1 // SPDX-License-Identifier: GPL-2.0 OR BSD-2-Clause 2 /* 3 * Copyright 2018-2020 Amazon.com, Inc. or its affiliates. All rights reserved. 4 */ 5 6 #include "efa_com.h" 7 #include "efa_regs_defs.h" 8 9 #define ADMIN_CMD_TIMEOUT_US 30000000 /* usecs */ 10 11 #define EFA_REG_READ_TIMEOUT_US 50000 /* usecs */ 12 #define EFA_MMIO_READ_INVALID 0xffffffff 13 14 #define EFA_POLL_INTERVAL_MS 100 /* msecs */ 15 16 #define EFA_ASYNC_QUEUE_DEPTH 16 17 #define EFA_ADMIN_QUEUE_DEPTH 32 18 19 #define EFA_CTRL_MAJOR 0 20 #define EFA_CTRL_MINOR 0 21 #define EFA_CTRL_SUB_MINOR 1 22 23 #define EFA_DMA_ADDR_TO_UINT32_LOW(x) ((u32)((u64)(x))) 24 #define EFA_DMA_ADDR_TO_UINT32_HIGH(x) ((u32)(((u64)(x)) >> 32)) 25 26 enum efa_cmd_status { 27 EFA_CMD_SUBMITTED, 28 EFA_CMD_COMPLETED, 29 }; 30 31 struct efa_comp_ctx { 32 struct completion wait_event; 33 struct efa_admin_acq_entry *user_cqe; 34 u32 comp_size; 35 enum efa_cmd_status status; 36 /* status from the device */ 37 u8 comp_status; 38 u8 cmd_opcode; 39 u8 occupied; 40 }; 41 42 static const char *efa_com_cmd_str(u8 cmd) 43 { 44 #define EFA_CMD_STR_CASE(_cmd) case EFA_ADMIN_##_cmd: return #_cmd 45 46 switch (cmd) { 47 EFA_CMD_STR_CASE(CREATE_QP); 48 EFA_CMD_STR_CASE(MODIFY_QP); 49 EFA_CMD_STR_CASE(QUERY_QP); 50 EFA_CMD_STR_CASE(DESTROY_QP); 51 EFA_CMD_STR_CASE(CREATE_AH); 52 EFA_CMD_STR_CASE(DESTROY_AH); 53 EFA_CMD_STR_CASE(REG_MR); 54 EFA_CMD_STR_CASE(DEREG_MR); 55 EFA_CMD_STR_CASE(CREATE_CQ); 56 EFA_CMD_STR_CASE(DESTROY_CQ); 57 EFA_CMD_STR_CASE(GET_FEATURE); 58 EFA_CMD_STR_CASE(SET_FEATURE); 59 EFA_CMD_STR_CASE(GET_STATS); 60 EFA_CMD_STR_CASE(ALLOC_PD); 61 EFA_CMD_STR_CASE(DEALLOC_PD); 62 EFA_CMD_STR_CASE(ALLOC_UAR); 63 EFA_CMD_STR_CASE(DEALLOC_UAR); 64 default: return "unknown command opcode"; 65 } 66 #undef EFA_CMD_STR_CASE 67 } 68 69 static u32 efa_com_reg_read32(struct efa_com_dev *edev, u16 offset) 70 { 71 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 72 struct efa_admin_mmio_req_read_less_resp *read_resp; 73 unsigned long exp_time; 74 u32 mmio_read_reg = 0; 75 u32 err; 76 77 read_resp = mmio_read->read_resp; 78 79 spin_lock(&mmio_read->lock); 80 mmio_read->seq_num++; 81 82 /* trash DMA req_id to identify when hardware is done */ 83 read_resp->req_id = mmio_read->seq_num + 0x9aL; 84 EFA_SET(&mmio_read_reg, EFA_REGS_MMIO_REG_READ_REG_OFF, offset); 85 EFA_SET(&mmio_read_reg, EFA_REGS_MMIO_REG_READ_REQ_ID, 86 mmio_read->seq_num); 87 88 writel(mmio_read_reg, edev->reg_bar + EFA_REGS_MMIO_REG_READ_OFF); 89 90 exp_time = jiffies + usecs_to_jiffies(mmio_read->mmio_read_timeout); 91 do { 92 if (READ_ONCE(read_resp->req_id) == mmio_read->seq_num) 93 break; 94 udelay(1); 95 } while (time_is_after_jiffies(exp_time)); 96 97 if (read_resp->req_id != mmio_read->seq_num) { 98 ibdev_err_ratelimited( 99 edev->efa_dev, 100 "Reading register timed out. expected: req id[%u] offset[%#x] actual: req id[%u] offset[%#x]\n", 101 mmio_read->seq_num, offset, read_resp->req_id, 102 read_resp->reg_off); 103 err = EFA_MMIO_READ_INVALID; 104 goto out; 105 } 106 107 if (read_resp->reg_off != offset) { 108 ibdev_err_ratelimited( 109 edev->efa_dev, 110 "Reading register failed: wrong offset provided\n"); 111 err = EFA_MMIO_READ_INVALID; 112 goto out; 113 } 114 115 err = read_resp->reg_val; 116 out: 117 spin_unlock(&mmio_read->lock); 118 return err; 119 } 120 121 static int efa_com_admin_init_sq(struct efa_com_dev *edev) 122 { 123 struct efa_com_admin_queue *aq = &edev->aq; 124 struct efa_com_admin_sq *sq = &aq->sq; 125 u16 size = aq->depth * sizeof(*sq->entries); 126 u32 aq_caps = 0; 127 u32 addr_high; 128 u32 addr_low; 129 130 sq->entries = 131 dma_alloc_coherent(aq->dmadev, size, &sq->dma_addr, GFP_KERNEL); 132 if (!sq->entries) 133 return -ENOMEM; 134 135 spin_lock_init(&sq->lock); 136 137 sq->cc = 0; 138 sq->pc = 0; 139 sq->phase = 1; 140 141 sq->db_addr = (u32 __iomem *)(edev->reg_bar + EFA_REGS_AQ_PROD_DB_OFF); 142 143 addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(sq->dma_addr); 144 addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(sq->dma_addr); 145 146 writel(addr_low, edev->reg_bar + EFA_REGS_AQ_BASE_LO_OFF); 147 writel(addr_high, edev->reg_bar + EFA_REGS_AQ_BASE_HI_OFF); 148 149 EFA_SET(&aq_caps, EFA_REGS_AQ_CAPS_AQ_DEPTH, aq->depth); 150 EFA_SET(&aq_caps, EFA_REGS_AQ_CAPS_AQ_ENTRY_SIZE, 151 sizeof(struct efa_admin_aq_entry)); 152 153 writel(aq_caps, edev->reg_bar + EFA_REGS_AQ_CAPS_OFF); 154 155 return 0; 156 } 157 158 static int efa_com_admin_init_cq(struct efa_com_dev *edev) 159 { 160 struct efa_com_admin_queue *aq = &edev->aq; 161 struct efa_com_admin_cq *cq = &aq->cq; 162 u16 size = aq->depth * sizeof(*cq->entries); 163 u32 acq_caps = 0; 164 u32 addr_high; 165 u32 addr_low; 166 167 cq->entries = 168 dma_alloc_coherent(aq->dmadev, size, &cq->dma_addr, GFP_KERNEL); 169 if (!cq->entries) 170 return -ENOMEM; 171 172 spin_lock_init(&cq->lock); 173 174 cq->cc = 0; 175 cq->phase = 1; 176 177 addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(cq->dma_addr); 178 addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(cq->dma_addr); 179 180 writel(addr_low, edev->reg_bar + EFA_REGS_ACQ_BASE_LO_OFF); 181 writel(addr_high, edev->reg_bar + EFA_REGS_ACQ_BASE_HI_OFF); 182 183 EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_DEPTH, aq->depth); 184 EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_ENTRY_SIZE, 185 sizeof(struct efa_admin_acq_entry)); 186 EFA_SET(&acq_caps, EFA_REGS_ACQ_CAPS_ACQ_MSIX_VECTOR, 187 aq->msix_vector_idx); 188 189 writel(acq_caps, edev->reg_bar + EFA_REGS_ACQ_CAPS_OFF); 190 191 return 0; 192 } 193 194 static int efa_com_admin_init_aenq(struct efa_com_dev *edev, 195 struct efa_aenq_handlers *aenq_handlers) 196 { 197 struct efa_com_aenq *aenq = &edev->aenq; 198 u32 addr_low, addr_high; 199 u32 aenq_caps = 0; 200 u16 size; 201 202 if (!aenq_handlers) { 203 ibdev_err(edev->efa_dev, "aenq handlers pointer is NULL\n"); 204 return -EINVAL; 205 } 206 207 size = EFA_ASYNC_QUEUE_DEPTH * sizeof(*aenq->entries); 208 aenq->entries = dma_alloc_coherent(edev->dmadev, size, &aenq->dma_addr, 209 GFP_KERNEL); 210 if (!aenq->entries) 211 return -ENOMEM; 212 213 aenq->aenq_handlers = aenq_handlers; 214 aenq->depth = EFA_ASYNC_QUEUE_DEPTH; 215 aenq->cc = 0; 216 aenq->phase = 1; 217 218 addr_low = EFA_DMA_ADDR_TO_UINT32_LOW(aenq->dma_addr); 219 addr_high = EFA_DMA_ADDR_TO_UINT32_HIGH(aenq->dma_addr); 220 221 writel(addr_low, edev->reg_bar + EFA_REGS_AENQ_BASE_LO_OFF); 222 writel(addr_high, edev->reg_bar + EFA_REGS_AENQ_BASE_HI_OFF); 223 224 EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_DEPTH, aenq->depth); 225 EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_ENTRY_SIZE, 226 sizeof(struct efa_admin_aenq_entry)); 227 EFA_SET(&aenq_caps, EFA_REGS_AENQ_CAPS_AENQ_MSIX_VECTOR, 228 aenq->msix_vector_idx); 229 writel(aenq_caps, edev->reg_bar + EFA_REGS_AENQ_CAPS_OFF); 230 231 /* 232 * Init cons_db to mark that all entries in the queue 233 * are initially available 234 */ 235 writel(edev->aenq.cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF); 236 237 return 0; 238 } 239 240 /* ID to be used with efa_com_get_comp_ctx */ 241 static u16 efa_com_alloc_ctx_id(struct efa_com_admin_queue *aq) 242 { 243 u16 ctx_id; 244 245 spin_lock(&aq->comp_ctx_lock); 246 ctx_id = aq->comp_ctx_pool[aq->comp_ctx_pool_next]; 247 aq->comp_ctx_pool_next++; 248 spin_unlock(&aq->comp_ctx_lock); 249 250 return ctx_id; 251 } 252 253 static void efa_com_dealloc_ctx_id(struct efa_com_admin_queue *aq, 254 u16 ctx_id) 255 { 256 spin_lock(&aq->comp_ctx_lock); 257 aq->comp_ctx_pool_next--; 258 aq->comp_ctx_pool[aq->comp_ctx_pool_next] = ctx_id; 259 spin_unlock(&aq->comp_ctx_lock); 260 } 261 262 static inline void efa_com_put_comp_ctx(struct efa_com_admin_queue *aq, 263 struct efa_comp_ctx *comp_ctx) 264 { 265 u16 cmd_id = EFA_GET(&comp_ctx->user_cqe->acq_common_descriptor.command, 266 EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID); 267 u16 ctx_id = cmd_id & (aq->depth - 1); 268 269 ibdev_dbg(aq->efa_dev, "Put completion command_id %#x\n", cmd_id); 270 comp_ctx->occupied = 0; 271 efa_com_dealloc_ctx_id(aq, ctx_id); 272 } 273 274 static struct efa_comp_ctx *efa_com_get_comp_ctx(struct efa_com_admin_queue *aq, 275 u16 cmd_id, bool capture) 276 { 277 u16 ctx_id = cmd_id & (aq->depth - 1); 278 279 if (aq->comp_ctx[ctx_id].occupied && capture) { 280 ibdev_err_ratelimited( 281 aq->efa_dev, 282 "Completion context for command_id %#x is occupied\n", 283 cmd_id); 284 return NULL; 285 } 286 287 if (capture) { 288 aq->comp_ctx[ctx_id].occupied = 1; 289 ibdev_dbg(aq->efa_dev, 290 "Take completion ctxt for command_id %#x\n", cmd_id); 291 } 292 293 return &aq->comp_ctx[ctx_id]; 294 } 295 296 static struct efa_comp_ctx *__efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq, 297 struct efa_admin_aq_entry *cmd, 298 size_t cmd_size_in_bytes, 299 struct efa_admin_acq_entry *comp, 300 size_t comp_size_in_bytes) 301 { 302 struct efa_admin_aq_entry *aqe; 303 struct efa_comp_ctx *comp_ctx; 304 u16 queue_size_mask; 305 u16 cmd_id; 306 u16 ctx_id; 307 u16 pi; 308 309 queue_size_mask = aq->depth - 1; 310 pi = aq->sq.pc & queue_size_mask; 311 312 ctx_id = efa_com_alloc_ctx_id(aq); 313 314 /* cmd_id LSBs are the ctx_id and MSBs are entropy bits from pc */ 315 cmd_id = ctx_id & queue_size_mask; 316 cmd_id |= aq->sq.pc & ~queue_size_mask; 317 cmd_id &= EFA_ADMIN_AQ_COMMON_DESC_COMMAND_ID_MASK; 318 319 cmd->aq_common_descriptor.command_id = cmd_id; 320 EFA_SET(&cmd->aq_common_descriptor.flags, 321 EFA_ADMIN_AQ_COMMON_DESC_PHASE, aq->sq.phase); 322 323 comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, true); 324 if (!comp_ctx) { 325 efa_com_dealloc_ctx_id(aq, ctx_id); 326 return ERR_PTR(-EINVAL); 327 } 328 329 comp_ctx->status = EFA_CMD_SUBMITTED; 330 comp_ctx->comp_size = comp_size_in_bytes; 331 comp_ctx->user_cqe = comp; 332 comp_ctx->cmd_opcode = cmd->aq_common_descriptor.opcode; 333 334 reinit_completion(&comp_ctx->wait_event); 335 336 aqe = &aq->sq.entries[pi]; 337 memset(aqe, 0, sizeof(*aqe)); 338 memcpy(aqe, cmd, cmd_size_in_bytes); 339 340 aq->sq.pc++; 341 atomic64_inc(&aq->stats.submitted_cmd); 342 343 if ((aq->sq.pc & queue_size_mask) == 0) 344 aq->sq.phase = !aq->sq.phase; 345 346 /* barrier not needed in case of writel */ 347 writel(aq->sq.pc, aq->sq.db_addr); 348 349 return comp_ctx; 350 } 351 352 static inline int efa_com_init_comp_ctxt(struct efa_com_admin_queue *aq) 353 { 354 size_t pool_size = aq->depth * sizeof(*aq->comp_ctx_pool); 355 size_t size = aq->depth * sizeof(struct efa_comp_ctx); 356 struct efa_comp_ctx *comp_ctx; 357 u16 i; 358 359 aq->comp_ctx = devm_kzalloc(aq->dmadev, size, GFP_KERNEL); 360 aq->comp_ctx_pool = devm_kzalloc(aq->dmadev, pool_size, GFP_KERNEL); 361 if (!aq->comp_ctx || !aq->comp_ctx_pool) { 362 devm_kfree(aq->dmadev, aq->comp_ctx_pool); 363 devm_kfree(aq->dmadev, aq->comp_ctx); 364 return -ENOMEM; 365 } 366 367 for (i = 0; i < aq->depth; i++) { 368 comp_ctx = efa_com_get_comp_ctx(aq, i, false); 369 if (comp_ctx) 370 init_completion(&comp_ctx->wait_event); 371 372 aq->comp_ctx_pool[i] = i; 373 } 374 375 spin_lock_init(&aq->comp_ctx_lock); 376 377 aq->comp_ctx_pool_next = 0; 378 379 return 0; 380 } 381 382 static struct efa_comp_ctx *efa_com_submit_admin_cmd(struct efa_com_admin_queue *aq, 383 struct efa_admin_aq_entry *cmd, 384 size_t cmd_size_in_bytes, 385 struct efa_admin_acq_entry *comp, 386 size_t comp_size_in_bytes) 387 { 388 struct efa_comp_ctx *comp_ctx; 389 390 spin_lock(&aq->sq.lock); 391 if (!test_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state)) { 392 ibdev_err_ratelimited(aq->efa_dev, "Admin queue is closed\n"); 393 spin_unlock(&aq->sq.lock); 394 return ERR_PTR(-ENODEV); 395 } 396 397 comp_ctx = __efa_com_submit_admin_cmd(aq, cmd, cmd_size_in_bytes, comp, 398 comp_size_in_bytes); 399 spin_unlock(&aq->sq.lock); 400 if (IS_ERR(comp_ctx)) 401 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 402 403 return comp_ctx; 404 } 405 406 static void efa_com_handle_single_admin_completion(struct efa_com_admin_queue *aq, 407 struct efa_admin_acq_entry *cqe) 408 { 409 struct efa_comp_ctx *comp_ctx; 410 u16 cmd_id; 411 412 cmd_id = EFA_GET(&cqe->acq_common_descriptor.command, 413 EFA_ADMIN_ACQ_COMMON_DESC_COMMAND_ID); 414 415 comp_ctx = efa_com_get_comp_ctx(aq, cmd_id, false); 416 if (!comp_ctx) { 417 ibdev_err(aq->efa_dev, 418 "comp_ctx is NULL. Changing the admin queue running state\n"); 419 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 420 return; 421 } 422 423 comp_ctx->status = EFA_CMD_COMPLETED; 424 comp_ctx->comp_status = cqe->acq_common_descriptor.status; 425 if (comp_ctx->user_cqe) 426 memcpy(comp_ctx->user_cqe, cqe, comp_ctx->comp_size); 427 428 if (!test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state)) 429 complete(&comp_ctx->wait_event); 430 } 431 432 static void efa_com_handle_admin_completion(struct efa_com_admin_queue *aq) 433 { 434 struct efa_admin_acq_entry *cqe; 435 u16 queue_size_mask; 436 u16 comp_num = 0; 437 u8 phase; 438 u16 ci; 439 440 queue_size_mask = aq->depth - 1; 441 442 ci = aq->cq.cc & queue_size_mask; 443 phase = aq->cq.phase; 444 445 cqe = &aq->cq.entries[ci]; 446 447 /* Go over all the completions */ 448 while ((READ_ONCE(cqe->acq_common_descriptor.flags) & 449 EFA_ADMIN_ACQ_COMMON_DESC_PHASE_MASK) == phase) { 450 /* 451 * Do not read the rest of the completion entry before the 452 * phase bit was validated 453 */ 454 dma_rmb(); 455 efa_com_handle_single_admin_completion(aq, cqe); 456 457 ci++; 458 comp_num++; 459 if (ci == aq->depth) { 460 ci = 0; 461 phase = !phase; 462 } 463 464 cqe = &aq->cq.entries[ci]; 465 } 466 467 aq->cq.cc += comp_num; 468 aq->cq.phase = phase; 469 aq->sq.cc += comp_num; 470 atomic64_add(comp_num, &aq->stats.completed_cmd); 471 } 472 473 static int efa_com_comp_status_to_errno(u8 comp_status) 474 { 475 switch (comp_status) { 476 case EFA_ADMIN_SUCCESS: 477 return 0; 478 case EFA_ADMIN_RESOURCE_ALLOCATION_FAILURE: 479 return -ENOMEM; 480 case EFA_ADMIN_UNSUPPORTED_OPCODE: 481 return -EOPNOTSUPP; 482 case EFA_ADMIN_BAD_OPCODE: 483 case EFA_ADMIN_MALFORMED_REQUEST: 484 case EFA_ADMIN_ILLEGAL_PARAMETER: 485 case EFA_ADMIN_UNKNOWN_ERROR: 486 return -EINVAL; 487 default: 488 return -EINVAL; 489 } 490 } 491 492 static int efa_com_wait_and_process_admin_cq_polling(struct efa_comp_ctx *comp_ctx, 493 struct efa_com_admin_queue *aq) 494 { 495 unsigned long timeout; 496 unsigned long flags; 497 int err; 498 499 timeout = jiffies + usecs_to_jiffies(aq->completion_timeout); 500 501 while (1) { 502 spin_lock_irqsave(&aq->cq.lock, flags); 503 efa_com_handle_admin_completion(aq); 504 spin_unlock_irqrestore(&aq->cq.lock, flags); 505 506 if (comp_ctx->status != EFA_CMD_SUBMITTED) 507 break; 508 509 if (time_is_before_jiffies(timeout)) { 510 ibdev_err_ratelimited( 511 aq->efa_dev, 512 "Wait for completion (polling) timeout\n"); 513 /* EFA didn't have any completion */ 514 atomic64_inc(&aq->stats.no_completion); 515 516 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 517 err = -ETIME; 518 goto out; 519 } 520 521 msleep(aq->poll_interval); 522 } 523 524 err = efa_com_comp_status_to_errno(comp_ctx->comp_status); 525 out: 526 efa_com_put_comp_ctx(aq, comp_ctx); 527 return err; 528 } 529 530 static int efa_com_wait_and_process_admin_cq_interrupts(struct efa_comp_ctx *comp_ctx, 531 struct efa_com_admin_queue *aq) 532 { 533 unsigned long flags; 534 int err; 535 536 wait_for_completion_timeout(&comp_ctx->wait_event, 537 usecs_to_jiffies(aq->completion_timeout)); 538 539 /* 540 * In case the command wasn't completed find out the root cause. 541 * There might be 2 kinds of errors 542 * 1) No completion (timeout reached) 543 * 2) There is completion but the device didn't get any msi-x interrupt. 544 */ 545 if (comp_ctx->status == EFA_CMD_SUBMITTED) { 546 spin_lock_irqsave(&aq->cq.lock, flags); 547 efa_com_handle_admin_completion(aq); 548 spin_unlock_irqrestore(&aq->cq.lock, flags); 549 550 atomic64_inc(&aq->stats.no_completion); 551 552 if (comp_ctx->status == EFA_CMD_COMPLETED) 553 ibdev_err_ratelimited( 554 aq->efa_dev, 555 "The device sent a completion but the driver didn't receive any MSI-X interrupt for admin cmd %s(%d) status %d (ctx: 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n", 556 efa_com_cmd_str(comp_ctx->cmd_opcode), 557 comp_ctx->cmd_opcode, comp_ctx->status, 558 comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc); 559 else 560 ibdev_err_ratelimited( 561 aq->efa_dev, 562 "The device didn't send any completion for admin cmd %s(%d) status %d (ctx 0x%p, sq producer: %d, sq consumer: %d, cq consumer: %d)\n", 563 efa_com_cmd_str(comp_ctx->cmd_opcode), 564 comp_ctx->cmd_opcode, comp_ctx->status, 565 comp_ctx, aq->sq.pc, aq->sq.cc, aq->cq.cc); 566 567 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 568 err = -ETIME; 569 goto out; 570 } 571 572 err = efa_com_comp_status_to_errno(comp_ctx->comp_status); 573 out: 574 efa_com_put_comp_ctx(aq, comp_ctx); 575 return err; 576 } 577 578 /* 579 * There are two types to wait for completion. 580 * Polling mode - wait until the completion is available. 581 * Async mode - wait on wait queue until the completion is ready 582 * (or the timeout expired). 583 * It is expected that the IRQ called efa_com_handle_admin_completion 584 * to mark the completions. 585 */ 586 static int efa_com_wait_and_process_admin_cq(struct efa_comp_ctx *comp_ctx, 587 struct efa_com_admin_queue *aq) 588 { 589 if (test_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state)) 590 return efa_com_wait_and_process_admin_cq_polling(comp_ctx, aq); 591 592 return efa_com_wait_and_process_admin_cq_interrupts(comp_ctx, aq); 593 } 594 595 /** 596 * efa_com_cmd_exec - Execute admin command 597 * @aq: admin queue. 598 * @cmd: the admin command to execute. 599 * @cmd_size: the command size. 600 * @comp: command completion return entry. 601 * @comp_size: command completion size. 602 * Submit an admin command and then wait until the device will return a 603 * completion. 604 * The completion will be copied into comp. 605 * 606 * @return - 0 on success, negative value on failure. 607 */ 608 int efa_com_cmd_exec(struct efa_com_admin_queue *aq, 609 struct efa_admin_aq_entry *cmd, 610 size_t cmd_size, 611 struct efa_admin_acq_entry *comp, 612 size_t comp_size) 613 { 614 struct efa_comp_ctx *comp_ctx; 615 int err; 616 617 might_sleep(); 618 619 /* In case of queue FULL */ 620 down(&aq->avail_cmds); 621 622 ibdev_dbg(aq->efa_dev, "%s (opcode %d)\n", 623 efa_com_cmd_str(cmd->aq_common_descriptor.opcode), 624 cmd->aq_common_descriptor.opcode); 625 comp_ctx = efa_com_submit_admin_cmd(aq, cmd, cmd_size, comp, comp_size); 626 if (IS_ERR(comp_ctx)) { 627 ibdev_err_ratelimited( 628 aq->efa_dev, 629 "Failed to submit command %s (opcode %u) err %ld\n", 630 efa_com_cmd_str(cmd->aq_common_descriptor.opcode), 631 cmd->aq_common_descriptor.opcode, PTR_ERR(comp_ctx)); 632 633 up(&aq->avail_cmds); 634 atomic64_inc(&aq->stats.cmd_err); 635 return PTR_ERR(comp_ctx); 636 } 637 638 err = efa_com_wait_and_process_admin_cq(comp_ctx, aq); 639 if (err) { 640 ibdev_err_ratelimited( 641 aq->efa_dev, 642 "Failed to process command %s (opcode %u) comp_status %d err %d\n", 643 efa_com_cmd_str(cmd->aq_common_descriptor.opcode), 644 cmd->aq_common_descriptor.opcode, comp_ctx->comp_status, 645 err); 646 atomic64_inc(&aq->stats.cmd_err); 647 } 648 649 up(&aq->avail_cmds); 650 651 return err; 652 } 653 654 /** 655 * efa_com_admin_destroy - Destroy the admin and the async events queues. 656 * @edev: EFA communication layer struct 657 */ 658 void efa_com_admin_destroy(struct efa_com_dev *edev) 659 { 660 struct efa_com_admin_queue *aq = &edev->aq; 661 struct efa_com_aenq *aenq = &edev->aenq; 662 struct efa_com_admin_cq *cq = &aq->cq; 663 struct efa_com_admin_sq *sq = &aq->sq; 664 u16 size; 665 666 clear_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 667 668 devm_kfree(edev->dmadev, aq->comp_ctx_pool); 669 devm_kfree(edev->dmadev, aq->comp_ctx); 670 671 size = aq->depth * sizeof(*sq->entries); 672 dma_free_coherent(edev->dmadev, size, sq->entries, sq->dma_addr); 673 674 size = aq->depth * sizeof(*cq->entries); 675 dma_free_coherent(edev->dmadev, size, cq->entries, cq->dma_addr); 676 677 size = aenq->depth * sizeof(*aenq->entries); 678 dma_free_coherent(edev->dmadev, size, aenq->entries, aenq->dma_addr); 679 } 680 681 /** 682 * efa_com_set_admin_polling_mode - Set the admin completion queue polling mode 683 * @edev: EFA communication layer struct 684 * @polling: Enable/Disable polling mode 685 * 686 * Set the admin completion mode. 687 */ 688 void efa_com_set_admin_polling_mode(struct efa_com_dev *edev, bool polling) 689 { 690 u32 mask_value = 0; 691 692 if (polling) 693 EFA_SET(&mask_value, EFA_REGS_INTR_MASK_EN, 1); 694 695 writel(mask_value, edev->reg_bar + EFA_REGS_INTR_MASK_OFF); 696 if (polling) 697 set_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state); 698 else 699 clear_bit(EFA_AQ_STATE_POLLING_BIT, &edev->aq.state); 700 } 701 702 static void efa_com_stats_init(struct efa_com_dev *edev) 703 { 704 atomic64_t *s = (atomic64_t *)&edev->aq.stats; 705 int i; 706 707 for (i = 0; i < sizeof(edev->aq.stats) / sizeof(*s); i++, s++) 708 atomic64_set(s, 0); 709 } 710 711 /** 712 * efa_com_admin_init - Init the admin and the async queues 713 * @edev: EFA communication layer struct 714 * @aenq_handlers: Those handlers to be called upon event. 715 * 716 * Initialize the admin submission and completion queues. 717 * Initialize the asynchronous events notification queues. 718 * 719 * @return - 0 on success, negative value on failure. 720 */ 721 int efa_com_admin_init(struct efa_com_dev *edev, 722 struct efa_aenq_handlers *aenq_handlers) 723 { 724 struct efa_com_admin_queue *aq = &edev->aq; 725 u32 timeout; 726 u32 dev_sts; 727 u32 cap; 728 int err; 729 730 dev_sts = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); 731 if (!EFA_GET(&dev_sts, EFA_REGS_DEV_STS_READY)) { 732 ibdev_err(edev->efa_dev, 733 "Device isn't ready, abort com init %#x\n", dev_sts); 734 return -ENODEV; 735 } 736 737 aq->depth = EFA_ADMIN_QUEUE_DEPTH; 738 739 aq->dmadev = edev->dmadev; 740 aq->efa_dev = edev->efa_dev; 741 set_bit(EFA_AQ_STATE_POLLING_BIT, &aq->state); 742 743 sema_init(&aq->avail_cmds, aq->depth); 744 745 efa_com_stats_init(edev); 746 747 err = efa_com_init_comp_ctxt(aq); 748 if (err) 749 return err; 750 751 err = efa_com_admin_init_sq(edev); 752 if (err) 753 goto err_destroy_comp_ctxt; 754 755 err = efa_com_admin_init_cq(edev); 756 if (err) 757 goto err_destroy_sq; 758 759 efa_com_set_admin_polling_mode(edev, false); 760 761 err = efa_com_admin_init_aenq(edev, aenq_handlers); 762 if (err) 763 goto err_destroy_cq; 764 765 cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); 766 timeout = EFA_GET(&cap, EFA_REGS_CAPS_ADMIN_CMD_TO); 767 if (timeout) 768 /* the resolution of timeout reg is 100ms */ 769 aq->completion_timeout = timeout * 100000; 770 else 771 aq->completion_timeout = ADMIN_CMD_TIMEOUT_US; 772 773 aq->poll_interval = EFA_POLL_INTERVAL_MS; 774 775 set_bit(EFA_AQ_STATE_RUNNING_BIT, &aq->state); 776 777 return 0; 778 779 err_destroy_cq: 780 dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->cq.entries), 781 aq->cq.entries, aq->cq.dma_addr); 782 err_destroy_sq: 783 dma_free_coherent(edev->dmadev, aq->depth * sizeof(*aq->sq.entries), 784 aq->sq.entries, aq->sq.dma_addr); 785 err_destroy_comp_ctxt: 786 devm_kfree(edev->dmadev, aq->comp_ctx); 787 788 return err; 789 } 790 791 /** 792 * efa_com_admin_q_comp_intr_handler - admin queue interrupt handler 793 * @edev: EFA communication layer struct 794 * 795 * This method goes over the admin completion queue and wakes up 796 * all the pending threads that wait on the commands wait event. 797 * 798 * @note: Should be called after MSI-X interrupt. 799 */ 800 void efa_com_admin_q_comp_intr_handler(struct efa_com_dev *edev) 801 { 802 unsigned long flags; 803 804 spin_lock_irqsave(&edev->aq.cq.lock, flags); 805 efa_com_handle_admin_completion(&edev->aq); 806 spin_unlock_irqrestore(&edev->aq.cq.lock, flags); 807 } 808 809 /* 810 * efa_handle_specific_aenq_event: 811 * return the handler that is relevant to the specific event group 812 */ 813 static efa_aenq_handler efa_com_get_specific_aenq_cb(struct efa_com_dev *edev, 814 u16 group) 815 { 816 struct efa_aenq_handlers *aenq_handlers = edev->aenq.aenq_handlers; 817 818 if (group < EFA_MAX_HANDLERS && aenq_handlers->handlers[group]) 819 return aenq_handlers->handlers[group]; 820 821 return aenq_handlers->unimplemented_handler; 822 } 823 824 /** 825 * efa_com_aenq_intr_handler - AENQ interrupt handler 826 * @edev: EFA communication layer struct 827 * @data: Data of interrupt handler. 828 * 829 * Go over the async event notification queue and call the proper aenq handler. 830 */ 831 void efa_com_aenq_intr_handler(struct efa_com_dev *edev, void *data) 832 { 833 struct efa_admin_aenq_common_desc *aenq_common; 834 struct efa_com_aenq *aenq = &edev->aenq; 835 struct efa_admin_aenq_entry *aenq_e; 836 efa_aenq_handler handler_cb; 837 u32 processed = 0; 838 u8 phase; 839 u32 ci; 840 841 ci = aenq->cc & (aenq->depth - 1); 842 phase = aenq->phase; 843 aenq_e = &aenq->entries[ci]; /* Get first entry */ 844 aenq_common = &aenq_e->aenq_common_desc; 845 846 /* Go over all the events */ 847 while ((READ_ONCE(aenq_common->flags) & 848 EFA_ADMIN_AENQ_COMMON_DESC_PHASE_MASK) == phase) { 849 /* 850 * Do not read the rest of the completion entry before the 851 * phase bit was validated 852 */ 853 dma_rmb(); 854 855 /* Handle specific event*/ 856 handler_cb = efa_com_get_specific_aenq_cb(edev, 857 aenq_common->group); 858 handler_cb(data, aenq_e); /* call the actual event handler*/ 859 860 /* Get next event entry */ 861 ci++; 862 processed++; 863 864 if (ci == aenq->depth) { 865 ci = 0; 866 phase = !phase; 867 } 868 aenq_e = &aenq->entries[ci]; 869 aenq_common = &aenq_e->aenq_common_desc; 870 } 871 872 aenq->cc += processed; 873 aenq->phase = phase; 874 875 /* Don't update aenq doorbell if there weren't any processed events */ 876 if (!processed) 877 return; 878 879 /* barrier not needed in case of writel */ 880 writel(aenq->cc, edev->reg_bar + EFA_REGS_AENQ_CONS_DB_OFF); 881 } 882 883 static void efa_com_mmio_reg_read_resp_addr_init(struct efa_com_dev *edev) 884 { 885 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 886 u32 addr_high; 887 u32 addr_low; 888 889 /* dma_addr_bits is unknown at this point */ 890 addr_high = (mmio_read->read_resp_dma_addr >> 32) & GENMASK(31, 0); 891 addr_low = mmio_read->read_resp_dma_addr & GENMASK(31, 0); 892 893 writel(addr_high, edev->reg_bar + EFA_REGS_MMIO_RESP_HI_OFF); 894 writel(addr_low, edev->reg_bar + EFA_REGS_MMIO_RESP_LO_OFF); 895 } 896 897 int efa_com_mmio_reg_read_init(struct efa_com_dev *edev) 898 { 899 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 900 901 spin_lock_init(&mmio_read->lock); 902 mmio_read->read_resp = 903 dma_alloc_coherent(edev->dmadev, sizeof(*mmio_read->read_resp), 904 &mmio_read->read_resp_dma_addr, GFP_KERNEL); 905 if (!mmio_read->read_resp) 906 return -ENOMEM; 907 908 efa_com_mmio_reg_read_resp_addr_init(edev); 909 910 mmio_read->read_resp->req_id = 0; 911 mmio_read->seq_num = 0; 912 mmio_read->mmio_read_timeout = EFA_REG_READ_TIMEOUT_US; 913 914 return 0; 915 } 916 917 void efa_com_mmio_reg_read_destroy(struct efa_com_dev *edev) 918 { 919 struct efa_com_mmio_read *mmio_read = &edev->mmio_read; 920 921 dma_free_coherent(edev->dmadev, sizeof(*mmio_read->read_resp), 922 mmio_read->read_resp, mmio_read->read_resp_dma_addr); 923 } 924 925 int efa_com_validate_version(struct efa_com_dev *edev) 926 { 927 u32 min_ctrl_ver = 0; 928 u32 ctrl_ver_masked; 929 u32 min_ver = 0; 930 u32 ctrl_ver; 931 u32 ver; 932 933 /* 934 * Make sure the EFA version and the controller version are at least 935 * as the driver expects 936 */ 937 ver = efa_com_reg_read32(edev, EFA_REGS_VERSION_OFF); 938 ctrl_ver = efa_com_reg_read32(edev, 939 EFA_REGS_CONTROLLER_VERSION_OFF); 940 941 ibdev_dbg(edev->efa_dev, "efa device version: %d.%d\n", 942 EFA_GET(&ver, EFA_REGS_VERSION_MAJOR_VERSION), 943 EFA_GET(&ver, EFA_REGS_VERSION_MINOR_VERSION)); 944 945 EFA_SET(&min_ver, EFA_REGS_VERSION_MAJOR_VERSION, 946 EFA_ADMIN_API_VERSION_MAJOR); 947 EFA_SET(&min_ver, EFA_REGS_VERSION_MINOR_VERSION, 948 EFA_ADMIN_API_VERSION_MINOR); 949 if (ver < min_ver) { 950 ibdev_err(edev->efa_dev, 951 "EFA version is lower than the minimal version the driver supports\n"); 952 return -EOPNOTSUPP; 953 } 954 955 ibdev_dbg( 956 edev->efa_dev, 957 "efa controller version: %d.%d.%d implementation version %d\n", 958 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION), 959 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION), 960 EFA_GET(&ctrl_ver, 961 EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION), 962 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_IMPL_ID)); 963 964 ctrl_ver_masked = 965 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION) | 966 EFA_GET(&ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION) | 967 EFA_GET(&ctrl_ver, 968 EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION); 969 970 EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MAJOR_VERSION, 971 EFA_CTRL_MAJOR); 972 EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_MINOR_VERSION, 973 EFA_CTRL_MINOR); 974 EFA_SET(&min_ctrl_ver, EFA_REGS_CONTROLLER_VERSION_SUBMINOR_VERSION, 975 EFA_CTRL_SUB_MINOR); 976 /* Validate the ctrl version without the implementation ID */ 977 if (ctrl_ver_masked < min_ctrl_ver) { 978 ibdev_err(edev->efa_dev, 979 "EFA ctrl version is lower than the minimal ctrl version the driver supports\n"); 980 return -EOPNOTSUPP; 981 } 982 983 return 0; 984 } 985 986 /** 987 * efa_com_get_dma_width - Retrieve physical dma address width the device 988 * supports. 989 * @edev: EFA communication layer struct 990 * 991 * Retrieve the maximum physical address bits the device can handle. 992 * 993 * @return: > 0 on Success and negative value otherwise. 994 */ 995 int efa_com_get_dma_width(struct efa_com_dev *edev) 996 { 997 u32 caps = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); 998 int width; 999 1000 width = EFA_GET(&caps, EFA_REGS_CAPS_DMA_ADDR_WIDTH); 1001 1002 ibdev_dbg(edev->efa_dev, "DMA width: %d\n", width); 1003 1004 if (width < 32 || width > 64) { 1005 ibdev_err(edev->efa_dev, "DMA width illegal value: %d\n", width); 1006 return -EINVAL; 1007 } 1008 1009 edev->dma_addr_bits = width; 1010 1011 return width; 1012 } 1013 1014 static int wait_for_reset_state(struct efa_com_dev *edev, u32 timeout, int on) 1015 { 1016 u32 val, i; 1017 1018 for (i = 0; i < timeout; i++) { 1019 val = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); 1020 1021 if (EFA_GET(&val, EFA_REGS_DEV_STS_RESET_IN_PROGRESS) == on) 1022 return 0; 1023 1024 ibdev_dbg(edev->efa_dev, "Reset indication val %d\n", val); 1025 msleep(EFA_POLL_INTERVAL_MS); 1026 } 1027 1028 return -ETIME; 1029 } 1030 1031 /** 1032 * efa_com_dev_reset - Perform device FLR to the device. 1033 * @edev: EFA communication layer struct 1034 * @reset_reason: Specify what is the trigger for the reset in case of an error. 1035 * 1036 * @return - 0 on success, negative value on failure. 1037 */ 1038 int efa_com_dev_reset(struct efa_com_dev *edev, 1039 enum efa_regs_reset_reason_types reset_reason) 1040 { 1041 u32 stat, timeout, cap; 1042 u32 reset_val = 0; 1043 int err; 1044 1045 stat = efa_com_reg_read32(edev, EFA_REGS_DEV_STS_OFF); 1046 cap = efa_com_reg_read32(edev, EFA_REGS_CAPS_OFF); 1047 1048 if (!EFA_GET(&stat, EFA_REGS_DEV_STS_READY)) { 1049 ibdev_err(edev->efa_dev, 1050 "Device isn't ready, can't reset device\n"); 1051 return -EINVAL; 1052 } 1053 1054 timeout = EFA_GET(&cap, EFA_REGS_CAPS_RESET_TIMEOUT); 1055 if (!timeout) { 1056 ibdev_err(edev->efa_dev, "Invalid timeout value\n"); 1057 return -EINVAL; 1058 } 1059 1060 /* start reset */ 1061 EFA_SET(&reset_val, EFA_REGS_DEV_CTL_DEV_RESET, 1); 1062 EFA_SET(&reset_val, EFA_REGS_DEV_CTL_RESET_REASON, reset_reason); 1063 writel(reset_val, edev->reg_bar + EFA_REGS_DEV_CTL_OFF); 1064 1065 /* reset clears the mmio readless address, restore it */ 1066 efa_com_mmio_reg_read_resp_addr_init(edev); 1067 1068 err = wait_for_reset_state(edev, timeout, 1); 1069 if (err) { 1070 ibdev_err(edev->efa_dev, "Reset indication didn't turn on\n"); 1071 return err; 1072 } 1073 1074 /* reset done */ 1075 writel(0, edev->reg_bar + EFA_REGS_DEV_CTL_OFF); 1076 err = wait_for_reset_state(edev, timeout, 0); 1077 if (err) { 1078 ibdev_err(edev->efa_dev, "Reset indication didn't turn off\n"); 1079 return err; 1080 } 1081 1082 timeout = EFA_GET(&cap, EFA_REGS_CAPS_ADMIN_CMD_TO); 1083 if (timeout) 1084 /* the resolution of timeout reg is 100ms */ 1085 edev->aq.completion_timeout = timeout * 100000; 1086 else 1087 edev->aq.completion_timeout = ADMIN_CMD_TIMEOUT_US; 1088 1089 return 0; 1090 } 1091