xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/mem.c (revision 0d456bad)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and/or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/ib_umem.h>
34 #include <linux/atomic.h>
35 
36 #include "iw_cxgb4.h"
37 
38 #define T4_ULPTX_MIN_IO 32
39 #define C4IW_MAX_INLINE_SIZE 96
40 
41 static int write_adapter_mem(struct c4iw_rdev *rdev, u32 addr, u32 len,
42 			     void *data)
43 {
44 	struct sk_buff *skb;
45 	struct ulp_mem_io *req;
46 	struct ulptx_idata *sc;
47 	u8 wr_len, *to_dp, *from_dp;
48 	int copy_len, num_wqe, i, ret = 0;
49 	struct c4iw_wr_wait wr_wait;
50 
51 	addr &= 0x7FFFFFF;
52 	PDBG("%s addr 0x%x len %u\n", __func__, addr, len);
53 	num_wqe = DIV_ROUND_UP(len, C4IW_MAX_INLINE_SIZE);
54 	c4iw_init_wr_wait(&wr_wait);
55 	for (i = 0; i < num_wqe; i++) {
56 
57 		copy_len = len > C4IW_MAX_INLINE_SIZE ? C4IW_MAX_INLINE_SIZE :
58 			   len;
59 		wr_len = roundup(sizeof *req + sizeof *sc +
60 				 roundup(copy_len, T4_ULPTX_MIN_IO), 16);
61 
62 		skb = alloc_skb(wr_len, GFP_KERNEL);
63 		if (!skb)
64 			return -ENOMEM;
65 		set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
66 
67 		req = (struct ulp_mem_io *)__skb_put(skb, wr_len);
68 		memset(req, 0, wr_len);
69 		INIT_ULPTX_WR(req, wr_len, 0, 0);
70 
71 		if (i == (num_wqe-1)) {
72 			req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR) |
73 						    FW_WR_COMPL(1));
74 			req->wr.wr_lo = (__force __be64)(unsigned long) &wr_wait;
75 		} else
76 			req->wr.wr_hi = cpu_to_be32(FW_WR_OP(FW_ULPTX_WR));
77 		req->wr.wr_mid = cpu_to_be32(
78 				       FW_WR_LEN16(DIV_ROUND_UP(wr_len, 16)));
79 
80 		req->cmd = cpu_to_be32(ULPTX_CMD(ULP_TX_MEM_WRITE) | (1<<23));
81 		req->dlen = cpu_to_be32(ULP_MEMIO_DATA_LEN(
82 				DIV_ROUND_UP(copy_len, T4_ULPTX_MIN_IO)));
83 		req->len16 = cpu_to_be32(DIV_ROUND_UP(wr_len-sizeof(req->wr),
84 						      16));
85 		req->lock_addr = cpu_to_be32(ULP_MEMIO_ADDR(addr + i * 3));
86 
87 		sc = (struct ulptx_idata *)(req + 1);
88 		sc->cmd_more = cpu_to_be32(ULPTX_CMD(ULP_TX_SC_IMM));
89 		sc->len = cpu_to_be32(roundup(copy_len, T4_ULPTX_MIN_IO));
90 
91 		to_dp = (u8 *)(sc + 1);
92 		from_dp = (u8 *)data + i * C4IW_MAX_INLINE_SIZE;
93 		if (data)
94 			memcpy(to_dp, from_dp, copy_len);
95 		else
96 			memset(to_dp, 0, copy_len);
97 		if (copy_len % T4_ULPTX_MIN_IO)
98 			memset(to_dp + copy_len, 0, T4_ULPTX_MIN_IO -
99 			       (copy_len % T4_ULPTX_MIN_IO));
100 		ret = c4iw_ofld_send(rdev, skb);
101 		if (ret)
102 			return ret;
103 		len -= C4IW_MAX_INLINE_SIZE;
104 	}
105 
106 	ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
107 	return ret;
108 }
109 
110 /*
111  * Build and write a TPT entry.
112  * IN: stag key, pdid, perm, bind_enabled, zbva, to, len, page_size,
113  *     pbl_size and pbl_addr
114  * OUT: stag index
115  */
116 static int write_tpt_entry(struct c4iw_rdev *rdev, u32 reset_tpt_entry,
117 			   u32 *stag, u8 stag_state, u32 pdid,
118 			   enum fw_ri_stag_type type, enum fw_ri_mem_perms perm,
119 			   int bind_enabled, u32 zbva, u64 to,
120 			   u64 len, u8 page_size, u32 pbl_size, u32 pbl_addr)
121 {
122 	int err;
123 	struct fw_ri_tpte tpt;
124 	u32 stag_idx;
125 	static atomic_t key;
126 
127 	if (c4iw_fatal_error(rdev))
128 		return -EIO;
129 
130 	stag_state = stag_state > 0;
131 	stag_idx = (*stag) >> 8;
132 
133 	if ((!reset_tpt_entry) && (*stag == T4_STAG_UNSET)) {
134 		stag_idx = c4iw_get_resource(&rdev->resource.tpt_table);
135 		if (!stag_idx)
136 			return -ENOMEM;
137 		mutex_lock(&rdev->stats.lock);
138 		rdev->stats.stag.cur += 32;
139 		if (rdev->stats.stag.cur > rdev->stats.stag.max)
140 			rdev->stats.stag.max = rdev->stats.stag.cur;
141 		mutex_unlock(&rdev->stats.lock);
142 		*stag = (stag_idx << 8) | (atomic_inc_return(&key) & 0xff);
143 	}
144 	PDBG("%s stag_state 0x%0x type 0x%0x pdid 0x%0x, stag_idx 0x%x\n",
145 	     __func__, stag_state, type, pdid, stag_idx);
146 
147 	/* write TPT entry */
148 	if (reset_tpt_entry)
149 		memset(&tpt, 0, sizeof(tpt));
150 	else {
151 		tpt.valid_to_pdid = cpu_to_be32(F_FW_RI_TPTE_VALID |
152 			V_FW_RI_TPTE_STAGKEY((*stag & M_FW_RI_TPTE_STAGKEY)) |
153 			V_FW_RI_TPTE_STAGSTATE(stag_state) |
154 			V_FW_RI_TPTE_STAGTYPE(type) | V_FW_RI_TPTE_PDID(pdid));
155 		tpt.locread_to_qpid = cpu_to_be32(V_FW_RI_TPTE_PERM(perm) |
156 			(bind_enabled ? F_FW_RI_TPTE_MWBINDEN : 0) |
157 			V_FW_RI_TPTE_ADDRTYPE((zbva ? FW_RI_ZERO_BASED_TO :
158 						      FW_RI_VA_BASED_TO))|
159 			V_FW_RI_TPTE_PS(page_size));
160 		tpt.nosnoop_pbladdr = !pbl_size ? 0 : cpu_to_be32(
161 			V_FW_RI_TPTE_PBLADDR(PBL_OFF(rdev, pbl_addr)>>3));
162 		tpt.len_lo = cpu_to_be32((u32)(len & 0xffffffffUL));
163 		tpt.va_hi = cpu_to_be32((u32)(to >> 32));
164 		tpt.va_lo_fbo = cpu_to_be32((u32)(to & 0xffffffffUL));
165 		tpt.dca_mwbcnt_pstag = cpu_to_be32(0);
166 		tpt.len_hi = cpu_to_be32((u32)(len >> 32));
167 	}
168 	err = write_adapter_mem(rdev, stag_idx +
169 				(rdev->lldi.vr->stag.start >> 5),
170 				sizeof(tpt), &tpt);
171 
172 	if (reset_tpt_entry) {
173 		c4iw_put_resource(&rdev->resource.tpt_table, stag_idx);
174 		mutex_lock(&rdev->stats.lock);
175 		rdev->stats.stag.cur -= 32;
176 		mutex_unlock(&rdev->stats.lock);
177 	}
178 	return err;
179 }
180 
181 static int write_pbl(struct c4iw_rdev *rdev, __be64 *pbl,
182 		     u32 pbl_addr, u32 pbl_size)
183 {
184 	int err;
185 
186 	PDBG("%s *pdb_addr 0x%x, pbl_base 0x%x, pbl_size %d\n",
187 	     __func__, pbl_addr, rdev->lldi.vr->pbl.start,
188 	     pbl_size);
189 
190 	err = write_adapter_mem(rdev, pbl_addr >> 5, pbl_size << 3, pbl);
191 	return err;
192 }
193 
194 static int dereg_mem(struct c4iw_rdev *rdev, u32 stag, u32 pbl_size,
195 		     u32 pbl_addr)
196 {
197 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0,
198 			       pbl_size, pbl_addr);
199 }
200 
201 static int allocate_window(struct c4iw_rdev *rdev, u32 * stag, u32 pdid)
202 {
203 	*stag = T4_STAG_UNSET;
204 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_MW, 0, 0, 0,
205 			       0UL, 0, 0, 0, 0);
206 }
207 
208 static int deallocate_window(struct c4iw_rdev *rdev, u32 stag)
209 {
210 	return write_tpt_entry(rdev, 1, &stag, 0, 0, 0, 0, 0, 0, 0UL, 0, 0, 0,
211 			       0);
212 }
213 
214 static int allocate_stag(struct c4iw_rdev *rdev, u32 *stag, u32 pdid,
215 			 u32 pbl_size, u32 pbl_addr)
216 {
217 	*stag = T4_STAG_UNSET;
218 	return write_tpt_entry(rdev, 0, stag, 0, pdid, FW_RI_STAG_NSMR, 0, 0, 0,
219 			       0UL, 0, 0, pbl_size, pbl_addr);
220 }
221 
222 static int finish_mem_reg(struct c4iw_mr *mhp, u32 stag)
223 {
224 	u32 mmid;
225 
226 	mhp->attr.state = 1;
227 	mhp->attr.stag = stag;
228 	mmid = stag >> 8;
229 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
230 	PDBG("%s mmid 0x%x mhp %p\n", __func__, mmid, mhp);
231 	return insert_handle(mhp->rhp, &mhp->rhp->mmidr, mhp, mmid);
232 }
233 
234 static int register_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
235 		      struct c4iw_mr *mhp, int shift)
236 {
237 	u32 stag = T4_STAG_UNSET;
238 	int ret;
239 
240 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
241 			      FW_RI_STAG_NSMR, mhp->attr.perms,
242 			      mhp->attr.mw_bind_enable, mhp->attr.zbva,
243 			      mhp->attr.va_fbo, mhp->attr.len, shift - 12,
244 			      mhp->attr.pbl_size, mhp->attr.pbl_addr);
245 	if (ret)
246 		return ret;
247 
248 	ret = finish_mem_reg(mhp, stag);
249 	if (ret)
250 		dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
251 		       mhp->attr.pbl_addr);
252 	return ret;
253 }
254 
255 static int reregister_mem(struct c4iw_dev *rhp, struct c4iw_pd *php,
256 			  struct c4iw_mr *mhp, int shift, int npages)
257 {
258 	u32 stag;
259 	int ret;
260 
261 	if (npages > mhp->attr.pbl_size)
262 		return -ENOMEM;
263 
264 	stag = mhp->attr.stag;
265 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, mhp->attr.pdid,
266 			      FW_RI_STAG_NSMR, mhp->attr.perms,
267 			      mhp->attr.mw_bind_enable, mhp->attr.zbva,
268 			      mhp->attr.va_fbo, mhp->attr.len, shift - 12,
269 			      mhp->attr.pbl_size, mhp->attr.pbl_addr);
270 	if (ret)
271 		return ret;
272 
273 	ret = finish_mem_reg(mhp, stag);
274 	if (ret)
275 		dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
276 		       mhp->attr.pbl_addr);
277 
278 	return ret;
279 }
280 
281 static int alloc_pbl(struct c4iw_mr *mhp, int npages)
282 {
283 	mhp->attr.pbl_addr = c4iw_pblpool_alloc(&mhp->rhp->rdev,
284 						    npages << 3);
285 
286 	if (!mhp->attr.pbl_addr)
287 		return -ENOMEM;
288 
289 	mhp->attr.pbl_size = npages;
290 
291 	return 0;
292 }
293 
294 static int build_phys_page_list(struct ib_phys_buf *buffer_list,
295 				int num_phys_buf, u64 *iova_start,
296 				u64 *total_size, int *npages,
297 				int *shift, __be64 **page_list)
298 {
299 	u64 mask;
300 	int i, j, n;
301 
302 	mask = 0;
303 	*total_size = 0;
304 	for (i = 0; i < num_phys_buf; ++i) {
305 		if (i != 0 && buffer_list[i].addr & ~PAGE_MASK)
306 			return -EINVAL;
307 		if (i != 0 && i != num_phys_buf - 1 &&
308 		    (buffer_list[i].size & ~PAGE_MASK))
309 			return -EINVAL;
310 		*total_size += buffer_list[i].size;
311 		if (i > 0)
312 			mask |= buffer_list[i].addr;
313 		else
314 			mask |= buffer_list[i].addr & PAGE_MASK;
315 		if (i != num_phys_buf - 1)
316 			mask |= buffer_list[i].addr + buffer_list[i].size;
317 		else
318 			mask |= (buffer_list[i].addr + buffer_list[i].size +
319 				PAGE_SIZE - 1) & PAGE_MASK;
320 	}
321 
322 	if (*total_size > 0xFFFFFFFFULL)
323 		return -ENOMEM;
324 
325 	/* Find largest page shift we can use to cover buffers */
326 	for (*shift = PAGE_SHIFT; *shift < 27; ++(*shift))
327 		if ((1ULL << *shift) & mask)
328 			break;
329 
330 	buffer_list[0].size += buffer_list[0].addr & ((1ULL << *shift) - 1);
331 	buffer_list[0].addr &= ~0ull << *shift;
332 
333 	*npages = 0;
334 	for (i = 0; i < num_phys_buf; ++i)
335 		*npages += (buffer_list[i].size +
336 			(1ULL << *shift) - 1) >> *shift;
337 
338 	if (!*npages)
339 		return -EINVAL;
340 
341 	*page_list = kmalloc(sizeof(u64) * *npages, GFP_KERNEL);
342 	if (!*page_list)
343 		return -ENOMEM;
344 
345 	n = 0;
346 	for (i = 0; i < num_phys_buf; ++i)
347 		for (j = 0;
348 		     j < (buffer_list[i].size + (1ULL << *shift) - 1) >> *shift;
349 		     ++j)
350 			(*page_list)[n++] = cpu_to_be64(buffer_list[i].addr +
351 			    ((u64) j << *shift));
352 
353 	PDBG("%s va 0x%llx mask 0x%llx shift %d len %lld pbl_size %d\n",
354 	     __func__, (unsigned long long)*iova_start,
355 	     (unsigned long long)mask, *shift, (unsigned long long)*total_size,
356 	     *npages);
357 
358 	return 0;
359 
360 }
361 
362 int c4iw_reregister_phys_mem(struct ib_mr *mr, int mr_rereg_mask,
363 			     struct ib_pd *pd, struct ib_phys_buf *buffer_list,
364 			     int num_phys_buf, int acc, u64 *iova_start)
365 {
366 
367 	struct c4iw_mr mh, *mhp;
368 	struct c4iw_pd *php;
369 	struct c4iw_dev *rhp;
370 	__be64 *page_list = NULL;
371 	int shift = 0;
372 	u64 total_size;
373 	int npages;
374 	int ret;
375 
376 	PDBG("%s ib_mr %p ib_pd %p\n", __func__, mr, pd);
377 
378 	/* There can be no memory windows */
379 	if (atomic_read(&mr->usecnt))
380 		return -EINVAL;
381 
382 	mhp = to_c4iw_mr(mr);
383 	rhp = mhp->rhp;
384 	php = to_c4iw_pd(mr->pd);
385 
386 	/* make sure we are on the same adapter */
387 	if (rhp != php->rhp)
388 		return -EINVAL;
389 
390 	memcpy(&mh, mhp, sizeof *mhp);
391 
392 	if (mr_rereg_mask & IB_MR_REREG_PD)
393 		php = to_c4iw_pd(pd);
394 	if (mr_rereg_mask & IB_MR_REREG_ACCESS) {
395 		mh.attr.perms = c4iw_ib_to_tpt_access(acc);
396 		mh.attr.mw_bind_enable = (acc & IB_ACCESS_MW_BIND) ==
397 					 IB_ACCESS_MW_BIND;
398 	}
399 	if (mr_rereg_mask & IB_MR_REREG_TRANS) {
400 		ret = build_phys_page_list(buffer_list, num_phys_buf,
401 						iova_start,
402 						&total_size, &npages,
403 						&shift, &page_list);
404 		if (ret)
405 			return ret;
406 	}
407 
408 	ret = reregister_mem(rhp, php, &mh, shift, npages);
409 	kfree(page_list);
410 	if (ret)
411 		return ret;
412 	if (mr_rereg_mask & IB_MR_REREG_PD)
413 		mhp->attr.pdid = php->pdid;
414 	if (mr_rereg_mask & IB_MR_REREG_ACCESS)
415 		mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
416 	if (mr_rereg_mask & IB_MR_REREG_TRANS) {
417 		mhp->attr.zbva = 0;
418 		mhp->attr.va_fbo = *iova_start;
419 		mhp->attr.page_size = shift - 12;
420 		mhp->attr.len = (u32) total_size;
421 		mhp->attr.pbl_size = npages;
422 	}
423 
424 	return 0;
425 }
426 
427 struct ib_mr *c4iw_register_phys_mem(struct ib_pd *pd,
428 				     struct ib_phys_buf *buffer_list,
429 				     int num_phys_buf, int acc, u64 *iova_start)
430 {
431 	__be64 *page_list;
432 	int shift;
433 	u64 total_size;
434 	int npages;
435 	struct c4iw_dev *rhp;
436 	struct c4iw_pd *php;
437 	struct c4iw_mr *mhp;
438 	int ret;
439 
440 	PDBG("%s ib_pd %p\n", __func__, pd);
441 	php = to_c4iw_pd(pd);
442 	rhp = php->rhp;
443 
444 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
445 	if (!mhp)
446 		return ERR_PTR(-ENOMEM);
447 
448 	mhp->rhp = rhp;
449 
450 	/* First check that we have enough alignment */
451 	if ((*iova_start & ~PAGE_MASK) != (buffer_list[0].addr & ~PAGE_MASK)) {
452 		ret = -EINVAL;
453 		goto err;
454 	}
455 
456 	if (num_phys_buf > 1 &&
457 	    ((buffer_list[0].addr + buffer_list[0].size) & ~PAGE_MASK)) {
458 		ret = -EINVAL;
459 		goto err;
460 	}
461 
462 	ret = build_phys_page_list(buffer_list, num_phys_buf, iova_start,
463 					&total_size, &npages, &shift,
464 					&page_list);
465 	if (ret)
466 		goto err;
467 
468 	ret = alloc_pbl(mhp, npages);
469 	if (ret) {
470 		kfree(page_list);
471 		goto err;
472 	}
473 
474 	ret = write_pbl(&mhp->rhp->rdev, page_list, mhp->attr.pbl_addr,
475 			     npages);
476 	kfree(page_list);
477 	if (ret)
478 		goto err_pbl;
479 
480 	mhp->attr.pdid = php->pdid;
481 	mhp->attr.zbva = 0;
482 
483 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
484 	mhp->attr.va_fbo = *iova_start;
485 	mhp->attr.page_size = shift - 12;
486 
487 	mhp->attr.len = (u32) total_size;
488 	mhp->attr.pbl_size = npages;
489 	ret = register_mem(rhp, php, mhp, shift);
490 	if (ret)
491 		goto err_pbl;
492 
493 	return &mhp->ibmr;
494 
495 err_pbl:
496 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
497 			      mhp->attr.pbl_size << 3);
498 
499 err:
500 	kfree(mhp);
501 	return ERR_PTR(ret);
502 
503 }
504 
505 struct ib_mr *c4iw_get_dma_mr(struct ib_pd *pd, int acc)
506 {
507 	struct c4iw_dev *rhp;
508 	struct c4iw_pd *php;
509 	struct c4iw_mr *mhp;
510 	int ret;
511 	u32 stag = T4_STAG_UNSET;
512 
513 	PDBG("%s ib_pd %p\n", __func__, pd);
514 	php = to_c4iw_pd(pd);
515 	rhp = php->rhp;
516 
517 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
518 	if (!mhp)
519 		return ERR_PTR(-ENOMEM);
520 
521 	mhp->rhp = rhp;
522 	mhp->attr.pdid = php->pdid;
523 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
524 	mhp->attr.mw_bind_enable = (acc&IB_ACCESS_MW_BIND) == IB_ACCESS_MW_BIND;
525 	mhp->attr.zbva = 0;
526 	mhp->attr.va_fbo = 0;
527 	mhp->attr.page_size = 0;
528 	mhp->attr.len = ~0UL;
529 	mhp->attr.pbl_size = 0;
530 
531 	ret = write_tpt_entry(&rhp->rdev, 0, &stag, 1, php->pdid,
532 			      FW_RI_STAG_NSMR, mhp->attr.perms,
533 			      mhp->attr.mw_bind_enable, 0, 0, ~0UL, 0, 0, 0);
534 	if (ret)
535 		goto err1;
536 
537 	ret = finish_mem_reg(mhp, stag);
538 	if (ret)
539 		goto err2;
540 	return &mhp->ibmr;
541 err2:
542 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
543 		  mhp->attr.pbl_addr);
544 err1:
545 	kfree(mhp);
546 	return ERR_PTR(ret);
547 }
548 
549 struct ib_mr *c4iw_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
550 			       u64 virt, int acc, struct ib_udata *udata)
551 {
552 	__be64 *pages;
553 	int shift, n, len;
554 	int i, j, k;
555 	int err = 0;
556 	struct ib_umem_chunk *chunk;
557 	struct c4iw_dev *rhp;
558 	struct c4iw_pd *php;
559 	struct c4iw_mr *mhp;
560 
561 	PDBG("%s ib_pd %p\n", __func__, pd);
562 
563 	if (length == ~0ULL)
564 		return ERR_PTR(-EINVAL);
565 
566 	if ((length + start) < start)
567 		return ERR_PTR(-EINVAL);
568 
569 	php = to_c4iw_pd(pd);
570 	rhp = php->rhp;
571 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
572 	if (!mhp)
573 		return ERR_PTR(-ENOMEM);
574 
575 	mhp->rhp = rhp;
576 
577 	mhp->umem = ib_umem_get(pd->uobject->context, start, length, acc, 0);
578 	if (IS_ERR(mhp->umem)) {
579 		err = PTR_ERR(mhp->umem);
580 		kfree(mhp);
581 		return ERR_PTR(err);
582 	}
583 
584 	shift = ffs(mhp->umem->page_size) - 1;
585 
586 	n = 0;
587 	list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
588 		n += chunk->nents;
589 
590 	err = alloc_pbl(mhp, n);
591 	if (err)
592 		goto err;
593 
594 	pages = (__be64 *) __get_free_page(GFP_KERNEL);
595 	if (!pages) {
596 		err = -ENOMEM;
597 		goto err_pbl;
598 	}
599 
600 	i = n = 0;
601 
602 	list_for_each_entry(chunk, &mhp->umem->chunk_list, list)
603 		for (j = 0; j < chunk->nmap; ++j) {
604 			len = sg_dma_len(&chunk->page_list[j]) >> shift;
605 			for (k = 0; k < len; ++k) {
606 				pages[i++] = cpu_to_be64(sg_dma_address(
607 					&chunk->page_list[j]) +
608 					mhp->umem->page_size * k);
609 				if (i == PAGE_SIZE / sizeof *pages) {
610 					err = write_pbl(&mhp->rhp->rdev,
611 					      pages,
612 					      mhp->attr.pbl_addr + (n << 3), i);
613 					if (err)
614 						goto pbl_done;
615 					n += i;
616 					i = 0;
617 				}
618 			}
619 		}
620 
621 	if (i)
622 		err = write_pbl(&mhp->rhp->rdev, pages,
623 				     mhp->attr.pbl_addr + (n << 3), i);
624 
625 pbl_done:
626 	free_page((unsigned long) pages);
627 	if (err)
628 		goto err_pbl;
629 
630 	mhp->attr.pdid = php->pdid;
631 	mhp->attr.zbva = 0;
632 	mhp->attr.perms = c4iw_ib_to_tpt_access(acc);
633 	mhp->attr.va_fbo = virt;
634 	mhp->attr.page_size = shift - 12;
635 	mhp->attr.len = length;
636 
637 	err = register_mem(rhp, php, mhp, shift);
638 	if (err)
639 		goto err_pbl;
640 
641 	return &mhp->ibmr;
642 
643 err_pbl:
644 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
645 			      mhp->attr.pbl_size << 3);
646 
647 err:
648 	ib_umem_release(mhp->umem);
649 	kfree(mhp);
650 	return ERR_PTR(err);
651 }
652 
653 struct ib_mw *c4iw_alloc_mw(struct ib_pd *pd)
654 {
655 	struct c4iw_dev *rhp;
656 	struct c4iw_pd *php;
657 	struct c4iw_mw *mhp;
658 	u32 mmid;
659 	u32 stag = 0;
660 	int ret;
661 
662 	php = to_c4iw_pd(pd);
663 	rhp = php->rhp;
664 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
665 	if (!mhp)
666 		return ERR_PTR(-ENOMEM);
667 	ret = allocate_window(&rhp->rdev, &stag, php->pdid);
668 	if (ret) {
669 		kfree(mhp);
670 		return ERR_PTR(ret);
671 	}
672 	mhp->rhp = rhp;
673 	mhp->attr.pdid = php->pdid;
674 	mhp->attr.type = FW_RI_STAG_MW;
675 	mhp->attr.stag = stag;
676 	mmid = (stag) >> 8;
677 	mhp->ibmw.rkey = stag;
678 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
679 		deallocate_window(&rhp->rdev, mhp->attr.stag);
680 		kfree(mhp);
681 		return ERR_PTR(-ENOMEM);
682 	}
683 	PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
684 	return &(mhp->ibmw);
685 }
686 
687 int c4iw_dealloc_mw(struct ib_mw *mw)
688 {
689 	struct c4iw_dev *rhp;
690 	struct c4iw_mw *mhp;
691 	u32 mmid;
692 
693 	mhp = to_c4iw_mw(mw);
694 	rhp = mhp->rhp;
695 	mmid = (mw->rkey) >> 8;
696 	remove_handle(rhp, &rhp->mmidr, mmid);
697 	deallocate_window(&rhp->rdev, mhp->attr.stag);
698 	kfree(mhp);
699 	PDBG("%s ib_mw %p mmid 0x%x ptr %p\n", __func__, mw, mmid, mhp);
700 	return 0;
701 }
702 
703 struct ib_mr *c4iw_alloc_fast_reg_mr(struct ib_pd *pd, int pbl_depth)
704 {
705 	struct c4iw_dev *rhp;
706 	struct c4iw_pd *php;
707 	struct c4iw_mr *mhp;
708 	u32 mmid;
709 	u32 stag = 0;
710 	int ret = 0;
711 
712 	php = to_c4iw_pd(pd);
713 	rhp = php->rhp;
714 	mhp = kzalloc(sizeof(*mhp), GFP_KERNEL);
715 	if (!mhp) {
716 		ret = -ENOMEM;
717 		goto err;
718 	}
719 
720 	mhp->rhp = rhp;
721 	ret = alloc_pbl(mhp, pbl_depth);
722 	if (ret)
723 		goto err1;
724 	mhp->attr.pbl_size = pbl_depth;
725 	ret = allocate_stag(&rhp->rdev, &stag, php->pdid,
726 				 mhp->attr.pbl_size, mhp->attr.pbl_addr);
727 	if (ret)
728 		goto err2;
729 	mhp->attr.pdid = php->pdid;
730 	mhp->attr.type = FW_RI_STAG_NSMR;
731 	mhp->attr.stag = stag;
732 	mhp->attr.state = 1;
733 	mmid = (stag) >> 8;
734 	mhp->ibmr.rkey = mhp->ibmr.lkey = stag;
735 	if (insert_handle(rhp, &rhp->mmidr, mhp, mmid)) {
736 		ret = -ENOMEM;
737 		goto err3;
738 	}
739 
740 	PDBG("%s mmid 0x%x mhp %p stag 0x%x\n", __func__, mmid, mhp, stag);
741 	return &(mhp->ibmr);
742 err3:
743 	dereg_mem(&rhp->rdev, stag, mhp->attr.pbl_size,
744 		       mhp->attr.pbl_addr);
745 err2:
746 	c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
747 			      mhp->attr.pbl_size << 3);
748 err1:
749 	kfree(mhp);
750 err:
751 	return ERR_PTR(ret);
752 }
753 
754 struct ib_fast_reg_page_list *c4iw_alloc_fastreg_pbl(struct ib_device *device,
755 						     int page_list_len)
756 {
757 	struct c4iw_fr_page_list *c4pl;
758 	struct c4iw_dev *dev = to_c4iw_dev(device);
759 	dma_addr_t dma_addr;
760 	int size = sizeof *c4pl + page_list_len * sizeof(u64);
761 
762 	c4pl = dma_alloc_coherent(&dev->rdev.lldi.pdev->dev, size,
763 				  &dma_addr, GFP_KERNEL);
764 	if (!c4pl)
765 		return ERR_PTR(-ENOMEM);
766 
767 	dma_unmap_addr_set(c4pl, mapping, dma_addr);
768 	c4pl->dma_addr = dma_addr;
769 	c4pl->dev = dev;
770 	c4pl->size = size;
771 	c4pl->ibpl.page_list = (u64 *)(c4pl + 1);
772 	c4pl->ibpl.max_page_list_len = page_list_len;
773 
774 	return &c4pl->ibpl;
775 }
776 
777 void c4iw_free_fastreg_pbl(struct ib_fast_reg_page_list *ibpl)
778 {
779 	struct c4iw_fr_page_list *c4pl = to_c4iw_fr_page_list(ibpl);
780 
781 	dma_free_coherent(&c4pl->dev->rdev.lldi.pdev->dev, c4pl->size,
782 			  c4pl, dma_unmap_addr(c4pl, mapping));
783 }
784 
785 int c4iw_dereg_mr(struct ib_mr *ib_mr)
786 {
787 	struct c4iw_dev *rhp;
788 	struct c4iw_mr *mhp;
789 	u32 mmid;
790 
791 	PDBG("%s ib_mr %p\n", __func__, ib_mr);
792 	/* There can be no memory windows */
793 	if (atomic_read(&ib_mr->usecnt))
794 		return -EINVAL;
795 
796 	mhp = to_c4iw_mr(ib_mr);
797 	rhp = mhp->rhp;
798 	mmid = mhp->attr.stag >> 8;
799 	remove_handle(rhp, &rhp->mmidr, mmid);
800 	dereg_mem(&rhp->rdev, mhp->attr.stag, mhp->attr.pbl_size,
801 		       mhp->attr.pbl_addr);
802 	if (mhp->attr.pbl_size)
803 		c4iw_pblpool_free(&mhp->rhp->rdev, mhp->attr.pbl_addr,
804 				  mhp->attr.pbl_size << 3);
805 	if (mhp->kva)
806 		kfree((void *) (unsigned long) mhp->kva);
807 	if (mhp->umem)
808 		ib_umem_release(mhp->umem);
809 	PDBG("%s mmid 0x%x ptr %p\n", __func__, mmid, mhp);
810 	kfree(mhp);
811 	return 0;
812 }
813