1 /*
2  * Copyright(c) 2015 - 2018 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 #include <linux/numa.h>
52 
53 #include "hfi.h"
54 #include "affinity.h"
55 #include "sdma.h"
56 #include "trace.h"
57 
58 struct hfi1_affinity_node_list node_affinity = {
59 	.list = LIST_HEAD_INIT(node_affinity.list),
60 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
61 };
62 
63 /* Name of IRQ types, indexed by enum irq_type */
64 static const char * const irq_type_names[] = {
65 	"SDMA",
66 	"RCVCTXT",
67 	"GENERAL",
68 	"OTHER",
69 };
70 
71 /* Per NUMA node count of HFI devices */
72 static unsigned int *hfi1_per_node_cntr;
73 
74 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
75 {
76 	cpumask_clear(&set->mask);
77 	cpumask_clear(&set->used);
78 	set->gen = 0;
79 }
80 
81 /* Increment generation of CPU set if needed */
82 static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set)
83 {
84 	if (cpumask_equal(&set->mask, &set->used)) {
85 		/*
86 		 * We've used up all the CPUs, bump up the generation
87 		 * and reset the 'used' map
88 		 */
89 		set->gen++;
90 		cpumask_clear(&set->used);
91 	}
92 }
93 
94 static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set)
95 {
96 	if (cpumask_empty(&set->used) && set->gen) {
97 		set->gen--;
98 		cpumask_copy(&set->used, &set->mask);
99 	}
100 }
101 
102 /* Get the first CPU from the list of unused CPUs in a CPU set data structure */
103 static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff)
104 {
105 	int cpu;
106 
107 	if (!diff || !set)
108 		return -EINVAL;
109 
110 	_cpu_mask_set_gen_inc(set);
111 
112 	/* Find out CPUs left in CPU mask */
113 	cpumask_andnot(diff, &set->mask, &set->used);
114 
115 	cpu = cpumask_first(diff);
116 	if (cpu >= nr_cpu_ids) /* empty */
117 		cpu = -EINVAL;
118 	else
119 		cpumask_set_cpu(cpu, &set->used);
120 
121 	return cpu;
122 }
123 
124 static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu)
125 {
126 	if (!set)
127 		return;
128 
129 	cpumask_clear_cpu(cpu, &set->used);
130 	_cpu_mask_set_gen_dec(set);
131 }
132 
133 /* Initialize non-HT cpu cores mask */
134 void init_real_cpu_mask(void)
135 {
136 	int possible, curr_cpu, i, ht;
137 
138 	cpumask_clear(&node_affinity.real_cpu_mask);
139 
140 	/* Start with cpu online mask as the real cpu mask */
141 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
142 
143 	/*
144 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
145 	 */
146 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
147 	ht = cpumask_weight(topology_sibling_cpumask(
148 				cpumask_first(&node_affinity.real_cpu_mask)));
149 	/*
150 	 * Step 1.  Skip over the first N HT siblings and use them as the
151 	 * "real" cores.  Assumes that HT cores are not enumerated in
152 	 * succession (except in the single core case).
153 	 */
154 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
155 	for (i = 0; i < possible / ht; i++)
156 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
157 	/*
158 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
159 	 * skip any gaps.
160 	 */
161 	for (; i < possible; i++) {
162 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
163 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
164 	}
165 }
166 
167 int node_affinity_init(void)
168 {
169 	int node;
170 	struct pci_dev *dev = NULL;
171 	const struct pci_device_id *ids = hfi1_pci_tbl;
172 
173 	cpumask_clear(&node_affinity.proc.used);
174 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
175 
176 	node_affinity.proc.gen = 0;
177 	node_affinity.num_core_siblings =
178 				cpumask_weight(topology_sibling_cpumask(
179 					cpumask_first(&node_affinity.proc.mask)
180 					));
181 	node_affinity.num_possible_nodes = num_possible_nodes();
182 	node_affinity.num_online_nodes = num_online_nodes();
183 	node_affinity.num_online_cpus = num_online_cpus();
184 
185 	/*
186 	 * The real cpu mask is part of the affinity struct but it has to be
187 	 * initialized early. It is needed to calculate the number of user
188 	 * contexts in set_up_context_variables().
189 	 */
190 	init_real_cpu_mask();
191 
192 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
193 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
194 	if (!hfi1_per_node_cntr)
195 		return -ENOMEM;
196 
197 	while (ids->vendor) {
198 		dev = NULL;
199 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
200 			node = pcibus_to_node(dev->bus);
201 			if (node < 0)
202 				goto out;
203 
204 			hfi1_per_node_cntr[node]++;
205 		}
206 		ids++;
207 	}
208 
209 	return 0;
210 
211 out:
212 	/*
213 	 * Invalid PCI NUMA node information found, note it, and populate
214 	 * our database 1:1.
215 	 */
216 	pr_err("HFI: Invalid PCI NUMA node. Performance may be affected\n");
217 	pr_err("HFI: System BIOS may need to be upgraded\n");
218 	for (node = 0; node < node_affinity.num_possible_nodes; node++)
219 		hfi1_per_node_cntr[node] = 1;
220 
221 	return 0;
222 }
223 
224 static void node_affinity_destroy(struct hfi1_affinity_node *entry)
225 {
226 	free_percpu(entry->comp_vect_affinity);
227 	kfree(entry);
228 }
229 
230 void node_affinity_destroy_all(void)
231 {
232 	struct list_head *pos, *q;
233 	struct hfi1_affinity_node *entry;
234 
235 	mutex_lock(&node_affinity.lock);
236 	list_for_each_safe(pos, q, &node_affinity.list) {
237 		entry = list_entry(pos, struct hfi1_affinity_node,
238 				   list);
239 		list_del(pos);
240 		node_affinity_destroy(entry);
241 	}
242 	mutex_unlock(&node_affinity.lock);
243 	kfree(hfi1_per_node_cntr);
244 }
245 
246 static struct hfi1_affinity_node *node_affinity_allocate(int node)
247 {
248 	struct hfi1_affinity_node *entry;
249 
250 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
251 	if (!entry)
252 		return NULL;
253 	entry->node = node;
254 	entry->comp_vect_affinity = alloc_percpu(u16);
255 	INIT_LIST_HEAD(&entry->list);
256 
257 	return entry;
258 }
259 
260 /*
261  * It appends an entry to the list.
262  * It *must* be called with node_affinity.lock held.
263  */
264 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
265 {
266 	list_add_tail(&entry->list, &node_affinity.list);
267 }
268 
269 /* It must be called with node_affinity.lock held */
270 static struct hfi1_affinity_node *node_affinity_lookup(int node)
271 {
272 	struct list_head *pos;
273 	struct hfi1_affinity_node *entry;
274 
275 	list_for_each(pos, &node_affinity.list) {
276 		entry = list_entry(pos, struct hfi1_affinity_node, list);
277 		if (entry->node == node)
278 			return entry;
279 	}
280 
281 	return NULL;
282 }
283 
284 static int per_cpu_affinity_get(cpumask_var_t possible_cpumask,
285 				u16 __percpu *comp_vect_affinity)
286 {
287 	int curr_cpu;
288 	u16 cntr;
289 	u16 prev_cntr;
290 	int ret_cpu;
291 
292 	if (!possible_cpumask) {
293 		ret_cpu = -EINVAL;
294 		goto fail;
295 	}
296 
297 	if (!comp_vect_affinity) {
298 		ret_cpu = -EINVAL;
299 		goto fail;
300 	}
301 
302 	ret_cpu = cpumask_first(possible_cpumask);
303 	if (ret_cpu >= nr_cpu_ids) {
304 		ret_cpu = -EINVAL;
305 		goto fail;
306 	}
307 
308 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu);
309 	for_each_cpu(curr_cpu, possible_cpumask) {
310 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
311 
312 		if (cntr < prev_cntr) {
313 			ret_cpu = curr_cpu;
314 			prev_cntr = cntr;
315 		}
316 	}
317 
318 	*per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1;
319 
320 fail:
321 	return ret_cpu;
322 }
323 
324 static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask,
325 				    u16 __percpu *comp_vect_affinity)
326 {
327 	int curr_cpu;
328 	int max_cpu;
329 	u16 cntr;
330 	u16 prev_cntr;
331 
332 	if (!possible_cpumask)
333 		return -EINVAL;
334 
335 	if (!comp_vect_affinity)
336 		return -EINVAL;
337 
338 	max_cpu = cpumask_first(possible_cpumask);
339 	if (max_cpu >= nr_cpu_ids)
340 		return -EINVAL;
341 
342 	prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu);
343 	for_each_cpu(curr_cpu, possible_cpumask) {
344 		cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu);
345 
346 		if (cntr > prev_cntr) {
347 			max_cpu = curr_cpu;
348 			prev_cntr = cntr;
349 		}
350 	}
351 
352 	*per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1;
353 
354 	return max_cpu;
355 }
356 
357 /*
358  * Non-interrupt CPUs are used first, then interrupt CPUs.
359  * Two already allocated cpu masks must be passed.
360  */
361 static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd,
362 				  struct hfi1_affinity_node *entry,
363 				  cpumask_var_t non_intr_cpus,
364 				  cpumask_var_t available_cpus)
365 	__must_hold(&node_affinity.lock)
366 {
367 	int cpu;
368 	struct cpu_mask_set *set = dd->comp_vect;
369 
370 	lockdep_assert_held(&node_affinity.lock);
371 	if (!non_intr_cpus) {
372 		cpu = -1;
373 		goto fail;
374 	}
375 
376 	if (!available_cpus) {
377 		cpu = -1;
378 		goto fail;
379 	}
380 
381 	/* Available CPUs for pinning completion vectors */
382 	_cpu_mask_set_gen_inc(set);
383 	cpumask_andnot(available_cpus, &set->mask, &set->used);
384 
385 	/* Available CPUs without SDMA engine interrupts */
386 	cpumask_andnot(non_intr_cpus, available_cpus,
387 		       &entry->def_intr.used);
388 
389 	/* If there are non-interrupt CPUs available, use them first */
390 	if (!cpumask_empty(non_intr_cpus))
391 		cpu = cpumask_first(non_intr_cpus);
392 	else /* Otherwise, use interrupt CPUs */
393 		cpu = cpumask_first(available_cpus);
394 
395 	if (cpu >= nr_cpu_ids) { /* empty */
396 		cpu = -1;
397 		goto fail;
398 	}
399 	cpumask_set_cpu(cpu, &set->used);
400 
401 fail:
402 	return cpu;
403 }
404 
405 static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu)
406 {
407 	struct cpu_mask_set *set = dd->comp_vect;
408 
409 	if (cpu < 0)
410 		return;
411 
412 	cpu_mask_set_put(set, cpu);
413 }
414 
415 /* _dev_comp_vect_mappings_destroy() is reentrant */
416 static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd)
417 {
418 	int i, cpu;
419 
420 	if (!dd->comp_vect_mappings)
421 		return;
422 
423 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
424 		cpu = dd->comp_vect_mappings[i];
425 		_dev_comp_vect_cpu_put(dd, cpu);
426 		dd->comp_vect_mappings[i] = -1;
427 		hfi1_cdbg(AFFINITY,
428 			  "[%s] Release CPU %d from completion vector %d",
429 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i);
430 	}
431 
432 	kfree(dd->comp_vect_mappings);
433 	dd->comp_vect_mappings = NULL;
434 }
435 
436 /*
437  * This function creates the table for looking up CPUs for completion vectors.
438  * num_comp_vectors needs to have been initilized before calling this function.
439  */
440 static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd,
441 					  struct hfi1_affinity_node *entry)
442 	__must_hold(&node_affinity.lock)
443 {
444 	int i, cpu, ret;
445 	cpumask_var_t non_intr_cpus;
446 	cpumask_var_t available_cpus;
447 
448 	lockdep_assert_held(&node_affinity.lock);
449 
450 	if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL))
451 		return -ENOMEM;
452 
453 	if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) {
454 		free_cpumask_var(non_intr_cpus);
455 		return -ENOMEM;
456 	}
457 
458 	dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus,
459 					 sizeof(*dd->comp_vect_mappings),
460 					 GFP_KERNEL);
461 	if (!dd->comp_vect_mappings) {
462 		ret = -ENOMEM;
463 		goto fail;
464 	}
465 	for (i = 0; i < dd->comp_vect_possible_cpus; i++)
466 		dd->comp_vect_mappings[i] = -1;
467 
468 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
469 		cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus,
470 					     available_cpus);
471 		if (cpu < 0) {
472 			ret = -EINVAL;
473 			goto fail;
474 		}
475 
476 		dd->comp_vect_mappings[i] = cpu;
477 		hfi1_cdbg(AFFINITY,
478 			  "[%s] Completion Vector %d -> CPU %d",
479 			  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu);
480 	}
481 
482 	free_cpumask_var(available_cpus);
483 	free_cpumask_var(non_intr_cpus);
484 	return 0;
485 
486 fail:
487 	free_cpumask_var(available_cpus);
488 	free_cpumask_var(non_intr_cpus);
489 	_dev_comp_vect_mappings_destroy(dd);
490 
491 	return ret;
492 }
493 
494 int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd)
495 {
496 	int ret;
497 	struct hfi1_affinity_node *entry;
498 
499 	mutex_lock(&node_affinity.lock);
500 	entry = node_affinity_lookup(dd->node);
501 	if (!entry) {
502 		ret = -EINVAL;
503 		goto unlock;
504 	}
505 	ret = _dev_comp_vect_mappings_create(dd, entry);
506 unlock:
507 	mutex_unlock(&node_affinity.lock);
508 
509 	return ret;
510 }
511 
512 void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd)
513 {
514 	_dev_comp_vect_mappings_destroy(dd);
515 }
516 
517 int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect)
518 {
519 	struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi);
520 	struct hfi1_devdata *dd = dd_from_dev(verbs_dev);
521 
522 	if (!dd->comp_vect_mappings)
523 		return -EINVAL;
524 	if (comp_vect >= dd->comp_vect_possible_cpus)
525 		return -EINVAL;
526 
527 	return dd->comp_vect_mappings[comp_vect];
528 }
529 
530 /*
531  * It assumes dd->comp_vect_possible_cpus is available.
532  */
533 static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd,
534 					struct hfi1_affinity_node *entry,
535 					bool first_dev_init)
536 	__must_hold(&node_affinity.lock)
537 {
538 	int i, j, curr_cpu;
539 	int possible_cpus_comp_vect = 0;
540 	struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask;
541 
542 	lockdep_assert_held(&node_affinity.lock);
543 	/*
544 	 * If there's only one CPU available for completion vectors, then
545 	 * there will only be one completion vector available. Othewise,
546 	 * the number of completion vector available will be the number of
547 	 * available CPUs divide it by the number of devices in the
548 	 * local NUMA node.
549 	 */
550 	if (cpumask_weight(&entry->comp_vect_mask) == 1) {
551 		possible_cpus_comp_vect = 1;
552 		dd_dev_warn(dd,
553 			    "Number of kernel receive queues is too large for completion vector affinity to be effective\n");
554 	} else {
555 		possible_cpus_comp_vect +=
556 			cpumask_weight(&entry->comp_vect_mask) /
557 				       hfi1_per_node_cntr[dd->node];
558 
559 		/*
560 		 * If the completion vector CPUs available doesn't divide
561 		 * evenly among devices, then the first device device to be
562 		 * initialized gets an extra CPU.
563 		 */
564 		if (first_dev_init &&
565 		    cpumask_weight(&entry->comp_vect_mask) %
566 		    hfi1_per_node_cntr[dd->node] != 0)
567 			possible_cpus_comp_vect++;
568 	}
569 
570 	dd->comp_vect_possible_cpus = possible_cpus_comp_vect;
571 
572 	/* Reserving CPUs for device completion vector */
573 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
574 		curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask,
575 						entry->comp_vect_affinity);
576 		if (curr_cpu < 0)
577 			goto fail;
578 
579 		cpumask_set_cpu(curr_cpu, dev_comp_vect_mask);
580 	}
581 
582 	hfi1_cdbg(AFFINITY,
583 		  "[%s] Completion vector affinity CPU set(s) %*pbl",
584 		  rvt_get_ibdev_name(&(dd)->verbs_dev.rdi),
585 		  cpumask_pr_args(dev_comp_vect_mask));
586 
587 	return 0;
588 
589 fail:
590 	for (j = 0; j < i; j++)
591 		per_cpu_affinity_put_max(&entry->comp_vect_mask,
592 					 entry->comp_vect_affinity);
593 
594 	return curr_cpu;
595 }
596 
597 /*
598  * It assumes dd->comp_vect_possible_cpus is available.
599  */
600 static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd,
601 					     struct hfi1_affinity_node *entry)
602 	__must_hold(&node_affinity.lock)
603 {
604 	int i, cpu;
605 
606 	lockdep_assert_held(&node_affinity.lock);
607 	if (!dd->comp_vect_possible_cpus)
608 		return;
609 
610 	for (i = 0; i < dd->comp_vect_possible_cpus; i++) {
611 		cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask,
612 					       entry->comp_vect_affinity);
613 		/* Clearing CPU in device completion vector cpu mask */
614 		if (cpu >= 0)
615 			cpumask_clear_cpu(cpu, &dd->comp_vect->mask);
616 	}
617 
618 	dd->comp_vect_possible_cpus = 0;
619 }
620 
621 /*
622  * Interrupt affinity.
623  *
624  * non-rcv avail gets a default mask that
625  * starts as possible cpus with threads reset
626  * and each rcv avail reset.
627  *
628  * rcv avail gets node relative 1 wrapping back
629  * to the node relative 1 as necessary.
630  *
631  */
632 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
633 {
634 	int node = pcibus_to_node(dd->pcidev->bus);
635 	struct hfi1_affinity_node *entry;
636 	const struct cpumask *local_mask;
637 	int curr_cpu, possible, i, ret;
638 	bool new_entry = false;
639 
640 	/*
641 	 * If the BIOS does not have the NUMA node information set, select
642 	 * NUMA 0 so we get consistent performance.
643 	 */
644 	if (node < 0) {
645 		dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
646 		node = 0;
647 	}
648 	dd->node = node;
649 
650 	local_mask = cpumask_of_node(dd->node);
651 	if (cpumask_first(local_mask) >= nr_cpu_ids)
652 		local_mask = topology_core_cpumask(0);
653 
654 	mutex_lock(&node_affinity.lock);
655 	entry = node_affinity_lookup(dd->node);
656 
657 	/*
658 	 * If this is the first time this NUMA node's affinity is used,
659 	 * create an entry in the global affinity structure and initialize it.
660 	 */
661 	if (!entry) {
662 		entry = node_affinity_allocate(node);
663 		if (!entry) {
664 			dd_dev_err(dd,
665 				   "Unable to allocate global affinity node\n");
666 			ret = -ENOMEM;
667 			goto fail;
668 		}
669 		new_entry = true;
670 
671 		init_cpu_mask_set(&entry->def_intr);
672 		init_cpu_mask_set(&entry->rcv_intr);
673 		cpumask_clear(&entry->comp_vect_mask);
674 		cpumask_clear(&entry->general_intr_mask);
675 		/* Use the "real" cpu mask of this node as the default */
676 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
677 			    local_mask);
678 
679 		/* fill in the receive list */
680 		possible = cpumask_weight(&entry->def_intr.mask);
681 		curr_cpu = cpumask_first(&entry->def_intr.mask);
682 
683 		if (possible == 1) {
684 			/* only one CPU, everyone will use it */
685 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
686 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
687 		} else {
688 			/*
689 			 * The general/control context will be the first CPU in
690 			 * the default list, so it is removed from the default
691 			 * list and added to the general interrupt list.
692 			 */
693 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
694 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
695 			curr_cpu = cpumask_next(curr_cpu,
696 						&entry->def_intr.mask);
697 
698 			/*
699 			 * Remove the remaining kernel receive queues from
700 			 * the default list and add them to the receive list.
701 			 */
702 			for (i = 0;
703 			     i < (dd->n_krcv_queues - 1) *
704 				  hfi1_per_node_cntr[dd->node];
705 			     i++) {
706 				cpumask_clear_cpu(curr_cpu,
707 						  &entry->def_intr.mask);
708 				cpumask_set_cpu(curr_cpu,
709 						&entry->rcv_intr.mask);
710 				curr_cpu = cpumask_next(curr_cpu,
711 							&entry->def_intr.mask);
712 				if (curr_cpu >= nr_cpu_ids)
713 					break;
714 			}
715 
716 			/*
717 			 * If there ends up being 0 CPU cores leftover for SDMA
718 			 * engines, use the same CPU cores as general/control
719 			 * context.
720 			 */
721 			if (cpumask_weight(&entry->def_intr.mask) == 0)
722 				cpumask_copy(&entry->def_intr.mask,
723 					     &entry->general_intr_mask);
724 		}
725 
726 		/* Determine completion vector CPUs for the entire node */
727 		cpumask_and(&entry->comp_vect_mask,
728 			    &node_affinity.real_cpu_mask, local_mask);
729 		cpumask_andnot(&entry->comp_vect_mask,
730 			       &entry->comp_vect_mask,
731 			       &entry->rcv_intr.mask);
732 		cpumask_andnot(&entry->comp_vect_mask,
733 			       &entry->comp_vect_mask,
734 			       &entry->general_intr_mask);
735 
736 		/*
737 		 * If there ends up being 0 CPU cores leftover for completion
738 		 * vectors, use the same CPU core as the general/control
739 		 * context.
740 		 */
741 		if (cpumask_weight(&entry->comp_vect_mask) == 0)
742 			cpumask_copy(&entry->comp_vect_mask,
743 				     &entry->general_intr_mask);
744 	}
745 
746 	ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry);
747 	if (ret < 0)
748 		goto fail;
749 
750 	if (new_entry)
751 		node_affinity_add_tail(entry);
752 
753 	mutex_unlock(&node_affinity.lock);
754 
755 	return 0;
756 
757 fail:
758 	if (new_entry)
759 		node_affinity_destroy(entry);
760 	mutex_unlock(&node_affinity.lock);
761 	return ret;
762 }
763 
764 void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd)
765 {
766 	struct hfi1_affinity_node *entry;
767 
768 	if (dd->node < 0)
769 		return;
770 
771 	mutex_lock(&node_affinity.lock);
772 	entry = node_affinity_lookup(dd->node);
773 	if (!entry)
774 		goto unlock;
775 
776 	/*
777 	 * Free device completion vector CPUs to be used by future
778 	 * completion vectors
779 	 */
780 	_dev_comp_vect_cpu_mask_clean_up(dd, entry);
781 unlock:
782 	mutex_unlock(&node_affinity.lock);
783 	dd->node = NUMA_NO_NODE;
784 }
785 
786 /*
787  * Function updates the irq affinity hint for msix after it has been changed
788  * by the user using the /proc/irq interface. This function only accepts
789  * one cpu in the mask.
790  */
791 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
792 {
793 	struct sdma_engine *sde = msix->arg;
794 	struct hfi1_devdata *dd = sde->dd;
795 	struct hfi1_affinity_node *entry;
796 	struct cpu_mask_set *set;
797 	int i, old_cpu;
798 
799 	if (cpu > num_online_cpus() || cpu == sde->cpu)
800 		return;
801 
802 	mutex_lock(&node_affinity.lock);
803 	entry = node_affinity_lookup(dd->node);
804 	if (!entry)
805 		goto unlock;
806 
807 	old_cpu = sde->cpu;
808 	sde->cpu = cpu;
809 	cpumask_clear(&msix->mask);
810 	cpumask_set_cpu(cpu, &msix->mask);
811 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
812 		   msix->irq, irq_type_names[msix->type],
813 		   sde->this_idx, cpu);
814 	irq_set_affinity_hint(msix->irq, &msix->mask);
815 
816 	/*
817 	 * Set the new cpu in the hfi1_affinity_node and clean
818 	 * the old cpu if it is not used by any other IRQ
819 	 */
820 	set = &entry->def_intr;
821 	cpumask_set_cpu(cpu, &set->mask);
822 	cpumask_set_cpu(cpu, &set->used);
823 	for (i = 0; i < dd->msix_info.max_requested; i++) {
824 		struct hfi1_msix_entry *other_msix;
825 
826 		other_msix = &dd->msix_info.msix_entries[i];
827 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
828 			continue;
829 
830 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
831 			goto unlock;
832 	}
833 	cpumask_clear_cpu(old_cpu, &set->mask);
834 	cpumask_clear_cpu(old_cpu, &set->used);
835 unlock:
836 	mutex_unlock(&node_affinity.lock);
837 }
838 
839 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
840 				     const cpumask_t *mask)
841 {
842 	int cpu = cpumask_first(mask);
843 	struct hfi1_msix_entry *msix = container_of(notify,
844 						    struct hfi1_msix_entry,
845 						    notify);
846 
847 	/* Only one CPU configuration supported currently */
848 	hfi1_update_sdma_affinity(msix, cpu);
849 }
850 
851 static void hfi1_irq_notifier_release(struct kref *ref)
852 {
853 	/*
854 	 * This is required by affinity notifier. We don't have anything to
855 	 * free here.
856 	 */
857 }
858 
859 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
860 {
861 	struct irq_affinity_notify *notify = &msix->notify;
862 
863 	notify->irq = msix->irq;
864 	notify->notify = hfi1_irq_notifier_notify;
865 	notify->release = hfi1_irq_notifier_release;
866 
867 	if (irq_set_affinity_notifier(notify->irq, notify))
868 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
869 		       notify->irq);
870 }
871 
872 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
873 {
874 	struct irq_affinity_notify *notify = &msix->notify;
875 
876 	if (irq_set_affinity_notifier(notify->irq, NULL))
877 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
878 		       notify->irq);
879 }
880 
881 /*
882  * Function sets the irq affinity for msix.
883  * It *must* be called with node_affinity.lock held.
884  */
885 static int get_irq_affinity(struct hfi1_devdata *dd,
886 			    struct hfi1_msix_entry *msix)
887 {
888 	cpumask_var_t diff;
889 	struct hfi1_affinity_node *entry;
890 	struct cpu_mask_set *set = NULL;
891 	struct sdma_engine *sde = NULL;
892 	struct hfi1_ctxtdata *rcd = NULL;
893 	char extra[64];
894 	int cpu = -1;
895 
896 	extra[0] = '\0';
897 	cpumask_clear(&msix->mask);
898 
899 	entry = node_affinity_lookup(dd->node);
900 
901 	switch (msix->type) {
902 	case IRQ_SDMA:
903 		sde = (struct sdma_engine *)msix->arg;
904 		scnprintf(extra, 64, "engine %u", sde->this_idx);
905 		set = &entry->def_intr;
906 		break;
907 	case IRQ_GENERAL:
908 		cpu = cpumask_first(&entry->general_intr_mask);
909 		break;
910 	case IRQ_RCVCTXT:
911 		rcd = (struct hfi1_ctxtdata *)msix->arg;
912 		if (rcd->ctxt == HFI1_CTRL_CTXT)
913 			cpu = cpumask_first(&entry->general_intr_mask);
914 		else
915 			set = &entry->rcv_intr;
916 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
917 		break;
918 	default:
919 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
920 		return -EINVAL;
921 	}
922 
923 	/*
924 	 * The general and control contexts are placed on a particular
925 	 * CPU, which is set above. Skip accounting for it. Everything else
926 	 * finds its CPU here.
927 	 */
928 	if (cpu == -1 && set) {
929 		if (!zalloc_cpumask_var(&diff, GFP_KERNEL))
930 			return -ENOMEM;
931 
932 		cpu = cpu_mask_set_get_first(set, diff);
933 		if (cpu < 0) {
934 			free_cpumask_var(diff);
935 			dd_dev_err(dd, "Failure to obtain CPU for IRQ\n");
936 			return cpu;
937 		}
938 
939 		free_cpumask_var(diff);
940 	}
941 
942 	cpumask_set_cpu(cpu, &msix->mask);
943 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
944 		    msix->irq, irq_type_names[msix->type],
945 		    extra, cpu);
946 	irq_set_affinity_hint(msix->irq, &msix->mask);
947 
948 	if (msix->type == IRQ_SDMA) {
949 		sde->cpu = cpu;
950 		hfi1_setup_sdma_notifier(msix);
951 	}
952 
953 	return 0;
954 }
955 
956 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
957 {
958 	int ret;
959 
960 	mutex_lock(&node_affinity.lock);
961 	ret = get_irq_affinity(dd, msix);
962 	mutex_unlock(&node_affinity.lock);
963 	return ret;
964 }
965 
966 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
967 			   struct hfi1_msix_entry *msix)
968 {
969 	struct cpu_mask_set *set = NULL;
970 	struct hfi1_ctxtdata *rcd;
971 	struct hfi1_affinity_node *entry;
972 
973 	mutex_lock(&node_affinity.lock);
974 	entry = node_affinity_lookup(dd->node);
975 
976 	switch (msix->type) {
977 	case IRQ_SDMA:
978 		set = &entry->def_intr;
979 		hfi1_cleanup_sdma_notifier(msix);
980 		break;
981 	case IRQ_GENERAL:
982 		/* Don't do accounting for general contexts */
983 		break;
984 	case IRQ_RCVCTXT:
985 		rcd = (struct hfi1_ctxtdata *)msix->arg;
986 		/* Don't do accounting for control contexts */
987 		if (rcd->ctxt != HFI1_CTRL_CTXT)
988 			set = &entry->rcv_intr;
989 		break;
990 	default:
991 		mutex_unlock(&node_affinity.lock);
992 		return;
993 	}
994 
995 	if (set) {
996 		cpumask_andnot(&set->used, &set->used, &msix->mask);
997 		_cpu_mask_set_gen_dec(set);
998 	}
999 
1000 	irq_set_affinity_hint(msix->irq, NULL);
1001 	cpumask_clear(&msix->mask);
1002 	mutex_unlock(&node_affinity.lock);
1003 }
1004 
1005 /* This should be called with node_affinity.lock held */
1006 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
1007 				struct hfi1_affinity_node_list *affinity)
1008 {
1009 	int possible, curr_cpu, i;
1010 	uint num_cores_per_socket = node_affinity.num_online_cpus /
1011 					affinity->num_core_siblings /
1012 						node_affinity.num_online_nodes;
1013 
1014 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
1015 	if (affinity->num_core_siblings > 0) {
1016 		/* Removing other siblings not needed for now */
1017 		possible = cpumask_weight(hw_thread_mask);
1018 		curr_cpu = cpumask_first(hw_thread_mask);
1019 		for (i = 0;
1020 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
1021 		     i++)
1022 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1023 
1024 		for (; i < possible; i++) {
1025 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
1026 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
1027 		}
1028 
1029 		/* Identifying correct HW threads within physical cores */
1030 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
1031 				   num_cores_per_socket *
1032 				   node_affinity.num_online_nodes *
1033 				   hw_thread_no);
1034 	}
1035 }
1036 
1037 int hfi1_get_proc_affinity(int node)
1038 {
1039 	int cpu = -1, ret, i;
1040 	struct hfi1_affinity_node *entry;
1041 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
1042 	const struct cpumask *node_mask,
1043 		*proc_mask = current->cpus_ptr;
1044 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1045 	struct cpu_mask_set *set = &affinity->proc;
1046 
1047 	/*
1048 	 * check whether process/context affinity has already
1049 	 * been set
1050 	 */
1051 	if (current->nr_cpus_allowed == 1) {
1052 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
1053 			  current->pid, current->comm,
1054 			  cpumask_pr_args(proc_mask));
1055 		/*
1056 		 * Mark the pre-set CPU as used. This is atomic so we don't
1057 		 * need the lock
1058 		 */
1059 		cpu = cpumask_first(proc_mask);
1060 		cpumask_set_cpu(cpu, &set->used);
1061 		goto done;
1062 	} else if (current->nr_cpus_allowed < cpumask_weight(&set->mask)) {
1063 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
1064 			  current->pid, current->comm,
1065 			  cpumask_pr_args(proc_mask));
1066 		goto done;
1067 	}
1068 
1069 	/*
1070 	 * The process does not have a preset CPU affinity so find one to
1071 	 * recommend using the following algorithm:
1072 	 *
1073 	 * For each user process that is opening a context on HFI Y:
1074 	 *  a) If all cores are filled, reinitialize the bitmask
1075 	 *  b) Fill real cores first, then HT cores (First set of HT
1076 	 *     cores on all physical cores, then second set of HT core,
1077 	 *     and, so on) in the following order:
1078 	 *
1079 	 *     1. Same NUMA node as HFI Y and not running an IRQ
1080 	 *        handler
1081 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
1082 	 *     3. Different NUMA node to HFI Y and not running an IRQ
1083 	 *        handler
1084 	 *     4. Different NUMA node to HFI Y and running an IRQ
1085 	 *        handler
1086 	 *  c) Mark core as filled in the bitmask. As user processes are
1087 	 *     done, clear cores from the bitmask.
1088 	 */
1089 
1090 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
1091 	if (!ret)
1092 		goto done;
1093 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
1094 	if (!ret)
1095 		goto free_diff;
1096 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
1097 	if (!ret)
1098 		goto free_hw_thread_mask;
1099 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
1100 	if (!ret)
1101 		goto free_available_mask;
1102 
1103 	mutex_lock(&affinity->lock);
1104 	/*
1105 	 * If we've used all available HW threads, clear the mask and start
1106 	 * overloading.
1107 	 */
1108 	_cpu_mask_set_gen_inc(set);
1109 
1110 	/*
1111 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
1112 	 * interrupt handler mask.
1113 	 */
1114 	entry = node_affinity_lookup(node);
1115 	if (entry) {
1116 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
1117 					  &entry->def_intr.mask :
1118 					  &entry->def_intr.used));
1119 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
1120 						    &entry->rcv_intr.mask :
1121 						    &entry->rcv_intr.used));
1122 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
1123 	}
1124 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
1125 		  cpumask_pr_args(intrs_mask));
1126 
1127 	cpumask_copy(hw_thread_mask, &set->mask);
1128 
1129 	/*
1130 	 * If HT cores are enabled, identify which HW threads within the
1131 	 * physical cores should be used.
1132 	 */
1133 	if (affinity->num_core_siblings > 0) {
1134 		for (i = 0; i < affinity->num_core_siblings; i++) {
1135 			find_hw_thread_mask(i, hw_thread_mask, affinity);
1136 
1137 			/*
1138 			 * If there's at least one available core for this HW
1139 			 * thread number, stop looking for a core.
1140 			 *
1141 			 * diff will always be not empty at least once in this
1142 			 * loop as the used mask gets reset when
1143 			 * (set->mask == set->used) before this loop.
1144 			 */
1145 			cpumask_andnot(diff, hw_thread_mask, &set->used);
1146 			if (!cpumask_empty(diff))
1147 				break;
1148 		}
1149 	}
1150 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
1151 		  cpumask_pr_args(hw_thread_mask));
1152 
1153 	node_mask = cpumask_of_node(node);
1154 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
1155 		  cpumask_pr_args(node_mask));
1156 
1157 	/* Get cpumask of available CPUs on preferred NUMA */
1158 	cpumask_and(available_mask, hw_thread_mask, node_mask);
1159 	cpumask_andnot(available_mask, available_mask, &set->used);
1160 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
1161 		  cpumask_pr_args(available_mask));
1162 
1163 	/*
1164 	 * At first, we don't want to place processes on the same
1165 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
1166 	 * handlers are used.
1167 	 *
1168 	 * 1) If diff is not empty, then there are CPUs not running
1169 	 *    non-interrupt handlers available, so diff gets copied
1170 	 *    over to available_mask.
1171 	 * 2) If diff is empty, then all CPUs not running interrupt
1172 	 *    handlers are taken, so available_mask contains all
1173 	 *    available CPUs running interrupt handlers.
1174 	 * 3) If available_mask is empty, then all CPUs on the
1175 	 *    preferred NUMA node are taken, so other NUMA nodes are
1176 	 *    used for process assignments using the same method as
1177 	 *    the preferred NUMA node.
1178 	 */
1179 	cpumask_andnot(diff, available_mask, intrs_mask);
1180 	if (!cpumask_empty(diff))
1181 		cpumask_copy(available_mask, diff);
1182 
1183 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
1184 	if (cpumask_empty(available_mask)) {
1185 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
1186 		/* Excluding preferred NUMA cores */
1187 		cpumask_andnot(available_mask, available_mask, node_mask);
1188 		hfi1_cdbg(PROC,
1189 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
1190 			  cpumask_pr_args(available_mask));
1191 
1192 		/*
1193 		 * At first, we don't want to place processes on the same
1194 		 * CPUs as interrupt handlers.
1195 		 */
1196 		cpumask_andnot(diff, available_mask, intrs_mask);
1197 		if (!cpumask_empty(diff))
1198 			cpumask_copy(available_mask, diff);
1199 	}
1200 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
1201 		  cpumask_pr_args(available_mask));
1202 
1203 	cpu = cpumask_first(available_mask);
1204 	if (cpu >= nr_cpu_ids) /* empty */
1205 		cpu = -1;
1206 	else
1207 		cpumask_set_cpu(cpu, &set->used);
1208 
1209 	mutex_unlock(&affinity->lock);
1210 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
1211 
1212 	free_cpumask_var(intrs_mask);
1213 free_available_mask:
1214 	free_cpumask_var(available_mask);
1215 free_hw_thread_mask:
1216 	free_cpumask_var(hw_thread_mask);
1217 free_diff:
1218 	free_cpumask_var(diff);
1219 done:
1220 	return cpu;
1221 }
1222 
1223 void hfi1_put_proc_affinity(int cpu)
1224 {
1225 	struct hfi1_affinity_node_list *affinity = &node_affinity;
1226 	struct cpu_mask_set *set = &affinity->proc;
1227 
1228 	if (cpu < 0)
1229 		return;
1230 
1231 	mutex_lock(&affinity->lock);
1232 	cpu_mask_set_put(set, cpu);
1233 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
1234 	mutex_unlock(&affinity->lock);
1235 }
1236