1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37 
38 #include <rdma/ib_verbs.h>
39 
40 #include "iw_cxgb4.h"
41 
42 #define DRV_VERSION "0.1"
43 
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47 MODULE_VERSION(DRV_VERSION);
48 
49 static int allow_db_fc_on_t5;
50 module_param(allow_db_fc_on_t5, int, 0644);
51 MODULE_PARM_DESC(allow_db_fc_on_t5,
52 		 "Allow DB Flow Control on T5 (default = 0)");
53 
54 static int allow_db_coalescing_on_t5;
55 module_param(allow_db_coalescing_on_t5, int, 0644);
56 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
57 		 "Allow DB Coalescing on T5 (default = 0)");
58 
59 int c4iw_wr_log = 0;
60 module_param(c4iw_wr_log, int, 0444);
61 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
62 
63 static int c4iw_wr_log_size_order = 12;
64 module_param(c4iw_wr_log_size_order, int, 0444);
65 MODULE_PARM_DESC(c4iw_wr_log_size_order,
66 		 "Number of entries (log2) in the work request timing log.");
67 
68 struct uld_ctx {
69 	struct list_head entry;
70 	struct cxgb4_lld_info lldi;
71 	struct c4iw_dev *dev;
72 };
73 
74 static LIST_HEAD(uld_ctx_list);
75 static DEFINE_MUTEX(dev_mutex);
76 
77 #define DB_FC_RESUME_SIZE 64
78 #define DB_FC_RESUME_DELAY 1
79 #define DB_FC_DRAIN_THRESH 0
80 
81 static struct dentry *c4iw_debugfs_root;
82 
83 struct c4iw_debugfs_data {
84 	struct c4iw_dev *devp;
85 	char *buf;
86 	int bufsize;
87 	int pos;
88 };
89 
90 static int count_idrs(int id, void *p, void *data)
91 {
92 	int *countp = data;
93 
94 	*countp = *countp + 1;
95 	return 0;
96 }
97 
98 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
99 			    loff_t *ppos)
100 {
101 	struct c4iw_debugfs_data *d = file->private_data;
102 
103 	return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
104 }
105 
106 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
107 {
108 	struct wr_log_entry le;
109 	int idx;
110 
111 	if (!wq->rdev->wr_log)
112 		return;
113 
114 	idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
115 		(wq->rdev->wr_log_size - 1);
116 	le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
117 	getnstimeofday(&le.poll_host_ts);
118 	le.valid = 1;
119 	le.cqe_sge_ts = CQE_TS(cqe);
120 	if (SQ_TYPE(cqe)) {
121 		le.qid = wq->sq.qid;
122 		le.opcode = CQE_OPCODE(cqe);
123 		le.post_host_ts = wq->sq.sw_sq[wq->sq.cidx].host_ts;
124 		le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
125 		le.wr_id = CQE_WRID_SQ_IDX(cqe);
126 	} else {
127 		le.qid = wq->rq.qid;
128 		le.opcode = FW_RI_RECEIVE;
129 		le.post_host_ts = wq->rq.sw_rq[wq->rq.cidx].host_ts;
130 		le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
131 		le.wr_id = CQE_WRID_MSN(cqe);
132 	}
133 	wq->rdev->wr_log[idx] = le;
134 }
135 
136 static int wr_log_show(struct seq_file *seq, void *v)
137 {
138 	struct c4iw_dev *dev = seq->private;
139 	struct timespec prev_ts = {0, 0};
140 	struct wr_log_entry *lep;
141 	int prev_ts_set = 0;
142 	int idx, end;
143 
144 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
145 
146 	idx = atomic_read(&dev->rdev.wr_log_idx) &
147 		(dev->rdev.wr_log_size - 1);
148 	end = idx - 1;
149 	if (end < 0)
150 		end = dev->rdev.wr_log_size - 1;
151 	lep = &dev->rdev.wr_log[idx];
152 	while (idx != end) {
153 		if (lep->valid) {
154 			if (!prev_ts_set) {
155 				prev_ts_set = 1;
156 				prev_ts = lep->poll_host_ts;
157 			}
158 			seq_printf(seq, "%04u: sec %lu nsec %lu qid %u opcode "
159 				   "%u %s 0x%x host_wr_delta sec %lu nsec %lu "
160 				   "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
161 				   "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
162 				   "cqe_poll_delta_ns %llu\n",
163 				   idx,
164 				   timespec_sub(lep->poll_host_ts,
165 						prev_ts).tv_sec,
166 				   timespec_sub(lep->poll_host_ts,
167 						prev_ts).tv_nsec,
168 				   lep->qid, lep->opcode,
169 				   lep->opcode == FW_RI_RECEIVE ?
170 							"msn" : "wrid",
171 				   lep->wr_id,
172 				   timespec_sub(lep->poll_host_ts,
173 						lep->post_host_ts).tv_sec,
174 				   timespec_sub(lep->poll_host_ts,
175 						lep->post_host_ts).tv_nsec,
176 				   lep->post_sge_ts, lep->cqe_sge_ts,
177 				   lep->poll_sge_ts,
178 				   ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
179 				   ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
180 			prev_ts = lep->poll_host_ts;
181 		}
182 		idx++;
183 		if (idx > (dev->rdev.wr_log_size - 1))
184 			idx = 0;
185 		lep = &dev->rdev.wr_log[idx];
186 	}
187 #undef ts2ns
188 	return 0;
189 }
190 
191 static int wr_log_open(struct inode *inode, struct file *file)
192 {
193 	return single_open(file, wr_log_show, inode->i_private);
194 }
195 
196 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
197 			    size_t count, loff_t *pos)
198 {
199 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
200 	int i;
201 
202 	if (dev->rdev.wr_log)
203 		for (i = 0; i < dev->rdev.wr_log_size; i++)
204 			dev->rdev.wr_log[i].valid = 0;
205 	return count;
206 }
207 
208 static const struct file_operations wr_log_debugfs_fops = {
209 	.owner   = THIS_MODULE,
210 	.open    = wr_log_open,
211 	.release = single_release,
212 	.read    = seq_read,
213 	.llseek  = seq_lseek,
214 	.write   = wr_log_clear,
215 };
216 
217 static int dump_qp(int id, void *p, void *data)
218 {
219 	struct c4iw_qp *qp = p;
220 	struct c4iw_debugfs_data *qpd = data;
221 	int space;
222 	int cc;
223 
224 	if (id != qp->wq.sq.qid)
225 		return 0;
226 
227 	space = qpd->bufsize - qpd->pos - 1;
228 	if (space == 0)
229 		return 1;
230 
231 	if (qp->ep) {
232 		if (qp->ep->com.local_addr.ss_family == AF_INET) {
233 			struct sockaddr_in *lsin = (struct sockaddr_in *)
234 				&qp->ep->com.cm_id->local_addr;
235 			struct sockaddr_in *rsin = (struct sockaddr_in *)
236 				&qp->ep->com.cm_id->remote_addr;
237 			struct sockaddr_in *mapped_lsin = (struct sockaddr_in *)
238 				&qp->ep->com.cm_id->m_local_addr;
239 			struct sockaddr_in *mapped_rsin = (struct sockaddr_in *)
240 				&qp->ep->com.cm_id->m_remote_addr;
241 
242 			cc = snprintf(qpd->buf + qpd->pos, space,
243 				      "rc qp sq id %u rq id %u state %u "
244 				      "onchip %u ep tid %u state %u "
245 				      "%pI4:%u/%u->%pI4:%u/%u\n",
246 				      qp->wq.sq.qid, qp->wq.rq.qid,
247 				      (int)qp->attr.state,
248 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
249 				      qp->ep->hwtid, (int)qp->ep->com.state,
250 				      &lsin->sin_addr, ntohs(lsin->sin_port),
251 				      ntohs(mapped_lsin->sin_port),
252 				      &rsin->sin_addr, ntohs(rsin->sin_port),
253 				      ntohs(mapped_rsin->sin_port));
254 		} else {
255 			struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
256 				&qp->ep->com.cm_id->local_addr;
257 			struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
258 				&qp->ep->com.cm_id->remote_addr;
259 			struct sockaddr_in6 *mapped_lsin6 =
260 				(struct sockaddr_in6 *)
261 				&qp->ep->com.cm_id->m_local_addr;
262 			struct sockaddr_in6 *mapped_rsin6 =
263 				(struct sockaddr_in6 *)
264 				&qp->ep->com.cm_id->m_remote_addr;
265 
266 			cc = snprintf(qpd->buf + qpd->pos, space,
267 				      "rc qp sq id %u rq id %u state %u "
268 				      "onchip %u ep tid %u state %u "
269 				      "%pI6:%u/%u->%pI6:%u/%u\n",
270 				      qp->wq.sq.qid, qp->wq.rq.qid,
271 				      (int)qp->attr.state,
272 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
273 				      qp->ep->hwtid, (int)qp->ep->com.state,
274 				      &lsin6->sin6_addr,
275 				      ntohs(lsin6->sin6_port),
276 				      ntohs(mapped_lsin6->sin6_port),
277 				      &rsin6->sin6_addr,
278 				      ntohs(rsin6->sin6_port),
279 				      ntohs(mapped_rsin6->sin6_port));
280 		}
281 	} else
282 		cc = snprintf(qpd->buf + qpd->pos, space,
283 			     "qp sq id %u rq id %u state %u onchip %u\n",
284 			      qp->wq.sq.qid, qp->wq.rq.qid,
285 			      (int)qp->attr.state,
286 			      qp->wq.sq.flags & T4_SQ_ONCHIP);
287 	if (cc < space)
288 		qpd->pos += cc;
289 	return 0;
290 }
291 
292 static int qp_release(struct inode *inode, struct file *file)
293 {
294 	struct c4iw_debugfs_data *qpd = file->private_data;
295 	if (!qpd) {
296 		printk(KERN_INFO "%s null qpd?\n", __func__);
297 		return 0;
298 	}
299 	vfree(qpd->buf);
300 	kfree(qpd);
301 	return 0;
302 }
303 
304 static int qp_open(struct inode *inode, struct file *file)
305 {
306 	struct c4iw_debugfs_data *qpd;
307 	int count = 1;
308 
309 	qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
310 	if (!qpd)
311 		return -ENOMEM;
312 
313 	qpd->devp = inode->i_private;
314 	qpd->pos = 0;
315 
316 	spin_lock_irq(&qpd->devp->lock);
317 	idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
318 	spin_unlock_irq(&qpd->devp->lock);
319 
320 	qpd->bufsize = count * 180;
321 	qpd->buf = vmalloc(qpd->bufsize);
322 	if (!qpd->buf) {
323 		kfree(qpd);
324 		return -ENOMEM;
325 	}
326 
327 	spin_lock_irq(&qpd->devp->lock);
328 	idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
329 	spin_unlock_irq(&qpd->devp->lock);
330 
331 	qpd->buf[qpd->pos++] = 0;
332 	file->private_data = qpd;
333 	return 0;
334 }
335 
336 static const struct file_operations qp_debugfs_fops = {
337 	.owner   = THIS_MODULE,
338 	.open    = qp_open,
339 	.release = qp_release,
340 	.read    = debugfs_read,
341 	.llseek  = default_llseek,
342 };
343 
344 static int dump_stag(int id, void *p, void *data)
345 {
346 	struct c4iw_debugfs_data *stagd = data;
347 	int space;
348 	int cc;
349 	struct fw_ri_tpte tpte;
350 	int ret;
351 
352 	space = stagd->bufsize - stagd->pos - 1;
353 	if (space == 0)
354 		return 1;
355 
356 	ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
357 			      (__be32 *)&tpte);
358 	if (ret) {
359 		dev_err(&stagd->devp->rdev.lldi.pdev->dev,
360 			"%s cxgb4_read_tpte err %d\n", __func__, ret);
361 		return ret;
362 	}
363 	cc = snprintf(stagd->buf + stagd->pos, space,
364 		      "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
365 		      "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
366 		      (u32)id<<8,
367 		      FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
368 		      FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
369 		      FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
370 		      FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
371 		      FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
372 		      FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
373 		      ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
374 		      ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
375 	if (cc < space)
376 		stagd->pos += cc;
377 	return 0;
378 }
379 
380 static int stag_release(struct inode *inode, struct file *file)
381 {
382 	struct c4iw_debugfs_data *stagd = file->private_data;
383 	if (!stagd) {
384 		printk(KERN_INFO "%s null stagd?\n", __func__);
385 		return 0;
386 	}
387 	vfree(stagd->buf);
388 	kfree(stagd);
389 	return 0;
390 }
391 
392 static int stag_open(struct inode *inode, struct file *file)
393 {
394 	struct c4iw_debugfs_data *stagd;
395 	int ret = 0;
396 	int count = 1;
397 
398 	stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
399 	if (!stagd) {
400 		ret = -ENOMEM;
401 		goto out;
402 	}
403 	stagd->devp = inode->i_private;
404 	stagd->pos = 0;
405 
406 	spin_lock_irq(&stagd->devp->lock);
407 	idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
408 	spin_unlock_irq(&stagd->devp->lock);
409 
410 	stagd->bufsize = count * 256;
411 	stagd->buf = vmalloc(stagd->bufsize);
412 	if (!stagd->buf) {
413 		ret = -ENOMEM;
414 		goto err1;
415 	}
416 
417 	spin_lock_irq(&stagd->devp->lock);
418 	idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
419 	spin_unlock_irq(&stagd->devp->lock);
420 
421 	stagd->buf[stagd->pos++] = 0;
422 	file->private_data = stagd;
423 	goto out;
424 err1:
425 	kfree(stagd);
426 out:
427 	return ret;
428 }
429 
430 static const struct file_operations stag_debugfs_fops = {
431 	.owner   = THIS_MODULE,
432 	.open    = stag_open,
433 	.release = stag_release,
434 	.read    = debugfs_read,
435 	.llseek  = default_llseek,
436 };
437 
438 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
439 
440 static int stats_show(struct seq_file *seq, void *v)
441 {
442 	struct c4iw_dev *dev = seq->private;
443 
444 	seq_printf(seq, "   Object: %10s %10s %10s %10s\n", "Total", "Current",
445 		   "Max", "Fail");
446 	seq_printf(seq, "     PDID: %10llu %10llu %10llu %10llu\n",
447 			dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
448 			dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
449 	seq_printf(seq, "      QID: %10llu %10llu %10llu %10llu\n",
450 			dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
451 			dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
452 	seq_printf(seq, "   TPTMEM: %10llu %10llu %10llu %10llu\n",
453 			dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
454 			dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
455 	seq_printf(seq, "   PBLMEM: %10llu %10llu %10llu %10llu\n",
456 			dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
457 			dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
458 	seq_printf(seq, "   RQTMEM: %10llu %10llu %10llu %10llu\n",
459 			dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
460 			dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
461 	seq_printf(seq, "  OCQPMEM: %10llu %10llu %10llu %10llu\n",
462 			dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
463 			dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
464 	seq_printf(seq, "  DB FULL: %10llu\n", dev->rdev.stats.db_full);
465 	seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
466 	seq_printf(seq, "  DB DROP: %10llu\n", dev->rdev.stats.db_drop);
467 	seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
468 		   db_state_str[dev->db_state],
469 		   dev->rdev.stats.db_state_transitions,
470 		   dev->rdev.stats.db_fc_interruptions);
471 	seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
472 	seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
473 		   dev->rdev.stats.act_ofld_conn_fails);
474 	seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
475 		   dev->rdev.stats.pas_ofld_conn_fails);
476 	seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
477 	seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
478 	return 0;
479 }
480 
481 static int stats_open(struct inode *inode, struct file *file)
482 {
483 	return single_open(file, stats_show, inode->i_private);
484 }
485 
486 static ssize_t stats_clear(struct file *file, const char __user *buf,
487 		size_t count, loff_t *pos)
488 {
489 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
490 
491 	mutex_lock(&dev->rdev.stats.lock);
492 	dev->rdev.stats.pd.max = 0;
493 	dev->rdev.stats.pd.fail = 0;
494 	dev->rdev.stats.qid.max = 0;
495 	dev->rdev.stats.qid.fail = 0;
496 	dev->rdev.stats.stag.max = 0;
497 	dev->rdev.stats.stag.fail = 0;
498 	dev->rdev.stats.pbl.max = 0;
499 	dev->rdev.stats.pbl.fail = 0;
500 	dev->rdev.stats.rqt.max = 0;
501 	dev->rdev.stats.rqt.fail = 0;
502 	dev->rdev.stats.ocqp.max = 0;
503 	dev->rdev.stats.ocqp.fail = 0;
504 	dev->rdev.stats.db_full = 0;
505 	dev->rdev.stats.db_empty = 0;
506 	dev->rdev.stats.db_drop = 0;
507 	dev->rdev.stats.db_state_transitions = 0;
508 	dev->rdev.stats.tcam_full = 0;
509 	dev->rdev.stats.act_ofld_conn_fails = 0;
510 	dev->rdev.stats.pas_ofld_conn_fails = 0;
511 	mutex_unlock(&dev->rdev.stats.lock);
512 	return count;
513 }
514 
515 static const struct file_operations stats_debugfs_fops = {
516 	.owner   = THIS_MODULE,
517 	.open    = stats_open,
518 	.release = single_release,
519 	.read    = seq_read,
520 	.llseek  = seq_lseek,
521 	.write   = stats_clear,
522 };
523 
524 static int dump_ep(int id, void *p, void *data)
525 {
526 	struct c4iw_ep *ep = p;
527 	struct c4iw_debugfs_data *epd = data;
528 	int space;
529 	int cc;
530 
531 	space = epd->bufsize - epd->pos - 1;
532 	if (space == 0)
533 		return 1;
534 
535 	if (ep->com.local_addr.ss_family == AF_INET) {
536 		struct sockaddr_in *lsin = (struct sockaddr_in *)
537 			&ep->com.cm_id->local_addr;
538 		struct sockaddr_in *rsin = (struct sockaddr_in *)
539 			&ep->com.cm_id->remote_addr;
540 		struct sockaddr_in *mapped_lsin = (struct sockaddr_in *)
541 			&ep->com.cm_id->m_local_addr;
542 		struct sockaddr_in *mapped_rsin = (struct sockaddr_in *)
543 			&ep->com.cm_id->m_remote_addr;
544 
545 		cc = snprintf(epd->buf + epd->pos, space,
546 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
547 			      "history 0x%lx hwtid %d atid %d "
548 			      "conn_na %u abort_na %u "
549 			      "%pI4:%d/%d <-> %pI4:%d/%d\n",
550 			      ep, ep->com.cm_id, ep->com.qp,
551 			      (int)ep->com.state, ep->com.flags,
552 			      ep->com.history, ep->hwtid, ep->atid,
553 			      ep->stats.connect_neg_adv,
554 			      ep->stats.abort_neg_adv,
555 			      &lsin->sin_addr, ntohs(lsin->sin_port),
556 			      ntohs(mapped_lsin->sin_port),
557 			      &rsin->sin_addr, ntohs(rsin->sin_port),
558 			      ntohs(mapped_rsin->sin_port));
559 	} else {
560 		struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
561 			&ep->com.cm_id->local_addr;
562 		struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *)
563 			&ep->com.cm_id->remote_addr;
564 		struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *)
565 			&ep->com.cm_id->m_local_addr;
566 		struct sockaddr_in6 *mapped_rsin6 = (struct sockaddr_in6 *)
567 			&ep->com.cm_id->m_remote_addr;
568 
569 		cc = snprintf(epd->buf + epd->pos, space,
570 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
571 			      "history 0x%lx hwtid %d atid %d "
572 			      "conn_na %u abort_na %u "
573 			      "%pI6:%d/%d <-> %pI6:%d/%d\n",
574 			      ep, ep->com.cm_id, ep->com.qp,
575 			      (int)ep->com.state, ep->com.flags,
576 			      ep->com.history, ep->hwtid, ep->atid,
577 			      ep->stats.connect_neg_adv,
578 			      ep->stats.abort_neg_adv,
579 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
580 			      ntohs(mapped_lsin6->sin6_port),
581 			      &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
582 			      ntohs(mapped_rsin6->sin6_port));
583 	}
584 	if (cc < space)
585 		epd->pos += cc;
586 	return 0;
587 }
588 
589 static int dump_listen_ep(int id, void *p, void *data)
590 {
591 	struct c4iw_listen_ep *ep = p;
592 	struct c4iw_debugfs_data *epd = data;
593 	int space;
594 	int cc;
595 
596 	space = epd->bufsize - epd->pos - 1;
597 	if (space == 0)
598 		return 1;
599 
600 	if (ep->com.local_addr.ss_family == AF_INET) {
601 		struct sockaddr_in *lsin = (struct sockaddr_in *)
602 			&ep->com.cm_id->local_addr;
603 		struct sockaddr_in *mapped_lsin = (struct sockaddr_in *)
604 			&ep->com.cm_id->m_local_addr;
605 
606 		cc = snprintf(epd->buf + epd->pos, space,
607 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
608 			      "backlog %d %pI4:%d/%d\n",
609 			      ep, ep->com.cm_id, (int)ep->com.state,
610 			      ep->com.flags, ep->stid, ep->backlog,
611 			      &lsin->sin_addr, ntohs(lsin->sin_port),
612 			      ntohs(mapped_lsin->sin_port));
613 	} else {
614 		struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
615 			&ep->com.cm_id->local_addr;
616 		struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *)
617 			&ep->com.cm_id->m_local_addr;
618 
619 		cc = snprintf(epd->buf + epd->pos, space,
620 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
621 			      "backlog %d %pI6:%d/%d\n",
622 			      ep, ep->com.cm_id, (int)ep->com.state,
623 			      ep->com.flags, ep->stid, ep->backlog,
624 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
625 			      ntohs(mapped_lsin6->sin6_port));
626 	}
627 	if (cc < space)
628 		epd->pos += cc;
629 	return 0;
630 }
631 
632 static int ep_release(struct inode *inode, struct file *file)
633 {
634 	struct c4iw_debugfs_data *epd = file->private_data;
635 	if (!epd) {
636 		pr_info("%s null qpd?\n", __func__);
637 		return 0;
638 	}
639 	vfree(epd->buf);
640 	kfree(epd);
641 	return 0;
642 }
643 
644 static int ep_open(struct inode *inode, struct file *file)
645 {
646 	struct c4iw_debugfs_data *epd;
647 	int ret = 0;
648 	int count = 1;
649 
650 	epd = kmalloc(sizeof(*epd), GFP_KERNEL);
651 	if (!epd) {
652 		ret = -ENOMEM;
653 		goto out;
654 	}
655 	epd->devp = inode->i_private;
656 	epd->pos = 0;
657 
658 	spin_lock_irq(&epd->devp->lock);
659 	idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
660 	idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
661 	idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
662 	spin_unlock_irq(&epd->devp->lock);
663 
664 	epd->bufsize = count * 240;
665 	epd->buf = vmalloc(epd->bufsize);
666 	if (!epd->buf) {
667 		ret = -ENOMEM;
668 		goto err1;
669 	}
670 
671 	spin_lock_irq(&epd->devp->lock);
672 	idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
673 	idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
674 	idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
675 	spin_unlock_irq(&epd->devp->lock);
676 
677 	file->private_data = epd;
678 	goto out;
679 err1:
680 	kfree(epd);
681 out:
682 	return ret;
683 }
684 
685 static const struct file_operations ep_debugfs_fops = {
686 	.owner   = THIS_MODULE,
687 	.open    = ep_open,
688 	.release = ep_release,
689 	.read    = debugfs_read,
690 };
691 
692 static int setup_debugfs(struct c4iw_dev *devp)
693 {
694 	if (!devp->debugfs_root)
695 		return -1;
696 
697 	debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
698 				 (void *)devp, &qp_debugfs_fops, 4096);
699 
700 	debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
701 				 (void *)devp, &stag_debugfs_fops, 4096);
702 
703 	debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
704 				 (void *)devp, &stats_debugfs_fops, 4096);
705 
706 	debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
707 				 (void *)devp, &ep_debugfs_fops, 4096);
708 
709 	if (c4iw_wr_log)
710 		debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
711 					 (void *)devp, &wr_log_debugfs_fops, 4096);
712 	return 0;
713 }
714 
715 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
716 			       struct c4iw_dev_ucontext *uctx)
717 {
718 	struct list_head *pos, *nxt;
719 	struct c4iw_qid_list *entry;
720 
721 	mutex_lock(&uctx->lock);
722 	list_for_each_safe(pos, nxt, &uctx->qpids) {
723 		entry = list_entry(pos, struct c4iw_qid_list, entry);
724 		list_del_init(&entry->entry);
725 		if (!(entry->qid & rdev->qpmask)) {
726 			c4iw_put_resource(&rdev->resource.qid_table,
727 					  entry->qid);
728 			mutex_lock(&rdev->stats.lock);
729 			rdev->stats.qid.cur -= rdev->qpmask + 1;
730 			mutex_unlock(&rdev->stats.lock);
731 		}
732 		kfree(entry);
733 	}
734 
735 	list_for_each_safe(pos, nxt, &uctx->qpids) {
736 		entry = list_entry(pos, struct c4iw_qid_list, entry);
737 		list_del_init(&entry->entry);
738 		kfree(entry);
739 	}
740 	mutex_unlock(&uctx->lock);
741 }
742 
743 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
744 			    struct c4iw_dev_ucontext *uctx)
745 {
746 	INIT_LIST_HEAD(&uctx->qpids);
747 	INIT_LIST_HEAD(&uctx->cqids);
748 	mutex_init(&uctx->lock);
749 }
750 
751 /* Caller takes care of locking if needed */
752 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
753 {
754 	int err;
755 
756 	c4iw_init_dev_ucontext(rdev, &rdev->uctx);
757 
758 	/*
759 	 * This implementation assumes udb_density == ucq_density!  Eventually
760 	 * we might need to support this but for now fail the open. Also the
761 	 * cqid and qpid range must match for now.
762 	 */
763 	if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
764 		pr_err(MOD "%s: unsupported udb/ucq densities %u/%u\n",
765 		       pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
766 		       rdev->lldi.ucq_density);
767 		return -EINVAL;
768 	}
769 	if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
770 	    rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
771 		pr_err(MOD "%s: unsupported qp and cq id ranges "
772 		       "qp start %u size %u cq start %u size %u\n",
773 		       pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
774 		       rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
775 		       rdev->lldi.vr->cq.size);
776 		return -EINVAL;
777 	}
778 
779 	rdev->qpmask = rdev->lldi.udb_density - 1;
780 	rdev->cqmask = rdev->lldi.ucq_density - 1;
781 	PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d "
782 	     "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x "
783 	     "qp qid start %u size %u cq qid start %u size %u\n",
784 	     __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
785 	     rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
786 	     rdev->lldi.vr->pbl.start,
787 	     rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
788 	     rdev->lldi.vr->rq.size,
789 	     rdev->lldi.vr->qp.start,
790 	     rdev->lldi.vr->qp.size,
791 	     rdev->lldi.vr->cq.start,
792 	     rdev->lldi.vr->cq.size);
793 	PDBG("udb %pR db_reg %p gts_reg %p "
794 	     "qpmask 0x%x cqmask 0x%x\n",
795 		&rdev->lldi.pdev->resource[2],
796 	     rdev->lldi.db_reg, rdev->lldi.gts_reg,
797 	     rdev->qpmask, rdev->cqmask);
798 
799 	if (c4iw_num_stags(rdev) == 0)
800 		return -EINVAL;
801 
802 	rdev->stats.pd.total = T4_MAX_NUM_PD;
803 	rdev->stats.stag.total = rdev->lldi.vr->stag.size;
804 	rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
805 	rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
806 	rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
807 	rdev->stats.qid.total = rdev->lldi.vr->qp.size;
808 
809 	err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
810 	if (err) {
811 		printk(KERN_ERR MOD "error %d initializing resources\n", err);
812 		return err;
813 	}
814 	err = c4iw_pblpool_create(rdev);
815 	if (err) {
816 		printk(KERN_ERR MOD "error %d initializing pbl pool\n", err);
817 		goto destroy_resource;
818 	}
819 	err = c4iw_rqtpool_create(rdev);
820 	if (err) {
821 		printk(KERN_ERR MOD "error %d initializing rqt pool\n", err);
822 		goto destroy_pblpool;
823 	}
824 	err = c4iw_ocqp_pool_create(rdev);
825 	if (err) {
826 		printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err);
827 		goto destroy_rqtpool;
828 	}
829 	rdev->status_page = (struct t4_dev_status_page *)
830 			    __get_free_page(GFP_KERNEL);
831 	if (!rdev->status_page)
832 		goto destroy_ocqp_pool;
833 	rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
834 	rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
835 	rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
836 	rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
837 
838 	if (c4iw_wr_log) {
839 		rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) *
840 				       sizeof(*rdev->wr_log), GFP_KERNEL);
841 		if (rdev->wr_log) {
842 			rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
843 			atomic_set(&rdev->wr_log_idx, 0);
844 		} else {
845 			pr_err(MOD "error allocating wr_log. Logging disabled\n");
846 		}
847 	}
848 
849 	rdev->status_page->db_off = 0;
850 
851 	return 0;
852 destroy_ocqp_pool:
853 	c4iw_ocqp_pool_destroy(rdev);
854 destroy_rqtpool:
855 	c4iw_rqtpool_destroy(rdev);
856 destroy_pblpool:
857 	c4iw_pblpool_destroy(rdev);
858 destroy_resource:
859 	c4iw_destroy_resource(&rdev->resource);
860 	return err;
861 }
862 
863 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
864 {
865 	kfree(rdev->wr_log);
866 	free_page((unsigned long)rdev->status_page);
867 	c4iw_pblpool_destroy(rdev);
868 	c4iw_rqtpool_destroy(rdev);
869 	c4iw_destroy_resource(&rdev->resource);
870 }
871 
872 static void c4iw_dealloc(struct uld_ctx *ctx)
873 {
874 	c4iw_rdev_close(&ctx->dev->rdev);
875 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr));
876 	idr_destroy(&ctx->dev->cqidr);
877 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr));
878 	idr_destroy(&ctx->dev->qpidr);
879 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr));
880 	idr_destroy(&ctx->dev->mmidr);
881 	wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr));
882 	idr_destroy(&ctx->dev->hwtid_idr);
883 	idr_destroy(&ctx->dev->stid_idr);
884 	idr_destroy(&ctx->dev->atid_idr);
885 	if (ctx->dev->rdev.bar2_kva)
886 		iounmap(ctx->dev->rdev.bar2_kva);
887 	if (ctx->dev->rdev.oc_mw_kva)
888 		iounmap(ctx->dev->rdev.oc_mw_kva);
889 	ib_dealloc_device(&ctx->dev->ibdev);
890 	ctx->dev = NULL;
891 }
892 
893 static void c4iw_remove(struct uld_ctx *ctx)
894 {
895 	PDBG("%s c4iw_dev %p\n", __func__,  ctx->dev);
896 	c4iw_unregister_device(ctx->dev);
897 	c4iw_dealloc(ctx);
898 }
899 
900 static int rdma_supported(const struct cxgb4_lld_info *infop)
901 {
902 	return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
903 	       infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
904 	       infop->vr->cq.size > 0;
905 }
906 
907 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
908 {
909 	struct c4iw_dev *devp;
910 	int ret;
911 
912 	if (!rdma_supported(infop)) {
913 		printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n",
914 		       pci_name(infop->pdev));
915 		return ERR_PTR(-ENOSYS);
916 	}
917 	if (!ocqp_supported(infop))
918 		pr_info("%s: On-Chip Queues not supported on this device.\n",
919 			pci_name(infop->pdev));
920 
921 	devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
922 	if (!devp) {
923 		printk(KERN_ERR MOD "Cannot allocate ib device\n");
924 		return ERR_PTR(-ENOMEM);
925 	}
926 	devp->rdev.lldi = *infop;
927 
928 	/* init various hw-queue params based on lld info */
929 	PDBG("%s: Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
930 	     __func__, devp->rdev.lldi.sge_ingpadboundary,
931 	     devp->rdev.lldi.sge_egrstatuspagesize);
932 
933 	devp->rdev.hw_queue.t4_eq_status_entries =
934 		devp->rdev.lldi.sge_ingpadboundary > 64 ? 2 : 1;
935 	devp->rdev.hw_queue.t4_max_eq_size = 65520;
936 	devp->rdev.hw_queue.t4_max_iq_size = 65520;
937 	devp->rdev.hw_queue.t4_max_rq_size = 8192 -
938 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
939 	devp->rdev.hw_queue.t4_max_sq_size =
940 		devp->rdev.hw_queue.t4_max_eq_size -
941 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
942 	devp->rdev.hw_queue.t4_max_qp_depth =
943 		devp->rdev.hw_queue.t4_max_rq_size;
944 	devp->rdev.hw_queue.t4_max_cq_depth =
945 		devp->rdev.hw_queue.t4_max_iq_size - 2;
946 	devp->rdev.hw_queue.t4_stat_len =
947 		devp->rdev.lldi.sge_egrstatuspagesize;
948 
949 	/*
950 	 * For T5/T6 devices, we map all of BAR2 with WC.
951 	 * For T4 devices with onchip qp mem, we map only that part
952 	 * of BAR2 with WC.
953 	 */
954 	devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
955 	if (!is_t4(devp->rdev.lldi.adapter_type)) {
956 		devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
957 			pci_resource_len(devp->rdev.lldi.pdev, 2));
958 		if (!devp->rdev.bar2_kva) {
959 			pr_err(MOD "Unable to ioremap BAR2\n");
960 			ib_dealloc_device(&devp->ibdev);
961 			return ERR_PTR(-EINVAL);
962 		}
963 	} else if (ocqp_supported(infop)) {
964 		devp->rdev.oc_mw_pa =
965 			pci_resource_start(devp->rdev.lldi.pdev, 2) +
966 			pci_resource_len(devp->rdev.lldi.pdev, 2) -
967 			roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
968 		devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
969 			devp->rdev.lldi.vr->ocq.size);
970 		if (!devp->rdev.oc_mw_kva) {
971 			pr_err(MOD "Unable to ioremap onchip mem\n");
972 			ib_dealloc_device(&devp->ibdev);
973 			return ERR_PTR(-EINVAL);
974 		}
975 	}
976 
977 	PDBG(KERN_INFO MOD "ocq memory: "
978 	       "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
979 	       devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
980 	       devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
981 
982 	ret = c4iw_rdev_open(&devp->rdev);
983 	if (ret) {
984 		printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret);
985 		ib_dealloc_device(&devp->ibdev);
986 		return ERR_PTR(ret);
987 	}
988 
989 	idr_init(&devp->cqidr);
990 	idr_init(&devp->qpidr);
991 	idr_init(&devp->mmidr);
992 	idr_init(&devp->hwtid_idr);
993 	idr_init(&devp->stid_idr);
994 	idr_init(&devp->atid_idr);
995 	spin_lock_init(&devp->lock);
996 	mutex_init(&devp->rdev.stats.lock);
997 	mutex_init(&devp->db_mutex);
998 	INIT_LIST_HEAD(&devp->db_fc_list);
999 	init_waitqueue_head(&devp->wait);
1000 	devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1001 
1002 	if (c4iw_debugfs_root) {
1003 		devp->debugfs_root = debugfs_create_dir(
1004 					pci_name(devp->rdev.lldi.pdev),
1005 					c4iw_debugfs_root);
1006 		setup_debugfs(devp);
1007 	}
1008 
1009 
1010 	return devp;
1011 }
1012 
1013 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1014 {
1015 	struct uld_ctx *ctx;
1016 	static int vers_printed;
1017 	int i;
1018 
1019 	if (!vers_printed++)
1020 		pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1021 			DRV_VERSION);
1022 
1023 	ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1024 	if (!ctx) {
1025 		ctx = ERR_PTR(-ENOMEM);
1026 		goto out;
1027 	}
1028 	ctx->lldi = *infop;
1029 
1030 	PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1031 	     __func__, pci_name(ctx->lldi.pdev),
1032 	     ctx->lldi.nchan, ctx->lldi.nrxq,
1033 	     ctx->lldi.ntxq, ctx->lldi.nports);
1034 
1035 	mutex_lock(&dev_mutex);
1036 	list_add_tail(&ctx->entry, &uld_ctx_list);
1037 	mutex_unlock(&dev_mutex);
1038 
1039 	for (i = 0; i < ctx->lldi.nrxq; i++)
1040 		PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1041 out:
1042 	return ctx;
1043 }
1044 
1045 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1046 						 const __be64 *rsp,
1047 						 u32 pktshift)
1048 {
1049 	struct sk_buff *skb;
1050 
1051 	/*
1052 	 * Allocate space for cpl_pass_accept_req which will be synthesized by
1053 	 * driver. Once the driver synthesizes the request the skb will go
1054 	 * through the regular cpl_pass_accept_req processing.
1055 	 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1056 	 * cpl_rx_pkt.
1057 	 */
1058 	skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1059 			sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1060 	if (unlikely(!skb))
1061 		return NULL;
1062 
1063 	 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1064 		   sizeof(struct rss_header) - pktshift);
1065 
1066 	/*
1067 	 * This skb will contain:
1068 	 *   rss_header from the rspq descriptor (1 flit)
1069 	 *   cpl_rx_pkt struct from the rspq descriptor (2 flits)
1070 	 *   space for the difference between the size of an
1071 	 *      rx_pkt and pass_accept_req cpl (1 flit)
1072 	 *   the packet data from the gl
1073 	 */
1074 	skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1075 				sizeof(struct rss_header));
1076 	skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1077 				       sizeof(struct cpl_pass_accept_req),
1078 				       gl->va + pktshift,
1079 				       gl->tot_len - pktshift);
1080 	return skb;
1081 }
1082 
1083 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1084 			   const __be64 *rsp)
1085 {
1086 	unsigned int opcode = *(u8 *)rsp;
1087 	struct sk_buff *skb;
1088 
1089 	if (opcode != CPL_RX_PKT)
1090 		goto out;
1091 
1092 	skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1093 	if (skb == NULL)
1094 		goto out;
1095 
1096 	if (c4iw_handlers[opcode] == NULL) {
1097 		pr_info("%s no handler opcode 0x%x...\n", __func__,
1098 		       opcode);
1099 		kfree_skb(skb);
1100 		goto out;
1101 	}
1102 	c4iw_handlers[opcode](dev, skb);
1103 	return 1;
1104 out:
1105 	return 0;
1106 }
1107 
1108 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1109 			const struct pkt_gl *gl)
1110 {
1111 	struct uld_ctx *ctx = handle;
1112 	struct c4iw_dev *dev = ctx->dev;
1113 	struct sk_buff *skb;
1114 	u8 opcode;
1115 
1116 	if (gl == NULL) {
1117 		/* omit RSS and rsp_ctrl at end of descriptor */
1118 		unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1119 
1120 		skb = alloc_skb(256, GFP_ATOMIC);
1121 		if (!skb)
1122 			goto nomem;
1123 		__skb_put(skb, len);
1124 		skb_copy_to_linear_data(skb, &rsp[1], len);
1125 	} else if (gl == CXGB4_MSG_AN) {
1126 		const struct rsp_ctrl *rc = (void *)rsp;
1127 
1128 		u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1129 		c4iw_ev_handler(dev, qid);
1130 		return 0;
1131 	} else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1132 		if (recv_rx_pkt(dev, gl, rsp))
1133 			return 0;
1134 
1135 		pr_info("%s: unexpected FL contents at %p, " \
1136 		       "RSS %#llx, FL %#llx, len %u\n",
1137 		       pci_name(ctx->lldi.pdev), gl->va,
1138 		       (unsigned long long)be64_to_cpu(*rsp),
1139 		       (unsigned long long)be64_to_cpu(
1140 		       *(__force __be64 *)gl->va),
1141 		       gl->tot_len);
1142 
1143 		return 0;
1144 	} else {
1145 		skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1146 		if (unlikely(!skb))
1147 			goto nomem;
1148 	}
1149 
1150 	opcode = *(u8 *)rsp;
1151 	if (c4iw_handlers[opcode]) {
1152 		c4iw_handlers[opcode](dev, skb);
1153 	} else {
1154 		pr_info("%s no handler opcode 0x%x...\n", __func__,
1155 		       opcode);
1156 		kfree_skb(skb);
1157 	}
1158 
1159 	return 0;
1160 nomem:
1161 	return -1;
1162 }
1163 
1164 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1165 {
1166 	struct uld_ctx *ctx = handle;
1167 
1168 	PDBG("%s new_state %u\n", __func__, new_state);
1169 	switch (new_state) {
1170 	case CXGB4_STATE_UP:
1171 		printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev));
1172 		if (!ctx->dev) {
1173 			int ret;
1174 
1175 			ctx->dev = c4iw_alloc(&ctx->lldi);
1176 			if (IS_ERR(ctx->dev)) {
1177 				printk(KERN_ERR MOD
1178 				       "%s: initialization failed: %ld\n",
1179 				       pci_name(ctx->lldi.pdev),
1180 				       PTR_ERR(ctx->dev));
1181 				ctx->dev = NULL;
1182 				break;
1183 			}
1184 			ret = c4iw_register_device(ctx->dev);
1185 			if (ret) {
1186 				printk(KERN_ERR MOD
1187 				       "%s: RDMA registration failed: %d\n",
1188 				       pci_name(ctx->lldi.pdev), ret);
1189 				c4iw_dealloc(ctx);
1190 			}
1191 		}
1192 		break;
1193 	case CXGB4_STATE_DOWN:
1194 		printk(KERN_INFO MOD "%s: Down\n",
1195 		       pci_name(ctx->lldi.pdev));
1196 		if (ctx->dev)
1197 			c4iw_remove(ctx);
1198 		break;
1199 	case CXGB4_STATE_START_RECOVERY:
1200 		printk(KERN_INFO MOD "%s: Fatal Error\n",
1201 		       pci_name(ctx->lldi.pdev));
1202 		if (ctx->dev) {
1203 			struct ib_event event;
1204 
1205 			ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1206 			memset(&event, 0, sizeof event);
1207 			event.event  = IB_EVENT_DEVICE_FATAL;
1208 			event.device = &ctx->dev->ibdev;
1209 			ib_dispatch_event(&event);
1210 			c4iw_remove(ctx);
1211 		}
1212 		break;
1213 	case CXGB4_STATE_DETACH:
1214 		printk(KERN_INFO MOD "%s: Detach\n",
1215 		       pci_name(ctx->lldi.pdev));
1216 		if (ctx->dev)
1217 			c4iw_remove(ctx);
1218 		break;
1219 	}
1220 	return 0;
1221 }
1222 
1223 static int disable_qp_db(int id, void *p, void *data)
1224 {
1225 	struct c4iw_qp *qp = p;
1226 
1227 	t4_disable_wq_db(&qp->wq);
1228 	return 0;
1229 }
1230 
1231 static void stop_queues(struct uld_ctx *ctx)
1232 {
1233 	unsigned long flags;
1234 
1235 	spin_lock_irqsave(&ctx->dev->lock, flags);
1236 	ctx->dev->rdev.stats.db_state_transitions++;
1237 	ctx->dev->db_state = STOPPED;
1238 	if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1239 		idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1240 	else
1241 		ctx->dev->rdev.status_page->db_off = 1;
1242 	spin_unlock_irqrestore(&ctx->dev->lock, flags);
1243 }
1244 
1245 static int enable_qp_db(int id, void *p, void *data)
1246 {
1247 	struct c4iw_qp *qp = p;
1248 
1249 	t4_enable_wq_db(&qp->wq);
1250 	return 0;
1251 }
1252 
1253 static void resume_rc_qp(struct c4iw_qp *qp)
1254 {
1255 	spin_lock(&qp->lock);
1256 	t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1257 	qp->wq.sq.wq_pidx_inc = 0;
1258 	t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1259 	qp->wq.rq.wq_pidx_inc = 0;
1260 	spin_unlock(&qp->lock);
1261 }
1262 
1263 static void resume_a_chunk(struct uld_ctx *ctx)
1264 {
1265 	int i;
1266 	struct c4iw_qp *qp;
1267 
1268 	for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1269 		qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1270 				      db_fc_entry);
1271 		list_del_init(&qp->db_fc_entry);
1272 		resume_rc_qp(qp);
1273 		if (list_empty(&ctx->dev->db_fc_list))
1274 			break;
1275 	}
1276 }
1277 
1278 static void resume_queues(struct uld_ctx *ctx)
1279 {
1280 	spin_lock_irq(&ctx->dev->lock);
1281 	if (ctx->dev->db_state != STOPPED)
1282 		goto out;
1283 	ctx->dev->db_state = FLOW_CONTROL;
1284 	while (1) {
1285 		if (list_empty(&ctx->dev->db_fc_list)) {
1286 			WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1287 			ctx->dev->db_state = NORMAL;
1288 			ctx->dev->rdev.stats.db_state_transitions++;
1289 			if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1290 				idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1291 					     NULL);
1292 			} else {
1293 				ctx->dev->rdev.status_page->db_off = 0;
1294 			}
1295 			break;
1296 		} else {
1297 			if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1298 			    < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1299 			       DB_FC_DRAIN_THRESH)) {
1300 				resume_a_chunk(ctx);
1301 			}
1302 			if (!list_empty(&ctx->dev->db_fc_list)) {
1303 				spin_unlock_irq(&ctx->dev->lock);
1304 				if (DB_FC_RESUME_DELAY) {
1305 					set_current_state(TASK_UNINTERRUPTIBLE);
1306 					schedule_timeout(DB_FC_RESUME_DELAY);
1307 				}
1308 				spin_lock_irq(&ctx->dev->lock);
1309 				if (ctx->dev->db_state != FLOW_CONTROL)
1310 					break;
1311 			}
1312 		}
1313 	}
1314 out:
1315 	if (ctx->dev->db_state != NORMAL)
1316 		ctx->dev->rdev.stats.db_fc_interruptions++;
1317 	spin_unlock_irq(&ctx->dev->lock);
1318 }
1319 
1320 struct qp_list {
1321 	unsigned idx;
1322 	struct c4iw_qp **qps;
1323 };
1324 
1325 static int add_and_ref_qp(int id, void *p, void *data)
1326 {
1327 	struct qp_list *qp_listp = data;
1328 	struct c4iw_qp *qp = p;
1329 
1330 	c4iw_qp_add_ref(&qp->ibqp);
1331 	qp_listp->qps[qp_listp->idx++] = qp;
1332 	return 0;
1333 }
1334 
1335 static int count_qps(int id, void *p, void *data)
1336 {
1337 	unsigned *countp = data;
1338 	(*countp)++;
1339 	return 0;
1340 }
1341 
1342 static void deref_qps(struct qp_list *qp_list)
1343 {
1344 	int idx;
1345 
1346 	for (idx = 0; idx < qp_list->idx; idx++)
1347 		c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1348 }
1349 
1350 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1351 {
1352 	int idx;
1353 	int ret;
1354 
1355 	for (idx = 0; idx < qp_list->idx; idx++) {
1356 		struct c4iw_qp *qp = qp_list->qps[idx];
1357 
1358 		spin_lock_irq(&qp->rhp->lock);
1359 		spin_lock(&qp->lock);
1360 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1361 					  qp->wq.sq.qid,
1362 					  t4_sq_host_wq_pidx(&qp->wq),
1363 					  t4_sq_wq_size(&qp->wq));
1364 		if (ret) {
1365 			pr_err(MOD "%s: Fatal error - "
1366 			       "DB overflow recovery failed - "
1367 			       "error syncing SQ qid %u\n",
1368 			       pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1369 			spin_unlock(&qp->lock);
1370 			spin_unlock_irq(&qp->rhp->lock);
1371 			return;
1372 		}
1373 		qp->wq.sq.wq_pidx_inc = 0;
1374 
1375 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1376 					  qp->wq.rq.qid,
1377 					  t4_rq_host_wq_pidx(&qp->wq),
1378 					  t4_rq_wq_size(&qp->wq));
1379 
1380 		if (ret) {
1381 			pr_err(MOD "%s: Fatal error - "
1382 			       "DB overflow recovery failed - "
1383 			       "error syncing RQ qid %u\n",
1384 			       pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1385 			spin_unlock(&qp->lock);
1386 			spin_unlock_irq(&qp->rhp->lock);
1387 			return;
1388 		}
1389 		qp->wq.rq.wq_pidx_inc = 0;
1390 		spin_unlock(&qp->lock);
1391 		spin_unlock_irq(&qp->rhp->lock);
1392 
1393 		/* Wait for the dbfifo to drain */
1394 		while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1395 			set_current_state(TASK_UNINTERRUPTIBLE);
1396 			schedule_timeout(usecs_to_jiffies(10));
1397 		}
1398 	}
1399 }
1400 
1401 static void recover_queues(struct uld_ctx *ctx)
1402 {
1403 	int count = 0;
1404 	struct qp_list qp_list;
1405 	int ret;
1406 
1407 	/* slow everybody down */
1408 	set_current_state(TASK_UNINTERRUPTIBLE);
1409 	schedule_timeout(usecs_to_jiffies(1000));
1410 
1411 	/* flush the SGE contexts */
1412 	ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1413 	if (ret) {
1414 		printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1415 		       pci_name(ctx->lldi.pdev));
1416 		return;
1417 	}
1418 
1419 	/* Count active queues so we can build a list of queues to recover */
1420 	spin_lock_irq(&ctx->dev->lock);
1421 	WARN_ON(ctx->dev->db_state != STOPPED);
1422 	ctx->dev->db_state = RECOVERY;
1423 	idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1424 
1425 	qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1426 	if (!qp_list.qps) {
1427 		printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n",
1428 		       pci_name(ctx->lldi.pdev));
1429 		spin_unlock_irq(&ctx->dev->lock);
1430 		return;
1431 	}
1432 	qp_list.idx = 0;
1433 
1434 	/* add and ref each qp so it doesn't get freed */
1435 	idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1436 
1437 	spin_unlock_irq(&ctx->dev->lock);
1438 
1439 	/* now traverse the list in a safe context to recover the db state*/
1440 	recover_lost_dbs(ctx, &qp_list);
1441 
1442 	/* we're almost done!  deref the qps and clean up */
1443 	deref_qps(&qp_list);
1444 	kfree(qp_list.qps);
1445 
1446 	spin_lock_irq(&ctx->dev->lock);
1447 	WARN_ON(ctx->dev->db_state != RECOVERY);
1448 	ctx->dev->db_state = STOPPED;
1449 	spin_unlock_irq(&ctx->dev->lock);
1450 }
1451 
1452 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1453 {
1454 	struct uld_ctx *ctx = handle;
1455 
1456 	switch (control) {
1457 	case CXGB4_CONTROL_DB_FULL:
1458 		stop_queues(ctx);
1459 		ctx->dev->rdev.stats.db_full++;
1460 		break;
1461 	case CXGB4_CONTROL_DB_EMPTY:
1462 		resume_queues(ctx);
1463 		mutex_lock(&ctx->dev->rdev.stats.lock);
1464 		ctx->dev->rdev.stats.db_empty++;
1465 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1466 		break;
1467 	case CXGB4_CONTROL_DB_DROP:
1468 		recover_queues(ctx);
1469 		mutex_lock(&ctx->dev->rdev.stats.lock);
1470 		ctx->dev->rdev.stats.db_drop++;
1471 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1472 		break;
1473 	default:
1474 		printk(KERN_WARNING MOD "%s: unknown control cmd %u\n",
1475 		       pci_name(ctx->lldi.pdev), control);
1476 		break;
1477 	}
1478 	return 0;
1479 }
1480 
1481 static struct cxgb4_uld_info c4iw_uld_info = {
1482 	.name = DRV_NAME,
1483 	.nrxq = MAX_ULD_QSETS,
1484 	.rxq_size = 511,
1485 	.ciq = true,
1486 	.lro = false,
1487 	.add = c4iw_uld_add,
1488 	.rx_handler = c4iw_uld_rx_handler,
1489 	.state_change = c4iw_uld_state_change,
1490 	.control = c4iw_uld_control,
1491 };
1492 
1493 static int __init c4iw_init_module(void)
1494 {
1495 	int err;
1496 
1497 	err = c4iw_cm_init();
1498 	if (err)
1499 		return err;
1500 
1501 	c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1502 	if (!c4iw_debugfs_root)
1503 		printk(KERN_WARNING MOD
1504 		       "could not create debugfs entry, continuing\n");
1505 
1506 	cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1507 
1508 	return 0;
1509 }
1510 
1511 static void __exit c4iw_exit_module(void)
1512 {
1513 	struct uld_ctx *ctx, *tmp;
1514 
1515 	mutex_lock(&dev_mutex);
1516 	list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1517 		if (ctx->dev)
1518 			c4iw_remove(ctx);
1519 		kfree(ctx);
1520 	}
1521 	mutex_unlock(&dev_mutex);
1522 	cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1523 	c4iw_cm_term();
1524 	debugfs_remove_recursive(c4iw_debugfs_root);
1525 }
1526 
1527 module_init(c4iw_init_module);
1528 module_exit(c4iw_exit_module);
1529