xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/t4.h (revision e2f1cf25)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39 
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46 
47 struct t4_status_page {
48 	__be32 rsvd1;	/* flit 0 - hw owns */
49 	__be16 rsvd2;
50 	__be16 qid;
51 	__be16 cidx;
52 	__be16 pidx;
53 	u8 qp_err;	/* flit 1 - sw owns */
54 	u8 db_off;
55 	u8 pad;
56 	u16 host_wq_pidx;
57 	u16 host_cidx;
58 	u16 host_pidx;
59 };
60 
61 #define T4_EQ_ENTRY_SIZE 64
62 
63 #define T4_SQ_NUM_SLOTS 5
64 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
65 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
66 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
67 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
68 			sizeof(struct fw_ri_immd)))
69 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
70 			sizeof(struct fw_ri_rdma_write_wr) - \
71 			sizeof(struct fw_ri_immd)))
72 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
73 			sizeof(struct fw_ri_rdma_write_wr) - \
74 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
75 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
76 			sizeof(struct fw_ri_immd)) & ~31UL)
77 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
78 #define T4_MAX_FR_DSGL 1024
79 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
80 
81 static inline int t4_max_fr_depth(int use_dsgl)
82 {
83 	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
84 }
85 
86 #define T4_RQ_NUM_SLOTS 2
87 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
88 #define T4_MAX_RECV_SGE 4
89 
90 union t4_wr {
91 	struct fw_ri_res_wr res;
92 	struct fw_ri_wr ri;
93 	struct fw_ri_rdma_write_wr write;
94 	struct fw_ri_send_wr send;
95 	struct fw_ri_rdma_read_wr read;
96 	struct fw_ri_bind_mw_wr bind;
97 	struct fw_ri_fr_nsmr_wr fr;
98 	struct fw_ri_inv_lstag_wr inv;
99 	struct t4_status_page status;
100 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
101 };
102 
103 union t4_recv_wr {
104 	struct fw_ri_recv_wr recv;
105 	struct t4_status_page status;
106 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
107 };
108 
109 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
110 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
111 {
112 	wqe->send.opcode = (u8)opcode;
113 	wqe->send.flags = flags;
114 	wqe->send.wrid = wrid;
115 	wqe->send.r1[0] = 0;
116 	wqe->send.r1[1] = 0;
117 	wqe->send.r1[2] = 0;
118 	wqe->send.len16 = len16;
119 }
120 
121 /* CQE/AE status codes */
122 #define T4_ERR_SUCCESS                     0x0
123 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
124 						/* STAG is offlimt, being 0, */
125 						/* or STAG_key mismatch */
126 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
127 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
128 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
129 #define T4_ERR_WRAP                        0x5	/* Wrap error */
130 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
131 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
132 						/* shared memory region */
133 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
134 						/* shared memory region */
135 #define T4_ERR_ECC                         0x9	/* ECC error detected */
136 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
137 						/* reading PSTAG for a MW  */
138 						/* Invalidate */
139 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
140 						/* software error */
141 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
142 #define T4_ERR_CRC                         0x10 /* CRC error */
143 #define T4_ERR_MARKER                      0x11 /* Marker error */
144 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
145 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
146 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
147 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
148 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
149 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
150 #define T4_ERR_MSN                         0x18 /* MSN error */
151 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
152 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
153 						/* or READ_REQ */
154 #define T4_ERR_MSN_GAP                     0x1B
155 #define T4_ERR_MSN_RANGE                   0x1C
156 #define T4_ERR_IRD_OVERFLOW                0x1D
157 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
158 						/* software error */
159 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
160 						/* mismatch) */
161 /*
162  * CQE defs
163  */
164 struct t4_cqe {
165 	__be32 header;
166 	__be32 len;
167 	union {
168 		struct {
169 			__be32 stag;
170 			__be32 msn;
171 		} rcqe;
172 		struct {
173 			u32 nada1;
174 			u16 nada2;
175 			u16 cidx;
176 		} scqe;
177 		struct {
178 			__be32 wrid_hi;
179 			__be32 wrid_low;
180 		} gen;
181 	} u;
182 	__be64 reserved;
183 	__be64 bits_type_ts;
184 };
185 
186 /* macros for flit 0 of the cqe */
187 
188 #define CQE_QPID_S        12
189 #define CQE_QPID_M        0xFFFFF
190 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
191 #define CQE_QPID_V(x)	  ((x)<<CQE_QPID_S)
192 
193 #define CQE_SWCQE_S       11
194 #define CQE_SWCQE_M       0x1
195 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
196 #define CQE_SWCQE_V(x)	  ((x)<<CQE_SWCQE_S)
197 
198 #define CQE_STATUS_S      5
199 #define CQE_STATUS_M      0x1F
200 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
201 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
202 
203 #define CQE_TYPE_S        4
204 #define CQE_TYPE_M        0x1
205 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
206 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
207 
208 #define CQE_OPCODE_S      0
209 #define CQE_OPCODE_M      0xF
210 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
211 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
212 
213 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
214 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
215 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
216 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
217 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
218 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
219 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
220 
221 #define CQE_SEND_OPCODE(x)( \
222 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
223 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
224 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
225 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
226 
227 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
228 
229 /* used for RQ completion processing */
230 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
231 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
232 
233 /* used for SQ completion processing */
234 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
235 
236 /* generic accessor macros */
237 #define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
238 #define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
239 
240 /* macros for flit 3 of the cqe */
241 #define CQE_GENBIT_S	63
242 #define CQE_GENBIT_M	0x1
243 #define CQE_GENBIT_G(x)	(((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
244 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
245 
246 #define CQE_OVFBIT_S	62
247 #define CQE_OVFBIT_M	0x1
248 #define CQE_OVFBIT_G(x)	((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
249 
250 #define CQE_IQTYPE_S	60
251 #define CQE_IQTYPE_M	0x3
252 #define CQE_IQTYPE_G(x)	((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
253 
254 #define CQE_TS_M	0x0fffffffffffffffULL
255 #define CQE_TS_G(x)	((x) & CQE_TS_M)
256 
257 #define CQE_OVFBIT(x)	((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_GENBIT(x)	((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
259 #define CQE_TS(x)	(CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
260 
261 struct t4_swsqe {
262 	u64			wr_id;
263 	struct t4_cqe		cqe;
264 	int			read_len;
265 	int			opcode;
266 	int			complete;
267 	int			signaled;
268 	u16			idx;
269 	int                     flushed;
270 	struct timespec         host_ts;
271 	u64                     sge_ts;
272 };
273 
274 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
275 {
276 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
277 	return pgprot_writecombine(prot);
278 #else
279 	return pgprot_noncached(prot);
280 #endif
281 }
282 
283 enum {
284 	T4_SQ_ONCHIP = (1<<0),
285 };
286 
287 struct t4_sq {
288 	union t4_wr *queue;
289 	dma_addr_t dma_addr;
290 	DEFINE_DMA_UNMAP_ADDR(mapping);
291 	unsigned long phys_addr;
292 	struct t4_swsqe *sw_sq;
293 	struct t4_swsqe *oldest_read;
294 	void __iomem *bar2_va;
295 	u64 bar2_pa;
296 	size_t memsize;
297 	u32 bar2_qid;
298 	u32 qid;
299 	u16 in_use;
300 	u16 size;
301 	u16 cidx;
302 	u16 pidx;
303 	u16 wq_pidx;
304 	u16 wq_pidx_inc;
305 	u16 flags;
306 	short flush_cidx;
307 };
308 
309 struct t4_swrqe {
310 	u64 wr_id;
311 	struct timespec host_ts;
312 	u64 sge_ts;
313 };
314 
315 struct t4_rq {
316 	union  t4_recv_wr *queue;
317 	dma_addr_t dma_addr;
318 	DEFINE_DMA_UNMAP_ADDR(mapping);
319 	struct t4_swrqe *sw_rq;
320 	void __iomem *bar2_va;
321 	u64 bar2_pa;
322 	size_t memsize;
323 	u32 bar2_qid;
324 	u32 qid;
325 	u32 msn;
326 	u32 rqt_hwaddr;
327 	u16 rqt_size;
328 	u16 in_use;
329 	u16 size;
330 	u16 cidx;
331 	u16 pidx;
332 	u16 wq_pidx;
333 	u16 wq_pidx_inc;
334 };
335 
336 struct t4_wq {
337 	struct t4_sq sq;
338 	struct t4_rq rq;
339 	void __iomem *db;
340 	struct c4iw_rdev *rdev;
341 	int flushed;
342 };
343 
344 static inline int t4_rqes_posted(struct t4_wq *wq)
345 {
346 	return wq->rq.in_use;
347 }
348 
349 static inline int t4_rq_empty(struct t4_wq *wq)
350 {
351 	return wq->rq.in_use == 0;
352 }
353 
354 static inline int t4_rq_full(struct t4_wq *wq)
355 {
356 	return wq->rq.in_use == (wq->rq.size - 1);
357 }
358 
359 static inline u32 t4_rq_avail(struct t4_wq *wq)
360 {
361 	return wq->rq.size - 1 - wq->rq.in_use;
362 }
363 
364 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
365 {
366 	wq->rq.in_use++;
367 	if (++wq->rq.pidx == wq->rq.size)
368 		wq->rq.pidx = 0;
369 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
370 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
371 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
372 }
373 
374 static inline void t4_rq_consume(struct t4_wq *wq)
375 {
376 	wq->rq.in_use--;
377 	wq->rq.msn++;
378 	if (++wq->rq.cidx == wq->rq.size)
379 		wq->rq.cidx = 0;
380 }
381 
382 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
383 {
384 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
385 }
386 
387 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
388 {
389 		return wq->rq.size * T4_RQ_NUM_SLOTS;
390 }
391 
392 static inline int t4_sq_onchip(struct t4_sq *sq)
393 {
394 	return sq->flags & T4_SQ_ONCHIP;
395 }
396 
397 static inline int t4_sq_empty(struct t4_wq *wq)
398 {
399 	return wq->sq.in_use == 0;
400 }
401 
402 static inline int t4_sq_full(struct t4_wq *wq)
403 {
404 	return wq->sq.in_use == (wq->sq.size - 1);
405 }
406 
407 static inline u32 t4_sq_avail(struct t4_wq *wq)
408 {
409 	return wq->sq.size - 1 - wq->sq.in_use;
410 }
411 
412 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
413 {
414 	wq->sq.in_use++;
415 	if (++wq->sq.pidx == wq->sq.size)
416 		wq->sq.pidx = 0;
417 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
418 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
419 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
420 }
421 
422 static inline void t4_sq_consume(struct t4_wq *wq)
423 {
424 	BUG_ON(wq->sq.in_use < 1);
425 	if (wq->sq.cidx == wq->sq.flush_cidx)
426 		wq->sq.flush_cidx = -1;
427 	wq->sq.in_use--;
428 	if (++wq->sq.cidx == wq->sq.size)
429 		wq->sq.cidx = 0;
430 }
431 
432 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
433 {
434 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
435 }
436 
437 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
438 {
439 		return wq->sq.size * T4_SQ_NUM_SLOTS;
440 }
441 
442 /* This function copies 64 byte coalesced work request to memory
443  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
444  * from the FIFO instead of from Host.
445  */
446 static inline void pio_copy(u64 __iomem *dst, u64 *src)
447 {
448 	int count = 8;
449 
450 	while (count) {
451 		writeq(*src, dst);
452 		src++;
453 		dst++;
454 		count--;
455 	}
456 }
457 
458 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t5,
459 				 union t4_wr *wqe)
460 {
461 
462 	/* Flush host queue memory writes. */
463 	wmb();
464 	if (wq->sq.bar2_va) {
465 		if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
466 			PDBG("%s: WC wq->sq.pidx = %d\n",
467 			     __func__, wq->sq.pidx);
468 			pio_copy((u64 __iomem *)
469 				 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
470 				 (u64 *)wqe);
471 		} else {
472 			PDBG("%s: DB wq->sq.pidx = %d\n",
473 			     __func__, wq->sq.pidx);
474 			writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
475 			       wq->sq.bar2_va + SGE_UDB_KDOORBELL);
476 		}
477 
478 		/* Flush user doorbell area writes. */
479 		wmb();
480 		return;
481 	}
482 	writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
483 }
484 
485 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t5,
486 				 union t4_recv_wr *wqe)
487 {
488 
489 	/* Flush host queue memory writes. */
490 	wmb();
491 	if (wq->rq.bar2_va) {
492 		if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
493 			PDBG("%s: WC wq->rq.pidx = %d\n",
494 			     __func__, wq->rq.pidx);
495 			pio_copy((u64 __iomem *)
496 				 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
497 				 (void *)wqe);
498 		} else {
499 			PDBG("%s: DB wq->rq.pidx = %d\n",
500 			     __func__, wq->rq.pidx);
501 			writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
502 			       wq->rq.bar2_va + SGE_UDB_KDOORBELL);
503 		}
504 
505 		/* Flush user doorbell area writes. */
506 		wmb();
507 		return;
508 	}
509 	writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
510 }
511 
512 static inline int t4_wq_in_error(struct t4_wq *wq)
513 {
514 	return wq->rq.queue[wq->rq.size].status.qp_err;
515 }
516 
517 static inline void t4_set_wq_in_error(struct t4_wq *wq)
518 {
519 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
520 }
521 
522 static inline void t4_disable_wq_db(struct t4_wq *wq)
523 {
524 	wq->rq.queue[wq->rq.size].status.db_off = 1;
525 }
526 
527 static inline void t4_enable_wq_db(struct t4_wq *wq)
528 {
529 	wq->rq.queue[wq->rq.size].status.db_off = 0;
530 }
531 
532 static inline int t4_wq_db_enabled(struct t4_wq *wq)
533 {
534 	return !wq->rq.queue[wq->rq.size].status.db_off;
535 }
536 
537 enum t4_cq_flags {
538 	CQ_ARMED	= 1,
539 };
540 
541 struct t4_cq {
542 	struct t4_cqe *queue;
543 	dma_addr_t dma_addr;
544 	DEFINE_DMA_UNMAP_ADDR(mapping);
545 	struct t4_cqe *sw_queue;
546 	void __iomem *gts;
547 	void __iomem *bar2_va;
548 	u64 bar2_pa;
549 	u32 bar2_qid;
550 	struct c4iw_rdev *rdev;
551 	size_t memsize;
552 	__be64 bits_type_ts;
553 	u32 cqid;
554 	u32 qid_mask;
555 	int vector;
556 	u16 size; /* including status page */
557 	u16 cidx;
558 	u16 sw_pidx;
559 	u16 sw_cidx;
560 	u16 sw_in_use;
561 	u16 cidx_inc;
562 	u8 gen;
563 	u8 error;
564 	unsigned long flags;
565 };
566 
567 static inline void write_gts(struct t4_cq *cq, u32 val)
568 {
569 	if (cq->bar2_va)
570 		writel(val | INGRESSQID_V(cq->bar2_qid),
571 		       cq->bar2_va + SGE_UDB_GTS);
572 	else
573 		writel(val | INGRESSQID_V(cq->cqid), cq->gts);
574 }
575 
576 static inline int t4_clear_cq_armed(struct t4_cq *cq)
577 {
578 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
579 }
580 
581 static inline int t4_arm_cq(struct t4_cq *cq, int se)
582 {
583 	u32 val;
584 
585 	set_bit(CQ_ARMED, &cq->flags);
586 	while (cq->cidx_inc > CIDXINC_M) {
587 		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
588 		write_gts(cq, val);
589 		cq->cidx_inc -= CIDXINC_M;
590 	}
591 	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
592 	write_gts(cq, val);
593 	cq->cidx_inc = 0;
594 	return 0;
595 }
596 
597 static inline void t4_swcq_produce(struct t4_cq *cq)
598 {
599 	cq->sw_in_use++;
600 	if (cq->sw_in_use == cq->size) {
601 		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
602 		cq->error = 1;
603 		BUG_ON(1);
604 	}
605 	if (++cq->sw_pidx == cq->size)
606 		cq->sw_pidx = 0;
607 }
608 
609 static inline void t4_swcq_consume(struct t4_cq *cq)
610 {
611 	BUG_ON(cq->sw_in_use < 1);
612 	cq->sw_in_use--;
613 	if (++cq->sw_cidx == cq->size)
614 		cq->sw_cidx = 0;
615 }
616 
617 static inline void t4_hwcq_consume(struct t4_cq *cq)
618 {
619 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
620 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
621 		u32 val;
622 
623 		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
624 		write_gts(cq, val);
625 		cq->cidx_inc = 0;
626 	}
627 	if (++cq->cidx == cq->size) {
628 		cq->cidx = 0;
629 		cq->gen ^= 1;
630 	}
631 }
632 
633 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
634 {
635 	return (CQE_GENBIT(cqe) == cq->gen);
636 }
637 
638 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
639 {
640 	int ret;
641 	u16 prev_cidx;
642 
643 	if (cq->cidx == 0)
644 		prev_cidx = cq->size - 1;
645 	else
646 		prev_cidx = cq->cidx - 1;
647 
648 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
649 		ret = -EOVERFLOW;
650 		cq->error = 1;
651 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
652 		BUG_ON(1);
653 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
654 
655 		/* Ensure CQE is flushed to memory */
656 		rmb();
657 		*cqe = &cq->queue[cq->cidx];
658 		ret = 0;
659 	} else
660 		ret = -ENODATA;
661 	return ret;
662 }
663 
664 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
665 {
666 	if (cq->sw_in_use == cq->size) {
667 		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
668 		cq->error = 1;
669 		BUG_ON(1);
670 		return NULL;
671 	}
672 	if (cq->sw_in_use)
673 		return &cq->sw_queue[cq->sw_cidx];
674 	return NULL;
675 }
676 
677 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
678 {
679 	int ret = 0;
680 
681 	if (cq->error)
682 		ret = -ENODATA;
683 	else if (cq->sw_in_use)
684 		*cqe = &cq->sw_queue[cq->sw_cidx];
685 	else
686 		ret = t4_next_hw_cqe(cq, cqe);
687 	return ret;
688 }
689 
690 static inline int t4_cq_in_error(struct t4_cq *cq)
691 {
692 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
693 }
694 
695 static inline void t4_set_cq_in_error(struct t4_cq *cq)
696 {
697 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
698 }
699 #endif
700 
701 struct t4_dev_status_page {
702 	u8 db_off;
703 };
704