xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/t4.h (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38 
39 #define T4_MAX_NUM_QP (1<<16)
40 #define T4_MAX_NUM_CQ (1<<15)
41 #define T4_MAX_NUM_PD (1<<15)
42 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
43 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
44 #define T4_MAX_IQ_SIZE (65520 - 1)
45 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
46 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
47 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
48 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
49 #define T4_MAX_NUM_STAG (1<<15)
50 #define T4_MAX_MR_SIZE (~0ULL - 1)
51 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
52 #define T4_STAG_UNSET 0xffffffff
53 #define T4_FW_MAJ 0
54 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
55 #define A_PCIE_MA_SYNC 0x30b4
56 
57 struct t4_status_page {
58 	__be32 rsvd1;	/* flit 0 - hw owns */
59 	__be16 rsvd2;
60 	__be16 qid;
61 	__be16 cidx;
62 	__be16 pidx;
63 	u8 qp_err;	/* flit 1 - sw owns */
64 	u8 db_off;
65 };
66 
67 #define T4_EQ_ENTRY_SIZE 64
68 
69 #define T4_SQ_NUM_SLOTS 5
70 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
71 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
72 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
73 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
74 			sizeof(struct fw_ri_immd)))
75 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
76 			sizeof(struct fw_ri_rdma_write_wr) - \
77 			sizeof(struct fw_ri_immd)))
78 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
79 			sizeof(struct fw_ri_rdma_write_wr) - \
80 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
81 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
82 			sizeof(struct fw_ri_immd)) & ~31UL)
83 #define T4_MAX_FR_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
84 
85 #define T4_RQ_NUM_SLOTS 2
86 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
87 #define T4_MAX_RECV_SGE 4
88 
89 union t4_wr {
90 	struct fw_ri_res_wr res;
91 	struct fw_ri_wr ri;
92 	struct fw_ri_rdma_write_wr write;
93 	struct fw_ri_send_wr send;
94 	struct fw_ri_rdma_read_wr read;
95 	struct fw_ri_bind_mw_wr bind;
96 	struct fw_ri_fr_nsmr_wr fr;
97 	struct fw_ri_inv_lstag_wr inv;
98 	struct t4_status_page status;
99 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
100 };
101 
102 union t4_recv_wr {
103 	struct fw_ri_recv_wr recv;
104 	struct t4_status_page status;
105 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
106 };
107 
108 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
109 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
110 {
111 	wqe->send.opcode = (u8)opcode;
112 	wqe->send.flags = flags;
113 	wqe->send.wrid = wrid;
114 	wqe->send.r1[0] = 0;
115 	wqe->send.r1[1] = 0;
116 	wqe->send.r1[2] = 0;
117 	wqe->send.len16 = len16;
118 }
119 
120 /* CQE/AE status codes */
121 #define T4_ERR_SUCCESS                     0x0
122 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
123 						/* STAG is offlimt, being 0, */
124 						/* or STAG_key mismatch */
125 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
126 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
127 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
128 #define T4_ERR_WRAP                        0x5	/* Wrap error */
129 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
130 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
131 						/* shared memory region */
132 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
133 						/* shared memory region */
134 #define T4_ERR_ECC                         0x9	/* ECC error detected */
135 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
136 						/* reading PSTAG for a MW  */
137 						/* Invalidate */
138 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
139 						/* software error */
140 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
141 #define T4_ERR_CRC                         0x10 /* CRC error */
142 #define T4_ERR_MARKER                      0x11 /* Marker error */
143 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
144 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
145 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
146 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
147 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
148 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
149 #define T4_ERR_MSN                         0x18 /* MSN error */
150 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
151 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
152 						/* or READ_REQ */
153 #define T4_ERR_MSN_GAP                     0x1B
154 #define T4_ERR_MSN_RANGE                   0x1C
155 #define T4_ERR_IRD_OVERFLOW                0x1D
156 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
157 						/* software error */
158 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
159 						/* mismatch) */
160 /*
161  * CQE defs
162  */
163 struct t4_cqe {
164 	__be32 header;
165 	__be32 len;
166 	union {
167 		struct {
168 			__be32 stag;
169 			__be32 msn;
170 		} rcqe;
171 		struct {
172 			u32 nada1;
173 			u16 nada2;
174 			u16 cidx;
175 		} scqe;
176 		struct {
177 			__be32 wrid_hi;
178 			__be32 wrid_low;
179 		} gen;
180 	} u;
181 	__be64 reserved;
182 	__be64 bits_type_ts;
183 };
184 
185 /* macros for flit 0 of the cqe */
186 
187 #define S_CQE_QPID        12
188 #define M_CQE_QPID        0xFFFFF
189 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
190 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
191 
192 #define S_CQE_SWCQE       11
193 #define M_CQE_SWCQE       0x1
194 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
195 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
196 
197 #define S_CQE_STATUS      5
198 #define M_CQE_STATUS      0x1F
199 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
200 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
201 
202 #define S_CQE_TYPE        4
203 #define M_CQE_TYPE        0x1
204 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
205 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
206 
207 #define S_CQE_OPCODE      0
208 #define M_CQE_OPCODE      0xF
209 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
210 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
211 
212 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
213 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
214 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
215 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
216 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
217 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
218 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
219 
220 #define CQE_SEND_OPCODE(x)( \
221 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
222 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
223 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
224 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
225 
226 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
227 
228 /* used for RQ completion processing */
229 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
230 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
231 
232 /* used for SQ completion processing */
233 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
234 
235 /* generic accessor macros */
236 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
237 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
238 
239 /* macros for flit 3 of the cqe */
240 #define S_CQE_GENBIT	63
241 #define M_CQE_GENBIT	0x1
242 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
243 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
244 
245 #define S_CQE_OVFBIT	62
246 #define M_CQE_OVFBIT	0x1
247 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
248 
249 #define S_CQE_IQTYPE	60
250 #define M_CQE_IQTYPE	0x3
251 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
252 
253 #define M_CQE_TS	0x0fffffffffffffffULL
254 #define G_CQE_TS(x)	((x) & M_CQE_TS)
255 
256 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
257 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
258 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
259 
260 struct t4_swsqe {
261 	u64			wr_id;
262 	struct t4_cqe		cqe;
263 	int			read_len;
264 	int			opcode;
265 	int			complete;
266 	int			signaled;
267 	u16			idx;
268 };
269 
270 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
271 {
272 #if defined(__i386__) || defined(__x86_64__)
273 	return pgprot_writecombine(prot);
274 #elif defined(CONFIG_PPC64)
275 	return __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE) &
276 			~(pgprot_t)_PAGE_GUARDED);
277 #else
278 	return pgprot_noncached(prot);
279 #endif
280 }
281 
282 static inline int t4_ocqp_supported(void)
283 {
284 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
285 	return 1;
286 #else
287 	return 0;
288 #endif
289 }
290 
291 enum {
292 	T4_SQ_ONCHIP = (1<<0),
293 };
294 
295 struct t4_sq {
296 	union t4_wr *queue;
297 	dma_addr_t dma_addr;
298 	DEFINE_DMA_UNMAP_ADDR(mapping);
299 	unsigned long phys_addr;
300 	struct t4_swsqe *sw_sq;
301 	struct t4_swsqe *oldest_read;
302 	u64 udb;
303 	size_t memsize;
304 	u32 qid;
305 	u16 in_use;
306 	u16 size;
307 	u16 cidx;
308 	u16 pidx;
309 	u16 wq_pidx;
310 	u16 flags;
311 };
312 
313 struct t4_swrqe {
314 	u64 wr_id;
315 };
316 
317 struct t4_rq {
318 	union  t4_recv_wr *queue;
319 	dma_addr_t dma_addr;
320 	DEFINE_DMA_UNMAP_ADDR(mapping);
321 	struct t4_swrqe *sw_rq;
322 	u64 udb;
323 	size_t memsize;
324 	u32 qid;
325 	u32 msn;
326 	u32 rqt_hwaddr;
327 	u16 rqt_size;
328 	u16 in_use;
329 	u16 size;
330 	u16 cidx;
331 	u16 pidx;
332 	u16 wq_pidx;
333 };
334 
335 struct t4_wq {
336 	struct t4_sq sq;
337 	struct t4_rq rq;
338 	void __iomem *db;
339 	void __iomem *gts;
340 	struct c4iw_rdev *rdev;
341 };
342 
343 static inline int t4_rqes_posted(struct t4_wq *wq)
344 {
345 	return wq->rq.in_use;
346 }
347 
348 static inline int t4_rq_empty(struct t4_wq *wq)
349 {
350 	return wq->rq.in_use == 0;
351 }
352 
353 static inline int t4_rq_full(struct t4_wq *wq)
354 {
355 	return wq->rq.in_use == (wq->rq.size - 1);
356 }
357 
358 static inline u32 t4_rq_avail(struct t4_wq *wq)
359 {
360 	return wq->rq.size - 1 - wq->rq.in_use;
361 }
362 
363 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
364 {
365 	wq->rq.in_use++;
366 	if (++wq->rq.pidx == wq->rq.size)
367 		wq->rq.pidx = 0;
368 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
369 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
370 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
371 }
372 
373 static inline void t4_rq_consume(struct t4_wq *wq)
374 {
375 	wq->rq.in_use--;
376 	wq->rq.msn++;
377 	if (++wq->rq.cidx == wq->rq.size)
378 		wq->rq.cidx = 0;
379 }
380 
381 static inline int t4_sq_onchip(struct t4_sq *sq)
382 {
383 	return sq->flags & T4_SQ_ONCHIP;
384 }
385 
386 static inline int t4_sq_empty(struct t4_wq *wq)
387 {
388 	return wq->sq.in_use == 0;
389 }
390 
391 static inline int t4_sq_full(struct t4_wq *wq)
392 {
393 	return wq->sq.in_use == (wq->sq.size - 1);
394 }
395 
396 static inline u32 t4_sq_avail(struct t4_wq *wq)
397 {
398 	return wq->sq.size - 1 - wq->sq.in_use;
399 }
400 
401 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
402 {
403 	wq->sq.in_use++;
404 	if (++wq->sq.pidx == wq->sq.size)
405 		wq->sq.pidx = 0;
406 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
407 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
408 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
409 }
410 
411 static inline void t4_sq_consume(struct t4_wq *wq)
412 {
413 	wq->sq.in_use--;
414 	if (++wq->sq.cidx == wq->sq.size)
415 		wq->sq.cidx = 0;
416 }
417 
418 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc)
419 {
420 	wmb();
421 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
422 }
423 
424 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc)
425 {
426 	wmb();
427 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
428 }
429 
430 static inline int t4_wq_in_error(struct t4_wq *wq)
431 {
432 	return wq->rq.queue[wq->rq.size].status.qp_err;
433 }
434 
435 static inline void t4_set_wq_in_error(struct t4_wq *wq)
436 {
437 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
438 }
439 
440 static inline void t4_disable_wq_db(struct t4_wq *wq)
441 {
442 	wq->rq.queue[wq->rq.size].status.db_off = 1;
443 }
444 
445 static inline void t4_enable_wq_db(struct t4_wq *wq)
446 {
447 	wq->rq.queue[wq->rq.size].status.db_off = 0;
448 }
449 
450 static inline int t4_wq_db_enabled(struct t4_wq *wq)
451 {
452 	return !wq->rq.queue[wq->rq.size].status.db_off;
453 }
454 
455 struct t4_cq {
456 	struct t4_cqe *queue;
457 	dma_addr_t dma_addr;
458 	DEFINE_DMA_UNMAP_ADDR(mapping);
459 	struct t4_cqe *sw_queue;
460 	void __iomem *gts;
461 	struct c4iw_rdev *rdev;
462 	u64 ugts;
463 	size_t memsize;
464 	__be64 bits_type_ts;
465 	u32 cqid;
466 	u16 size; /* including status page */
467 	u16 cidx;
468 	u16 sw_pidx;
469 	u16 sw_cidx;
470 	u16 sw_in_use;
471 	u16 cidx_inc;
472 	u8 gen;
473 	u8 error;
474 };
475 
476 static inline int t4_arm_cq(struct t4_cq *cq, int se)
477 {
478 	u32 val;
479 
480 	while (cq->cidx_inc > CIDXINC_MASK) {
481 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
482 		      INGRESSQID(cq->cqid);
483 		writel(val, cq->gts);
484 		cq->cidx_inc -= CIDXINC_MASK;
485 	}
486 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
487 	      INGRESSQID(cq->cqid);
488 	writel(val, cq->gts);
489 	cq->cidx_inc = 0;
490 	return 0;
491 }
492 
493 static inline void t4_swcq_produce(struct t4_cq *cq)
494 {
495 	cq->sw_in_use++;
496 	if (++cq->sw_pidx == cq->size)
497 		cq->sw_pidx = 0;
498 }
499 
500 static inline void t4_swcq_consume(struct t4_cq *cq)
501 {
502 	cq->sw_in_use--;
503 	if (++cq->sw_cidx == cq->size)
504 		cq->sw_cidx = 0;
505 }
506 
507 static inline void t4_hwcq_consume(struct t4_cq *cq)
508 {
509 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
510 	if (++cq->cidx_inc == cq->size)
511 		cq->cidx_inc = 0;
512 	if (++cq->cidx == cq->size) {
513 		cq->cidx = 0;
514 		cq->gen ^= 1;
515 	}
516 }
517 
518 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
519 {
520 	return (CQE_GENBIT(cqe) == cq->gen);
521 }
522 
523 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
524 {
525 	int ret;
526 	u16 prev_cidx;
527 
528 	if (cq->cidx == 0)
529 		prev_cidx = cq->size - 1;
530 	else
531 		prev_cidx = cq->cidx - 1;
532 
533 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
534 		ret = -EOVERFLOW;
535 		cq->error = 1;
536 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
537 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
538 		*cqe = &cq->queue[cq->cidx];
539 		ret = 0;
540 	} else
541 		ret = -ENODATA;
542 	return ret;
543 }
544 
545 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
546 {
547 	if (cq->sw_in_use)
548 		return &cq->sw_queue[cq->sw_cidx];
549 	return NULL;
550 }
551 
552 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
553 {
554 	int ret = 0;
555 
556 	if (cq->error)
557 		ret = -ENODATA;
558 	else if (cq->sw_in_use)
559 		*cqe = &cq->sw_queue[cq->sw_cidx];
560 	else
561 		ret = t4_next_hw_cqe(cq, cqe);
562 	return ret;
563 }
564 
565 static inline int t4_cq_in_error(struct t4_cq *cq)
566 {
567 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
568 }
569 
570 static inline void t4_set_cq_in_error(struct t4_cq *cq)
571 {
572 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
573 }
574 #endif
575