xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/t4.h (revision f35e839a)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38 
39 #define T4_MAX_NUM_QP (1<<16)
40 #define T4_MAX_NUM_CQ (1<<15)
41 #define T4_MAX_NUM_PD (1<<15)
42 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
43 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
44 #define T4_MAX_IQ_SIZE (65520 - 1)
45 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
46 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
47 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
48 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
49 #define T4_MAX_NUM_STAG (1<<15)
50 #define T4_MAX_MR_SIZE (~0ULL - 1)
51 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
52 #define T4_STAG_UNSET 0xffffffff
53 #define T4_FW_MAJ 0
54 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
55 #define A_PCIE_MA_SYNC 0x30b4
56 
57 struct t4_status_page {
58 	__be32 rsvd1;	/* flit 0 - hw owns */
59 	__be16 rsvd2;
60 	__be16 qid;
61 	__be16 cidx;
62 	__be16 pidx;
63 	u8 qp_err;	/* flit 1 - sw owns */
64 	u8 db_off;
65 	u8 pad;
66 	u16 host_wq_pidx;
67 	u16 host_cidx;
68 	u16 host_pidx;
69 };
70 
71 #define T4_EQ_ENTRY_SIZE 64
72 
73 #define T4_SQ_NUM_SLOTS 5
74 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
75 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
76 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
77 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
78 			sizeof(struct fw_ri_immd)))
79 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
80 			sizeof(struct fw_ri_rdma_write_wr) - \
81 			sizeof(struct fw_ri_immd)))
82 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
83 			sizeof(struct fw_ri_rdma_write_wr) - \
84 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
85 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
86 			sizeof(struct fw_ri_immd)) & ~31UL)
87 #define T4_MAX_FR_DEPTH (1024 / sizeof(u64))
88 
89 #define T4_RQ_NUM_SLOTS 2
90 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
91 #define T4_MAX_RECV_SGE 4
92 
93 union t4_wr {
94 	struct fw_ri_res_wr res;
95 	struct fw_ri_wr ri;
96 	struct fw_ri_rdma_write_wr write;
97 	struct fw_ri_send_wr send;
98 	struct fw_ri_rdma_read_wr read;
99 	struct fw_ri_bind_mw_wr bind;
100 	struct fw_ri_fr_nsmr_wr fr;
101 	struct fw_ri_inv_lstag_wr inv;
102 	struct t4_status_page status;
103 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
104 };
105 
106 union t4_recv_wr {
107 	struct fw_ri_recv_wr recv;
108 	struct t4_status_page status;
109 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
110 };
111 
112 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
113 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
114 {
115 	wqe->send.opcode = (u8)opcode;
116 	wqe->send.flags = flags;
117 	wqe->send.wrid = wrid;
118 	wqe->send.r1[0] = 0;
119 	wqe->send.r1[1] = 0;
120 	wqe->send.r1[2] = 0;
121 	wqe->send.len16 = len16;
122 }
123 
124 /* CQE/AE status codes */
125 #define T4_ERR_SUCCESS                     0x0
126 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
127 						/* STAG is offlimt, being 0, */
128 						/* or STAG_key mismatch */
129 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
130 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
131 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
132 #define T4_ERR_WRAP                        0x5	/* Wrap error */
133 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
134 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
135 						/* shared memory region */
136 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
137 						/* shared memory region */
138 #define T4_ERR_ECC                         0x9	/* ECC error detected */
139 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
140 						/* reading PSTAG for a MW  */
141 						/* Invalidate */
142 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
143 						/* software error */
144 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
145 #define T4_ERR_CRC                         0x10 /* CRC error */
146 #define T4_ERR_MARKER                      0x11 /* Marker error */
147 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
148 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
149 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
150 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
151 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
152 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
153 #define T4_ERR_MSN                         0x18 /* MSN error */
154 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
155 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
156 						/* or READ_REQ */
157 #define T4_ERR_MSN_GAP                     0x1B
158 #define T4_ERR_MSN_RANGE                   0x1C
159 #define T4_ERR_IRD_OVERFLOW                0x1D
160 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
161 						/* software error */
162 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
163 						/* mismatch) */
164 /*
165  * CQE defs
166  */
167 struct t4_cqe {
168 	__be32 header;
169 	__be32 len;
170 	union {
171 		struct {
172 			__be32 stag;
173 			__be32 msn;
174 		} rcqe;
175 		struct {
176 			u32 nada1;
177 			u16 nada2;
178 			u16 cidx;
179 		} scqe;
180 		struct {
181 			__be32 wrid_hi;
182 			__be32 wrid_low;
183 		} gen;
184 	} u;
185 	__be64 reserved;
186 	__be64 bits_type_ts;
187 };
188 
189 /* macros for flit 0 of the cqe */
190 
191 #define S_CQE_QPID        12
192 #define M_CQE_QPID        0xFFFFF
193 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
194 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
195 
196 #define S_CQE_SWCQE       11
197 #define M_CQE_SWCQE       0x1
198 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
199 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
200 
201 #define S_CQE_STATUS      5
202 #define M_CQE_STATUS      0x1F
203 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
204 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
205 
206 #define S_CQE_TYPE        4
207 #define M_CQE_TYPE        0x1
208 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
209 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
210 
211 #define S_CQE_OPCODE      0
212 #define M_CQE_OPCODE      0xF
213 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
214 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
215 
216 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
217 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
218 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
219 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
220 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
221 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
222 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
223 
224 #define CQE_SEND_OPCODE(x)( \
225 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
226 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
227 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
228 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
229 
230 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
231 
232 /* used for RQ completion processing */
233 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
234 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
235 
236 /* used for SQ completion processing */
237 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
238 
239 /* generic accessor macros */
240 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
241 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
242 
243 /* macros for flit 3 of the cqe */
244 #define S_CQE_GENBIT	63
245 #define M_CQE_GENBIT	0x1
246 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
247 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
248 
249 #define S_CQE_OVFBIT	62
250 #define M_CQE_OVFBIT	0x1
251 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
252 
253 #define S_CQE_IQTYPE	60
254 #define M_CQE_IQTYPE	0x3
255 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
256 
257 #define M_CQE_TS	0x0fffffffffffffffULL
258 #define G_CQE_TS(x)	((x) & M_CQE_TS)
259 
260 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
261 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
262 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
263 
264 struct t4_swsqe {
265 	u64			wr_id;
266 	struct t4_cqe		cqe;
267 	int			read_len;
268 	int			opcode;
269 	int			complete;
270 	int			signaled;
271 	u16			idx;
272 };
273 
274 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
275 {
276 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
277 	return pgprot_writecombine(prot);
278 #else
279 	return pgprot_noncached(prot);
280 #endif
281 }
282 
283 enum {
284 	T4_SQ_ONCHIP = (1<<0),
285 };
286 
287 struct t4_sq {
288 	union t4_wr *queue;
289 	dma_addr_t dma_addr;
290 	DEFINE_DMA_UNMAP_ADDR(mapping);
291 	unsigned long phys_addr;
292 	struct t4_swsqe *sw_sq;
293 	struct t4_swsqe *oldest_read;
294 	u64 udb;
295 	size_t memsize;
296 	u32 qid;
297 	u16 in_use;
298 	u16 size;
299 	u16 cidx;
300 	u16 pidx;
301 	u16 wq_pidx;
302 	u16 flags;
303 };
304 
305 struct t4_swrqe {
306 	u64 wr_id;
307 };
308 
309 struct t4_rq {
310 	union  t4_recv_wr *queue;
311 	dma_addr_t dma_addr;
312 	DEFINE_DMA_UNMAP_ADDR(mapping);
313 	struct t4_swrqe *sw_rq;
314 	u64 udb;
315 	size_t memsize;
316 	u32 qid;
317 	u32 msn;
318 	u32 rqt_hwaddr;
319 	u16 rqt_size;
320 	u16 in_use;
321 	u16 size;
322 	u16 cidx;
323 	u16 pidx;
324 	u16 wq_pidx;
325 };
326 
327 struct t4_wq {
328 	struct t4_sq sq;
329 	struct t4_rq rq;
330 	void __iomem *db;
331 	void __iomem *gts;
332 	struct c4iw_rdev *rdev;
333 };
334 
335 static inline int t4_rqes_posted(struct t4_wq *wq)
336 {
337 	return wq->rq.in_use;
338 }
339 
340 static inline int t4_rq_empty(struct t4_wq *wq)
341 {
342 	return wq->rq.in_use == 0;
343 }
344 
345 static inline int t4_rq_full(struct t4_wq *wq)
346 {
347 	return wq->rq.in_use == (wq->rq.size - 1);
348 }
349 
350 static inline u32 t4_rq_avail(struct t4_wq *wq)
351 {
352 	return wq->rq.size - 1 - wq->rq.in_use;
353 }
354 
355 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
356 {
357 	wq->rq.in_use++;
358 	if (++wq->rq.pidx == wq->rq.size)
359 		wq->rq.pidx = 0;
360 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
361 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
362 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
363 }
364 
365 static inline void t4_rq_consume(struct t4_wq *wq)
366 {
367 	wq->rq.in_use--;
368 	wq->rq.msn++;
369 	if (++wq->rq.cidx == wq->rq.size)
370 		wq->rq.cidx = 0;
371 }
372 
373 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
374 {
375 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
376 }
377 
378 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
379 {
380 		return wq->rq.size * T4_RQ_NUM_SLOTS;
381 }
382 
383 static inline int t4_sq_onchip(struct t4_sq *sq)
384 {
385 	return sq->flags & T4_SQ_ONCHIP;
386 }
387 
388 static inline int t4_sq_empty(struct t4_wq *wq)
389 {
390 	return wq->sq.in_use == 0;
391 }
392 
393 static inline int t4_sq_full(struct t4_wq *wq)
394 {
395 	return wq->sq.in_use == (wq->sq.size - 1);
396 }
397 
398 static inline u32 t4_sq_avail(struct t4_wq *wq)
399 {
400 	return wq->sq.size - 1 - wq->sq.in_use;
401 }
402 
403 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
404 {
405 	wq->sq.in_use++;
406 	if (++wq->sq.pidx == wq->sq.size)
407 		wq->sq.pidx = 0;
408 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
409 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
410 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
411 }
412 
413 static inline void t4_sq_consume(struct t4_wq *wq)
414 {
415 	wq->sq.in_use--;
416 	if (++wq->sq.cidx == wq->sq.size)
417 		wq->sq.cidx = 0;
418 }
419 
420 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
421 {
422 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
423 }
424 
425 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
426 {
427 		return wq->sq.size * T4_SQ_NUM_SLOTS;
428 }
429 
430 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
431 {
432 	wmb();
433 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
434 }
435 
436 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
437 {
438 	wmb();
439 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
440 }
441 
442 static inline int t4_wq_in_error(struct t4_wq *wq)
443 {
444 	return wq->rq.queue[wq->rq.size].status.qp_err;
445 }
446 
447 static inline void t4_set_wq_in_error(struct t4_wq *wq)
448 {
449 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
450 }
451 
452 static inline void t4_disable_wq_db(struct t4_wq *wq)
453 {
454 	wq->rq.queue[wq->rq.size].status.db_off = 1;
455 }
456 
457 static inline void t4_enable_wq_db(struct t4_wq *wq)
458 {
459 	wq->rq.queue[wq->rq.size].status.db_off = 0;
460 }
461 
462 static inline int t4_wq_db_enabled(struct t4_wq *wq)
463 {
464 	return !wq->rq.queue[wq->rq.size].status.db_off;
465 }
466 
467 struct t4_cq {
468 	struct t4_cqe *queue;
469 	dma_addr_t dma_addr;
470 	DEFINE_DMA_UNMAP_ADDR(mapping);
471 	struct t4_cqe *sw_queue;
472 	void __iomem *gts;
473 	struct c4iw_rdev *rdev;
474 	u64 ugts;
475 	size_t memsize;
476 	__be64 bits_type_ts;
477 	u32 cqid;
478 	u16 size; /* including status page */
479 	u16 cidx;
480 	u16 sw_pidx;
481 	u16 sw_cidx;
482 	u16 sw_in_use;
483 	u16 cidx_inc;
484 	u8 gen;
485 	u8 error;
486 };
487 
488 static inline int t4_arm_cq(struct t4_cq *cq, int se)
489 {
490 	u32 val;
491 
492 	while (cq->cidx_inc > CIDXINC_MASK) {
493 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
494 		      INGRESSQID(cq->cqid);
495 		writel(val, cq->gts);
496 		cq->cidx_inc -= CIDXINC_MASK;
497 	}
498 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
499 	      INGRESSQID(cq->cqid);
500 	writel(val, cq->gts);
501 	cq->cidx_inc = 0;
502 	return 0;
503 }
504 
505 static inline void t4_swcq_produce(struct t4_cq *cq)
506 {
507 	cq->sw_in_use++;
508 	if (++cq->sw_pidx == cq->size)
509 		cq->sw_pidx = 0;
510 }
511 
512 static inline void t4_swcq_consume(struct t4_cq *cq)
513 {
514 	cq->sw_in_use--;
515 	if (++cq->sw_cidx == cq->size)
516 		cq->sw_cidx = 0;
517 }
518 
519 static inline void t4_hwcq_consume(struct t4_cq *cq)
520 {
521 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
522 	if (++cq->cidx_inc == (cq->size >> 4)) {
523 		u32 val;
524 
525 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
526 		      INGRESSQID(cq->cqid);
527 		writel(val, cq->gts);
528 		cq->cidx_inc = 0;
529 	}
530 	if (++cq->cidx == cq->size) {
531 		cq->cidx = 0;
532 		cq->gen ^= 1;
533 	}
534 }
535 
536 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
537 {
538 	return (CQE_GENBIT(cqe) == cq->gen);
539 }
540 
541 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
542 {
543 	int ret;
544 	u16 prev_cidx;
545 
546 	if (cq->cidx == 0)
547 		prev_cidx = cq->size - 1;
548 	else
549 		prev_cidx = cq->cidx - 1;
550 
551 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
552 		ret = -EOVERFLOW;
553 		cq->error = 1;
554 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
555 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
556 		*cqe = &cq->queue[cq->cidx];
557 		ret = 0;
558 	} else
559 		ret = -ENODATA;
560 	return ret;
561 }
562 
563 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
564 {
565 	if (cq->sw_in_use)
566 		return &cq->sw_queue[cq->sw_cidx];
567 	return NULL;
568 }
569 
570 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
571 {
572 	int ret = 0;
573 
574 	if (cq->error)
575 		ret = -ENODATA;
576 	else if (cq->sw_in_use)
577 		*cqe = &cq->sw_queue[cq->sw_cidx];
578 	else
579 		ret = t4_next_hw_cqe(cq, cqe);
580 	return ret;
581 }
582 
583 static inline int t4_cq_in_error(struct t4_cq *cq)
584 {
585 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
586 }
587 
588 static inline void t4_set_cq_in_error(struct t4_cq *cq)
589 {
590 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
591 }
592 #endif
593