xref: /openbmc/linux/drivers/infiniband/hw/hfi1/affinity.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * Copyright(c) 2015 - 2017 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47 #include <linux/topology.h>
48 #include <linux/cpumask.h>
49 #include <linux/module.h>
50 #include <linux/interrupt.h>
51 
52 #include "hfi.h"
53 #include "affinity.h"
54 #include "sdma.h"
55 #include "trace.h"
56 
57 struct hfi1_affinity_node_list node_affinity = {
58 	.list = LIST_HEAD_INIT(node_affinity.list),
59 	.lock = __MUTEX_INITIALIZER(node_affinity.lock)
60 };
61 
62 /* Name of IRQ types, indexed by enum irq_type */
63 static const char * const irq_type_names[] = {
64 	"SDMA",
65 	"RCVCTXT",
66 	"GENERAL",
67 	"OTHER",
68 };
69 
70 /* Per NUMA node count of HFI devices */
71 static unsigned int *hfi1_per_node_cntr;
72 
73 static inline void init_cpu_mask_set(struct cpu_mask_set *set)
74 {
75 	cpumask_clear(&set->mask);
76 	cpumask_clear(&set->used);
77 	set->gen = 0;
78 }
79 
80 /* Initialize non-HT cpu cores mask */
81 void init_real_cpu_mask(void)
82 {
83 	int possible, curr_cpu, i, ht;
84 
85 	cpumask_clear(&node_affinity.real_cpu_mask);
86 
87 	/* Start with cpu online mask as the real cpu mask */
88 	cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask);
89 
90 	/*
91 	 * Remove HT cores from the real cpu mask.  Do this in two steps below.
92 	 */
93 	possible = cpumask_weight(&node_affinity.real_cpu_mask);
94 	ht = cpumask_weight(topology_sibling_cpumask(
95 				cpumask_first(&node_affinity.real_cpu_mask)));
96 	/*
97 	 * Step 1.  Skip over the first N HT siblings and use them as the
98 	 * "real" cores.  Assumes that HT cores are not enumerated in
99 	 * succession (except in the single core case).
100 	 */
101 	curr_cpu = cpumask_first(&node_affinity.real_cpu_mask);
102 	for (i = 0; i < possible / ht; i++)
103 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
104 	/*
105 	 * Step 2.  Remove the remaining HT siblings.  Use cpumask_next() to
106 	 * skip any gaps.
107 	 */
108 	for (; i < possible; i++) {
109 		cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask);
110 		curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask);
111 	}
112 }
113 
114 int node_affinity_init(void)
115 {
116 	int node;
117 	struct pci_dev *dev = NULL;
118 	const struct pci_device_id *ids = hfi1_pci_tbl;
119 
120 	cpumask_clear(&node_affinity.proc.used);
121 	cpumask_copy(&node_affinity.proc.mask, cpu_online_mask);
122 
123 	node_affinity.proc.gen = 0;
124 	node_affinity.num_core_siblings =
125 				cpumask_weight(topology_sibling_cpumask(
126 					cpumask_first(&node_affinity.proc.mask)
127 					));
128 	node_affinity.num_possible_nodes = num_possible_nodes();
129 	node_affinity.num_online_nodes = num_online_nodes();
130 	node_affinity.num_online_cpus = num_online_cpus();
131 
132 	/*
133 	 * The real cpu mask is part of the affinity struct but it has to be
134 	 * initialized early. It is needed to calculate the number of user
135 	 * contexts in set_up_context_variables().
136 	 */
137 	init_real_cpu_mask();
138 
139 	hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes,
140 				     sizeof(*hfi1_per_node_cntr), GFP_KERNEL);
141 	if (!hfi1_per_node_cntr)
142 		return -ENOMEM;
143 
144 	while (ids->vendor) {
145 		dev = NULL;
146 		while ((dev = pci_get_device(ids->vendor, ids->device, dev))) {
147 			node = pcibus_to_node(dev->bus);
148 			if (node < 0)
149 				node = numa_node_id();
150 
151 			hfi1_per_node_cntr[node]++;
152 		}
153 		ids++;
154 	}
155 
156 	return 0;
157 }
158 
159 void node_affinity_destroy(void)
160 {
161 	struct list_head *pos, *q;
162 	struct hfi1_affinity_node *entry;
163 
164 	mutex_lock(&node_affinity.lock);
165 	list_for_each_safe(pos, q, &node_affinity.list) {
166 		entry = list_entry(pos, struct hfi1_affinity_node,
167 				   list);
168 		list_del(pos);
169 		kfree(entry);
170 	}
171 	mutex_unlock(&node_affinity.lock);
172 	kfree(hfi1_per_node_cntr);
173 }
174 
175 static struct hfi1_affinity_node *node_affinity_allocate(int node)
176 {
177 	struct hfi1_affinity_node *entry;
178 
179 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
180 	if (!entry)
181 		return NULL;
182 	entry->node = node;
183 	INIT_LIST_HEAD(&entry->list);
184 
185 	return entry;
186 }
187 
188 /*
189  * It appends an entry to the list.
190  * It *must* be called with node_affinity.lock held.
191  */
192 static void node_affinity_add_tail(struct hfi1_affinity_node *entry)
193 {
194 	list_add_tail(&entry->list, &node_affinity.list);
195 }
196 
197 /* It must be called with node_affinity.lock held */
198 static struct hfi1_affinity_node *node_affinity_lookup(int node)
199 {
200 	struct list_head *pos;
201 	struct hfi1_affinity_node *entry;
202 
203 	list_for_each(pos, &node_affinity.list) {
204 		entry = list_entry(pos, struct hfi1_affinity_node, list);
205 		if (entry->node == node)
206 			return entry;
207 	}
208 
209 	return NULL;
210 }
211 
212 /*
213  * Interrupt affinity.
214  *
215  * non-rcv avail gets a default mask that
216  * starts as possible cpus with threads reset
217  * and each rcv avail reset.
218  *
219  * rcv avail gets node relative 1 wrapping back
220  * to the node relative 1 as necessary.
221  *
222  */
223 int hfi1_dev_affinity_init(struct hfi1_devdata *dd)
224 {
225 	int node = pcibus_to_node(dd->pcidev->bus);
226 	struct hfi1_affinity_node *entry;
227 	const struct cpumask *local_mask;
228 	int curr_cpu, possible, i;
229 
230 	if (node < 0)
231 		node = numa_node_id();
232 	dd->node = node;
233 
234 	local_mask = cpumask_of_node(dd->node);
235 	if (cpumask_first(local_mask) >= nr_cpu_ids)
236 		local_mask = topology_core_cpumask(0);
237 
238 	mutex_lock(&node_affinity.lock);
239 	entry = node_affinity_lookup(dd->node);
240 
241 	/*
242 	 * If this is the first time this NUMA node's affinity is used,
243 	 * create an entry in the global affinity structure and initialize it.
244 	 */
245 	if (!entry) {
246 		entry = node_affinity_allocate(node);
247 		if (!entry) {
248 			dd_dev_err(dd,
249 				   "Unable to allocate global affinity node\n");
250 			mutex_unlock(&node_affinity.lock);
251 			return -ENOMEM;
252 		}
253 		init_cpu_mask_set(&entry->def_intr);
254 		init_cpu_mask_set(&entry->rcv_intr);
255 		cpumask_clear(&entry->general_intr_mask);
256 		/* Use the "real" cpu mask of this node as the default */
257 		cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask,
258 			    local_mask);
259 
260 		/* fill in the receive list */
261 		possible = cpumask_weight(&entry->def_intr.mask);
262 		curr_cpu = cpumask_first(&entry->def_intr.mask);
263 
264 		if (possible == 1) {
265 			/* only one CPU, everyone will use it */
266 			cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask);
267 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
268 		} else {
269 			/*
270 			 * The general/control context will be the first CPU in
271 			 * the default list, so it is removed from the default
272 			 * list and added to the general interrupt list.
273 			 */
274 			cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask);
275 			cpumask_set_cpu(curr_cpu, &entry->general_intr_mask);
276 			curr_cpu = cpumask_next(curr_cpu,
277 						&entry->def_intr.mask);
278 
279 			/*
280 			 * Remove the remaining kernel receive queues from
281 			 * the default list and add them to the receive list.
282 			 */
283 			for (i = 0;
284 			     i < (dd->n_krcv_queues - 1) *
285 				  hfi1_per_node_cntr[dd->node];
286 			     i++) {
287 				cpumask_clear_cpu(curr_cpu,
288 						  &entry->def_intr.mask);
289 				cpumask_set_cpu(curr_cpu,
290 						&entry->rcv_intr.mask);
291 				curr_cpu = cpumask_next(curr_cpu,
292 							&entry->def_intr.mask);
293 				if (curr_cpu >= nr_cpu_ids)
294 					break;
295 			}
296 
297 			/*
298 			 * If there ends up being 0 CPU cores leftover for SDMA
299 			 * engines, use the same CPU cores as general/control
300 			 * context.
301 			 */
302 			if (cpumask_weight(&entry->def_intr.mask) == 0)
303 				cpumask_copy(&entry->def_intr.mask,
304 					     &entry->general_intr_mask);
305 		}
306 
307 		node_affinity_add_tail(entry);
308 	}
309 	mutex_unlock(&node_affinity.lock);
310 	return 0;
311 }
312 
313 /*
314  * Function updates the irq affinity hint for msix after it has been changed
315  * by the user using the /proc/irq interface. This function only accepts
316  * one cpu in the mask.
317  */
318 static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu)
319 {
320 	struct sdma_engine *sde = msix->arg;
321 	struct hfi1_devdata *dd = sde->dd;
322 	struct hfi1_affinity_node *entry;
323 	struct cpu_mask_set *set;
324 	int i, old_cpu;
325 
326 	if (cpu > num_online_cpus() || cpu == sde->cpu)
327 		return;
328 
329 	mutex_lock(&node_affinity.lock);
330 	entry = node_affinity_lookup(dd->node);
331 	if (!entry)
332 		goto unlock;
333 
334 	old_cpu = sde->cpu;
335 	sde->cpu = cpu;
336 	cpumask_clear(&msix->mask);
337 	cpumask_set_cpu(cpu, &msix->mask);
338 	dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n",
339 		   msix->irq, irq_type_names[msix->type],
340 		   sde->this_idx, cpu);
341 	irq_set_affinity_hint(msix->irq, &msix->mask);
342 
343 	/*
344 	 * Set the new cpu in the hfi1_affinity_node and clean
345 	 * the old cpu if it is not used by any other IRQ
346 	 */
347 	set = &entry->def_intr;
348 	cpumask_set_cpu(cpu, &set->mask);
349 	cpumask_set_cpu(cpu, &set->used);
350 	for (i = 0; i < dd->num_msix_entries; i++) {
351 		struct hfi1_msix_entry *other_msix;
352 
353 		other_msix = &dd->msix_entries[i];
354 		if (other_msix->type != IRQ_SDMA || other_msix == msix)
355 			continue;
356 
357 		if (cpumask_test_cpu(old_cpu, &other_msix->mask))
358 			goto unlock;
359 	}
360 	cpumask_clear_cpu(old_cpu, &set->mask);
361 	cpumask_clear_cpu(old_cpu, &set->used);
362 unlock:
363 	mutex_unlock(&node_affinity.lock);
364 }
365 
366 static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify,
367 				     const cpumask_t *mask)
368 {
369 	int cpu = cpumask_first(mask);
370 	struct hfi1_msix_entry *msix = container_of(notify,
371 						    struct hfi1_msix_entry,
372 						    notify);
373 
374 	/* Only one CPU configuration supported currently */
375 	hfi1_update_sdma_affinity(msix, cpu);
376 }
377 
378 static void hfi1_irq_notifier_release(struct kref *ref)
379 {
380 	/*
381 	 * This is required by affinity notifier. We don't have anything to
382 	 * free here.
383 	 */
384 }
385 
386 static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix)
387 {
388 	struct irq_affinity_notify *notify = &msix->notify;
389 
390 	notify->irq = msix->irq;
391 	notify->notify = hfi1_irq_notifier_notify;
392 	notify->release = hfi1_irq_notifier_release;
393 
394 	if (irq_set_affinity_notifier(notify->irq, notify))
395 		pr_err("Failed to register sdma irq affinity notifier for irq %d\n",
396 		       notify->irq);
397 }
398 
399 static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix)
400 {
401 	struct irq_affinity_notify *notify = &msix->notify;
402 
403 	if (irq_set_affinity_notifier(notify->irq, NULL))
404 		pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n",
405 		       notify->irq);
406 }
407 
408 /*
409  * Function sets the irq affinity for msix.
410  * It *must* be called with node_affinity.lock held.
411  */
412 static int get_irq_affinity(struct hfi1_devdata *dd,
413 			    struct hfi1_msix_entry *msix)
414 {
415 	int ret;
416 	cpumask_var_t diff;
417 	struct hfi1_affinity_node *entry;
418 	struct cpu_mask_set *set = NULL;
419 	struct sdma_engine *sde = NULL;
420 	struct hfi1_ctxtdata *rcd = NULL;
421 	char extra[64];
422 	int cpu = -1;
423 
424 	extra[0] = '\0';
425 	cpumask_clear(&msix->mask);
426 
427 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
428 	if (!ret)
429 		return -ENOMEM;
430 
431 	entry = node_affinity_lookup(dd->node);
432 
433 	switch (msix->type) {
434 	case IRQ_SDMA:
435 		sde = (struct sdma_engine *)msix->arg;
436 		scnprintf(extra, 64, "engine %u", sde->this_idx);
437 		set = &entry->def_intr;
438 		break;
439 	case IRQ_GENERAL:
440 		cpu = cpumask_first(&entry->general_intr_mask);
441 		break;
442 	case IRQ_RCVCTXT:
443 		rcd = (struct hfi1_ctxtdata *)msix->arg;
444 		if (rcd->ctxt == HFI1_CTRL_CTXT)
445 			cpu = cpumask_first(&entry->general_intr_mask);
446 		else
447 			set = &entry->rcv_intr;
448 		scnprintf(extra, 64, "ctxt %u", rcd->ctxt);
449 		break;
450 	default:
451 		dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type);
452 		return -EINVAL;
453 	}
454 
455 	/*
456 	 * The general and control contexts are placed on a particular
457 	 * CPU, which is set above. Skip accounting for it. Everything else
458 	 * finds its CPU here.
459 	 */
460 	if (cpu == -1 && set) {
461 		if (cpumask_equal(&set->mask, &set->used)) {
462 			/*
463 			 * We've used up all the CPUs, bump up the generation
464 			 * and reset the 'used' map
465 			 */
466 			set->gen++;
467 			cpumask_clear(&set->used);
468 		}
469 		cpumask_andnot(diff, &set->mask, &set->used);
470 		cpu = cpumask_first(diff);
471 		cpumask_set_cpu(cpu, &set->used);
472 	}
473 
474 	cpumask_set_cpu(cpu, &msix->mask);
475 	dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n",
476 		    msix->irq, irq_type_names[msix->type],
477 		    extra, cpu);
478 	irq_set_affinity_hint(msix->irq, &msix->mask);
479 
480 	if (msix->type == IRQ_SDMA) {
481 		sde->cpu = cpu;
482 		hfi1_setup_sdma_notifier(msix);
483 	}
484 
485 	free_cpumask_var(diff);
486 	return 0;
487 }
488 
489 int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix)
490 {
491 	int ret;
492 
493 	mutex_lock(&node_affinity.lock);
494 	ret = get_irq_affinity(dd, msix);
495 	mutex_unlock(&node_affinity.lock);
496 	return ret;
497 }
498 
499 void hfi1_put_irq_affinity(struct hfi1_devdata *dd,
500 			   struct hfi1_msix_entry *msix)
501 {
502 	struct cpu_mask_set *set = NULL;
503 	struct hfi1_ctxtdata *rcd;
504 	struct hfi1_affinity_node *entry;
505 
506 	mutex_lock(&node_affinity.lock);
507 	entry = node_affinity_lookup(dd->node);
508 
509 	switch (msix->type) {
510 	case IRQ_SDMA:
511 		set = &entry->def_intr;
512 		hfi1_cleanup_sdma_notifier(msix);
513 		break;
514 	case IRQ_GENERAL:
515 		/* Don't do accounting for general contexts */
516 		break;
517 	case IRQ_RCVCTXT:
518 		rcd = (struct hfi1_ctxtdata *)msix->arg;
519 		/* Don't do accounting for control contexts */
520 		if (rcd->ctxt != HFI1_CTRL_CTXT)
521 			set = &entry->rcv_intr;
522 		break;
523 	default:
524 		mutex_unlock(&node_affinity.lock);
525 		return;
526 	}
527 
528 	if (set) {
529 		cpumask_andnot(&set->used, &set->used, &msix->mask);
530 		if (cpumask_empty(&set->used) && set->gen) {
531 			set->gen--;
532 			cpumask_copy(&set->used, &set->mask);
533 		}
534 	}
535 
536 	irq_set_affinity_hint(msix->irq, NULL);
537 	cpumask_clear(&msix->mask);
538 	mutex_unlock(&node_affinity.lock);
539 }
540 
541 /* This should be called with node_affinity.lock held */
542 static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask,
543 				struct hfi1_affinity_node_list *affinity)
544 {
545 	int possible, curr_cpu, i;
546 	uint num_cores_per_socket = node_affinity.num_online_cpus /
547 					affinity->num_core_siblings /
548 						node_affinity.num_online_nodes;
549 
550 	cpumask_copy(hw_thread_mask, &affinity->proc.mask);
551 	if (affinity->num_core_siblings > 0) {
552 		/* Removing other siblings not needed for now */
553 		possible = cpumask_weight(hw_thread_mask);
554 		curr_cpu = cpumask_first(hw_thread_mask);
555 		for (i = 0;
556 		     i < num_cores_per_socket * node_affinity.num_online_nodes;
557 		     i++)
558 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
559 
560 		for (; i < possible; i++) {
561 			cpumask_clear_cpu(curr_cpu, hw_thread_mask);
562 			curr_cpu = cpumask_next(curr_cpu, hw_thread_mask);
563 		}
564 
565 		/* Identifying correct HW threads within physical cores */
566 		cpumask_shift_left(hw_thread_mask, hw_thread_mask,
567 				   num_cores_per_socket *
568 				   node_affinity.num_online_nodes *
569 				   hw_thread_no);
570 	}
571 }
572 
573 int hfi1_get_proc_affinity(int node)
574 {
575 	int cpu = -1, ret, i;
576 	struct hfi1_affinity_node *entry;
577 	cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask;
578 	const struct cpumask *node_mask,
579 		*proc_mask = &current->cpus_allowed;
580 	struct hfi1_affinity_node_list *affinity = &node_affinity;
581 	struct cpu_mask_set *set = &affinity->proc;
582 
583 	/*
584 	 * check whether process/context affinity has already
585 	 * been set
586 	 */
587 	if (cpumask_weight(proc_mask) == 1) {
588 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl",
589 			  current->pid, current->comm,
590 			  cpumask_pr_args(proc_mask));
591 		/*
592 		 * Mark the pre-set CPU as used. This is atomic so we don't
593 		 * need the lock
594 		 */
595 		cpu = cpumask_first(proc_mask);
596 		cpumask_set_cpu(cpu, &set->used);
597 		goto done;
598 	} else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) {
599 		hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl",
600 			  current->pid, current->comm,
601 			  cpumask_pr_args(proc_mask));
602 		goto done;
603 	}
604 
605 	/*
606 	 * The process does not have a preset CPU affinity so find one to
607 	 * recommend using the following algorithm:
608 	 *
609 	 * For each user process that is opening a context on HFI Y:
610 	 *  a) If all cores are filled, reinitialize the bitmask
611 	 *  b) Fill real cores first, then HT cores (First set of HT
612 	 *     cores on all physical cores, then second set of HT core,
613 	 *     and, so on) in the following order:
614 	 *
615 	 *     1. Same NUMA node as HFI Y and not running an IRQ
616 	 *        handler
617 	 *     2. Same NUMA node as HFI Y and running an IRQ handler
618 	 *     3. Different NUMA node to HFI Y and not running an IRQ
619 	 *        handler
620 	 *     4. Different NUMA node to HFI Y and running an IRQ
621 	 *        handler
622 	 *  c) Mark core as filled in the bitmask. As user processes are
623 	 *     done, clear cores from the bitmask.
624 	 */
625 
626 	ret = zalloc_cpumask_var(&diff, GFP_KERNEL);
627 	if (!ret)
628 		goto done;
629 	ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL);
630 	if (!ret)
631 		goto free_diff;
632 	ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL);
633 	if (!ret)
634 		goto free_hw_thread_mask;
635 	ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL);
636 	if (!ret)
637 		goto free_available_mask;
638 
639 	mutex_lock(&affinity->lock);
640 	/*
641 	 * If we've used all available HW threads, clear the mask and start
642 	 * overloading.
643 	 */
644 	if (cpumask_equal(&set->mask, &set->used)) {
645 		set->gen++;
646 		cpumask_clear(&set->used);
647 	}
648 
649 	/*
650 	 * If NUMA node has CPUs used by interrupt handlers, include them in the
651 	 * interrupt handler mask.
652 	 */
653 	entry = node_affinity_lookup(node);
654 	if (entry) {
655 		cpumask_copy(intrs_mask, (entry->def_intr.gen ?
656 					  &entry->def_intr.mask :
657 					  &entry->def_intr.used));
658 		cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ?
659 						    &entry->rcv_intr.mask :
660 						    &entry->rcv_intr.used));
661 		cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask);
662 	}
663 	hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl",
664 		  cpumask_pr_args(intrs_mask));
665 
666 	cpumask_copy(hw_thread_mask, &set->mask);
667 
668 	/*
669 	 * If HT cores are enabled, identify which HW threads within the
670 	 * physical cores should be used.
671 	 */
672 	if (affinity->num_core_siblings > 0) {
673 		for (i = 0; i < affinity->num_core_siblings; i++) {
674 			find_hw_thread_mask(i, hw_thread_mask, affinity);
675 
676 			/*
677 			 * If there's at least one available core for this HW
678 			 * thread number, stop looking for a core.
679 			 *
680 			 * diff will always be not empty at least once in this
681 			 * loop as the used mask gets reset when
682 			 * (set->mask == set->used) before this loop.
683 			 */
684 			cpumask_andnot(diff, hw_thread_mask, &set->used);
685 			if (!cpumask_empty(diff))
686 				break;
687 		}
688 	}
689 	hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl",
690 		  cpumask_pr_args(hw_thread_mask));
691 
692 	node_mask = cpumask_of_node(node);
693 	hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node,
694 		  cpumask_pr_args(node_mask));
695 
696 	/* Get cpumask of available CPUs on preferred NUMA */
697 	cpumask_and(available_mask, hw_thread_mask, node_mask);
698 	cpumask_andnot(available_mask, available_mask, &set->used);
699 	hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node,
700 		  cpumask_pr_args(available_mask));
701 
702 	/*
703 	 * At first, we don't want to place processes on the same
704 	 * CPUs as interrupt handlers. Then, CPUs running interrupt
705 	 * handlers are used.
706 	 *
707 	 * 1) If diff is not empty, then there are CPUs not running
708 	 *    non-interrupt handlers available, so diff gets copied
709 	 *    over to available_mask.
710 	 * 2) If diff is empty, then all CPUs not running interrupt
711 	 *    handlers are taken, so available_mask contains all
712 	 *    available CPUs running interrupt handlers.
713 	 * 3) If available_mask is empty, then all CPUs on the
714 	 *    preferred NUMA node are taken, so other NUMA nodes are
715 	 *    used for process assignments using the same method as
716 	 *    the preferred NUMA node.
717 	 */
718 	cpumask_andnot(diff, available_mask, intrs_mask);
719 	if (!cpumask_empty(diff))
720 		cpumask_copy(available_mask, diff);
721 
722 	/* If we don't have CPUs on the preferred node, use other NUMA nodes */
723 	if (cpumask_empty(available_mask)) {
724 		cpumask_andnot(available_mask, hw_thread_mask, &set->used);
725 		/* Excluding preferred NUMA cores */
726 		cpumask_andnot(available_mask, available_mask, node_mask);
727 		hfi1_cdbg(PROC,
728 			  "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl",
729 			  cpumask_pr_args(available_mask));
730 
731 		/*
732 		 * At first, we don't want to place processes on the same
733 		 * CPUs as interrupt handlers.
734 		 */
735 		cpumask_andnot(diff, available_mask, intrs_mask);
736 		if (!cpumask_empty(diff))
737 			cpumask_copy(available_mask, diff);
738 	}
739 	hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl",
740 		  cpumask_pr_args(available_mask));
741 
742 	cpu = cpumask_first(available_mask);
743 	if (cpu >= nr_cpu_ids) /* empty */
744 		cpu = -1;
745 	else
746 		cpumask_set_cpu(cpu, &set->used);
747 
748 	mutex_unlock(&affinity->lock);
749 	hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu);
750 
751 	free_cpumask_var(intrs_mask);
752 free_available_mask:
753 	free_cpumask_var(available_mask);
754 free_hw_thread_mask:
755 	free_cpumask_var(hw_thread_mask);
756 free_diff:
757 	free_cpumask_var(diff);
758 done:
759 	return cpu;
760 }
761 
762 void hfi1_put_proc_affinity(int cpu)
763 {
764 	struct hfi1_affinity_node_list *affinity = &node_affinity;
765 	struct cpu_mask_set *set = &affinity->proc;
766 
767 	if (cpu < 0)
768 		return;
769 
770 	mutex_lock(&affinity->lock);
771 	cpumask_clear_cpu(cpu, &set->used);
772 	hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu);
773 	if (cpumask_empty(&set->used) && set->gen) {
774 		set->gen--;
775 		cpumask_copy(&set->used, &set->mask);
776 	}
777 	mutex_unlock(&affinity->lock);
778 }
779