1 // SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause
2 /*
3  * Copyright 2018-2019 Amazon.com, Inc. or its affiliates. All rights reserved.
4  */
5 
6 #include "efa_com.h"
7 #include "efa_regs_defs.h"
8 
9 #define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */
10 
11 #define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */
12 #define EFA_MMIO_READ_INVALID 0xffffffff
13 
14 #define EFA_POLL_INTERVAL_MS 100 /* msecs */
15 
16 #define EFA_ASYNC_QUEUE_DEPTH 16
17 #define EFA_ADMIN_QUEUE_DEPTH 32
18 
19 #define MIN_EFA_VER\
20 	((EFA_ADMIN_API_VERSION_MAJOR << EFA_REGS_VERSION_MAJOR_VERSION_SHIFT) | \
21 	 (EFA_ADMIN_API_VERSION_MINOR & EFA_REGS_VERSION_MINOR_VERSION_MASK))
22 
23 #define EFA_CTRL_MAJOR          0
24 #define EFA_CTRL_MINOR          0
25 #define EFA_CTRL_SUB_MINOR      1
26 
27 #define MIN_EFA_CTRL_VER \
28 	(((EFA_CTRL_MAJOR) << \
29 	(EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT)) | \
30 	((EFA_CTRL_MINOR) << \
31 	(EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT)) | \
32 	(EFA_CTRL_SUB_MINOR))
33 
34 #define EFA_DMA_ADDR_TO_UINT32_LOW(x)   ((u32)((u64)(x)))
35 #define EFA_DMA_ADDR_TO_UINT32_HIGH(x)  ((u32)(((u64)(x)) >> 32))
36 
37 #define EFA_REGS_ADMIN_INTR_MASK 1
38 
39 enum efa_cmd_status {
40 	EFA_CMD_SUBMITTED,
41 	EFA_CMD_COMPLETED,
42 };
43 
44 struct efa_comp_ctx {
45 	struct completion wait_event;
46 	struct efa_admin_acq_entry *user_cqe;
47 	u32 comp_size;
48 	enum efa_cmd_status status;
49 	/* status from the device */
50 	u8 comp_status;
51 	u8 cmd_opcode;
52 	u8 occupied;
53 };
54 
55 static const char *efa_com_cmd_str(u8 cmd)
56 {
57 #define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd
58 
59 	switch (cmd) {
60 	EFA_CMD_STR_CASE(CREATE_QP);
61 	EFA_CMD_STR_CASE(MODIFY_QP);
62 	EFA_CMD_STR_CASE(QUERY_QP);
63 	EFA_CMD_STR_CASE(DESTROY_QP);
64 	EFA_CMD_STR_CASE(CREATE_AH);
65 	EFA_CMD_STR_CASE(DESTROY_AH);
66 	EFA_CMD_STR_CASE(REG_MR);
67 	EFA_CMD_STR_CASE(DEREG_MR);
68 	EFA_CMD_STR_CASE(CREATE_CQ);
69 	EFA_CMD_STR_CASE(DESTROY_CQ);
70 	EFA_CMD_STR_CASE(GET_FEATURE);
71 	EFA_CMD_STR_CASE(SET_FEATURE);
72 	EFA_CMD_STR_CASE(GET_STATS);
73 	EFA_CMD_STR_CASE(ALLOC_PD);
74 	EFA_CMD_STR_CASE(DEALLOC_PD);
75 	EFA_CMD_STR_CASE(ALLOC_UAR);
76 	EFA_CMD_STR_CASE(DEALLOC_UAR);
77 	default: return "unknown command opcode";
78 	}
79 #undef EFA_CMD_STR_CASE
80 }
81 
82 static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset)
83 {
84 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
85 	struct efa_admin_mmio_req_read_less_resp *read_resp;
86 	unsigned long exp_time;
87 	u32 mmio_read_reg;
88 	u32 err;
89 
90 	read_resp = mmio_read->read_resp;
91 
92 	spin_lock(&mmio_read->lock);
93 	mmio_read->seq_num++;
94 
95 	/* trash DMA req_id to identify when hardware is done */
96 	read_resp->req_id = mmio_read->seq_num + 0x9aL;
97 	mmio_read_reg = (offset << EFA_REGS_MMIO_REG_READ_REG_OFF_SHIFT) &
98 			EFA_REGS_MMIO_REG_READ_REG_OFF_MASK;
99 	mmio_read_reg |= mmio_read->seq_num &
100 			 EFA_REGS_MMIO_REG_READ_REQ_ID_MASK;
101 
102 	writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF);
103 
104 	exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout);
105 	do {
106 		if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num)
107 			break;
108 		udelay(1);
109 	} while (time_is_after_jiffies(exp_time));
110 
111 	if (read_resp->req_id != mmio_read->seq_num) {
112 		ibdev_err_ratelimited(
113 			edev->efa_dev,
114 			"Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n",
115 			mmio_read->seq_num, offset, read_resp->req_id,
116 			read_resp->reg_off);
117 		err = EFA_MMIO_READ_INVALID;
118 		goto out;
119 	}
120 
121 	if (read_resp->reg_off != offset) {
122 		ibdev_err_ratelimited(
123 			edev->efa_dev,
124 			"Reading register failed: wrong offset provided\n");
125 		err = EFA_MMIO_READ_INVALID;
126 		goto out;
127 	}
128 
129 	err = read_resp->reg_val;
130 out:
131 	spin_unlock(&mmio_read->lock);
132 	return err;
133 }
134 
135 static int efa_com_admin_init_sq(struct efa_com_dev *edev)
136 {
137 	struct efa_com_admin_queue *aq = &edev->aq;
138 	struct efa_com_admin_sq *sq = &aq->sq;
139 	u16 size = aq->depth * sizeof(*sq->entries);
140 	u32 addr_high;
141 	u32 addr_low;
142 	u32 aq_caps;
143 
144 	sq->entries =
145 		dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL);
146 	if (!sq->entries)
147 		return -ENOMEM;
148 
149 	spin_lock_init(&sq->lock);
150 
151 	sq->cc = 0;
152 	sq->pc = 0;
153 	sq->phase = 1;
154 
155 	sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF);
156 
157 	addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(sq->dma_addr);
158 	addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(sq->dma_addr);
159 
160 	writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF);
161 	writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF);
162 
163 	aq_caps = aq->depth & EFA_REGS_AQ_CAPS_AQ_DEPTH_MASK;
164 	aq_caps |= (sizeof(struct efa_admin_aq_entry) <<
165 			EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_SHIFT) &
166 			EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE_MASK;
167 
168 	writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF);
169 
170 	return 0;
171 }
172 
173 static int efa_com_admin_init_cq(struct efa_com_dev *edev)
174 {
175 	struct efa_com_admin_queue *aq = &edev->aq;
176 	struct efa_com_admin_cq *cq = &aq->cq;
177 	u16 size = aq->depth * sizeof(*cq->entries);
178 	u32 addr_high;
179 	u32 addr_low;
180 	u32 acq_caps;
181 
182 	cq->entries =
183 		dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL);
184 	if (!cq->entries)
185 		return -ENOMEM;
186 
187 	spin_lock_init(&cq->lock);
188 
189 	cq->cc = 0;
190 	cq->phase = 1;
191 
192 	addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(cq->dma_addr);
193 	addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(cq->dma_addr);
194 
195 	writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF);
196 	writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF);
197 
198 	acq_caps = aq->depth & EFA_REGS_ACQ_CAPS_ACQ_DEPTH_MASK;
199 	acq_caps |= (sizeof(struct efa_admin_acq_entry) <<
200 			EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_SHIFT) &
201 			EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE_MASK;
202 	acq_caps |= (aq->msix_vector_idx <<
203 			EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_SHIFT) &
204 			EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR_MASK;
205 
206 	writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF);
207 
208 	return 0;
209 }
210 
211 static int efa_com_admin_init_aenq(struct efa_com_dev *edev,
212 				   struct efa_aenq_handlers *aenq_handlers)
213 {
214 	struct efa_com_aenq *aenq = &edev->aenq;
215 	u32 addr_low, addr_high, aenq_caps;
216 	u16 size;
217 
218 	if (!aenq_handlers) {
219 		ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n");
220 		return -EINVAL;
221 	}
222 
223 	size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries);
224 	aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr,
225 					   GFP_KERNEL);
226 	if (!aenq->entries)
227 		return -ENOMEM;
228 
229 	aenq->aenq_handlers = aenq_handlers;
230 	aenq->depth = EFA_ASYNC_QUEUE_DEPTH;
231 	aenq->cc = 0;
232 	aenq->phase = 1;
233 
234 	addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(aenq->dma_addr);
235 	addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(aenq->dma_addr);
236 
237 	writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF);
238 	writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF);
239 
240 	aenq_caps = aenq->depth & EFA_REGS_AENQ_CAPS_AENQ_DEPTH_MASK;
241 	aenq_caps |= (sizeof(struct efa_admin_aenq_entry) <<
242 		EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_SHIFT) &
243 		EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE_MASK;
244 	aenq_caps |= (aenq->msix_vector_idx
245 		      << EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_SHIFT) &
246 		     EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR_MASK;
247 	writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF);
248 
249 	/*
250 	 * Init cons_db to mark that all entries in the queue
251 	 * are initially available
252 	 */
253 	writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
254 
255 	return 0;
256 }
257 
258 /* ID to be used with efa_com_get_comp_ctx */
259 static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq)
260 {
261 	u16 ctx_id;
262 
263 	spin_lock(&aq->comp_ctx_lock);
264 	ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next];
265 	aq->comp_ctx_pool_next++;
266 	spin_unlock(&aq->comp_ctx_lock);
267 
268 	return ctx_id;
269 }
270 
271 static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq,
272 				   u16 ctx_id)
273 {
274 	spin_lock(&aq->comp_ctx_lock);
275 	aq->comp_ctx_pool_next--;
276 	aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id;
277 	spin_unlock(&aq->comp_ctx_lock);
278 }
279 
280 static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq,
281 					struct efa_comp_ctx *comp_ctx)
282 {
283 	u16 cmd_id = comp_ctx->user_cqe->acq_common_descriptor.command &
284 		     EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK;
285 	u16 ctx_id = cmd_id & (aq->depth - 1);
286 
287 	ibdev_dbg(aq->efa_dev, "Put completion command_id %#x\n", cmd_id);
288 	comp_ctx->occupied = 0;
289 	efa_com_dealloc_ctx_id(aq, ctx_id);
290 }
291 
292 static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq,
293 						 u16 cmd_id, bool capture)
294 {
295 	u16 ctx_id = cmd_id & (aq->depth - 1);
296 
297 	if (aq->comp_ctx[ctx_id].occupied && capture) {
298 		ibdev_err_ratelimited(
299 			aq->efa_dev,
300 			"Completion context for command_id %#x is occupied\n",
301 			cmd_id);
302 		return NULL;
303 	}
304 
305 	if (capture) {
306 		aq->comp_ctx[ctx_id].occupied = 1;
307 		ibdev_dbg(aq->efa_dev,
308 			  "Take completion ctxt for command_id %#x\n", cmd_id);
309 	}
310 
311 	return &aq->comp_ctx[ctx_id];
312 }
313 
314 static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
315 						       struct efa_admin_aq_entry *cmd,
316 						       size_t cmd_size_in_bytes,
317 						       struct efa_admin_acq_entry *comp,
318 						       size_t comp_size_in_bytes)
319 {
320 	struct efa_comp_ctx *comp_ctx;
321 	u16 queue_size_mask;
322 	u16 cmd_id;
323 	u16 ctx_id;
324 	u16 pi;
325 
326 	queue_size_mask = aq->depth - 1;
327 	pi = aq->sq.pc & queue_size_mask;
328 
329 	ctx_id = efa_com_alloc_ctx_id(aq);
330 
331 	/* cmd_id LSBs are the ctx_id and MSBs are entropy bits from pc */
332 	cmd_id = ctx_id & queue_size_mask;
333 	cmd_id |= aq->sq.pc & ~queue_size_mask;
334 	cmd_id &= EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK;
335 
336 	cmd->aq_common_descriptor.command_id = cmd_id;
337 	cmd->aq_common_descriptor.flags |= aq->sq.phase &
338 		EFA_ADMIN_AQ_COMMON_DESC_PHASE_MASK;
339 
340 	comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, true);
341 	if (!comp_ctx) {
342 		efa_com_dealloc_ctx_id(aq, ctx_id);
343 		return ERR_PTR(-EINVAL);
344 	}
345 
346 	comp_ctx->status = EFA_CMD_SUBMITTED;
347 	comp_ctx->comp_size = comp_size_in_bytes;
348 	comp_ctx->user_cqe = comp;
349 	comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode;
350 
351 	reinit_completion(&comp_ctx->wait_event);
352 
353 	memcpy(&aq->sq.entries[pi], cmd, cmd_size_in_bytes);
354 
355 	aq->sq.pc++;
356 	atomic64_inc(&aq->stats.submitted_cmd);
357 
358 	if ((aq->sq.pc & queue_size_mask) == 0)
359 		aq->sq.phase = !aq->sq.phase;
360 
361 	/* barrier not needed in case of writel */
362 	writel(aq->sq.pc, aq->sq.db_addr);
363 
364 	return comp_ctx;
365 }
366 
367 static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq)
368 {
369 	size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool);
370 	size_t size = aq->depth * sizeof(struct efa_comp_ctx);
371 	struct efa_comp_ctx *comp_ctx;
372 	u16 i;
373 
374 	aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL);
375 	aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL);
376 	if (!aq->comp_ctx || !aq->comp_ctx_pool) {
377 		devm_kfree(aq->dmadev, aq->comp_ctx_pool);
378 		devm_kfree(aq->dmadev, aq->comp_ctx);
379 		return -ENOMEM;
380 	}
381 
382 	for (i = 0; i < aq->depth; i++) {
383 		comp_ctx = efa_com_get_comp_ctx(aq, i, false);
384 		if (comp_ctx)
385 			init_completion(&comp_ctx->wait_event);
386 
387 		aq->comp_ctx_pool[i] = i;
388 	}
389 
390 	spin_lock_init(&aq->comp_ctx_lock);
391 
392 	aq->comp_ctx_pool_next = 0;
393 
394 	return 0;
395 }
396 
397 static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq,
398 						     struct efa_admin_aq_entry *cmd,
399 						     size_t cmd_size_in_bytes,
400 						     struct efa_admin_acq_entry *comp,
401 						     size_t comp_size_in_bytes)
402 {
403 	struct efa_comp_ctx *comp_ctx;
404 
405 	spin_lock(&aq->sq.lock);
406 	if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) {
407 		ibdev_err_ratelimited(aq->efa_dev, "Admin queue is closed\n");
408 		spin_unlock(&aq->sq.lock);
409 		return ERR_PTR(-ENODEV);
410 	}
411 
412 	comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp,
413 					      comp_size_in_bytes);
414 	spin_unlock(&aq->sq.lock);
415 	if (IS_ERR(comp_ctx))
416 		clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
417 
418 	return comp_ctx;
419 }
420 
421 static void efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq,
422 						   struct efa_admin_acq_entry *cqe)
423 {
424 	struct efa_comp_ctx *comp_ctx;
425 	u16 cmd_id;
426 
427 	cmd_id = cqe->acq_common_descriptor.command &
428 		 EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID_MASK;
429 
430 	comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false);
431 	if (!comp_ctx) {
432 		ibdev_err(aq->efa_dev,
433 			  "comp_ctx is NULL. Changing the admin queue running state\n");
434 		clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
435 		return;
436 	}
437 
438 	comp_ctx->status = EFA_CMD_COMPLETED;
439 	comp_ctx->comp_status = cqe->acq_common_descriptor.status;
440 	if (comp_ctx->user_cqe)
441 		memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size);
442 
443 	if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
444 		complete(&comp_ctx->wait_event);
445 }
446 
447 static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq)
448 {
449 	struct efa_admin_acq_entry *cqe;
450 	u16 queue_size_mask;
451 	u16 comp_num = 0;
452 	u8 phase;
453 	u16 ci;
454 
455 	queue_size_mask = aq->depth - 1;
456 
457 	ci = aq->cq.cc & queue_size_mask;
458 	phase = aq->cq.phase;
459 
460 	cqe = &aq->cq.entries[ci];
461 
462 	/* Go over all the completions */
463 	while ((READ_ONCE(cqe->acq_common_descriptor.flags) &
464 		EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) {
465 		/*
466 		 * Do not read the rest of the completion entry before the
467 		 * phase bit was validated
468 		 */
469 		dma_rmb();
470 		efa_com_handle_single_admin_completion(aq, cqe);
471 
472 		ci++;
473 		comp_num++;
474 		if (ci == aq->depth) {
475 			ci = 0;
476 			phase = !phase;
477 		}
478 
479 		cqe = &aq->cq.entries[ci];
480 	}
481 
482 	aq->cq.cc += comp_num;
483 	aq->cq.phase = phase;
484 	aq->sq.cc += comp_num;
485 	atomic64_add(comp_num, &aq->stats.completed_cmd);
486 }
487 
488 static int efa_com_comp_status_to_errno(u8 comp_status)
489 {
490 	switch (comp_status) {
491 	case EFA_ADMIN_SUCCESS:
492 		return 0;
493 	case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE:
494 		return -ENOMEM;
495 	case EFA_ADMIN_UNSUPPORTED_OPCODE:
496 		return -EOPNOTSUPP;
497 	case EFA_ADMIN_BAD_OPCODE:
498 	case EFA_ADMIN_MALFORMED_REQUEST:
499 	case EFA_ADMIN_ILLEGAL_PARAMETER:
500 	case EFA_ADMIN_UNKNOWN_ERROR:
501 		return -EINVAL;
502 	default:
503 		return -EINVAL;
504 	}
505 }
506 
507 static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx,
508 						     struct efa_com_admin_queue *aq)
509 {
510 	unsigned long timeout;
511 	unsigned long flags;
512 	int err;
513 
514 	timeout = jiffies + usecs_to_jiffies(aq->completion_timeout);
515 
516 	while (1) {
517 		spin_lock_irqsave(&aq->cq.lock, flags);
518 		efa_com_handle_admin_completion(aq);
519 		spin_unlock_irqrestore(&aq->cq.lock, flags);
520 
521 		if (comp_ctx->status != EFA_CMD_SUBMITTED)
522 			break;
523 
524 		if (time_is_before_jiffies(timeout)) {
525 			ibdev_err_ratelimited(
526 				aq->efa_dev,
527 				"Wait for completion (polling) timeout\n");
528 			/* EFA didn't have any completion */
529 			atomic64_inc(&aq->stats.no_completion);
530 
531 			clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
532 			err = -ETIME;
533 			goto out;
534 		}
535 
536 		msleep(aq->poll_interval);
537 	}
538 
539 	err = efa_com_comp_status_to_errno(comp_ctx->comp_status);
540 out:
541 	efa_com_put_comp_ctx(aq, comp_ctx);
542 	return err;
543 }
544 
545 static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx,
546 							struct efa_com_admin_queue *aq)
547 {
548 	unsigned long flags;
549 	int err;
550 
551 	wait_for_completion_timeout(&comp_ctx->wait_event,
552 				    usecs_to_jiffies(aq->completion_timeout));
553 
554 	/*
555 	 * In case the command wasn't completed find out the root cause.
556 	 * There might be 2 kinds of errors
557 	 * 1) No completion (timeout reached)
558 	 * 2) There is completion but the device didn't get any msi-x interrupt.
559 	 */
560 	if (comp_ctx->status == EFA_CMD_SUBMITTED) {
561 		spin_lock_irqsave(&aq->cq.lock, flags);
562 		efa_com_handle_admin_completion(aq);
563 		spin_unlock_irqrestore(&aq->cq.lock, flags);
564 
565 		atomic64_inc(&aq->stats.no_completion);
566 
567 		if (comp_ctx->status == EFA_CMD_COMPLETED)
568 			ibdev_err_ratelimited(
569 				aq->efa_dev,
570 				"The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
571 				efa_com_cmd_str(comp_ctx->cmd_opcode),
572 				comp_ctx->cmd_opcode, comp_ctx->status,
573 				comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
574 		else
575 			ibdev_err_ratelimited(
576 				aq->efa_dev,
577 				"The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n",
578 				efa_com_cmd_str(comp_ctx->cmd_opcode),
579 				comp_ctx->cmd_opcode, comp_ctx->status,
580 				comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc);
581 
582 		clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
583 		err = -ETIME;
584 		goto out;
585 	}
586 
587 	err = efa_com_comp_status_to_errno(comp_ctx->comp_status);
588 out:
589 	efa_com_put_comp_ctx(aq, comp_ctx);
590 	return err;
591 }
592 
593 /*
594  * There are two types to wait for completion.
595  * Polling mode - wait until the completion is available.
596  * Async mode - wait on wait queue until the completion is ready
597  * (or the timeout expired).
598  * It is expected that the IRQ called efa_com_handle_admin_completion
599  * to mark the completions.
600  */
601 static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx,
602 					     struct efa_com_admin_queue *aq)
603 {
604 	if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state))
605 		return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq);
606 
607 	return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq);
608 }
609 
610 /**
611  * efa_com_cmd_exec - Execute admin command
612  * @aq: admin queue.
613  * @cmd: the admin command to execute.
614  * @cmd_size: the command size.
615  * @comp: command completion return entry.
616  * @comp_size: command completion size.
617  * Submit an admin command and then wait until the device will return a
618  * completion.
619  * The completion will be copied into comp.
620  *
621  * @return - 0 on success, negative value on failure.
622  */
623 int efa_com_cmd_exec(struct efa_com_admin_queue *aq,
624 		     struct efa_admin_aq_entry *cmd,
625 		     size_t cmd_size,
626 		     struct efa_admin_acq_entry *comp,
627 		     size_t comp_size)
628 {
629 	struct efa_comp_ctx *comp_ctx;
630 	int err;
631 
632 	might_sleep();
633 
634 	/* In case of queue FULL */
635 	down(&aq->avail_cmds);
636 
637 	ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n",
638 		  efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
639 		  cmd->aq_common_descriptor.opcode);
640 	comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size);
641 	if (IS_ERR(comp_ctx)) {
642 		ibdev_err_ratelimited(
643 			aq->efa_dev,
644 			"Failed to submit command %s (opcode %u) err %ld\n",
645 			efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
646 			cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx));
647 
648 		up(&aq->avail_cmds);
649 		return PTR_ERR(comp_ctx);
650 	}
651 
652 	err = efa_com_wait_and_process_admin_cq(comp_ctx, aq);
653 	if (err)
654 		ibdev_err_ratelimited(
655 			aq->efa_dev,
656 			"Failed to process command %s (opcode %u) comp_status %d err %d\n",
657 			efa_com_cmd_str(cmd->aq_common_descriptor.opcode),
658 			cmd->aq_common_descriptor.opcode, comp_ctx->comp_status,
659 			err);
660 
661 	up(&aq->avail_cmds);
662 
663 	return err;
664 }
665 
666 /**
667  * efa_com_admin_destroy - Destroy the admin and the async events queues.
668  * @edev: EFA communication layer struct
669  */
670 void efa_com_admin_destroy(struct efa_com_dev *edev)
671 {
672 	struct efa_com_admin_queue *aq = &edev->aq;
673 	struct efa_com_aenq *aenq = &edev->aenq;
674 	struct efa_com_admin_cq *cq = &aq->cq;
675 	struct efa_com_admin_sq *sq = &aq->sq;
676 	u16 size;
677 
678 	clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
679 
680 	devm_kfree(edev->dmadev, aq->comp_ctx_pool);
681 	devm_kfree(edev->dmadev, aq->comp_ctx);
682 
683 	size = aq->depth * sizeof(*sq->entries);
684 	dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr);
685 
686 	size = aq->depth * sizeof(*cq->entries);
687 	dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr);
688 
689 	size = aenq->depth * sizeof(*aenq->entries);
690 	dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr);
691 }
692 
693 /**
694  * efa_com_set_admin_polling_mode - Set the admin completion queue polling mode
695  * @edev: EFA communication layer struct
696  * @polling: Enable/Disable polling mode
697  *
698  * Set the admin completion mode.
699  */
700 void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling)
701 {
702 	u32 mask_value = 0;
703 
704 	if (polling)
705 		mask_value = EFA_REGS_ADMIN_INTR_MASK;
706 
707 	writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF);
708 	if (polling)
709 		set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
710 	else
711 		clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state);
712 }
713 
714 static void efa_com_stats_init(struct efa_com_dev *edev)
715 {
716 	atomic64_t *s = (atomic64_t *)&edev->aq.stats;
717 	int i;
718 
719 	for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++)
720 		atomic64_set(s, 0);
721 }
722 
723 /**
724  * efa_com_admin_init - Init the admin and the async queues
725  * @edev: EFA communication layer struct
726  * @aenq_handlers: Those handlers to be called upon event.
727  *
728  * Initialize the admin submission and completion queues.
729  * Initialize the asynchronous events notification queues.
730  *
731  * @return - 0 on success, negative value on failure.
732  */
733 int efa_com_admin_init(struct efa_com_dev *edev,
734 		       struct efa_aenq_handlers *aenq_handlers)
735 {
736 	struct efa_com_admin_queue *aq = &edev->aq;
737 	u32 timeout;
738 	u32 dev_sts;
739 	u32 cap;
740 	int err;
741 
742 	dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
743 	if (!(dev_sts & EFA_REGS_DEV_STS_READY_MASK)) {
744 		ibdev_err(edev->efa_dev,
745 			  "Device isn't ready, abort com init %#x\n", dev_sts);
746 		return -ENODEV;
747 	}
748 
749 	aq->depth = EFA_ADMIN_QUEUE_DEPTH;
750 
751 	aq->dmadev = edev->dmadev;
752 	aq->efa_dev = edev->efa_dev;
753 	set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state);
754 
755 	sema_init(&aq->avail_cmds, aq->depth);
756 
757 	efa_com_stats_init(edev);
758 
759 	err = efa_com_init_comp_ctxt(aq);
760 	if (err)
761 		return err;
762 
763 	err = efa_com_admin_init_sq(edev);
764 	if (err)
765 		goto err_destroy_comp_ctxt;
766 
767 	err = efa_com_admin_init_cq(edev);
768 	if (err)
769 		goto err_destroy_sq;
770 
771 	efa_com_set_admin_polling_mode(edev, false);
772 
773 	err = efa_com_admin_init_aenq(edev, aenq_handlers);
774 	if (err)
775 		goto err_destroy_cq;
776 
777 	cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
778 	timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >>
779 		  EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT;
780 	if (timeout)
781 		/* the resolution of timeout reg is 100ms */
782 		aq->completion_timeout = timeout * 100000;
783 	else
784 		aq->completion_timeout = ADMIN_CMD_TIMEOUT_US;
785 
786 	aq->poll_interval = EFA_POLL_INTERVAL_MS;
787 
788 	set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state);
789 
790 	return 0;
791 
792 err_destroy_cq:
793 	dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries),
794 			  aq->cq.entries, aq->cq.dma_addr);
795 err_destroy_sq:
796 	dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries),
797 			  aq->sq.entries, aq->sq.dma_addr);
798 err_destroy_comp_ctxt:
799 	devm_kfree(edev->dmadev, aq->comp_ctx);
800 
801 	return err;
802 }
803 
804 /**
805  * efa_com_admin_q_comp_intr_handler - admin queue interrupt handler
806  * @edev: EFA communication layer struct
807  *
808  * This method goes over the admin completion queue and wakes up
809  * all the pending threads that wait on the commands wait event.
810  *
811  * @note: Should be called after MSI-X interrupt.
812  */
813 void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev)
814 {
815 	unsigned long flags;
816 
817 	spin_lock_irqsave(&edev->aq.cq.lock, flags);
818 	efa_com_handle_admin_completion(&edev->aq);
819 	spin_unlock_irqrestore(&edev->aq.cq.lock, flags);
820 }
821 
822 /*
823  * efa_handle_specific_aenq_event:
824  * return the handler that is relevant to the specific event group
825  */
826 static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev,
827 						     u16 group)
828 {
829 	struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers;
830 
831 	if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group])
832 		return aenq_handlers->handlers[group];
833 
834 	return aenq_handlers->unimplemented_handler;
835 }
836 
837 /**
838  * efa_com_aenq_intr_handler - AENQ interrupt handler
839  * @edev: EFA communication layer struct
840  * @data: Data of interrupt handler.
841  *
842  * Go over the async event notification queue and call the proper aenq handler.
843  */
844 void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data)
845 {
846 	struct efa_admin_aenq_common_desc *aenq_common;
847 	struct efa_com_aenq *aenq = &edev->aenq;
848 	struct efa_admin_aenq_entry *aenq_e;
849 	efa_aenq_handler handler_cb;
850 	u32 processed = 0;
851 	u8 phase;
852 	u32 ci;
853 
854 	ci = aenq->cc & (aenq->depth - 1);
855 	phase = aenq->phase;
856 	aenq_e = &aenq->entries[ci]; /* Get first entry */
857 	aenq_common = &aenq_e->aenq_common_desc;
858 
859 	/* Go over all the events */
860 	while ((READ_ONCE(aenq_common->flags) &
861 		EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) {
862 		/*
863 		 * Do not read the rest of the completion entry before the
864 		 * phase bit was validated
865 		 */
866 		dma_rmb();
867 
868 		/* Handle specific event*/
869 		handler_cb = efa_com_get_specific_aenq_cb(edev,
870 							  aenq_common->group);
871 		handler_cb(data, aenq_e); /* call the actual event handler*/
872 
873 		/* Get next event entry */
874 		ci++;
875 		processed++;
876 
877 		if (ci == aenq->depth) {
878 			ci = 0;
879 			phase = !phase;
880 		}
881 		aenq_e = &aenq->entries[ci];
882 		aenq_common = &aenq_e->aenq_common_desc;
883 	}
884 
885 	aenq->cc += processed;
886 	aenq->phase = phase;
887 
888 	/* Don't update aenq doorbell if there weren't any processed events */
889 	if (!processed)
890 		return;
891 
892 	/* barrier not needed in case of writel */
893 	writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF);
894 }
895 
896 static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev)
897 {
898 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
899 	u32 addr_high;
900 	u32 addr_low;
901 
902 	/* dma_addr_bits is unknown at this point */
903 	addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0);
904 	addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0);
905 
906 	writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF);
907 	writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF);
908 }
909 
910 int efa_com_mmio_reg_read_init(struct efa_com_dev *edev)
911 {
912 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
913 
914 	spin_lock_init(&mmio_read->lock);
915 	mmio_read->read_resp =
916 		dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
917 				   &mmio_read->read_resp_dma_addr, GFP_KERNEL);
918 	if (!mmio_read->read_resp)
919 		return -ENOMEM;
920 
921 	efa_com_mmio_reg_read_resp_addr_init(edev);
922 
923 	mmio_read->read_resp->req_id = 0;
924 	mmio_read->seq_num = 0;
925 	mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US;
926 
927 	return 0;
928 }
929 
930 void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev)
931 {
932 	struct efa_com_mmio_read *mmio_read = &edev->mmio_read;
933 
934 	dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp),
935 			  mmio_read->read_resp, mmio_read->read_resp_dma_addr);
936 }
937 
938 int efa_com_validate_version(struct efa_com_dev *edev)
939 {
940 	u32 ctrl_ver_masked;
941 	u32 ctrl_ver;
942 	u32 ver;
943 
944 	/*
945 	 * Make sure the EFA version and the controller version are at least
946 	 * as the driver expects
947 	 */
948 	ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF);
949 	ctrl_ver = efa_com_reg_read32(edev,
950 				      EFA_REGS_CONTROLLER_VERSION_OFF);
951 
952 	ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n",
953 		  (ver & EFA_REGS_VERSION_MAJOR_VERSION_MASK) >>
954 			  EFA_REGS_VERSION_MAJOR_VERSION_SHIFT,
955 		  ver & EFA_REGS_VERSION_MINOR_VERSION_MASK);
956 
957 	if (ver < MIN_EFA_VER) {
958 		ibdev_err(edev->efa_dev,
959 			  "EFA version is lower than the minimal version the driver supports\n");
960 		return -EOPNOTSUPP;
961 	}
962 
963 	ibdev_dbg(edev->efa_dev,
964 		  "efa controller version: %d.%d.%d implementation version %d\n",
965 		  (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) >>
966 			  EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_SHIFT,
967 		  (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) >>
968 			  EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_SHIFT,
969 		  (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK),
970 		  (ctrl_ver & EFA_REGS_CONTROLLER_VERSION_IMPL_ID_MASK) >>
971 			  EFA_REGS_CONTROLLER_VERSION_IMPL_ID_SHIFT);
972 
973 	ctrl_ver_masked =
974 		(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION_MASK) |
975 		(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION_MASK) |
976 		(ctrl_ver & EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION_MASK);
977 
978 	/* Validate the ctrl version without the implementation ID */
979 	if (ctrl_ver_masked < MIN_EFA_CTRL_VER) {
980 		ibdev_err(edev->efa_dev,
981 			  "EFA ctrl version is lower than the minimal ctrl version the driver supports\n");
982 		return -EOPNOTSUPP;
983 	}
984 
985 	return 0;
986 }
987 
988 /**
989  * efa_com_get_dma_width - Retrieve physical dma address width the device
990  * supports.
991  * @edev: EFA communication layer struct
992  *
993  * Retrieve the maximum physical address bits the device can handle.
994  *
995  * @return: > 0 on Success and negative value otherwise.
996  */
997 int efa_com_get_dma_width(struct efa_com_dev *edev)
998 {
999 	u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
1000 	int width;
1001 
1002 	width = (caps & EFA_REGS_CAPS_DMA_ADDR_WIDTH_MASK) >>
1003 		EFA_REGS_CAPS_DMA_ADDR_WIDTH_SHIFT;
1004 
1005 	ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width);
1006 
1007 	if (width < 32 || width > 64) {
1008 		ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width);
1009 		return -EINVAL;
1010 	}
1011 
1012 	edev->dma_addr_bits = width;
1013 
1014 	return width;
1015 }
1016 
1017 static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout,
1018 				u16 exp_state)
1019 {
1020 	u32 val, i;
1021 
1022 	for (i = 0; i < timeout; i++) {
1023 		val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
1024 
1025 		if ((val & EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK) ==
1026 		    exp_state)
1027 			return 0;
1028 
1029 		ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val);
1030 		msleep(EFA_POLL_INTERVAL_MS);
1031 	}
1032 
1033 	return -ETIME;
1034 }
1035 
1036 /**
1037  * efa_com_dev_reset - Perform device FLR to the device.
1038  * @edev: EFA communication layer struct
1039  * @reset_reason: Specify what is the trigger for the reset in case of an error.
1040  *
1041  * @return - 0 on success, negative value on failure.
1042  */
1043 int efa_com_dev_reset(struct efa_com_dev *edev,
1044 		      enum efa_regs_reset_reason_types reset_reason)
1045 {
1046 	u32 stat, timeout, cap, reset_val;
1047 	int err;
1048 
1049 	stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF);
1050 	cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF);
1051 
1052 	if (!(stat & EFA_REGS_DEV_STS_READY_MASK)) {
1053 		ibdev_err(edev->efa_dev,
1054 			  "Device isn't ready, can't reset device\n");
1055 		return -EINVAL;
1056 	}
1057 
1058 	timeout = (cap & EFA_REGS_CAPS_RESET_TIMEOUT_MASK) >>
1059 		  EFA_REGS_CAPS_RESET_TIMEOUT_SHIFT;
1060 	if (!timeout) {
1061 		ibdev_err(edev->efa_dev, "Invalid timeout value\n");
1062 		return -EINVAL;
1063 	}
1064 
1065 	/* start reset */
1066 	reset_val = EFA_REGS_DEV_CTL_DEV_RESET_MASK;
1067 	reset_val |= (reset_reason << EFA_REGS_DEV_CTL_RESET_REASON_SHIFT) &
1068 		     EFA_REGS_DEV_CTL_RESET_REASON_MASK;
1069 	writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
1070 
1071 	/* reset clears the mmio readless address, restore it */
1072 	efa_com_mmio_reg_read_resp_addr_init(edev);
1073 
1074 	err = wait_for_reset_state(edev, timeout,
1075 				   EFA_REGS_DEV_STS_RESET_IN_PROGRESS_MASK);
1076 	if (err) {
1077 		ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n");
1078 		return err;
1079 	}
1080 
1081 	/* reset done */
1082 	writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF);
1083 	err = wait_for_reset_state(edev, timeout, 0);
1084 	if (err) {
1085 		ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n");
1086 		return err;
1087 	}
1088 
1089 	timeout = (cap & EFA_REGS_CAPS_ADMIN_CMD_TO_MASK) >>
1090 		  EFA_REGS_CAPS_ADMIN_CMD_TO_SHIFT;
1091 	if (timeout)
1092 		/* the resolution of timeout reg is 100ms */
1093 		edev->aq.completion_timeout = timeout * 100000;
1094 	else
1095 		edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US;
1096 
1097 	return 0;
1098 }
1099