1 /* 2 * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/moduleparam.h> 34 #include <linux/debugfs.h> 35 #include <linux/vmalloc.h> 36 #include <linux/math64.h> 37 38 #include <rdma/ib_verbs.h> 39 40 #include "iw_cxgb4.h" 41 42 #define DRV_VERSION "0.1" 43 44 MODULE_AUTHOR("Steve Wise"); 45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver"); 46 MODULE_LICENSE("Dual BSD/GPL"); 47 MODULE_VERSION(DRV_VERSION); 48 49 static int allow_db_fc_on_t5; 50 module_param(allow_db_fc_on_t5, int, 0644); 51 MODULE_PARM_DESC(allow_db_fc_on_t5, 52 "Allow DB Flow Control on T5 (default = 0)"); 53 54 static int allow_db_coalescing_on_t5; 55 module_param(allow_db_coalescing_on_t5, int, 0644); 56 MODULE_PARM_DESC(allow_db_coalescing_on_t5, 57 "Allow DB Coalescing on T5 (default = 0)"); 58 59 int c4iw_wr_log = 0; 60 module_param(c4iw_wr_log, int, 0444); 61 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data."); 62 63 static int c4iw_wr_log_size_order = 12; 64 module_param(c4iw_wr_log_size_order, int, 0444); 65 MODULE_PARM_DESC(c4iw_wr_log_size_order, 66 "Number of entries (log2) in the work request timing log."); 67 68 struct uld_ctx { 69 struct list_head entry; 70 struct cxgb4_lld_info lldi; 71 struct c4iw_dev *dev; 72 }; 73 74 static LIST_HEAD(uld_ctx_list); 75 static DEFINE_MUTEX(dev_mutex); 76 77 #define DB_FC_RESUME_SIZE 64 78 #define DB_FC_RESUME_DELAY 1 79 #define DB_FC_DRAIN_THRESH 0 80 81 static struct dentry *c4iw_debugfs_root; 82 83 struct c4iw_debugfs_data { 84 struct c4iw_dev *devp; 85 char *buf; 86 int bufsize; 87 int pos; 88 }; 89 90 static int count_idrs(int id, void *p, void *data) 91 { 92 int *countp = data; 93 94 *countp = *countp + 1; 95 return 0; 96 } 97 98 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count, 99 loff_t *ppos) 100 { 101 struct c4iw_debugfs_data *d = file->private_data; 102 103 return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos); 104 } 105 106 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe) 107 { 108 struct wr_log_entry le; 109 int idx; 110 111 if (!wq->rdev->wr_log) 112 return; 113 114 idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) & 115 (wq->rdev->wr_log_size - 1); 116 le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]); 117 getnstimeofday(&le.poll_host_ts); 118 le.valid = 1; 119 le.cqe_sge_ts = CQE_TS(cqe); 120 if (SQ_TYPE(cqe)) { 121 le.qid = wq->sq.qid; 122 le.opcode = CQE_OPCODE(cqe); 123 le.post_host_ts = wq->sq.sw_sq[wq->sq.cidx].host_ts; 124 le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts; 125 le.wr_id = CQE_WRID_SQ_IDX(cqe); 126 } else { 127 le.qid = wq->rq.qid; 128 le.opcode = FW_RI_RECEIVE; 129 le.post_host_ts = wq->rq.sw_rq[wq->rq.cidx].host_ts; 130 le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts; 131 le.wr_id = CQE_WRID_MSN(cqe); 132 } 133 wq->rdev->wr_log[idx] = le; 134 } 135 136 static int wr_log_show(struct seq_file *seq, void *v) 137 { 138 struct c4iw_dev *dev = seq->private; 139 struct timespec prev_ts = {0, 0}; 140 struct wr_log_entry *lep; 141 int prev_ts_set = 0; 142 int idx, end; 143 144 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000) 145 146 idx = atomic_read(&dev->rdev.wr_log_idx) & 147 (dev->rdev.wr_log_size - 1); 148 end = idx - 1; 149 if (end < 0) 150 end = dev->rdev.wr_log_size - 1; 151 lep = &dev->rdev.wr_log[idx]; 152 while (idx != end) { 153 if (lep->valid) { 154 if (!prev_ts_set) { 155 prev_ts_set = 1; 156 prev_ts = lep->poll_host_ts; 157 } 158 seq_printf(seq, "%04u: sec %lu nsec %lu qid %u opcode " 159 "%u %s 0x%x host_wr_delta sec %lu nsec %lu " 160 "post_sge_ts 0x%llx cqe_sge_ts 0x%llx " 161 "poll_sge_ts 0x%llx post_poll_delta_ns %llu " 162 "cqe_poll_delta_ns %llu\n", 163 idx, 164 timespec_sub(lep->poll_host_ts, 165 prev_ts).tv_sec, 166 timespec_sub(lep->poll_host_ts, 167 prev_ts).tv_nsec, 168 lep->qid, lep->opcode, 169 lep->opcode == FW_RI_RECEIVE ? 170 "msn" : "wrid", 171 lep->wr_id, 172 timespec_sub(lep->poll_host_ts, 173 lep->post_host_ts).tv_sec, 174 timespec_sub(lep->poll_host_ts, 175 lep->post_host_ts).tv_nsec, 176 lep->post_sge_ts, lep->cqe_sge_ts, 177 lep->poll_sge_ts, 178 ts2ns(lep->poll_sge_ts - lep->post_sge_ts), 179 ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts)); 180 prev_ts = lep->poll_host_ts; 181 } 182 idx++; 183 if (idx > (dev->rdev.wr_log_size - 1)) 184 idx = 0; 185 lep = &dev->rdev.wr_log[idx]; 186 } 187 #undef ts2ns 188 return 0; 189 } 190 191 static int wr_log_open(struct inode *inode, struct file *file) 192 { 193 return single_open(file, wr_log_show, inode->i_private); 194 } 195 196 static ssize_t wr_log_clear(struct file *file, const char __user *buf, 197 size_t count, loff_t *pos) 198 { 199 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private; 200 int i; 201 202 if (dev->rdev.wr_log) 203 for (i = 0; i < dev->rdev.wr_log_size; i++) 204 dev->rdev.wr_log[i].valid = 0; 205 return count; 206 } 207 208 static const struct file_operations wr_log_debugfs_fops = { 209 .owner = THIS_MODULE, 210 .open = wr_log_open, 211 .release = single_release, 212 .read = seq_read, 213 .llseek = seq_lseek, 214 .write = wr_log_clear, 215 }; 216 217 static int dump_qp(int id, void *p, void *data) 218 { 219 struct c4iw_qp *qp = p; 220 struct c4iw_debugfs_data *qpd = data; 221 int space; 222 int cc; 223 224 if (id != qp->wq.sq.qid) 225 return 0; 226 227 space = qpd->bufsize - qpd->pos - 1; 228 if (space == 0) 229 return 1; 230 231 if (qp->ep) { 232 if (qp->ep->com.local_addr.ss_family == AF_INET) { 233 struct sockaddr_in *lsin = (struct sockaddr_in *) 234 &qp->ep->com.cm_id->local_addr; 235 struct sockaddr_in *rsin = (struct sockaddr_in *) 236 &qp->ep->com.cm_id->remote_addr; 237 struct sockaddr_in *mapped_lsin = (struct sockaddr_in *) 238 &qp->ep->com.cm_id->m_local_addr; 239 struct sockaddr_in *mapped_rsin = (struct sockaddr_in *) 240 &qp->ep->com.cm_id->m_remote_addr; 241 242 cc = snprintf(qpd->buf + qpd->pos, space, 243 "rc qp sq id %u rq id %u state %u " 244 "onchip %u ep tid %u state %u " 245 "%pI4:%u/%u->%pI4:%u/%u\n", 246 qp->wq.sq.qid, qp->wq.rq.qid, 247 (int)qp->attr.state, 248 qp->wq.sq.flags & T4_SQ_ONCHIP, 249 qp->ep->hwtid, (int)qp->ep->com.state, 250 &lsin->sin_addr, ntohs(lsin->sin_port), 251 ntohs(mapped_lsin->sin_port), 252 &rsin->sin_addr, ntohs(rsin->sin_port), 253 ntohs(mapped_rsin->sin_port)); 254 } else { 255 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *) 256 &qp->ep->com.cm_id->local_addr; 257 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *) 258 &qp->ep->com.cm_id->remote_addr; 259 struct sockaddr_in6 *mapped_lsin6 = 260 (struct sockaddr_in6 *) 261 &qp->ep->com.cm_id->m_local_addr; 262 struct sockaddr_in6 *mapped_rsin6 = 263 (struct sockaddr_in6 *) 264 &qp->ep->com.cm_id->m_remote_addr; 265 266 cc = snprintf(qpd->buf + qpd->pos, space, 267 "rc qp sq id %u rq id %u state %u " 268 "onchip %u ep tid %u state %u " 269 "%pI6:%u/%u->%pI6:%u/%u\n", 270 qp->wq.sq.qid, qp->wq.rq.qid, 271 (int)qp->attr.state, 272 qp->wq.sq.flags & T4_SQ_ONCHIP, 273 qp->ep->hwtid, (int)qp->ep->com.state, 274 &lsin6->sin6_addr, 275 ntohs(lsin6->sin6_port), 276 ntohs(mapped_lsin6->sin6_port), 277 &rsin6->sin6_addr, 278 ntohs(rsin6->sin6_port), 279 ntohs(mapped_rsin6->sin6_port)); 280 } 281 } else 282 cc = snprintf(qpd->buf + qpd->pos, space, 283 "qp sq id %u rq id %u state %u onchip %u\n", 284 qp->wq.sq.qid, qp->wq.rq.qid, 285 (int)qp->attr.state, 286 qp->wq.sq.flags & T4_SQ_ONCHIP); 287 if (cc < space) 288 qpd->pos += cc; 289 return 0; 290 } 291 292 static int qp_release(struct inode *inode, struct file *file) 293 { 294 struct c4iw_debugfs_data *qpd = file->private_data; 295 if (!qpd) { 296 printk(KERN_INFO "%s null qpd?\n", __func__); 297 return 0; 298 } 299 vfree(qpd->buf); 300 kfree(qpd); 301 return 0; 302 } 303 304 static int qp_open(struct inode *inode, struct file *file) 305 { 306 struct c4iw_debugfs_data *qpd; 307 int count = 1; 308 309 qpd = kmalloc(sizeof *qpd, GFP_KERNEL); 310 if (!qpd) 311 return -ENOMEM; 312 313 qpd->devp = inode->i_private; 314 qpd->pos = 0; 315 316 spin_lock_irq(&qpd->devp->lock); 317 idr_for_each(&qpd->devp->qpidr, count_idrs, &count); 318 spin_unlock_irq(&qpd->devp->lock); 319 320 qpd->bufsize = count * 180; 321 qpd->buf = vmalloc(qpd->bufsize); 322 if (!qpd->buf) { 323 kfree(qpd); 324 return -ENOMEM; 325 } 326 327 spin_lock_irq(&qpd->devp->lock); 328 idr_for_each(&qpd->devp->qpidr, dump_qp, qpd); 329 spin_unlock_irq(&qpd->devp->lock); 330 331 qpd->buf[qpd->pos++] = 0; 332 file->private_data = qpd; 333 return 0; 334 } 335 336 static const struct file_operations qp_debugfs_fops = { 337 .owner = THIS_MODULE, 338 .open = qp_open, 339 .release = qp_release, 340 .read = debugfs_read, 341 .llseek = default_llseek, 342 }; 343 344 static int dump_stag(int id, void *p, void *data) 345 { 346 struct c4iw_debugfs_data *stagd = data; 347 int space; 348 int cc; 349 struct fw_ri_tpte tpte; 350 int ret; 351 352 space = stagd->bufsize - stagd->pos - 1; 353 if (space == 0) 354 return 1; 355 356 ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8, 357 (__be32 *)&tpte); 358 if (ret) { 359 dev_err(&stagd->devp->rdev.lldi.pdev->dev, 360 "%s cxgb4_read_tpte err %d\n", __func__, ret); 361 return ret; 362 } 363 cc = snprintf(stagd->buf + stagd->pos, space, 364 "stag: idx 0x%x valid %d key 0x%x state %d pdid %d " 365 "perm 0x%x ps %d len 0x%llx va 0x%llx\n", 366 (u32)id<<8, 367 FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)), 368 FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)), 369 FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)), 370 FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)), 371 FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)), 372 FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)), 373 ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo), 374 ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo)); 375 if (cc < space) 376 stagd->pos += cc; 377 return 0; 378 } 379 380 static int stag_release(struct inode *inode, struct file *file) 381 { 382 struct c4iw_debugfs_data *stagd = file->private_data; 383 if (!stagd) { 384 printk(KERN_INFO "%s null stagd?\n", __func__); 385 return 0; 386 } 387 vfree(stagd->buf); 388 kfree(stagd); 389 return 0; 390 } 391 392 static int stag_open(struct inode *inode, struct file *file) 393 { 394 struct c4iw_debugfs_data *stagd; 395 int ret = 0; 396 int count = 1; 397 398 stagd = kmalloc(sizeof *stagd, GFP_KERNEL); 399 if (!stagd) { 400 ret = -ENOMEM; 401 goto out; 402 } 403 stagd->devp = inode->i_private; 404 stagd->pos = 0; 405 406 spin_lock_irq(&stagd->devp->lock); 407 idr_for_each(&stagd->devp->mmidr, count_idrs, &count); 408 spin_unlock_irq(&stagd->devp->lock); 409 410 stagd->bufsize = count * 256; 411 stagd->buf = vmalloc(stagd->bufsize); 412 if (!stagd->buf) { 413 ret = -ENOMEM; 414 goto err1; 415 } 416 417 spin_lock_irq(&stagd->devp->lock); 418 idr_for_each(&stagd->devp->mmidr, dump_stag, stagd); 419 spin_unlock_irq(&stagd->devp->lock); 420 421 stagd->buf[stagd->pos++] = 0; 422 file->private_data = stagd; 423 goto out; 424 err1: 425 kfree(stagd); 426 out: 427 return ret; 428 } 429 430 static const struct file_operations stag_debugfs_fops = { 431 .owner = THIS_MODULE, 432 .open = stag_open, 433 .release = stag_release, 434 .read = debugfs_read, 435 .llseek = default_llseek, 436 }; 437 438 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"}; 439 440 static int stats_show(struct seq_file *seq, void *v) 441 { 442 struct c4iw_dev *dev = seq->private; 443 444 seq_printf(seq, " Object: %10s %10s %10s %10s\n", "Total", "Current", 445 "Max", "Fail"); 446 seq_printf(seq, " PDID: %10llu %10llu %10llu %10llu\n", 447 dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur, 448 dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail); 449 seq_printf(seq, " QID: %10llu %10llu %10llu %10llu\n", 450 dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur, 451 dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail); 452 seq_printf(seq, " TPTMEM: %10llu %10llu %10llu %10llu\n", 453 dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur, 454 dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail); 455 seq_printf(seq, " PBLMEM: %10llu %10llu %10llu %10llu\n", 456 dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur, 457 dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail); 458 seq_printf(seq, " RQTMEM: %10llu %10llu %10llu %10llu\n", 459 dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur, 460 dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail); 461 seq_printf(seq, " OCQPMEM: %10llu %10llu %10llu %10llu\n", 462 dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur, 463 dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail); 464 seq_printf(seq, " DB FULL: %10llu\n", dev->rdev.stats.db_full); 465 seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty); 466 seq_printf(seq, " DB DROP: %10llu\n", dev->rdev.stats.db_drop); 467 seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n", 468 db_state_str[dev->db_state], 469 dev->rdev.stats.db_state_transitions, 470 dev->rdev.stats.db_fc_interruptions); 471 seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full); 472 seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n", 473 dev->rdev.stats.act_ofld_conn_fails); 474 seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n", 475 dev->rdev.stats.pas_ofld_conn_fails); 476 seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv); 477 seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird); 478 return 0; 479 } 480 481 static int stats_open(struct inode *inode, struct file *file) 482 { 483 return single_open(file, stats_show, inode->i_private); 484 } 485 486 static ssize_t stats_clear(struct file *file, const char __user *buf, 487 size_t count, loff_t *pos) 488 { 489 struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private; 490 491 mutex_lock(&dev->rdev.stats.lock); 492 dev->rdev.stats.pd.max = 0; 493 dev->rdev.stats.pd.fail = 0; 494 dev->rdev.stats.qid.max = 0; 495 dev->rdev.stats.qid.fail = 0; 496 dev->rdev.stats.stag.max = 0; 497 dev->rdev.stats.stag.fail = 0; 498 dev->rdev.stats.pbl.max = 0; 499 dev->rdev.stats.pbl.fail = 0; 500 dev->rdev.stats.rqt.max = 0; 501 dev->rdev.stats.rqt.fail = 0; 502 dev->rdev.stats.ocqp.max = 0; 503 dev->rdev.stats.ocqp.fail = 0; 504 dev->rdev.stats.db_full = 0; 505 dev->rdev.stats.db_empty = 0; 506 dev->rdev.stats.db_drop = 0; 507 dev->rdev.stats.db_state_transitions = 0; 508 dev->rdev.stats.tcam_full = 0; 509 dev->rdev.stats.act_ofld_conn_fails = 0; 510 dev->rdev.stats.pas_ofld_conn_fails = 0; 511 mutex_unlock(&dev->rdev.stats.lock); 512 return count; 513 } 514 515 static const struct file_operations stats_debugfs_fops = { 516 .owner = THIS_MODULE, 517 .open = stats_open, 518 .release = single_release, 519 .read = seq_read, 520 .llseek = seq_lseek, 521 .write = stats_clear, 522 }; 523 524 static int dump_ep(int id, void *p, void *data) 525 { 526 struct c4iw_ep *ep = p; 527 struct c4iw_debugfs_data *epd = data; 528 int space; 529 int cc; 530 531 space = epd->bufsize - epd->pos - 1; 532 if (space == 0) 533 return 1; 534 535 if (ep->com.local_addr.ss_family == AF_INET) { 536 struct sockaddr_in *lsin = (struct sockaddr_in *) 537 &ep->com.cm_id->local_addr; 538 struct sockaddr_in *rsin = (struct sockaddr_in *) 539 &ep->com.cm_id->remote_addr; 540 struct sockaddr_in *mapped_lsin = (struct sockaddr_in *) 541 &ep->com.cm_id->m_local_addr; 542 struct sockaddr_in *mapped_rsin = (struct sockaddr_in *) 543 &ep->com.cm_id->m_remote_addr; 544 545 cc = snprintf(epd->buf + epd->pos, space, 546 "ep %p cm_id %p qp %p state %d flags 0x%lx " 547 "history 0x%lx hwtid %d atid %d " 548 "conn_na %u abort_na %u " 549 "%pI4:%d/%d <-> %pI4:%d/%d\n", 550 ep, ep->com.cm_id, ep->com.qp, 551 (int)ep->com.state, ep->com.flags, 552 ep->com.history, ep->hwtid, ep->atid, 553 ep->stats.connect_neg_adv, 554 ep->stats.abort_neg_adv, 555 &lsin->sin_addr, ntohs(lsin->sin_port), 556 ntohs(mapped_lsin->sin_port), 557 &rsin->sin_addr, ntohs(rsin->sin_port), 558 ntohs(mapped_rsin->sin_port)); 559 } else { 560 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *) 561 &ep->com.cm_id->local_addr; 562 struct sockaddr_in6 *rsin6 = (struct sockaddr_in6 *) 563 &ep->com.cm_id->remote_addr; 564 struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *) 565 &ep->com.cm_id->m_local_addr; 566 struct sockaddr_in6 *mapped_rsin6 = (struct sockaddr_in6 *) 567 &ep->com.cm_id->m_remote_addr; 568 569 cc = snprintf(epd->buf + epd->pos, space, 570 "ep %p cm_id %p qp %p state %d flags 0x%lx " 571 "history 0x%lx hwtid %d atid %d " 572 "conn_na %u abort_na %u " 573 "%pI6:%d/%d <-> %pI6:%d/%d\n", 574 ep, ep->com.cm_id, ep->com.qp, 575 (int)ep->com.state, ep->com.flags, 576 ep->com.history, ep->hwtid, ep->atid, 577 ep->stats.connect_neg_adv, 578 ep->stats.abort_neg_adv, 579 &lsin6->sin6_addr, ntohs(lsin6->sin6_port), 580 ntohs(mapped_lsin6->sin6_port), 581 &rsin6->sin6_addr, ntohs(rsin6->sin6_port), 582 ntohs(mapped_rsin6->sin6_port)); 583 } 584 if (cc < space) 585 epd->pos += cc; 586 return 0; 587 } 588 589 static int dump_listen_ep(int id, void *p, void *data) 590 { 591 struct c4iw_listen_ep *ep = p; 592 struct c4iw_debugfs_data *epd = data; 593 int space; 594 int cc; 595 596 space = epd->bufsize - epd->pos - 1; 597 if (space == 0) 598 return 1; 599 600 if (ep->com.local_addr.ss_family == AF_INET) { 601 struct sockaddr_in *lsin = (struct sockaddr_in *) 602 &ep->com.cm_id->local_addr; 603 struct sockaddr_in *mapped_lsin = (struct sockaddr_in *) 604 &ep->com.cm_id->m_local_addr; 605 606 cc = snprintf(epd->buf + epd->pos, space, 607 "ep %p cm_id %p state %d flags 0x%lx stid %d " 608 "backlog %d %pI4:%d/%d\n", 609 ep, ep->com.cm_id, (int)ep->com.state, 610 ep->com.flags, ep->stid, ep->backlog, 611 &lsin->sin_addr, ntohs(lsin->sin_port), 612 ntohs(mapped_lsin->sin_port)); 613 } else { 614 struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *) 615 &ep->com.cm_id->local_addr; 616 struct sockaddr_in6 *mapped_lsin6 = (struct sockaddr_in6 *) 617 &ep->com.cm_id->m_local_addr; 618 619 cc = snprintf(epd->buf + epd->pos, space, 620 "ep %p cm_id %p state %d flags 0x%lx stid %d " 621 "backlog %d %pI6:%d/%d\n", 622 ep, ep->com.cm_id, (int)ep->com.state, 623 ep->com.flags, ep->stid, ep->backlog, 624 &lsin6->sin6_addr, ntohs(lsin6->sin6_port), 625 ntohs(mapped_lsin6->sin6_port)); 626 } 627 if (cc < space) 628 epd->pos += cc; 629 return 0; 630 } 631 632 static int ep_release(struct inode *inode, struct file *file) 633 { 634 struct c4iw_debugfs_data *epd = file->private_data; 635 if (!epd) { 636 pr_info("%s null qpd?\n", __func__); 637 return 0; 638 } 639 vfree(epd->buf); 640 kfree(epd); 641 return 0; 642 } 643 644 static int ep_open(struct inode *inode, struct file *file) 645 { 646 struct c4iw_debugfs_data *epd; 647 int ret = 0; 648 int count = 1; 649 650 epd = kmalloc(sizeof(*epd), GFP_KERNEL); 651 if (!epd) { 652 ret = -ENOMEM; 653 goto out; 654 } 655 epd->devp = inode->i_private; 656 epd->pos = 0; 657 658 spin_lock_irq(&epd->devp->lock); 659 idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count); 660 idr_for_each(&epd->devp->atid_idr, count_idrs, &count); 661 idr_for_each(&epd->devp->stid_idr, count_idrs, &count); 662 spin_unlock_irq(&epd->devp->lock); 663 664 epd->bufsize = count * 240; 665 epd->buf = vmalloc(epd->bufsize); 666 if (!epd->buf) { 667 ret = -ENOMEM; 668 goto err1; 669 } 670 671 spin_lock_irq(&epd->devp->lock); 672 idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd); 673 idr_for_each(&epd->devp->atid_idr, dump_ep, epd); 674 idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd); 675 spin_unlock_irq(&epd->devp->lock); 676 677 file->private_data = epd; 678 goto out; 679 err1: 680 kfree(epd); 681 out: 682 return ret; 683 } 684 685 static const struct file_operations ep_debugfs_fops = { 686 .owner = THIS_MODULE, 687 .open = ep_open, 688 .release = ep_release, 689 .read = debugfs_read, 690 }; 691 692 static int setup_debugfs(struct c4iw_dev *devp) 693 { 694 if (!devp->debugfs_root) 695 return -1; 696 697 debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root, 698 (void *)devp, &qp_debugfs_fops, 4096); 699 700 debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root, 701 (void *)devp, &stag_debugfs_fops, 4096); 702 703 debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root, 704 (void *)devp, &stats_debugfs_fops, 4096); 705 706 debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root, 707 (void *)devp, &ep_debugfs_fops, 4096); 708 709 if (c4iw_wr_log) 710 debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root, 711 (void *)devp, &wr_log_debugfs_fops, 4096); 712 return 0; 713 } 714 715 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev, 716 struct c4iw_dev_ucontext *uctx) 717 { 718 struct list_head *pos, *nxt; 719 struct c4iw_qid_list *entry; 720 721 mutex_lock(&uctx->lock); 722 list_for_each_safe(pos, nxt, &uctx->qpids) { 723 entry = list_entry(pos, struct c4iw_qid_list, entry); 724 list_del_init(&entry->entry); 725 if (!(entry->qid & rdev->qpmask)) { 726 c4iw_put_resource(&rdev->resource.qid_table, 727 entry->qid); 728 mutex_lock(&rdev->stats.lock); 729 rdev->stats.qid.cur -= rdev->qpmask + 1; 730 mutex_unlock(&rdev->stats.lock); 731 } 732 kfree(entry); 733 } 734 735 list_for_each_safe(pos, nxt, &uctx->qpids) { 736 entry = list_entry(pos, struct c4iw_qid_list, entry); 737 list_del_init(&entry->entry); 738 kfree(entry); 739 } 740 mutex_unlock(&uctx->lock); 741 } 742 743 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev, 744 struct c4iw_dev_ucontext *uctx) 745 { 746 INIT_LIST_HEAD(&uctx->qpids); 747 INIT_LIST_HEAD(&uctx->cqids); 748 mutex_init(&uctx->lock); 749 } 750 751 /* Caller takes care of locking if needed */ 752 static int c4iw_rdev_open(struct c4iw_rdev *rdev) 753 { 754 int err; 755 756 c4iw_init_dev_ucontext(rdev, &rdev->uctx); 757 758 /* 759 * This implementation assumes udb_density == ucq_density! Eventually 760 * we might need to support this but for now fail the open. Also the 761 * cqid and qpid range must match for now. 762 */ 763 if (rdev->lldi.udb_density != rdev->lldi.ucq_density) { 764 pr_err(MOD "%s: unsupported udb/ucq densities %u/%u\n", 765 pci_name(rdev->lldi.pdev), rdev->lldi.udb_density, 766 rdev->lldi.ucq_density); 767 return -EINVAL; 768 } 769 if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start || 770 rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) { 771 pr_err(MOD "%s: unsupported qp and cq id ranges " 772 "qp start %u size %u cq start %u size %u\n", 773 pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start, 774 rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size, 775 rdev->lldi.vr->cq.size); 776 return -EINVAL; 777 } 778 779 rdev->qpmask = rdev->lldi.udb_density - 1; 780 rdev->cqmask = rdev->lldi.ucq_density - 1; 781 PDBG("%s dev %s stag start 0x%0x size 0x%0x num stags %d " 782 "pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x " 783 "qp qid start %u size %u cq qid start %u size %u\n", 784 __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start, 785 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev), 786 rdev->lldi.vr->pbl.start, 787 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start, 788 rdev->lldi.vr->rq.size, 789 rdev->lldi.vr->qp.start, 790 rdev->lldi.vr->qp.size, 791 rdev->lldi.vr->cq.start, 792 rdev->lldi.vr->cq.size); 793 PDBG("udb %pR db_reg %p gts_reg %p " 794 "qpmask 0x%x cqmask 0x%x\n", 795 &rdev->lldi.pdev->resource[2], 796 rdev->lldi.db_reg, rdev->lldi.gts_reg, 797 rdev->qpmask, rdev->cqmask); 798 799 if (c4iw_num_stags(rdev) == 0) 800 return -EINVAL; 801 802 rdev->stats.pd.total = T4_MAX_NUM_PD; 803 rdev->stats.stag.total = rdev->lldi.vr->stag.size; 804 rdev->stats.pbl.total = rdev->lldi.vr->pbl.size; 805 rdev->stats.rqt.total = rdev->lldi.vr->rq.size; 806 rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size; 807 rdev->stats.qid.total = rdev->lldi.vr->qp.size; 808 809 err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD); 810 if (err) { 811 printk(KERN_ERR MOD "error %d initializing resources\n", err); 812 return err; 813 } 814 err = c4iw_pblpool_create(rdev); 815 if (err) { 816 printk(KERN_ERR MOD "error %d initializing pbl pool\n", err); 817 goto destroy_resource; 818 } 819 err = c4iw_rqtpool_create(rdev); 820 if (err) { 821 printk(KERN_ERR MOD "error %d initializing rqt pool\n", err); 822 goto destroy_pblpool; 823 } 824 err = c4iw_ocqp_pool_create(rdev); 825 if (err) { 826 printk(KERN_ERR MOD "error %d initializing ocqp pool\n", err); 827 goto destroy_rqtpool; 828 } 829 rdev->status_page = (struct t4_dev_status_page *) 830 __get_free_page(GFP_KERNEL); 831 if (!rdev->status_page) 832 goto destroy_ocqp_pool; 833 rdev->status_page->qp_start = rdev->lldi.vr->qp.start; 834 rdev->status_page->qp_size = rdev->lldi.vr->qp.size; 835 rdev->status_page->cq_start = rdev->lldi.vr->cq.start; 836 rdev->status_page->cq_size = rdev->lldi.vr->cq.size; 837 838 if (c4iw_wr_log) { 839 rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) * 840 sizeof(*rdev->wr_log), GFP_KERNEL); 841 if (rdev->wr_log) { 842 rdev->wr_log_size = 1 << c4iw_wr_log_size_order; 843 atomic_set(&rdev->wr_log_idx, 0); 844 } else { 845 pr_err(MOD "error allocating wr_log. Logging disabled\n"); 846 } 847 } 848 849 rdev->status_page->db_off = 0; 850 851 return 0; 852 destroy_ocqp_pool: 853 c4iw_ocqp_pool_destroy(rdev); 854 destroy_rqtpool: 855 c4iw_rqtpool_destroy(rdev); 856 destroy_pblpool: 857 c4iw_pblpool_destroy(rdev); 858 destroy_resource: 859 c4iw_destroy_resource(&rdev->resource); 860 return err; 861 } 862 863 static void c4iw_rdev_close(struct c4iw_rdev *rdev) 864 { 865 kfree(rdev->wr_log); 866 free_page((unsigned long)rdev->status_page); 867 c4iw_pblpool_destroy(rdev); 868 c4iw_rqtpool_destroy(rdev); 869 c4iw_destroy_resource(&rdev->resource); 870 } 871 872 static void c4iw_dealloc(struct uld_ctx *ctx) 873 { 874 c4iw_rdev_close(&ctx->dev->rdev); 875 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr)); 876 idr_destroy(&ctx->dev->cqidr); 877 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr)); 878 idr_destroy(&ctx->dev->qpidr); 879 WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr)); 880 idr_destroy(&ctx->dev->mmidr); 881 wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr)); 882 idr_destroy(&ctx->dev->hwtid_idr); 883 idr_destroy(&ctx->dev->stid_idr); 884 idr_destroy(&ctx->dev->atid_idr); 885 if (ctx->dev->rdev.bar2_kva) 886 iounmap(ctx->dev->rdev.bar2_kva); 887 if (ctx->dev->rdev.oc_mw_kva) 888 iounmap(ctx->dev->rdev.oc_mw_kva); 889 ib_dealloc_device(&ctx->dev->ibdev); 890 ctx->dev = NULL; 891 } 892 893 static void c4iw_remove(struct uld_ctx *ctx) 894 { 895 PDBG("%s c4iw_dev %p\n", __func__, ctx->dev); 896 c4iw_unregister_device(ctx->dev); 897 c4iw_dealloc(ctx); 898 } 899 900 static int rdma_supported(const struct cxgb4_lld_info *infop) 901 { 902 return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 && 903 infop->vr->rq.size > 0 && infop->vr->qp.size > 0 && 904 infop->vr->cq.size > 0; 905 } 906 907 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop) 908 { 909 struct c4iw_dev *devp; 910 int ret; 911 912 if (!rdma_supported(infop)) { 913 printk(KERN_INFO MOD "%s: RDMA not supported on this device.\n", 914 pci_name(infop->pdev)); 915 return ERR_PTR(-ENOSYS); 916 } 917 if (!ocqp_supported(infop)) 918 pr_info("%s: On-Chip Queues not supported on this device.\n", 919 pci_name(infop->pdev)); 920 921 devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp)); 922 if (!devp) { 923 printk(KERN_ERR MOD "Cannot allocate ib device\n"); 924 return ERR_PTR(-ENOMEM); 925 } 926 devp->rdev.lldi = *infop; 927 928 /* init various hw-queue params based on lld info */ 929 PDBG("%s: Ing. padding boundary is %d, egrsstatuspagesize = %d\n", 930 __func__, devp->rdev.lldi.sge_ingpadboundary, 931 devp->rdev.lldi.sge_egrstatuspagesize); 932 933 devp->rdev.hw_queue.t4_eq_status_entries = 934 devp->rdev.lldi.sge_ingpadboundary > 64 ? 2 : 1; 935 devp->rdev.hw_queue.t4_max_eq_size = 65520; 936 devp->rdev.hw_queue.t4_max_iq_size = 65520; 937 devp->rdev.hw_queue.t4_max_rq_size = 8192 - 938 devp->rdev.hw_queue.t4_eq_status_entries - 1; 939 devp->rdev.hw_queue.t4_max_sq_size = 940 devp->rdev.hw_queue.t4_max_eq_size - 941 devp->rdev.hw_queue.t4_eq_status_entries - 1; 942 devp->rdev.hw_queue.t4_max_qp_depth = 943 devp->rdev.hw_queue.t4_max_rq_size; 944 devp->rdev.hw_queue.t4_max_cq_depth = 945 devp->rdev.hw_queue.t4_max_iq_size - 2; 946 devp->rdev.hw_queue.t4_stat_len = 947 devp->rdev.lldi.sge_egrstatuspagesize; 948 949 /* 950 * For T5/T6 devices, we map all of BAR2 with WC. 951 * For T4 devices with onchip qp mem, we map only that part 952 * of BAR2 with WC. 953 */ 954 devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2); 955 if (!is_t4(devp->rdev.lldi.adapter_type)) { 956 devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa, 957 pci_resource_len(devp->rdev.lldi.pdev, 2)); 958 if (!devp->rdev.bar2_kva) { 959 pr_err(MOD "Unable to ioremap BAR2\n"); 960 ib_dealloc_device(&devp->ibdev); 961 return ERR_PTR(-EINVAL); 962 } 963 } else if (ocqp_supported(infop)) { 964 devp->rdev.oc_mw_pa = 965 pci_resource_start(devp->rdev.lldi.pdev, 2) + 966 pci_resource_len(devp->rdev.lldi.pdev, 2) - 967 roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size); 968 devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa, 969 devp->rdev.lldi.vr->ocq.size); 970 if (!devp->rdev.oc_mw_kva) { 971 pr_err(MOD "Unable to ioremap onchip mem\n"); 972 ib_dealloc_device(&devp->ibdev); 973 return ERR_PTR(-EINVAL); 974 } 975 } 976 977 PDBG(KERN_INFO MOD "ocq memory: " 978 "hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n", 979 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size, 980 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva); 981 982 ret = c4iw_rdev_open(&devp->rdev); 983 if (ret) { 984 printk(KERN_ERR MOD "Unable to open CXIO rdev err %d\n", ret); 985 ib_dealloc_device(&devp->ibdev); 986 return ERR_PTR(ret); 987 } 988 989 idr_init(&devp->cqidr); 990 idr_init(&devp->qpidr); 991 idr_init(&devp->mmidr); 992 idr_init(&devp->hwtid_idr); 993 idr_init(&devp->stid_idr); 994 idr_init(&devp->atid_idr); 995 spin_lock_init(&devp->lock); 996 mutex_init(&devp->rdev.stats.lock); 997 mutex_init(&devp->db_mutex); 998 INIT_LIST_HEAD(&devp->db_fc_list); 999 init_waitqueue_head(&devp->wait); 1000 devp->avail_ird = devp->rdev.lldi.max_ird_adapter; 1001 1002 if (c4iw_debugfs_root) { 1003 devp->debugfs_root = debugfs_create_dir( 1004 pci_name(devp->rdev.lldi.pdev), 1005 c4iw_debugfs_root); 1006 setup_debugfs(devp); 1007 } 1008 1009 1010 return devp; 1011 } 1012 1013 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop) 1014 { 1015 struct uld_ctx *ctx; 1016 static int vers_printed; 1017 int i; 1018 1019 if (!vers_printed++) 1020 pr_info("Chelsio T4/T5 RDMA Driver - version %s\n", 1021 DRV_VERSION); 1022 1023 ctx = kzalloc(sizeof *ctx, GFP_KERNEL); 1024 if (!ctx) { 1025 ctx = ERR_PTR(-ENOMEM); 1026 goto out; 1027 } 1028 ctx->lldi = *infop; 1029 1030 PDBG("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n", 1031 __func__, pci_name(ctx->lldi.pdev), 1032 ctx->lldi.nchan, ctx->lldi.nrxq, 1033 ctx->lldi.ntxq, ctx->lldi.nports); 1034 1035 mutex_lock(&dev_mutex); 1036 list_add_tail(&ctx->entry, &uld_ctx_list); 1037 mutex_unlock(&dev_mutex); 1038 1039 for (i = 0; i < ctx->lldi.nrxq; i++) 1040 PDBG("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]); 1041 out: 1042 return ctx; 1043 } 1044 1045 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl, 1046 const __be64 *rsp, 1047 u32 pktshift) 1048 { 1049 struct sk_buff *skb; 1050 1051 /* 1052 * Allocate space for cpl_pass_accept_req which will be synthesized by 1053 * driver. Once the driver synthesizes the request the skb will go 1054 * through the regular cpl_pass_accept_req processing. 1055 * The math here assumes sizeof cpl_pass_accept_req >= sizeof 1056 * cpl_rx_pkt. 1057 */ 1058 skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) + 1059 sizeof(struct rss_header) - pktshift, GFP_ATOMIC); 1060 if (unlikely(!skb)) 1061 return NULL; 1062 1063 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) + 1064 sizeof(struct rss_header) - pktshift); 1065 1066 /* 1067 * This skb will contain: 1068 * rss_header from the rspq descriptor (1 flit) 1069 * cpl_rx_pkt struct from the rspq descriptor (2 flits) 1070 * space for the difference between the size of an 1071 * rx_pkt and pass_accept_req cpl (1 flit) 1072 * the packet data from the gl 1073 */ 1074 skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) + 1075 sizeof(struct rss_header)); 1076 skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) + 1077 sizeof(struct cpl_pass_accept_req), 1078 gl->va + pktshift, 1079 gl->tot_len - pktshift); 1080 return skb; 1081 } 1082 1083 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl, 1084 const __be64 *rsp) 1085 { 1086 unsigned int opcode = *(u8 *)rsp; 1087 struct sk_buff *skb; 1088 1089 if (opcode != CPL_RX_PKT) 1090 goto out; 1091 1092 skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift); 1093 if (skb == NULL) 1094 goto out; 1095 1096 if (c4iw_handlers[opcode] == NULL) { 1097 pr_info("%s no handler opcode 0x%x...\n", __func__, 1098 opcode); 1099 kfree_skb(skb); 1100 goto out; 1101 } 1102 c4iw_handlers[opcode](dev, skb); 1103 return 1; 1104 out: 1105 return 0; 1106 } 1107 1108 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp, 1109 const struct pkt_gl *gl) 1110 { 1111 struct uld_ctx *ctx = handle; 1112 struct c4iw_dev *dev = ctx->dev; 1113 struct sk_buff *skb; 1114 u8 opcode; 1115 1116 if (gl == NULL) { 1117 /* omit RSS and rsp_ctrl at end of descriptor */ 1118 unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8; 1119 1120 skb = alloc_skb(256, GFP_ATOMIC); 1121 if (!skb) 1122 goto nomem; 1123 __skb_put(skb, len); 1124 skb_copy_to_linear_data(skb, &rsp[1], len); 1125 } else if (gl == CXGB4_MSG_AN) { 1126 const struct rsp_ctrl *rc = (void *)rsp; 1127 1128 u32 qid = be32_to_cpu(rc->pldbuflen_qid); 1129 c4iw_ev_handler(dev, qid); 1130 return 0; 1131 } else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) { 1132 if (recv_rx_pkt(dev, gl, rsp)) 1133 return 0; 1134 1135 pr_info("%s: unexpected FL contents at %p, " \ 1136 "RSS %#llx, FL %#llx, len %u\n", 1137 pci_name(ctx->lldi.pdev), gl->va, 1138 (unsigned long long)be64_to_cpu(*rsp), 1139 (unsigned long long)be64_to_cpu( 1140 *(__force __be64 *)gl->va), 1141 gl->tot_len); 1142 1143 return 0; 1144 } else { 1145 skb = cxgb4_pktgl_to_skb(gl, 128, 128); 1146 if (unlikely(!skb)) 1147 goto nomem; 1148 } 1149 1150 opcode = *(u8 *)rsp; 1151 if (c4iw_handlers[opcode]) { 1152 c4iw_handlers[opcode](dev, skb); 1153 } else { 1154 pr_info("%s no handler opcode 0x%x...\n", __func__, 1155 opcode); 1156 kfree_skb(skb); 1157 } 1158 1159 return 0; 1160 nomem: 1161 return -1; 1162 } 1163 1164 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state) 1165 { 1166 struct uld_ctx *ctx = handle; 1167 1168 PDBG("%s new_state %u\n", __func__, new_state); 1169 switch (new_state) { 1170 case CXGB4_STATE_UP: 1171 printk(KERN_INFO MOD "%s: Up\n", pci_name(ctx->lldi.pdev)); 1172 if (!ctx->dev) { 1173 int ret; 1174 1175 ctx->dev = c4iw_alloc(&ctx->lldi); 1176 if (IS_ERR(ctx->dev)) { 1177 printk(KERN_ERR MOD 1178 "%s: initialization failed: %ld\n", 1179 pci_name(ctx->lldi.pdev), 1180 PTR_ERR(ctx->dev)); 1181 ctx->dev = NULL; 1182 break; 1183 } 1184 ret = c4iw_register_device(ctx->dev); 1185 if (ret) { 1186 printk(KERN_ERR MOD 1187 "%s: RDMA registration failed: %d\n", 1188 pci_name(ctx->lldi.pdev), ret); 1189 c4iw_dealloc(ctx); 1190 } 1191 } 1192 break; 1193 case CXGB4_STATE_DOWN: 1194 printk(KERN_INFO MOD "%s: Down\n", 1195 pci_name(ctx->lldi.pdev)); 1196 if (ctx->dev) 1197 c4iw_remove(ctx); 1198 break; 1199 case CXGB4_STATE_START_RECOVERY: 1200 printk(KERN_INFO MOD "%s: Fatal Error\n", 1201 pci_name(ctx->lldi.pdev)); 1202 if (ctx->dev) { 1203 struct ib_event event; 1204 1205 ctx->dev->rdev.flags |= T4_FATAL_ERROR; 1206 memset(&event, 0, sizeof event); 1207 event.event = IB_EVENT_DEVICE_FATAL; 1208 event.device = &ctx->dev->ibdev; 1209 ib_dispatch_event(&event); 1210 c4iw_remove(ctx); 1211 } 1212 break; 1213 case CXGB4_STATE_DETACH: 1214 printk(KERN_INFO MOD "%s: Detach\n", 1215 pci_name(ctx->lldi.pdev)); 1216 if (ctx->dev) 1217 c4iw_remove(ctx); 1218 break; 1219 } 1220 return 0; 1221 } 1222 1223 static int disable_qp_db(int id, void *p, void *data) 1224 { 1225 struct c4iw_qp *qp = p; 1226 1227 t4_disable_wq_db(&qp->wq); 1228 return 0; 1229 } 1230 1231 static void stop_queues(struct uld_ctx *ctx) 1232 { 1233 unsigned long flags; 1234 1235 spin_lock_irqsave(&ctx->dev->lock, flags); 1236 ctx->dev->rdev.stats.db_state_transitions++; 1237 ctx->dev->db_state = STOPPED; 1238 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) 1239 idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL); 1240 else 1241 ctx->dev->rdev.status_page->db_off = 1; 1242 spin_unlock_irqrestore(&ctx->dev->lock, flags); 1243 } 1244 1245 static int enable_qp_db(int id, void *p, void *data) 1246 { 1247 struct c4iw_qp *qp = p; 1248 1249 t4_enable_wq_db(&qp->wq); 1250 return 0; 1251 } 1252 1253 static void resume_rc_qp(struct c4iw_qp *qp) 1254 { 1255 spin_lock(&qp->lock); 1256 t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL); 1257 qp->wq.sq.wq_pidx_inc = 0; 1258 t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL); 1259 qp->wq.rq.wq_pidx_inc = 0; 1260 spin_unlock(&qp->lock); 1261 } 1262 1263 static void resume_a_chunk(struct uld_ctx *ctx) 1264 { 1265 int i; 1266 struct c4iw_qp *qp; 1267 1268 for (i = 0; i < DB_FC_RESUME_SIZE; i++) { 1269 qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp, 1270 db_fc_entry); 1271 list_del_init(&qp->db_fc_entry); 1272 resume_rc_qp(qp); 1273 if (list_empty(&ctx->dev->db_fc_list)) 1274 break; 1275 } 1276 } 1277 1278 static void resume_queues(struct uld_ctx *ctx) 1279 { 1280 spin_lock_irq(&ctx->dev->lock); 1281 if (ctx->dev->db_state != STOPPED) 1282 goto out; 1283 ctx->dev->db_state = FLOW_CONTROL; 1284 while (1) { 1285 if (list_empty(&ctx->dev->db_fc_list)) { 1286 WARN_ON(ctx->dev->db_state != FLOW_CONTROL); 1287 ctx->dev->db_state = NORMAL; 1288 ctx->dev->rdev.stats.db_state_transitions++; 1289 if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) { 1290 idr_for_each(&ctx->dev->qpidr, enable_qp_db, 1291 NULL); 1292 } else { 1293 ctx->dev->rdev.status_page->db_off = 0; 1294 } 1295 break; 1296 } else { 1297 if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1) 1298 < (ctx->dev->rdev.lldi.dbfifo_int_thresh << 1299 DB_FC_DRAIN_THRESH)) { 1300 resume_a_chunk(ctx); 1301 } 1302 if (!list_empty(&ctx->dev->db_fc_list)) { 1303 spin_unlock_irq(&ctx->dev->lock); 1304 if (DB_FC_RESUME_DELAY) { 1305 set_current_state(TASK_UNINTERRUPTIBLE); 1306 schedule_timeout(DB_FC_RESUME_DELAY); 1307 } 1308 spin_lock_irq(&ctx->dev->lock); 1309 if (ctx->dev->db_state != FLOW_CONTROL) 1310 break; 1311 } 1312 } 1313 } 1314 out: 1315 if (ctx->dev->db_state != NORMAL) 1316 ctx->dev->rdev.stats.db_fc_interruptions++; 1317 spin_unlock_irq(&ctx->dev->lock); 1318 } 1319 1320 struct qp_list { 1321 unsigned idx; 1322 struct c4iw_qp **qps; 1323 }; 1324 1325 static int add_and_ref_qp(int id, void *p, void *data) 1326 { 1327 struct qp_list *qp_listp = data; 1328 struct c4iw_qp *qp = p; 1329 1330 c4iw_qp_add_ref(&qp->ibqp); 1331 qp_listp->qps[qp_listp->idx++] = qp; 1332 return 0; 1333 } 1334 1335 static int count_qps(int id, void *p, void *data) 1336 { 1337 unsigned *countp = data; 1338 (*countp)++; 1339 return 0; 1340 } 1341 1342 static void deref_qps(struct qp_list *qp_list) 1343 { 1344 int idx; 1345 1346 for (idx = 0; idx < qp_list->idx; idx++) 1347 c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp); 1348 } 1349 1350 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list) 1351 { 1352 int idx; 1353 int ret; 1354 1355 for (idx = 0; idx < qp_list->idx; idx++) { 1356 struct c4iw_qp *qp = qp_list->qps[idx]; 1357 1358 spin_lock_irq(&qp->rhp->lock); 1359 spin_lock(&qp->lock); 1360 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0], 1361 qp->wq.sq.qid, 1362 t4_sq_host_wq_pidx(&qp->wq), 1363 t4_sq_wq_size(&qp->wq)); 1364 if (ret) { 1365 pr_err(MOD "%s: Fatal error - " 1366 "DB overflow recovery failed - " 1367 "error syncing SQ qid %u\n", 1368 pci_name(ctx->lldi.pdev), qp->wq.sq.qid); 1369 spin_unlock(&qp->lock); 1370 spin_unlock_irq(&qp->rhp->lock); 1371 return; 1372 } 1373 qp->wq.sq.wq_pidx_inc = 0; 1374 1375 ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0], 1376 qp->wq.rq.qid, 1377 t4_rq_host_wq_pidx(&qp->wq), 1378 t4_rq_wq_size(&qp->wq)); 1379 1380 if (ret) { 1381 pr_err(MOD "%s: Fatal error - " 1382 "DB overflow recovery failed - " 1383 "error syncing RQ qid %u\n", 1384 pci_name(ctx->lldi.pdev), qp->wq.rq.qid); 1385 spin_unlock(&qp->lock); 1386 spin_unlock_irq(&qp->rhp->lock); 1387 return; 1388 } 1389 qp->wq.rq.wq_pidx_inc = 0; 1390 spin_unlock(&qp->lock); 1391 spin_unlock_irq(&qp->rhp->lock); 1392 1393 /* Wait for the dbfifo to drain */ 1394 while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) { 1395 set_current_state(TASK_UNINTERRUPTIBLE); 1396 schedule_timeout(usecs_to_jiffies(10)); 1397 } 1398 } 1399 } 1400 1401 static void recover_queues(struct uld_ctx *ctx) 1402 { 1403 int count = 0; 1404 struct qp_list qp_list; 1405 int ret; 1406 1407 /* slow everybody down */ 1408 set_current_state(TASK_UNINTERRUPTIBLE); 1409 schedule_timeout(usecs_to_jiffies(1000)); 1410 1411 /* flush the SGE contexts */ 1412 ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]); 1413 if (ret) { 1414 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n", 1415 pci_name(ctx->lldi.pdev)); 1416 return; 1417 } 1418 1419 /* Count active queues so we can build a list of queues to recover */ 1420 spin_lock_irq(&ctx->dev->lock); 1421 WARN_ON(ctx->dev->db_state != STOPPED); 1422 ctx->dev->db_state = RECOVERY; 1423 idr_for_each(&ctx->dev->qpidr, count_qps, &count); 1424 1425 qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC); 1426 if (!qp_list.qps) { 1427 printk(KERN_ERR MOD "%s: Fatal error - DB overflow recovery failed\n", 1428 pci_name(ctx->lldi.pdev)); 1429 spin_unlock_irq(&ctx->dev->lock); 1430 return; 1431 } 1432 qp_list.idx = 0; 1433 1434 /* add and ref each qp so it doesn't get freed */ 1435 idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list); 1436 1437 spin_unlock_irq(&ctx->dev->lock); 1438 1439 /* now traverse the list in a safe context to recover the db state*/ 1440 recover_lost_dbs(ctx, &qp_list); 1441 1442 /* we're almost done! deref the qps and clean up */ 1443 deref_qps(&qp_list); 1444 kfree(qp_list.qps); 1445 1446 spin_lock_irq(&ctx->dev->lock); 1447 WARN_ON(ctx->dev->db_state != RECOVERY); 1448 ctx->dev->db_state = STOPPED; 1449 spin_unlock_irq(&ctx->dev->lock); 1450 } 1451 1452 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...) 1453 { 1454 struct uld_ctx *ctx = handle; 1455 1456 switch (control) { 1457 case CXGB4_CONTROL_DB_FULL: 1458 stop_queues(ctx); 1459 ctx->dev->rdev.stats.db_full++; 1460 break; 1461 case CXGB4_CONTROL_DB_EMPTY: 1462 resume_queues(ctx); 1463 mutex_lock(&ctx->dev->rdev.stats.lock); 1464 ctx->dev->rdev.stats.db_empty++; 1465 mutex_unlock(&ctx->dev->rdev.stats.lock); 1466 break; 1467 case CXGB4_CONTROL_DB_DROP: 1468 recover_queues(ctx); 1469 mutex_lock(&ctx->dev->rdev.stats.lock); 1470 ctx->dev->rdev.stats.db_drop++; 1471 mutex_unlock(&ctx->dev->rdev.stats.lock); 1472 break; 1473 default: 1474 printk(KERN_WARNING MOD "%s: unknown control cmd %u\n", 1475 pci_name(ctx->lldi.pdev), control); 1476 break; 1477 } 1478 return 0; 1479 } 1480 1481 static struct cxgb4_uld_info c4iw_uld_info = { 1482 .name = DRV_NAME, 1483 .nrxq = MAX_ULD_QSETS, 1484 .rxq_size = 511, 1485 .ciq = true, 1486 .lro = false, 1487 .add = c4iw_uld_add, 1488 .rx_handler = c4iw_uld_rx_handler, 1489 .state_change = c4iw_uld_state_change, 1490 .control = c4iw_uld_control, 1491 }; 1492 1493 static int __init c4iw_init_module(void) 1494 { 1495 int err; 1496 1497 err = c4iw_cm_init(); 1498 if (err) 1499 return err; 1500 1501 c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL); 1502 if (!c4iw_debugfs_root) 1503 printk(KERN_WARNING MOD 1504 "could not create debugfs entry, continuing\n"); 1505 1506 cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info); 1507 1508 return 0; 1509 } 1510 1511 static void __exit c4iw_exit_module(void) 1512 { 1513 struct uld_ctx *ctx, *tmp; 1514 1515 mutex_lock(&dev_mutex); 1516 list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) { 1517 if (ctx->dev) 1518 c4iw_remove(ctx); 1519 kfree(ctx); 1520 } 1521 mutex_unlock(&dev_mutex); 1522 cxgb4_unregister_uld(CXGB4_ULD_RDMA); 1523 c4iw_cm_term(); 1524 debugfs_remove_recursive(c4iw_debugfs_root); 1525 } 1526 1527 module_init(c4iw_init_module); 1528 module_exit(c4iw_exit_module); 1529