1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37 
38 #include <rdma/ib_verbs.h>
39 
40 #include "iw_cxgb4.h"
41 
42 #define DRV_VERSION "0.1"
43 
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47 
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 		 "Allow DB Flow Control on T5 (default = 0)");
52 
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 		 "Allow DB Coalescing on T5 (default = 0)");
57 
58 int c4iw_wr_log = 0;
59 module_param(c4iw_wr_log, int, 0444);
60 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
61 
62 static int c4iw_wr_log_size_order = 12;
63 module_param(c4iw_wr_log_size_order, int, 0444);
64 MODULE_PARM_DESC(c4iw_wr_log_size_order,
65 		 "Number of entries (log2) in the work request timing log.");
66 
67 struct uld_ctx {
68 	struct list_head entry;
69 	struct cxgb4_lld_info lldi;
70 	struct c4iw_dev *dev;
71 };
72 
73 static LIST_HEAD(uld_ctx_list);
74 static DEFINE_MUTEX(dev_mutex);
75 
76 #define DB_FC_RESUME_SIZE 64
77 #define DB_FC_RESUME_DELAY 1
78 #define DB_FC_DRAIN_THRESH 0
79 
80 static struct dentry *c4iw_debugfs_root;
81 
82 struct c4iw_debugfs_data {
83 	struct c4iw_dev *devp;
84 	char *buf;
85 	int bufsize;
86 	int pos;
87 };
88 
89 static int count_idrs(int id, void *p, void *data)
90 {
91 	int *countp = data;
92 
93 	*countp = *countp + 1;
94 	return 0;
95 }
96 
97 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
98 			    loff_t *ppos)
99 {
100 	struct c4iw_debugfs_data *d = file->private_data;
101 
102 	return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
103 }
104 
105 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
106 {
107 	struct wr_log_entry le;
108 	int idx;
109 
110 	if (!wq->rdev->wr_log)
111 		return;
112 
113 	idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
114 		(wq->rdev->wr_log_size - 1);
115 	le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
116 	getnstimeofday(&le.poll_host_ts);
117 	le.valid = 1;
118 	le.cqe_sge_ts = CQE_TS(cqe);
119 	if (SQ_TYPE(cqe)) {
120 		le.qid = wq->sq.qid;
121 		le.opcode = CQE_OPCODE(cqe);
122 		le.post_host_ts = wq->sq.sw_sq[wq->sq.cidx].host_ts;
123 		le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
124 		le.wr_id = CQE_WRID_SQ_IDX(cqe);
125 	} else {
126 		le.qid = wq->rq.qid;
127 		le.opcode = FW_RI_RECEIVE;
128 		le.post_host_ts = wq->rq.sw_rq[wq->rq.cidx].host_ts;
129 		le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
130 		le.wr_id = CQE_WRID_MSN(cqe);
131 	}
132 	wq->rdev->wr_log[idx] = le;
133 }
134 
135 static int wr_log_show(struct seq_file *seq, void *v)
136 {
137 	struct c4iw_dev *dev = seq->private;
138 	struct timespec prev_ts = {0, 0};
139 	struct wr_log_entry *lep;
140 	int prev_ts_set = 0;
141 	int idx, end;
142 
143 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
144 
145 	idx = atomic_read(&dev->rdev.wr_log_idx) &
146 		(dev->rdev.wr_log_size - 1);
147 	end = idx - 1;
148 	if (end < 0)
149 		end = dev->rdev.wr_log_size - 1;
150 	lep = &dev->rdev.wr_log[idx];
151 	while (idx != end) {
152 		if (lep->valid) {
153 			if (!prev_ts_set) {
154 				prev_ts_set = 1;
155 				prev_ts = lep->poll_host_ts;
156 			}
157 			seq_printf(seq, "%04u: sec %lu nsec %lu qid %u opcode "
158 				   "%u %s 0x%x host_wr_delta sec %lu nsec %lu "
159 				   "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
160 				   "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
161 				   "cqe_poll_delta_ns %llu\n",
162 				   idx,
163 				   timespec_sub(lep->poll_host_ts,
164 						prev_ts).tv_sec,
165 				   timespec_sub(lep->poll_host_ts,
166 						prev_ts).tv_nsec,
167 				   lep->qid, lep->opcode,
168 				   lep->opcode == FW_RI_RECEIVE ?
169 							"msn" : "wrid",
170 				   lep->wr_id,
171 				   timespec_sub(lep->poll_host_ts,
172 						lep->post_host_ts).tv_sec,
173 				   timespec_sub(lep->poll_host_ts,
174 						lep->post_host_ts).tv_nsec,
175 				   lep->post_sge_ts, lep->cqe_sge_ts,
176 				   lep->poll_sge_ts,
177 				   ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
178 				   ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
179 			prev_ts = lep->poll_host_ts;
180 		}
181 		idx++;
182 		if (idx > (dev->rdev.wr_log_size - 1))
183 			idx = 0;
184 		lep = &dev->rdev.wr_log[idx];
185 	}
186 #undef ts2ns
187 	return 0;
188 }
189 
190 static int wr_log_open(struct inode *inode, struct file *file)
191 {
192 	return single_open(file, wr_log_show, inode->i_private);
193 }
194 
195 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
196 			    size_t count, loff_t *pos)
197 {
198 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
199 	int i;
200 
201 	if (dev->rdev.wr_log)
202 		for (i = 0; i < dev->rdev.wr_log_size; i++)
203 			dev->rdev.wr_log[i].valid = 0;
204 	return count;
205 }
206 
207 static const struct file_operations wr_log_debugfs_fops = {
208 	.owner   = THIS_MODULE,
209 	.open    = wr_log_open,
210 	.release = single_release,
211 	.read    = seq_read,
212 	.llseek  = seq_lseek,
213 	.write   = wr_log_clear,
214 };
215 
216 static struct sockaddr_in zero_sin = {
217 	.sin_family = AF_INET,
218 };
219 
220 static struct sockaddr_in6 zero_sin6 = {
221 	.sin6_family = AF_INET6,
222 };
223 
224 static void set_ep_sin_addrs(struct c4iw_ep *ep,
225 			     struct sockaddr_in **lsin,
226 			     struct sockaddr_in **rsin,
227 			     struct sockaddr_in **m_lsin,
228 			     struct sockaddr_in **m_rsin)
229 {
230 	struct iw_cm_id *id = ep->com.cm_id;
231 
232 	*lsin = (struct sockaddr_in *)&ep->com.local_addr;
233 	*rsin = (struct sockaddr_in *)&ep->com.remote_addr;
234 	if (id) {
235 		*m_lsin = (struct sockaddr_in *)&id->m_local_addr;
236 		*m_rsin = (struct sockaddr_in *)&id->m_remote_addr;
237 	} else {
238 		*m_lsin = &zero_sin;
239 		*m_rsin = &zero_sin;
240 	}
241 }
242 
243 static void set_ep_sin6_addrs(struct c4iw_ep *ep,
244 			      struct sockaddr_in6 **lsin6,
245 			      struct sockaddr_in6 **rsin6,
246 			      struct sockaddr_in6 **m_lsin6,
247 			      struct sockaddr_in6 **m_rsin6)
248 {
249 	struct iw_cm_id *id = ep->com.cm_id;
250 
251 	*lsin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
252 	*rsin6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
253 	if (id) {
254 		*m_lsin6 = (struct sockaddr_in6 *)&id->m_local_addr;
255 		*m_rsin6 = (struct sockaddr_in6 *)&id->m_remote_addr;
256 	} else {
257 		*m_lsin6 = &zero_sin6;
258 		*m_rsin6 = &zero_sin6;
259 	}
260 }
261 
262 static int dump_qp(int id, void *p, void *data)
263 {
264 	struct c4iw_qp *qp = p;
265 	struct c4iw_debugfs_data *qpd = data;
266 	int space;
267 	int cc;
268 
269 	if (id != qp->wq.sq.qid)
270 		return 0;
271 
272 	space = qpd->bufsize - qpd->pos - 1;
273 	if (space == 0)
274 		return 1;
275 
276 	if (qp->ep) {
277 		struct c4iw_ep *ep = qp->ep;
278 
279 		if (ep->com.local_addr.ss_family == AF_INET) {
280 			struct sockaddr_in *lsin;
281 			struct sockaddr_in *rsin;
282 			struct sockaddr_in *m_lsin;
283 			struct sockaddr_in *m_rsin;
284 
285 			set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
286 			cc = snprintf(qpd->buf + qpd->pos, space,
287 				      "rc qp sq id %u rq id %u state %u "
288 				      "onchip %u ep tid %u state %u "
289 				      "%pI4:%u/%u->%pI4:%u/%u\n",
290 				      qp->wq.sq.qid, qp->wq.rq.qid,
291 				      (int)qp->attr.state,
292 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
293 				      ep->hwtid, (int)ep->com.state,
294 				      &lsin->sin_addr, ntohs(lsin->sin_port),
295 				      ntohs(m_lsin->sin_port),
296 				      &rsin->sin_addr, ntohs(rsin->sin_port),
297 				      ntohs(m_rsin->sin_port));
298 		} else {
299 			struct sockaddr_in6 *lsin6;
300 			struct sockaddr_in6 *rsin6;
301 			struct sockaddr_in6 *m_lsin6;
302 			struct sockaddr_in6 *m_rsin6;
303 
304 			set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6,
305 					  &m_rsin6);
306 			cc = snprintf(qpd->buf + qpd->pos, space,
307 				      "rc qp sq id %u rq id %u state %u "
308 				      "onchip %u ep tid %u state %u "
309 				      "%pI6:%u/%u->%pI6:%u/%u\n",
310 				      qp->wq.sq.qid, qp->wq.rq.qid,
311 				      (int)qp->attr.state,
312 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
313 				      ep->hwtid, (int)ep->com.state,
314 				      &lsin6->sin6_addr,
315 				      ntohs(lsin6->sin6_port),
316 				      ntohs(m_lsin6->sin6_port),
317 				      &rsin6->sin6_addr,
318 				      ntohs(rsin6->sin6_port),
319 				      ntohs(m_rsin6->sin6_port));
320 		}
321 	} else
322 		cc = snprintf(qpd->buf + qpd->pos, space,
323 			     "qp sq id %u rq id %u state %u onchip %u\n",
324 			      qp->wq.sq.qid, qp->wq.rq.qid,
325 			      (int)qp->attr.state,
326 			      qp->wq.sq.flags & T4_SQ_ONCHIP);
327 	if (cc < space)
328 		qpd->pos += cc;
329 	return 0;
330 }
331 
332 static int qp_release(struct inode *inode, struct file *file)
333 {
334 	struct c4iw_debugfs_data *qpd = file->private_data;
335 	if (!qpd) {
336 		pr_info("%s null qpd?\n", __func__);
337 		return 0;
338 	}
339 	vfree(qpd->buf);
340 	kfree(qpd);
341 	return 0;
342 }
343 
344 static int qp_open(struct inode *inode, struct file *file)
345 {
346 	struct c4iw_debugfs_data *qpd;
347 	int count = 1;
348 
349 	qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
350 	if (!qpd)
351 		return -ENOMEM;
352 
353 	qpd->devp = inode->i_private;
354 	qpd->pos = 0;
355 
356 	spin_lock_irq(&qpd->devp->lock);
357 	idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
358 	spin_unlock_irq(&qpd->devp->lock);
359 
360 	qpd->bufsize = count * 180;
361 	qpd->buf = vmalloc(qpd->bufsize);
362 	if (!qpd->buf) {
363 		kfree(qpd);
364 		return -ENOMEM;
365 	}
366 
367 	spin_lock_irq(&qpd->devp->lock);
368 	idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
369 	spin_unlock_irq(&qpd->devp->lock);
370 
371 	qpd->buf[qpd->pos++] = 0;
372 	file->private_data = qpd;
373 	return 0;
374 }
375 
376 static const struct file_operations qp_debugfs_fops = {
377 	.owner   = THIS_MODULE,
378 	.open    = qp_open,
379 	.release = qp_release,
380 	.read    = debugfs_read,
381 	.llseek  = default_llseek,
382 };
383 
384 static int dump_stag(int id, void *p, void *data)
385 {
386 	struct c4iw_debugfs_data *stagd = data;
387 	int space;
388 	int cc;
389 	struct fw_ri_tpte tpte;
390 	int ret;
391 
392 	space = stagd->bufsize - stagd->pos - 1;
393 	if (space == 0)
394 		return 1;
395 
396 	ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
397 			      (__be32 *)&tpte);
398 	if (ret) {
399 		dev_err(&stagd->devp->rdev.lldi.pdev->dev,
400 			"%s cxgb4_read_tpte err %d\n", __func__, ret);
401 		return ret;
402 	}
403 	cc = snprintf(stagd->buf + stagd->pos, space,
404 		      "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
405 		      "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
406 		      (u32)id<<8,
407 		      FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
408 		      FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
409 		      FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
410 		      FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
411 		      FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
412 		      FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
413 		      ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
414 		      ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
415 	if (cc < space)
416 		stagd->pos += cc;
417 	return 0;
418 }
419 
420 static int stag_release(struct inode *inode, struct file *file)
421 {
422 	struct c4iw_debugfs_data *stagd = file->private_data;
423 	if (!stagd) {
424 		pr_info("%s null stagd?\n", __func__);
425 		return 0;
426 	}
427 	vfree(stagd->buf);
428 	kfree(stagd);
429 	return 0;
430 }
431 
432 static int stag_open(struct inode *inode, struct file *file)
433 {
434 	struct c4iw_debugfs_data *stagd;
435 	int ret = 0;
436 	int count = 1;
437 
438 	stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
439 	if (!stagd) {
440 		ret = -ENOMEM;
441 		goto out;
442 	}
443 	stagd->devp = inode->i_private;
444 	stagd->pos = 0;
445 
446 	spin_lock_irq(&stagd->devp->lock);
447 	idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
448 	spin_unlock_irq(&stagd->devp->lock);
449 
450 	stagd->bufsize = count * 256;
451 	stagd->buf = vmalloc(stagd->bufsize);
452 	if (!stagd->buf) {
453 		ret = -ENOMEM;
454 		goto err1;
455 	}
456 
457 	spin_lock_irq(&stagd->devp->lock);
458 	idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
459 	spin_unlock_irq(&stagd->devp->lock);
460 
461 	stagd->buf[stagd->pos++] = 0;
462 	file->private_data = stagd;
463 	goto out;
464 err1:
465 	kfree(stagd);
466 out:
467 	return ret;
468 }
469 
470 static const struct file_operations stag_debugfs_fops = {
471 	.owner   = THIS_MODULE,
472 	.open    = stag_open,
473 	.release = stag_release,
474 	.read    = debugfs_read,
475 	.llseek  = default_llseek,
476 };
477 
478 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
479 
480 static int stats_show(struct seq_file *seq, void *v)
481 {
482 	struct c4iw_dev *dev = seq->private;
483 
484 	seq_printf(seq, "   Object: %10s %10s %10s %10s\n", "Total", "Current",
485 		   "Max", "Fail");
486 	seq_printf(seq, "     PDID: %10llu %10llu %10llu %10llu\n",
487 			dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
488 			dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
489 	seq_printf(seq, "      QID: %10llu %10llu %10llu %10llu\n",
490 			dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
491 			dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
492 	seq_printf(seq, "   TPTMEM: %10llu %10llu %10llu %10llu\n",
493 			dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
494 			dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
495 	seq_printf(seq, "   PBLMEM: %10llu %10llu %10llu %10llu\n",
496 			dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
497 			dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
498 	seq_printf(seq, "   RQTMEM: %10llu %10llu %10llu %10llu\n",
499 			dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
500 			dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
501 	seq_printf(seq, "  OCQPMEM: %10llu %10llu %10llu %10llu\n",
502 			dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
503 			dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
504 	seq_printf(seq, "  DB FULL: %10llu\n", dev->rdev.stats.db_full);
505 	seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
506 	seq_printf(seq, "  DB DROP: %10llu\n", dev->rdev.stats.db_drop);
507 	seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
508 		   db_state_str[dev->db_state],
509 		   dev->rdev.stats.db_state_transitions,
510 		   dev->rdev.stats.db_fc_interruptions);
511 	seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
512 	seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
513 		   dev->rdev.stats.act_ofld_conn_fails);
514 	seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
515 		   dev->rdev.stats.pas_ofld_conn_fails);
516 	seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
517 	seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
518 	return 0;
519 }
520 
521 static int stats_open(struct inode *inode, struct file *file)
522 {
523 	return single_open(file, stats_show, inode->i_private);
524 }
525 
526 static ssize_t stats_clear(struct file *file, const char __user *buf,
527 		size_t count, loff_t *pos)
528 {
529 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
530 
531 	mutex_lock(&dev->rdev.stats.lock);
532 	dev->rdev.stats.pd.max = 0;
533 	dev->rdev.stats.pd.fail = 0;
534 	dev->rdev.stats.qid.max = 0;
535 	dev->rdev.stats.qid.fail = 0;
536 	dev->rdev.stats.stag.max = 0;
537 	dev->rdev.stats.stag.fail = 0;
538 	dev->rdev.stats.pbl.max = 0;
539 	dev->rdev.stats.pbl.fail = 0;
540 	dev->rdev.stats.rqt.max = 0;
541 	dev->rdev.stats.rqt.fail = 0;
542 	dev->rdev.stats.ocqp.max = 0;
543 	dev->rdev.stats.ocqp.fail = 0;
544 	dev->rdev.stats.db_full = 0;
545 	dev->rdev.stats.db_empty = 0;
546 	dev->rdev.stats.db_drop = 0;
547 	dev->rdev.stats.db_state_transitions = 0;
548 	dev->rdev.stats.tcam_full = 0;
549 	dev->rdev.stats.act_ofld_conn_fails = 0;
550 	dev->rdev.stats.pas_ofld_conn_fails = 0;
551 	mutex_unlock(&dev->rdev.stats.lock);
552 	return count;
553 }
554 
555 static const struct file_operations stats_debugfs_fops = {
556 	.owner   = THIS_MODULE,
557 	.open    = stats_open,
558 	.release = single_release,
559 	.read    = seq_read,
560 	.llseek  = seq_lseek,
561 	.write   = stats_clear,
562 };
563 
564 static int dump_ep(int id, void *p, void *data)
565 {
566 	struct c4iw_ep *ep = p;
567 	struct c4iw_debugfs_data *epd = data;
568 	int space;
569 	int cc;
570 
571 	space = epd->bufsize - epd->pos - 1;
572 	if (space == 0)
573 		return 1;
574 
575 	if (ep->com.local_addr.ss_family == AF_INET) {
576 		struct sockaddr_in *lsin;
577 		struct sockaddr_in *rsin;
578 		struct sockaddr_in *m_lsin;
579 		struct sockaddr_in *m_rsin;
580 
581 		set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
582 		cc = snprintf(epd->buf + epd->pos, space,
583 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
584 			      "history 0x%lx hwtid %d atid %d "
585 			      "conn_na %u abort_na %u "
586 			      "%pI4:%d/%d <-> %pI4:%d/%d\n",
587 			      ep, ep->com.cm_id, ep->com.qp,
588 			      (int)ep->com.state, ep->com.flags,
589 			      ep->com.history, ep->hwtid, ep->atid,
590 			      ep->stats.connect_neg_adv,
591 			      ep->stats.abort_neg_adv,
592 			      &lsin->sin_addr, ntohs(lsin->sin_port),
593 			      ntohs(m_lsin->sin_port),
594 			      &rsin->sin_addr, ntohs(rsin->sin_port),
595 			      ntohs(m_rsin->sin_port));
596 	} else {
597 		struct sockaddr_in6 *lsin6;
598 		struct sockaddr_in6 *rsin6;
599 		struct sockaddr_in6 *m_lsin6;
600 		struct sockaddr_in6 *m_rsin6;
601 
602 		set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6, &m_rsin6);
603 		cc = snprintf(epd->buf + epd->pos, space,
604 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
605 			      "history 0x%lx hwtid %d atid %d "
606 			      "conn_na %u abort_na %u "
607 			      "%pI6:%d/%d <-> %pI6:%d/%d\n",
608 			      ep, ep->com.cm_id, ep->com.qp,
609 			      (int)ep->com.state, ep->com.flags,
610 			      ep->com.history, ep->hwtid, ep->atid,
611 			      ep->stats.connect_neg_adv,
612 			      ep->stats.abort_neg_adv,
613 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
614 			      ntohs(m_lsin6->sin6_port),
615 			      &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
616 			      ntohs(m_rsin6->sin6_port));
617 	}
618 	if (cc < space)
619 		epd->pos += cc;
620 	return 0;
621 }
622 
623 static int dump_listen_ep(int id, void *p, void *data)
624 {
625 	struct c4iw_listen_ep *ep = p;
626 	struct c4iw_debugfs_data *epd = data;
627 	int space;
628 	int cc;
629 
630 	space = epd->bufsize - epd->pos - 1;
631 	if (space == 0)
632 		return 1;
633 
634 	if (ep->com.local_addr.ss_family == AF_INET) {
635 		struct sockaddr_in *lsin = (struct sockaddr_in *)
636 			&ep->com.cm_id->local_addr;
637 		struct sockaddr_in *m_lsin = (struct sockaddr_in *)
638 			&ep->com.cm_id->m_local_addr;
639 
640 		cc = snprintf(epd->buf + epd->pos, space,
641 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
642 			      "backlog %d %pI4:%d/%d\n",
643 			      ep, ep->com.cm_id, (int)ep->com.state,
644 			      ep->com.flags, ep->stid, ep->backlog,
645 			      &lsin->sin_addr, ntohs(lsin->sin_port),
646 			      ntohs(m_lsin->sin_port));
647 	} else {
648 		struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
649 			&ep->com.cm_id->local_addr;
650 		struct sockaddr_in6 *m_lsin6 = (struct sockaddr_in6 *)
651 			&ep->com.cm_id->m_local_addr;
652 
653 		cc = snprintf(epd->buf + epd->pos, space,
654 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
655 			      "backlog %d %pI6:%d/%d\n",
656 			      ep, ep->com.cm_id, (int)ep->com.state,
657 			      ep->com.flags, ep->stid, ep->backlog,
658 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
659 			      ntohs(m_lsin6->sin6_port));
660 	}
661 	if (cc < space)
662 		epd->pos += cc;
663 	return 0;
664 }
665 
666 static int ep_release(struct inode *inode, struct file *file)
667 {
668 	struct c4iw_debugfs_data *epd = file->private_data;
669 	if (!epd) {
670 		pr_info("%s null qpd?\n", __func__);
671 		return 0;
672 	}
673 	vfree(epd->buf);
674 	kfree(epd);
675 	return 0;
676 }
677 
678 static int ep_open(struct inode *inode, struct file *file)
679 {
680 	struct c4iw_debugfs_data *epd;
681 	int ret = 0;
682 	int count = 1;
683 
684 	epd = kmalloc(sizeof(*epd), GFP_KERNEL);
685 	if (!epd) {
686 		ret = -ENOMEM;
687 		goto out;
688 	}
689 	epd->devp = inode->i_private;
690 	epd->pos = 0;
691 
692 	spin_lock_irq(&epd->devp->lock);
693 	idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
694 	idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
695 	idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
696 	spin_unlock_irq(&epd->devp->lock);
697 
698 	epd->bufsize = count * 240;
699 	epd->buf = vmalloc(epd->bufsize);
700 	if (!epd->buf) {
701 		ret = -ENOMEM;
702 		goto err1;
703 	}
704 
705 	spin_lock_irq(&epd->devp->lock);
706 	idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
707 	idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
708 	idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
709 	spin_unlock_irq(&epd->devp->lock);
710 
711 	file->private_data = epd;
712 	goto out;
713 err1:
714 	kfree(epd);
715 out:
716 	return ret;
717 }
718 
719 static const struct file_operations ep_debugfs_fops = {
720 	.owner   = THIS_MODULE,
721 	.open    = ep_open,
722 	.release = ep_release,
723 	.read    = debugfs_read,
724 };
725 
726 static int setup_debugfs(struct c4iw_dev *devp)
727 {
728 	if (!devp->debugfs_root)
729 		return -1;
730 
731 	debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
732 				 (void *)devp, &qp_debugfs_fops, 4096);
733 
734 	debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
735 				 (void *)devp, &stag_debugfs_fops, 4096);
736 
737 	debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
738 				 (void *)devp, &stats_debugfs_fops, 4096);
739 
740 	debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
741 				 (void *)devp, &ep_debugfs_fops, 4096);
742 
743 	if (c4iw_wr_log)
744 		debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
745 					 (void *)devp, &wr_log_debugfs_fops, 4096);
746 	return 0;
747 }
748 
749 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
750 			       struct c4iw_dev_ucontext *uctx)
751 {
752 	struct list_head *pos, *nxt;
753 	struct c4iw_qid_list *entry;
754 
755 	mutex_lock(&uctx->lock);
756 	list_for_each_safe(pos, nxt, &uctx->qpids) {
757 		entry = list_entry(pos, struct c4iw_qid_list, entry);
758 		list_del_init(&entry->entry);
759 		if (!(entry->qid & rdev->qpmask)) {
760 			c4iw_put_resource(&rdev->resource.qid_table,
761 					  entry->qid);
762 			mutex_lock(&rdev->stats.lock);
763 			rdev->stats.qid.cur -= rdev->qpmask + 1;
764 			mutex_unlock(&rdev->stats.lock);
765 		}
766 		kfree(entry);
767 	}
768 
769 	list_for_each_safe(pos, nxt, &uctx->cqids) {
770 		entry = list_entry(pos, struct c4iw_qid_list, entry);
771 		list_del_init(&entry->entry);
772 		kfree(entry);
773 	}
774 	mutex_unlock(&uctx->lock);
775 }
776 
777 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
778 			    struct c4iw_dev_ucontext *uctx)
779 {
780 	INIT_LIST_HEAD(&uctx->qpids);
781 	INIT_LIST_HEAD(&uctx->cqids);
782 	mutex_init(&uctx->lock);
783 }
784 
785 /* Caller takes care of locking if needed */
786 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
787 {
788 	int err;
789 
790 	c4iw_init_dev_ucontext(rdev, &rdev->uctx);
791 
792 	/*
793 	 * This implementation assumes udb_density == ucq_density!  Eventually
794 	 * we might need to support this but for now fail the open. Also the
795 	 * cqid and qpid range must match for now.
796 	 */
797 	if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
798 		pr_err("%s: unsupported udb/ucq densities %u/%u\n",
799 		       pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
800 		       rdev->lldi.ucq_density);
801 		return -EINVAL;
802 	}
803 	if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
804 	    rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
805 		pr_err("%s: unsupported qp and cq id ranges qp start %u size %u cq start %u size %u\n",
806 		       pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
807 		       rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
808 		       rdev->lldi.vr->cq.size);
809 		return -EINVAL;
810 	}
811 
812 	rdev->qpmask = rdev->lldi.udb_density - 1;
813 	rdev->cqmask = rdev->lldi.ucq_density - 1;
814 	pr_debug("%s dev %s stag start 0x%0x size 0x%0x num stags %d pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x qp qid start %u size %u cq qid start %u size %u\n",
815 		 __func__, pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
816 		 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
817 		 rdev->lldi.vr->pbl.start,
818 		 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
819 		 rdev->lldi.vr->rq.size,
820 		 rdev->lldi.vr->qp.start,
821 		 rdev->lldi.vr->qp.size,
822 		 rdev->lldi.vr->cq.start,
823 		 rdev->lldi.vr->cq.size);
824 	pr_debug("udb %pR db_reg %p gts_reg %p qpmask 0x%x cqmask 0x%x\n",
825 		 &rdev->lldi.pdev->resource[2],
826 		 rdev->lldi.db_reg, rdev->lldi.gts_reg,
827 		 rdev->qpmask, rdev->cqmask);
828 
829 	if (c4iw_num_stags(rdev) == 0)
830 		return -EINVAL;
831 
832 	rdev->stats.pd.total = T4_MAX_NUM_PD;
833 	rdev->stats.stag.total = rdev->lldi.vr->stag.size;
834 	rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
835 	rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
836 	rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
837 	rdev->stats.qid.total = rdev->lldi.vr->qp.size;
838 
839 	err = c4iw_init_resource(rdev, c4iw_num_stags(rdev), T4_MAX_NUM_PD);
840 	if (err) {
841 		pr_err("error %d initializing resources\n", err);
842 		return err;
843 	}
844 	err = c4iw_pblpool_create(rdev);
845 	if (err) {
846 		pr_err("error %d initializing pbl pool\n", err);
847 		goto destroy_resource;
848 	}
849 	err = c4iw_rqtpool_create(rdev);
850 	if (err) {
851 		pr_err("error %d initializing rqt pool\n", err);
852 		goto destroy_pblpool;
853 	}
854 	err = c4iw_ocqp_pool_create(rdev);
855 	if (err) {
856 		pr_err("error %d initializing ocqp pool\n", err);
857 		goto destroy_rqtpool;
858 	}
859 	rdev->status_page = (struct t4_dev_status_page *)
860 			    __get_free_page(GFP_KERNEL);
861 	if (!rdev->status_page) {
862 		err = -ENOMEM;
863 		goto destroy_ocqp_pool;
864 	}
865 	rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
866 	rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
867 	rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
868 	rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
869 
870 	if (c4iw_wr_log) {
871 		rdev->wr_log = kzalloc((1 << c4iw_wr_log_size_order) *
872 				       sizeof(*rdev->wr_log), GFP_KERNEL);
873 		if (rdev->wr_log) {
874 			rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
875 			atomic_set(&rdev->wr_log_idx, 0);
876 		}
877 	}
878 
879 	rdev->free_workq = create_singlethread_workqueue("iw_cxgb4_free");
880 	if (!rdev->free_workq) {
881 		err = -ENOMEM;
882 		goto err_free_status_page_and_wr_log;
883 	}
884 
885 	rdev->status_page->db_off = 0;
886 
887 	return 0;
888 err_free_status_page_and_wr_log:
889 	if (c4iw_wr_log && rdev->wr_log)
890 		kfree(rdev->wr_log);
891 	free_page((unsigned long)rdev->status_page);
892 destroy_ocqp_pool:
893 	c4iw_ocqp_pool_destroy(rdev);
894 destroy_rqtpool:
895 	c4iw_rqtpool_destroy(rdev);
896 destroy_pblpool:
897 	c4iw_pblpool_destroy(rdev);
898 destroy_resource:
899 	c4iw_destroy_resource(&rdev->resource);
900 	return err;
901 }
902 
903 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
904 {
905 	destroy_workqueue(rdev->free_workq);
906 	kfree(rdev->wr_log);
907 	c4iw_release_dev_ucontext(rdev, &rdev->uctx);
908 	free_page((unsigned long)rdev->status_page);
909 	c4iw_pblpool_destroy(rdev);
910 	c4iw_rqtpool_destroy(rdev);
911 	c4iw_ocqp_pool_destroy(rdev);
912 	c4iw_destroy_resource(&rdev->resource);
913 }
914 
915 static void c4iw_dealloc(struct uld_ctx *ctx)
916 {
917 	c4iw_rdev_close(&ctx->dev->rdev);
918 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr));
919 	idr_destroy(&ctx->dev->cqidr);
920 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr));
921 	idr_destroy(&ctx->dev->qpidr);
922 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr));
923 	idr_destroy(&ctx->dev->mmidr);
924 	wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr));
925 	idr_destroy(&ctx->dev->hwtid_idr);
926 	idr_destroy(&ctx->dev->stid_idr);
927 	idr_destroy(&ctx->dev->atid_idr);
928 	if (ctx->dev->rdev.bar2_kva)
929 		iounmap(ctx->dev->rdev.bar2_kva);
930 	if (ctx->dev->rdev.oc_mw_kva)
931 		iounmap(ctx->dev->rdev.oc_mw_kva);
932 	ib_dealloc_device(&ctx->dev->ibdev);
933 	ctx->dev = NULL;
934 }
935 
936 static void c4iw_remove(struct uld_ctx *ctx)
937 {
938 	pr_debug("%s c4iw_dev %p\n", __func__,  ctx->dev);
939 	c4iw_unregister_device(ctx->dev);
940 	c4iw_dealloc(ctx);
941 }
942 
943 static int rdma_supported(const struct cxgb4_lld_info *infop)
944 {
945 	return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
946 	       infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
947 	       infop->vr->cq.size > 0;
948 }
949 
950 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
951 {
952 	struct c4iw_dev *devp;
953 	int ret;
954 
955 	if (!rdma_supported(infop)) {
956 		pr_info("%s: RDMA not supported on this device\n",
957 			pci_name(infop->pdev));
958 		return ERR_PTR(-ENOSYS);
959 	}
960 	if (!ocqp_supported(infop))
961 		pr_info("%s: On-Chip Queues not supported on this device\n",
962 			pci_name(infop->pdev));
963 
964 	devp = (struct c4iw_dev *)ib_alloc_device(sizeof(*devp));
965 	if (!devp) {
966 		pr_err("Cannot allocate ib device\n");
967 		return ERR_PTR(-ENOMEM);
968 	}
969 	devp->rdev.lldi = *infop;
970 
971 	/* init various hw-queue params based on lld info */
972 	pr_debug("%s: Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
973 		 __func__, devp->rdev.lldi.sge_ingpadboundary,
974 		 devp->rdev.lldi.sge_egrstatuspagesize);
975 
976 	devp->rdev.hw_queue.t4_eq_status_entries =
977 		devp->rdev.lldi.sge_egrstatuspagesize / 64;
978 	devp->rdev.hw_queue.t4_max_eq_size = 65520;
979 	devp->rdev.hw_queue.t4_max_iq_size = 65520;
980 	devp->rdev.hw_queue.t4_max_rq_size = 8192 -
981 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
982 	devp->rdev.hw_queue.t4_max_sq_size =
983 		devp->rdev.hw_queue.t4_max_eq_size -
984 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
985 	devp->rdev.hw_queue.t4_max_qp_depth =
986 		devp->rdev.hw_queue.t4_max_rq_size;
987 	devp->rdev.hw_queue.t4_max_cq_depth =
988 		devp->rdev.hw_queue.t4_max_iq_size - 2;
989 	devp->rdev.hw_queue.t4_stat_len =
990 		devp->rdev.lldi.sge_egrstatuspagesize;
991 
992 	/*
993 	 * For T5/T6 devices, we map all of BAR2 with WC.
994 	 * For T4 devices with onchip qp mem, we map only that part
995 	 * of BAR2 with WC.
996 	 */
997 	devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
998 	if (!is_t4(devp->rdev.lldi.adapter_type)) {
999 		devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
1000 			pci_resource_len(devp->rdev.lldi.pdev, 2));
1001 		if (!devp->rdev.bar2_kva) {
1002 			pr_err("Unable to ioremap BAR2\n");
1003 			ib_dealloc_device(&devp->ibdev);
1004 			return ERR_PTR(-EINVAL);
1005 		}
1006 	} else if (ocqp_supported(infop)) {
1007 		devp->rdev.oc_mw_pa =
1008 			pci_resource_start(devp->rdev.lldi.pdev, 2) +
1009 			pci_resource_len(devp->rdev.lldi.pdev, 2) -
1010 			roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
1011 		devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
1012 			devp->rdev.lldi.vr->ocq.size);
1013 		if (!devp->rdev.oc_mw_kva) {
1014 			pr_err("Unable to ioremap onchip mem\n");
1015 			ib_dealloc_device(&devp->ibdev);
1016 			return ERR_PTR(-EINVAL);
1017 		}
1018 	}
1019 
1020 	pr_debug("ocq memory: hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
1021 		 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
1022 		 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
1023 
1024 	ret = c4iw_rdev_open(&devp->rdev);
1025 	if (ret) {
1026 		pr_err("Unable to open CXIO rdev err %d\n", ret);
1027 		ib_dealloc_device(&devp->ibdev);
1028 		return ERR_PTR(ret);
1029 	}
1030 
1031 	idr_init(&devp->cqidr);
1032 	idr_init(&devp->qpidr);
1033 	idr_init(&devp->mmidr);
1034 	idr_init(&devp->hwtid_idr);
1035 	idr_init(&devp->stid_idr);
1036 	idr_init(&devp->atid_idr);
1037 	spin_lock_init(&devp->lock);
1038 	mutex_init(&devp->rdev.stats.lock);
1039 	mutex_init(&devp->db_mutex);
1040 	INIT_LIST_HEAD(&devp->db_fc_list);
1041 	init_waitqueue_head(&devp->wait);
1042 	devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1043 
1044 	if (c4iw_debugfs_root) {
1045 		devp->debugfs_root = debugfs_create_dir(
1046 					pci_name(devp->rdev.lldi.pdev),
1047 					c4iw_debugfs_root);
1048 		setup_debugfs(devp);
1049 	}
1050 
1051 
1052 	return devp;
1053 }
1054 
1055 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1056 {
1057 	struct uld_ctx *ctx;
1058 	static int vers_printed;
1059 	int i;
1060 
1061 	if (!vers_printed++)
1062 		pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1063 			DRV_VERSION);
1064 
1065 	ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1066 	if (!ctx) {
1067 		ctx = ERR_PTR(-ENOMEM);
1068 		goto out;
1069 	}
1070 	ctx->lldi = *infop;
1071 
1072 	pr_debug("%s found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1073 		 __func__, pci_name(ctx->lldi.pdev),
1074 		 ctx->lldi.nchan, ctx->lldi.nrxq,
1075 		 ctx->lldi.ntxq, ctx->lldi.nports);
1076 
1077 	mutex_lock(&dev_mutex);
1078 	list_add_tail(&ctx->entry, &uld_ctx_list);
1079 	mutex_unlock(&dev_mutex);
1080 
1081 	for (i = 0; i < ctx->lldi.nrxq; i++)
1082 		pr_debug("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1083 out:
1084 	return ctx;
1085 }
1086 
1087 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1088 						 const __be64 *rsp,
1089 						 u32 pktshift)
1090 {
1091 	struct sk_buff *skb;
1092 
1093 	/*
1094 	 * Allocate space for cpl_pass_accept_req which will be synthesized by
1095 	 * driver. Once the driver synthesizes the request the skb will go
1096 	 * through the regular cpl_pass_accept_req processing.
1097 	 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1098 	 * cpl_rx_pkt.
1099 	 */
1100 	skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1101 			sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1102 	if (unlikely(!skb))
1103 		return NULL;
1104 
1105 	 __skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1106 		   sizeof(struct rss_header) - pktshift);
1107 
1108 	/*
1109 	 * This skb will contain:
1110 	 *   rss_header from the rspq descriptor (1 flit)
1111 	 *   cpl_rx_pkt struct from the rspq descriptor (2 flits)
1112 	 *   space for the difference between the size of an
1113 	 *      rx_pkt and pass_accept_req cpl (1 flit)
1114 	 *   the packet data from the gl
1115 	 */
1116 	skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1117 				sizeof(struct rss_header));
1118 	skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1119 				       sizeof(struct cpl_pass_accept_req),
1120 				       gl->va + pktshift,
1121 				       gl->tot_len - pktshift);
1122 	return skb;
1123 }
1124 
1125 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1126 			   const __be64 *rsp)
1127 {
1128 	unsigned int opcode = *(u8 *)rsp;
1129 	struct sk_buff *skb;
1130 
1131 	if (opcode != CPL_RX_PKT)
1132 		goto out;
1133 
1134 	skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1135 	if (skb == NULL)
1136 		goto out;
1137 
1138 	if (c4iw_handlers[opcode] == NULL) {
1139 		pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1140 		kfree_skb(skb);
1141 		goto out;
1142 	}
1143 	c4iw_handlers[opcode](dev, skb);
1144 	return 1;
1145 out:
1146 	return 0;
1147 }
1148 
1149 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1150 			const struct pkt_gl *gl)
1151 {
1152 	struct uld_ctx *ctx = handle;
1153 	struct c4iw_dev *dev = ctx->dev;
1154 	struct sk_buff *skb;
1155 	u8 opcode;
1156 
1157 	if (gl == NULL) {
1158 		/* omit RSS and rsp_ctrl at end of descriptor */
1159 		unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1160 
1161 		skb = alloc_skb(256, GFP_ATOMIC);
1162 		if (!skb)
1163 			goto nomem;
1164 		__skb_put(skb, len);
1165 		skb_copy_to_linear_data(skb, &rsp[1], len);
1166 	} else if (gl == CXGB4_MSG_AN) {
1167 		const struct rsp_ctrl *rc = (void *)rsp;
1168 
1169 		u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1170 		c4iw_ev_handler(dev, qid);
1171 		return 0;
1172 	} else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1173 		if (recv_rx_pkt(dev, gl, rsp))
1174 			return 0;
1175 
1176 		pr_info("%s: unexpected FL contents at %p, RSS %#llx, FL %#llx, len %u\n",
1177 			pci_name(ctx->lldi.pdev), gl->va,
1178 			be64_to_cpu(*rsp),
1179 			be64_to_cpu(*(__force __be64 *)gl->va),
1180 			gl->tot_len);
1181 
1182 		return 0;
1183 	} else {
1184 		skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1185 		if (unlikely(!skb))
1186 			goto nomem;
1187 	}
1188 
1189 	opcode = *(u8 *)rsp;
1190 	if (c4iw_handlers[opcode]) {
1191 		c4iw_handlers[opcode](dev, skb);
1192 	} else {
1193 		pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1194 		kfree_skb(skb);
1195 	}
1196 
1197 	return 0;
1198 nomem:
1199 	return -1;
1200 }
1201 
1202 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1203 {
1204 	struct uld_ctx *ctx = handle;
1205 
1206 	pr_debug("%s new_state %u\n", __func__, new_state);
1207 	switch (new_state) {
1208 	case CXGB4_STATE_UP:
1209 		pr_info("%s: Up\n", pci_name(ctx->lldi.pdev));
1210 		if (!ctx->dev) {
1211 			int ret;
1212 
1213 			ctx->dev = c4iw_alloc(&ctx->lldi);
1214 			if (IS_ERR(ctx->dev)) {
1215 				pr_err("%s: initialization failed: %ld\n",
1216 				       pci_name(ctx->lldi.pdev),
1217 				       PTR_ERR(ctx->dev));
1218 				ctx->dev = NULL;
1219 				break;
1220 			}
1221 			ret = c4iw_register_device(ctx->dev);
1222 			if (ret) {
1223 				pr_err("%s: RDMA registration failed: %d\n",
1224 				       pci_name(ctx->lldi.pdev), ret);
1225 				c4iw_dealloc(ctx);
1226 			}
1227 		}
1228 		break;
1229 	case CXGB4_STATE_DOWN:
1230 		pr_info("%s: Down\n", pci_name(ctx->lldi.pdev));
1231 		if (ctx->dev)
1232 			c4iw_remove(ctx);
1233 		break;
1234 	case CXGB4_STATE_START_RECOVERY:
1235 		pr_info("%s: Fatal Error\n", pci_name(ctx->lldi.pdev));
1236 		if (ctx->dev) {
1237 			struct ib_event event;
1238 
1239 			ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1240 			memset(&event, 0, sizeof event);
1241 			event.event  = IB_EVENT_DEVICE_FATAL;
1242 			event.device = &ctx->dev->ibdev;
1243 			ib_dispatch_event(&event);
1244 			c4iw_remove(ctx);
1245 		}
1246 		break;
1247 	case CXGB4_STATE_DETACH:
1248 		pr_info("%s: Detach\n", pci_name(ctx->lldi.pdev));
1249 		if (ctx->dev)
1250 			c4iw_remove(ctx);
1251 		break;
1252 	}
1253 	return 0;
1254 }
1255 
1256 static int disable_qp_db(int id, void *p, void *data)
1257 {
1258 	struct c4iw_qp *qp = p;
1259 
1260 	t4_disable_wq_db(&qp->wq);
1261 	return 0;
1262 }
1263 
1264 static void stop_queues(struct uld_ctx *ctx)
1265 {
1266 	unsigned long flags;
1267 
1268 	spin_lock_irqsave(&ctx->dev->lock, flags);
1269 	ctx->dev->rdev.stats.db_state_transitions++;
1270 	ctx->dev->db_state = STOPPED;
1271 	if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1272 		idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1273 	else
1274 		ctx->dev->rdev.status_page->db_off = 1;
1275 	spin_unlock_irqrestore(&ctx->dev->lock, flags);
1276 }
1277 
1278 static int enable_qp_db(int id, void *p, void *data)
1279 {
1280 	struct c4iw_qp *qp = p;
1281 
1282 	t4_enable_wq_db(&qp->wq);
1283 	return 0;
1284 }
1285 
1286 static void resume_rc_qp(struct c4iw_qp *qp)
1287 {
1288 	spin_lock(&qp->lock);
1289 	t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1290 	qp->wq.sq.wq_pidx_inc = 0;
1291 	t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1292 	qp->wq.rq.wq_pidx_inc = 0;
1293 	spin_unlock(&qp->lock);
1294 }
1295 
1296 static void resume_a_chunk(struct uld_ctx *ctx)
1297 {
1298 	int i;
1299 	struct c4iw_qp *qp;
1300 
1301 	for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1302 		qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1303 				      db_fc_entry);
1304 		list_del_init(&qp->db_fc_entry);
1305 		resume_rc_qp(qp);
1306 		if (list_empty(&ctx->dev->db_fc_list))
1307 			break;
1308 	}
1309 }
1310 
1311 static void resume_queues(struct uld_ctx *ctx)
1312 {
1313 	spin_lock_irq(&ctx->dev->lock);
1314 	if (ctx->dev->db_state != STOPPED)
1315 		goto out;
1316 	ctx->dev->db_state = FLOW_CONTROL;
1317 	while (1) {
1318 		if (list_empty(&ctx->dev->db_fc_list)) {
1319 			WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1320 			ctx->dev->db_state = NORMAL;
1321 			ctx->dev->rdev.stats.db_state_transitions++;
1322 			if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1323 				idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1324 					     NULL);
1325 			} else {
1326 				ctx->dev->rdev.status_page->db_off = 0;
1327 			}
1328 			break;
1329 		} else {
1330 			if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1331 			    < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1332 			       DB_FC_DRAIN_THRESH)) {
1333 				resume_a_chunk(ctx);
1334 			}
1335 			if (!list_empty(&ctx->dev->db_fc_list)) {
1336 				spin_unlock_irq(&ctx->dev->lock);
1337 				if (DB_FC_RESUME_DELAY) {
1338 					set_current_state(TASK_UNINTERRUPTIBLE);
1339 					schedule_timeout(DB_FC_RESUME_DELAY);
1340 				}
1341 				spin_lock_irq(&ctx->dev->lock);
1342 				if (ctx->dev->db_state != FLOW_CONTROL)
1343 					break;
1344 			}
1345 		}
1346 	}
1347 out:
1348 	if (ctx->dev->db_state != NORMAL)
1349 		ctx->dev->rdev.stats.db_fc_interruptions++;
1350 	spin_unlock_irq(&ctx->dev->lock);
1351 }
1352 
1353 struct qp_list {
1354 	unsigned idx;
1355 	struct c4iw_qp **qps;
1356 };
1357 
1358 static int add_and_ref_qp(int id, void *p, void *data)
1359 {
1360 	struct qp_list *qp_listp = data;
1361 	struct c4iw_qp *qp = p;
1362 
1363 	c4iw_qp_add_ref(&qp->ibqp);
1364 	qp_listp->qps[qp_listp->idx++] = qp;
1365 	return 0;
1366 }
1367 
1368 static int count_qps(int id, void *p, void *data)
1369 {
1370 	unsigned *countp = data;
1371 	(*countp)++;
1372 	return 0;
1373 }
1374 
1375 static void deref_qps(struct qp_list *qp_list)
1376 {
1377 	int idx;
1378 
1379 	for (idx = 0; idx < qp_list->idx; idx++)
1380 		c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1381 }
1382 
1383 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1384 {
1385 	int idx;
1386 	int ret;
1387 
1388 	for (idx = 0; idx < qp_list->idx; idx++) {
1389 		struct c4iw_qp *qp = qp_list->qps[idx];
1390 
1391 		spin_lock_irq(&qp->rhp->lock);
1392 		spin_lock(&qp->lock);
1393 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1394 					  qp->wq.sq.qid,
1395 					  t4_sq_host_wq_pidx(&qp->wq),
1396 					  t4_sq_wq_size(&qp->wq));
1397 		if (ret) {
1398 			pr_err("%s: Fatal error - DB overflow recovery failed - error syncing SQ qid %u\n",
1399 			       pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1400 			spin_unlock(&qp->lock);
1401 			spin_unlock_irq(&qp->rhp->lock);
1402 			return;
1403 		}
1404 		qp->wq.sq.wq_pidx_inc = 0;
1405 
1406 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1407 					  qp->wq.rq.qid,
1408 					  t4_rq_host_wq_pidx(&qp->wq),
1409 					  t4_rq_wq_size(&qp->wq));
1410 
1411 		if (ret) {
1412 			pr_err("%s: Fatal error - DB overflow recovery failed - error syncing RQ qid %u\n",
1413 			       pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1414 			spin_unlock(&qp->lock);
1415 			spin_unlock_irq(&qp->rhp->lock);
1416 			return;
1417 		}
1418 		qp->wq.rq.wq_pidx_inc = 0;
1419 		spin_unlock(&qp->lock);
1420 		spin_unlock_irq(&qp->rhp->lock);
1421 
1422 		/* Wait for the dbfifo to drain */
1423 		while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1424 			set_current_state(TASK_UNINTERRUPTIBLE);
1425 			schedule_timeout(usecs_to_jiffies(10));
1426 		}
1427 	}
1428 }
1429 
1430 static void recover_queues(struct uld_ctx *ctx)
1431 {
1432 	int count = 0;
1433 	struct qp_list qp_list;
1434 	int ret;
1435 
1436 	/* slow everybody down */
1437 	set_current_state(TASK_UNINTERRUPTIBLE);
1438 	schedule_timeout(usecs_to_jiffies(1000));
1439 
1440 	/* flush the SGE contexts */
1441 	ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1442 	if (ret) {
1443 		pr_err("%s: Fatal error - DB overflow recovery failed\n",
1444 		       pci_name(ctx->lldi.pdev));
1445 		return;
1446 	}
1447 
1448 	/* Count active queues so we can build a list of queues to recover */
1449 	spin_lock_irq(&ctx->dev->lock);
1450 	WARN_ON(ctx->dev->db_state != STOPPED);
1451 	ctx->dev->db_state = RECOVERY;
1452 	idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1453 
1454 	qp_list.qps = kzalloc(count * sizeof *qp_list.qps, GFP_ATOMIC);
1455 	if (!qp_list.qps) {
1456 		spin_unlock_irq(&ctx->dev->lock);
1457 		return;
1458 	}
1459 	qp_list.idx = 0;
1460 
1461 	/* add and ref each qp so it doesn't get freed */
1462 	idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1463 
1464 	spin_unlock_irq(&ctx->dev->lock);
1465 
1466 	/* now traverse the list in a safe context to recover the db state*/
1467 	recover_lost_dbs(ctx, &qp_list);
1468 
1469 	/* we're almost done!  deref the qps and clean up */
1470 	deref_qps(&qp_list);
1471 	kfree(qp_list.qps);
1472 
1473 	spin_lock_irq(&ctx->dev->lock);
1474 	WARN_ON(ctx->dev->db_state != RECOVERY);
1475 	ctx->dev->db_state = STOPPED;
1476 	spin_unlock_irq(&ctx->dev->lock);
1477 }
1478 
1479 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1480 {
1481 	struct uld_ctx *ctx = handle;
1482 
1483 	switch (control) {
1484 	case CXGB4_CONTROL_DB_FULL:
1485 		stop_queues(ctx);
1486 		ctx->dev->rdev.stats.db_full++;
1487 		break;
1488 	case CXGB4_CONTROL_DB_EMPTY:
1489 		resume_queues(ctx);
1490 		mutex_lock(&ctx->dev->rdev.stats.lock);
1491 		ctx->dev->rdev.stats.db_empty++;
1492 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1493 		break;
1494 	case CXGB4_CONTROL_DB_DROP:
1495 		recover_queues(ctx);
1496 		mutex_lock(&ctx->dev->rdev.stats.lock);
1497 		ctx->dev->rdev.stats.db_drop++;
1498 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1499 		break;
1500 	default:
1501 		pr_warn("%s: unknown control cmd %u\n",
1502 			pci_name(ctx->lldi.pdev), control);
1503 		break;
1504 	}
1505 	return 0;
1506 }
1507 
1508 static struct cxgb4_uld_info c4iw_uld_info = {
1509 	.name = DRV_NAME,
1510 	.nrxq = MAX_ULD_QSETS,
1511 	.ntxq = MAX_ULD_QSETS,
1512 	.rxq_size = 511,
1513 	.ciq = true,
1514 	.lro = false,
1515 	.add = c4iw_uld_add,
1516 	.rx_handler = c4iw_uld_rx_handler,
1517 	.state_change = c4iw_uld_state_change,
1518 	.control = c4iw_uld_control,
1519 };
1520 
1521 static int __init c4iw_init_module(void)
1522 {
1523 	int err;
1524 
1525 	err = c4iw_cm_init();
1526 	if (err)
1527 		return err;
1528 
1529 	c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1530 	if (!c4iw_debugfs_root)
1531 		pr_warn("could not create debugfs entry, continuing\n");
1532 
1533 	cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1534 
1535 	return 0;
1536 }
1537 
1538 static void __exit c4iw_exit_module(void)
1539 {
1540 	struct uld_ctx *ctx, *tmp;
1541 
1542 	mutex_lock(&dev_mutex);
1543 	list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1544 		if (ctx->dev)
1545 			c4iw_remove(ctx);
1546 		kfree(ctx);
1547 	}
1548 	mutex_unlock(&dev_mutex);
1549 	cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1550 	c4iw_cm_term();
1551 	debugfs_remove_recursive(c4iw_debugfs_root);
1552 }
1553 
1554 module_init(c4iw_init_module);
1555 module_exit(c4iw_exit_module);
1556