12509 		goto bail;
12510 
12511 	/* allocate space for the counter names */
12512 	dd->cntrnameslen = sz;
12513 	dd->cntrnames = kmalloc(sz, GFP_KERNEL);
12514 	if (!dd->cntrnames)
12515 		goto bail;
12516 
12517 	/* fill in the names */
12518 	for (p = dd->cntrnames, i = 0; i < DEV_CNTR_LAST; i++) {
12519 		if (dev_cntrs[i].flags & CNTR_DISABLED) {
12520 			/* Nothing */
12521 		} else if (dev_cntrs[i].flags & CNTR_VL) {
12522 			for (j = 0; j < C_VL_COUNT; j++) {
12523 				snprintf(name, C_MAX_NAME, "%s%d",
12524 					 dev_cntrs[i].name,
12525 					 vl_from_idx(j));
12526 				memcpy(p, name, strlen(name));
12527 				p += strlen(name);
12528 
12529 				/* Counter is 32 bits */
12530 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12531 					memcpy(p, bit_type_32, bit_type_32_sz);
12532 					p += bit_type_32_sz;
12533 				}
12534 
12535 				*p++ = '\n';
12536 			}
12537 		} else if (dev_cntrs[i].flags & CNTR_SDMA) {
12538 			for (j = 0; j < sdma_engines; j++) {
12539 				snprintf(name, C_MAX_NAME, "%s%d",
12540 					 dev_cntrs[i].name, j);
12541 				memcpy(p, name, strlen(name));
12542 				p += strlen(name);
12543 
12544 				/* Counter is 32 bits */
12545 				if (dev_cntrs[i].flags & CNTR_32BIT) {
12546 					memcpy(p, bit_type_32, bit_type_32_sz);
12547 					p += bit_type_32_sz;
12548 				}
12549 
12550 				*p++ = '\n';
12551 			}
12552 		} else {
12553 			memcpy(p, dev_cntrs[i].name, strlen(dev_cntrs[i].name));
12554 			p += strlen(dev_cntrs[i].name);
12555 
12556 			/* Counter is 32 bits */
12557 			if (dev_cntrs[i].flags & CNTR_32BIT) {
12558 				memcpy(p, bit_type_32, bit_type_32_sz);
12559 				p += bit_type_32_sz;
12560 			}
12561 
12562 			*p++ = '\n';
12563 		}
12564 	}
12565 
12566 	/*********************/
12567 	/* per port counters */
12568 	/*********************/
12569 
12570 	/*
12571 	 * Go through the counters for the overflows and disable the ones we
12572 	 * don't need. This varies based on platform so we need to do it
12573 	 * dynamically here.
12574 	 */
12575 	rcv_ctxts = dd->num_rcv_contexts;
12576 	for (i = C_RCV_HDR_OVF_FIRST + rcv_ctxts;
12577 	     i <= C_RCV_HDR_OVF_LAST; i++) {
12578 		port_cntrs[i].flags |= CNTR_DISABLED;
12579 	}
12580 
12581 	/* size port counter names and determine how many we have*/
12582 	sz = 0;
12583 	dd->nportcntrs = 0;
12584 	for (i = 0; i < PORT_CNTR_LAST; i++) {
12585 		if (port_cntrs[i].flags & CNTR_DISABLED) {
12586 			hfi1_dbg_early("\tSkipping %s\n", port_cntrs[i].name);
12587 			continue;
12588 		}
12589 
12590 		if (port_cntrs[i].flags & CNTR_VL) {
12591 			port_cntrs[i].offset = dd->nportcntrs;
12592 			for (j = 0; j < C_VL_COUNT; j++) {
12593 				snprintf(name, C_MAX_NAME, "%s%d",
12594 					 port_cntrs[i].name, vl_from_idx(j));
12595 				sz += strlen(name);
12596 				/* Add ",32" for 32-bit counters */
12597 				if (port_cntrs[i].flags & CNTR_32BIT)
12598 					sz += bit_type_32_sz;
12599 				sz++;
12600 				dd->nportcntrs++;
12601 			}
12602 		} else {
12603 			/* +1 for newline */
12604 			sz += strlen(port_cntrs[i].name) + 1;
12605 			/* Add ",32" for 32-bit counters */
12606 			if (port_cntrs[i].flags & CNTR_32BIT)
12607 				sz += bit_type_32_sz;
12608 			port_cntrs[i].offset = dd->nportcntrs;
12609 			dd->nportcntrs++;
12610 		}
12611 	}
12612 
12613 	/* allocate space for the counter names */
12614 	dd->portcntrnameslen = sz;
12615 	dd->portcntrnames = kmalloc(sz, GFP_KERNEL);
12616 	if (!dd->portcntrnames)
12617 		goto bail;
12618 
12619 	/* fill in port cntr names */
12620 	for (p = dd->portcntrnames, i = 0; i < PORT_CNTR_LAST; i++) {
12621 		if (port_cntrs[i].flags & CNTR_DISABLED)
12622 			continue;
12623 
12624 		if (port_cntrs[i].flags & CNTR_VL) {
12625 			for (j = 0; j < C_VL_COUNT; j++) {
12626 				snprintf(name, C_MAX_NAME, "%s%d",
12627 					 port_cntrs[i].name, vl_from_idx(j));
12628 				memcpy(p, name, strlen(name));
12629 				p += strlen(name);
12630 
12631 				/* Counter is 32 bits */
12632 				if (port_cntrs[i].flags & CNTR_32BIT) {
12633 					memcpy(p, bit_type_32, bit_type_32_sz);
12634 					p += bit_type_32_sz;
12635 				}
12636 
12637 				*p++ = '\n';
12638 			}
12639 		} else {
12640 			memcpy(p, port_cntrs[i].name,
12641 			       strlen(port_cntrs[i].name));
12642 			p += strlen(port_cntrs[i].name);
12643 
12644 			/* Counter is 32 bits */
12645 			if (port_cntrs[i].flags & CNTR_32BIT) {
12646 				memcpy(p, bit_type_32, bit_type_32_sz);
12647 				p += bit_type_32_sz;
12648 			}
12649 
12650 			*p++ = '\n';
12651 		}
12652 	}
12653 
12654 	/* allocate per port storage for counter values */
12655 	ppd = (struct hfi1_pportdata *)(dd + 1);
12656 	for (i = 0; i < dd->num_pports; i++, ppd++) {
12657 		ppd->cntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12658 		if (!ppd->cntrs)
12659 			goto bail;
12660 
12661 		ppd->scntrs = kcalloc(dd->nportcntrs, sizeof(u64), GFP_KERNEL);
12662 		if (!ppd->scntrs)
12663 			goto bail;
12664 	}
12665 
12666 	/* CPU counters need to be allocated and zeroed */
12667 	if (init_cpu_counters(dd))
12668 		goto bail;
12669 
12670 	dd->update_cntr_wq = alloc_ordered_workqueue("hfi1_update_cntr_%d",
12671 						     WQ_MEM_RECLAIM, dd->unit);
12672 	if (!dd->update_cntr_wq)
12673 		goto bail;
12674 
12675 	INIT_WORK(&dd->update_cntr_work, do_update_synth_timer);
12676 
12677 	mod_timer(&dd->synth_stats_timer, jiffies + HZ * SYNTH_CNT_TIME);
12678 	return 0;
12679 bail:
12680 	free_cntrs(dd);
12681 	return -ENOMEM;
12682 }
12683 
12684 static u32 chip_to_opa_lstate(struct hfi1_devdata *dd, u32 chip_lstate)
12685 {
12686 	switch (chip_lstate) {
12687 	default:
12688 		dd_dev_err(dd,
12689 			   "Unknown logical state 0x%x, reporting IB_PORT_DOWN\n",
12690 			   chip_lstate);
12691 		/* fall through */
12692 	case LSTATE_DOWN:
12693 		return IB_PORT_DOWN;
12694 	case LSTATE_INIT:
12695 		return IB_PORT_INIT;
12696 	case LSTATE_ARMED:
12697 		return IB_PORT_ARMED;
12698 	case LSTATE_ACTIVE:
12699 		return IB_PORT_ACTIVE;
12700 	}
12701 }
12702 
12703 u32 chip_to_opa_pstate(struct hfi1_devdata *dd, u32 chip_pstate)
12704 {
12705 	/* look at the HFI meta-states only */
12706 	switch (chip_pstate & 0xf0) {
12707 	default:
12708 		dd_dev_err(dd, "Unexpected chip physical state of 0x%x\n",
12709 			   chip_pstate);
12710 		/* fall through */
12711 	case PLS_DISABLED:
12712 		return IB_PORTPHYSSTATE_DISABLED;
12713 	case PLS_OFFLINE:
12714 		return OPA_PORTPHYSSTATE_OFFLINE;
12715 	case PLS_POLLING:
12716 		return IB_PORTPHYSSTATE_POLLING;
12717 	case PLS_CONFIGPHY:
12718 		return IB_PORTPHYSSTATE_TRAINING;
12719 	case PLS_LINKUP:
12720 		return IB_PORTPHYSSTATE_LINKUP;
12721 	case PLS_PHYTEST:
12722 		return IB_PORTPHYSSTATE_PHY_TEST;
12723 	}
12724 }
12725 
12726 /* return the OPA port logical state name */
12727 const char *opa_lstate_name(u32 lstate)
12728 {
12729 	static const char * const port_logical_names[] = {
12730 		"PORT_NOP",
12731 		"PORT_DOWN",
12732 		"PORT_INIT",
12733 		"PORT_ARMED",
12734 		"PORT_ACTIVE",
12735 		"PORT_ACTIVE_DEFER",
12736 	};
12737 	if (lstate < ARRAY_SIZE(port_logical_names))
12738 		return port_logical_names[lstate];
12739 	return "unknown";
12740 }
12741 
12742 /* return the OPA port physical state name */
12743 const char *opa_pstate_name(u32 pstate)
12744 {
12745 	static const char * const port_physical_names[] = {
12746 		"PHYS_NOP",
12747 		"reserved1",
12748 		"PHYS_POLL",
12749 		"PHYS_DISABLED",
12750 		"PHYS_TRAINING",
12751 		"PHYS_LINKUP",
12752 		"PHYS_LINK_ERR_RECOVER",
12753 		"PHYS_PHY_TEST",
12754 		"reserved8",
12755 		"PHYS_OFFLINE",
12756 		"PHYS_GANGED",
12757 		"PHYS_TEST",
12758 	};
12759 	if (pstate < ARRAY_SIZE(port_physical_names))
12760 		return port_physical_names[pstate];
12761 	return "unknown";
12762 }
12763 
12764 /**
12765  * update_statusp - Update userspace status flag
12766  * @ppd: Port data structure
12767  * @state: port state information
12768  *
12769  * Actual port status is determined by the host_link_state value
12770  * in the ppd.
12771  *
12772  * host_link_state MUST be updated before updating the user space
12773  * statusp.
12774  */
12775 static void update_statusp(struct hfi1_pportdata *ppd, u32 state)
12776 {
12777 	/*
12778 	 * Set port status flags in the page mapped into userspace
12779 	 * memory. Do it here to ensure a reliable state - this is
12780 	 * the only function called by all state handling code.
12781 	 * Always set the flags due to the fact that the cache value
12782 	 * might have been changed explicitly outside of this
12783 	 * function.
12784 	 */
12785 	if (ppd->statusp) {
12786 		switch (state) {
12787 		case IB_PORT_DOWN:
12788 		case IB_PORT_INIT:
12789 			*ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
12790 					   HFI1_STATUS_IB_READY);
12791 			break;
12792 		case IB_PORT_ARMED:
12793 			*ppd->statusp |= HFI1_STATUS_IB_CONF;
12794 			break;
12795 		case IB_PORT_ACTIVE:
12796 			*ppd->statusp |= HFI1_STATUS_IB_READY;
12797 			break;
12798 		}
12799 	}
12800 	dd_dev_info(ppd->dd, "logical state changed to %s (0x%x)\n",
12801 		    opa_lstate_name(state), state);
12802 }
12803 
12804 /**
12805  * wait_logical_linkstate - wait for an IB link state change to occur
12806  * @ppd: port device
12807  * @state: the state to wait for
12808  * @msecs: the number of milliseconds to wait
12809  *
12810  * Wait up to msecs milliseconds for IB link state change to occur.
12811  * For now, take the easy polling route.
12812  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12813  */
12814 static int wait_logical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12815 				  int msecs)
12816 {
12817 	unsigned long timeout;
12818 	u32 new_state;
12819 
12820 	timeout = jiffies + msecs_to_jiffies(msecs);
12821 	while (1) {
12822 		new_state = chip_to_opa_lstate(ppd->dd,
12823 					       read_logical_state(ppd->dd));
12824 		if (new_state == state)
12825 			break;
12826 		if (time_after(jiffies, timeout)) {
12827 			dd_dev_err(ppd->dd,
12828 				   "timeout waiting for link state 0x%x\n",
12829 				   state);
12830 			return -ETIMEDOUT;
12831 		}
12832 		msleep(20);
12833 	}
12834 
12835 	return 0;
12836 }
12837 
12838 static void log_state_transition(struct hfi1_pportdata *ppd, u32 state)
12839 {
12840 	u32 ib_pstate = chip_to_opa_pstate(ppd->dd, state);
12841 
12842 	dd_dev_info(ppd->dd,
12843 		    "physical state changed to %s (0x%x), phy 0x%x\n",
12844 		    opa_pstate_name(ib_pstate), ib_pstate, state);
12845 }
12846 
12847 /*
12848  * Read the physical hardware link state and check if it matches host
12849  * drivers anticipated state.
12850  */
12851 static void log_physical_state(struct hfi1_pportdata *ppd, u32 state)
12852 {
12853 	u32 read_state = read_physical_state(ppd->dd);
12854 
12855 	if (read_state == state) {
12856 		log_state_transition(ppd, state);
12857 	} else {
12858 		dd_dev_err(ppd->dd,
12859 			   "anticipated phy link state 0x%x, read 0x%x\n",
12860 			   state, read_state);
12861 	}
12862 }
12863 
12864 /*
12865  * wait_physical_linkstate - wait for an physical link state change to occur
12866  * @ppd: port device
12867  * @state: the state to wait for
12868  * @msecs: the number of milliseconds to wait
12869  *
12870  * Wait up to msecs milliseconds for physical link state change to occur.
12871  * Returns 0 if state reached, otherwise -ETIMEDOUT.
12872  */
12873 static int wait_physical_linkstate(struct hfi1_pportdata *ppd, u32 state,
12874 				   int msecs)
12875 {
12876 	u32 read_state;
12877 	unsigned long timeout;
12878 
12879 	timeout = jiffies + msecs_to_jiffies(msecs);
12880 	while (1) {
12881 		read_state = read_physical_state(ppd->dd);
12882 		if (read_state == state)
12883 			break;
12884 		if (time_after(jiffies, timeout)) {
12885 			dd_dev_err(ppd->dd,
12886 				   "timeout waiting for phy link state 0x%x\n",
12887 				   state);
12888 			return -ETIMEDOUT;
12889 		}
12890 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12891 	}
12892 
12893 	log_state_transition(ppd, state);
12894 	return 0;
12895 }
12896 
12897 /*
12898  * wait_phys_link_offline_quiet_substates - wait for any offline substate
12899  * @ppd: port device
12900  * @msecs: the number of milliseconds to wait
12901  *
12902  * Wait up to msecs milliseconds for any offline physical link
12903  * state change to occur.
12904  * Returns 0 if at least one state is reached, otherwise -ETIMEDOUT.
12905  */
12906 static int wait_phys_link_offline_substates(struct hfi1_pportdata *ppd,
12907 					    int msecs)
12908 {
12909 	u32 read_state;
12910 	unsigned long timeout;
12911 
12912 	timeout = jiffies + msecs_to_jiffies(msecs);
12913 	while (1) {
12914 		read_state = read_physical_state(ppd->dd);
12915 		if ((read_state & 0xF0) == PLS_OFFLINE)
12916 			break;
12917 		if (time_after(jiffies, timeout)) {
12918 			dd_dev_err(ppd->dd,
12919 				   "timeout waiting for phy link offline.quiet substates. Read state 0x%x, %dms\n",
12920 				   read_state, msecs);
12921 			return -ETIMEDOUT;
12922 		}
12923 		usleep_range(1950, 2050); /* sleep 2ms-ish */
12924 	}
12925 
12926 	log_state_transition(ppd, read_state);
12927 	return read_state;
12928 }
12929 
12930 #define CLEAR_STATIC_RATE_CONTROL_SMASK(r) \
12931 (r &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12932 
12933 #define SET_STATIC_RATE_CONTROL_SMASK(r) \
12934 (r |= SEND_CTXT_CHECK_ENABLE_DISALLOW_PBC_STATIC_RATE_CONTROL_SMASK)
12935 
12936 void hfi1_init_ctxt(struct send_context *sc)
12937 {
12938 	if (sc) {
12939 		struct hfi1_devdata *dd = sc->dd;
12940 		u64 reg;
12941 		u8 set = (sc->type == SC_USER ?
12942 			  HFI1_CAP_IS_USET(STATIC_RATE_CTRL) :
12943 			  HFI1_CAP_IS_KSET(STATIC_RATE_CTRL));
12944 		reg = read_kctxt_csr(dd, sc->hw_context,
12945 				     SEND_CTXT_CHECK_ENABLE);
12946 		if (set)
12947 			CLEAR_STATIC_RATE_CONTROL_SMASK(reg);
12948 		else
12949 			SET_STATIC_RATE_CONTROL_SMASK(reg);
12950 		write_kctxt_csr(dd, sc->hw_context,
12951 				SEND_CTXT_CHECK_ENABLE, reg);
12952 	}
12953 }
12954 
12955 int hfi1_tempsense_rd(struct hfi1_devdata *dd, struct hfi1_temp *temp)
12956 {
12957 	int ret = 0;
12958 	u64 reg;
12959 
12960 	if (dd->icode != ICODE_RTL_SILICON) {
12961 		if (HFI1_CAP_IS_KSET(PRINT_UNIMPL))
12962 			dd_dev_info(dd, "%s: tempsense not supported by HW\n",
12963 				    __func__);
12964 		return -EINVAL;
12965 	}
12966 	reg = read_csr(dd, ASIC_STS_THERM);
12967 	temp->curr = ((reg >> ASIC_STS_THERM_CURR_TEMP_SHIFT) &
12968 		      ASIC_STS_THERM_CURR_TEMP_MASK);
12969 	temp->lo_lim = ((reg >> ASIC_STS_THERM_LO_TEMP_SHIFT) &
12970 			ASIC_STS_THERM_LO_TEMP_MASK);
12971 	temp->hi_lim = ((reg >> ASIC_STS_THERM_HI_TEMP_SHIFT) &
12972 			ASIC_STS_THERM_HI_TEMP_MASK);
12973 	temp->crit_lim = ((reg >> ASIC_STS_THERM_CRIT_TEMP_SHIFT) &
12974 			  ASIC_STS_THERM_CRIT_TEMP_MASK);
12975 	/* triggers is a 3-bit value - 1 bit per trigger. */
12976 	temp->triggers = (u8)((reg >> ASIC_STS_THERM_LOW_SHIFT) & 0x7);
12977 
12978 	return ret;
12979 }
12980 
12981 /* ========================================================================= */
12982 
12983 /**
12984  * read_mod_write() - Calculate the IRQ register index and set/clear the bits
12985  * @dd: valid devdata
12986  * @src: IRQ source to determine register index from
12987  * @bits: the bits to set or clear
12988  * @set: true == set the bits, false == clear the bits
12989  *
12990  */
12991 static void read_mod_write(struct hfi1_devdata *dd, u16 src, u64 bits,
12992 			   bool set)
12993 {
12994 	u64 reg;
12995 	u16 idx = src / BITS_PER_REGISTER;
12996 
12997 	spin_lock(&dd->irq_src_lock);
12998 	reg = read_csr(dd, CCE_INT_MASK + (8 * idx));
12999 	if (set)
13000 		reg |= bits;
13001 	else
13002 		reg &= ~bits;
13003 	write_csr(dd, CCE_INT_MASK + (8 * idx), reg);
13004 	spin_unlock(&dd->irq_src_lock);
13005 }
13006 
13007 /**
13008  * set_intr_bits() - Enable/disable a range (one or more) IRQ sources
13009  * @dd: valid devdata
13010  * @first: first IRQ source to set/clear
13011  * @last: last IRQ source (inclusive) to set/clear
13012  * @set: true == set the bits, false == clear the bits
13013  *
13014  * If first == last, set the exact source.
13015  */
13016 int set_intr_bits(struct hfi1_devdata *dd, u16 first, u16 last, bool set)
13017 {
13018 	u64 bits = 0;
13019 	u64 bit;
13020 	u16 src;
13021 
13022 	if (first > NUM_INTERRUPT_SOURCES || last > NUM_INTERRUPT_SOURCES)
13023 		return -EINVAL;
13024 
13025 	if (last < first)
13026 		return -ERANGE;
13027 
13028 	for (src = first; src <= last; src++) {
13029 		bit = src % BITS_PER_REGISTER;
13030 		/* wrapped to next register? */
13031 		if (!bit && bits) {
13032 			read_mod_write(dd, src - 1, bits, set);
13033 			bits = 0;
13034 		}
13035 		bits |= BIT_ULL(bit);
13036 	}
13037 	read_mod_write(dd, last, bits, set);
13038 
13039 	return 0;
13040 }
13041 
13042 /*
13043  * Clear all interrupt sources on the chip.
13044  */
13045 void clear_all_interrupts(struct hfi1_devdata *dd)
13046 {
13047 	int i;
13048 
13049 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13050 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~(u64)0);
13051 
13052 	write_csr(dd, CCE_ERR_CLEAR, ~(u64)0);
13053 	write_csr(dd, MISC_ERR_CLEAR, ~(u64)0);
13054 	write_csr(dd, RCV_ERR_CLEAR, ~(u64)0);
13055 	write_csr(dd, SEND_ERR_CLEAR, ~(u64)0);
13056 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~(u64)0);
13057 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~(u64)0);
13058 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~(u64)0);
13059 	for (i = 0; i < chip_send_contexts(dd); i++)
13060 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~(u64)0);
13061 	for (i = 0; i < chip_sdma_engines(dd); i++)
13062 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~(u64)0);
13063 
13064 	write_csr(dd, DCC_ERR_FLG_CLR, ~(u64)0);
13065 	write_csr(dd, DC_LCB_ERR_CLR, ~(u64)0);
13066 	write_csr(dd, DC_DC8051_ERR_CLR, ~(u64)0);
13067 }
13068 
13069 /*
13070  * Remap the interrupt source from the general handler to the given MSI-X
13071  * interrupt.
13072  */
13073 void remap_intr(struct hfi1_devdata *dd, int isrc, int msix_intr)
13074 {
13075 	u64 reg;
13076 	int m, n;
13077 
13078 	/* clear from the handled mask of the general interrupt */
13079 	m = isrc / 64;
13080 	n = isrc % 64;
13081 	if (likely(m < CCE_NUM_INT_CSRS)) {
13082 		dd->gi_mask[m] &= ~((u64)1 << n);
13083 	} else {
13084 		dd_dev_err(dd, "remap interrupt err\n");
13085 		return;
13086 	}
13087 
13088 	/* direct the chip source to the given MSI-X interrupt */
13089 	m = isrc / 8;
13090 	n = isrc % 8;
13091 	reg = read_csr(dd, CCE_INT_MAP + (8 * m));
13092 	reg &= ~((u64)0xff << (8 * n));
13093 	reg |= ((u64)msix_intr & 0xff) << (8 * n);
13094 	write_csr(dd, CCE_INT_MAP + (8 * m), reg);
13095 }
13096 
13097 void remap_sdma_interrupts(struct hfi1_devdata *dd, int engine, int msix_intr)
13098 {
13099 	/*
13100 	 * SDMA engine interrupt sources grouped by type, rather than
13101 	 * engine.  Per-engine interrupts are as follows:
13102 	 *	SDMA
13103 	 *	SDMAProgress
13104 	 *	SDMAIdle
13105 	 */
13106 	remap_intr(dd, IS_SDMA_START + engine, msix_intr);
13107 	remap_intr(dd, IS_SDMA_PROGRESS_START + engine, msix_intr);
13108 	remap_intr(dd, IS_SDMA_IDLE_START + engine, msix_intr);
13109 }
13110 
13111 /*
13112  * Set the general handler to accept all interrupts, remap all
13113  * chip interrupts back to MSI-X 0.
13114  */
13115 void reset_interrupts(struct hfi1_devdata *dd)
13116 {
13117 	int i;
13118 
13119 	/* all interrupts handled by the general handler */
13120 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13121 		dd->gi_mask[i] = ~(u64)0;
13122 
13123 	/* all chip interrupts map to MSI-X 0 */
13124 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13125 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13126 }
13127 
13128 /**
13129  * set_up_interrupts() - Initialize the IRQ resources and state
13130  * @dd: valid devdata
13131  *
13132  */
13133 static int set_up_interrupts(struct hfi1_devdata *dd)
13134 {
13135 	int ret;
13136 
13137 	/* mask all interrupts */
13138 	set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
13139 
13140 	/* clear all pending interrupts */
13141 	clear_all_interrupts(dd);
13142 
13143 	/* reset general handler mask, chip MSI-X mappings */
13144 	reset_interrupts(dd);
13145 
13146 	/* ask for MSI-X interrupts */
13147 	ret = msix_initialize(dd);
13148 	if (ret)
13149 		return ret;
13150 
13151 	ret = msix_request_irqs(dd);
13152 	if (ret)
13153 		msix_clean_up_interrupts(dd);
13154 
13155 	return ret;
13156 }
13157 
13158 /*
13159  * Set up context values in dd.  Sets:
13160  *
13161  *	num_rcv_contexts - number of contexts being used
13162  *	n_krcv_queues - number of kernel contexts
13163  *	first_dyn_alloc_ctxt - first dynamically allocated context
13164  *                             in array of contexts
13165  *	freectxts  - number of free user contexts
13166  *	num_send_contexts - number of PIO send contexts being used
13167  *	num_vnic_contexts - number of contexts reserved for VNIC
13168  */
13169 static int set_up_context_variables(struct hfi1_devdata *dd)
13170 {
13171 	unsigned long num_kernel_contexts;
13172 	u16 num_vnic_contexts = HFI1_NUM_VNIC_CTXT;
13173 	int total_contexts;
13174 	int ret;
13175 	unsigned ngroups;
13176 	int qos_rmt_count;
13177 	int user_rmt_reduced;
13178 	u32 n_usr_ctxts;
13179 	u32 send_contexts = chip_send_contexts(dd);
13180 	u32 rcv_contexts = chip_rcv_contexts(dd);
13181 
13182 	/*
13183 	 * Kernel receive contexts:
13184 	 * - Context 0 - control context (VL15/multicast/error)
13185 	 * - Context 1 - first kernel context
13186 	 * - Context 2 - second kernel context
13187 	 * ...
13188 	 */
13189 	if (n_krcvqs)
13190 		/*
13191 		 * n_krcvqs is the sum of module parameter kernel receive
13192 		 * contexts, krcvqs[].  It does not include the control
13193 		 * context, so add that.
13194 		 */
13195 		num_kernel_contexts = n_krcvqs + 1;
13196 	else
13197 		num_kernel_contexts = DEFAULT_KRCVQS + 1;
13198 	/*
13199 	 * Every kernel receive context needs an ACK send context.
13200 	 * one send context is allocated for each VL{0-7} and VL15
13201 	 */
13202 	if (num_kernel_contexts > (send_contexts - num_vls - 1)) {
13203 		dd_dev_err(dd,
13204 			   "Reducing # kernel rcv contexts to: %d, from %lu\n",
13205 			   send_contexts - num_vls - 1,
13206 			   num_kernel_contexts);
13207 		num_kernel_contexts = send_contexts - num_vls - 1;
13208 	}
13209 
13210 	/* Accommodate VNIC contexts if possible */
13211 	if ((num_kernel_contexts + num_vnic_contexts) > rcv_contexts) {
13212 		dd_dev_err(dd, "No receive contexts available for VNIC\n");
13213 		num_vnic_contexts = 0;
13214 	}
13215 	total_contexts = num_kernel_contexts + num_vnic_contexts;
13216 
13217 	/*
13218 	 * User contexts:
13219 	 *	- default to 1 user context per real (non-HT) CPU core if
13220 	 *	  num_user_contexts is negative
13221 	 */
13222 	if (num_user_contexts < 0)
13223 		n_usr_ctxts = cpumask_weight(&node_affinity.real_cpu_mask);
13224 	else
13225 		n_usr_ctxts = num_user_contexts;
13226 	/*
13227 	 * Adjust the counts given a global max.
13228 	 */
13229 	if (total_contexts + n_usr_ctxts > rcv_contexts) {
13230 		dd_dev_err(dd,
13231 			   "Reducing # user receive contexts to: %d, from %u\n",
13232 			   rcv_contexts - total_contexts,
13233 			   n_usr_ctxts);
13234 		/* recalculate */
13235 		n_usr_ctxts = rcv_contexts - total_contexts;
13236 	}
13237 
13238 	/* each user context requires an entry in the RMT */
13239 	qos_rmt_count = qos_rmt_entries(dd, NULL, NULL);
13240 	if (qos_rmt_count + n_usr_ctxts > NUM_MAP_ENTRIES) {
13241 		user_rmt_reduced = NUM_MAP_ENTRIES - qos_rmt_count;
13242 		dd_dev_err(dd,
13243 			   "RMT size is reducing the number of user receive contexts from %u to %d\n",
13244 			   n_usr_ctxts,
13245 			   user_rmt_reduced);
13246 		/* recalculate */
13247 		n_usr_ctxts = user_rmt_reduced;
13248 	}
13249 
13250 	total_contexts += n_usr_ctxts;
13251 
13252 	/* the first N are kernel contexts, the rest are user/vnic contexts */
13253 	dd->num_rcv_contexts = total_contexts;
13254 	dd->n_krcv_queues = num_kernel_contexts;
13255 	dd->first_dyn_alloc_ctxt = num_kernel_contexts;
13256 	dd->num_vnic_contexts = num_vnic_contexts;
13257 	dd->num_user_contexts = n_usr_ctxts;
13258 	dd->freectxts = n_usr_ctxts;
13259 	dd_dev_info(dd,
13260 		    "rcv contexts: chip %d, used %d (kernel %d, vnic %u, user %u)\n",
13261 		    rcv_contexts,
13262 		    (int)dd->num_rcv_contexts,
13263 		    (int)dd->n_krcv_queues,
13264 		    dd->num_vnic_contexts,
13265 		    dd->num_user_contexts);
13266 
13267 	/*
13268 	 * Receive array allocation:
13269 	 *   All RcvArray entries are divided into groups of 8. This
13270 	 *   is required by the hardware and will speed up writes to
13271 	 *   consecutive entries by using write-combining of the entire
13272 	 *   cacheline.
13273 	 *
13274 	 *   The number of groups are evenly divided among all contexts.
13275 	 *   any left over groups will be given to the first N user
13276 	 *   contexts.
13277 	 */
13278 	dd->rcv_entries.group_size = RCV_INCREMENT;
13279 	ngroups = chip_rcv_array_count(dd) / dd->rcv_entries.group_size;
13280 	dd->rcv_entries.ngroups = ngroups / dd->num_rcv_contexts;
13281 	dd->rcv_entries.nctxt_extra = ngroups -
13282 		(dd->num_rcv_contexts * dd->rcv_entries.ngroups);
13283 	dd_dev_info(dd, "RcvArray groups %u, ctxts extra %u\n",
13284 		    dd->rcv_entries.ngroups,
13285 		    dd->rcv_entries.nctxt_extra);
13286 	if (dd->rcv_entries.ngroups * dd->rcv_entries.group_size >
13287 	    MAX_EAGER_ENTRIES * 2) {
13288 		dd->rcv_entries.ngroups = (MAX_EAGER_ENTRIES * 2) /
13289 			dd->rcv_entries.group_size;
13290 		dd_dev_info(dd,
13291 			    "RcvArray group count too high, change to %u\n",
13292 			    dd->rcv_entries.ngroups);
13293 		dd->rcv_entries.nctxt_extra = 0;
13294 	}
13295 	/*
13296 	 * PIO send contexts
13297 	 */
13298 	ret = init_sc_pools_and_sizes(dd);
13299 	if (ret >= 0) {	/* success */
13300 		dd->num_send_contexts = ret;
13301 		dd_dev_info(
13302 			dd,
13303 			"send contexts: chip %d, used %d (kernel %d, ack %d, user %d, vl15 %d)\n",
13304 			send_contexts,
13305 			dd->num_send_contexts,
13306 			dd->sc_sizes[SC_KERNEL].count,
13307 			dd->sc_sizes[SC_ACK].count,
13308 			dd->sc_sizes[SC_USER].count,
13309 			dd->sc_sizes[SC_VL15].count);
13310 		ret = 0;	/* success */
13311 	}
13312 
13313 	return ret;
13314 }
13315 
13316 /*
13317  * Set the device/port partition key table. The MAD code
13318  * will ensure that, at least, the partial management
13319  * partition key is present in the table.
13320  */
13321 static void set_partition_keys(struct hfi1_pportdata *ppd)
13322 {
13323 	struct hfi1_devdata *dd = ppd->dd;
13324 	u64 reg = 0;
13325 	int i;
13326 
13327 	dd_dev_info(dd, "Setting partition keys\n");
13328 	for (i = 0; i < hfi1_get_npkeys(dd); i++) {
13329 		reg |= (ppd->pkeys[i] &
13330 			RCV_PARTITION_KEY_PARTITION_KEY_A_MASK) <<
13331 			((i % 4) *
13332 			 RCV_PARTITION_KEY_PARTITION_KEY_B_SHIFT);
13333 		/* Each register holds 4 PKey values. */
13334 		if ((i % 4) == 3) {
13335 			write_csr(dd, RCV_PARTITION_KEY +
13336 				  ((i - 3) * 2), reg);
13337 			reg = 0;
13338 		}
13339 	}
13340 
13341 	/* Always enable HW pkeys check when pkeys table is set */
13342 	add_rcvctrl(dd, RCV_CTRL_RCV_PARTITION_KEY_ENABLE_SMASK);
13343 }
13344 
13345 /*
13346  * These CSRs and memories are uninitialized on reset and must be
13347  * written before reading to set the ECC/parity bits.
13348  *
13349  * NOTE: All user context CSRs that are not mmaped write-only
13350  * (e.g. the TID flows) must be initialized even if the driver never
13351  * reads them.
13352  */
13353 static void write_uninitialized_csrs_and_memories(struct hfi1_devdata *dd)
13354 {
13355 	int i, j;
13356 
13357 	/* CceIntMap */
13358 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13359 		write_csr(dd, CCE_INT_MAP + (8 * i), 0);
13360 
13361 	/* SendCtxtCreditReturnAddr */
13362 	for (i = 0; i < chip_send_contexts(dd); i++)
13363 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13364 
13365 	/* PIO Send buffers */
13366 	/* SDMA Send buffers */
13367 	/*
13368 	 * These are not normally read, and (presently) have no method
13369 	 * to be read, so are not pre-initialized
13370 	 */
13371 
13372 	/* RcvHdrAddr */
13373 	/* RcvHdrTailAddr */
13374 	/* RcvTidFlowTable */
13375 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13376 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13377 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13378 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++)
13379 			write_uctxt_csr(dd, i, RCV_TID_FLOW_TABLE + (8 * j), 0);
13380 	}
13381 
13382 	/* RcvArray */
13383 	for (i = 0; i < chip_rcv_array_count(dd); i++)
13384 		hfi1_put_tid(dd, i, PT_INVALID_FLUSH, 0, 0);
13385 
13386 	/* RcvQPMapTable */
13387 	for (i = 0; i < 32; i++)
13388 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13389 }
13390 
13391 /*
13392  * Use the ctrl_bits in CceCtrl to clear the status_bits in CceStatus.
13393  */
13394 static void clear_cce_status(struct hfi1_devdata *dd, u64 status_bits,
13395 			     u64 ctrl_bits)
13396 {
13397 	unsigned long timeout;
13398 	u64 reg;
13399 
13400 	/* is the condition present? */
13401 	reg = read_csr(dd, CCE_STATUS);
13402 	if ((reg & status_bits) == 0)
13403 		return;
13404 
13405 	/* clear the condition */
13406 	write_csr(dd, CCE_CTRL, ctrl_bits);
13407 
13408 	/* wait for the condition to clear */
13409 	timeout = jiffies + msecs_to_jiffies(CCE_STATUS_TIMEOUT);
13410 	while (1) {
13411 		reg = read_csr(dd, CCE_STATUS);
13412 		if ((reg & status_bits) == 0)
13413 			return;
13414 		if (time_after(jiffies, timeout)) {
13415 			dd_dev_err(dd,
13416 				   "Timeout waiting for CceStatus to clear bits 0x%llx, remaining 0x%llx\n",
13417 				   status_bits, reg & status_bits);
13418 			return;
13419 		}
13420 		udelay(1);
13421 	}
13422 }
13423 
13424 /* set CCE CSRs to chip reset defaults */
13425 static void reset_cce_csrs(struct hfi1_devdata *dd)
13426 {
13427 	int i;
13428 
13429 	/* CCE_REVISION read-only */
13430 	/* CCE_REVISION2 read-only */
13431 	/* CCE_CTRL - bits clear automatically */
13432 	/* CCE_STATUS read-only, use CceCtrl to clear */
13433 	clear_cce_status(dd, ALL_FROZE, CCE_CTRL_SPC_UNFREEZE_SMASK);
13434 	clear_cce_status(dd, ALL_TXE_PAUSE, CCE_CTRL_TXE_RESUME_SMASK);
13435 	clear_cce_status(dd, ALL_RXE_PAUSE, CCE_CTRL_RXE_RESUME_SMASK);
13436 	for (i = 0; i < CCE_NUM_SCRATCH; i++)
13437 		write_csr(dd, CCE_SCRATCH + (8 * i), 0);
13438 	/* CCE_ERR_STATUS read-only */
13439 	write_csr(dd, CCE_ERR_MASK, 0);
13440 	write_csr(dd, CCE_ERR_CLEAR, ~0ull);
13441 	/* CCE_ERR_FORCE leave alone */
13442 	for (i = 0; i < CCE_NUM_32_BIT_COUNTERS; i++)
13443 		write_csr(dd, CCE_COUNTER_ARRAY32 + (8 * i), 0);
13444 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_RESETCSR);
13445 	/* CCE_PCIE_CTRL leave alone */
13446 	for (i = 0; i < CCE_NUM_MSIX_VECTORS; i++) {
13447 		write_csr(dd, CCE_MSIX_TABLE_LOWER + (8 * i), 0);
13448 		write_csr(dd, CCE_MSIX_TABLE_UPPER + (8 * i),
13449 			  CCE_MSIX_TABLE_UPPER_RESETCSR);
13450 	}
13451 	for (i = 0; i < CCE_NUM_MSIX_PBAS; i++) {
13452 		/* CCE_MSIX_PBA read-only */
13453 		write_csr(dd, CCE_MSIX_INT_GRANTED, ~0ull);
13454 		write_csr(dd, CCE_MSIX_VEC_CLR_WITHOUT_INT, ~0ull);
13455 	}
13456 	for (i = 0; i < CCE_NUM_INT_MAP_CSRS; i++)
13457 		write_csr(dd, CCE_INT_MAP, 0);
13458 	for (i = 0; i < CCE_NUM_INT_CSRS; i++) {
13459 		/* CCE_INT_STATUS read-only */
13460 		write_csr(dd, CCE_INT_MASK + (8 * i), 0);
13461 		write_csr(dd, CCE_INT_CLEAR + (8 * i), ~0ull);
13462 		/* CCE_INT_FORCE leave alone */
13463 		/* CCE_INT_BLOCKED read-only */
13464 	}
13465 	for (i = 0; i < CCE_NUM_32_BIT_INT_COUNTERS; i++)
13466 		write_csr(dd, CCE_INT_COUNTER_ARRAY32 + (8 * i), 0);
13467 }
13468 
13469 /* set MISC CSRs to chip reset defaults */
13470 static void reset_misc_csrs(struct hfi1_devdata *dd)
13471 {
13472 	int i;
13473 
13474 	for (i = 0; i < 32; i++) {
13475 		write_csr(dd, MISC_CFG_RSA_R2 + (8 * i), 0);
13476 		write_csr(dd, MISC_CFG_RSA_SIGNATURE + (8 * i), 0);
13477 		write_csr(dd, MISC_CFG_RSA_MODULUS + (8 * i), 0);
13478 	}
13479 	/*
13480 	 * MISC_CFG_SHA_PRELOAD leave alone - always reads 0 and can
13481 	 * only be written 128-byte chunks
13482 	 */
13483 	/* init RSA engine to clear lingering errors */
13484 	write_csr(dd, MISC_CFG_RSA_CMD, 1);
13485 	write_csr(dd, MISC_CFG_RSA_MU, 0);
13486 	write_csr(dd, MISC_CFG_FW_CTRL, 0);
13487 	/* MISC_STS_8051_DIGEST read-only */
13488 	/* MISC_STS_SBM_DIGEST read-only */
13489 	/* MISC_STS_PCIE_DIGEST read-only */
13490 	/* MISC_STS_FAB_DIGEST read-only */
13491 	/* MISC_ERR_STATUS read-only */
13492 	write_csr(dd, MISC_ERR_MASK, 0);
13493 	write_csr(dd, MISC_ERR_CLEAR, ~0ull);
13494 	/* MISC_ERR_FORCE leave alone */
13495 }
13496 
13497 /* set TXE CSRs to chip reset defaults */
13498 static void reset_txe_csrs(struct hfi1_devdata *dd)
13499 {
13500 	int i;
13501 
13502 	/*
13503 	 * TXE Kernel CSRs
13504 	 */
13505 	write_csr(dd, SEND_CTRL, 0);
13506 	__cm_reset(dd, 0);	/* reset CM internal state */
13507 	/* SEND_CONTEXTS read-only */
13508 	/* SEND_DMA_ENGINES read-only */
13509 	/* SEND_PIO_MEM_SIZE read-only */
13510 	/* SEND_DMA_MEM_SIZE read-only */
13511 	write_csr(dd, SEND_HIGH_PRIORITY_LIMIT, 0);
13512 	pio_reset_all(dd);	/* SEND_PIO_INIT_CTXT */
13513 	/* SEND_PIO_ERR_STATUS read-only */
13514 	write_csr(dd, SEND_PIO_ERR_MASK, 0);
13515 	write_csr(dd, SEND_PIO_ERR_CLEAR, ~0ull);
13516 	/* SEND_PIO_ERR_FORCE leave alone */
13517 	/* SEND_DMA_ERR_STATUS read-only */
13518 	write_csr(dd, SEND_DMA_ERR_MASK, 0);
13519 	write_csr(dd, SEND_DMA_ERR_CLEAR, ~0ull);
13520 	/* SEND_DMA_ERR_FORCE leave alone */
13521 	/* SEND_EGRESS_ERR_STATUS read-only */
13522 	write_csr(dd, SEND_EGRESS_ERR_MASK, 0);
13523 	write_csr(dd, SEND_EGRESS_ERR_CLEAR, ~0ull);
13524 	/* SEND_EGRESS_ERR_FORCE leave alone */
13525 	write_csr(dd, SEND_BTH_QP, 0);
13526 	write_csr(dd, SEND_STATIC_RATE_CONTROL, 0);
13527 	write_csr(dd, SEND_SC2VLT0, 0);
13528 	write_csr(dd, SEND_SC2VLT1, 0);
13529 	write_csr(dd, SEND_SC2VLT2, 0);
13530 	write_csr(dd, SEND_SC2VLT3, 0);
13531 	write_csr(dd, SEND_LEN_CHECK0, 0);
13532 	write_csr(dd, SEND_LEN_CHECK1, 0);
13533 	/* SEND_ERR_STATUS read-only */
13534 	write_csr(dd, SEND_ERR_MASK, 0);
13535 	write_csr(dd, SEND_ERR_CLEAR, ~0ull);
13536 	/* SEND_ERR_FORCE read-only */
13537 	for (i = 0; i < VL_ARB_LOW_PRIO_TABLE_SIZE; i++)
13538 		write_csr(dd, SEND_LOW_PRIORITY_LIST + (8 * i), 0);
13539 	for (i = 0; i < VL_ARB_HIGH_PRIO_TABLE_SIZE; i++)
13540 		write_csr(dd, SEND_HIGH_PRIORITY_LIST + (8 * i), 0);
13541 	for (i = 0; i < chip_send_contexts(dd) / NUM_CONTEXTS_PER_SET; i++)
13542 		write_csr(dd, SEND_CONTEXT_SET_CTRL + (8 * i), 0);
13543 	for (i = 0; i < TXE_NUM_32_BIT_COUNTER; i++)
13544 		write_csr(dd, SEND_COUNTER_ARRAY32 + (8 * i), 0);
13545 	for (i = 0; i < TXE_NUM_64_BIT_COUNTER; i++)
13546 		write_csr(dd, SEND_COUNTER_ARRAY64 + (8 * i), 0);
13547 	write_csr(dd, SEND_CM_CTRL, SEND_CM_CTRL_RESETCSR);
13548 	write_csr(dd, SEND_CM_GLOBAL_CREDIT, SEND_CM_GLOBAL_CREDIT_RESETCSR);
13549 	/* SEND_CM_CREDIT_USED_STATUS read-only */
13550 	write_csr(dd, SEND_CM_TIMER_CTRL, 0);
13551 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE0_TO3, 0);
13552 	write_csr(dd, SEND_CM_LOCAL_AU_TABLE4_TO7, 0);
13553 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE0_TO3, 0);
13554 	write_csr(dd, SEND_CM_REMOTE_AU_TABLE4_TO7, 0);
13555 	for (i = 0; i < TXE_NUM_DATA_VL; i++)
13556 		write_csr(dd, SEND_CM_CREDIT_VL + (8 * i), 0);
13557 	write_csr(dd, SEND_CM_CREDIT_VL15, 0);
13558 	/* SEND_CM_CREDIT_USED_VL read-only */
13559 	/* SEND_CM_CREDIT_USED_VL15 read-only */
13560 	/* SEND_EGRESS_CTXT_STATUS read-only */
13561 	/* SEND_EGRESS_SEND_DMA_STATUS read-only */
13562 	write_csr(dd, SEND_EGRESS_ERR_INFO, ~0ull);
13563 	/* SEND_EGRESS_ERR_INFO read-only */
13564 	/* SEND_EGRESS_ERR_SOURCE read-only */
13565 
13566 	/*
13567 	 * TXE Per-Context CSRs
13568 	 */
13569 	for (i = 0; i < chip_send_contexts(dd); i++) {
13570 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13571 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_CTRL, 0);
13572 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_RETURN_ADDR, 0);
13573 		write_kctxt_csr(dd, i, SEND_CTXT_CREDIT_FORCE, 0);
13574 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, 0);
13575 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_CLEAR, ~0ull);
13576 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_ENABLE, 0);
13577 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_VL, 0);
13578 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_JOB_KEY, 0);
13579 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_PARTITION_KEY, 0);
13580 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_SLID, 0);
13581 		write_kctxt_csr(dd, i, SEND_CTXT_CHECK_OPCODE, 0);
13582 	}
13583 
13584 	/*
13585 	 * TXE Per-SDMA CSRs
13586 	 */
13587 	for (i = 0; i < chip_sdma_engines(dd); i++) {
13588 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13589 		/* SEND_DMA_STATUS read-only */
13590 		write_kctxt_csr(dd, i, SEND_DMA_BASE_ADDR, 0);
13591 		write_kctxt_csr(dd, i, SEND_DMA_LEN_GEN, 0);
13592 		write_kctxt_csr(dd, i, SEND_DMA_TAIL, 0);
13593 		/* SEND_DMA_HEAD read-only */
13594 		write_kctxt_csr(dd, i, SEND_DMA_HEAD_ADDR, 0);
13595 		write_kctxt_csr(dd, i, SEND_DMA_PRIORITY_THLD, 0);
13596 		/* SEND_DMA_IDLE_CNT read-only */
13597 		write_kctxt_csr(dd, i, SEND_DMA_RELOAD_CNT, 0);
13598 		write_kctxt_csr(dd, i, SEND_DMA_DESC_CNT, 0);
13599 		/* SEND_DMA_DESC_FETCHED_CNT read-only */
13600 		/* SEND_DMA_ENG_ERR_STATUS read-only */
13601 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, 0);
13602 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_CLEAR, ~0ull);
13603 		/* SEND_DMA_ENG_ERR_FORCE leave alone */
13604 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_ENABLE, 0);
13605 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_VL, 0);
13606 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_JOB_KEY, 0);
13607 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_PARTITION_KEY, 0);
13608 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_SLID, 0);
13609 		write_kctxt_csr(dd, i, SEND_DMA_CHECK_OPCODE, 0);
13610 		write_kctxt_csr(dd, i, SEND_DMA_MEMORY, 0);
13611 	}
13612 }
13613 
13614 /*
13615  * Expect on entry:
13616  * o Packet ingress is disabled, i.e. RcvCtrl.RcvPortEnable == 0
13617  */
13618 static void init_rbufs(struct hfi1_devdata *dd)
13619 {
13620 	u64 reg;
13621 	int count;
13622 
13623 	/*
13624 	 * Wait for DMA to stop: RxRbufPktPending and RxPktInProgress are
13625 	 * clear.
13626 	 */
13627 	count = 0;
13628 	while (1) {
13629 		reg = read_csr(dd, RCV_STATUS);
13630 		if ((reg & (RCV_STATUS_RX_RBUF_PKT_PENDING_SMASK
13631 			    | RCV_STATUS_RX_PKT_IN_PROGRESS_SMASK)) == 0)
13632 			break;
13633 		/*
13634 		 * Give up after 1ms - maximum wait time.
13635 		 *
13636 		 * RBuf size is 136KiB.  Slowest possible is PCIe Gen1 x1 at
13637 		 * 250MB/s bandwidth.  Lower rate to 66% for overhead to get:
13638 		 *	136 KB / (66% * 250MB/s) = 844us
13639 		 */
13640 		if (count++ > 500) {
13641 			dd_dev_err(dd,
13642 				   "%s: in-progress DMA not clearing: RcvStatus 0x%llx, continuing\n",
13643 				   __func__, reg);
13644 			break;
13645 		}
13646 		udelay(2); /* do not busy-wait the CSR */
13647 	}
13648 
13649 	/* start the init - expect RcvCtrl to be 0 */
13650 	write_csr(dd, RCV_CTRL, RCV_CTRL_RX_RBUF_INIT_SMASK);
13651 
13652 	/*
13653 	 * Read to force the write of Rcvtrl.RxRbufInit.  There is a brief
13654 	 * period after the write before RcvStatus.RxRbufInitDone is valid.
13655 	 * The delay in the first run through the loop below is sufficient and
13656 	 * required before the first read of RcvStatus.RxRbufInintDone.
13657 	 */
13658 	read_csr(dd, RCV_CTRL);
13659 
13660 	/* wait for the init to finish */
13661 	count = 0;
13662 	while (1) {
13663 		/* delay is required first time through - see above */
13664 		udelay(2); /* do not busy-wait the CSR */
13665 		reg = read_csr(dd, RCV_STATUS);
13666 		if (reg & (RCV_STATUS_RX_RBUF_INIT_DONE_SMASK))
13667 			break;
13668 
13669 		/* give up after 100us - slowest possible at 33MHz is 73us */
13670 		if (count++ > 50) {
13671 			dd_dev_err(dd,
13672 				   "%s: RcvStatus.RxRbufInit not set, continuing\n",
13673 				   __func__);
13674 			break;
13675 		}
13676 	}
13677 }
13678 
13679 /* set RXE CSRs to chip reset defaults */
13680 static void reset_rxe_csrs(struct hfi1_devdata *dd)
13681 {
13682 	int i, j;
13683 
13684 	/*
13685 	 * RXE Kernel CSRs
13686 	 */
13687 	write_csr(dd, RCV_CTRL, 0);
13688 	init_rbufs(dd);
13689 	/* RCV_STATUS read-only */
13690 	/* RCV_CONTEXTS read-only */
13691 	/* RCV_ARRAY_CNT read-only */
13692 	/* RCV_BUF_SIZE read-only */
13693 	write_csr(dd, RCV_BTH_QP, 0);
13694 	write_csr(dd, RCV_MULTICAST, 0);
13695 	write_csr(dd, RCV_BYPASS, 0);
13696 	write_csr(dd, RCV_VL15, 0);
13697 	/* this is a clear-down */
13698 	write_csr(dd, RCV_ERR_INFO,
13699 		  RCV_ERR_INFO_RCV_EXCESS_BUFFER_OVERRUN_SMASK);
13700 	/* RCV_ERR_STATUS read-only */
13701 	write_csr(dd, RCV_ERR_MASK, 0);
13702 	write_csr(dd, RCV_ERR_CLEAR, ~0ull);
13703 	/* RCV_ERR_FORCE leave alone */
13704 	for (i = 0; i < 32; i++)
13705 		write_csr(dd, RCV_QP_MAP_TABLE + (8 * i), 0);
13706 	for (i = 0; i < 4; i++)
13707 		write_csr(dd, RCV_PARTITION_KEY + (8 * i), 0);
13708 	for (i = 0; i < RXE_NUM_32_BIT_COUNTERS; i++)
13709 		write_csr(dd, RCV_COUNTER_ARRAY32 + (8 * i), 0);
13710 	for (i = 0; i < RXE_NUM_64_BIT_COUNTERS; i++)
13711 		write_csr(dd, RCV_COUNTER_ARRAY64 + (8 * i), 0);
13712 	for (i = 0; i < RXE_NUM_RSM_INSTANCES; i++)
13713 		clear_rsm_rule(dd, i);
13714 	for (i = 0; i < 32; i++)
13715 		write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), 0);
13716 
13717 	/*
13718 	 * RXE Kernel and User Per-Context CSRs
13719 	 */
13720 	for (i = 0; i < chip_rcv_contexts(dd); i++) {
13721 		/* kernel */
13722 		write_kctxt_csr(dd, i, RCV_CTXT_CTRL, 0);
13723 		/* RCV_CTXT_STATUS read-only */
13724 		write_kctxt_csr(dd, i, RCV_EGR_CTRL, 0);
13725 		write_kctxt_csr(dd, i, RCV_TID_CTRL, 0);
13726 		write_kctxt_csr(dd, i, RCV_KEY_CTRL, 0);
13727 		write_kctxt_csr(dd, i, RCV_HDR_ADDR, 0);
13728 		write_kctxt_csr(dd, i, RCV_HDR_CNT, 0);
13729 		write_kctxt_csr(dd, i, RCV_HDR_ENT_SIZE, 0);
13730 		write_kctxt_csr(dd, i, RCV_HDR_SIZE, 0);
13731 		write_kctxt_csr(dd, i, RCV_HDR_TAIL_ADDR, 0);
13732 		write_kctxt_csr(dd, i, RCV_AVAIL_TIME_OUT, 0);
13733 		write_kctxt_csr(dd, i, RCV_HDR_OVFL_CNT, 0);
13734 
13735 		/* user */
13736 		/* RCV_HDR_TAIL read-only */
13737 		write_uctxt_csr(dd, i, RCV_HDR_HEAD, 0);
13738 		/* RCV_EGR_INDEX_TAIL read-only */
13739 		write_uctxt_csr(dd, i, RCV_EGR_INDEX_HEAD, 0);
13740 		/* RCV_EGR_OFFSET_TAIL read-only */
13741 		for (j = 0; j < RXE_NUM_TID_FLOWS; j++) {
13742 			write_uctxt_csr(dd, i,
13743 					RCV_TID_FLOW_TABLE + (8 * j), 0);
13744 		}
13745 	}
13746 }
13747 
13748 /*
13749  * Set sc2vl tables.
13750  *
13751  * They power on to zeros, so to avoid send context errors
13752  * they need to be set:
13753  *
13754  * SC 0-7 -> VL 0-7 (respectively)
13755  * SC 15  -> VL 15
13756  * otherwise
13757  *        -> VL 0
13758  */
13759 static void init_sc2vl_tables(struct hfi1_devdata *dd)
13760 {
13761 	int i;
13762 	/* init per architecture spec, constrained by hardware capability */
13763 
13764 	/* HFI maps sent packets */
13765 	write_csr(dd, SEND_SC2VLT0, SC2VL_VAL(
13766 		0,
13767 		0, 0, 1, 1,
13768 		2, 2, 3, 3,
13769 		4, 4, 5, 5,
13770 		6, 6, 7, 7));
13771 	write_csr(dd, SEND_SC2VLT1, SC2VL_VAL(
13772 		1,
13773 		8, 0, 9, 0,
13774 		10, 0, 11, 0,
13775 		12, 0, 13, 0,
13776 		14, 0, 15, 15));
13777 	write_csr(dd, SEND_SC2VLT2, SC2VL_VAL(
13778 		2,
13779 		16, 0, 17, 0,
13780 		18, 0, 19, 0,
13781 		20, 0, 21, 0,
13782 		22, 0, 23, 0));
13783 	write_csr(dd, SEND_SC2VLT3, SC2VL_VAL(
13784 		3,
13785 		24, 0, 25, 0,
13786 		26, 0, 27, 0,
13787 		28, 0, 29, 0,
13788 		30, 0, 31, 0));
13789 
13790 	/* DC maps received packets */
13791 	write_csr(dd, DCC_CFG_SC_VL_TABLE_15_0, DC_SC_VL_VAL(
13792 		15_0,
13793 		0, 0, 1, 1,  2, 2,  3, 3,  4, 4,  5, 5,  6, 6,  7,  7,
13794 		8, 0, 9, 0, 10, 0, 11, 0, 12, 0, 13, 0, 14, 0, 15, 15));
13795 	write_csr(dd, DCC_CFG_SC_VL_TABLE_31_16, DC_SC_VL_VAL(
13796 		31_16,
13797 		16, 0, 17, 0, 18, 0, 19, 0, 20, 0, 21, 0, 22, 0, 23, 0,
13798 		24, 0, 25, 0, 26, 0, 27, 0, 28, 0, 29, 0, 30, 0, 31, 0));
13799 
13800 	/* initialize the cached sc2vl values consistently with h/w */
13801 	for (i = 0; i < 32; i++) {
13802 		if (i < 8 || i == 15)
13803 			*((u8 *)(dd->sc2vl) + i) = (u8)i;
13804 		else
13805 			*((u8 *)(dd->sc2vl) + i) = 0;
13806 	}
13807 }
13808 
13809 /*
13810  * Read chip sizes and then reset parts to sane, disabled, values.  We cannot
13811  * depend on the chip going through a power-on reset - a driver may be loaded
13812  * and unloaded many times.
13813  *
13814  * Do not write any CSR values to the chip in this routine - there may be
13815  * a reset following the (possible) FLR in this routine.
13816  *
13817  */
13818 static int init_chip(struct hfi1_devdata *dd)
13819 {
13820 	int i;
13821 	int ret = 0;
13822 
13823 	/*
13824 	 * Put the HFI CSRs in a known state.
13825 	 * Combine this with a DC reset.
13826 	 *
13827 	 * Stop the device from doing anything while we do a
13828 	 * reset.  We know there are no other active users of
13829 	 * the device since we are now in charge.  Turn off
13830 	 * off all outbound and inbound traffic and make sure
13831 	 * the device does not generate any interrupts.
13832 	 */
13833 
13834 	/* disable send contexts and SDMA engines */
13835 	write_csr(dd, SEND_CTRL, 0);
13836 	for (i = 0; i < chip_send_contexts(dd); i++)
13837 		write_kctxt_csr(dd, i, SEND_CTXT_CTRL, 0);
13838 	for (i = 0; i < chip_sdma_engines(dd); i++)
13839 		write_kctxt_csr(dd, i, SEND_DMA_CTRL, 0);
13840 	/* disable port (turn off RXE inbound traffic) and contexts */
13841 	write_csr(dd, RCV_CTRL, 0);
13842 	for (i = 0; i < chip_rcv_contexts(dd); i++)
13843 		write_csr(dd, RCV_CTXT_CTRL, 0);
13844 	/* mask all interrupt sources */
13845 	for (i = 0; i < CCE_NUM_INT_CSRS; i++)
13846 		write_csr(dd, CCE_INT_MASK + (8 * i), 0ull);
13847 
13848 	/*
13849 	 * DC Reset: do a full DC reset before the register clear.
13850 	 * A recommended length of time to hold is one CSR read,
13851 	 * so reread the CceDcCtrl.  Then, hold the DC in reset
13852 	 * across the clear.
13853 	 */
13854 	write_csr(dd, CCE_DC_CTRL, CCE_DC_CTRL_DC_RESET_SMASK);
13855 	(void)read_csr(dd, CCE_DC_CTRL);
13856 
13857 	if (use_flr) {
13858 		/*
13859 		 * A FLR will reset the SPC core and part of the PCIe.
13860 		 * The parts that need to be restored have already been
13861 		 * saved.
13862 		 */
13863 		dd_dev_info(dd, "Resetting CSRs with FLR\n");
13864 
13865 		/* do the FLR, the DC reset will remain */
13866 		pcie_flr(dd->pcidev);
13867 
13868 		/* restore command and BARs */
13869 		ret = restore_pci_variables(dd);
13870 		if (ret) {
13871 			dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13872 				   __func__);
13873 			return ret;
13874 		}
13875 
13876 		if (is_ax(dd)) {
13877 			dd_dev_info(dd, "Resetting CSRs with FLR\n");
13878 			pcie_flr(dd->pcidev);
13879 			ret = restore_pci_variables(dd);
13880 			if (ret) {
13881 				dd_dev_err(dd, "%s: Could not restore PCI variables\n",
13882 					   __func__);
13883 				return ret;
13884 			}
13885 		}
13886 	} else {
13887 		dd_dev_info(dd, "Resetting CSRs with writes\n");
13888 		reset_cce_csrs(dd);
13889 		reset_txe_csrs(dd);
13890 		reset_rxe_csrs(dd);
13891 		reset_misc_csrs(dd);
13892 	}
13893 	/* clear the DC reset */
13894 	write_csr(dd, CCE_DC_CTRL, 0);
13895 
13896 	/* Set the LED off */
13897 	setextled(dd, 0);
13898 
13899 	/*
13900 	 * Clear the QSFP reset.
13901 	 * An FLR enforces a 0 on all out pins. The driver does not touch
13902 	 * ASIC_QSFPn_OUT otherwise.  This leaves RESET_N low and
13903 	 * anything plugged constantly in reset, if it pays attention
13904 	 * to RESET_N.
13905 	 * Prime examples of this are optical cables. Set all pins high.
13906 	 * I2CCLK and I2CDAT will change per direction, and INT_N and
13907 	 * MODPRS_N are input only and their value is ignored.
13908 	 */
13909 	write_csr(dd, ASIC_QSFP1_OUT, 0x1f);
13910 	write_csr(dd, ASIC_QSFP2_OUT, 0x1f);
13911 	init_chip_resources(dd);
13912 	return ret;
13913 }
13914 
13915 static void init_early_variables(struct hfi1_devdata *dd)
13916 {
13917 	int i;
13918 
13919 	/* assign link credit variables */
13920 	dd->vau = CM_VAU;
13921 	dd->link_credits = CM_GLOBAL_CREDITS;
13922 	if (is_ax(dd))
13923 		dd->link_credits--;
13924 	dd->vcu = cu_to_vcu(hfi1_cu);
13925 	/* enough room for 8 MAD packets plus header - 17K */
13926 	dd->vl15_init = (8 * (2048 + 128)) / vau_to_au(dd->vau);
13927 	if (dd->vl15_init > dd->link_credits)
13928 		dd->vl15_init = dd->link_credits;
13929 
13930 	write_uninitialized_csrs_and_memories(dd);
13931 
13932 	if (HFI1_CAP_IS_KSET(PKEY_CHECK))
13933 		for (i = 0; i < dd->num_pports; i++) {
13934 			struct hfi1_pportdata *ppd = &dd->pport[i];
13935 
13936 			set_partition_keys(ppd);
13937 		}
13938 	init_sc2vl_tables(dd);
13939 }
13940 
13941 static void init_kdeth_qp(struct hfi1_devdata *dd)
13942 {
13943 	/* user changed the KDETH_QP */
13944 	if (kdeth_qp != 0 && kdeth_qp >= 0xff) {
13945 		/* out of range or illegal value */
13946 		dd_dev_err(dd, "Invalid KDETH queue pair prefix, ignoring");
13947 		kdeth_qp = 0;
13948 	}
13949 	if (kdeth_qp == 0)	/* not set, or failed range check */
13950 		kdeth_qp = DEFAULT_KDETH_QP;
13951 
13952 	write_csr(dd, SEND_BTH_QP,
13953 		  (kdeth_qp & SEND_BTH_QP_KDETH_QP_MASK) <<
13954 		  SEND_BTH_QP_KDETH_QP_SHIFT);
13955 
13956 	write_csr(dd, RCV_BTH_QP,
13957 		  (kdeth_qp & RCV_BTH_QP_KDETH_QP_MASK) <<
13958 		  RCV_BTH_QP_KDETH_QP_SHIFT);
13959 }
13960 
13961 /**
13962  * init_qpmap_table
13963  * @dd - device data
13964  * @first_ctxt - first context
13965  * @last_ctxt - first context
13966  *
13967  * This return sets the qpn mapping table that
13968  * is indexed by qpn[8:1].
13969  *
13970  * The routine will round robin the 256 settings
13971  * from first_ctxt to last_ctxt.
13972  *
13973  * The first/last looks ahead to having specialized
13974  * receive contexts for mgmt and bypass.  Normal
13975  * verbs traffic will assumed to be on a range
13976  * of receive contexts.
13977  */
13978 static void init_qpmap_table(struct hfi1_devdata *dd,
13979 			     u32 first_ctxt,
13980 			     u32 last_ctxt)
13981 {
13982 	u64 reg = 0;
13983 	u64 regno = RCV_QP_MAP_TABLE;
13984 	int i;
13985 	u64 ctxt = first_ctxt;
13986 
13987 	for (i = 0; i < 256; i++) {
13988 		reg |= ctxt << (8 * (i % 8));
13989 		ctxt++;
13990 		if (ctxt > last_ctxt)
13991 			ctxt = first_ctxt;
13992 		if (i % 8 == 7) {
13993 			write_csr(dd, regno, reg);
13994 			reg = 0;
13995 			regno += 8;
13996 		}
13997 	}
13998 
13999 	add_rcvctrl(dd, RCV_CTRL_RCV_QP_MAP_ENABLE_SMASK
14000 			| RCV_CTRL_RCV_BYPASS_ENABLE_SMASK);
14001 }
14002 
14003 struct rsm_map_table {
14004 	u64 map[NUM_MAP_REGS];
14005 	unsigned int used;
14006 };
14007 
14008 struct rsm_rule_data {
14009 	u8 offset;
14010 	u8 pkt_type;
14011 	u32 field1_off;
14012 	u32 field2_off;
14013 	u32 index1_off;
14014 	u32 index1_width;
14015 	u32 index2_off;
14016 	u32 index2_width;
14017 	u32 mask1;
14018 	u32 value1;
14019 	u32 mask2;
14020 	u32 value2;
14021 };
14022 
14023 /*
14024  * Return an initialized RMT map table for users to fill in.  OK if it
14025  * returns NULL, indicating no table.
14026  */
14027 static struct rsm_map_table *alloc_rsm_map_table(struct hfi1_devdata *dd)
14028 {
14029 	struct rsm_map_table *rmt;
14030 	u8 rxcontext = is_ax(dd) ? 0 : 0xff;  /* 0 is default if a0 ver. */
14031 
14032 	rmt = kmalloc(sizeof(*rmt), GFP_KERNEL);
14033 	if (rmt) {
14034 		memset(rmt->map, rxcontext, sizeof(rmt->map));
14035 		rmt->used = 0;
14036 	}
14037 
14038 	return rmt;
14039 }
14040 
14041 /*
14042  * Write the final RMT map table to the chip and free the table.  OK if
14043  * table is NULL.
14044  */
14045 static void complete_rsm_map_table(struct hfi1_devdata *dd,
14046 				   struct rsm_map_table *rmt)
14047 {
14048 	int i;
14049 
14050 	if (rmt) {
14051 		/* write table to chip */
14052 		for (i = 0; i < NUM_MAP_REGS; i++)
14053 			write_csr(dd, RCV_RSM_MAP_TABLE + (8 * i), rmt->map[i]);
14054 
14055 		/* enable RSM */
14056 		add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14057 	}
14058 }
14059 
14060 /*
14061  * Add a receive side mapping rule.
14062  */
14063 static void add_rsm_rule(struct hfi1_devdata *dd, u8 rule_index,
14064 			 struct rsm_rule_data *rrd)
14065 {
14066 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index),
14067 		  (u64)rrd->offset << RCV_RSM_CFG_OFFSET_SHIFT |
14068 		  1ull << rule_index | /* enable bit */
14069 		  (u64)rrd->pkt_type << RCV_RSM_CFG_PACKET_TYPE_SHIFT);
14070 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index),
14071 		  (u64)rrd->field1_off << RCV_RSM_SELECT_FIELD1_OFFSET_SHIFT |
14072 		  (u64)rrd->field2_off << RCV_RSM_SELECT_FIELD2_OFFSET_SHIFT |
14073 		  (u64)rrd->index1_off << RCV_RSM_SELECT_INDEX1_OFFSET_SHIFT |
14074 		  (u64)rrd->index1_width << RCV_RSM_SELECT_INDEX1_WIDTH_SHIFT |
14075 		  (u64)rrd->index2_off << RCV_RSM_SELECT_INDEX2_OFFSET_SHIFT |
14076 		  (u64)rrd->index2_width << RCV_RSM_SELECT_INDEX2_WIDTH_SHIFT);
14077 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index),
14078 		  (u64)rrd->mask1 << RCV_RSM_MATCH_MASK1_SHIFT |
14079 		  (u64)rrd->value1 << RCV_RSM_MATCH_VALUE1_SHIFT |
14080 		  (u64)rrd->mask2 << RCV_RSM_MATCH_MASK2_SHIFT |
14081 		  (u64)rrd->value2 << RCV_RSM_MATCH_VALUE2_SHIFT);
14082 }
14083 
14084 /*
14085  * Clear a receive side mapping rule.
14086  */
14087 static void clear_rsm_rule(struct hfi1_devdata *dd, u8 rule_index)
14088 {
14089 	write_csr(dd, RCV_RSM_CFG + (8 * rule_index), 0);
14090 	write_csr(dd, RCV_RSM_SELECT + (8 * rule_index), 0);
14091 	write_csr(dd, RCV_RSM_MATCH + (8 * rule_index), 0);
14092 }
14093 
14094 /* return the number of RSM map table entries that will be used for QOS */
14095 static int qos_rmt_entries(struct hfi1_devdata *dd, unsigned int *mp,
14096 			   unsigned int *np)
14097 {
14098 	int i;
14099 	unsigned int m, n;
14100 	u8 max_by_vl = 0;
14101 
14102 	/* is QOS active at all? */
14103 	if (dd->n_krcv_queues <= MIN_KERNEL_KCTXTS ||
14104 	    num_vls == 1 ||
14105 	    krcvqsset <= 1)
14106 		goto no_qos;
14107 
14108 	/* determine bits for qpn */
14109 	for (i = 0; i < min_t(unsigned int, num_vls, krcvqsset); i++)
14110 		if (krcvqs[i] > max_by_vl)
14111 			max_by_vl = krcvqs[i];
14112 	if (max_by_vl > 32)
14113 		goto no_qos;
14114 	m = ilog2(__roundup_pow_of_two(max_by_vl));
14115 
14116 	/* determine bits for vl */
14117 	n = ilog2(__roundup_pow_of_two(num_vls));
14118 
14119 	/* reject if too much is used */
14120 	if ((m + n) > 7)
14121 		goto no_qos;
14122 
14123 	if (mp)
14124 		*mp = m;
14125 	if (np)
14126 		*np = n;
14127 
14128 	return 1 << (m + n);
14129 
14130 no_qos:
14131 	if (mp)
14132 		*mp = 0;
14133 	if (np)
14134 		*np = 0;
14135 	return 0;
14136 }
14137 
14138 /**
14139  * init_qos - init RX qos
14140  * @dd - device data
14141  * @rmt - RSM map table
14142  *
14143  * This routine initializes Rule 0 and the RSM map table to implement
14144  * quality of service (qos).
14145  *
14146  * If all of the limit tests succeed, qos is applied based on the array
14147  * interpretation of krcvqs where entry 0 is VL0.
14148  *
14149  * The number of vl bits (n) and the number of qpn bits (m) are computed to
14150  * feed both the RSM map table and the single rule.
14151  */
14152 static void init_qos(struct hfi1_devdata *dd, struct rsm_map_table *rmt)
14153 {
14154 	struct rsm_rule_data rrd;
14155 	unsigned qpns_per_vl, ctxt, i, qpn, n = 1, m;
14156 	unsigned int rmt_entries;
14157 	u64 reg;
14158 
14159 	if (!rmt)
14160 		goto bail;
14161 	rmt_entries = qos_rmt_entries(dd, &m, &n);
14162 	if (rmt_entries == 0)
14163 		goto bail;
14164 	qpns_per_vl = 1 << m;
14165 
14166 	/* enough room in the map table? */
14167 	rmt_entries = 1 << (m + n);
14168 	if (rmt->used + rmt_entries >= NUM_MAP_ENTRIES)
14169 		goto bail;
14170 
14171 	/* add qos entries to the the RSM map table */
14172 	for (i = 0, ctxt = FIRST_KERNEL_KCTXT; i < num_vls; i++) {
14173 		unsigned tctxt;
14174 
14175 		for (qpn = 0, tctxt = ctxt;
14176 		     krcvqs[i] && qpn < qpns_per_vl; qpn++) {
14177 			unsigned idx, regoff, regidx;
14178 
14179 			/* generate the index the hardware will produce */
14180 			idx = rmt->used + ((qpn << n) ^ i);
14181 			regoff = (idx % 8) * 8;
14182 			regidx = idx / 8;
14183 			/* replace default with context number */
14184 			reg = rmt->map[regidx];
14185 			reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK
14186 				<< regoff);
14187 			reg |= (u64)(tctxt++) << regoff;
14188 			rmt->map[regidx] = reg;
14189 			if (tctxt == ctxt + krcvqs[i])
14190 				tctxt = ctxt;
14191 		}
14192 		ctxt += krcvqs[i];
14193 	}
14194 
14195 	rrd.offset = rmt->used;
14196 	rrd.pkt_type = 2;
14197 	rrd.field1_off = LRH_BTH_MATCH_OFFSET;
14198 	rrd.field2_off = LRH_SC_MATCH_OFFSET;
14199 	rrd.index1_off = LRH_SC_SELECT_OFFSET;
14200 	rrd.index1_width = n;
14201 	rrd.index2_off = QPN_SELECT_OFFSET;
14202 	rrd.index2_width = m + n;
14203 	rrd.mask1 = LRH_BTH_MASK;
14204 	rrd.value1 = LRH_BTH_VALUE;
14205 	rrd.mask2 = LRH_SC_MASK;
14206 	rrd.value2 = LRH_SC_VALUE;
14207 
14208 	/* add rule 0 */
14209 	add_rsm_rule(dd, RSM_INS_VERBS, &rrd);
14210 
14211 	/* mark RSM map entries as used */
14212 	rmt->used += rmt_entries;
14213 	/* map everything else to the mcast/err/vl15 context */
14214 	init_qpmap_table(dd, HFI1_CTRL_CTXT, HFI1_CTRL_CTXT);
14215 	dd->qos_shift = n + 1;
14216 	return;
14217 bail:
14218 	dd->qos_shift = 1;
14219 	init_qpmap_table(dd, FIRST_KERNEL_KCTXT, dd->n_krcv_queues - 1);
14220 }
14221 
14222 static void init_user_fecn_handling(struct hfi1_devdata *dd,
14223 				    struct rsm_map_table *rmt)
14224 {
14225 	struct rsm_rule_data rrd;
14226 	u64 reg;
14227 	int i, idx, regoff, regidx;
14228 	u8 offset;
14229 
14230 	/* there needs to be enough room in the map table */
14231 	if (rmt->used + dd->num_user_contexts >= NUM_MAP_ENTRIES) {
14232 		dd_dev_err(dd, "User FECN handling disabled - too many user contexts allocated\n");
14233 		return;
14234 	}
14235 
14236 	/*
14237 	 * RSM will extract the destination context as an index into the
14238 	 * map table.  The destination contexts are a sequential block
14239 	 * in the range first_dyn_alloc_ctxt...num_rcv_contexts-1 (inclusive).
14240 	 * Map entries are accessed as offset + extracted value.  Adjust
14241 	 * the added offset so this sequence can be placed anywhere in
14242 	 * the table - as long as the entries themselves do not wrap.
14243 	 * There are only enough bits in offset for the table size, so
14244 	 * start with that to allow for a "negative" offset.
14245 	 */
14246 	offset = (u8)(NUM_MAP_ENTRIES + (int)rmt->used -
14247 						(int)dd->first_dyn_alloc_ctxt);
14248 
14249 	for (i = dd->first_dyn_alloc_ctxt, idx = rmt->used;
14250 				i < dd->num_rcv_contexts; i++, idx++) {
14251 		/* replace with identity mapping */
14252 		regoff = (idx % 8) * 8;
14253 		regidx = idx / 8;
14254 		reg = rmt->map[regidx];
14255 		reg &= ~(RCV_RSM_MAP_TABLE_RCV_CONTEXT_A_MASK << regoff);
14256 		reg |= (u64)i << regoff;
14257 		rmt->map[regidx] = reg;
14258 	}
14259 
14260 	/*
14261 	 * For RSM intercept of Expected FECN packets:
14262 	 * o packet type 0 - expected
14263 	 * o match on F (bit 95), using select/match 1, and
14264 	 * o match on SH (bit 133), using select/match 2.
14265 	 *
14266 	 * Use index 1 to extract the 8-bit receive context from DestQP
14267 	 * (start at bit 64).  Use that as the RSM map table index.
14268 	 */
14269 	rrd.offset = offset;
14270 	rrd.pkt_type = 0;
14271 	rrd.field1_off = 95;
14272 	rrd.field2_off = 133;
14273 	rrd.index1_off = 64;
14274 	rrd.index1_width = 8;
14275 	rrd.index2_off = 0;
14276 	rrd.index2_width = 0;
14277 	rrd.mask1 = 1;
14278 	rrd.value1 = 1;
14279 	rrd.mask2 = 1;
14280 	rrd.value2 = 1;
14281 
14282 	/* add rule 1 */
14283 	add_rsm_rule(dd, RSM_INS_FECN, &rrd);
14284 
14285 	rmt->used += dd->num_user_contexts;
14286 }
14287 
14288 /* Initialize RSM for VNIC */
14289 void hfi1_init_vnic_rsm(struct hfi1_devdata *dd)
14290 {
14291 	u8 i, j;
14292 	u8 ctx_id = 0;
14293 	u64 reg;
14294 	u32 regoff;
14295 	struct rsm_rule_data rrd;
14296 
14297 	if (hfi1_vnic_is_rsm_full(dd, NUM_VNIC_MAP_ENTRIES)) {
14298 		dd_dev_err(dd, "Vnic RSM disabled, rmt entries used = %d\n",
14299 			   dd->vnic.rmt_start);
14300 		return;
14301 	}
14302 
14303 	dev_dbg(&(dd)->pcidev->dev, "Vnic rsm start = %d, end %d\n",
14304 		dd->vnic.rmt_start,
14305 		dd->vnic.rmt_start + NUM_VNIC_MAP_ENTRIES);
14306 
14307 	/* Update RSM mapping table, 32 regs, 256 entries - 1 ctx per byte */
14308 	regoff = RCV_RSM_MAP_TABLE + (dd->vnic.rmt_start / 8) * 8;
14309 	reg = read_csr(dd, regoff);
14310 	for (i = 0; i < NUM_VNIC_MAP_ENTRIES; i++) {
14311 		/* Update map register with vnic context */
14312 		j = (dd->vnic.rmt_start + i) % 8;
14313 		reg &= ~(0xffllu << (j * 8));
14314 		reg |= (u64)dd->vnic.ctxt[ctx_id++]->ctxt << (j * 8);
14315 		/* Wrap up vnic ctx index */
14316 		ctx_id %= dd->vnic.num_ctxt;
14317 		/* Write back map register */
14318 		if (j == 7 || ((i + 1) == NUM_VNIC_MAP_ENTRIES)) {
14319 			dev_dbg(&(dd)->pcidev->dev,
14320 				"Vnic rsm map reg[%d] =0x%llx\n",
14321 				regoff - RCV_RSM_MAP_TABLE, reg);
14322 
14323 			write_csr(dd, regoff, reg);
14324 			regoff += 8;
14325 			if (i < (NUM_VNIC_MAP_ENTRIES - 1))
14326 				reg = read_csr(dd, regoff);
14327 		}
14328 	}
14329 
14330 	/* Add rule for vnic */
14331 	rrd.offset = dd->vnic.rmt_start;
14332 	rrd.pkt_type = 4;
14333 	/* Match 16B packets */
14334 	rrd.field1_off = L2_TYPE_MATCH_OFFSET;
14335 	rrd.mask1 = L2_TYPE_MASK;
14336 	rrd.value1 = L2_16B_VALUE;
14337 	/* Match ETH L4 packets */
14338 	rrd.field2_off = L4_TYPE_MATCH_OFFSET;
14339 	rrd.mask2 = L4_16B_TYPE_MASK;
14340 	rrd.value2 = L4_16B_ETH_VALUE;
14341 	/* Calc context from veswid and entropy */
14342 	rrd.index1_off = L4_16B_HDR_VESWID_OFFSET;
14343 	rrd.index1_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14344 	rrd.index2_off = L2_16B_ENTROPY_OFFSET;
14345 	rrd.index2_width = ilog2(NUM_VNIC_MAP_ENTRIES);
14346 	add_rsm_rule(dd, RSM_INS_VNIC, &rrd);
14347 
14348 	/* Enable RSM if not already enabled */
14349 	add_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14350 }
14351 
14352 void hfi1_deinit_vnic_rsm(struct hfi1_devdata *dd)
14353 {
14354 	clear_rsm_rule(dd, RSM_INS_VNIC);
14355 
14356 	/* Disable RSM if used only by vnic */
14357 	if (dd->vnic.rmt_start == 0)
14358 		clear_rcvctrl(dd, RCV_CTRL_RCV_RSM_ENABLE_SMASK);
14359 }
14360 
14361 static void init_rxe(struct hfi1_devdata *dd)
14362 {
14363 	struct rsm_map_table *rmt;
14364 	u64 val;
14365 
14366 	/* enable all receive errors */
14367 	write_csr(dd, RCV_ERR_MASK, ~0ull);
14368 
14369 	rmt = alloc_rsm_map_table(dd);
14370 	/* set up QOS, including the QPN map table */
14371 	init_qos(dd, rmt);
14372 	init_user_fecn_handling(dd, rmt);
14373 	complete_rsm_map_table(dd, rmt);
14374 	/* record number of used rsm map entries for vnic */
14375 	dd->vnic.rmt_start = rmt->used;
14376 	kfree(rmt);
14377 
14378 	/*
14379 	 * make sure RcvCtrl.RcvWcb <= PCIe Device Control
14380 	 * Register Max_Payload_Size (PCI_EXP_DEVCTL in Linux PCIe config
14381 	 * space, PciCfgCap2.MaxPayloadSize in HFI).  There is only one
14382 	 * invalid configuration: RcvCtrl.RcvWcb set to its max of 256 and
14383 	 * Max_PayLoad_Size set to its minimum of 128.
14384 	 *
14385 	 * Presently, RcvCtrl.RcvWcb is not modified from its default of 0
14386 	 * (64 bytes).  Max_Payload_Size is possibly modified upward in
14387 	 * tune_pcie_caps() which is called after this routine.
14388 	 */
14389 
14390 	/* Have 16 bytes (4DW) of bypass header available in header queue */
14391 	val = read_csr(dd, RCV_BYPASS);
14392 	val &= ~RCV_BYPASS_HDR_SIZE_SMASK;
14393 	val |= ((4ull & RCV_BYPASS_HDR_SIZE_MASK) <<
14394 		RCV_BYPASS_HDR_SIZE_SHIFT);
14395 	write_csr(dd, RCV_BYPASS, val);
14396 }
14397 
14398 static void init_other(struct hfi1_devdata *dd)
14399 {
14400 	/* enable all CCE errors */
14401 	write_csr(dd, CCE_ERR_MASK, ~0ull);
14402 	/* enable *some* Misc errors */
14403 	write_csr(dd, MISC_ERR_MASK, DRIVER_MISC_MASK);
14404 	/* enable all DC errors, except LCB */
14405 	write_csr(dd, DCC_ERR_FLG_EN, ~0ull);
14406 	write_csr(dd, DC_DC8051_ERR_EN, ~0ull);
14407 }
14408 
14409 /*
14410  * Fill out the given AU table using the given CU.  A CU is defined in terms
14411  * AUs.  The table is a an encoding: given the index, how many AUs does that
14412  * represent?
14413  *
14414  * NOTE: Assumes that the register layout is the same for the
14415  * local and remote tables.
14416  */
14417 static void assign_cm_au_table(struct hfi1_devdata *dd, u32 cu,
14418 			       u32 csr0to3, u32 csr4to7)
14419 {
14420 	write_csr(dd, csr0to3,
14421 		  0ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE0_SHIFT |
14422 		  1ull << SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE1_SHIFT |
14423 		  2ull * cu <<
14424 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE2_SHIFT |
14425 		  4ull * cu <<
14426 		  SEND_CM_LOCAL_AU_TABLE0_TO3_LOCAL_AU_TABLE3_SHIFT);
14427 	write_csr(dd, csr4to7,
14428 		  8ull * cu <<
14429 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE4_SHIFT |
14430 		  16ull * cu <<
14431 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE5_SHIFT |
14432 		  32ull * cu <<
14433 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE6_SHIFT |
14434 		  64ull * cu <<
14435 		  SEND_CM_LOCAL_AU_TABLE4_TO7_LOCAL_AU_TABLE7_SHIFT);
14436 }
14437 
14438 static void assign_local_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14439 {
14440 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_LOCAL_AU_TABLE0_TO3,
14441 			   SEND_CM_LOCAL_AU_TABLE4_TO7);
14442 }
14443 
14444 void assign_remote_cm_au_table(struct hfi1_devdata *dd, u8 vcu)
14445 {
14446 	assign_cm_au_table(dd, vcu_to_cu(vcu), SEND_CM_REMOTE_AU_TABLE0_TO3,
14447 			   SEND_CM_REMOTE_AU_TABLE4_TO7);
14448 }
14449 
14450 static void init_txe(struct hfi1_devdata *dd)
14451 {
14452 	int i;
14453 
14454 	/* enable all PIO, SDMA, general, and Egress errors */
14455 	write_csr(dd, SEND_PIO_ERR_MASK, ~0ull);
14456 	write_csr(dd, SEND_DMA_ERR_MASK, ~0ull);
14457 	write_csr(dd, SEND_ERR_MASK, ~0ull);
14458 	write_csr(dd, SEND_EGRESS_ERR_MASK, ~0ull);
14459 
14460 	/* enable all per-context and per-SDMA engine errors */
14461 	for (i = 0; i < chip_send_contexts(dd); i++)
14462 		write_kctxt_csr(dd, i, SEND_CTXT_ERR_MASK, ~0ull);
14463 	for (i = 0; i < chip_sdma_engines(dd); i++)
14464 		write_kctxt_csr(dd, i, SEND_DMA_ENG_ERR_MASK, ~0ull);
14465 
14466 	/* set the local CU to AU mapping */
14467 	assign_local_cm_au_table(dd, dd->vcu);
14468 
14469 	/*
14470 	 * Set reasonable default for Credit Return Timer
14471 	 * Don't set on Simulator - causes it to choke.
14472 	 */
14473 	if (dd->icode != ICODE_FUNCTIONAL_SIMULATOR)
14474 		write_csr(dd, SEND_CM_TIMER_CTRL, HFI1_CREDIT_RETURN_RATE);
14475 }
14476 
14477 int hfi1_set_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14478 		       u16 jkey)
14479 {
14480 	u8 hw_ctxt;
14481 	u64 reg;
14482 
14483 	if (!rcd || !rcd->sc)
14484 		return -EINVAL;
14485 
14486 	hw_ctxt = rcd->sc->hw_context;
14487 	reg = SEND_CTXT_CHECK_JOB_KEY_MASK_SMASK | /* mask is always 1's */
14488 		((jkey & SEND_CTXT_CHECK_JOB_KEY_VALUE_MASK) <<
14489 		 SEND_CTXT_CHECK_JOB_KEY_VALUE_SHIFT);
14490 	/* JOB_KEY_ALLOW_PERMISSIVE is not allowed by default */
14491 	if (HFI1_CAP_KGET_MASK(rcd->flags, ALLOW_PERM_JKEY))
14492 		reg |= SEND_CTXT_CHECK_JOB_KEY_ALLOW_PERMISSIVE_SMASK;
14493 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, reg);
14494 	/*
14495 	 * Enable send-side J_KEY integrity check, unless this is A0 h/w
14496 	 */
14497 	if (!is_ax(dd)) {
14498 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14499 		reg |= SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14500 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14501 	}
14502 
14503 	/* Enable J_KEY check on receive context. */
14504 	reg = RCV_KEY_CTRL_JOB_KEY_ENABLE_SMASK |
14505 		((jkey & RCV_KEY_CTRL_JOB_KEY_VALUE_MASK) <<
14506 		 RCV_KEY_CTRL_JOB_KEY_VALUE_SHIFT);
14507 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, reg);
14508 
14509 	return 0;
14510 }
14511 
14512 int hfi1_clear_ctxt_jkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
14513 {
14514 	u8 hw_ctxt;
14515 	u64 reg;
14516 
14517 	if (!rcd || !rcd->sc)
14518 		return -EINVAL;
14519 
14520 	hw_ctxt = rcd->sc->hw_context;
14521 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_JOB_KEY, 0);
14522 	/*
14523 	 * Disable send-side J_KEY integrity check, unless this is A0 h/w.
14524 	 * This check would not have been enabled for A0 h/w, see
14525 	 * set_ctxt_jkey().
14526 	 */
14527 	if (!is_ax(dd)) {
14528 		reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14529 		reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_JOB_KEY_SMASK;
14530 		write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14531 	}
14532 	/* Turn off the J_KEY on the receive side */
14533 	write_kctxt_csr(dd, rcd->ctxt, RCV_KEY_CTRL, 0);
14534 
14535 	return 0;
14536 }
14537 
14538 int hfi1_set_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd,
14539 		       u16 pkey)
14540 {
14541 	u8 hw_ctxt;
14542 	u64 reg;
14543 
14544 	if (!rcd || !rcd->sc)
14545 		return -EINVAL;
14546 
14547 	hw_ctxt = rcd->sc->hw_context;
14548 	reg = ((u64)pkey & SEND_CTXT_CHECK_PARTITION_KEY_VALUE_MASK) <<
14549 		SEND_CTXT_CHECK_PARTITION_KEY_VALUE_SHIFT;
14550 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, reg);
14551 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14552 	reg |= SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14553 	reg &= ~SEND_CTXT_CHECK_ENABLE_DISALLOW_KDETH_PACKETS_SMASK;
14554 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14555 
14556 	return 0;
14557 }
14558 
14559 int hfi1_clear_ctxt_pkey(struct hfi1_devdata *dd, struct hfi1_ctxtdata *ctxt)
14560 {
14561 	u8 hw_ctxt;
14562 	u64 reg;
14563 
14564 	if (!ctxt || !ctxt->sc)
14565 		return -EINVAL;
14566 
14567 	hw_ctxt = ctxt->sc->hw_context;
14568 	reg = read_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE);
14569 	reg &= ~SEND_CTXT_CHECK_ENABLE_CHECK_PARTITION_KEY_SMASK;
14570 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_ENABLE, reg);
14571 	write_kctxt_csr(dd, hw_ctxt, SEND_CTXT_CHECK_PARTITION_KEY, 0);
14572 
14573 	return 0;
14574 }
14575 
14576 /*
14577  * Start doing the clean up the the chip. Our clean up happens in multiple
14578  * stages and this is just the first.
14579  */
14580 void hfi1_start_cleanup(struct hfi1_devdata *dd)
14581 {
14582 	aspm_exit(dd);
14583 	free_cntrs(dd);
14584 	free_rcverr(dd);
14585 	finish_chip_resources(dd);
14586 }
14587 
14588 #define HFI_BASE_GUID(dev) \
14589 	((dev)->base_guid & ~(1ULL << GUID_HFI_INDEX_SHIFT))
14590 
14591 /*
14592  * Information can be shared between the two HFIs on the same ASIC
14593  * in the same OS.  This function finds the peer device and sets
14594  * up a shared structure.
14595  */
14596 static int init_asic_data(struct hfi1_devdata *dd)
14597 {
14598 	unsigned long flags;
14599 	struct hfi1_devdata *tmp, *peer = NULL;
14600 	struct hfi1_asic_data *asic_data;
14601 	int ret = 0;
14602 
14603 	/* pre-allocate the asic structure in case we are the first device */
14604 	asic_data = kzalloc(sizeof(*dd->asic_data), GFP_KERNEL);
14605 	if (!asic_data)
14606 		return -ENOMEM;
14607 
14608 	spin_lock_irqsave(&hfi1_devs_lock, flags);
14609 	/* Find our peer device */
14610 	list_for_each_entry(tmp, &hfi1_dev_list, list) {
14611 		if ((HFI_BASE_GUID(dd) == HFI_BASE_GUID(tmp)) &&
14612 		    dd->unit != tmp->unit) {
14613 			peer = tmp;
14614 			break;
14615 		}
14616 	}
14617 
14618 	if (peer) {
14619 		/* use already allocated structure */
14620 		dd->asic_data = peer->asic_data;
14621 		kfree(asic_data);
14622 	} else {
14623 		dd->asic_data = asic_data;
14624 		mutex_init(&dd->asic_data->asic_resource_mutex);
14625 	}
14626 	dd->asic_data->dds[dd->hfi1_id] = dd; /* self back-pointer */
14627 	spin_unlock_irqrestore(&hfi1_devs_lock, flags);
14628 
14629 	/* first one through - set up i2c devices */
14630 	if (!peer)
14631 		ret = set_up_i2c(dd, dd->asic_data);
14632 
14633 	return ret;
14634 }
14635 
14636 /*
14637  * Set dd->boardname.  Use a generic name if a name is not returned from
14638  * EFI variable space.
14639  *
14640  * Return 0 on success, -ENOMEM if space could not be allocated.
14641  */
14642 static int obtain_boardname(struct hfi1_devdata *dd)
14643 {
14644 	/* generic board description */
14645 	const char generic[] =
14646 		"Intel Omni-Path Host Fabric Interface Adapter 100 Series";
14647 	unsigned long size;
14648 	int ret;
14649 
14650 	ret = read_hfi1_efi_var(dd, "description", &size,
14651 				(void **)&dd->boardname);
14652 	if (ret) {
14653 		dd_dev_info(dd, "Board description not found\n");
14654 		/* use generic description */
14655 		dd->boardname = kstrdup(generic, GFP_KERNEL);
14656 		if (!dd->boardname)
14657 			return -ENOMEM;
14658 	}
14659 	return 0;
14660 }
14661 
14662 /*
14663  * Check the interrupt registers to make sure that they are mapped correctly.
14664  * It is intended to help user identify any mismapping by VMM when the driver
14665  * is running in a VM. This function should only be called before interrupt
14666  * is set up properly.
14667  *
14668  * Return 0 on success, -EINVAL on failure.
14669  */
14670 static int check_int_registers(struct hfi1_devdata *dd)
14671 {
14672 	u64 reg;
14673 	u64 all_bits = ~(u64)0;
14674 	u64 mask;
14675 
14676 	/* Clear CceIntMask[0] to avoid raising any interrupts */
14677 	mask = read_csr(dd, CCE_INT_MASK);
14678 	write_csr(dd, CCE_INT_MASK, 0ull);
14679 	reg = read_csr(dd, CCE_INT_MASK);
14680 	if (reg)
14681 		goto err_exit;
14682 
14683 	/* Clear all interrupt status bits */
14684 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14685 	reg = read_csr(dd, CCE_INT_STATUS);
14686 	if (reg)
14687 		goto err_exit;
14688 
14689 	/* Set all interrupt status bits */
14690 	write_csr(dd, CCE_INT_FORCE, all_bits);
14691 	reg = read_csr(dd, CCE_INT_STATUS);
14692 	if (reg != all_bits)
14693 		goto err_exit;
14694 
14695 	/* Restore the interrupt mask */
14696 	write_csr(dd, CCE_INT_CLEAR, all_bits);
14697 	write_csr(dd, CCE_INT_MASK, mask);
14698 
14699 	return 0;
14700 err_exit:
14701 	write_csr(dd, CCE_INT_MASK, mask);
14702 	dd_dev_err(dd, "Interrupt registers not properly mapped by VMM\n");
14703 	return -EINVAL;
14704 }
14705 
14706 /**
14707  * hfi1_init_dd() - Initialize most of the dd structure.
14708  * @dev: the pci_dev for hfi1_ib device
14709  * @ent: pci_device_id struct for this dev
14710  *
14711  * This is global, and is called directly at init to set up the
14712  * chip-specific function pointers for later use.
14713  */
14714 int hfi1_init_dd(struct hfi1_devdata *dd)
14715 {
14716 	struct pci_dev *pdev = dd->pcidev;
14717 	struct hfi1_pportdata *ppd;
14718 	u64 reg;
14719 	int i, ret;
14720 	static const char * const inames[] = { /* implementation names */
14721 		"RTL silicon",
14722 		"RTL VCS simulation",
14723 		"RTL FPGA emulation",
14724 		"Functional simulator"
14725 	};
14726 	struct pci_dev *parent = pdev->bus->self;
14727 	u32 sdma_engines = chip_sdma_engines(dd);
14728 
14729 	ppd = dd->pport;
14730 	for (i = 0; i < dd->num_pports; i++, ppd++) {
14731 		int vl;
14732 		/* init common fields */
14733 		hfi1_init_pportdata(pdev, ppd, dd, 0, 1);
14734 		/* DC supports 4 link widths */
14735 		ppd->link_width_supported =
14736 			OPA_LINK_WIDTH_1X | OPA_LINK_WIDTH_2X |
14737 			OPA_LINK_WIDTH_3X | OPA_LINK_WIDTH_4X;
14738 		ppd->link_width_downgrade_supported =
14739 			ppd->link_width_supported;
14740 		/* start out enabling only 4X */
14741 		ppd->link_width_enabled = OPA_LINK_WIDTH_4X;
14742 		ppd->link_width_downgrade_enabled =
14743 					ppd->link_width_downgrade_supported;
14744 		/* link width active is 0 when link is down */
14745 		/* link width downgrade active is 0 when link is down */
14746 
14747 		if (num_vls < HFI1_MIN_VLS_SUPPORTED ||
14748 		    num_vls > HFI1_MAX_VLS_SUPPORTED) {
14749 			dd_dev_err(dd, "Invalid num_vls %u, using %u VLs\n",
14750 				   num_vls, HFI1_MAX_VLS_SUPPORTED);
14751 			num_vls = HFI1_MAX_VLS_SUPPORTED;
14752 		}
14753 		ppd->vls_supported = num_vls;
14754 		ppd->vls_operational = ppd->vls_supported;
14755 		/* Set the default MTU. */
14756 		for (vl = 0; vl < num_vls; vl++)
14757 			dd->vld[vl].mtu = hfi1_max_mtu;
14758 		dd->vld[15].mtu = MAX_MAD_PACKET;
14759 		/*
14760 		 * Set the initial values to reasonable default, will be set
14761 		 * for real when link is up.
14762 		 */
14763 		ppd->overrun_threshold = 0x4;
14764 		ppd->phy_error_threshold = 0xf;
14765 		ppd->port_crc_mode_enabled = link_crc_mask;
14766 		/* initialize supported LTP CRC mode */
14767 		ppd->port_ltp_crc_mode = cap_to_port_ltp(link_crc_mask) << 8;
14768 		/* initialize enabled LTP CRC mode */
14769 		ppd->port_ltp_crc_mode |= cap_to_port_ltp(link_crc_mask) << 4;
14770 		/* start in offline */
14771 		ppd->host_link_state = HLS_DN_OFFLINE;
14772 		init_vl_arb_caches(ppd);
14773 	}
14774 
14775 	/*
14776 	 * Do remaining PCIe setup and save PCIe values in dd.
14777 	 * Any error printing is already done by the init code.
14778 	 * On return, we have the chip mapped.
14779 	 */
14780 	ret = hfi1_pcie_ddinit(dd, pdev);
14781 	if (ret < 0)
14782 		goto bail_free;
14783 
14784 	/* Save PCI space registers to rewrite after device reset */
14785 	ret = save_pci_variables(dd);
14786 	if (ret < 0)
14787 		goto bail_cleanup;
14788 
14789 	dd->majrev = (dd->revision >> CCE_REVISION_CHIP_REV_MAJOR_SHIFT)
14790 			& CCE_REVISION_CHIP_REV_MAJOR_MASK;
14791 	dd->minrev = (dd->revision >> CCE_REVISION_CHIP_REV_MINOR_SHIFT)
14792 			& CCE_REVISION_CHIP_REV_MINOR_MASK;
14793 
14794 	/*
14795 	 * Check interrupt registers mapping if the driver has no access to
14796 	 * the upstream component. In this case, it is likely that the driver
14797 	 * is running in a VM.
14798 	 */
14799 	if (!parent) {
14800 		ret = check_int_registers(dd);
14801 		if (ret)
14802 			goto bail_cleanup;
14803 	}
14804 
14805 	/*
14806 	 * obtain the hardware ID - NOT related to unit, which is a
14807 	 * software enumeration
14808 	 */
14809 	reg = read_csr(dd, CCE_REVISION2);
14810 	dd->hfi1_id = (reg >> CCE_REVISION2_HFI_ID_SHIFT)
14811 					& CCE_REVISION2_HFI_ID_MASK;
14812 	/* the variable size will remove unwanted bits */
14813 	dd->icode = reg >> CCE_REVISION2_IMPL_CODE_SHIFT;
14814 	dd->irev = reg >> CCE_REVISION2_IMPL_REVISION_SHIFT;
14815 	dd_dev_info(dd, "Implementation: %s, revision 0x%x\n",
14816 		    dd->icode < ARRAY_SIZE(inames) ?
14817 		    inames[dd->icode] : "unknown", (int)dd->irev);
14818 
14819 	/* speeds the hardware can support */
14820 	dd->pport->link_speed_supported = OPA_LINK_SPEED_25G;
14821 	/* speeds allowed to run at */
14822 	dd->pport->link_speed_enabled = dd->pport->link_speed_supported;
14823 	/* give a reasonable active value, will be set on link up */
14824 	dd->pport->link_speed_active = OPA_LINK_SPEED_25G;
14825 
14826 	/* fix up link widths for emulation _p */
14827 	ppd = dd->pport;
14828 	if (dd->icode == ICODE_FPGA_EMULATION && is_emulator_p(dd)) {
14829 		ppd->link_width_supported =
14830 			ppd->link_width_enabled =
14831 			ppd->link_width_downgrade_supported =
14832 			ppd->link_width_downgrade_enabled =
14833 				OPA_LINK_WIDTH_1X;
14834 	}
14835 	/* insure num_vls isn't larger than number of sdma engines */
14836 	if (HFI1_CAP_IS_KSET(SDMA) && num_vls > sdma_engines) {
14837 		dd_dev_err(dd, "num_vls %u too large, using %u VLs\n",
14838 			   num_vls, sdma_engines);
14839 		num_vls = sdma_engines;
14840 		ppd->vls_supported = sdma_engines;
14841 		ppd->vls_operational = ppd->vls_supported;
14842 	}
14843 
14844 	/*
14845 	 * Convert the ns parameter to the 64 * cclocks used in the CSR.
14846 	 * Limit the max if larger than the field holds.  If timeout is
14847 	 * non-zero, then the calculated field will be at least 1.
14848 	 *
14849 	 * Must be after icode is set up - the cclock rate depends
14850 	 * on knowing the hardware being used.
14851 	 */
14852 	dd->rcv_intr_timeout_csr = ns_to_cclock(dd, rcv_intr_timeout) / 64;
14853 	if (dd->rcv_intr_timeout_csr >
14854 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK)
14855 		dd->rcv_intr_timeout_csr =
14856 			RCV_AVAIL_TIME_OUT_TIME_OUT_RELOAD_MASK;
14857 	else if (dd->rcv_intr_timeout_csr == 0 && rcv_intr_timeout)
14858 		dd->rcv_intr_timeout_csr = 1;
14859 
14860 	/* needs to be done before we look for the peer device */
14861 	read_guid(dd);
14862 
14863 	/* set up shared ASIC data with peer device */
14864 	ret = init_asic_data(dd);
14865 	if (ret)
14866 		goto bail_cleanup;
14867 
14868 	/* obtain chip sizes, reset chip CSRs */
14869 	ret = init_chip(dd);
14870 	if (ret)
14871 		goto bail_cleanup;
14872 
14873 	/* read in the PCIe link speed information */
14874 	ret = pcie_speeds(dd);
14875 	if (ret)
14876 		goto bail_cleanup;
14877 
14878 	/* call before get_platform_config(), after init_chip_resources() */
14879 	ret = eprom_init(dd);
14880 	if (ret)
14881 		goto bail_free_rcverr;
14882 
14883 	/* Needs to be called before hfi1_firmware_init */
14884 	get_platform_config(dd);
14885 
14886 	/* read in firmware */
14887 	ret = hfi1_firmware_init(dd);
14888 	if (ret)
14889 		goto bail_cleanup;
14890 
14891 	/*
14892 	 * In general, the PCIe Gen3 transition must occur after the
14893 	 * chip has been idled (so it won't initiate any PCIe transactions
14894 	 * e.g. an interrupt) and before the driver changes any registers
14895 	 * (the transition will reset the registers).
14896 	 *
14897 	 * In particular, place this call after:
14898 	 * - init_chip()     - the chip will not initiate any PCIe transactions
14899 	 * - pcie_speeds()   - reads the current link speed
14900 	 * - hfi1_firmware_init() - the needed firmware is ready to be
14901 	 *			    downloaded
14902 	 */
14903 	ret = do_pcie_gen3_transition(dd);
14904 	if (ret)
14905 		goto bail_cleanup;
14906 
14907 	/*
14908 	 * This should probably occur in hfi1_pcie_init(), but historically
14909 	 * occurs after the do_pcie_gen3_transition() code.
14910 	 */
14911 	tune_pcie_caps(dd);
14912 
14913 	/* start setting dd values and adjusting CSRs */
14914 	init_early_variables(dd);
14915 
14916 	parse_platform_config(dd);
14917 
14918 	ret = obtain_boardname(dd);
14919 	if (ret)
14920 		goto bail_cleanup;
14921 
14922 	snprintf(dd->boardversion, BOARD_VERS_MAX,
14923 		 "ChipABI %u.%u, ChipRev %u.%u, SW Compat %llu\n",
14924 		 HFI1_CHIP_VERS_MAJ, HFI1_CHIP_VERS_MIN,
14925 		 (u32)dd->majrev,
14926 		 (u32)dd->minrev,
14927 		 (dd->revision >> CCE_REVISION_SW_SHIFT)
14928 		    & CCE_REVISION_SW_MASK);
14929 
14930 	ret = set_up_context_variables(dd);
14931 	if (ret)
14932 		goto bail_cleanup;
14933 
14934 	/* set initial RXE CSRs */
14935 	init_rxe(dd);
14936 	/* set initial TXE CSRs */
14937 	init_txe(dd);
14938 	/* set initial non-RXE, non-TXE CSRs */
14939 	init_other(dd);
14940 	/* set up KDETH QP prefix in both RX and TX CSRs */
14941 	init_kdeth_qp(dd);
14942 
14943 	ret = hfi1_dev_affinity_init(dd);
14944 	if (ret)
14945 		goto bail_cleanup;
14946 
14947 	/* send contexts must be set up before receive contexts */
14948 	ret = init_send_contexts(dd);
14949 	if (ret)
14950 		goto bail_cleanup;
14951 
14952 	ret = hfi1_create_kctxts(dd);
14953 	if (ret)
14954 		goto bail_cleanup;
14955 
14956 	/*
14957 	 * Initialize aspm, to be done after gen3 transition and setting up
14958 	 * contexts and before enabling interrupts
14959 	 */
14960 	aspm_init(dd);
14961 
14962 	ret = init_pervl_scs(dd);
14963 	if (ret)
14964 		goto bail_cleanup;
14965 
14966 	/* sdma init */
14967 	for (i = 0; i < dd->num_pports; ++i) {
14968 		ret = sdma_init(dd, i);
14969 		if (ret)
14970 			goto bail_cleanup;
14971 	}
14972 
14973 	/* use contexts created by hfi1_create_kctxts */
14974 	ret = set_up_interrupts(dd);
14975 	if (ret)
14976 		goto bail_cleanup;
14977 
14978 	ret = hfi1_comp_vectors_set_up(dd);
14979 	if (ret)
14980 		goto bail_clear_intr;
14981 
14982 	/* set up LCB access - must be after set_up_interrupts() */
14983 	init_lcb_access(dd);
14984 
14985 	/*
14986 	 * Serial number is created from the base guid:
14987 	 * [27:24] = base guid [38:35]
14988 	 * [23: 0] = base guid [23: 0]
14989 	 */
14990 	snprintf(dd->serial, SERIAL_MAX, "0x%08llx\n",
14991 		 (dd->base_guid & 0xFFFFFF) |
14992 		     ((dd->base_guid >> 11) & 0xF000000));
14993 
14994 	dd->oui1 = dd->base_guid >> 56 & 0xFF;
14995 	dd->oui2 = dd->base_guid >> 48 & 0xFF;
14996 	dd->oui3 = dd->base_guid >> 40 & 0xFF;
14997 
14998 	ret = load_firmware(dd); /* asymmetric with dispose_firmware() */
14999 	if (ret)
15000 		goto bail_clear_intr;
15001 
15002 	thermal_init(dd);
15003 
15004 	ret = init_cntrs(dd);
15005 	if (ret)
15006 		goto bail_clear_intr;
15007 
15008 	ret = init_rcverr(dd);
15009 	if (ret)
15010 		goto bail_free_cntrs;
15011 
15012 	init_completion(&dd->user_comp);
15013 
15014 	/* The user refcount starts with one to inidicate an active device */
15015 	atomic_set(&dd->user_refcount, 1);
15016 
15017 	goto bail;
15018 
15019 bail_free_rcverr:
15020 	free_rcverr(dd);
15021 bail_free_cntrs:
15022 	free_cntrs(dd);
15023 bail_clear_intr:
15024 	hfi1_comp_vectors_clean_up(dd);
15025 	msix_clean_up_interrupts(dd);
15026 bail_cleanup:
15027 	hfi1_pcie_ddcleanup(dd);
15028 bail_free:
15029 	hfi1_free_devdata(dd);
15030 bail:
15031 	return ret;
15032 }
15033 
15034 static u16 delay_cycles(struct hfi1_pportdata *ppd, u32 desired_egress_rate,
15035 			u32 dw_len)
15036 {
15037 	u32 delta_cycles;
15038 	u32 current_egress_rate = ppd->current_egress_rate;
15039 	/* rates here are in units of 10^6 bits/sec */
15040 
15041 	if (desired_egress_rate == -1)
15042 		return 0; /* shouldn't happen */
15043 
15044 	if (desired_egress_rate >= current_egress_rate)
15045 		return 0; /* we can't help go faster, only slower */
15046 
15047 	delta_cycles = egress_cycles(dw_len * 4, desired_egress_rate) -
15048 			egress_cycles(dw_len * 4, current_egress_rate);
15049 
15050 	return (u16)delta_cycles;
15051 }
15052 
15053 /**
15054  * create_pbc - build a pbc for transmission
15055  * @flags: special case flags or-ed in built pbc
15056  * @srate: static rate
15057  * @vl: vl
15058  * @dwlen: dword length (header words + data words + pbc words)
15059  *
15060  * Create a PBC with the given flags, rate, VL, and length.
15061  *
15062  * NOTE: The PBC created will not insert any HCRC - all callers but one are
15063  * for verbs, which does not use this PSM feature.  The lone other caller
15064  * is for the diagnostic interface which calls this if the user does not
15065  * supply their own PBC.
15066  */
15067 u64 create_pbc(struct hfi1_pportdata *ppd, u64 flags, int srate_mbs, u32 vl,
15068 	       u32 dw_len)
15069 {
15070 	u64 pbc, delay = 0;
15071 
15072 	if (unlikely(srate_mbs))
15073 		delay = delay_cycles(ppd, srate_mbs, dw_len);
15074 
15075 	pbc = flags
15076 		| (delay << PBC_STATIC_RATE_CONTROL_COUNT_SHIFT)
15077 		| ((u64)PBC_IHCRC_NONE << PBC_INSERT_HCRC_SHIFT)
15078 		| (vl & PBC_VL_MASK) << PBC_VL_SHIFT
15079 		| (dw_len & PBC_LENGTH_DWS_MASK)
15080 			<< PBC_LENGTH_DWS_SHIFT;
15081 
15082 	return pbc;
15083 }
15084 
15085 #define SBUS_THERMAL    0x4f
15086 #define SBUS_THERM_MONITOR_MODE 0x1
15087 
15088 #define THERM_FAILURE(dev, ret, reason) \
15089 	dd_dev_err((dd),						\
15090 		   "Thermal sensor initialization failed: %s (%d)\n",	\
15091 		   (reason), (ret))
15092 
15093 /*
15094  * Initialize the thermal sensor.
15095  *
15096  * After initialization, enable polling of thermal sensor through
15097  * SBus interface. In order for this to work, the SBus Master
15098  * firmware has to be loaded due to the fact that the HW polling
15099  * logic uses SBus interrupts, which are not supported with
15100  * default firmware. Otherwise, no data will be returned through
15101  * the ASIC_STS_THERM CSR.
15102  */
15103 static int thermal_init(struct hfi1_devdata *dd)
15104 {
15105 	int ret = 0;
15106 
15107 	if (dd->icode != ICODE_RTL_SILICON ||
15108 	    check_chip_resource(dd, CR_THERM_INIT, NULL))
15109 		return ret;
15110 
15111 	ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT);
15112 	if (ret) {
15113 		THERM_FAILURE(dd, ret, "Acquire SBus");
15114 		return ret;
15115 	}
15116 
15117 	dd_dev_info(dd, "Initializing thermal sensor\n");
15118 	/* Disable polling of thermal readings */
15119 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x0);
15120 	msleep(100);
15121 	/* Thermal Sensor Initialization */
15122 	/*    Step 1: Reset the Thermal SBus Receiver */
15123 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15124 				RESET_SBUS_RECEIVER, 0);
15125 	if (ret) {
15126 		THERM_FAILURE(dd, ret, "Bus Reset");
15127 		goto done;
15128 	}
15129 	/*    Step 2: Set Reset bit in Thermal block */
15130 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15131 				WRITE_SBUS_RECEIVER, 0x1);
15132 	if (ret) {
15133 		THERM_FAILURE(dd, ret, "Therm Block Reset");
15134 		goto done;
15135 	}
15136 	/*    Step 3: Write clock divider value (100MHz -> 2MHz) */
15137 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x1,
15138 				WRITE_SBUS_RECEIVER, 0x32);
15139 	if (ret) {
15140 		THERM_FAILURE(dd, ret, "Write Clock Div");
15141 		goto done;
15142 	}
15143 	/*    Step 4: Select temperature mode */
15144 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x3,
15145 				WRITE_SBUS_RECEIVER,
15146 				SBUS_THERM_MONITOR_MODE);
15147 	if (ret) {
15148 		THERM_FAILURE(dd, ret, "Write Mode Sel");
15149 		goto done;
15150 	}
15151 	/*    Step 5: De-assert block reset and start conversion */
15152 	ret = sbus_request_slow(dd, SBUS_THERMAL, 0x0,
15153 				WRITE_SBUS_RECEIVER, 0x2);
15154 	if (ret) {
15155 		THERM_FAILURE(dd, ret, "Write Reset Deassert");
15156 		goto done;
15157 	}
15158 	/*    Step 5.1: Wait for first conversion (21.5ms per spec) */
15159 	msleep(22);
15160 
15161 	/* Enable polling of thermal readings */
15162 	write_csr(dd, ASIC_CFG_THERM_POLL_EN, 0x1);
15163 
15164 	/* Set initialized flag */
15165 	ret = acquire_chip_resource(dd, CR_THERM_INIT, 0);
15166 	if (ret)
15167 		THERM_FAILURE(dd, ret, "Unable to set thermal init flag");
15168 
15169 done:
15170 	release_chip_resource(dd, CR_SBUS);
15171 	return ret;
15172 }
15173 
15174 static void handle_temp_err(struct hfi1_devdata *dd)
15175 {
15176 	struct hfi1_pportdata *ppd = &dd->pport[0];
15177 	/*
15178 	 * Thermal Critical Interrupt
15179 	 * Put the device into forced freeze mode, take link down to
15180 	 * offline, and put DC into reset.
15181 	 */
15182 	dd_dev_emerg(dd,
15183 		     "Critical temperature reached! Forcing device into freeze mode!\n");
15184 	dd->flags |= HFI1_FORCED_FREEZE;
15185 	start_freeze_handling(ppd, FREEZE_SELF | FREEZE_ABORT);
15186 	/*
15187 	 * Shut DC down as much and as quickly as possible.
15188 	 *
15189 	 * Step 1: Take the link down to OFFLINE. This will cause the
15190 	 *         8051 to put the Serdes in reset. However, we don't want to
15191 	 *         go through the entire link state machine since we want to
15192 	 *         shutdown ASAP. Furthermore, this is not a graceful shutdown
15193 	 *         but rather an attempt to save the chip.
15194 	 *         Code below is almost the same as quiet_serdes() but avoids
15195 	 *         all the extra work and the sleeps.
15196 	 */
15197 	ppd->driver_link_ready = 0;
15198 	ppd->link_enabled = 0;
15199 	set_physical_link_state(dd, (OPA_LINKDOWN_REASON_SMA_DISABLED << 8) |
15200 				PLS_OFFLINE);
15201 	/*
15202 	 * Step 2: Shutdown LCB and 8051
15203 	 *         After shutdown, do not restore DC_CFG_RESET value.
15204 	 */
15205 	dc_shutdown(dd);
15206 }
15207