xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/t4.h (revision d2168146)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_msg.h"
37 #include "t4fw_ri_api.h"
38 
39 #define T4_MAX_NUM_QP 65536
40 #define T4_MAX_NUM_CQ 65536
41 #define T4_MAX_NUM_PD 65536
42 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
43 #define T4_MAX_EQ_SIZE (65520 - T4_EQ_STATUS_ENTRIES)
44 #define T4_MAX_IQ_SIZE (65520 - 1)
45 #define T4_MAX_RQ_SIZE (8192 - T4_EQ_STATUS_ENTRIES)
46 #define T4_MAX_SQ_SIZE (T4_MAX_EQ_SIZE - 1)
47 #define T4_MAX_QP_DEPTH (T4_MAX_RQ_SIZE - 1)
48 #define T4_MAX_CQ_DEPTH (T4_MAX_IQ_SIZE - 1)
49 #define T4_MAX_NUM_STAG (1<<15)
50 #define T4_MAX_MR_SIZE (~0ULL)
51 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
52 #define T4_STAG_UNSET 0xffffffff
53 #define T4_FW_MAJ 0
54 #define T4_EQ_STATUS_ENTRIES (L1_CACHE_BYTES > 64 ? 2 : 1)
55 #define A_PCIE_MA_SYNC 0x30b4
56 
57 struct t4_status_page {
58 	__be32 rsvd1;	/* flit 0 - hw owns */
59 	__be16 rsvd2;
60 	__be16 qid;
61 	__be16 cidx;
62 	__be16 pidx;
63 	u8 qp_err;	/* flit 1 - sw owns */
64 	u8 db_off;
65 	u8 pad;
66 	u16 host_wq_pidx;
67 	u16 host_cidx;
68 	u16 host_pidx;
69 };
70 
71 #define T4_EQ_ENTRY_SIZE 64
72 
73 #define T4_SQ_NUM_SLOTS 5
74 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
75 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
76 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
77 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
78 			sizeof(struct fw_ri_immd)))
79 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
80 			sizeof(struct fw_ri_rdma_write_wr) - \
81 			sizeof(struct fw_ri_immd)))
82 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
83 			sizeof(struct fw_ri_rdma_write_wr) - \
84 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
85 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
86 			sizeof(struct fw_ri_immd)) & ~31UL)
87 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
88 #define T4_MAX_FR_DSGL 1024
89 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
90 
91 static inline int t4_max_fr_depth(int use_dsgl)
92 {
93 	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
94 }
95 
96 #define T4_RQ_NUM_SLOTS 2
97 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
98 #define T4_MAX_RECV_SGE 4
99 
100 union t4_wr {
101 	struct fw_ri_res_wr res;
102 	struct fw_ri_wr ri;
103 	struct fw_ri_rdma_write_wr write;
104 	struct fw_ri_send_wr send;
105 	struct fw_ri_rdma_read_wr read;
106 	struct fw_ri_bind_mw_wr bind;
107 	struct fw_ri_fr_nsmr_wr fr;
108 	struct fw_ri_inv_lstag_wr inv;
109 	struct t4_status_page status;
110 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
111 };
112 
113 union t4_recv_wr {
114 	struct fw_ri_recv_wr recv;
115 	struct t4_status_page status;
116 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
117 };
118 
119 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
120 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
121 {
122 	wqe->send.opcode = (u8)opcode;
123 	wqe->send.flags = flags;
124 	wqe->send.wrid = wrid;
125 	wqe->send.r1[0] = 0;
126 	wqe->send.r1[1] = 0;
127 	wqe->send.r1[2] = 0;
128 	wqe->send.len16 = len16;
129 }
130 
131 /* CQE/AE status codes */
132 #define T4_ERR_SUCCESS                     0x0
133 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
134 						/* STAG is offlimt, being 0, */
135 						/* or STAG_key mismatch */
136 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
137 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
138 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
139 #define T4_ERR_WRAP                        0x5	/* Wrap error */
140 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
141 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
142 						/* shared memory region */
143 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
144 						/* shared memory region */
145 #define T4_ERR_ECC                         0x9	/* ECC error detected */
146 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
147 						/* reading PSTAG for a MW  */
148 						/* Invalidate */
149 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
150 						/* software error */
151 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
152 #define T4_ERR_CRC                         0x10 /* CRC error */
153 #define T4_ERR_MARKER                      0x11 /* Marker error */
154 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
155 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
156 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
157 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
158 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
159 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
160 #define T4_ERR_MSN                         0x18 /* MSN error */
161 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
162 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
163 						/* or READ_REQ */
164 #define T4_ERR_MSN_GAP                     0x1B
165 #define T4_ERR_MSN_RANGE                   0x1C
166 #define T4_ERR_IRD_OVERFLOW                0x1D
167 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
168 						/* software error */
169 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
170 						/* mismatch) */
171 /*
172  * CQE defs
173  */
174 struct t4_cqe {
175 	__be32 header;
176 	__be32 len;
177 	union {
178 		struct {
179 			__be32 stag;
180 			__be32 msn;
181 		} rcqe;
182 		struct {
183 			u32 nada1;
184 			u16 nada2;
185 			u16 cidx;
186 		} scqe;
187 		struct {
188 			__be32 wrid_hi;
189 			__be32 wrid_low;
190 		} gen;
191 	} u;
192 	__be64 reserved;
193 	__be64 bits_type_ts;
194 };
195 
196 /* macros for flit 0 of the cqe */
197 
198 #define S_CQE_QPID        12
199 #define M_CQE_QPID        0xFFFFF
200 #define G_CQE_QPID(x)     ((((x) >> S_CQE_QPID)) & M_CQE_QPID)
201 #define V_CQE_QPID(x)	  ((x)<<S_CQE_QPID)
202 
203 #define S_CQE_SWCQE       11
204 #define M_CQE_SWCQE       0x1
205 #define G_CQE_SWCQE(x)    ((((x) >> S_CQE_SWCQE)) & M_CQE_SWCQE)
206 #define V_CQE_SWCQE(x)	  ((x)<<S_CQE_SWCQE)
207 
208 #define S_CQE_STATUS      5
209 #define M_CQE_STATUS      0x1F
210 #define G_CQE_STATUS(x)   ((((x) >> S_CQE_STATUS)) & M_CQE_STATUS)
211 #define V_CQE_STATUS(x)   ((x)<<S_CQE_STATUS)
212 
213 #define S_CQE_TYPE        4
214 #define M_CQE_TYPE        0x1
215 #define G_CQE_TYPE(x)     ((((x) >> S_CQE_TYPE)) & M_CQE_TYPE)
216 #define V_CQE_TYPE(x)     ((x)<<S_CQE_TYPE)
217 
218 #define S_CQE_OPCODE      0
219 #define M_CQE_OPCODE      0xF
220 #define G_CQE_OPCODE(x)   ((((x) >> S_CQE_OPCODE)) & M_CQE_OPCODE)
221 #define V_CQE_OPCODE(x)   ((x)<<S_CQE_OPCODE)
222 
223 #define SW_CQE(x)         (G_CQE_SWCQE(be32_to_cpu((x)->header)))
224 #define CQE_QPID(x)       (G_CQE_QPID(be32_to_cpu((x)->header)))
225 #define CQE_TYPE(x)       (G_CQE_TYPE(be32_to_cpu((x)->header)))
226 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
227 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
228 #define CQE_STATUS(x)     (G_CQE_STATUS(be32_to_cpu((x)->header)))
229 #define CQE_OPCODE(x)     (G_CQE_OPCODE(be32_to_cpu((x)->header)))
230 
231 #define CQE_SEND_OPCODE(x)( \
232 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
233 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
234 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
235 	(G_CQE_OPCODE(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
236 
237 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
238 
239 /* used for RQ completion processing */
240 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
241 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
242 
243 /* used for SQ completion processing */
244 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
245 
246 /* generic accessor macros */
247 #define CQE_WRID_HI(x)		((x)->u.gen.wrid_hi)
248 #define CQE_WRID_LOW(x)		((x)->u.gen.wrid_low)
249 
250 /* macros for flit 3 of the cqe */
251 #define S_CQE_GENBIT	63
252 #define M_CQE_GENBIT	0x1
253 #define G_CQE_GENBIT(x)	(((x) >> S_CQE_GENBIT) & M_CQE_GENBIT)
254 #define V_CQE_GENBIT(x) ((x)<<S_CQE_GENBIT)
255 
256 #define S_CQE_OVFBIT	62
257 #define M_CQE_OVFBIT	0x1
258 #define G_CQE_OVFBIT(x)	((((x) >> S_CQE_OVFBIT)) & M_CQE_OVFBIT)
259 
260 #define S_CQE_IQTYPE	60
261 #define M_CQE_IQTYPE	0x3
262 #define G_CQE_IQTYPE(x)	((((x) >> S_CQE_IQTYPE)) & M_CQE_IQTYPE)
263 
264 #define M_CQE_TS	0x0fffffffffffffffULL
265 #define G_CQE_TS(x)	((x) & M_CQE_TS)
266 
267 #define CQE_OVFBIT(x)	((unsigned)G_CQE_OVFBIT(be64_to_cpu((x)->bits_type_ts)))
268 #define CQE_GENBIT(x)	((unsigned)G_CQE_GENBIT(be64_to_cpu((x)->bits_type_ts)))
269 #define CQE_TS(x)	(G_CQE_TS(be64_to_cpu((x)->bits_type_ts)))
270 
271 struct t4_swsqe {
272 	u64			wr_id;
273 	struct t4_cqe		cqe;
274 	int			read_len;
275 	int			opcode;
276 	int			complete;
277 	int			signaled;
278 	u16			idx;
279 	int                     flushed;
280 };
281 
282 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
283 {
284 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
285 	return pgprot_writecombine(prot);
286 #else
287 	return pgprot_noncached(prot);
288 #endif
289 }
290 
291 enum {
292 	T4_SQ_ONCHIP = (1<<0),
293 };
294 
295 struct t4_sq {
296 	union t4_wr *queue;
297 	dma_addr_t dma_addr;
298 	DEFINE_DMA_UNMAP_ADDR(mapping);
299 	unsigned long phys_addr;
300 	struct t4_swsqe *sw_sq;
301 	struct t4_swsqe *oldest_read;
302 	u64 __iomem *udb;
303 	size_t memsize;
304 	u32 qid;
305 	u16 in_use;
306 	u16 size;
307 	u16 cidx;
308 	u16 pidx;
309 	u16 wq_pidx;
310 	u16 wq_pidx_inc;
311 	u16 flags;
312 	short flush_cidx;
313 };
314 
315 struct t4_swrqe {
316 	u64 wr_id;
317 };
318 
319 struct t4_rq {
320 	union  t4_recv_wr *queue;
321 	dma_addr_t dma_addr;
322 	DEFINE_DMA_UNMAP_ADDR(mapping);
323 	struct t4_swrqe *sw_rq;
324 	u64 __iomem *udb;
325 	size_t memsize;
326 	u32 qid;
327 	u32 msn;
328 	u32 rqt_hwaddr;
329 	u16 rqt_size;
330 	u16 in_use;
331 	u16 size;
332 	u16 cidx;
333 	u16 pidx;
334 	u16 wq_pidx;
335 	u16 wq_pidx_inc;
336 };
337 
338 struct t4_wq {
339 	struct t4_sq sq;
340 	struct t4_rq rq;
341 	void __iomem *db;
342 	void __iomem *gts;
343 	struct c4iw_rdev *rdev;
344 	int flushed;
345 };
346 
347 static inline int t4_rqes_posted(struct t4_wq *wq)
348 {
349 	return wq->rq.in_use;
350 }
351 
352 static inline int t4_rq_empty(struct t4_wq *wq)
353 {
354 	return wq->rq.in_use == 0;
355 }
356 
357 static inline int t4_rq_full(struct t4_wq *wq)
358 {
359 	return wq->rq.in_use == (wq->rq.size - 1);
360 }
361 
362 static inline u32 t4_rq_avail(struct t4_wq *wq)
363 {
364 	return wq->rq.size - 1 - wq->rq.in_use;
365 }
366 
367 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
368 {
369 	wq->rq.in_use++;
370 	if (++wq->rq.pidx == wq->rq.size)
371 		wq->rq.pidx = 0;
372 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
373 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
374 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
375 }
376 
377 static inline void t4_rq_consume(struct t4_wq *wq)
378 {
379 	wq->rq.in_use--;
380 	wq->rq.msn++;
381 	if (++wq->rq.cidx == wq->rq.size)
382 		wq->rq.cidx = 0;
383 }
384 
385 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
386 {
387 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
388 }
389 
390 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
391 {
392 		return wq->rq.size * T4_RQ_NUM_SLOTS;
393 }
394 
395 static inline int t4_sq_onchip(struct t4_sq *sq)
396 {
397 	return sq->flags & T4_SQ_ONCHIP;
398 }
399 
400 static inline int t4_sq_empty(struct t4_wq *wq)
401 {
402 	return wq->sq.in_use == 0;
403 }
404 
405 static inline int t4_sq_full(struct t4_wq *wq)
406 {
407 	return wq->sq.in_use == (wq->sq.size - 1);
408 }
409 
410 static inline u32 t4_sq_avail(struct t4_wq *wq)
411 {
412 	return wq->sq.size - 1 - wq->sq.in_use;
413 }
414 
415 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
416 {
417 	wq->sq.in_use++;
418 	if (++wq->sq.pidx == wq->sq.size)
419 		wq->sq.pidx = 0;
420 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
421 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
422 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
423 }
424 
425 static inline void t4_sq_consume(struct t4_wq *wq)
426 {
427 	BUG_ON(wq->sq.in_use < 1);
428 	if (wq->sq.cidx == wq->sq.flush_cidx)
429 		wq->sq.flush_cidx = -1;
430 	wq->sq.in_use--;
431 	if (++wq->sq.cidx == wq->sq.size)
432 		wq->sq.cidx = 0;
433 }
434 
435 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
436 {
437 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
438 }
439 
440 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
441 {
442 		return wq->sq.size * T4_SQ_NUM_SLOTS;
443 }
444 
445 /* This function copies 64 byte coalesced work request to memory
446  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
447  * from the FIFO instead of from Host.
448  */
449 static inline void pio_copy(u64 __iomem *dst, u64 *src)
450 {
451 	int count = 8;
452 
453 	while (count) {
454 		writeq(*src, dst);
455 		src++;
456 		dst++;
457 		count--;
458 	}
459 }
460 
461 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, u8 t5,
462 				 union t4_wr *wqe)
463 {
464 
465 	/* Flush host queue memory writes. */
466 	wmb();
467 	if (t5) {
468 		if (inc == 1 && wqe) {
469 			PDBG("%s: WC wq->sq.pidx = %d\n",
470 			     __func__, wq->sq.pidx);
471 			pio_copy(wq->sq.udb + 7, (void *)wqe);
472 		} else {
473 			PDBG("%s: DB wq->sq.pidx = %d\n",
474 			     __func__, wq->sq.pidx);
475 			writel(PIDX_T5(inc), wq->sq.udb);
476 		}
477 
478 		/* Flush user doorbell area writes. */
479 		wmb();
480 		return;
481 	}
482 	writel(QID(wq->sq.qid) | PIDX(inc), wq->db);
483 }
484 
485 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc, u8 t5,
486 				 union t4_recv_wr *wqe)
487 {
488 
489 	/* Flush host queue memory writes. */
490 	wmb();
491 	if (t5) {
492 		if (inc == 1 && wqe) {
493 			PDBG("%s: WC wq->rq.pidx = %d\n",
494 			     __func__, wq->rq.pidx);
495 			pio_copy(wq->rq.udb + 7, (void *)wqe);
496 		} else {
497 			PDBG("%s: DB wq->rq.pidx = %d\n",
498 			     __func__, wq->rq.pidx);
499 			writel(PIDX_T5(inc), wq->rq.udb);
500 		}
501 
502 		/* Flush user doorbell area writes. */
503 		wmb();
504 		return;
505 	}
506 	writel(QID(wq->rq.qid) | PIDX(inc), wq->db);
507 }
508 
509 static inline int t4_wq_in_error(struct t4_wq *wq)
510 {
511 	return wq->rq.queue[wq->rq.size].status.qp_err;
512 }
513 
514 static inline void t4_set_wq_in_error(struct t4_wq *wq)
515 {
516 	wq->rq.queue[wq->rq.size].status.qp_err = 1;
517 }
518 
519 static inline void t4_disable_wq_db(struct t4_wq *wq)
520 {
521 	wq->rq.queue[wq->rq.size].status.db_off = 1;
522 }
523 
524 static inline void t4_enable_wq_db(struct t4_wq *wq)
525 {
526 	wq->rq.queue[wq->rq.size].status.db_off = 0;
527 }
528 
529 static inline int t4_wq_db_enabled(struct t4_wq *wq)
530 {
531 	return !wq->rq.queue[wq->rq.size].status.db_off;
532 }
533 
534 struct t4_cq {
535 	struct t4_cqe *queue;
536 	dma_addr_t dma_addr;
537 	DEFINE_DMA_UNMAP_ADDR(mapping);
538 	struct t4_cqe *sw_queue;
539 	void __iomem *gts;
540 	struct c4iw_rdev *rdev;
541 	u64 ugts;
542 	size_t memsize;
543 	__be64 bits_type_ts;
544 	u32 cqid;
545 	int vector;
546 	u16 size; /* including status page */
547 	u16 cidx;
548 	u16 sw_pidx;
549 	u16 sw_cidx;
550 	u16 sw_in_use;
551 	u16 cidx_inc;
552 	u8 gen;
553 	u8 error;
554 };
555 
556 static inline int t4_arm_cq(struct t4_cq *cq, int se)
557 {
558 	u32 val;
559 
560 	while (cq->cidx_inc > CIDXINC_MASK) {
561 		val = SEINTARM(0) | CIDXINC(CIDXINC_MASK) | TIMERREG(7) |
562 		      INGRESSQID(cq->cqid);
563 		writel(val, cq->gts);
564 		cq->cidx_inc -= CIDXINC_MASK;
565 	}
566 	val = SEINTARM(se) | CIDXINC(cq->cidx_inc) | TIMERREG(6) |
567 	      INGRESSQID(cq->cqid);
568 	writel(val, cq->gts);
569 	cq->cidx_inc = 0;
570 	return 0;
571 }
572 
573 static inline void t4_swcq_produce(struct t4_cq *cq)
574 {
575 	cq->sw_in_use++;
576 	if (cq->sw_in_use == cq->size) {
577 		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
578 		cq->error = 1;
579 		BUG_ON(1);
580 	}
581 	if (++cq->sw_pidx == cq->size)
582 		cq->sw_pidx = 0;
583 }
584 
585 static inline void t4_swcq_consume(struct t4_cq *cq)
586 {
587 	BUG_ON(cq->sw_in_use < 1);
588 	cq->sw_in_use--;
589 	if (++cq->sw_cidx == cq->size)
590 		cq->sw_cidx = 0;
591 }
592 
593 static inline void t4_hwcq_consume(struct t4_cq *cq)
594 {
595 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
596 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_MASK) {
597 		u32 val;
598 
599 		val = SEINTARM(0) | CIDXINC(cq->cidx_inc) | TIMERREG(7) |
600 		      INGRESSQID(cq->cqid);
601 		writel(val, cq->gts);
602 		cq->cidx_inc = 0;
603 	}
604 	if (++cq->cidx == cq->size) {
605 		cq->cidx = 0;
606 		cq->gen ^= 1;
607 	}
608 }
609 
610 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
611 {
612 	return (CQE_GENBIT(cqe) == cq->gen);
613 }
614 
615 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
616 {
617 	int ret;
618 	u16 prev_cidx;
619 
620 	if (cq->cidx == 0)
621 		prev_cidx = cq->size - 1;
622 	else
623 		prev_cidx = cq->cidx - 1;
624 
625 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
626 		ret = -EOVERFLOW;
627 		cq->error = 1;
628 		printk(KERN_ERR MOD "cq overflow cqid %u\n", cq->cqid);
629 		BUG_ON(1);
630 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
631 
632 		/* Ensure CQE is flushed to memory */
633 		rmb();
634 		*cqe = &cq->queue[cq->cidx];
635 		ret = 0;
636 	} else
637 		ret = -ENODATA;
638 	return ret;
639 }
640 
641 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
642 {
643 	if (cq->sw_in_use == cq->size) {
644 		PDBG("%s cxgb4 sw cq overflow cqid %u\n", __func__, cq->cqid);
645 		cq->error = 1;
646 		BUG_ON(1);
647 		return NULL;
648 	}
649 	if (cq->sw_in_use)
650 		return &cq->sw_queue[cq->sw_cidx];
651 	return NULL;
652 }
653 
654 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
655 {
656 	int ret = 0;
657 
658 	if (cq->error)
659 		ret = -ENODATA;
660 	else if (cq->sw_in_use)
661 		*cqe = &cq->sw_queue[cq->sw_cidx];
662 	else
663 		ret = t4_next_hw_cqe(cq, cqe);
664 	return ret;
665 }
666 
667 static inline int t4_cq_in_error(struct t4_cq *cq)
668 {
669 	return ((struct t4_status_page *)&cq->queue[cq->size])->qp_err;
670 }
671 
672 static inline void t4_set_cq_in_error(struct t4_cq *cq)
673 {
674 	((struct t4_status_page *)&cq->queue[cq->size])->qp_err = 1;
675 }
676 #endif
677 
678 struct t4_dev_status_page {
679 	u8 db_off;
680 };
681