1 /* 2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <rdma/ib_umem.h> 36 #include <linux/atomic.h> 37 38 #include "iw_cxgb4.h" 39 40 int use_dsgl = 0; 41 module_param(use_dsgl, int, 0644); 42 MODULE_PARM_DESC(use_dsgl, "Use DSGL for PBL/FastReg (default=0)"); 43 44 #define T4_ULPTX_MIN_IO 32 45 #define C4IW_MAX_INLINE_SIZE 96 46 #define T4_ULPTX_MAX_DMA 1024 47 #define C4IW_INLINE_THRESHOLD 128 48 49 static int inline_threshold = C4IW_INLINE_THRESHOLD; 50 module_param(inline_threshold, int, 0644); 51 MODULE_PARM_DESC(inline_threshold, "inline vs dsgl threshold (default=128)"); 52 53 static int _c4iw_write_mem_dma_aligned(struct c4iw_rdev *rdev, u32 addr, 54 u32 len, dma_addr_t data, int wait) 55 { 56 struct sk_buff *skb; 57 struct ulp_mem_io *req; 58 struct ulptx_sgl *sgl; 59 u8 wr_len; 60 int ret = 0; 61 struct c4iw_wr_wait wr_wait; 62 63 addr &= 0x7FFFFFF; 64 65 if (wait) 66 c4iw_init_wr_wait(&wr_wait); 67 wr_len = roundup(sizeof(*req) + sizeof(*sgl), 16); 68 69 skb = alloc_skb(wr_len, GFP_KERNEL | __GFP_NOFAIL); 70 if (!skb) 71 return -ENOMEM; 72 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 73 74 req = (struct ulp_mem_io *)__skb_put(skb, wr_len); 75 memset(req, 0, wr_len); 76 INIT_ULPTX_WR(req, wr_len, 0, 0); 77 req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) | 78 (wait ? FW_WR_COMPL(1) : 0)); 79 req->wr.wr_lo = wait ? (__force __be64)(unsigned long) &wr_wait : 0L; 80 req->wr.wr_mid = cpu_to_be32(FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16))); 81 req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE)); 82 req->cmd |= cpu_to_be32(V_T5_ULP_MEMIO_ORDER(1)); 83 req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(len>>5)); 84 req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 16)); 85 req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr)); 86 87 sgl = (struct ulptx_sgl *)(req + 1); 88 sgl->cmd_nsge = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_DSGL) | 89 ULPTX_NSGE(1)); 90 sgl->len0 = cpu_to_be32(len); 91 sgl->addr0 = cpu_to_be64(data); 92 93 ret = c4iw_ofld_send(rdev, skb); 94 if (ret) 95 return ret; 96 if (wait) 97 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__); 98 return ret; 99 } 100 101 static int _c4iw_write_mem_inline(struct c4iw_rdev *rdev, u32 addr, u32 len, 102 void *data) 103 { 104 struct sk_buff *skb; 105 struct ulp_mem_io *req; 106 struct ulptx_idata *sc; 107 u8 wr_len, *to_dp, *from_dp; 108 int copy_len, num_wqe, i, ret = 0; 109 struct c4iw_wr_wait wr_wait; 110 __be32 cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE)); 111 112 if (is_t4(rdev->lldi.adapter_type)) 113 cmd |= cpu_to_be32(ULP_MEMIO_ORDER(1)); 114 else 115 cmd |= cpu_to_be32(V_T5_ULP_MEMIO_IMM(1)); 116 117 addr &= 0x7FFFFFF; 118 PDBG("%s addr 0x%x len %u\n", __func__, addr, len); 119 num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE); 120 c4iw_init_wr_wait(&wr_wait); 121 for (i = 0; i < num_wqe; i++) { 122 123 copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE : 124 len; 125 wr_len = roundup(sizeof *req + sizeof *sc + 126 roundup(copy_len, T4_ULPTX_MIN_IO), 16); 127 128 skb = alloc_skb(wr_len, GFP_KERNEL); 129 if (!skb) 130 return -ENOMEM; 131 set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0); 132 133 req = (struct ulp_mem_io *)__skb_put(skb, wr_len); 134 memset(req, 0, wr_len); 135 INIT_ULPTX_WR(req, wr_len, 0, 0); 136 137 if (i == (num_wqe-1)) { 138 req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) | 139 FW_WR_COMPL(1)); 140 req->wr.wr_lo = (__force __be64)(unsigned long) &wr_wait; 141 } else 142 req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR)); 143 req->wr.wr_mid = cpu_to_be32( 144 FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16))); 145 146 req->cmd = cmd; 147 req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN( 148 DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO))); 149 req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr), 150 16)); 151 req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3)); 152 153 sc = (struct ulptx_idata *)(req + 1); 154 sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM)); 155 sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO)); 156 157 to_dp = (u8 *)(sc + 1); 158 from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE; 159 if (data) 160 memcpy(to_dp, from_dp, copy_len); 161 else 162 memset(to_dp, 0, copy_len); 163 if (copy_len % T4_ULPTX_MIN_IO) 164 memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO - 165 (copy_len % T4_ULPTX_MIN_IO)); 166 ret = c4iw_ofld_send(rdev, skb); 167 if (ret) 168 return ret; 169 len -= C4IW_MAX_INLINE_SIZE; 170 } 171 172 ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__); 173 return ret; 174 } 175 176 static int _c4iw_write_mem_dma(struct c4iw_rdev *rdev, u32 addr, u32 len, void *data) 177 { 178 u32 remain = len; 179 u32 dmalen; 180 int ret = 0; 181 dma_addr_t daddr; 182 dma_addr_t save; 183 184 daddr = dma_map_single(&rdev->lldi.pdev->dev, data, len, DMA_TO_DEVICE); 185 if (dma_mapping_error(&rdev->lldi.pdev->dev, daddr)) 186 return -1; 187 save = daddr; 188 189 while (remain > inline_threshold) { 190 if (remain < T4_ULPTX_MAX_DMA) { 191 if (remain & ~T4_ULPTX_MIN_IO) 192 dmalen = remain & ~(T4_ULPTX_MIN_IO-1); 193 else 194 dmalen = remain; 195 } else 196 dmalen = T4_ULPTX_MAX_DMA; 197 remain -= dmalen; 198 ret = _c4iw_write_mem_dma_aligned(rdev, addr, dmalen, daddr, 199 !remain); 200 if (ret) 201 goto out; 202 addr += dmalen >> 5; 203 data += dmalen; 204 daddr += dmalen; 205 } 206 if (remain) 207 ret = _c4iw_write_mem_inline(rdev, addr, remain, data); 208 out: 209 dma_unmap_single(&rdev->lldi.pdev->dev, save, len, DMA_TO_DEVICE); 210 return ret; 211 } 212 213 /* 214 * write len bytes of data into addr (32B aligned address) 215 * If data is NULL, clear len byte of memory to zero. 216 */ 217 static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len, 218 void *data) 219 { 220 if (is_t5(rdev->lldi.adapter_type) && use_dsgl) { 221 if (len > inline_threshold) { 222 if (_c4iw_write_mem_dma(rdev, addr, len, data)) { 223 printk_ratelimited(KERN_WARNING 224 "%s: dma map" 225 " failure (non fatal)\n", 226 pci_name(rdev->lldi.pdev)); 227 return _c4iw_write_mem_inline(rdev, addr, len, 228 data); 229 } else 230 return 0; 231 } else 232 return _c4iw_write_mem_inline(rdev, addr, len, data); 233 } else 234 return _c4iw_write_mem_inline(rdev, addr, len, data); 235 } 236 237 /* 238 * Build and write a TPT entry. 239 * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size, 240 * pbl_size and pbl_addr 241 * OUT: stag index 242 */ 243 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry, 244 u32 *stag, u8 stag_state, u32 pdid, 245 enum fw_ri_stag_type type, enum fw_ri_mem_perms perm, 246 int bind_enabled, u32 zbva, u64 to, 247 u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr) 248 { 249 int err; 250 struct fw_ri_tpte tpt; 251 u32 stag_idx; 252 static atomic_t key; 253 254 if (c4iw_fatal_error(rdev)) 255 return -EIO; 256 257 stag_state = stag_state > 0; 258 stag_idx = (*stag) >> 8; 259 260 if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) { 261 stag_idx = c4iw_get_resource(&rdev->resource.tpt_table); 262 if (!stag_idx) 263 return -ENOMEM; 264 mutex_lock(&rdev->stats.lock); 265 rdev->stats.stag.cur += 32; 266 if (rdev->stats.stag.cur > rdev->stats.stag.max) 267 rdev->stats.stag.max = rdev->stats.stag.cur; 268 mutex_unlock(&rdev->stats.lock); 269 *stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff); 270 } 271 PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n", 272 __func__, stag_state, type, pdid, stag_idx); 273 274 /* write TPT entry */ 275 if (reset_tpt_entry) 276 memset(&tpt, 0, sizeof(tpt)); 277 else { 278 tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID | 279 V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) | 280 V_FW_RI_TPTE_STAGSTATE(stag_state) | 281 V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid)); 282 tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) | 283 (bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) | 284 V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO : 285 FW_RI_VA_BASED_TO))| 286 V_FW_RI_TPTE_PS(page_size)); 287 tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32( 288 V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3)); 289 tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL)); 290 tpt.va_hi = cpu_to_be32((u32)(to >> 32)); 291 tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL)); 292 tpt.dca_mwbcnt_pstag = cpu_to_be32(0); 293 tpt.len_hi = cpu_to_be32((u32)(len >> 32)); 294 } 295 err = write_adapter_mem(rdev, stag_idx + 296 (rdev->lldi.vr->stag.start >> 5), 297 sizeof(tpt), &tpt); 298 299 if (reset_tpt_entry) { 300 c4iw_put_resource(&rdev->resource.tpt_table, stag_idx); 301 mutex_lock(&rdev->stats.lock); 302 rdev->stats.stag.cur -= 32; 303 mutex_unlock(&rdev->stats.lock); 304 } 305 return err; 306 } 307 308 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl, 309 u32 pbl_addr, u32 pbl_size) 310 { 311 int err; 312 313 PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n", 314 __func__, pbl_addr, rdev->lldi.vr->pbl.start, 315 pbl_size); 316 317 err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl); 318 return err; 319 } 320 321 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size, 322 u32 pbl_addr) 323 { 324 return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 325 pbl_size, pbl_addr); 326 } 327 328 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid) 329 { 330 *stag = T4_STAG_UNSET; 331 return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0, 332 0UL, 0, 0, 0, 0); 333 } 334 335 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag) 336 { 337 return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0, 338 0); 339 } 340 341 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid, 342 u32 pbl_size, u32 pbl_addr) 343 { 344 *stag = T4_STAG_UNSET; 345 return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0, 346 0UL, 0, 0, pbl_size, pbl_addr); 347 } 348 349 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag) 350 { 351 u32 mmid; 352 353 mhp->attr.state = 1; 354 mhp->attr.stag = stag; 355 mmid = stag >> 8; 356 mhp->ibmr.rkey = mhp->ibmr.lkey = stag; 357 PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp); 358 return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid); 359 } 360 361 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php, 362 struct c4iw_mr *mhp, int shift) 363 { 364 u32 stag = T4_STAG_UNSET; 365 int ret; 366 367 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid, 368 FW_RI_STAG_NSMR, mhp->attr.perms, 369 mhp->attr.mw_bind_enable, mhp->attr.zbva, 370 mhp->attr.va_fbo, mhp->attr.len, shift - 12, 371 mhp->attr.pbl_size, mhp->attr.pbl_addr); 372 if (ret) 373 return ret; 374 375 ret = finish_mem_reg(mhp, stag); 376 if (ret) 377 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, 378 mhp->attr.pbl_addr); 379 return ret; 380 } 381 382 static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php, 383 struct c4iw_mr *mhp, int shift, int npages) 384 { 385 u32 stag; 386 int ret; 387 388 if (npages > mhp->attr.pbl_size) 389 return -ENOMEM; 390 391 stag = mhp->attr.stag; 392 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid, 393 FW_RI_STAG_NSMR, mhp->attr.perms, 394 mhp->attr.mw_bind_enable, mhp->attr.zbva, 395 mhp->attr.va_fbo, mhp->attr.len, shift - 12, 396 mhp->attr.pbl_size, mhp->attr.pbl_addr); 397 if (ret) 398 return ret; 399 400 ret = finish_mem_reg(mhp, stag); 401 if (ret) 402 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, 403 mhp->attr.pbl_addr); 404 405 return ret; 406 } 407 408 static int alloc_pbl(struct c4iw_mr *mhp, int npages) 409 { 410 mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev, 411 npages << 3); 412 413 if (!mhp->attr.pbl_addr) 414 return -ENOMEM; 415 416 mhp->attr.pbl_size = npages; 417 418 return 0; 419 } 420 421 static int build_phys_page_list(struct ib_phys_buf *buffer_list, 422 int num_phys_buf, u64 *iova_start, 423 u64 *total_size, int *npages, 424 int *shift, __be64 **page_list) 425 { 426 u64 mask; 427 int i, j, n; 428 429 mask = 0; 430 *total_size = 0; 431 for (i = 0; i < num_phys_buf; ++i) { 432 if (i != 0 && buffer_list[i].addr & ~PAGE_MASK) 433 return -EINVAL; 434 if (i != 0 && i != num_phys_buf - 1 && 435 (buffer_list[i].size & ~PAGE_MASK)) 436 return -EINVAL; 437 *total_size += buffer_list[i].size; 438 if (i > 0) 439 mask |= buffer_list[i].addr; 440 else 441 mask |= buffer_list[i].addr & PAGE_MASK; 442 if (i != num_phys_buf - 1) 443 mask |= buffer_list[i].addr + buffer_list[i].size; 444 else 445 mask |= (buffer_list[i].addr + buffer_list[i].size + 446 PAGE_SIZE - 1) & PAGE_MASK; 447 } 448 449 if (*total_size > 0xFFFFFFFFULL) 450 return -ENOMEM; 451 452 /* Find largest page shift we can use to cover buffers */ 453 for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift)) 454 if ((1ULL << *shift) & mask) 455 break; 456 457 buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1); 458 buffer_list[0].addr &= ~0ull << *shift; 459 460 *npages = 0; 461 for (i = 0; i < num_phys_buf; ++i) 462 *npages += (buffer_list[i].size + 463 (1ULL << *shift) - 1) >> *shift; 464 465 if (!*npages) 466 return -EINVAL; 467 468 *page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL); 469 if (!*page_list) 470 return -ENOMEM; 471 472 n = 0; 473 for (i = 0; i < num_phys_buf; ++i) 474 for (j = 0; 475 j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift; 476 ++j) 477 (*page_list)[n++] = cpu_to_be64(buffer_list[i].addr + 478 ((u64) j << *shift)); 479 480 PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n", 481 __func__, (unsigned long long)*iova_start, 482 (unsigned long long)mask, *shift, (unsigned long long)*total_size, 483 *npages); 484 485 return 0; 486 487 } 488 489 int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask, 490 struct ib_pd *pd, struct ib_phys_buf *buffer_list, 491 int num_phys_buf, int acc, u64 *iova_start) 492 { 493 494 struct c4iw_mr mh, *mhp; 495 struct c4iw_pd *php; 496 struct c4iw_dev *rhp; 497 __be64 *page_list = NULL; 498 int shift = 0; 499 u64 total_size; 500 int npages; 501 int ret; 502 503 PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd); 504 505 /* There can be no memory windows */ 506 if (atomic_read(&mr->usecnt)) 507 return -EINVAL; 508 509 mhp = to_c4iw_mr(mr); 510 rhp = mhp->rhp; 511 php = to_c4iw_pd(mr->pd); 512 513 /* make sure we are on the same adapter */ 514 if (rhp != php->rhp) 515 return -EINVAL; 516 517 memcpy(&mh, mhp, sizeof *mhp); 518 519 if (mr_rereg_mask & IB_MR_REREG_PD) 520 php = to_c4iw_pd(pd); 521 if (mr_rereg_mask & IB_MR_REREG_ACCESS) { 522 mh.attr.perms = c4iw_ib_to_tpt_access(acc); 523 mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) == 524 IB_ACCESS_MW_BIND; 525 } 526 if (mr_rereg_mask & IB_MR_REREG_TRANS) { 527 ret = build_phys_page_list(buffer_list, num_phys_buf, 528 iova_start, 529 &total_size, &npages, 530 &shift, &page_list); 531 if (ret) 532 return ret; 533 } 534 535 ret = reregister_mem(rhp, php, &mh, shift, npages); 536 kfree(page_list); 537 if (ret) 538 return ret; 539 if (mr_rereg_mask & IB_MR_REREG_PD) 540 mhp->attr.pdid = php->pdid; 541 if (mr_rereg_mask & IB_MR_REREG_ACCESS) 542 mhp->attr.perms = c4iw_ib_to_tpt_access(acc); 543 if (mr_rereg_mask & IB_MR_REREG_TRANS) { 544 mhp->attr.zbva = 0; 545 mhp->attr.va_fbo = *iova_start; 546 mhp->attr.page_size = shift - 12; 547 mhp->attr.len = (u32) total_size; 548 mhp->attr.pbl_size = npages; 549 } 550 551 return 0; 552 } 553 554 struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd, 555 struct ib_phys_buf *buffer_list, 556 int num_phys_buf, int acc, u64 *iova_start) 557 { 558 __be64 *page_list; 559 int shift; 560 u64 total_size; 561 int npages; 562 struct c4iw_dev *rhp; 563 struct c4iw_pd *php; 564 struct c4iw_mr *mhp; 565 int ret; 566 567 PDBG("%s ib_pd %p\n", __func__, pd); 568 php = to_c4iw_pd(pd); 569 rhp = php->rhp; 570 571 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); 572 if (!mhp) 573 return ERR_PTR(-ENOMEM); 574 575 mhp->rhp = rhp; 576 577 /* First check that we have enough alignment */ 578 if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) { 579 ret = -EINVAL; 580 goto err; 581 } 582 583 if (num_phys_buf > 1 && 584 ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) { 585 ret = -EINVAL; 586 goto err; 587 } 588 589 ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start, 590 &total_size, &npages, &shift, 591 &page_list); 592 if (ret) 593 goto err; 594 595 ret = alloc_pbl(mhp, npages); 596 if (ret) { 597 kfree(page_list); 598 goto err; 599 } 600 601 ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr, 602 npages); 603 kfree(page_list); 604 if (ret) 605 goto err_pbl; 606 607 mhp->attr.pdid = php->pdid; 608 mhp->attr.zbva = 0; 609 610 mhp->attr.perms = c4iw_ib_to_tpt_access(acc); 611 mhp->attr.va_fbo = *iova_start; 612 mhp->attr.page_size = shift - 12; 613 614 mhp->attr.len = (u32) total_size; 615 mhp->attr.pbl_size = npages; 616 ret = register_mem(rhp, php, mhp, shift); 617 if (ret) 618 goto err_pbl; 619 620 return &mhp->ibmr; 621 622 err_pbl: 623 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, 624 mhp->attr.pbl_size << 3); 625 626 err: 627 kfree(mhp); 628 return ERR_PTR(ret); 629 630 } 631 632 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc) 633 { 634 struct c4iw_dev *rhp; 635 struct c4iw_pd *php; 636 struct c4iw_mr *mhp; 637 int ret; 638 u32 stag = T4_STAG_UNSET; 639 640 PDBG("%s ib_pd %p\n", __func__, pd); 641 php = to_c4iw_pd(pd); 642 rhp = php->rhp; 643 644 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); 645 if (!mhp) 646 return ERR_PTR(-ENOMEM); 647 648 mhp->rhp = rhp; 649 mhp->attr.pdid = php->pdid; 650 mhp->attr.perms = c4iw_ib_to_tpt_access(acc); 651 mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND; 652 mhp->attr.zbva = 0; 653 mhp->attr.va_fbo = 0; 654 mhp->attr.page_size = 0; 655 mhp->attr.len = ~0UL; 656 mhp->attr.pbl_size = 0; 657 658 ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid, 659 FW_RI_STAG_NSMR, mhp->attr.perms, 660 mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0); 661 if (ret) 662 goto err1; 663 664 ret = finish_mem_reg(mhp, stag); 665 if (ret) 666 goto err2; 667 return &mhp->ibmr; 668 err2: 669 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, 670 mhp->attr.pbl_addr); 671 err1: 672 kfree(mhp); 673 return ERR_PTR(ret); 674 } 675 676 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 677 u64 virt, int acc, struct ib_udata *udata) 678 { 679 __be64 *pages; 680 int shift, n, len; 681 int i, k, entry; 682 int err = 0; 683 struct scatterlist *sg; 684 struct c4iw_dev *rhp; 685 struct c4iw_pd *php; 686 struct c4iw_mr *mhp; 687 688 PDBG("%s ib_pd %p\n", __func__, pd); 689 690 if (length == ~0ULL) 691 return ERR_PTR(-EINVAL); 692 693 if ((length + start) < start) 694 return ERR_PTR(-EINVAL); 695 696 php = to_c4iw_pd(pd); 697 rhp = php->rhp; 698 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); 699 if (!mhp) 700 return ERR_PTR(-ENOMEM); 701 702 mhp->rhp = rhp; 703 704 mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0); 705 if (IS_ERR(mhp->umem)) { 706 err = PTR_ERR(mhp->umem); 707 kfree(mhp); 708 return ERR_PTR(err); 709 } 710 711 shift = ffs(mhp->umem->page_size) - 1; 712 713 n = mhp->umem->nmap; 714 err = alloc_pbl(mhp, n); 715 if (err) 716 goto err; 717 718 pages = (__be64 *) __get_free_page(GFP_KERNEL); 719 if (!pages) { 720 err = -ENOMEM; 721 goto err_pbl; 722 } 723 724 i = n = 0; 725 726 for_each_sg(mhp->umem->sg_head.sgl, sg, mhp->umem->nmap, entry) { 727 len = sg_dma_len(sg) >> shift; 728 for (k = 0; k < len; ++k) { 729 pages[i++] = cpu_to_be64(sg_dma_address(sg) + 730 mhp->umem->page_size * k); 731 if (i == PAGE_SIZE / sizeof *pages) { 732 err = write_pbl(&mhp->rhp->rdev, 733 pages, 734 mhp->attr.pbl_addr + (n << 3), i); 735 if (err) 736 goto pbl_done; 737 n += i; 738 i = 0; 739 } 740 } 741 } 742 743 if (i) 744 err = write_pbl(&mhp->rhp->rdev, pages, 745 mhp->attr.pbl_addr + (n << 3), i); 746 747 pbl_done: 748 free_page((unsigned long) pages); 749 if (err) 750 goto err_pbl; 751 752 mhp->attr.pdid = php->pdid; 753 mhp->attr.zbva = 0; 754 mhp->attr.perms = c4iw_ib_to_tpt_access(acc); 755 mhp->attr.va_fbo = virt; 756 mhp->attr.page_size = shift - 12; 757 mhp->attr.len = length; 758 759 err = register_mem(rhp, php, mhp, shift); 760 if (err) 761 goto err_pbl; 762 763 return &mhp->ibmr; 764 765 err_pbl: 766 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, 767 mhp->attr.pbl_size << 3); 768 769 err: 770 ib_umem_release(mhp->umem); 771 kfree(mhp); 772 return ERR_PTR(err); 773 } 774 775 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd, enum ib_mw_type type) 776 { 777 struct c4iw_dev *rhp; 778 struct c4iw_pd *php; 779 struct c4iw_mw *mhp; 780 u32 mmid; 781 u32 stag = 0; 782 int ret; 783 784 if (type != IB_MW_TYPE_1) 785 return ERR_PTR(-EINVAL); 786 787 php = to_c4iw_pd(pd); 788 rhp = php->rhp; 789 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); 790 if (!mhp) 791 return ERR_PTR(-ENOMEM); 792 ret = allocate_window(&rhp->rdev, &stag, php->pdid); 793 if (ret) { 794 kfree(mhp); 795 return ERR_PTR(ret); 796 } 797 mhp->rhp = rhp; 798 mhp->attr.pdid = php->pdid; 799 mhp->attr.type = FW_RI_STAG_MW; 800 mhp->attr.stag = stag; 801 mmid = (stag) >> 8; 802 mhp->ibmw.rkey = stag; 803 if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) { 804 deallocate_window(&rhp->rdev, mhp->attr.stag); 805 kfree(mhp); 806 return ERR_PTR(-ENOMEM); 807 } 808 PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag); 809 return &(mhp->ibmw); 810 } 811 812 int c4iw_dealloc_mw(struct ib_mw *mw) 813 { 814 struct c4iw_dev *rhp; 815 struct c4iw_mw *mhp; 816 u32 mmid; 817 818 mhp = to_c4iw_mw(mw); 819 rhp = mhp->rhp; 820 mmid = (mw->rkey) >> 8; 821 remove_handle(rhp, &rhp->mmidr, mmid); 822 deallocate_window(&rhp->rdev, mhp->attr.stag); 823 kfree(mhp); 824 PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp); 825 return 0; 826 } 827 828 struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth) 829 { 830 struct c4iw_dev *rhp; 831 struct c4iw_pd *php; 832 struct c4iw_mr *mhp; 833 u32 mmid; 834 u32 stag = 0; 835 int ret = 0; 836 837 php = to_c4iw_pd(pd); 838 rhp = php->rhp; 839 mhp = kzalloc(sizeof(*mhp), GFP_KERNEL); 840 if (!mhp) { 841 ret = -ENOMEM; 842 goto err; 843 } 844 845 mhp->rhp = rhp; 846 ret = alloc_pbl(mhp, pbl_depth); 847 if (ret) 848 goto err1; 849 mhp->attr.pbl_size = pbl_depth; 850 ret = allocate_stag(&rhp->rdev, &stag, php->pdid, 851 mhp->attr.pbl_size, mhp->attr.pbl_addr); 852 if (ret) 853 goto err2; 854 mhp->attr.pdid = php->pdid; 855 mhp->attr.type = FW_RI_STAG_NSMR; 856 mhp->attr.stag = stag; 857 mhp->attr.state = 1; 858 mmid = (stag) >> 8; 859 mhp->ibmr.rkey = mhp->ibmr.lkey = stag; 860 if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) { 861 ret = -ENOMEM; 862 goto err3; 863 } 864 865 PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag); 866 return &(mhp->ibmr); 867 err3: 868 dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size, 869 mhp->attr.pbl_addr); 870 err2: 871 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, 872 mhp->attr.pbl_size << 3); 873 err1: 874 kfree(mhp); 875 err: 876 return ERR_PTR(ret); 877 } 878 879 struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device, 880 int page_list_len) 881 { 882 struct c4iw_fr_page_list *c4pl; 883 struct c4iw_dev *dev = to_c4iw_dev(device); 884 dma_addr_t dma_addr; 885 int pll_len = roundup(page_list_len * sizeof(u64), 32); 886 887 c4pl = kmalloc(sizeof(*c4pl), GFP_KERNEL); 888 if (!c4pl) 889 return ERR_PTR(-ENOMEM); 890 891 c4pl->ibpl.page_list = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev, 892 pll_len, &dma_addr, 893 GFP_KERNEL); 894 if (!c4pl->ibpl.page_list) { 895 kfree(c4pl); 896 return ERR_PTR(-ENOMEM); 897 } 898 dma_unmap_addr_set(c4pl, mapping, dma_addr); 899 c4pl->dma_addr = dma_addr; 900 c4pl->dev = dev; 901 c4pl->pll_len = pll_len; 902 903 PDBG("%s c4pl %p pll_len %u page_list %p dma_addr %pad\n", 904 __func__, c4pl, c4pl->pll_len, c4pl->ibpl.page_list, 905 &c4pl->dma_addr); 906 907 return &c4pl->ibpl; 908 } 909 910 void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl) 911 { 912 struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl); 913 914 PDBG("%s c4pl %p pll_len %u page_list %p dma_addr %pad\n", 915 __func__, c4pl, c4pl->pll_len, c4pl->ibpl.page_list, 916 &c4pl->dma_addr); 917 918 dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev, 919 c4pl->pll_len, 920 c4pl->ibpl.page_list, dma_unmap_addr(c4pl, mapping)); 921 kfree(c4pl); 922 } 923 924 int c4iw_dereg_mr(struct ib_mr *ib_mr) 925 { 926 struct c4iw_dev *rhp; 927 struct c4iw_mr *mhp; 928 u32 mmid; 929 930 PDBG("%s ib_mr %p\n", __func__, ib_mr); 931 /* There can be no memory windows */ 932 if (atomic_read(&ib_mr->usecnt)) 933 return -EINVAL; 934 935 mhp = to_c4iw_mr(ib_mr); 936 rhp = mhp->rhp; 937 mmid = mhp->attr.stag >> 8; 938 remove_handle(rhp, &rhp->mmidr, mmid); 939 dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size, 940 mhp->attr.pbl_addr); 941 if (mhp->attr.pbl_size) 942 c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr, 943 mhp->attr.pbl_size << 3); 944 if (mhp->kva) 945 kfree((void *) (unsigned long) mhp->kva); 946 if (mhp->umem) 947 ib_umem_release(mhp->umem); 948 PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp); 949 kfree(mhp); 950 return 0; 951 } 952