xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/t4.h (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *      - Redistributions in binary form must reproduce the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer in the documentation and/or other materials
20  *        provided with the distribution.
21  *
22  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29  * SOFTWARE.
30  */
31 #ifndef __T4_H__
32 #define __T4_H__
33 
34 #include "t4_hw.h"
35 #include "t4_regs.h"
36 #include "t4_values.h"
37 #include "t4_msg.h"
38 #include "t4fw_ri_api.h"
39 
40 #define T4_MAX_NUM_PD 65536
41 #define T4_MAX_MR_SIZE (~0ULL)
42 #define T4_PAGESIZE_MASK 0xffff000  /* 4KB-128MB */
43 #define T4_STAG_UNSET 0xffffffff
44 #define T4_FW_MAJ 0
45 #define PCIE_MA_SYNC_A 0x30b4
46 
47 struct t4_status_page {
48 	__be32 rsvd1;	/* flit 0 - hw owns */
49 	__be16 rsvd2;
50 	__be16 qid;
51 	__be16 cidx;
52 	__be16 pidx;
53 	u8 qp_err;	/* flit 1 - sw owns */
54 	u8 db_off;
55 	u8 pad[2];
56 	u16 host_wq_pidx;
57 	u16 host_cidx;
58 	u16 host_pidx;
59 	u16 pad2;
60 	u32 srqidx;
61 };
62 
63 #define T4_RQT_ENTRY_SHIFT 6
64 #define T4_RQT_ENTRY_SIZE  BIT(T4_RQT_ENTRY_SHIFT)
65 #define T4_EQ_ENTRY_SIZE 64
66 
67 #define T4_SQ_NUM_SLOTS 5
68 #define T4_SQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_SQ_NUM_SLOTS)
69 #define T4_MAX_SEND_SGE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
70 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
71 #define T4_MAX_SEND_INLINE ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_send_wr) - \
72 			sizeof(struct fw_ri_immd)))
73 #define T4_MAX_WRITE_INLINE ((T4_SQ_NUM_BYTES - \
74 			sizeof(struct fw_ri_rdma_write_wr) - \
75 			sizeof(struct fw_ri_immd)))
76 #define T4_MAX_WRITE_SGE ((T4_SQ_NUM_BYTES - \
77 			sizeof(struct fw_ri_rdma_write_wr) - \
78 			sizeof(struct fw_ri_isgl)) / sizeof(struct fw_ri_sge))
79 #define T4_MAX_FR_IMMD ((T4_SQ_NUM_BYTES - sizeof(struct fw_ri_fr_nsmr_wr) - \
80 			sizeof(struct fw_ri_immd)) & ~31UL)
81 #define T4_MAX_FR_IMMD_DEPTH (T4_MAX_FR_IMMD / sizeof(u64))
82 #define T4_MAX_FR_DSGL 1024
83 #define T4_MAX_FR_DSGL_DEPTH (T4_MAX_FR_DSGL / sizeof(u64))
84 
85 static inline int t4_max_fr_depth(int use_dsgl)
86 {
87 	return use_dsgl ? T4_MAX_FR_DSGL_DEPTH : T4_MAX_FR_IMMD_DEPTH;
88 }
89 
90 #define T4_RQ_NUM_SLOTS 2
91 #define T4_RQ_NUM_BYTES (T4_EQ_ENTRY_SIZE * T4_RQ_NUM_SLOTS)
92 #define T4_MAX_RECV_SGE 4
93 
94 #define T4_WRITE_CMPL_MAX_SGL 4
95 #define T4_WRITE_CMPL_MAX_CQE 16
96 
97 union t4_wr {
98 	struct fw_ri_res_wr res;
99 	struct fw_ri_wr ri;
100 	struct fw_ri_rdma_write_wr write;
101 	struct fw_ri_send_wr send;
102 	struct fw_ri_rdma_read_wr read;
103 	struct fw_ri_bind_mw_wr bind;
104 	struct fw_ri_fr_nsmr_wr fr;
105 	struct fw_ri_fr_nsmr_tpte_wr fr_tpte;
106 	struct fw_ri_inv_lstag_wr inv;
107 	struct fw_ri_rdma_write_cmpl_wr write_cmpl;
108 	struct t4_status_page status;
109 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_SQ_NUM_SLOTS];
110 };
111 
112 union t4_recv_wr {
113 	struct fw_ri_recv_wr recv;
114 	struct t4_status_page status;
115 	__be64 flits[T4_EQ_ENTRY_SIZE / sizeof(__be64) * T4_RQ_NUM_SLOTS];
116 };
117 
118 static inline void init_wr_hdr(union t4_wr *wqe, u16 wrid,
119 			       enum fw_wr_opcodes opcode, u8 flags, u8 len16)
120 {
121 	wqe->send.opcode = (u8)opcode;
122 	wqe->send.flags = flags;
123 	wqe->send.wrid = wrid;
124 	wqe->send.r1[0] = 0;
125 	wqe->send.r1[1] = 0;
126 	wqe->send.r1[2] = 0;
127 	wqe->send.len16 = len16;
128 }
129 
130 /* CQE/AE status codes */
131 #define T4_ERR_SUCCESS                     0x0
132 #define T4_ERR_STAG                        0x1	/* STAG invalid: either the */
133 						/* STAG is offlimt, being 0, */
134 						/* or STAG_key mismatch */
135 #define T4_ERR_PDID                        0x2	/* PDID mismatch */
136 #define T4_ERR_QPID                        0x3	/* QPID mismatch */
137 #define T4_ERR_ACCESS                      0x4	/* Invalid access right */
138 #define T4_ERR_WRAP                        0x5	/* Wrap error */
139 #define T4_ERR_BOUND                       0x6	/* base and bounds voilation */
140 #define T4_ERR_INVALIDATE_SHARED_MR        0x7	/* attempt to invalidate a  */
141 						/* shared memory region */
142 #define T4_ERR_INVALIDATE_MR_WITH_MW_BOUND 0x8	/* attempt to invalidate a  */
143 						/* shared memory region */
144 #define T4_ERR_ECC                         0x9	/* ECC error detected */
145 #define T4_ERR_ECC_PSTAG                   0xA	/* ECC error detected when  */
146 						/* reading PSTAG for a MW  */
147 						/* Invalidate */
148 #define T4_ERR_PBL_ADDR_BOUND              0xB	/* pbl addr out of bounds:  */
149 						/* software error */
150 #define T4_ERR_SWFLUSH			   0xC	/* SW FLUSHED */
151 #define T4_ERR_CRC                         0x10 /* CRC error */
152 #define T4_ERR_MARKER                      0x11 /* Marker error */
153 #define T4_ERR_PDU_LEN_ERR                 0x12 /* invalid PDU length */
154 #define T4_ERR_OUT_OF_RQE                  0x13 /* out of RQE */
155 #define T4_ERR_DDP_VERSION                 0x14 /* wrong DDP version */
156 #define T4_ERR_RDMA_VERSION                0x15 /* wrong RDMA version */
157 #define T4_ERR_OPCODE                      0x16 /* invalid rdma opcode */
158 #define T4_ERR_DDP_QUEUE_NUM               0x17 /* invalid ddp queue number */
159 #define T4_ERR_MSN                         0x18 /* MSN error */
160 #define T4_ERR_TBIT                        0x19 /* tag bit not set correctly */
161 #define T4_ERR_MO                          0x1A /* MO not 0 for TERMINATE  */
162 						/* or READ_REQ */
163 #define T4_ERR_MSN_GAP                     0x1B
164 #define T4_ERR_MSN_RANGE                   0x1C
165 #define T4_ERR_IRD_OVERFLOW                0x1D
166 #define T4_ERR_RQE_ADDR_BOUND              0x1E /* RQE addr out of bounds:  */
167 						/* software error */
168 #define T4_ERR_INTERNAL_ERR                0x1F /* internal error (opcode  */
169 						/* mismatch) */
170 /*
171  * CQE defs
172  */
173 struct t4_cqe {
174 	__be32 header;
175 	__be32 len;
176 	union {
177 		struct {
178 			__be32 stag;
179 			__be32 msn;
180 		} rcqe;
181 		struct {
182 			__be32 stag;
183 			u16 nada2;
184 			u16 cidx;
185 		} scqe;
186 		struct {
187 			__be32 wrid_hi;
188 			__be32 wrid_low;
189 		} gen;
190 		struct {
191 			__be32 stag;
192 			__be32 msn;
193 			__be32 reserved;
194 			__be32 abs_rqe_idx;
195 		} srcqe;
196 		struct {
197 			__be32 mo;
198 			__be32 msn;
199 			/*
200 			 * Use union for immediate data to be consistent with
201 			 * stack's 32 bit data and iWARP spec's 64 bit data.
202 			 */
203 			union {
204 				struct {
205 					__be32 imm_data32;
206 					u32 reserved;
207 				} ib_imm_data;
208 				__be64 imm_data64;
209 			} iw_imm_data;
210 		} imm_data_rcqe;
211 
212 		u64 drain_cookie;
213 		__be64 flits[3];
214 	} u;
215 	__be64 reserved[3];
216 	__be64 bits_type_ts;
217 };
218 
219 /* macros for flit 0 of the cqe */
220 
221 #define CQE_QPID_S        12
222 #define CQE_QPID_M        0xFFFFF
223 #define CQE_QPID_G(x)     ((((x) >> CQE_QPID_S)) & CQE_QPID_M)
224 #define CQE_QPID_V(x)	  ((x)<<CQE_QPID_S)
225 
226 #define CQE_SWCQE_S       11
227 #define CQE_SWCQE_M       0x1
228 #define CQE_SWCQE_G(x)    ((((x) >> CQE_SWCQE_S)) & CQE_SWCQE_M)
229 #define CQE_SWCQE_V(x)	  ((x)<<CQE_SWCQE_S)
230 
231 #define CQE_DRAIN_S       10
232 #define CQE_DRAIN_M       0x1
233 #define CQE_DRAIN_G(x)    ((((x) >> CQE_DRAIN_S)) & CQE_DRAIN_M)
234 #define CQE_DRAIN_V(x)	  ((x)<<CQE_DRAIN_S)
235 
236 #define CQE_STATUS_S      5
237 #define CQE_STATUS_M      0x1F
238 #define CQE_STATUS_G(x)   ((((x) >> CQE_STATUS_S)) & CQE_STATUS_M)
239 #define CQE_STATUS_V(x)   ((x)<<CQE_STATUS_S)
240 
241 #define CQE_TYPE_S        4
242 #define CQE_TYPE_M        0x1
243 #define CQE_TYPE_G(x)     ((((x) >> CQE_TYPE_S)) & CQE_TYPE_M)
244 #define CQE_TYPE_V(x)     ((x)<<CQE_TYPE_S)
245 
246 #define CQE_OPCODE_S      0
247 #define CQE_OPCODE_M      0xF
248 #define CQE_OPCODE_G(x)   ((((x) >> CQE_OPCODE_S)) & CQE_OPCODE_M)
249 #define CQE_OPCODE_V(x)   ((x)<<CQE_OPCODE_S)
250 
251 #define SW_CQE(x)         (CQE_SWCQE_G(be32_to_cpu((x)->header)))
252 #define DRAIN_CQE(x)      (CQE_DRAIN_G(be32_to_cpu((x)->header)))
253 #define CQE_QPID(x)       (CQE_QPID_G(be32_to_cpu((x)->header)))
254 #define CQE_TYPE(x)       (CQE_TYPE_G(be32_to_cpu((x)->header)))
255 #define SQ_TYPE(x)	  (CQE_TYPE((x)))
256 #define RQ_TYPE(x)	  (!CQE_TYPE((x)))
257 #define CQE_STATUS(x)     (CQE_STATUS_G(be32_to_cpu((x)->header)))
258 #define CQE_OPCODE(x)     (CQE_OPCODE_G(be32_to_cpu((x)->header)))
259 
260 #define CQE_SEND_OPCODE(x)( \
261 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND) || \
262 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE) || \
263 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_INV) || \
264 	(CQE_OPCODE_G(be32_to_cpu((x)->header)) == FW_RI_SEND_WITH_SE_INV))
265 
266 #define CQE_LEN(x)        (be32_to_cpu((x)->len))
267 
268 /* used for RQ completion processing */
269 #define CQE_WRID_STAG(x)  (be32_to_cpu((x)->u.rcqe.stag))
270 #define CQE_WRID_MSN(x)   (be32_to_cpu((x)->u.rcqe.msn))
271 #define CQE_ABS_RQE_IDX(x) (be32_to_cpu((x)->u.srcqe.abs_rqe_idx))
272 #define CQE_IMM_DATA(x)( \
273 	(x)->u.imm_data_rcqe.iw_imm_data.ib_imm_data.imm_data32)
274 
275 /* used for SQ completion processing */
276 #define CQE_WRID_SQ_IDX(x)	((x)->u.scqe.cidx)
277 #define CQE_WRID_FR_STAG(x)     (be32_to_cpu((x)->u.scqe.stag))
278 
279 /* generic accessor macros */
280 #define CQE_WRID_HI(x)		(be32_to_cpu((x)->u.gen.wrid_hi))
281 #define CQE_WRID_LOW(x)		(be32_to_cpu((x)->u.gen.wrid_low))
282 #define CQE_DRAIN_COOKIE(x)	((x)->u.drain_cookie)
283 
284 /* macros for flit 3 of the cqe */
285 #define CQE_GENBIT_S	63
286 #define CQE_GENBIT_M	0x1
287 #define CQE_GENBIT_G(x)	(((x) >> CQE_GENBIT_S) & CQE_GENBIT_M)
288 #define CQE_GENBIT_V(x) ((x)<<CQE_GENBIT_S)
289 
290 #define CQE_OVFBIT_S	62
291 #define CQE_OVFBIT_M	0x1
292 #define CQE_OVFBIT_G(x)	((((x) >> CQE_OVFBIT_S)) & CQE_OVFBIT_M)
293 
294 #define CQE_IQTYPE_S	60
295 #define CQE_IQTYPE_M	0x3
296 #define CQE_IQTYPE_G(x)	((((x) >> CQE_IQTYPE_S)) & CQE_IQTYPE_M)
297 
298 #define CQE_TS_M	0x0fffffffffffffffULL
299 #define CQE_TS_G(x)	((x) & CQE_TS_M)
300 
301 #define CQE_OVFBIT(x)	((unsigned)CQE_OVFBIT_G(be64_to_cpu((x)->bits_type_ts)))
302 #define CQE_GENBIT(x)	((unsigned)CQE_GENBIT_G(be64_to_cpu((x)->bits_type_ts)))
303 #define CQE_TS(x)	(CQE_TS_G(be64_to_cpu((x)->bits_type_ts)))
304 
305 struct t4_swsqe {
306 	u64			wr_id;
307 	struct t4_cqe		cqe;
308 	int			read_len;
309 	int			opcode;
310 	int			complete;
311 	int			signaled;
312 	u16			idx;
313 	int                     flushed;
314 	ktime_t			host_time;
315 	u64                     sge_ts;
316 };
317 
318 static inline pgprot_t t4_pgprot_wc(pgprot_t prot)
319 {
320 #if defined(__i386__) || defined(__x86_64__) || defined(CONFIG_PPC64)
321 	return pgprot_writecombine(prot);
322 #else
323 	return pgprot_noncached(prot);
324 #endif
325 }
326 
327 enum {
328 	T4_SQ_ONCHIP = (1<<0),
329 };
330 
331 struct t4_sq {
332 	union t4_wr *queue;
333 	dma_addr_t dma_addr;
334 	DEFINE_DMA_UNMAP_ADDR(mapping);
335 	unsigned long phys_addr;
336 	struct t4_swsqe *sw_sq;
337 	struct t4_swsqe *oldest_read;
338 	void __iomem *bar2_va;
339 	u64 bar2_pa;
340 	size_t memsize;
341 	u32 bar2_qid;
342 	u32 qid;
343 	u16 in_use;
344 	u16 size;
345 	u16 cidx;
346 	u16 pidx;
347 	u16 wq_pidx;
348 	u16 wq_pidx_inc;
349 	u16 flags;
350 	short flush_cidx;
351 };
352 
353 struct t4_swrqe {
354 	u64 wr_id;
355 	ktime_t	host_time;
356 	u64 sge_ts;
357 	int valid;
358 };
359 
360 struct t4_rq {
361 	union  t4_recv_wr *queue;
362 	dma_addr_t dma_addr;
363 	DEFINE_DMA_UNMAP_ADDR(mapping);
364 	struct t4_swrqe *sw_rq;
365 	void __iomem *bar2_va;
366 	u64 bar2_pa;
367 	size_t memsize;
368 	u32 bar2_qid;
369 	u32 qid;
370 	u32 msn;
371 	u32 rqt_hwaddr;
372 	u16 rqt_size;
373 	u16 in_use;
374 	u16 size;
375 	u16 cidx;
376 	u16 pidx;
377 	u16 wq_pidx;
378 	u16 wq_pidx_inc;
379 };
380 
381 struct t4_wq {
382 	struct t4_sq sq;
383 	struct t4_rq rq;
384 	void __iomem *db;
385 	struct c4iw_rdev *rdev;
386 	int flushed;
387 	u8 *qp_errp;
388 	u32 *srqidxp;
389 };
390 
391 struct t4_srq_pending_wr {
392 	u64 wr_id;
393 	union t4_recv_wr wqe;
394 	u8 len16;
395 };
396 
397 struct t4_srq {
398 	union t4_recv_wr *queue;
399 	dma_addr_t dma_addr;
400 	DECLARE_PCI_UNMAP_ADDR(mapping);
401 	struct t4_swrqe *sw_rq;
402 	void __iomem *bar2_va;
403 	u64 bar2_pa;
404 	size_t memsize;
405 	u32 bar2_qid;
406 	u32 qid;
407 	u32 msn;
408 	u32 rqt_hwaddr;
409 	u32 rqt_abs_idx;
410 	u16 rqt_size;
411 	u16 size;
412 	u16 cidx;
413 	u16 pidx;
414 	u16 wq_pidx;
415 	u16 wq_pidx_inc;
416 	u16 in_use;
417 	struct t4_srq_pending_wr *pending_wrs;
418 	u16 pending_cidx;
419 	u16 pending_pidx;
420 	u16 pending_in_use;
421 	u16 ooo_count;
422 };
423 
424 static inline u32 t4_srq_avail(struct t4_srq *srq)
425 {
426 	return srq->size - 1 - srq->in_use;
427 }
428 
429 static inline void t4_srq_produce(struct t4_srq *srq, u8 len16)
430 {
431 	srq->in_use++;
432 	if (++srq->pidx == srq->size)
433 		srq->pidx = 0;
434 	srq->wq_pidx += DIV_ROUND_UP(len16 * 16, T4_EQ_ENTRY_SIZE);
435 	if (srq->wq_pidx >= srq->size * T4_RQ_NUM_SLOTS)
436 		srq->wq_pidx %= srq->size * T4_RQ_NUM_SLOTS;
437 	srq->queue[srq->size].status.host_pidx = srq->pidx;
438 }
439 
440 static inline void t4_srq_produce_pending_wr(struct t4_srq *srq)
441 {
442 	srq->pending_in_use++;
443 	srq->in_use++;
444 	if (++srq->pending_pidx == srq->size)
445 		srq->pending_pidx = 0;
446 }
447 
448 static inline void t4_srq_consume_pending_wr(struct t4_srq *srq)
449 {
450 	srq->pending_in_use--;
451 	srq->in_use--;
452 	if (++srq->pending_cidx == srq->size)
453 		srq->pending_cidx = 0;
454 }
455 
456 static inline void t4_srq_produce_ooo(struct t4_srq *srq)
457 {
458 	srq->in_use--;
459 	srq->ooo_count++;
460 }
461 
462 static inline void t4_srq_consume_ooo(struct t4_srq *srq)
463 {
464 	srq->cidx++;
465 	if (srq->cidx == srq->size)
466 		srq->cidx  = 0;
467 	srq->queue[srq->size].status.host_cidx = srq->cidx;
468 	srq->ooo_count--;
469 }
470 
471 static inline void t4_srq_consume(struct t4_srq *srq)
472 {
473 	srq->in_use--;
474 	if (++srq->cidx == srq->size)
475 		srq->cidx = 0;
476 	srq->queue[srq->size].status.host_cidx = srq->cidx;
477 }
478 
479 static inline int t4_rqes_posted(struct t4_wq *wq)
480 {
481 	return wq->rq.in_use;
482 }
483 
484 static inline int t4_rq_empty(struct t4_wq *wq)
485 {
486 	return wq->rq.in_use == 0;
487 }
488 
489 static inline int t4_rq_full(struct t4_wq *wq)
490 {
491 	return wq->rq.in_use == (wq->rq.size - 1);
492 }
493 
494 static inline u32 t4_rq_avail(struct t4_wq *wq)
495 {
496 	return wq->rq.size - 1 - wq->rq.in_use;
497 }
498 
499 static inline void t4_rq_produce(struct t4_wq *wq, u8 len16)
500 {
501 	wq->rq.in_use++;
502 	if (++wq->rq.pidx == wq->rq.size)
503 		wq->rq.pidx = 0;
504 	wq->rq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
505 	if (wq->rq.wq_pidx >= wq->rq.size * T4_RQ_NUM_SLOTS)
506 		wq->rq.wq_pidx %= wq->rq.size * T4_RQ_NUM_SLOTS;
507 }
508 
509 static inline void t4_rq_consume(struct t4_wq *wq)
510 {
511 	wq->rq.in_use--;
512 	if (++wq->rq.cidx == wq->rq.size)
513 		wq->rq.cidx = 0;
514 }
515 
516 static inline u16 t4_rq_host_wq_pidx(struct t4_wq *wq)
517 {
518 	return wq->rq.queue[wq->rq.size].status.host_wq_pidx;
519 }
520 
521 static inline u16 t4_rq_wq_size(struct t4_wq *wq)
522 {
523 		return wq->rq.size * T4_RQ_NUM_SLOTS;
524 }
525 
526 static inline int t4_sq_onchip(struct t4_sq *sq)
527 {
528 	return sq->flags & T4_SQ_ONCHIP;
529 }
530 
531 static inline int t4_sq_empty(struct t4_wq *wq)
532 {
533 	return wq->sq.in_use == 0;
534 }
535 
536 static inline int t4_sq_full(struct t4_wq *wq)
537 {
538 	return wq->sq.in_use == (wq->sq.size - 1);
539 }
540 
541 static inline u32 t4_sq_avail(struct t4_wq *wq)
542 {
543 	return wq->sq.size - 1 - wq->sq.in_use;
544 }
545 
546 static inline void t4_sq_produce(struct t4_wq *wq, u8 len16)
547 {
548 	wq->sq.in_use++;
549 	if (++wq->sq.pidx == wq->sq.size)
550 		wq->sq.pidx = 0;
551 	wq->sq.wq_pidx += DIV_ROUND_UP(len16*16, T4_EQ_ENTRY_SIZE);
552 	if (wq->sq.wq_pidx >= wq->sq.size * T4_SQ_NUM_SLOTS)
553 		wq->sq.wq_pidx %= wq->sq.size * T4_SQ_NUM_SLOTS;
554 }
555 
556 static inline void t4_sq_consume(struct t4_wq *wq)
557 {
558 	if (wq->sq.cidx == wq->sq.flush_cidx)
559 		wq->sq.flush_cidx = -1;
560 	wq->sq.in_use--;
561 	if (++wq->sq.cidx == wq->sq.size)
562 		wq->sq.cidx = 0;
563 }
564 
565 static inline u16 t4_sq_host_wq_pidx(struct t4_wq *wq)
566 {
567 	return wq->sq.queue[wq->sq.size].status.host_wq_pidx;
568 }
569 
570 static inline u16 t4_sq_wq_size(struct t4_wq *wq)
571 {
572 		return wq->sq.size * T4_SQ_NUM_SLOTS;
573 }
574 
575 /* This function copies 64 byte coalesced work request to memory
576  * mapped BAR2 space. For coalesced WRs, the SGE fetches data
577  * from the FIFO instead of from Host.
578  */
579 static inline void pio_copy(u64 __iomem *dst, u64 *src)
580 {
581 	int count = 8;
582 
583 	while (count) {
584 		writeq(*src, dst);
585 		src++;
586 		dst++;
587 		count--;
588 	}
589 }
590 
591 static inline void t4_ring_srq_db(struct t4_srq *srq, u16 inc, u8 len16,
592 				  union t4_recv_wr *wqe)
593 {
594 	/* Flush host queue memory writes. */
595 	wmb();
596 	if (inc == 1 && srq->bar2_qid == 0 && wqe) {
597 		pr_debug("%s : WC srq->pidx = %d; len16=%d\n",
598 			 __func__, srq->pidx, len16);
599 		pio_copy(srq->bar2_va + SGE_UDB_WCDOORBELL, (u64 *)wqe);
600 	} else {
601 		pr_debug("%s: DB srq->pidx = %d; len16=%d\n",
602 			 __func__, srq->pidx, len16);
603 		writel(PIDX_T5_V(inc) | QID_V(srq->bar2_qid),
604 		       srq->bar2_va + SGE_UDB_KDOORBELL);
605 	}
606 	/* Flush user doorbell area writes. */
607 	wmb();
608 }
609 
610 static inline void t4_ring_sq_db(struct t4_wq *wq, u16 inc, union t4_wr *wqe)
611 {
612 
613 	/* Flush host queue memory writes. */
614 	wmb();
615 	if (wq->sq.bar2_va) {
616 		if (inc == 1 && wq->sq.bar2_qid == 0 && wqe) {
617 			pr_debug("WC wq->sq.pidx = %d\n", wq->sq.pidx);
618 			pio_copy((u64 __iomem *)
619 				 (wq->sq.bar2_va + SGE_UDB_WCDOORBELL),
620 				 (u64 *)wqe);
621 		} else {
622 			pr_debug("DB wq->sq.pidx = %d\n", wq->sq.pidx);
623 			writel(PIDX_T5_V(inc) | QID_V(wq->sq.bar2_qid),
624 			       wq->sq.bar2_va + SGE_UDB_KDOORBELL);
625 		}
626 
627 		/* Flush user doorbell area writes. */
628 		wmb();
629 		return;
630 	}
631 	writel(QID_V(wq->sq.qid) | PIDX_V(inc), wq->db);
632 }
633 
634 static inline void t4_ring_rq_db(struct t4_wq *wq, u16 inc,
635 				 union t4_recv_wr *wqe)
636 {
637 
638 	/* Flush host queue memory writes. */
639 	wmb();
640 	if (wq->rq.bar2_va) {
641 		if (inc == 1 && wq->rq.bar2_qid == 0 && wqe) {
642 			pr_debug("WC wq->rq.pidx = %d\n", wq->rq.pidx);
643 			pio_copy((u64 __iomem *)
644 				 (wq->rq.bar2_va + SGE_UDB_WCDOORBELL),
645 				 (void *)wqe);
646 		} else {
647 			pr_debug("DB wq->rq.pidx = %d\n", wq->rq.pidx);
648 			writel(PIDX_T5_V(inc) | QID_V(wq->rq.bar2_qid),
649 			       wq->rq.bar2_va + SGE_UDB_KDOORBELL);
650 		}
651 
652 		/* Flush user doorbell area writes. */
653 		wmb();
654 		return;
655 	}
656 	writel(QID_V(wq->rq.qid) | PIDX_V(inc), wq->db);
657 }
658 
659 static inline int t4_wq_in_error(struct t4_wq *wq)
660 {
661 	return *wq->qp_errp;
662 }
663 
664 static inline void t4_set_wq_in_error(struct t4_wq *wq, u32 srqidx)
665 {
666 	if (srqidx)
667 		*wq->srqidxp = srqidx;
668 	*wq->qp_errp = 1;
669 }
670 
671 static inline void t4_disable_wq_db(struct t4_wq *wq)
672 {
673 	wq->rq.queue[wq->rq.size].status.db_off = 1;
674 }
675 
676 static inline void t4_enable_wq_db(struct t4_wq *wq)
677 {
678 	wq->rq.queue[wq->rq.size].status.db_off = 0;
679 }
680 
681 static inline int t4_wq_db_enabled(struct t4_wq *wq)
682 {
683 	return !wq->rq.queue[wq->rq.size].status.db_off;
684 }
685 
686 enum t4_cq_flags {
687 	CQ_ARMED	= 1,
688 };
689 
690 struct t4_cq {
691 	struct t4_cqe *queue;
692 	dma_addr_t dma_addr;
693 	DEFINE_DMA_UNMAP_ADDR(mapping);
694 	struct t4_cqe *sw_queue;
695 	void __iomem *gts;
696 	void __iomem *bar2_va;
697 	u64 bar2_pa;
698 	u32 bar2_qid;
699 	struct c4iw_rdev *rdev;
700 	size_t memsize;
701 	__be64 bits_type_ts;
702 	u32 cqid;
703 	u32 qid_mask;
704 	int vector;
705 	u16 size; /* including status page */
706 	u16 cidx;
707 	u16 sw_pidx;
708 	u16 sw_cidx;
709 	u16 sw_in_use;
710 	u16 cidx_inc;
711 	u8 gen;
712 	u8 error;
713 	u8 *qp_errp;
714 	unsigned long flags;
715 };
716 
717 static inline void write_gts(struct t4_cq *cq, u32 val)
718 {
719 	if (cq->bar2_va)
720 		writel(val | INGRESSQID_V(cq->bar2_qid),
721 		       cq->bar2_va + SGE_UDB_GTS);
722 	else
723 		writel(val | INGRESSQID_V(cq->cqid), cq->gts);
724 }
725 
726 static inline int t4_clear_cq_armed(struct t4_cq *cq)
727 {
728 	return test_and_clear_bit(CQ_ARMED, &cq->flags);
729 }
730 
731 static inline int t4_arm_cq(struct t4_cq *cq, int se)
732 {
733 	u32 val;
734 
735 	set_bit(CQ_ARMED, &cq->flags);
736 	while (cq->cidx_inc > CIDXINC_M) {
737 		val = SEINTARM_V(0) | CIDXINC_V(CIDXINC_M) | TIMERREG_V(7);
738 		write_gts(cq, val);
739 		cq->cidx_inc -= CIDXINC_M;
740 	}
741 	val = SEINTARM_V(se) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(6);
742 	write_gts(cq, val);
743 	cq->cidx_inc = 0;
744 	return 0;
745 }
746 
747 static inline void t4_swcq_produce(struct t4_cq *cq)
748 {
749 	cq->sw_in_use++;
750 	if (cq->sw_in_use == cq->size) {
751 		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
752 			__func__, cq->cqid);
753 		cq->error = 1;
754 		cq->sw_in_use--;
755 		return;
756 	}
757 	if (++cq->sw_pidx == cq->size)
758 		cq->sw_pidx = 0;
759 }
760 
761 static inline void t4_swcq_consume(struct t4_cq *cq)
762 {
763 	cq->sw_in_use--;
764 	if (++cq->sw_cidx == cq->size)
765 		cq->sw_cidx = 0;
766 }
767 
768 static inline void t4_hwcq_consume(struct t4_cq *cq)
769 {
770 	cq->bits_type_ts = cq->queue[cq->cidx].bits_type_ts;
771 	if (++cq->cidx_inc == (cq->size >> 4) || cq->cidx_inc == CIDXINC_M) {
772 		u32 val;
773 
774 		val = SEINTARM_V(0) | CIDXINC_V(cq->cidx_inc) | TIMERREG_V(7);
775 		write_gts(cq, val);
776 		cq->cidx_inc = 0;
777 	}
778 	if (++cq->cidx == cq->size) {
779 		cq->cidx = 0;
780 		cq->gen ^= 1;
781 	}
782 }
783 
784 static inline int t4_valid_cqe(struct t4_cq *cq, struct t4_cqe *cqe)
785 {
786 	return (CQE_GENBIT(cqe) == cq->gen);
787 }
788 
789 static inline int t4_cq_notempty(struct t4_cq *cq)
790 {
791 	return cq->sw_in_use || t4_valid_cqe(cq, &cq->queue[cq->cidx]);
792 }
793 
794 static inline int t4_next_hw_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
795 {
796 	int ret;
797 	u16 prev_cidx;
798 
799 	if (cq->cidx == 0)
800 		prev_cidx = cq->size - 1;
801 	else
802 		prev_cidx = cq->cidx - 1;
803 
804 	if (cq->queue[prev_cidx].bits_type_ts != cq->bits_type_ts) {
805 		ret = -EOVERFLOW;
806 		cq->error = 1;
807 		pr_err("cq overflow cqid %u\n", cq->cqid);
808 	} else if (t4_valid_cqe(cq, &cq->queue[cq->cidx])) {
809 
810 		/* Ensure CQE is flushed to memory */
811 		rmb();
812 		*cqe = &cq->queue[cq->cidx];
813 		ret = 0;
814 	} else
815 		ret = -ENODATA;
816 	return ret;
817 }
818 
819 static inline struct t4_cqe *t4_next_sw_cqe(struct t4_cq *cq)
820 {
821 	if (cq->sw_in_use == cq->size) {
822 		pr_warn("%s cxgb4 sw cq overflow cqid %u\n",
823 			__func__, cq->cqid);
824 		cq->error = 1;
825 		return NULL;
826 	}
827 	if (cq->sw_in_use)
828 		return &cq->sw_queue[cq->sw_cidx];
829 	return NULL;
830 }
831 
832 static inline int t4_next_cqe(struct t4_cq *cq, struct t4_cqe **cqe)
833 {
834 	int ret = 0;
835 
836 	if (cq->error)
837 		ret = -ENODATA;
838 	else if (cq->sw_in_use)
839 		*cqe = &cq->sw_queue[cq->sw_cidx];
840 	else
841 		ret = t4_next_hw_cqe(cq, cqe);
842 	return ret;
843 }
844 
845 static inline int t4_cq_in_error(struct t4_cq *cq)
846 {
847 	return *cq->qp_errp;
848 }
849 
850 static inline void t4_set_cq_in_error(struct t4_cq *cq)
851 {
852 	*cq->qp_errp = 1;
853 }
854 #endif
855 
856 struct t4_dev_status_page {
857 	u8 db_off;
858 	u8 write_cmpl_supported;
859 	u16 pad2;
860 	u32 pad3;
861 	u64 qp_start;
862 	u64 qp_size;
863 	u64 cq_start;
864 	u64 cq_size;
865 };
866