1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37 
38 #include <rdma/ib_verbs.h>
39 
40 #include "iw_cxgb4.h"
41 
42 #define DRV_VERSION "0.1"
43 
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47 
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 		 "Allow DB Flow Control on T5 (default = 0)");
52 
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 		 "Allow DB Coalescing on T5 (default = 0)");
57 
58 int c4iw_wr_log = 0;
59 module_param(c4iw_wr_log, int, 0444);
60 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
61 
62 static int c4iw_wr_log_size_order = 12;
63 module_param(c4iw_wr_log_size_order, int, 0444);
64 MODULE_PARM_DESC(c4iw_wr_log_size_order,
65 		 "Number of entries (log2) in the work request timing log.");
66 
67 static LIST_HEAD(uld_ctx_list);
68 static DEFINE_MUTEX(dev_mutex);
69 static struct workqueue_struct *reg_workq;
70 
71 #define DB_FC_RESUME_SIZE 64
72 #define DB_FC_RESUME_DELAY 1
73 #define DB_FC_DRAIN_THRESH 0
74 
75 static struct dentry *c4iw_debugfs_root;
76 
77 struct c4iw_debugfs_data {
78 	struct c4iw_dev *devp;
79 	char *buf;
80 	int bufsize;
81 	int pos;
82 };
83 
84 static int count_idrs(int id, void *p, void *data)
85 {
86 	int *countp = data;
87 
88 	*countp = *countp + 1;
89 	return 0;
90 }
91 
92 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
93 			    loff_t *ppos)
94 {
95 	struct c4iw_debugfs_data *d = file->private_data;
96 
97 	return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
98 }
99 
100 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
101 {
102 	struct wr_log_entry le;
103 	int idx;
104 
105 	if (!wq->rdev->wr_log)
106 		return;
107 
108 	idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
109 		(wq->rdev->wr_log_size - 1);
110 	le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
111 	le.poll_host_time = ktime_get();
112 	le.valid = 1;
113 	le.cqe_sge_ts = CQE_TS(cqe);
114 	if (SQ_TYPE(cqe)) {
115 		le.qid = wq->sq.qid;
116 		le.opcode = CQE_OPCODE(cqe);
117 		le.post_host_time = wq->sq.sw_sq[wq->sq.cidx].host_time;
118 		le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
119 		le.wr_id = CQE_WRID_SQ_IDX(cqe);
120 	} else {
121 		le.qid = wq->rq.qid;
122 		le.opcode = FW_RI_RECEIVE;
123 		le.post_host_time = wq->rq.sw_rq[wq->rq.cidx].host_time;
124 		le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
125 		le.wr_id = CQE_WRID_MSN(cqe);
126 	}
127 	wq->rdev->wr_log[idx] = le;
128 }
129 
130 static int wr_log_show(struct seq_file *seq, void *v)
131 {
132 	struct c4iw_dev *dev = seq->private;
133 	ktime_t prev_time;
134 	struct wr_log_entry *lep;
135 	int prev_time_set = 0;
136 	int idx, end;
137 
138 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
139 
140 	idx = atomic_read(&dev->rdev.wr_log_idx) &
141 		(dev->rdev.wr_log_size - 1);
142 	end = idx - 1;
143 	if (end < 0)
144 		end = dev->rdev.wr_log_size - 1;
145 	lep = &dev->rdev.wr_log[idx];
146 	while (idx != end) {
147 		if (lep->valid) {
148 			if (!prev_time_set) {
149 				prev_time_set = 1;
150 				prev_time = lep->poll_host_time;
151 			}
152 			seq_printf(seq, "%04u: nsec %llu qid %u opcode "
153 				   "%u %s 0x%x host_wr_delta nsec %llu "
154 				   "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
155 				   "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
156 				   "cqe_poll_delta_ns %llu\n",
157 				   idx,
158 				   ktime_to_ns(ktime_sub(lep->poll_host_time,
159 							 prev_time)),
160 				   lep->qid, lep->opcode,
161 				   lep->opcode == FW_RI_RECEIVE ?
162 							"msn" : "wrid",
163 				   lep->wr_id,
164 				   ktime_to_ns(ktime_sub(lep->poll_host_time,
165 							 lep->post_host_time)),
166 				   lep->post_sge_ts, lep->cqe_sge_ts,
167 				   lep->poll_sge_ts,
168 				   ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
169 				   ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
170 			prev_time = lep->poll_host_time;
171 		}
172 		idx++;
173 		if (idx > (dev->rdev.wr_log_size - 1))
174 			idx = 0;
175 		lep = &dev->rdev.wr_log[idx];
176 	}
177 #undef ts2ns
178 	return 0;
179 }
180 
181 static int wr_log_open(struct inode *inode, struct file *file)
182 {
183 	return single_open(file, wr_log_show, inode->i_private);
184 }
185 
186 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
187 			    size_t count, loff_t *pos)
188 {
189 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
190 	int i;
191 
192 	if (dev->rdev.wr_log)
193 		for (i = 0; i < dev->rdev.wr_log_size; i++)
194 			dev->rdev.wr_log[i].valid = 0;
195 	return count;
196 }
197 
198 static const struct file_operations wr_log_debugfs_fops = {
199 	.owner   = THIS_MODULE,
200 	.open    = wr_log_open,
201 	.release = single_release,
202 	.read    = seq_read,
203 	.llseek  = seq_lseek,
204 	.write   = wr_log_clear,
205 };
206 
207 static struct sockaddr_in zero_sin = {
208 	.sin_family = AF_INET,
209 };
210 
211 static struct sockaddr_in6 zero_sin6 = {
212 	.sin6_family = AF_INET6,
213 };
214 
215 static void set_ep_sin_addrs(struct c4iw_ep *ep,
216 			     struct sockaddr_in **lsin,
217 			     struct sockaddr_in **rsin,
218 			     struct sockaddr_in **m_lsin,
219 			     struct sockaddr_in **m_rsin)
220 {
221 	struct iw_cm_id *id = ep->com.cm_id;
222 
223 	*lsin = (struct sockaddr_in *)&ep->com.local_addr;
224 	*rsin = (struct sockaddr_in *)&ep->com.remote_addr;
225 	if (id) {
226 		*m_lsin = (struct sockaddr_in *)&id->m_local_addr;
227 		*m_rsin = (struct sockaddr_in *)&id->m_remote_addr;
228 	} else {
229 		*m_lsin = &zero_sin;
230 		*m_rsin = &zero_sin;
231 	}
232 }
233 
234 static void set_ep_sin6_addrs(struct c4iw_ep *ep,
235 			      struct sockaddr_in6 **lsin6,
236 			      struct sockaddr_in6 **rsin6,
237 			      struct sockaddr_in6 **m_lsin6,
238 			      struct sockaddr_in6 **m_rsin6)
239 {
240 	struct iw_cm_id *id = ep->com.cm_id;
241 
242 	*lsin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
243 	*rsin6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
244 	if (id) {
245 		*m_lsin6 = (struct sockaddr_in6 *)&id->m_local_addr;
246 		*m_rsin6 = (struct sockaddr_in6 *)&id->m_remote_addr;
247 	} else {
248 		*m_lsin6 = &zero_sin6;
249 		*m_rsin6 = &zero_sin6;
250 	}
251 }
252 
253 static int dump_qp(int id, void *p, void *data)
254 {
255 	struct c4iw_qp *qp = p;
256 	struct c4iw_debugfs_data *qpd = data;
257 	int space;
258 	int cc;
259 
260 	if (id != qp->wq.sq.qid)
261 		return 0;
262 
263 	space = qpd->bufsize - qpd->pos - 1;
264 	if (space == 0)
265 		return 1;
266 
267 	if (qp->ep) {
268 		struct c4iw_ep *ep = qp->ep;
269 
270 		if (ep->com.local_addr.ss_family == AF_INET) {
271 			struct sockaddr_in *lsin;
272 			struct sockaddr_in *rsin;
273 			struct sockaddr_in *m_lsin;
274 			struct sockaddr_in *m_rsin;
275 
276 			set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
277 			cc = snprintf(qpd->buf + qpd->pos, space,
278 				      "rc qp sq id %u rq id %u state %u "
279 				      "onchip %u ep tid %u state %u "
280 				      "%pI4:%u/%u->%pI4:%u/%u\n",
281 				      qp->wq.sq.qid, qp->wq.rq.qid,
282 				      (int)qp->attr.state,
283 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
284 				      ep->hwtid, (int)ep->com.state,
285 				      &lsin->sin_addr, ntohs(lsin->sin_port),
286 				      ntohs(m_lsin->sin_port),
287 				      &rsin->sin_addr, ntohs(rsin->sin_port),
288 				      ntohs(m_rsin->sin_port));
289 		} else {
290 			struct sockaddr_in6 *lsin6;
291 			struct sockaddr_in6 *rsin6;
292 			struct sockaddr_in6 *m_lsin6;
293 			struct sockaddr_in6 *m_rsin6;
294 
295 			set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6,
296 					  &m_rsin6);
297 			cc = snprintf(qpd->buf + qpd->pos, space,
298 				      "rc qp sq id %u rq id %u state %u "
299 				      "onchip %u ep tid %u state %u "
300 				      "%pI6:%u/%u->%pI6:%u/%u\n",
301 				      qp->wq.sq.qid, qp->wq.rq.qid,
302 				      (int)qp->attr.state,
303 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
304 				      ep->hwtid, (int)ep->com.state,
305 				      &lsin6->sin6_addr,
306 				      ntohs(lsin6->sin6_port),
307 				      ntohs(m_lsin6->sin6_port),
308 				      &rsin6->sin6_addr,
309 				      ntohs(rsin6->sin6_port),
310 				      ntohs(m_rsin6->sin6_port));
311 		}
312 	} else
313 		cc = snprintf(qpd->buf + qpd->pos, space,
314 			     "qp sq id %u rq id %u state %u onchip %u\n",
315 			      qp->wq.sq.qid, qp->wq.rq.qid,
316 			      (int)qp->attr.state,
317 			      qp->wq.sq.flags & T4_SQ_ONCHIP);
318 	if (cc < space)
319 		qpd->pos += cc;
320 	return 0;
321 }
322 
323 static int qp_release(struct inode *inode, struct file *file)
324 {
325 	struct c4iw_debugfs_data *qpd = file->private_data;
326 	if (!qpd) {
327 		pr_info("%s null qpd?\n", __func__);
328 		return 0;
329 	}
330 	vfree(qpd->buf);
331 	kfree(qpd);
332 	return 0;
333 }
334 
335 static int qp_open(struct inode *inode, struct file *file)
336 {
337 	struct c4iw_debugfs_data *qpd;
338 	int count = 1;
339 
340 	qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
341 	if (!qpd)
342 		return -ENOMEM;
343 
344 	qpd->devp = inode->i_private;
345 	qpd->pos = 0;
346 
347 	spin_lock_irq(&qpd->devp->lock);
348 	idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
349 	spin_unlock_irq(&qpd->devp->lock);
350 
351 	qpd->bufsize = count * 180;
352 	qpd->buf = vmalloc(qpd->bufsize);
353 	if (!qpd->buf) {
354 		kfree(qpd);
355 		return -ENOMEM;
356 	}
357 
358 	spin_lock_irq(&qpd->devp->lock);
359 	idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
360 	spin_unlock_irq(&qpd->devp->lock);
361 
362 	qpd->buf[qpd->pos++] = 0;
363 	file->private_data = qpd;
364 	return 0;
365 }
366 
367 static const struct file_operations qp_debugfs_fops = {
368 	.owner   = THIS_MODULE,
369 	.open    = qp_open,
370 	.release = qp_release,
371 	.read    = debugfs_read,
372 	.llseek  = default_llseek,
373 };
374 
375 static int dump_stag(int id, void *p, void *data)
376 {
377 	struct c4iw_debugfs_data *stagd = data;
378 	int space;
379 	int cc;
380 	struct fw_ri_tpte tpte;
381 	int ret;
382 
383 	space = stagd->bufsize - stagd->pos - 1;
384 	if (space == 0)
385 		return 1;
386 
387 	ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
388 			      (__be32 *)&tpte);
389 	if (ret) {
390 		dev_err(&stagd->devp->rdev.lldi.pdev->dev,
391 			"%s cxgb4_read_tpte err %d\n", __func__, ret);
392 		return ret;
393 	}
394 	cc = snprintf(stagd->buf + stagd->pos, space,
395 		      "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
396 		      "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
397 		      (u32)id<<8,
398 		      FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
399 		      FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
400 		      FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
401 		      FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
402 		      FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
403 		      FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
404 		      ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
405 		      ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
406 	if (cc < space)
407 		stagd->pos += cc;
408 	return 0;
409 }
410 
411 static int stag_release(struct inode *inode, struct file *file)
412 {
413 	struct c4iw_debugfs_data *stagd = file->private_data;
414 	if (!stagd) {
415 		pr_info("%s null stagd?\n", __func__);
416 		return 0;
417 	}
418 	vfree(stagd->buf);
419 	kfree(stagd);
420 	return 0;
421 }
422 
423 static int stag_open(struct inode *inode, struct file *file)
424 {
425 	struct c4iw_debugfs_data *stagd;
426 	int ret = 0;
427 	int count = 1;
428 
429 	stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
430 	if (!stagd) {
431 		ret = -ENOMEM;
432 		goto out;
433 	}
434 	stagd->devp = inode->i_private;
435 	stagd->pos = 0;
436 
437 	spin_lock_irq(&stagd->devp->lock);
438 	idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
439 	spin_unlock_irq(&stagd->devp->lock);
440 
441 	stagd->bufsize = count * 256;
442 	stagd->buf = vmalloc(stagd->bufsize);
443 	if (!stagd->buf) {
444 		ret = -ENOMEM;
445 		goto err1;
446 	}
447 
448 	spin_lock_irq(&stagd->devp->lock);
449 	idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
450 	spin_unlock_irq(&stagd->devp->lock);
451 
452 	stagd->buf[stagd->pos++] = 0;
453 	file->private_data = stagd;
454 	goto out;
455 err1:
456 	kfree(stagd);
457 out:
458 	return ret;
459 }
460 
461 static const struct file_operations stag_debugfs_fops = {
462 	.owner   = THIS_MODULE,
463 	.open    = stag_open,
464 	.release = stag_release,
465 	.read    = debugfs_read,
466 	.llseek  = default_llseek,
467 };
468 
469 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
470 
471 static int stats_show(struct seq_file *seq, void *v)
472 {
473 	struct c4iw_dev *dev = seq->private;
474 
475 	seq_printf(seq, "   Object: %10s %10s %10s %10s\n", "Total", "Current",
476 		   "Max", "Fail");
477 	seq_printf(seq, "     PDID: %10llu %10llu %10llu %10llu\n",
478 			dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
479 			dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
480 	seq_printf(seq, "      QID: %10llu %10llu %10llu %10llu\n",
481 			dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
482 			dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
483 	seq_printf(seq, "   TPTMEM: %10llu %10llu %10llu %10llu\n",
484 			dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
485 			dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
486 	seq_printf(seq, "   PBLMEM: %10llu %10llu %10llu %10llu\n",
487 			dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
488 			dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
489 	seq_printf(seq, "   RQTMEM: %10llu %10llu %10llu %10llu\n",
490 			dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
491 			dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
492 	seq_printf(seq, "  OCQPMEM: %10llu %10llu %10llu %10llu\n",
493 			dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
494 			dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
495 	seq_printf(seq, "  DB FULL: %10llu\n", dev->rdev.stats.db_full);
496 	seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
497 	seq_printf(seq, "  DB DROP: %10llu\n", dev->rdev.stats.db_drop);
498 	seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
499 		   db_state_str[dev->db_state],
500 		   dev->rdev.stats.db_state_transitions,
501 		   dev->rdev.stats.db_fc_interruptions);
502 	seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
503 	seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
504 		   dev->rdev.stats.act_ofld_conn_fails);
505 	seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
506 		   dev->rdev.stats.pas_ofld_conn_fails);
507 	seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
508 	seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
509 	return 0;
510 }
511 
512 static int stats_open(struct inode *inode, struct file *file)
513 {
514 	return single_open(file, stats_show, inode->i_private);
515 }
516 
517 static ssize_t stats_clear(struct file *file, const char __user *buf,
518 		size_t count, loff_t *pos)
519 {
520 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
521 
522 	mutex_lock(&dev->rdev.stats.lock);
523 	dev->rdev.stats.pd.max = 0;
524 	dev->rdev.stats.pd.fail = 0;
525 	dev->rdev.stats.qid.max = 0;
526 	dev->rdev.stats.qid.fail = 0;
527 	dev->rdev.stats.stag.max = 0;
528 	dev->rdev.stats.stag.fail = 0;
529 	dev->rdev.stats.pbl.max = 0;
530 	dev->rdev.stats.pbl.fail = 0;
531 	dev->rdev.stats.rqt.max = 0;
532 	dev->rdev.stats.rqt.fail = 0;
533 	dev->rdev.stats.ocqp.max = 0;
534 	dev->rdev.stats.ocqp.fail = 0;
535 	dev->rdev.stats.db_full = 0;
536 	dev->rdev.stats.db_empty = 0;
537 	dev->rdev.stats.db_drop = 0;
538 	dev->rdev.stats.db_state_transitions = 0;
539 	dev->rdev.stats.tcam_full = 0;
540 	dev->rdev.stats.act_ofld_conn_fails = 0;
541 	dev->rdev.stats.pas_ofld_conn_fails = 0;
542 	mutex_unlock(&dev->rdev.stats.lock);
543 	return count;
544 }
545 
546 static const struct file_operations stats_debugfs_fops = {
547 	.owner   = THIS_MODULE,
548 	.open    = stats_open,
549 	.release = single_release,
550 	.read    = seq_read,
551 	.llseek  = seq_lseek,
552 	.write   = stats_clear,
553 };
554 
555 static int dump_ep(int id, void *p, void *data)
556 {
557 	struct c4iw_ep *ep = p;
558 	struct c4iw_debugfs_data *epd = data;
559 	int space;
560 	int cc;
561 
562 	space = epd->bufsize - epd->pos - 1;
563 	if (space == 0)
564 		return 1;
565 
566 	if (ep->com.local_addr.ss_family == AF_INET) {
567 		struct sockaddr_in *lsin;
568 		struct sockaddr_in *rsin;
569 		struct sockaddr_in *m_lsin;
570 		struct sockaddr_in *m_rsin;
571 
572 		set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
573 		cc = snprintf(epd->buf + epd->pos, space,
574 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
575 			      "history 0x%lx hwtid %d atid %d "
576 			      "conn_na %u abort_na %u "
577 			      "%pI4:%d/%d <-> %pI4:%d/%d\n",
578 			      ep, ep->com.cm_id, ep->com.qp,
579 			      (int)ep->com.state, ep->com.flags,
580 			      ep->com.history, ep->hwtid, ep->atid,
581 			      ep->stats.connect_neg_adv,
582 			      ep->stats.abort_neg_adv,
583 			      &lsin->sin_addr, ntohs(lsin->sin_port),
584 			      ntohs(m_lsin->sin_port),
585 			      &rsin->sin_addr, ntohs(rsin->sin_port),
586 			      ntohs(m_rsin->sin_port));
587 	} else {
588 		struct sockaddr_in6 *lsin6;
589 		struct sockaddr_in6 *rsin6;
590 		struct sockaddr_in6 *m_lsin6;
591 		struct sockaddr_in6 *m_rsin6;
592 
593 		set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6, &m_rsin6);
594 		cc = snprintf(epd->buf + epd->pos, space,
595 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
596 			      "history 0x%lx hwtid %d atid %d "
597 			      "conn_na %u abort_na %u "
598 			      "%pI6:%d/%d <-> %pI6:%d/%d\n",
599 			      ep, ep->com.cm_id, ep->com.qp,
600 			      (int)ep->com.state, ep->com.flags,
601 			      ep->com.history, ep->hwtid, ep->atid,
602 			      ep->stats.connect_neg_adv,
603 			      ep->stats.abort_neg_adv,
604 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
605 			      ntohs(m_lsin6->sin6_port),
606 			      &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
607 			      ntohs(m_rsin6->sin6_port));
608 	}
609 	if (cc < space)
610 		epd->pos += cc;
611 	return 0;
612 }
613 
614 static int dump_listen_ep(int id, void *p, void *data)
615 {
616 	struct c4iw_listen_ep *ep = p;
617 	struct c4iw_debugfs_data *epd = data;
618 	int space;
619 	int cc;
620 
621 	space = epd->bufsize - epd->pos - 1;
622 	if (space == 0)
623 		return 1;
624 
625 	if (ep->com.local_addr.ss_family == AF_INET) {
626 		struct sockaddr_in *lsin = (struct sockaddr_in *)
627 			&ep->com.cm_id->local_addr;
628 		struct sockaddr_in *m_lsin = (struct sockaddr_in *)
629 			&ep->com.cm_id->m_local_addr;
630 
631 		cc = snprintf(epd->buf + epd->pos, space,
632 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
633 			      "backlog %d %pI4:%d/%d\n",
634 			      ep, ep->com.cm_id, (int)ep->com.state,
635 			      ep->com.flags, ep->stid, ep->backlog,
636 			      &lsin->sin_addr, ntohs(lsin->sin_port),
637 			      ntohs(m_lsin->sin_port));
638 	} else {
639 		struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
640 			&ep->com.cm_id->local_addr;
641 		struct sockaddr_in6 *m_lsin6 = (struct sockaddr_in6 *)
642 			&ep->com.cm_id->m_local_addr;
643 
644 		cc = snprintf(epd->buf + epd->pos, space,
645 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
646 			      "backlog %d %pI6:%d/%d\n",
647 			      ep, ep->com.cm_id, (int)ep->com.state,
648 			      ep->com.flags, ep->stid, ep->backlog,
649 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
650 			      ntohs(m_lsin6->sin6_port));
651 	}
652 	if (cc < space)
653 		epd->pos += cc;
654 	return 0;
655 }
656 
657 static int ep_release(struct inode *inode, struct file *file)
658 {
659 	struct c4iw_debugfs_data *epd = file->private_data;
660 	if (!epd) {
661 		pr_info("%s null qpd?\n", __func__);
662 		return 0;
663 	}
664 	vfree(epd->buf);
665 	kfree(epd);
666 	return 0;
667 }
668 
669 static int ep_open(struct inode *inode, struct file *file)
670 {
671 	struct c4iw_debugfs_data *epd;
672 	int ret = 0;
673 	int count = 1;
674 
675 	epd = kmalloc(sizeof(*epd), GFP_KERNEL);
676 	if (!epd) {
677 		ret = -ENOMEM;
678 		goto out;
679 	}
680 	epd->devp = inode->i_private;
681 	epd->pos = 0;
682 
683 	spin_lock_irq(&epd->devp->lock);
684 	idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
685 	idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
686 	idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
687 	spin_unlock_irq(&epd->devp->lock);
688 
689 	epd->bufsize = count * 240;
690 	epd->buf = vmalloc(epd->bufsize);
691 	if (!epd->buf) {
692 		ret = -ENOMEM;
693 		goto err1;
694 	}
695 
696 	spin_lock_irq(&epd->devp->lock);
697 	idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
698 	idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
699 	idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
700 	spin_unlock_irq(&epd->devp->lock);
701 
702 	file->private_data = epd;
703 	goto out;
704 err1:
705 	kfree(epd);
706 out:
707 	return ret;
708 }
709 
710 static const struct file_operations ep_debugfs_fops = {
711 	.owner   = THIS_MODULE,
712 	.open    = ep_open,
713 	.release = ep_release,
714 	.read    = debugfs_read,
715 };
716 
717 static int setup_debugfs(struct c4iw_dev *devp)
718 {
719 	if (!devp->debugfs_root)
720 		return -1;
721 
722 	debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
723 				 (void *)devp, &qp_debugfs_fops, 4096);
724 
725 	debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
726 				 (void *)devp, &stag_debugfs_fops, 4096);
727 
728 	debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
729 				 (void *)devp, &stats_debugfs_fops, 4096);
730 
731 	debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
732 				 (void *)devp, &ep_debugfs_fops, 4096);
733 
734 	if (c4iw_wr_log)
735 		debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
736 					 (void *)devp, &wr_log_debugfs_fops, 4096);
737 	return 0;
738 }
739 
740 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
741 			       struct c4iw_dev_ucontext *uctx)
742 {
743 	struct list_head *pos, *nxt;
744 	struct c4iw_qid_list *entry;
745 
746 	mutex_lock(&uctx->lock);
747 	list_for_each_safe(pos, nxt, &uctx->qpids) {
748 		entry = list_entry(pos, struct c4iw_qid_list, entry);
749 		list_del_init(&entry->entry);
750 		if (!(entry->qid & rdev->qpmask)) {
751 			c4iw_put_resource(&rdev->resource.qid_table,
752 					  entry->qid);
753 			mutex_lock(&rdev->stats.lock);
754 			rdev->stats.qid.cur -= rdev->qpmask + 1;
755 			mutex_unlock(&rdev->stats.lock);
756 		}
757 		kfree(entry);
758 	}
759 
760 	list_for_each_safe(pos, nxt, &uctx->cqids) {
761 		entry = list_entry(pos, struct c4iw_qid_list, entry);
762 		list_del_init(&entry->entry);
763 		kfree(entry);
764 	}
765 	mutex_unlock(&uctx->lock);
766 }
767 
768 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
769 			    struct c4iw_dev_ucontext *uctx)
770 {
771 	INIT_LIST_HEAD(&uctx->qpids);
772 	INIT_LIST_HEAD(&uctx->cqids);
773 	mutex_init(&uctx->lock);
774 }
775 
776 /* Caller takes care of locking if needed */
777 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
778 {
779 	int err;
780 
781 	c4iw_init_dev_ucontext(rdev, &rdev->uctx);
782 
783 	/*
784 	 * This implementation assumes udb_density == ucq_density!  Eventually
785 	 * we might need to support this but for now fail the open. Also the
786 	 * cqid and qpid range must match for now.
787 	 */
788 	if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
789 		pr_err("%s: unsupported udb/ucq densities %u/%u\n",
790 		       pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
791 		       rdev->lldi.ucq_density);
792 		return -EINVAL;
793 	}
794 	if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
795 	    rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
796 		pr_err("%s: unsupported qp and cq id ranges qp start %u size %u cq start %u size %u\n",
797 		       pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
798 		       rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
799 		       rdev->lldi.vr->cq.size);
800 		return -EINVAL;
801 	}
802 
803 	rdev->qpmask = rdev->lldi.udb_density - 1;
804 	rdev->cqmask = rdev->lldi.ucq_density - 1;
805 	pr_debug("dev %s stag start 0x%0x size 0x%0x num stags %d pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x qp qid start %u size %u cq qid start %u size %u\n",
806 		 pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
807 		 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
808 		 rdev->lldi.vr->pbl.start,
809 		 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
810 		 rdev->lldi.vr->rq.size,
811 		 rdev->lldi.vr->qp.start,
812 		 rdev->lldi.vr->qp.size,
813 		 rdev->lldi.vr->cq.start,
814 		 rdev->lldi.vr->cq.size);
815 	pr_debug("udb %pR db_reg %p gts_reg %p qpmask 0x%x cqmask 0x%x\n",
816 		 &rdev->lldi.pdev->resource[2],
817 		 rdev->lldi.db_reg, rdev->lldi.gts_reg,
818 		 rdev->qpmask, rdev->cqmask);
819 
820 	if (c4iw_num_stags(rdev) == 0)
821 		return -EINVAL;
822 
823 	rdev->stats.pd.total = T4_MAX_NUM_PD;
824 	rdev->stats.stag.total = rdev->lldi.vr->stag.size;
825 	rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
826 	rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
827 	rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
828 	rdev->stats.qid.total = rdev->lldi.vr->qp.size;
829 
830 	err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
831 	if (err) {
832 		pr_err("error %d initializing resources\n", err);
833 		return err;
834 	}
835 	err = c4iw_pblpool_create(rdev);
836 	if (err) {
837 		pr_err("error %d initializing pbl pool\n", err);
838 		goto destroy_resource;
839 	}
840 	err = c4iw_rqtpool_create(rdev);
841 	if (err) {
842 		pr_err("error %d initializing rqt pool\n", err);
843 		goto destroy_pblpool;
844 	}
845 	err = c4iw_ocqp_pool_create(rdev);
846 	if (err) {
847 		pr_err("error %d initializing ocqp pool\n", err);
848 		goto destroy_rqtpool;
849 	}
850 	rdev->status_page = (struct t4_dev_status_page *)
851 			    __get_free_page(GFP_KERNEL);
852 	if (!rdev->status_page) {
853 		err = -ENOMEM;
854 		goto destroy_ocqp_pool;
855 	}
856 	rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
857 	rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
858 	rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
859 	rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
860 
861 	if (c4iw_wr_log) {
862 		rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) *
863 				       sizeof(*rdev->wr_log), GFP_KERNEL);
864 		if (rdev->wr_log) {
865 			rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
866 			atomic_set(&rdev->wr_log_idx, 0);
867 		}
868 	}
869 
870 	rdev->free_workq = create_singlethread_workqueue("iw_cxgb4_free");
871 	if (!rdev->free_workq) {
872 		err = -ENOMEM;
873 		goto err_free_status_page_and_wr_log;
874 	}
875 
876 	rdev->status_page->db_off = 0;
877 
878 	return 0;
879 err_free_status_page_and_wr_log:
880 	if (c4iw_wr_log && rdev->wr_log)
881 		kfree(rdev->wr_log);
882 	free_page((unsigned long)rdev->status_page);
883 destroy_ocqp_pool:
884 	c4iw_ocqp_pool_destroy(rdev);
885 destroy_rqtpool:
886 	c4iw_rqtpool_destroy(rdev);
887 destroy_pblpool:
888 	c4iw_pblpool_destroy(rdev);
889 destroy_resource:
890 	c4iw_destroy_resource(&rdev->resource);
891 	return err;
892 }
893 
894 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
895 {
896 	destroy_workqueue(rdev->free_workq);
897 	kfree(rdev->wr_log);
898 	c4iw_release_dev_ucontext(rdev, &rdev->uctx);
899 	free_page((unsigned long)rdev->status_page);
900 	c4iw_pblpool_destroy(rdev);
901 	c4iw_rqtpool_destroy(rdev);
902 	c4iw_ocqp_pool_destroy(rdev);
903 	c4iw_destroy_resource(&rdev->resource);
904 }
905 
906 void c4iw_dealloc(struct uld_ctx *ctx)
907 {
908 	c4iw_rdev_close(&ctx->dev->rdev);
909 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr));
910 	idr_destroy(&ctx->dev->cqidr);
911 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr));
912 	idr_destroy(&ctx->dev->qpidr);
913 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr));
914 	idr_destroy(&ctx->dev->mmidr);
915 	wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr));
916 	idr_destroy(&ctx->dev->hwtid_idr);
917 	idr_destroy(&ctx->dev->stid_idr);
918 	idr_destroy(&ctx->dev->atid_idr);
919 	if (ctx->dev->rdev.bar2_kva)
920 		iounmap(ctx->dev->rdev.bar2_kva);
921 	if (ctx->dev->rdev.oc_mw_kva)
922 		iounmap(ctx->dev->rdev.oc_mw_kva);
923 	ib_dealloc_device(&ctx->dev->ibdev);
924 	ctx->dev = NULL;
925 }
926 
927 static void c4iw_remove(struct uld_ctx *ctx)
928 {
929 	pr_debug("c4iw_dev %p\n", ctx->dev);
930 	c4iw_unregister_device(ctx->dev);
931 	c4iw_dealloc(ctx);
932 }
933 
934 static int rdma_supported(const struct cxgb4_lld_info *infop)
935 {
936 	return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
937 	       infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
938 	       infop->vr->cq.size > 0;
939 }
940 
941 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
942 {
943 	struct c4iw_dev *devp;
944 	int ret;
945 
946 	if (!rdma_supported(infop)) {
947 		pr_info("%s: RDMA not supported on this device\n",
948 			pci_name(infop->pdev));
949 		return ERR_PTR(-ENOSYS);
950 	}
951 	if (!ocqp_supported(infop))
952 		pr_info("%s: On-Chip Queues not supported on this device\n",
953 			pci_name(infop->pdev));
954 
955 	devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
956 	if (!devp) {
957 		pr_err("Cannot allocate ib device\n");
958 		return ERR_PTR(-ENOMEM);
959 	}
960 	devp->rdev.lldi = *infop;
961 
962 	/* init various hw-queue params based on lld info */
963 	pr_debug("Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
964 		 devp->rdev.lldi.sge_ingpadboundary,
965 		 devp->rdev.lldi.sge_egrstatuspagesize);
966 
967 	devp->rdev.hw_queue.t4_eq_status_entries =
968 		devp->rdev.lldi.sge_egrstatuspagesize / 64;
969 	devp->rdev.hw_queue.t4_max_eq_size = 65520;
970 	devp->rdev.hw_queue.t4_max_iq_size = 65520;
971 	devp->rdev.hw_queue.t4_max_rq_size = 8192 -
972 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
973 	devp->rdev.hw_queue.t4_max_sq_size =
974 		devp->rdev.hw_queue.t4_max_eq_size -
975 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
976 	devp->rdev.hw_queue.t4_max_qp_depth =
977 		devp->rdev.hw_queue.t4_max_rq_size;
978 	devp->rdev.hw_queue.t4_max_cq_depth =
979 		devp->rdev.hw_queue.t4_max_iq_size - 2;
980 	devp->rdev.hw_queue.t4_stat_len =
981 		devp->rdev.lldi.sge_egrstatuspagesize;
982 
983 	/*
984 	 * For T5/T6 devices, we map all of BAR2 with WC.
985 	 * For T4 devices with onchip qp mem, we map only that part
986 	 * of BAR2 with WC.
987 	 */
988 	devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
989 	if (!is_t4(devp->rdev.lldi.adapter_type)) {
990 		devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
991 			pci_resource_len(devp->rdev.lldi.pdev, 2));
992 		if (!devp->rdev.bar2_kva) {
993 			pr_err("Unable to ioremap BAR2\n");
994 			ib_dealloc_device(&devp->ibdev);
995 			return ERR_PTR(-EINVAL);
996 		}
997 	} else if (ocqp_supported(infop)) {
998 		devp->rdev.oc_mw_pa =
999 			pci_resource_start(devp->rdev.lldi.pdev, 2) +
1000 			pci_resource_len(devp->rdev.lldi.pdev, 2) -
1001 			roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
1002 		devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
1003 			devp->rdev.lldi.vr->ocq.size);
1004 		if (!devp->rdev.oc_mw_kva) {
1005 			pr_err("Unable to ioremap onchip mem\n");
1006 			ib_dealloc_device(&devp->ibdev);
1007 			return ERR_PTR(-EINVAL);
1008 		}
1009 	}
1010 
1011 	pr_debug("ocq memory: hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
1012 		 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
1013 		 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
1014 
1015 	ret = c4iw_rdev_open(&devp->rdev);
1016 	if (ret) {
1017 		pr_err("Unable to open CXIO rdev err %d\n", ret);
1018 		ib_dealloc_device(&devp->ibdev);
1019 		return ERR_PTR(ret);
1020 	}
1021 
1022 	idr_init(&devp->cqidr);
1023 	idr_init(&devp->qpidr);
1024 	idr_init(&devp->mmidr);
1025 	idr_init(&devp->hwtid_idr);
1026 	idr_init(&devp->stid_idr);
1027 	idr_init(&devp->atid_idr);
1028 	spin_lock_init(&devp->lock);
1029 	mutex_init(&devp->rdev.stats.lock);
1030 	mutex_init(&devp->db_mutex);
1031 	INIT_LIST_HEAD(&devp->db_fc_list);
1032 	init_waitqueue_head(&devp->wait);
1033 	devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1034 
1035 	if (c4iw_debugfs_root) {
1036 		devp->debugfs_root = debugfs_create_dir(
1037 					pci_name(devp->rdev.lldi.pdev),
1038 					c4iw_debugfs_root);
1039 		setup_debugfs(devp);
1040 	}
1041 
1042 
1043 	return devp;
1044 }
1045 
1046 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1047 {
1048 	struct uld_ctx *ctx;
1049 	static int vers_printed;
1050 	int i;
1051 
1052 	if (!vers_printed++)
1053 		pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1054 			DRV_VERSION);
1055 
1056 	ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1057 	if (!ctx) {
1058 		ctx = ERR_PTR(-ENOMEM);
1059 		goto out;
1060 	}
1061 	ctx->lldi = *infop;
1062 
1063 	pr_debug("found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1064 		 pci_name(ctx->lldi.pdev),
1065 		 ctx->lldi.nchan, ctx->lldi.nrxq,
1066 		 ctx->lldi.ntxq, ctx->lldi.nports);
1067 
1068 	mutex_lock(&dev_mutex);
1069 	list_add_tail(&ctx->entry, &uld_ctx_list);
1070 	mutex_unlock(&dev_mutex);
1071 
1072 	for (i = 0; i < ctx->lldi.nrxq; i++)
1073 		pr_debug("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1074 out:
1075 	return ctx;
1076 }
1077 
1078 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1079 						 const __be64 *rsp,
1080 						 u32 pktshift)
1081 {
1082 	struct sk_buff *skb;
1083 
1084 	/*
1085 	 * Allocate space for cpl_pass_accept_req which will be synthesized by
1086 	 * driver. Once the driver synthesizes the request the skb will go
1087 	 * through the regular cpl_pass_accept_req processing.
1088 	 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1089 	 * cpl_rx_pkt.
1090 	 */
1091 	skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1092 			sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1093 	if (unlikely(!skb))
1094 		return NULL;
1095 
1096 	__skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1097 		  sizeof(struct rss_header) - pktshift);
1098 
1099 	/*
1100 	 * This skb will contain:
1101 	 *   rss_header from the rspq descriptor (1 flit)
1102 	 *   cpl_rx_pkt struct from the rspq descriptor (2 flits)
1103 	 *   space for the difference between the size of an
1104 	 *      rx_pkt and pass_accept_req cpl (1 flit)
1105 	 *   the packet data from the gl
1106 	 */
1107 	skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1108 				sizeof(struct rss_header));
1109 	skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1110 				       sizeof(struct cpl_pass_accept_req),
1111 				       gl->va + pktshift,
1112 				       gl->tot_len - pktshift);
1113 	return skb;
1114 }
1115 
1116 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1117 			   const __be64 *rsp)
1118 {
1119 	unsigned int opcode = *(u8 *)rsp;
1120 	struct sk_buff *skb;
1121 
1122 	if (opcode != CPL_RX_PKT)
1123 		goto out;
1124 
1125 	skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1126 	if (skb == NULL)
1127 		goto out;
1128 
1129 	if (c4iw_handlers[opcode] == NULL) {
1130 		pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1131 		kfree_skb(skb);
1132 		goto out;
1133 	}
1134 	c4iw_handlers[opcode](dev, skb);
1135 	return 1;
1136 out:
1137 	return 0;
1138 }
1139 
1140 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1141 			const struct pkt_gl *gl)
1142 {
1143 	struct uld_ctx *ctx = handle;
1144 	struct c4iw_dev *dev = ctx->dev;
1145 	struct sk_buff *skb;
1146 	u8 opcode;
1147 
1148 	if (gl == NULL) {
1149 		/* omit RSS and rsp_ctrl at end of descriptor */
1150 		unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1151 
1152 		skb = alloc_skb(256, GFP_ATOMIC);
1153 		if (!skb)
1154 			goto nomem;
1155 		__skb_put(skb, len);
1156 		skb_copy_to_linear_data(skb, &rsp[1], len);
1157 	} else if (gl == CXGB4_MSG_AN) {
1158 		const struct rsp_ctrl *rc = (void *)rsp;
1159 
1160 		u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1161 		c4iw_ev_handler(dev, qid);
1162 		return 0;
1163 	} else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1164 		if (recv_rx_pkt(dev, gl, rsp))
1165 			return 0;
1166 
1167 		pr_info("%s: unexpected FL contents at %p, RSS %#llx, FL %#llx, len %u\n",
1168 			pci_name(ctx->lldi.pdev), gl->va,
1169 			be64_to_cpu(*rsp),
1170 			be64_to_cpu(*(__force __be64 *)gl->va),
1171 			gl->tot_len);
1172 
1173 		return 0;
1174 	} else {
1175 		skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1176 		if (unlikely(!skb))
1177 			goto nomem;
1178 	}
1179 
1180 	opcode = *(u8 *)rsp;
1181 	if (c4iw_handlers[opcode]) {
1182 		c4iw_handlers[opcode](dev, skb);
1183 	} else {
1184 		pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1185 		kfree_skb(skb);
1186 	}
1187 
1188 	return 0;
1189 nomem:
1190 	return -1;
1191 }
1192 
1193 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1194 {
1195 	struct uld_ctx *ctx = handle;
1196 
1197 	pr_debug("new_state %u\n", new_state);
1198 	switch (new_state) {
1199 	case CXGB4_STATE_UP:
1200 		pr_info("%s: Up\n", pci_name(ctx->lldi.pdev));
1201 		if (!ctx->dev) {
1202 			ctx->dev = c4iw_alloc(&ctx->lldi);
1203 			if (IS_ERR(ctx->dev)) {
1204 				pr_err("%s: initialization failed: %ld\n",
1205 				       pci_name(ctx->lldi.pdev),
1206 				       PTR_ERR(ctx->dev));
1207 				ctx->dev = NULL;
1208 				break;
1209 			}
1210 
1211 			INIT_WORK(&ctx->reg_work, c4iw_register_device);
1212 			queue_work(reg_workq, &ctx->reg_work);
1213 		}
1214 		break;
1215 	case CXGB4_STATE_DOWN:
1216 		pr_info("%s: Down\n", pci_name(ctx->lldi.pdev));
1217 		if (ctx->dev)
1218 			c4iw_remove(ctx);
1219 		break;
1220 	case CXGB4_STATE_START_RECOVERY:
1221 		pr_info("%s: Fatal Error\n", pci_name(ctx->lldi.pdev));
1222 		if (ctx->dev) {
1223 			struct ib_event event;
1224 
1225 			ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1226 			memset(&event, 0, sizeof event);
1227 			event.event  = IB_EVENT_DEVICE_FATAL;
1228 			event.device = &ctx->dev->ibdev;
1229 			ib_dispatch_event(&event);
1230 			c4iw_remove(ctx);
1231 		}
1232 		break;
1233 	case CXGB4_STATE_DETACH:
1234 		pr_info("%s: Detach\n", pci_name(ctx->lldi.pdev));
1235 		if (ctx->dev)
1236 			c4iw_remove(ctx);
1237 		break;
1238 	}
1239 	return 0;
1240 }
1241 
1242 static int disable_qp_db(int id, void *p, void *data)
1243 {
1244 	struct c4iw_qp *qp = p;
1245 
1246 	t4_disable_wq_db(&qp->wq);
1247 	return 0;
1248 }
1249 
1250 static void stop_queues(struct uld_ctx *ctx)
1251 {
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&ctx->dev->lock, flags);
1255 	ctx->dev->rdev.stats.db_state_transitions++;
1256 	ctx->dev->db_state = STOPPED;
1257 	if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1258 		idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1259 	else
1260 		ctx->dev->rdev.status_page->db_off = 1;
1261 	spin_unlock_irqrestore(&ctx->dev->lock, flags);
1262 }
1263 
1264 static int enable_qp_db(int id, void *p, void *data)
1265 {
1266 	struct c4iw_qp *qp = p;
1267 
1268 	t4_enable_wq_db(&qp->wq);
1269 	return 0;
1270 }
1271 
1272 static void resume_rc_qp(struct c4iw_qp *qp)
1273 {
1274 	spin_lock(&qp->lock);
1275 	t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1276 	qp->wq.sq.wq_pidx_inc = 0;
1277 	t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1278 	qp->wq.rq.wq_pidx_inc = 0;
1279 	spin_unlock(&qp->lock);
1280 }
1281 
1282 static void resume_a_chunk(struct uld_ctx *ctx)
1283 {
1284 	int i;
1285 	struct c4iw_qp *qp;
1286 
1287 	for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1288 		qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1289 				      db_fc_entry);
1290 		list_del_init(&qp->db_fc_entry);
1291 		resume_rc_qp(qp);
1292 		if (list_empty(&ctx->dev->db_fc_list))
1293 			break;
1294 	}
1295 }
1296 
1297 static void resume_queues(struct uld_ctx *ctx)
1298 {
1299 	spin_lock_irq(&ctx->dev->lock);
1300 	if (ctx->dev->db_state != STOPPED)
1301 		goto out;
1302 	ctx->dev->db_state = FLOW_CONTROL;
1303 	while (1) {
1304 		if (list_empty(&ctx->dev->db_fc_list)) {
1305 			WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1306 			ctx->dev->db_state = NORMAL;
1307 			ctx->dev->rdev.stats.db_state_transitions++;
1308 			if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1309 				idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1310 					     NULL);
1311 			} else {
1312 				ctx->dev->rdev.status_page->db_off = 0;
1313 			}
1314 			break;
1315 		} else {
1316 			if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1317 			    < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1318 			       DB_FC_DRAIN_THRESH)) {
1319 				resume_a_chunk(ctx);
1320 			}
1321 			if (!list_empty(&ctx->dev->db_fc_list)) {
1322 				spin_unlock_irq(&ctx->dev->lock);
1323 				if (DB_FC_RESUME_DELAY) {
1324 					set_current_state(TASK_UNINTERRUPTIBLE);
1325 					schedule_timeout(DB_FC_RESUME_DELAY);
1326 				}
1327 				spin_lock_irq(&ctx->dev->lock);
1328 				if (ctx->dev->db_state != FLOW_CONTROL)
1329 					break;
1330 			}
1331 		}
1332 	}
1333 out:
1334 	if (ctx->dev->db_state != NORMAL)
1335 		ctx->dev->rdev.stats.db_fc_interruptions++;
1336 	spin_unlock_irq(&ctx->dev->lock);
1337 }
1338 
1339 struct qp_list {
1340 	unsigned idx;
1341 	struct c4iw_qp **qps;
1342 };
1343 
1344 static int add_and_ref_qp(int id, void *p, void *data)
1345 {
1346 	struct qp_list *qp_listp = data;
1347 	struct c4iw_qp *qp = p;
1348 
1349 	c4iw_qp_add_ref(&qp->ibqp);
1350 	qp_listp->qps[qp_listp->idx++] = qp;
1351 	return 0;
1352 }
1353 
1354 static int count_qps(int id, void *p, void *data)
1355 {
1356 	unsigned *countp = data;
1357 	(*countp)++;
1358 	return 0;
1359 }
1360 
1361 static void deref_qps(struct qp_list *qp_list)
1362 {
1363 	int idx;
1364 
1365 	for (idx = 0; idx < qp_list->idx; idx++)
1366 		c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1367 }
1368 
1369 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1370 {
1371 	int idx;
1372 	int ret;
1373 
1374 	for (idx = 0; idx < qp_list->idx; idx++) {
1375 		struct c4iw_qp *qp = qp_list->qps[idx];
1376 
1377 		spin_lock_irq(&qp->rhp->lock);
1378 		spin_lock(&qp->lock);
1379 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1380 					  qp->wq.sq.qid,
1381 					  t4_sq_host_wq_pidx(&qp->wq),
1382 					  t4_sq_wq_size(&qp->wq));
1383 		if (ret) {
1384 			pr_err("%s: Fatal error - DB overflow recovery failed - error syncing SQ qid %u\n",
1385 			       pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1386 			spin_unlock(&qp->lock);
1387 			spin_unlock_irq(&qp->rhp->lock);
1388 			return;
1389 		}
1390 		qp->wq.sq.wq_pidx_inc = 0;
1391 
1392 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1393 					  qp->wq.rq.qid,
1394 					  t4_rq_host_wq_pidx(&qp->wq),
1395 					  t4_rq_wq_size(&qp->wq));
1396 
1397 		if (ret) {
1398 			pr_err("%s: Fatal error - DB overflow recovery failed - error syncing RQ qid %u\n",
1399 			       pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1400 			spin_unlock(&qp->lock);
1401 			spin_unlock_irq(&qp->rhp->lock);
1402 			return;
1403 		}
1404 		qp->wq.rq.wq_pidx_inc = 0;
1405 		spin_unlock(&qp->lock);
1406 		spin_unlock_irq(&qp->rhp->lock);
1407 
1408 		/* Wait for the dbfifo to drain */
1409 		while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1410 			set_current_state(TASK_UNINTERRUPTIBLE);
1411 			schedule_timeout(usecs_to_jiffies(10));
1412 		}
1413 	}
1414 }
1415 
1416 static void recover_queues(struct uld_ctx *ctx)
1417 {
1418 	int count = 0;
1419 	struct qp_list qp_list;
1420 	int ret;
1421 
1422 	/* slow everybody down */
1423 	set_current_state(TASK_UNINTERRUPTIBLE);
1424 	schedule_timeout(usecs_to_jiffies(1000));
1425 
1426 	/* flush the SGE contexts */
1427 	ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1428 	if (ret) {
1429 		pr_err("%s: Fatal error - DB overflow recovery failed\n",
1430 		       pci_name(ctx->lldi.pdev));
1431 		return;
1432 	}
1433 
1434 	/* Count active queues so we can build a list of queues to recover */
1435 	spin_lock_irq(&ctx->dev->lock);
1436 	WARN_ON(ctx->dev->db_state != STOPPED);
1437 	ctx->dev->db_state = RECOVERY;
1438 	idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1439 
1440 	qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1441 	if (!qp_list.qps) {
1442 		spin_unlock_irq(&ctx->dev->lock);
1443 		return;
1444 	}
1445 	qp_list.idx = 0;
1446 
1447 	/* add and ref each qp so it doesn't get freed */
1448 	idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1449 
1450 	spin_unlock_irq(&ctx->dev->lock);
1451 
1452 	/* now traverse the list in a safe context to recover the db state*/
1453 	recover_lost_dbs(ctx, &qp_list);
1454 
1455 	/* we're almost done!  deref the qps and clean up */
1456 	deref_qps(&qp_list);
1457 	kfree(qp_list.qps);
1458 
1459 	spin_lock_irq(&ctx->dev->lock);
1460 	WARN_ON(ctx->dev->db_state != RECOVERY);
1461 	ctx->dev->db_state = STOPPED;
1462 	spin_unlock_irq(&ctx->dev->lock);
1463 }
1464 
1465 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1466 {
1467 	struct uld_ctx *ctx = handle;
1468 
1469 	switch (control) {
1470 	case CXGB4_CONTROL_DB_FULL:
1471 		stop_queues(ctx);
1472 		ctx->dev->rdev.stats.db_full++;
1473 		break;
1474 	case CXGB4_CONTROL_DB_EMPTY:
1475 		resume_queues(ctx);
1476 		mutex_lock(&ctx->dev->rdev.stats.lock);
1477 		ctx->dev->rdev.stats.db_empty++;
1478 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1479 		break;
1480 	case CXGB4_CONTROL_DB_DROP:
1481 		recover_queues(ctx);
1482 		mutex_lock(&ctx->dev->rdev.stats.lock);
1483 		ctx->dev->rdev.stats.db_drop++;
1484 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1485 		break;
1486 	default:
1487 		pr_warn("%s: unknown control cmd %u\n",
1488 			pci_name(ctx->lldi.pdev), control);
1489 		break;
1490 	}
1491 	return 0;
1492 }
1493 
1494 static struct cxgb4_uld_info c4iw_uld_info = {
1495 	.name = DRV_NAME,
1496 	.nrxq = MAX_ULD_QSETS,
1497 	.ntxq = MAX_ULD_QSETS,
1498 	.rxq_size = 511,
1499 	.ciq = true,
1500 	.lro = false,
1501 	.add = c4iw_uld_add,
1502 	.rx_handler = c4iw_uld_rx_handler,
1503 	.state_change = c4iw_uld_state_change,
1504 	.control = c4iw_uld_control,
1505 };
1506 
1507 void _c4iw_free_wr_wait(struct kref *kref)
1508 {
1509 	struct c4iw_wr_wait *wr_waitp;
1510 
1511 	wr_waitp = container_of(kref, struct c4iw_wr_wait, kref);
1512 	pr_debug("Free wr_wait %p\n", wr_waitp);
1513 	kfree(wr_waitp);
1514 }
1515 
1516 struct c4iw_wr_wait *c4iw_alloc_wr_wait(gfp_t gfp)
1517 {
1518 	struct c4iw_wr_wait *wr_waitp;
1519 
1520 	wr_waitp = kzalloc(sizeof(*wr_waitp), gfp);
1521 	if (wr_waitp) {
1522 		kref_init(&wr_waitp->kref);
1523 		pr_debug("wr_wait %p\n", wr_waitp);
1524 	}
1525 	return wr_waitp;
1526 }
1527 
1528 static int __init c4iw_init_module(void)
1529 {
1530 	int err;
1531 
1532 	err = c4iw_cm_init();
1533 	if (err)
1534 		return err;
1535 
1536 	c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1537 	if (!c4iw_debugfs_root)
1538 		pr_warn("could not create debugfs entry, continuing\n");
1539 
1540 	reg_workq = create_singlethread_workqueue("Register_iWARP_device");
1541 	if (!reg_workq) {
1542 		pr_err("Failed creating workqueue to register iwarp device\n");
1543 		return -ENOMEM;
1544 	}
1545 
1546 	cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1547 
1548 	return 0;
1549 }
1550 
1551 static void __exit c4iw_exit_module(void)
1552 {
1553 	struct uld_ctx *ctx, *tmp;
1554 
1555 	mutex_lock(&dev_mutex);
1556 	list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1557 		if (ctx->dev)
1558 			c4iw_remove(ctx);
1559 		kfree(ctx);
1560 	}
1561 	mutex_unlock(&dev_mutex);
1562 	flush_workqueue(reg_workq);
1563 	destroy_workqueue(reg_workq);
1564 	cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1565 	c4iw_cm_term();
1566 	debugfs_remove_recursive(c4iw_debugfs_root);
1567 }
1568 
1569 module_init(c4iw_init_module);
1570 module_exit(c4iw_exit_module);
1571