1 /* 2 * Copyright(c) 2015 - 2018 Intel Corporation. 3 * 4 * This file is provided under a dual BSD/GPLv2 license. When using or 5 * redistributing this file, you may do so under either license. 6 * 7 * GPL LICENSE SUMMARY 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of version 2 of the GNU General Public License as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, but 14 * WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 * 18 * BSD LICENSE 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * - Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * - Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in 28 * the documentation and/or other materials provided with the 29 * distribution. 30 * - Neither the name of Intel Corporation nor the names of its 31 * contributors may be used to endorse or promote products derived 32 * from this software without specific prior written permission. 33 * 34 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 35 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 36 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 37 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 38 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 39 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 40 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 41 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 42 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 43 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 44 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 45 * 46 */ 47 #include <linux/topology.h> 48 #include <linux/cpumask.h> 49 #include <linux/module.h> 50 #include <linux/interrupt.h> 51 #include <linux/numa.h> 52 53 #include "hfi.h" 54 #include "affinity.h" 55 #include "sdma.h" 56 #include "trace.h" 57 58 struct hfi1_affinity_node_list node_affinity = { 59 .list = LIST_HEAD_INIT(node_affinity.list), 60 .lock = __MUTEX_INITIALIZER(node_affinity.lock) 61 }; 62 63 /* Name of IRQ types, indexed by enum irq_type */ 64 static const char * const irq_type_names[] = { 65 "SDMA", 66 "RCVCTXT", 67 "GENERAL", 68 "OTHER", 69 }; 70 71 /* Per NUMA node count of HFI devices */ 72 static unsigned int *hfi1_per_node_cntr; 73 74 static inline void init_cpu_mask_set(struct cpu_mask_set *set) 75 { 76 cpumask_clear(&set->mask); 77 cpumask_clear(&set->used); 78 set->gen = 0; 79 } 80 81 /* Increment generation of CPU set if needed */ 82 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set) 83 { 84 if (cpumask_equal(&set->mask, &set->used)) { 85 /* 86 * We've used up all the CPUs, bump up the generation 87 * and reset the 'used' map 88 */ 89 set->gen++; 90 cpumask_clear(&set->used); 91 } 92 } 93 94 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set) 95 { 96 if (cpumask_empty(&set->used) && set->gen) { 97 set->gen--; 98 cpumask_copy(&set->used, &set->mask); 99 } 100 } 101 102 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */ 103 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff) 104 { 105 int cpu; 106 107 if (!diff || !set) 108 return -EINVAL; 109 110 _cpu_mask_set_gen_inc(set); 111 112 /* Find out CPUs left in CPU mask */ 113 cpumask_andnot(diff, &set->mask, &set->used); 114 115 cpu = cpumask_first(diff); 116 if (cpu >= nr_cpu_ids) /* empty */ 117 cpu = -EINVAL; 118 else 119 cpumask_set_cpu(cpu, &set->used); 120 121 return cpu; 122 } 123 124 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu) 125 { 126 if (!set) 127 return; 128 129 cpumask_clear_cpu(cpu, &set->used); 130 _cpu_mask_set_gen_dec(set); 131 } 132 133 /* Initialize non-HT cpu cores mask */ 134 void init_real_cpu_mask(void) 135 { 136 int possible, curr_cpu, i, ht; 137 138 cpumask_clear(&node_affinity.real_cpu_mask); 139 140 /* Start with cpu online mask as the real cpu mask */ 141 cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask); 142 143 /* 144 * Remove HT cores from the real cpu mask. Do this in two steps below. 145 */ 146 possible = cpumask_weight(&node_affinity.real_cpu_mask); 147 ht = cpumask_weight(topology_sibling_cpumask( 148 cpumask_first(&node_affinity.real_cpu_mask))); 149 /* 150 * Step 1. Skip over the first N HT siblings and use them as the 151 * "real" cores. Assumes that HT cores are not enumerated in 152 * succession (except in the single core case). 153 */ 154 curr_cpu = cpumask_first(&node_affinity.real_cpu_mask); 155 for (i = 0; i < possible / ht; i++) 156 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); 157 /* 158 * Step 2. Remove the remaining HT siblings. Use cpumask_next() to 159 * skip any gaps. 160 */ 161 for (; i < possible; i++) { 162 cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask); 163 curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); 164 } 165 } 166 167 int node_affinity_init(void) 168 { 169 int node; 170 struct pci_dev *dev = NULL; 171 const struct pci_device_id *ids = hfi1_pci_tbl; 172 173 cpumask_clear(&node_affinity.proc.used); 174 cpumask_copy(&node_affinity.proc.mask, cpu_online_mask); 175 176 node_affinity.proc.gen = 0; 177 node_affinity.num_core_siblings = 178 cpumask_weight(topology_sibling_cpumask( 179 cpumask_first(&node_affinity.proc.mask) 180 )); 181 node_affinity.num_possible_nodes = num_possible_nodes(); 182 node_affinity.num_online_nodes = num_online_nodes(); 183 node_affinity.num_online_cpus = num_online_cpus(); 184 185 /* 186 * The real cpu mask is part of the affinity struct but it has to be 187 * initialized early. It is needed to calculate the number of user 188 * contexts in set_up_context_variables(). 189 */ 190 init_real_cpu_mask(); 191 192 hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes, 193 sizeof(*hfi1_per_node_cntr), GFP_KERNEL); 194 if (!hfi1_per_node_cntr) 195 return -ENOMEM; 196 197 while (ids->vendor) { 198 dev = NULL; 199 while ((dev = pci_get_device(ids->vendor, ids->device, dev))) { 200 node = pcibus_to_node(dev->bus); 201 if (node < 0) 202 goto out; 203 204 hfi1_per_node_cntr[node]++; 205 } 206 ids++; 207 } 208 209 return 0; 210 211 out: 212 /* 213 * Invalid PCI NUMA node information found, note it, and populate 214 * our database 1:1. 215 */ 216 pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n"); 217 pr_err("HFI: System BIOS may need to be upgraded\n"); 218 for (node = 0; node < node_affinity.num_possible_nodes; node++) 219 hfi1_per_node_cntr[node] = 1; 220 221 return 0; 222 } 223 224 static void node_affinity_destroy(struct hfi1_affinity_node *entry) 225 { 226 free_percpu(entry->comp_vect_affinity); 227 kfree(entry); 228 } 229 230 void node_affinity_destroy_all(void) 231 { 232 struct list_head *pos, *q; 233 struct hfi1_affinity_node *entry; 234 235 mutex_lock(&node_affinity.lock); 236 list_for_each_safe(pos, q, &node_affinity.list) { 237 entry = list_entry(pos, struct hfi1_affinity_node, 238 list); 239 list_del(pos); 240 node_affinity_destroy(entry); 241 } 242 mutex_unlock(&node_affinity.lock); 243 kfree(hfi1_per_node_cntr); 244 } 245 246 static struct hfi1_affinity_node *node_affinity_allocate(int node) 247 { 248 struct hfi1_affinity_node *entry; 249 250 entry = kzalloc(sizeof(*entry), GFP_KERNEL); 251 if (!entry) 252 return NULL; 253 entry->node = node; 254 entry->comp_vect_affinity = alloc_percpu(u16); 255 INIT_LIST_HEAD(&entry->list); 256 257 return entry; 258 } 259 260 /* 261 * It appends an entry to the list. 262 * It *must* be called with node_affinity.lock held. 263 */ 264 static void node_affinity_add_tail(struct hfi1_affinity_node *entry) 265 { 266 list_add_tail(&entry->list, &node_affinity.list); 267 } 268 269 /* It must be called with node_affinity.lock held */ 270 static struct hfi1_affinity_node *node_affinity_lookup(int node) 271 { 272 struct list_head *pos; 273 struct hfi1_affinity_node *entry; 274 275 list_for_each(pos, &node_affinity.list) { 276 entry = list_entry(pos, struct hfi1_affinity_node, list); 277 if (entry->node == node) 278 return entry; 279 } 280 281 return NULL; 282 } 283 284 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask, 285 u16 __percpu *comp_vect_affinity) 286 { 287 int curr_cpu; 288 u16 cntr; 289 u16 prev_cntr; 290 int ret_cpu; 291 292 if (!possible_cpumask) { 293 ret_cpu = -EINVAL; 294 goto fail; 295 } 296 297 if (!comp_vect_affinity) { 298 ret_cpu = -EINVAL; 299 goto fail; 300 } 301 302 ret_cpu = cpumask_first(possible_cpumask); 303 if (ret_cpu >= nr_cpu_ids) { 304 ret_cpu = -EINVAL; 305 goto fail; 306 } 307 308 prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu); 309 for_each_cpu(curr_cpu, possible_cpumask) { 310 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); 311 312 if (cntr < prev_cntr) { 313 ret_cpu = curr_cpu; 314 prev_cntr = cntr; 315 } 316 } 317 318 *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1; 319 320 fail: 321 return ret_cpu; 322 } 323 324 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask, 325 u16 __percpu *comp_vect_affinity) 326 { 327 int curr_cpu; 328 int max_cpu; 329 u16 cntr; 330 u16 prev_cntr; 331 332 if (!possible_cpumask) 333 return -EINVAL; 334 335 if (!comp_vect_affinity) 336 return -EINVAL; 337 338 max_cpu = cpumask_first(possible_cpumask); 339 if (max_cpu >= nr_cpu_ids) 340 return -EINVAL; 341 342 prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu); 343 for_each_cpu(curr_cpu, possible_cpumask) { 344 cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); 345 346 if (cntr > prev_cntr) { 347 max_cpu = curr_cpu; 348 prev_cntr = cntr; 349 } 350 } 351 352 *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1; 353 354 return max_cpu; 355 } 356 357 /* 358 * Non-interrupt CPUs are used first, then interrupt CPUs. 359 * Two already allocated cpu masks must be passed. 360 */ 361 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd, 362 struct hfi1_affinity_node *entry, 363 cpumask_var_t non_intr_cpus, 364 cpumask_var_t available_cpus) 365 __must_hold(&node_affinity.lock) 366 { 367 int cpu; 368 struct cpu_mask_set *set = dd->comp_vect; 369 370 lockdep_assert_held(&node_affinity.lock); 371 if (!non_intr_cpus) { 372 cpu = -1; 373 goto fail; 374 } 375 376 if (!available_cpus) { 377 cpu = -1; 378 goto fail; 379 } 380 381 /* Available CPUs for pinning completion vectors */ 382 _cpu_mask_set_gen_inc(set); 383 cpumask_andnot(available_cpus, &set->mask, &set->used); 384 385 /* Available CPUs without SDMA engine interrupts */ 386 cpumask_andnot(non_intr_cpus, available_cpus, 387 &entry->def_intr.used); 388 389 /* If there are non-interrupt CPUs available, use them first */ 390 if (!cpumask_empty(non_intr_cpus)) 391 cpu = cpumask_first(non_intr_cpus); 392 else /* Otherwise, use interrupt CPUs */ 393 cpu = cpumask_first(available_cpus); 394 395 if (cpu >= nr_cpu_ids) { /* empty */ 396 cpu = -1; 397 goto fail; 398 } 399 cpumask_set_cpu(cpu, &set->used); 400 401 fail: 402 return cpu; 403 } 404 405 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu) 406 { 407 struct cpu_mask_set *set = dd->comp_vect; 408 409 if (cpu < 0) 410 return; 411 412 cpu_mask_set_put(set, cpu); 413 } 414 415 /* _dev_comp_vect_mappings_destroy() is reentrant */ 416 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd) 417 { 418 int i, cpu; 419 420 if (!dd->comp_vect_mappings) 421 return; 422 423 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 424 cpu = dd->comp_vect_mappings[i]; 425 _dev_comp_vect_cpu_put(dd, cpu); 426 dd->comp_vect_mappings[i] = -1; 427 hfi1_cdbg(AFFINITY, 428 "[%s] Release CPU %d from completion vector %d", 429 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i); 430 } 431 432 kfree(dd->comp_vect_mappings); 433 dd->comp_vect_mappings = NULL; 434 } 435 436 /* 437 * This function creates the table for looking up CPUs for completion vectors. 438 * num_comp_vectors needs to have been initilized before calling this function. 439 */ 440 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd, 441 struct hfi1_affinity_node *entry) 442 __must_hold(&node_affinity.lock) 443 { 444 int i, cpu, ret; 445 cpumask_var_t non_intr_cpus; 446 cpumask_var_t available_cpus; 447 448 lockdep_assert_held(&node_affinity.lock); 449 450 if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL)) 451 return -ENOMEM; 452 453 if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) { 454 free_cpumask_var(non_intr_cpus); 455 return -ENOMEM; 456 } 457 458 dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus, 459 sizeof(*dd->comp_vect_mappings), 460 GFP_KERNEL); 461 if (!dd->comp_vect_mappings) { 462 ret = -ENOMEM; 463 goto fail; 464 } 465 for (i = 0; i < dd->comp_vect_possible_cpus; i++) 466 dd->comp_vect_mappings[i] = -1; 467 468 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 469 cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus, 470 available_cpus); 471 if (cpu < 0) { 472 ret = -EINVAL; 473 goto fail; 474 } 475 476 dd->comp_vect_mappings[i] = cpu; 477 hfi1_cdbg(AFFINITY, 478 "[%s] Completion Vector %d -> CPU %d", 479 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu); 480 } 481 482 return 0; 483 484 fail: 485 free_cpumask_var(available_cpus); 486 free_cpumask_var(non_intr_cpus); 487 _dev_comp_vect_mappings_destroy(dd); 488 489 return ret; 490 } 491 492 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd) 493 { 494 int ret; 495 struct hfi1_affinity_node *entry; 496 497 mutex_lock(&node_affinity.lock); 498 entry = node_affinity_lookup(dd->node); 499 if (!entry) { 500 ret = -EINVAL; 501 goto unlock; 502 } 503 ret = _dev_comp_vect_mappings_create(dd, entry); 504 unlock: 505 mutex_unlock(&node_affinity.lock); 506 507 return ret; 508 } 509 510 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd) 511 { 512 _dev_comp_vect_mappings_destroy(dd); 513 } 514 515 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect) 516 { 517 struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); 518 struct hfi1_devdata *dd = dd_from_dev(verbs_dev); 519 520 if (!dd->comp_vect_mappings) 521 return -EINVAL; 522 if (comp_vect >= dd->comp_vect_possible_cpus) 523 return -EINVAL; 524 525 return dd->comp_vect_mappings[comp_vect]; 526 } 527 528 /* 529 * It assumes dd->comp_vect_possible_cpus is available. 530 */ 531 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd, 532 struct hfi1_affinity_node *entry, 533 bool first_dev_init) 534 __must_hold(&node_affinity.lock) 535 { 536 int i, j, curr_cpu; 537 int possible_cpus_comp_vect = 0; 538 struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask; 539 540 lockdep_assert_held(&node_affinity.lock); 541 /* 542 * If there's only one CPU available for completion vectors, then 543 * there will only be one completion vector available. Othewise, 544 * the number of completion vector available will be the number of 545 * available CPUs divide it by the number of devices in the 546 * local NUMA node. 547 */ 548 if (cpumask_weight(&entry->comp_vect_mask) == 1) { 549 possible_cpus_comp_vect = 1; 550 dd_dev_warn(dd, 551 "Number of kernel receive queues is too large for completion vector affinity to be effective\n"); 552 } else { 553 possible_cpus_comp_vect += 554 cpumask_weight(&entry->comp_vect_mask) / 555 hfi1_per_node_cntr[dd->node]; 556 557 /* 558 * If the completion vector CPUs available doesn't divide 559 * evenly among devices, then the first device device to be 560 * initialized gets an extra CPU. 561 */ 562 if (first_dev_init && 563 cpumask_weight(&entry->comp_vect_mask) % 564 hfi1_per_node_cntr[dd->node] != 0) 565 possible_cpus_comp_vect++; 566 } 567 568 dd->comp_vect_possible_cpus = possible_cpus_comp_vect; 569 570 /* Reserving CPUs for device completion vector */ 571 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 572 curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask, 573 entry->comp_vect_affinity); 574 if (curr_cpu < 0) 575 goto fail; 576 577 cpumask_set_cpu(curr_cpu, dev_comp_vect_mask); 578 } 579 580 hfi1_cdbg(AFFINITY, 581 "[%s] Completion vector affinity CPU set(s) %*pbl", 582 rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), 583 cpumask_pr_args(dev_comp_vect_mask)); 584 585 return 0; 586 587 fail: 588 for (j = 0; j < i; j++) 589 per_cpu_affinity_put_max(&entry->comp_vect_mask, 590 entry->comp_vect_affinity); 591 592 return curr_cpu; 593 } 594 595 /* 596 * It assumes dd->comp_vect_possible_cpus is available. 597 */ 598 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd, 599 struct hfi1_affinity_node *entry) 600 __must_hold(&node_affinity.lock) 601 { 602 int i, cpu; 603 604 lockdep_assert_held(&node_affinity.lock); 605 if (!dd->comp_vect_possible_cpus) 606 return; 607 608 for (i = 0; i < dd->comp_vect_possible_cpus; i++) { 609 cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask, 610 entry->comp_vect_affinity); 611 /* Clearing CPU in device completion vector cpu mask */ 612 if (cpu >= 0) 613 cpumask_clear_cpu(cpu, &dd->comp_vect->mask); 614 } 615 616 dd->comp_vect_possible_cpus = 0; 617 } 618 619 /* 620 * Interrupt affinity. 621 * 622 * non-rcv avail gets a default mask that 623 * starts as possible cpus with threads reset 624 * and each rcv avail reset. 625 * 626 * rcv avail gets node relative 1 wrapping back 627 * to the node relative 1 as necessary. 628 * 629 */ 630 int hfi1_dev_affinity_init(struct hfi1_devdata *dd) 631 { 632 int node = pcibus_to_node(dd->pcidev->bus); 633 struct hfi1_affinity_node *entry; 634 const struct cpumask *local_mask; 635 int curr_cpu, possible, i, ret; 636 bool new_entry = false; 637 638 /* 639 * If the BIOS does not have the NUMA node information set, select 640 * NUMA 0 so we get consistent performance. 641 */ 642 if (node < 0) { 643 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n"); 644 node = 0; 645 } 646 dd->node = node; 647 648 local_mask = cpumask_of_node(dd->node); 649 if (cpumask_first(local_mask) >= nr_cpu_ids) 650 local_mask = topology_core_cpumask(0); 651 652 mutex_lock(&node_affinity.lock); 653 entry = node_affinity_lookup(dd->node); 654 655 /* 656 * If this is the first time this NUMA node's affinity is used, 657 * create an entry in the global affinity structure and initialize it. 658 */ 659 if (!entry) { 660 entry = node_affinity_allocate(node); 661 if (!entry) { 662 dd_dev_err(dd, 663 "Unable to allocate global affinity node\n"); 664 ret = -ENOMEM; 665 goto fail; 666 } 667 new_entry = true; 668 669 init_cpu_mask_set(&entry->def_intr); 670 init_cpu_mask_set(&entry->rcv_intr); 671 cpumask_clear(&entry->comp_vect_mask); 672 cpumask_clear(&entry->general_intr_mask); 673 /* Use the "real" cpu mask of this node as the default */ 674 cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask, 675 local_mask); 676 677 /* fill in the receive list */ 678 possible = cpumask_weight(&entry->def_intr.mask); 679 curr_cpu = cpumask_first(&entry->def_intr.mask); 680 681 if (possible == 1) { 682 /* only one CPU, everyone will use it */ 683 cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); 684 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); 685 } else { 686 /* 687 * The general/control context will be the first CPU in 688 * the default list, so it is removed from the default 689 * list and added to the general interrupt list. 690 */ 691 cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); 692 cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); 693 curr_cpu = cpumask_next(curr_cpu, 694 &entry->def_intr.mask); 695 696 /* 697 * Remove the remaining kernel receive queues from 698 * the default list and add them to the receive list. 699 */ 700 for (i = 0; 701 i < (dd->n_krcv_queues - 1) * 702 hfi1_per_node_cntr[dd->node]; 703 i++) { 704 cpumask_clear_cpu(curr_cpu, 705 &entry->def_intr.mask); 706 cpumask_set_cpu(curr_cpu, 707 &entry->rcv_intr.mask); 708 curr_cpu = cpumask_next(curr_cpu, 709 &entry->def_intr.mask); 710 if (curr_cpu >= nr_cpu_ids) 711 break; 712 } 713 714 /* 715 * If there ends up being 0 CPU cores leftover for SDMA 716 * engines, use the same CPU cores as general/control 717 * context. 718 */ 719 if (cpumask_weight(&entry->def_intr.mask) == 0) 720 cpumask_copy(&entry->def_intr.mask, 721 &entry->general_intr_mask); 722 } 723 724 /* Determine completion vector CPUs for the entire node */ 725 cpumask_and(&entry->comp_vect_mask, 726 &node_affinity.real_cpu_mask, local_mask); 727 cpumask_andnot(&entry->comp_vect_mask, 728 &entry->comp_vect_mask, 729 &entry->rcv_intr.mask); 730 cpumask_andnot(&entry->comp_vect_mask, 731 &entry->comp_vect_mask, 732 &entry->general_intr_mask); 733 734 /* 735 * If there ends up being 0 CPU cores leftover for completion 736 * vectors, use the same CPU core as the general/control 737 * context. 738 */ 739 if (cpumask_weight(&entry->comp_vect_mask) == 0) 740 cpumask_copy(&entry->comp_vect_mask, 741 &entry->general_intr_mask); 742 } 743 744 ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry); 745 if (ret < 0) 746 goto fail; 747 748 if (new_entry) 749 node_affinity_add_tail(entry); 750 751 mutex_unlock(&node_affinity.lock); 752 753 return 0; 754 755 fail: 756 if (new_entry) 757 node_affinity_destroy(entry); 758 mutex_unlock(&node_affinity.lock); 759 return ret; 760 } 761 762 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd) 763 { 764 struct hfi1_affinity_node *entry; 765 766 if (dd->node < 0) 767 return; 768 769 mutex_lock(&node_affinity.lock); 770 entry = node_affinity_lookup(dd->node); 771 if (!entry) 772 goto unlock; 773 774 /* 775 * Free device completion vector CPUs to be used by future 776 * completion vectors 777 */ 778 _dev_comp_vect_cpu_mask_clean_up(dd, entry); 779 unlock: 780 mutex_unlock(&node_affinity.lock); 781 dd->node = NUMA_NO_NODE; 782 } 783 784 /* 785 * Function updates the irq affinity hint for msix after it has been changed 786 * by the user using the /proc/irq interface. This function only accepts 787 * one cpu in the mask. 788 */ 789 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu) 790 { 791 struct sdma_engine *sde = msix->arg; 792 struct hfi1_devdata *dd = sde->dd; 793 struct hfi1_affinity_node *entry; 794 struct cpu_mask_set *set; 795 int i, old_cpu; 796 797 if (cpu > num_online_cpus() || cpu == sde->cpu) 798 return; 799 800 mutex_lock(&node_affinity.lock); 801 entry = node_affinity_lookup(dd->node); 802 if (!entry) 803 goto unlock; 804 805 old_cpu = sde->cpu; 806 sde->cpu = cpu; 807 cpumask_clear(&msix->mask); 808 cpumask_set_cpu(cpu, &msix->mask); 809 dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n", 810 msix->irq, irq_type_names[msix->type], 811 sde->this_idx, cpu); 812 irq_set_affinity_hint(msix->irq, &msix->mask); 813 814 /* 815 * Set the new cpu in the hfi1_affinity_node and clean 816 * the old cpu if it is not used by any other IRQ 817 */ 818 set = &entry->def_intr; 819 cpumask_set_cpu(cpu, &set->mask); 820 cpumask_set_cpu(cpu, &set->used); 821 for (i = 0; i < dd->msix_info.max_requested; i++) { 822 struct hfi1_msix_entry *other_msix; 823 824 other_msix = &dd->msix_info.msix_entries[i]; 825 if (other_msix->type != IRQ_SDMA || other_msix == msix) 826 continue; 827 828 if (cpumask_test_cpu(old_cpu, &other_msix->mask)) 829 goto unlock; 830 } 831 cpumask_clear_cpu(old_cpu, &set->mask); 832 cpumask_clear_cpu(old_cpu, &set->used); 833 unlock: 834 mutex_unlock(&node_affinity.lock); 835 } 836 837 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify, 838 const cpumask_t *mask) 839 { 840 int cpu = cpumask_first(mask); 841 struct hfi1_msix_entry *msix = container_of(notify, 842 struct hfi1_msix_entry, 843 notify); 844 845 /* Only one CPU configuration supported currently */ 846 hfi1_update_sdma_affinity(msix, cpu); 847 } 848 849 static void hfi1_irq_notifier_release(struct kref *ref) 850 { 851 /* 852 * This is required by affinity notifier. We don't have anything to 853 * free here. 854 */ 855 } 856 857 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix) 858 { 859 struct irq_affinity_notify *notify = &msix->notify; 860 861 notify->irq = msix->irq; 862 notify->notify = hfi1_irq_notifier_notify; 863 notify->release = hfi1_irq_notifier_release; 864 865 if (irq_set_affinity_notifier(notify->irq, notify)) 866 pr_err("Failed to register sdma irq affinity notifier for irq %d\n", 867 notify->irq); 868 } 869 870 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix) 871 { 872 struct irq_affinity_notify *notify = &msix->notify; 873 874 if (irq_set_affinity_notifier(notify->irq, NULL)) 875 pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n", 876 notify->irq); 877 } 878 879 /* 880 * Function sets the irq affinity for msix. 881 * It *must* be called with node_affinity.lock held. 882 */ 883 static int get_irq_affinity(struct hfi1_devdata *dd, 884 struct hfi1_msix_entry *msix) 885 { 886 cpumask_var_t diff; 887 struct hfi1_affinity_node *entry; 888 struct cpu_mask_set *set = NULL; 889 struct sdma_engine *sde = NULL; 890 struct hfi1_ctxtdata *rcd = NULL; 891 char extra[64]; 892 int cpu = -1; 893 894 extra[0] = '\0'; 895 cpumask_clear(&msix->mask); 896 897 entry = node_affinity_lookup(dd->node); 898 899 switch (msix->type) { 900 case IRQ_SDMA: 901 sde = (struct sdma_engine *)msix->arg; 902 scnprintf(extra, 64, "engine %u", sde->this_idx); 903 set = &entry->def_intr; 904 break; 905 case IRQ_GENERAL: 906 cpu = cpumask_first(&entry->general_intr_mask); 907 break; 908 case IRQ_RCVCTXT: 909 rcd = (struct hfi1_ctxtdata *)msix->arg; 910 if (rcd->ctxt == HFI1_CTRL_CTXT) 911 cpu = cpumask_first(&entry->general_intr_mask); 912 else 913 set = &entry->rcv_intr; 914 scnprintf(extra, 64, "ctxt %u", rcd->ctxt); 915 break; 916 default: 917 dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type); 918 return -EINVAL; 919 } 920 921 /* 922 * The general and control contexts are placed on a particular 923 * CPU, which is set above. Skip accounting for it. Everything else 924 * finds its CPU here. 925 */ 926 if (cpu == -1 && set) { 927 if (!zalloc_cpumask_var(&diff, GFP_KERNEL)) 928 return -ENOMEM; 929 930 cpu = cpu_mask_set_get_first(set, diff); 931 if (cpu < 0) { 932 free_cpumask_var(diff); 933 dd_dev_err(dd, "Failure to obtain CPU for IRQ\n"); 934 return cpu; 935 } 936 937 free_cpumask_var(diff); 938 } 939 940 cpumask_set_cpu(cpu, &msix->mask); 941 dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n", 942 msix->irq, irq_type_names[msix->type], 943 extra, cpu); 944 irq_set_affinity_hint(msix->irq, &msix->mask); 945 946 if (msix->type == IRQ_SDMA) { 947 sde->cpu = cpu; 948 hfi1_setup_sdma_notifier(msix); 949 } 950 951 return 0; 952 } 953 954 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) 955 { 956 int ret; 957 958 mutex_lock(&node_affinity.lock); 959 ret = get_irq_affinity(dd, msix); 960 mutex_unlock(&node_affinity.lock); 961 return ret; 962 } 963 964 void hfi1_put_irq_affinity(struct hfi1_devdata *dd, 965 struct hfi1_msix_entry *msix) 966 { 967 struct cpu_mask_set *set = NULL; 968 struct hfi1_ctxtdata *rcd; 969 struct hfi1_affinity_node *entry; 970 971 mutex_lock(&node_affinity.lock); 972 entry = node_affinity_lookup(dd->node); 973 974 switch (msix->type) { 975 case IRQ_SDMA: 976 set = &entry->def_intr; 977 hfi1_cleanup_sdma_notifier(msix); 978 break; 979 case IRQ_GENERAL: 980 /* Don't do accounting for general contexts */ 981 break; 982 case IRQ_RCVCTXT: 983 rcd = (struct hfi1_ctxtdata *)msix->arg; 984 /* Don't do accounting for control contexts */ 985 if (rcd->ctxt != HFI1_CTRL_CTXT) 986 set = &entry->rcv_intr; 987 break; 988 default: 989 mutex_unlock(&node_affinity.lock); 990 return; 991 } 992 993 if (set) { 994 cpumask_andnot(&set->used, &set->used, &msix->mask); 995 _cpu_mask_set_gen_dec(set); 996 } 997 998 irq_set_affinity_hint(msix->irq, NULL); 999 cpumask_clear(&msix->mask); 1000 mutex_unlock(&node_affinity.lock); 1001 } 1002 1003 /* This should be called with node_affinity.lock held */ 1004 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask, 1005 struct hfi1_affinity_node_list *affinity) 1006 { 1007 int possible, curr_cpu, i; 1008 uint num_cores_per_socket = node_affinity.num_online_cpus / 1009 affinity->num_core_siblings / 1010 node_affinity.num_online_nodes; 1011 1012 cpumask_copy(hw_thread_mask, &affinity->proc.mask); 1013 if (affinity->num_core_siblings > 0) { 1014 /* Removing other siblings not needed for now */ 1015 possible = cpumask_weight(hw_thread_mask); 1016 curr_cpu = cpumask_first(hw_thread_mask); 1017 for (i = 0; 1018 i < num_cores_per_socket * node_affinity.num_online_nodes; 1019 i++) 1020 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); 1021 1022 for (; i < possible; i++) { 1023 cpumask_clear_cpu(curr_cpu, hw_thread_mask); 1024 curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); 1025 } 1026 1027 /* Identifying correct HW threads within physical cores */ 1028 cpumask_shift_left(hw_thread_mask, hw_thread_mask, 1029 num_cores_per_socket * 1030 node_affinity.num_online_nodes * 1031 hw_thread_no); 1032 } 1033 } 1034 1035 int hfi1_get_proc_affinity(int node) 1036 { 1037 int cpu = -1, ret, i; 1038 struct hfi1_affinity_node *entry; 1039 cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask; 1040 const struct cpumask *node_mask, 1041 *proc_mask = current->cpus_ptr; 1042 struct hfi1_affinity_node_list *affinity = &node_affinity; 1043 struct cpu_mask_set *set = &affinity->proc; 1044 1045 /* 1046 * check whether process/context affinity has already 1047 * been set 1048 */ 1049 if (current->nr_cpus_allowed == 1) { 1050 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl", 1051 current->pid, current->comm, 1052 cpumask_pr_args(proc_mask)); 1053 /* 1054 * Mark the pre-set CPU as used. This is atomic so we don't 1055 * need the lock 1056 */ 1057 cpu = cpumask_first(proc_mask); 1058 cpumask_set_cpu(cpu, &set->used); 1059 goto done; 1060 } else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) { 1061 hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl", 1062 current->pid, current->comm, 1063 cpumask_pr_args(proc_mask)); 1064 goto done; 1065 } 1066 1067 /* 1068 * The process does not have a preset CPU affinity so find one to 1069 * recommend using the following algorithm: 1070 * 1071 * For each user process that is opening a context on HFI Y: 1072 * a) If all cores are filled, reinitialize the bitmask 1073 * b) Fill real cores first, then HT cores (First set of HT 1074 * cores on all physical cores, then second set of HT core, 1075 * and, so on) in the following order: 1076 * 1077 * 1. Same NUMA node as HFI Y and not running an IRQ 1078 * handler 1079 * 2. Same NUMA node as HFI Y and running an IRQ handler 1080 * 3. Different NUMA node to HFI Y and not running an IRQ 1081 * handler 1082 * 4. Different NUMA node to HFI Y and running an IRQ 1083 * handler 1084 * c) Mark core as filled in the bitmask. As user processes are 1085 * done, clear cores from the bitmask. 1086 */ 1087 1088 ret = zalloc_cpumask_var(&diff, GFP_KERNEL); 1089 if (!ret) 1090 goto done; 1091 ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL); 1092 if (!ret) 1093 goto free_diff; 1094 ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL); 1095 if (!ret) 1096 goto free_hw_thread_mask; 1097 ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL); 1098 if (!ret) 1099 goto free_available_mask; 1100 1101 mutex_lock(&affinity->lock); 1102 /* 1103 * If we've used all available HW threads, clear the mask and start 1104 * overloading. 1105 */ 1106 _cpu_mask_set_gen_inc(set); 1107 1108 /* 1109 * If NUMA node has CPUs used by interrupt handlers, include them in the 1110 * interrupt handler mask. 1111 */ 1112 entry = node_affinity_lookup(node); 1113 if (entry) { 1114 cpumask_copy(intrs_mask, (entry->def_intr.gen ? 1115 &entry->def_intr.mask : 1116 &entry->def_intr.used)); 1117 cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ? 1118 &entry->rcv_intr.mask : 1119 &entry->rcv_intr.used)); 1120 cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask); 1121 } 1122 hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl", 1123 cpumask_pr_args(intrs_mask)); 1124 1125 cpumask_copy(hw_thread_mask, &set->mask); 1126 1127 /* 1128 * If HT cores are enabled, identify which HW threads within the 1129 * physical cores should be used. 1130 */ 1131 if (affinity->num_core_siblings > 0) { 1132 for (i = 0; i < affinity->num_core_siblings; i++) { 1133 find_hw_thread_mask(i, hw_thread_mask, affinity); 1134 1135 /* 1136 * If there's at least one available core for this HW 1137 * thread number, stop looking for a core. 1138 * 1139 * diff will always be not empty at least once in this 1140 * loop as the used mask gets reset when 1141 * (set->mask == set->used) before this loop. 1142 */ 1143 cpumask_andnot(diff, hw_thread_mask, &set->used); 1144 if (!cpumask_empty(diff)) 1145 break; 1146 } 1147 } 1148 hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl", 1149 cpumask_pr_args(hw_thread_mask)); 1150 1151 node_mask = cpumask_of_node(node); 1152 hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node, 1153 cpumask_pr_args(node_mask)); 1154 1155 /* Get cpumask of available CPUs on preferred NUMA */ 1156 cpumask_and(available_mask, hw_thread_mask, node_mask); 1157 cpumask_andnot(available_mask, available_mask, &set->used); 1158 hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node, 1159 cpumask_pr_args(available_mask)); 1160 1161 /* 1162 * At first, we don't want to place processes on the same 1163 * CPUs as interrupt handlers. Then, CPUs running interrupt 1164 * handlers are used. 1165 * 1166 * 1) If diff is not empty, then there are CPUs not running 1167 * non-interrupt handlers available, so diff gets copied 1168 * over to available_mask. 1169 * 2) If diff is empty, then all CPUs not running interrupt 1170 * handlers are taken, so available_mask contains all 1171 * available CPUs running interrupt handlers. 1172 * 3) If available_mask is empty, then all CPUs on the 1173 * preferred NUMA node are taken, so other NUMA nodes are 1174 * used for process assignments using the same method as 1175 * the preferred NUMA node. 1176 */ 1177 cpumask_andnot(diff, available_mask, intrs_mask); 1178 if (!cpumask_empty(diff)) 1179 cpumask_copy(available_mask, diff); 1180 1181 /* If we don't have CPUs on the preferred node, use other NUMA nodes */ 1182 if (cpumask_empty(available_mask)) { 1183 cpumask_andnot(available_mask, hw_thread_mask, &set->used); 1184 /* Excluding preferred NUMA cores */ 1185 cpumask_andnot(available_mask, available_mask, node_mask); 1186 hfi1_cdbg(PROC, 1187 "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl", 1188 cpumask_pr_args(available_mask)); 1189 1190 /* 1191 * At first, we don't want to place processes on the same 1192 * CPUs as interrupt handlers. 1193 */ 1194 cpumask_andnot(diff, available_mask, intrs_mask); 1195 if (!cpumask_empty(diff)) 1196 cpumask_copy(available_mask, diff); 1197 } 1198 hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl", 1199 cpumask_pr_args(available_mask)); 1200 1201 cpu = cpumask_first(available_mask); 1202 if (cpu >= nr_cpu_ids) /* empty */ 1203 cpu = -1; 1204 else 1205 cpumask_set_cpu(cpu, &set->used); 1206 1207 mutex_unlock(&affinity->lock); 1208 hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu); 1209 1210 free_cpumask_var(intrs_mask); 1211 free_available_mask: 1212 free_cpumask_var(available_mask); 1213 free_hw_thread_mask: 1214 free_cpumask_var(hw_thread_mask); 1215 free_diff: 1216 free_cpumask_var(diff); 1217 done: 1218 return cpu; 1219 } 1220 1221 void hfi1_put_proc_affinity(int cpu) 1222 { 1223 struct hfi1_affinity_node_list *affinity = &node_affinity; 1224 struct cpu_mask_set *set = &affinity->proc; 1225 1226 if (cpu < 0) 1227 return; 1228 1229 mutex_lock(&affinity->lock); 1230 cpu_mask_set_put(set, cpu); 1231 hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu); 1232 mutex_unlock(&affinity->lock); 1233 } 1234