1 /*
2  * Copyright(c) 2015, 2016 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 
52 #include "hfi.h"
53 #include "affinity.h"
54 #include "sdma.h"
55 #include "trace.h"
56 
57 struct hfi1_affinity_node_list node_affinity = {
58 	.list = LIST_HEAD_INIT(node_affinity.list),
59 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
60 };
61 
62 /* Name of IRQ types, indexed by enum irq_type */
63 static const char * const irq_type_names[] = {
64 	"SDMA",
65 	"RCVCTXT",
66 	"GENERAL",
67 	"OTHER",
68 };
69 
70 /* Per NUMA node count of HFI devices */
71 static unsigned int *hfi1_per_node_cntr;
72 
73 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
74 {
75 	cpumask_clear(&set->mask);
76 	cpumask_clear(&set->used);
77 	set->gen = 0;
78 }
79 
80 /* Initialize non-HT cpu cores mask */
81 void init_real_cpu_mask(void)
82 {
83 	int possible, curr_cpu, i, ht;
84 
85 	cpumask_clear(&node_affinity.real_cpu_mask);
86 
87 	/* Start with cpu online mask as the real cpu mask */
88 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
89 
90 	/*
91 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
92 	 */
93 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
94 	ht = cpumask_weight(topology_sibling_cpumask(
95 				cpumask_first(&node_affinity.real_cpu_mask)));
96 	/*
97 	 * Step 1.  Skip over the first N HT siblings and use them as the
98 	 * "real" cores.  Assumes that HT cores are not enumerated in
99 	 * succession (except in the single core case).
100 	 */
101 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
102 	for (i = 0; i < possible / ht; i++)
103 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
104 	/*
105 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
106 	 * skip any gaps.
107 	 */
108 	for (; i < possible; i++) {
109 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
110 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
111 	}
112 }
113 
114 int node_affinity_init(void)
115 {
116 	int node;
117 	struct pci_dev *dev = NULL;
118 	const struct pci_device_id *ids = hfi1_pci_tbl;
119 
120 	cpumask_clear(&node_affinity.proc.used);
121 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
122 
123 	node_affinity.proc.gen = 0;
124 	node_affinity.num_core_siblings =
125 				cpumask_weight(topology_sibling_cpumask(
126 					cpumask_first(&node_affinity.proc.mask)
127 					));
128 	node_affinity.num_online_nodes = num_online_nodes();
129 	node_affinity.num_online_cpus = num_online_cpus();
130 
131 	/*
132 	 * The real cpu mask is part of the affinity struct but it has to be
133 	 * initialized early. It is needed to calculate the number of user
134 	 * contexts in set_up_context_variables().
135 	 */
136 	init_real_cpu_mask();
137 
138 	hfi1_per_node_cntr = kcalloc(num_possible_nodes(),
139 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
140 	if (!hfi1_per_node_cntr)
141 		return -ENOMEM;
142 
143 	while (ids->vendor) {
144 		dev = NULL;
145 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
146 			node = pcibus_to_node(dev->bus);
147 			if (node < 0)
148 				node = numa_node_id();
149 
150 			hfi1_per_node_cntr[node]++;
151 		}
152 		ids++;
153 	}
154 
155 	return 0;
156 }
157 
158 void node_affinity_destroy(void)
159 {
160 	struct list_head *pos, *q;
161 	struct hfi1_affinity_node *entry;
162 
163 	mutex_lock(&node_affinity.lock);
164 	list_for_each_safe(pos, q, &node_affinity.list) {
165 		entry = list_entry(pos, struct hfi1_affinity_node,
166 				   list);
167 		list_del(pos);
168 		kfree(entry);
169 	}
170 	mutex_unlock(&node_affinity.lock);
171 	kfree(hfi1_per_node_cntr);
172 }
173 
174 static struct hfi1_affinity_node *node_affinity_allocate(int node)
175 {
176 	struct hfi1_affinity_node *entry;
177 
178 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
179 	if (!entry)
180 		return NULL;
181 	entry->node = node;
182 	INIT_LIST_HEAD(&entry->list);
183 
184 	return entry;
185 }
186 
187 /*
188  * It appends an entry to the list.
189  * It *must* be called with node_affinity.lock held.
190  */
191 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
192 {
193 	list_add_tail(&entry->list, &node_affinity.list);
194 }
195 
196 /* It must be called with node_affinity.lock held */
197 static struct hfi1_affinity_node *node_affinity_lookup(int node)
198 {
199 	struct list_head *pos;
200 	struct hfi1_affinity_node *entry;
201 
202 	list_for_each(pos, &node_affinity.list) {
203 		entry = list_entry(pos, struct hfi1_affinity_node, list);
204 		if (entry->node == node)
205 			return entry;
206 	}
207 
208 	return NULL;
209 }
210 
211 /*
212  * Interrupt affinity.
213  *
214  * non-rcv avail gets a default mask that
215  * starts as possible cpus with threads reset
216  * and each rcv avail reset.
217  *
218  * rcv avail gets node relative 1 wrapping back
219  * to the node relative 1 as necessary.
220  *
221  */
222 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
223 {
224 	int node = pcibus_to_node(dd->pcidev->bus);
225 	struct hfi1_affinity_node *entry;
226 	const struct cpumask *local_mask;
227 	int curr_cpu, possible, i;
228 
229 	if (node < 0)
230 		node = numa_node_id();
231 	dd->node = node;
232 
233 	local_mask = cpumask_of_node(dd->node);
234 	if (cpumask_first(local_mask) >= nr_cpu_ids)
235 		local_mask = topology_core_cpumask(0);
236 
237 	mutex_lock(&node_affinity.lock);
238 	entry = node_affinity_lookup(dd->node);
239 
240 	/*
241 	 * If this is the first time this NUMA node's affinity is used,
242 	 * create an entry in the global affinity structure and initialize it.
243 	 */
244 	if (!entry) {
245 		entry = node_affinity_allocate(node);
246 		if (!entry) {
247 			dd_dev_err(dd,
248 				   "Unable to allocate global affinity node\n");
249 			mutex_unlock(&node_affinity.lock);
250 			return -ENOMEM;
251 		}
252 		init_cpu_mask_set(&entry->def_intr);
253 		init_cpu_mask_set(&entry->rcv_intr);
254 		cpumask_clear(&entry->general_intr_mask);
255 		/* Use the "real" cpu mask of this node as the default */
256 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
257 			    local_mask);
258 
259 		/* fill in the receive list */
260 		possible = cpumask_weight(&entry->def_intr.mask);
261 		curr_cpu = cpumask_first(&entry->def_intr.mask);
262 
263 		if (possible == 1) {
264 			/* only one CPU, everyone will use it */
265 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
266 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
267 		} else {
268 			/*
269 			 * The general/control context will be the first CPU in
270 			 * the default list, so it is removed from the default
271 			 * list and added to the general interrupt list.
272 			 */
273 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
274 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
275 			curr_cpu = cpumask_next(curr_cpu,
276 						&entry->def_intr.mask);
277 
278 			/*
279 			 * Remove the remaining kernel receive queues from
280 			 * the default list and add them to the receive list.
281 			 */
282 			for (i = 0;
283 			     i < (dd->n_krcv_queues - 1) *
284 				  hfi1_per_node_cntr[dd->node];
285 			     i++) {
286 				cpumask_clear_cpu(curr_cpu,
287 						  &entry->def_intr.mask);
288 				cpumask_set_cpu(curr_cpu,
289 						&entry->rcv_intr.mask);
290 				curr_cpu = cpumask_next(curr_cpu,
291 							&entry->def_intr.mask);
292 				if (curr_cpu >= nr_cpu_ids)
293 					break;
294 			}
295 
296 			/*
297 			 * If there ends up being 0 CPU cores leftover for SDMA
298 			 * engines, use the same CPU cores as general/control
299 			 * context.
300 			 */
301 			if (cpumask_weight(&entry->def_intr.mask) == 0)
302 				cpumask_copy(&entry->def_intr.mask,
303 					     &entry->general_intr_mask);
304 		}
305 
306 		node_affinity_add_tail(entry);
307 	}
308 	mutex_unlock(&node_affinity.lock);
309 	return 0;
310 }
311 
312 /*
313  * Function updates the irq affinity hint for msix after it has been changed
314  * by the user using the /proc/irq interface. This function only accepts
315  * one cpu in the mask.
316  */
317 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
318 {
319 	struct sdma_engine *sde = msix->arg;
320 	struct hfi1_devdata *dd = sde->dd;
321 	struct hfi1_affinity_node *entry;
322 	struct cpu_mask_set *set;
323 	int i, old_cpu;
324 
325 	if (cpu > num_online_cpus() || cpu == sde->cpu)
326 		return;
327 
328 	mutex_lock(&node_affinity.lock);
329 	entry = node_affinity_lookup(dd->node);
330 	if (!entry)
331 		goto unlock;
332 
333 	old_cpu = sde->cpu;
334 	sde->cpu = cpu;
335 	cpumask_clear(&msix->mask);
336 	cpumask_set_cpu(cpu, &msix->mask);
337 	dd_dev_dbg(dd, "IRQ vector: %u, type %s engine %u -> cpu: %d\n",
338 		   msix->msix.vector, irq_type_names[msix->type],
339 		   sde->this_idx, cpu);
340 	irq_set_affinity_hint(msix->msix.vector, &msix->mask);
341 
342 	/*
343 	 * Set the new cpu in the hfi1_affinity_node and clean
344 	 * the old cpu if it is not used by any other IRQ
345 	 */
346 	set = &entry->def_intr;
347 	cpumask_set_cpu(cpu, &set->mask);
348 	cpumask_set_cpu(cpu, &set->used);
349 	for (i = 0; i < dd->num_msix_entries; i++) {
350 		struct hfi1_msix_entry *other_msix;
351 
352 		other_msix = &dd->msix_entries[i];
353 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
354 			continue;
355 
356 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
357 			goto unlock;
358 	}
359 	cpumask_clear_cpu(old_cpu, &set->mask);
360 	cpumask_clear_cpu(old_cpu, &set->used);
361 unlock:
362 	mutex_unlock(&node_affinity.lock);
363 }
364 
365 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
366 				     const cpumask_t *mask)
367 {
368 	int cpu = cpumask_first(mask);
369 	struct hfi1_msix_entry *msix = container_of(notify,
370 						    struct hfi1_msix_entry,
371 						    notify);
372 
373 	/* Only one CPU configuration supported currently */
374 	hfi1_update_sdma_affinity(msix, cpu);
375 }
376 
377 static void hfi1_irq_notifier_release(struct kref *ref)
378 {
379 	/*
380 	 * This is required by affinity notifier. We don't have anything to
381 	 * free here.
382 	 */
383 }
384 
385 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
386 {
387 	struct irq_affinity_notify *notify = &msix->notify;
388 
389 	notify->irq = msix->msix.vector;
390 	notify->notify = hfi1_irq_notifier_notify;
391 	notify->release = hfi1_irq_notifier_release;
392 
393 	if (irq_set_affinity_notifier(notify->irq, notify))
394 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
395 		       notify->irq);
396 }
397 
398 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
399 {
400 	struct irq_affinity_notify *notify = &msix->notify;
401 
402 	if (irq_set_affinity_notifier(notify->irq, NULL))
403 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
404 		       notify->irq);
405 }
406 
407 /*
408  * Function sets the irq affinity for msix.
409  * It *must* be called with node_affinity.lock held.
410  */
411 static int get_irq_affinity(struct hfi1_devdata *dd,
412 			    struct hfi1_msix_entry *msix)
413 {
414 	int ret;
415 	cpumask_var_t diff;
416 	struct hfi1_affinity_node *entry;
417 	struct cpu_mask_set *set = NULL;
418 	struct sdma_engine *sde = NULL;
419 	struct hfi1_ctxtdata *rcd = NULL;
420 	char extra[64];
421 	int cpu = -1;
422 
423 	extra[0] = '\0';
424 	cpumask_clear(&msix->mask);
425 
426 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
427 	if (!ret)
428 		return -ENOMEM;
429 
430 	entry = node_affinity_lookup(dd->node);
431 
432 	switch (msix->type) {
433 	case IRQ_SDMA:
434 		sde = (struct sdma_engine *)msix->arg;
435 		scnprintf(extra, 64, "engine %u", sde->this_idx);
436 		set = &entry->def_intr;
437 		break;
438 	case IRQ_GENERAL:
439 		cpu = cpumask_first(&entry->general_intr_mask);
440 		break;
441 	case IRQ_RCVCTXT:
442 		rcd = (struct hfi1_ctxtdata *)msix->arg;
443 		if (rcd->ctxt == HFI1_CTRL_CTXT)
444 			cpu = cpumask_first(&entry->general_intr_mask);
445 		else
446 			set = &entry->rcv_intr;
447 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
448 		break;
449 	default:
450 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
451 		return -EINVAL;
452 	}
453 
454 	/*
455 	 * The general and control contexts are placed on a particular
456 	 * CPU, which is set above. Skip accounting for it. Everything else
457 	 * finds its CPU here.
458 	 */
459 	if (cpu == -1 && set) {
460 		if (cpumask_equal(&set->mask, &set->used)) {
461 			/*
462 			 * We've used up all the CPUs, bump up the generation
463 			 * and reset the 'used' map
464 			 */
465 			set->gen++;
466 			cpumask_clear(&set->used);
467 		}
468 		cpumask_andnot(diff, &set->mask, &set->used);
469 		cpu = cpumask_first(diff);
470 		cpumask_set_cpu(cpu, &set->used);
471 	}
472 
473 	cpumask_set_cpu(cpu, &msix->mask);
474 	dd_dev_info(dd, "IRQ vector: %u, type %s %s -> cpu: %d\n",
475 		    msix->msix.vector, irq_type_names[msix->type],
476 		    extra, cpu);
477 	irq_set_affinity_hint(msix->msix.vector, &msix->mask);
478 
479 	if (msix->type == IRQ_SDMA) {
480 		sde->cpu = cpu;
481 		hfi1_setup_sdma_notifier(msix);
482 	}
483 
484 	free_cpumask_var(diff);
485 	return 0;
486 }
487 
488 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
489 {
490 	int ret;
491 
492 	mutex_lock(&node_affinity.lock);
493 	ret = get_irq_affinity(dd, msix);
494 	mutex_unlock(&node_affinity.lock);
495 	return ret;
496 }
497 
498 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
499 			   struct hfi1_msix_entry *msix)
500 {
501 	struct cpu_mask_set *set = NULL;
502 	struct hfi1_ctxtdata *rcd;
503 	struct hfi1_affinity_node *entry;
504 
505 	mutex_lock(&node_affinity.lock);
506 	entry = node_affinity_lookup(dd->node);
507 
508 	switch (msix->type) {
509 	case IRQ_SDMA:
510 		set = &entry->def_intr;
511 		hfi1_cleanup_sdma_notifier(msix);
512 		break;
513 	case IRQ_GENERAL:
514 		/* Don't do accounting for general contexts */
515 		break;
516 	case IRQ_RCVCTXT:
517 		rcd = (struct hfi1_ctxtdata *)msix->arg;
518 		/* Don't do accounting for control contexts */
519 		if (rcd->ctxt != HFI1_CTRL_CTXT)
520 			set = &entry->rcv_intr;
521 		break;
522 	default:
523 		mutex_unlock(&node_affinity.lock);
524 		return;
525 	}
526 
527 	if (set) {
528 		cpumask_andnot(&set->used, &set->used, &msix->mask);
529 		if (cpumask_empty(&set->used) && set->gen) {
530 			set->gen--;
531 			cpumask_copy(&set->used, &set->mask);
532 		}
533 	}
534 
535 	irq_set_affinity_hint(msix->msix.vector, NULL);
536 	cpumask_clear(&msix->mask);
537 	mutex_unlock(&node_affinity.lock);
538 }
539 
540 /* This should be called with node_affinity.lock held */
541 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
542 				struct hfi1_affinity_node_list *affinity)
543 {
544 	int possible, curr_cpu, i;
545 	uint num_cores_per_socket = node_affinity.num_online_cpus /
546 					affinity->num_core_siblings /
547 						node_affinity.num_online_nodes;
548 
549 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
550 	if (affinity->num_core_siblings > 0) {
551 		/* Removing other siblings not needed for now */
552 		possible = cpumask_weight(hw_thread_mask);
553 		curr_cpu = cpumask_first(hw_thread_mask);
554 		for (i = 0;
555 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
556 		     i++)
557 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
558 
559 		for (; i < possible; i++) {
560 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
561 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
562 		}
563 
564 		/* Identifying correct HW threads within physical cores */
565 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
566 				   num_cores_per_socket *
567 				   node_affinity.num_online_nodes *
568 				   hw_thread_no);
569 	}
570 }
571 
572 int hfi1_get_proc_affinity(int node)
573 {
574 	int cpu = -1, ret, i;
575 	struct hfi1_affinity_node *entry;
576 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
577 	const struct cpumask *node_mask,
578 		*proc_mask = tsk_cpus_allowed(current);
579 	struct hfi1_affinity_node_list *affinity = &node_affinity;
580 	struct cpu_mask_set *set = &affinity->proc;
581 
582 	/*
583 	 * check whether process/context affinity has already
584 	 * been set
585 	 */
586 	if (cpumask_weight(proc_mask) == 1) {
587 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
588 			  current->pid, current->comm,
589 			  cpumask_pr_args(proc_mask));
590 		/*
591 		 * Mark the pre-set CPU as used. This is atomic so we don't
592 		 * need the lock
593 		 */
594 		cpu = cpumask_first(proc_mask);
595 		cpumask_set_cpu(cpu, &set->used);
596 		goto done;
597 	} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
598 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
599 			  current->pid, current->comm,
600 			  cpumask_pr_args(proc_mask));
601 		goto done;
602 	}
603 
604 	/*
605 	 * The process does not have a preset CPU affinity so find one to
606 	 * recommend using the following algorithm:
607 	 *
608 	 * For each user process that is opening a context on HFI Y:
609 	 *  a) If all cores are filled, reinitialize the bitmask
610 	 *  b) Fill real cores first, then HT cores (First set of HT
611 	 *     cores on all physical cores, then second set of HT core,
612 	 *     and, so on) in the following order:
613 	 *
614 	 *     1. Same NUMA node as HFI Y and not running an IRQ
615 	 *        handler
616 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
617 	 *     3. Different NUMA node to HFI Y and not running an IRQ
618 	 *        handler
619 	 *     4. Different NUMA node to HFI Y and running an IRQ
620 	 *        handler
621 	 *  c) Mark core as filled in the bitmask. As user processes are
622 	 *     done, clear cores from the bitmask.
623 	 */
624 
625 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
626 	if (!ret)
627 		goto done;
628 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
629 	if (!ret)
630 		goto free_diff;
631 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
632 	if (!ret)
633 		goto free_hw_thread_mask;
634 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
635 	if (!ret)
636 		goto free_available_mask;
637 
638 	mutex_lock(&affinity->lock);
639 	/*
640 	 * If we've used all available HW threads, clear the mask and start
641 	 * overloading.
642 	 */
643 	if (cpumask_equal(&set->mask, &set->used)) {
644 		set->gen++;
645 		cpumask_clear(&set->used);
646 	}
647 
648 	/*
649 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
650 	 * interrupt handler mask.
651 	 */
652 	entry = node_affinity_lookup(node);
653 	if (entry) {
654 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
655 					  &entry->def_intr.mask :
656 					  &entry->def_intr.used));
657 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
658 						    &entry->rcv_intr.mask :
659 						    &entry->rcv_intr.used));
660 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
661 	}
662 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
663 		  cpumask_pr_args(intrs_mask));
664 
665 	cpumask_copy(hw_thread_mask, &set->mask);
666 
667 	/*
668 	 * If HT cores are enabled, identify which HW threads within the
669 	 * physical cores should be used.
670 	 */
671 	if (affinity->num_core_siblings > 0) {
672 		for (i = 0; i < affinity->num_core_siblings; i++) {
673 			find_hw_thread_mask(i, hw_thread_mask, affinity);
674 
675 			/*
676 			 * If there's at least one available core for this HW
677 			 * thread number, stop looking for a core.
678 			 *
679 			 * diff will always be not empty at least once in this
680 			 * loop as the used mask gets reset when
681 			 * (set->mask == set->used) before this loop.
682 			 */
683 			cpumask_andnot(diff, hw_thread_mask, &set->used);
684 			if (!cpumask_empty(diff))
685 				break;
686 		}
687 	}
688 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
689 		  cpumask_pr_args(hw_thread_mask));
690 
691 	node_mask = cpumask_of_node(node);
692 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
693 		  cpumask_pr_args(node_mask));
694 
695 	/* Get cpumask of available CPUs on preferred NUMA */
696 	cpumask_and(available_mask, hw_thread_mask, node_mask);
697 	cpumask_andnot(available_mask, available_mask, &set->used);
698 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
699 		  cpumask_pr_args(available_mask));
700 
701 	/*
702 	 * At first, we don't want to place processes on the same
703 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
704 	 * handlers are used.
705 	 *
706 	 * 1) If diff is not empty, then there are CPUs not running
707 	 *    non-interrupt handlers available, so diff gets copied
708 	 *    over to available_mask.
709 	 * 2) If diff is empty, then all CPUs not running interrupt
710 	 *    handlers are taken, so available_mask contains all
711 	 *    available CPUs running interrupt handlers.
712 	 * 3) If available_mask is empty, then all CPUs on the
713 	 *    preferred NUMA node are taken, so other NUMA nodes are
714 	 *    used for process assignments using the same method as
715 	 *    the preferred NUMA node.
716 	 */
717 	cpumask_andnot(diff, available_mask, intrs_mask);
718 	if (!cpumask_empty(diff))
719 		cpumask_copy(available_mask, diff);
720 
721 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
722 	if (cpumask_empty(available_mask)) {
723 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
724 		/* Excluding preferred NUMA cores */
725 		cpumask_andnot(available_mask, available_mask, node_mask);
726 		hfi1_cdbg(PROC,
727 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
728 			  cpumask_pr_args(available_mask));
729 
730 		/*
731 		 * At first, we don't want to place processes on the same
732 		 * CPUs as interrupt handlers.
733 		 */
734 		cpumask_andnot(diff, available_mask, intrs_mask);
735 		if (!cpumask_empty(diff))
736 			cpumask_copy(available_mask, diff);
737 	}
738 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
739 		  cpumask_pr_args(available_mask));
740 
741 	cpu = cpumask_first(available_mask);
742 	if (cpu >= nr_cpu_ids) /* empty */
743 		cpu = -1;
744 	else
745 		cpumask_set_cpu(cpu, &set->used);
746 
747 	mutex_unlock(&affinity->lock);
748 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
749 
750 	free_cpumask_var(intrs_mask);
751 free_available_mask:
752 	free_cpumask_var(available_mask);
753 free_hw_thread_mask:
754 	free_cpumask_var(hw_thread_mask);
755 free_diff:
756 	free_cpumask_var(diff);
757 done:
758 	return cpu;
759 }
760 
761 void hfi1_put_proc_affinity(int cpu)
762 {
763 	struct hfi1_affinity_node_list *affinity = &node_affinity;
764 	struct cpu_mask_set *set = &affinity->proc;
765 
766 	if (cpu < 0)
767 		return;
768 
769 	mutex_lock(&affinity->lock);
770 	cpumask_clear_cpu(cpu, &set->used);
771 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
772 	if (cpumask_empty(&set->used) && set->gen) {
773 		set->gen--;
774 		cpumask_copy(&set->used, &set->mask);
775 	}
776 	mutex_unlock(&affinity->lock);
777 }
778 
779 int hfi1_set_sdma_affinity(struct hfi1_devdata *dd, const char *buf,
780 			   size_t count)
781 {
782 	struct hfi1_affinity_node *entry;
783 	cpumask_var_t mask;
784 	int ret, i;
785 
786 	mutex_lock(&node_affinity.lock);
787 	entry = node_affinity_lookup(dd->node);
788 
789 	if (!entry) {
790 		ret = -EINVAL;
791 		goto unlock;
792 	}
793 
794 	ret = zalloc_cpumask_var(&mask, GFP_KERNEL);
795 	if (!ret) {
796 		ret = -ENOMEM;
797 		goto unlock;
798 	}
799 
800 	ret = cpulist_parse(buf, mask);
801 	if (ret)
802 		goto out;
803 
804 	if (!cpumask_subset(mask, cpu_online_mask) || cpumask_empty(mask)) {
805 		dd_dev_warn(dd, "Invalid CPU mask\n");
806 		ret = -EINVAL;
807 		goto out;
808 	}
809 
810 	/* reset the SDMA interrupt affinity details */
811 	init_cpu_mask_set(&entry->def_intr);
812 	cpumask_copy(&entry->def_intr.mask, mask);
813 
814 	/* Reassign the affinity for each SDMA interrupt. */
815 	for (i = 0; i < dd->num_msix_entries; i++) {
816 		struct hfi1_msix_entry *msix;
817 
818 		msix = &dd->msix_entries[i];
819 		if (msix->type != IRQ_SDMA)
820 			continue;
821 
822 		ret = get_irq_affinity(dd, msix);
823 
824 		if (ret)
825 			break;
826 	}
827 out:
828 	free_cpumask_var(mask);
829 unlock:
830 	mutex_unlock(&node_affinity.lock);
831 	return ret ? ret : strnlen(buf, PAGE_SIZE);
832 }
833 
834 int hfi1_get_sdma_affinity(struct hfi1_devdata *dd, char *buf)
835 {
836 	struct hfi1_affinity_node *entry;
837 
838 	mutex_lock(&node_affinity.lock);
839 	entry = node_affinity_lookup(dd->node);
840 
841 	if (!entry) {
842 		mutex_unlock(&node_affinity.lock);
843 		return -EINVAL;
844 	}
845 
846 	cpumap_print_to_pagebuf(true, buf, &entry->def_intr.mask);
847 	mutex_unlock(&node_affinity.lock);
848 	return strnlen(buf, PAGE_SIZE);
849 }
850