1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/moduleparam.h>
34 #include <linux/debugfs.h>
35 #include <linux/vmalloc.h>
36 #include <linux/math64.h>
37 
38 #include <rdma/ib_verbs.h>
39 
40 #include "iw_cxgb4.h"
41 
42 #define DRV_VERSION "0.1"
43 
44 MODULE_AUTHOR("Steve Wise");
45 MODULE_DESCRIPTION("Chelsio T4/T5 RDMA Driver");
46 MODULE_LICENSE("Dual BSD/GPL");
47 
48 static int allow_db_fc_on_t5;
49 module_param(allow_db_fc_on_t5, int, 0644);
50 MODULE_PARM_DESC(allow_db_fc_on_t5,
51 		 "Allow DB Flow Control on T5 (default = 0)");
52 
53 static int allow_db_coalescing_on_t5;
54 module_param(allow_db_coalescing_on_t5, int, 0644);
55 MODULE_PARM_DESC(allow_db_coalescing_on_t5,
56 		 "Allow DB Coalescing on T5 (default = 0)");
57 
58 int c4iw_wr_log = 0;
59 module_param(c4iw_wr_log, int, 0444);
60 MODULE_PARM_DESC(c4iw_wr_log, "Enables logging of work request timing data.");
61 
62 static int c4iw_wr_log_size_order = 12;
63 module_param(c4iw_wr_log_size_order, int, 0444);
64 MODULE_PARM_DESC(c4iw_wr_log_size_order,
65 		 "Number of entries (log2) in the work request timing log.");
66 
67 static LIST_HEAD(uld_ctx_list);
68 static DEFINE_MUTEX(dev_mutex);
69 static struct workqueue_struct *reg_workq;
70 
71 #define DB_FC_RESUME_SIZE 64
72 #define DB_FC_RESUME_DELAY 1
73 #define DB_FC_DRAIN_THRESH 0
74 
75 static struct dentry *c4iw_debugfs_root;
76 
77 struct c4iw_debugfs_data {
78 	struct c4iw_dev *devp;
79 	char *buf;
80 	int bufsize;
81 	int pos;
82 };
83 
84 static int count_idrs(int id, void *p, void *data)
85 {
86 	int *countp = data;
87 
88 	*countp = *countp + 1;
89 	return 0;
90 }
91 
92 static ssize_t debugfs_read(struct file *file, char __user *buf, size_t count,
93 			    loff_t *ppos)
94 {
95 	struct c4iw_debugfs_data *d = file->private_data;
96 
97 	return simple_read_from_buffer(buf, count, ppos, d->buf, d->pos);
98 }
99 
100 void c4iw_log_wr_stats(struct t4_wq *wq, struct t4_cqe *cqe)
101 {
102 	struct wr_log_entry le;
103 	int idx;
104 
105 	if (!wq->rdev->wr_log)
106 		return;
107 
108 	idx = (atomic_inc_return(&wq->rdev->wr_log_idx) - 1) &
109 		(wq->rdev->wr_log_size - 1);
110 	le.poll_sge_ts = cxgb4_read_sge_timestamp(wq->rdev->lldi.ports[0]);
111 	le.poll_host_time = ktime_get();
112 	le.valid = 1;
113 	le.cqe_sge_ts = CQE_TS(cqe);
114 	if (SQ_TYPE(cqe)) {
115 		le.qid = wq->sq.qid;
116 		le.opcode = CQE_OPCODE(cqe);
117 		le.post_host_time = wq->sq.sw_sq[wq->sq.cidx].host_time;
118 		le.post_sge_ts = wq->sq.sw_sq[wq->sq.cidx].sge_ts;
119 		le.wr_id = CQE_WRID_SQ_IDX(cqe);
120 	} else {
121 		le.qid = wq->rq.qid;
122 		le.opcode = FW_RI_RECEIVE;
123 		le.post_host_time = wq->rq.sw_rq[wq->rq.cidx].host_time;
124 		le.post_sge_ts = wq->rq.sw_rq[wq->rq.cidx].sge_ts;
125 		le.wr_id = CQE_WRID_MSN(cqe);
126 	}
127 	wq->rdev->wr_log[idx] = le;
128 }
129 
130 static int wr_log_show(struct seq_file *seq, void *v)
131 {
132 	struct c4iw_dev *dev = seq->private;
133 	ktime_t prev_time;
134 	struct wr_log_entry *lep;
135 	int prev_time_set = 0;
136 	int idx, end;
137 
138 #define ts2ns(ts) div64_u64((ts) * dev->rdev.lldi.cclk_ps, 1000)
139 
140 	idx = atomic_read(&dev->rdev.wr_log_idx) &
141 		(dev->rdev.wr_log_size - 1);
142 	end = idx - 1;
143 	if (end < 0)
144 		end = dev->rdev.wr_log_size - 1;
145 	lep = &dev->rdev.wr_log[idx];
146 	while (idx != end) {
147 		if (lep->valid) {
148 			if (!prev_time_set) {
149 				prev_time_set = 1;
150 				prev_time = lep->poll_host_time;
151 			}
152 			seq_printf(seq, "%04u: nsec %llu qid %u opcode "
153 				   "%u %s 0x%x host_wr_delta nsec %llu "
154 				   "post_sge_ts 0x%llx cqe_sge_ts 0x%llx "
155 				   "poll_sge_ts 0x%llx post_poll_delta_ns %llu "
156 				   "cqe_poll_delta_ns %llu\n",
157 				   idx,
158 				   ktime_to_ns(ktime_sub(lep->poll_host_time,
159 							 prev_time)),
160 				   lep->qid, lep->opcode,
161 				   lep->opcode == FW_RI_RECEIVE ?
162 							"msn" : "wrid",
163 				   lep->wr_id,
164 				   ktime_to_ns(ktime_sub(lep->poll_host_time,
165 							 lep->post_host_time)),
166 				   lep->post_sge_ts, lep->cqe_sge_ts,
167 				   lep->poll_sge_ts,
168 				   ts2ns(lep->poll_sge_ts - lep->post_sge_ts),
169 				   ts2ns(lep->poll_sge_ts - lep->cqe_sge_ts));
170 			prev_time = lep->poll_host_time;
171 		}
172 		idx++;
173 		if (idx > (dev->rdev.wr_log_size - 1))
174 			idx = 0;
175 		lep = &dev->rdev.wr_log[idx];
176 	}
177 #undef ts2ns
178 	return 0;
179 }
180 
181 static int wr_log_open(struct inode *inode, struct file *file)
182 {
183 	return single_open(file, wr_log_show, inode->i_private);
184 }
185 
186 static ssize_t wr_log_clear(struct file *file, const char __user *buf,
187 			    size_t count, loff_t *pos)
188 {
189 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
190 	int i;
191 
192 	if (dev->rdev.wr_log)
193 		for (i = 0; i < dev->rdev.wr_log_size; i++)
194 			dev->rdev.wr_log[i].valid = 0;
195 	return count;
196 }
197 
198 static const struct file_operations wr_log_debugfs_fops = {
199 	.owner   = THIS_MODULE,
200 	.open    = wr_log_open,
201 	.release = single_release,
202 	.read    = seq_read,
203 	.llseek  = seq_lseek,
204 	.write   = wr_log_clear,
205 };
206 
207 static struct sockaddr_in zero_sin = {
208 	.sin_family = AF_INET,
209 };
210 
211 static struct sockaddr_in6 zero_sin6 = {
212 	.sin6_family = AF_INET6,
213 };
214 
215 static void set_ep_sin_addrs(struct c4iw_ep *ep,
216 			     struct sockaddr_in **lsin,
217 			     struct sockaddr_in **rsin,
218 			     struct sockaddr_in **m_lsin,
219 			     struct sockaddr_in **m_rsin)
220 {
221 	struct iw_cm_id *id = ep->com.cm_id;
222 
223 	*m_lsin = (struct sockaddr_in *)&ep->com.local_addr;
224 	*m_rsin = (struct sockaddr_in *)&ep->com.remote_addr;
225 	if (id) {
226 		*lsin = (struct sockaddr_in *)&id->local_addr;
227 		*rsin = (struct sockaddr_in *)&id->remote_addr;
228 	} else {
229 		*lsin = &zero_sin;
230 		*rsin = &zero_sin;
231 	}
232 }
233 
234 static void set_ep_sin6_addrs(struct c4iw_ep *ep,
235 			      struct sockaddr_in6 **lsin6,
236 			      struct sockaddr_in6 **rsin6,
237 			      struct sockaddr_in6 **m_lsin6,
238 			      struct sockaddr_in6 **m_rsin6)
239 {
240 	struct iw_cm_id *id = ep->com.cm_id;
241 
242 	*m_lsin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
243 	*m_rsin6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
244 	if (id) {
245 		*lsin6 = (struct sockaddr_in6 *)&id->local_addr;
246 		*rsin6 = (struct sockaddr_in6 *)&id->remote_addr;
247 	} else {
248 		*lsin6 = &zero_sin6;
249 		*rsin6 = &zero_sin6;
250 	}
251 }
252 
253 static int dump_qp(int id, void *p, void *data)
254 {
255 	struct c4iw_qp *qp = p;
256 	struct c4iw_debugfs_data *qpd = data;
257 	int space;
258 	int cc;
259 
260 	if (id != qp->wq.sq.qid)
261 		return 0;
262 
263 	space = qpd->bufsize - qpd->pos - 1;
264 	if (space == 0)
265 		return 1;
266 
267 	if (qp->ep) {
268 		struct c4iw_ep *ep = qp->ep;
269 
270 		if (ep->com.local_addr.ss_family == AF_INET) {
271 			struct sockaddr_in *lsin;
272 			struct sockaddr_in *rsin;
273 			struct sockaddr_in *m_lsin;
274 			struct sockaddr_in *m_rsin;
275 
276 			set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
277 			cc = snprintf(qpd->buf + qpd->pos, space,
278 				      "rc qp sq id %u %s id %u state %u "
279 				      "onchip %u ep tid %u state %u "
280 				      "%pI4:%u/%u->%pI4:%u/%u\n",
281 				      qp->wq.sq.qid, qp->srq ? "srq" : "rq",
282 				      qp->srq ? qp->srq->idx : qp->wq.rq.qid,
283 				      (int)qp->attr.state,
284 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
285 				      ep->hwtid, (int)ep->com.state,
286 				      &lsin->sin_addr, ntohs(lsin->sin_port),
287 				      ntohs(m_lsin->sin_port),
288 				      &rsin->sin_addr, ntohs(rsin->sin_port),
289 				      ntohs(m_rsin->sin_port));
290 		} else {
291 			struct sockaddr_in6 *lsin6;
292 			struct sockaddr_in6 *rsin6;
293 			struct sockaddr_in6 *m_lsin6;
294 			struct sockaddr_in6 *m_rsin6;
295 
296 			set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6,
297 					  &m_rsin6);
298 			cc = snprintf(qpd->buf + qpd->pos, space,
299 				      "rc qp sq id %u rq id %u state %u "
300 				      "onchip %u ep tid %u state %u "
301 				      "%pI6:%u/%u->%pI6:%u/%u\n",
302 				      qp->wq.sq.qid, qp->wq.rq.qid,
303 				      (int)qp->attr.state,
304 				      qp->wq.sq.flags & T4_SQ_ONCHIP,
305 				      ep->hwtid, (int)ep->com.state,
306 				      &lsin6->sin6_addr,
307 				      ntohs(lsin6->sin6_port),
308 				      ntohs(m_lsin6->sin6_port),
309 				      &rsin6->sin6_addr,
310 				      ntohs(rsin6->sin6_port),
311 				      ntohs(m_rsin6->sin6_port));
312 		}
313 	} else
314 		cc = snprintf(qpd->buf + qpd->pos, space,
315 			     "qp sq id %u rq id %u state %u onchip %u\n",
316 			      qp->wq.sq.qid, qp->wq.rq.qid,
317 			      (int)qp->attr.state,
318 			      qp->wq.sq.flags & T4_SQ_ONCHIP);
319 	if (cc < space)
320 		qpd->pos += cc;
321 	return 0;
322 }
323 
324 static int qp_release(struct inode *inode, struct file *file)
325 {
326 	struct c4iw_debugfs_data *qpd = file->private_data;
327 	if (!qpd) {
328 		pr_info("%s null qpd?\n", __func__);
329 		return 0;
330 	}
331 	vfree(qpd->buf);
332 	kfree(qpd);
333 	return 0;
334 }
335 
336 static int qp_open(struct inode *inode, struct file *file)
337 {
338 	struct c4iw_debugfs_data *qpd;
339 	int count = 1;
340 
341 	qpd = kmalloc(sizeof *qpd, GFP_KERNEL);
342 	if (!qpd)
343 		return -ENOMEM;
344 
345 	qpd->devp = inode->i_private;
346 	qpd->pos = 0;
347 
348 	spin_lock_irq(&qpd->devp->lock);
349 	idr_for_each(&qpd->devp->qpidr, count_idrs, &count);
350 	spin_unlock_irq(&qpd->devp->lock);
351 
352 	qpd->bufsize = count * 180;
353 	qpd->buf = vmalloc(qpd->bufsize);
354 	if (!qpd->buf) {
355 		kfree(qpd);
356 		return -ENOMEM;
357 	}
358 
359 	spin_lock_irq(&qpd->devp->lock);
360 	idr_for_each(&qpd->devp->qpidr, dump_qp, qpd);
361 	spin_unlock_irq(&qpd->devp->lock);
362 
363 	qpd->buf[qpd->pos++] = 0;
364 	file->private_data = qpd;
365 	return 0;
366 }
367 
368 static const struct file_operations qp_debugfs_fops = {
369 	.owner   = THIS_MODULE,
370 	.open    = qp_open,
371 	.release = qp_release,
372 	.read    = debugfs_read,
373 	.llseek  = default_llseek,
374 };
375 
376 static int dump_stag(int id, void *p, void *data)
377 {
378 	struct c4iw_debugfs_data *stagd = data;
379 	int space;
380 	int cc;
381 	struct fw_ri_tpte tpte;
382 	int ret;
383 
384 	space = stagd->bufsize - stagd->pos - 1;
385 	if (space == 0)
386 		return 1;
387 
388 	ret = cxgb4_read_tpte(stagd->devp->rdev.lldi.ports[0], (u32)id<<8,
389 			      (__be32 *)&tpte);
390 	if (ret) {
391 		dev_err(&stagd->devp->rdev.lldi.pdev->dev,
392 			"%s cxgb4_read_tpte err %d\n", __func__, ret);
393 		return ret;
394 	}
395 	cc = snprintf(stagd->buf + stagd->pos, space,
396 		      "stag: idx 0x%x valid %d key 0x%x state %d pdid %d "
397 		      "perm 0x%x ps %d len 0x%llx va 0x%llx\n",
398 		      (u32)id<<8,
399 		      FW_RI_TPTE_VALID_G(ntohl(tpte.valid_to_pdid)),
400 		      FW_RI_TPTE_STAGKEY_G(ntohl(tpte.valid_to_pdid)),
401 		      FW_RI_TPTE_STAGSTATE_G(ntohl(tpte.valid_to_pdid)),
402 		      FW_RI_TPTE_PDID_G(ntohl(tpte.valid_to_pdid)),
403 		      FW_RI_TPTE_PERM_G(ntohl(tpte.locread_to_qpid)),
404 		      FW_RI_TPTE_PS_G(ntohl(tpte.locread_to_qpid)),
405 		      ((u64)ntohl(tpte.len_hi) << 32) | ntohl(tpte.len_lo),
406 		      ((u64)ntohl(tpte.va_hi) << 32) | ntohl(tpte.va_lo_fbo));
407 	if (cc < space)
408 		stagd->pos += cc;
409 	return 0;
410 }
411 
412 static int stag_release(struct inode *inode, struct file *file)
413 {
414 	struct c4iw_debugfs_data *stagd = file->private_data;
415 	if (!stagd) {
416 		pr_info("%s null stagd?\n", __func__);
417 		return 0;
418 	}
419 	vfree(stagd->buf);
420 	kfree(stagd);
421 	return 0;
422 }
423 
424 static int stag_open(struct inode *inode, struct file *file)
425 {
426 	struct c4iw_debugfs_data *stagd;
427 	int ret = 0;
428 	int count = 1;
429 
430 	stagd = kmalloc(sizeof *stagd, GFP_KERNEL);
431 	if (!stagd) {
432 		ret = -ENOMEM;
433 		goto out;
434 	}
435 	stagd->devp = inode->i_private;
436 	stagd->pos = 0;
437 
438 	spin_lock_irq(&stagd->devp->lock);
439 	idr_for_each(&stagd->devp->mmidr, count_idrs, &count);
440 	spin_unlock_irq(&stagd->devp->lock);
441 
442 	stagd->bufsize = count * 256;
443 	stagd->buf = vmalloc(stagd->bufsize);
444 	if (!stagd->buf) {
445 		ret = -ENOMEM;
446 		goto err1;
447 	}
448 
449 	spin_lock_irq(&stagd->devp->lock);
450 	idr_for_each(&stagd->devp->mmidr, dump_stag, stagd);
451 	spin_unlock_irq(&stagd->devp->lock);
452 
453 	stagd->buf[stagd->pos++] = 0;
454 	file->private_data = stagd;
455 	goto out;
456 err1:
457 	kfree(stagd);
458 out:
459 	return ret;
460 }
461 
462 static const struct file_operations stag_debugfs_fops = {
463 	.owner   = THIS_MODULE,
464 	.open    = stag_open,
465 	.release = stag_release,
466 	.read    = debugfs_read,
467 	.llseek  = default_llseek,
468 };
469 
470 static char *db_state_str[] = {"NORMAL", "FLOW_CONTROL", "RECOVERY", "STOPPED"};
471 
472 static int stats_show(struct seq_file *seq, void *v)
473 {
474 	struct c4iw_dev *dev = seq->private;
475 
476 	seq_printf(seq, "   Object: %10s %10s %10s %10s\n", "Total", "Current",
477 		   "Max", "Fail");
478 	seq_printf(seq, "     PDID: %10llu %10llu %10llu %10llu\n",
479 			dev->rdev.stats.pd.total, dev->rdev.stats.pd.cur,
480 			dev->rdev.stats.pd.max, dev->rdev.stats.pd.fail);
481 	seq_printf(seq, "      QID: %10llu %10llu %10llu %10llu\n",
482 			dev->rdev.stats.qid.total, dev->rdev.stats.qid.cur,
483 			dev->rdev.stats.qid.max, dev->rdev.stats.qid.fail);
484 	seq_printf(seq, "     SRQS: %10llu %10llu %10llu %10llu\n",
485 		   dev->rdev.stats.srqt.total, dev->rdev.stats.srqt.cur,
486 			dev->rdev.stats.srqt.max, dev->rdev.stats.srqt.fail);
487 	seq_printf(seq, "   TPTMEM: %10llu %10llu %10llu %10llu\n",
488 			dev->rdev.stats.stag.total, dev->rdev.stats.stag.cur,
489 			dev->rdev.stats.stag.max, dev->rdev.stats.stag.fail);
490 	seq_printf(seq, "   PBLMEM: %10llu %10llu %10llu %10llu\n",
491 			dev->rdev.stats.pbl.total, dev->rdev.stats.pbl.cur,
492 			dev->rdev.stats.pbl.max, dev->rdev.stats.pbl.fail);
493 	seq_printf(seq, "   RQTMEM: %10llu %10llu %10llu %10llu\n",
494 			dev->rdev.stats.rqt.total, dev->rdev.stats.rqt.cur,
495 			dev->rdev.stats.rqt.max, dev->rdev.stats.rqt.fail);
496 	seq_printf(seq, "  OCQPMEM: %10llu %10llu %10llu %10llu\n",
497 			dev->rdev.stats.ocqp.total, dev->rdev.stats.ocqp.cur,
498 			dev->rdev.stats.ocqp.max, dev->rdev.stats.ocqp.fail);
499 	seq_printf(seq, "  DB FULL: %10llu\n", dev->rdev.stats.db_full);
500 	seq_printf(seq, " DB EMPTY: %10llu\n", dev->rdev.stats.db_empty);
501 	seq_printf(seq, "  DB DROP: %10llu\n", dev->rdev.stats.db_drop);
502 	seq_printf(seq, " DB State: %s Transitions %llu FC Interruptions %llu\n",
503 		   db_state_str[dev->db_state],
504 		   dev->rdev.stats.db_state_transitions,
505 		   dev->rdev.stats.db_fc_interruptions);
506 	seq_printf(seq, "TCAM_FULL: %10llu\n", dev->rdev.stats.tcam_full);
507 	seq_printf(seq, "ACT_OFLD_CONN_FAILS: %10llu\n",
508 		   dev->rdev.stats.act_ofld_conn_fails);
509 	seq_printf(seq, "PAS_OFLD_CONN_FAILS: %10llu\n",
510 		   dev->rdev.stats.pas_ofld_conn_fails);
511 	seq_printf(seq, "NEG_ADV_RCVD: %10llu\n", dev->rdev.stats.neg_adv);
512 	seq_printf(seq, "AVAILABLE IRD: %10u\n", dev->avail_ird);
513 	return 0;
514 }
515 
516 static int stats_open(struct inode *inode, struct file *file)
517 {
518 	return single_open(file, stats_show, inode->i_private);
519 }
520 
521 static ssize_t stats_clear(struct file *file, const char __user *buf,
522 		size_t count, loff_t *pos)
523 {
524 	struct c4iw_dev *dev = ((struct seq_file *)file->private_data)->private;
525 
526 	mutex_lock(&dev->rdev.stats.lock);
527 	dev->rdev.stats.pd.max = 0;
528 	dev->rdev.stats.pd.fail = 0;
529 	dev->rdev.stats.qid.max = 0;
530 	dev->rdev.stats.qid.fail = 0;
531 	dev->rdev.stats.stag.max = 0;
532 	dev->rdev.stats.stag.fail = 0;
533 	dev->rdev.stats.pbl.max = 0;
534 	dev->rdev.stats.pbl.fail = 0;
535 	dev->rdev.stats.rqt.max = 0;
536 	dev->rdev.stats.rqt.fail = 0;
537 	dev->rdev.stats.rqt.max = 0;
538 	dev->rdev.stats.rqt.fail = 0;
539 	dev->rdev.stats.ocqp.max = 0;
540 	dev->rdev.stats.ocqp.fail = 0;
541 	dev->rdev.stats.db_full = 0;
542 	dev->rdev.stats.db_empty = 0;
543 	dev->rdev.stats.db_drop = 0;
544 	dev->rdev.stats.db_state_transitions = 0;
545 	dev->rdev.stats.tcam_full = 0;
546 	dev->rdev.stats.act_ofld_conn_fails = 0;
547 	dev->rdev.stats.pas_ofld_conn_fails = 0;
548 	mutex_unlock(&dev->rdev.stats.lock);
549 	return count;
550 }
551 
552 static const struct file_operations stats_debugfs_fops = {
553 	.owner   = THIS_MODULE,
554 	.open    = stats_open,
555 	.release = single_release,
556 	.read    = seq_read,
557 	.llseek  = seq_lseek,
558 	.write   = stats_clear,
559 };
560 
561 static int dump_ep(int id, void *p, void *data)
562 {
563 	struct c4iw_ep *ep = p;
564 	struct c4iw_debugfs_data *epd = data;
565 	int space;
566 	int cc;
567 
568 	space = epd->bufsize - epd->pos - 1;
569 	if (space == 0)
570 		return 1;
571 
572 	if (ep->com.local_addr.ss_family == AF_INET) {
573 		struct sockaddr_in *lsin;
574 		struct sockaddr_in *rsin;
575 		struct sockaddr_in *m_lsin;
576 		struct sockaddr_in *m_rsin;
577 
578 		set_ep_sin_addrs(ep, &lsin, &rsin, &m_lsin, &m_rsin);
579 		cc = snprintf(epd->buf + epd->pos, space,
580 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
581 			      "history 0x%lx hwtid %d atid %d "
582 			      "conn_na %u abort_na %u "
583 			      "%pI4:%d/%d <-> %pI4:%d/%d\n",
584 			      ep, ep->com.cm_id, ep->com.qp,
585 			      (int)ep->com.state, ep->com.flags,
586 			      ep->com.history, ep->hwtid, ep->atid,
587 			      ep->stats.connect_neg_adv,
588 			      ep->stats.abort_neg_adv,
589 			      &lsin->sin_addr, ntohs(lsin->sin_port),
590 			      ntohs(m_lsin->sin_port),
591 			      &rsin->sin_addr, ntohs(rsin->sin_port),
592 			      ntohs(m_rsin->sin_port));
593 	} else {
594 		struct sockaddr_in6 *lsin6;
595 		struct sockaddr_in6 *rsin6;
596 		struct sockaddr_in6 *m_lsin6;
597 		struct sockaddr_in6 *m_rsin6;
598 
599 		set_ep_sin6_addrs(ep, &lsin6, &rsin6, &m_lsin6, &m_rsin6);
600 		cc = snprintf(epd->buf + epd->pos, space,
601 			      "ep %p cm_id %p qp %p state %d flags 0x%lx "
602 			      "history 0x%lx hwtid %d atid %d "
603 			      "conn_na %u abort_na %u "
604 			      "%pI6:%d/%d <-> %pI6:%d/%d\n",
605 			      ep, ep->com.cm_id, ep->com.qp,
606 			      (int)ep->com.state, ep->com.flags,
607 			      ep->com.history, ep->hwtid, ep->atid,
608 			      ep->stats.connect_neg_adv,
609 			      ep->stats.abort_neg_adv,
610 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
611 			      ntohs(m_lsin6->sin6_port),
612 			      &rsin6->sin6_addr, ntohs(rsin6->sin6_port),
613 			      ntohs(m_rsin6->sin6_port));
614 	}
615 	if (cc < space)
616 		epd->pos += cc;
617 	return 0;
618 }
619 
620 static int dump_listen_ep(int id, void *p, void *data)
621 {
622 	struct c4iw_listen_ep *ep = p;
623 	struct c4iw_debugfs_data *epd = data;
624 	int space;
625 	int cc;
626 
627 	space = epd->bufsize - epd->pos - 1;
628 	if (space == 0)
629 		return 1;
630 
631 	if (ep->com.local_addr.ss_family == AF_INET) {
632 		struct sockaddr_in *lsin = (struct sockaddr_in *)
633 			&ep->com.cm_id->local_addr;
634 		struct sockaddr_in *m_lsin = (struct sockaddr_in *)
635 			&ep->com.cm_id->m_local_addr;
636 
637 		cc = snprintf(epd->buf + epd->pos, space,
638 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
639 			      "backlog %d %pI4:%d/%d\n",
640 			      ep, ep->com.cm_id, (int)ep->com.state,
641 			      ep->com.flags, ep->stid, ep->backlog,
642 			      &lsin->sin_addr, ntohs(lsin->sin_port),
643 			      ntohs(m_lsin->sin_port));
644 	} else {
645 		struct sockaddr_in6 *lsin6 = (struct sockaddr_in6 *)
646 			&ep->com.cm_id->local_addr;
647 		struct sockaddr_in6 *m_lsin6 = (struct sockaddr_in6 *)
648 			&ep->com.cm_id->m_local_addr;
649 
650 		cc = snprintf(epd->buf + epd->pos, space,
651 			      "ep %p cm_id %p state %d flags 0x%lx stid %d "
652 			      "backlog %d %pI6:%d/%d\n",
653 			      ep, ep->com.cm_id, (int)ep->com.state,
654 			      ep->com.flags, ep->stid, ep->backlog,
655 			      &lsin6->sin6_addr, ntohs(lsin6->sin6_port),
656 			      ntohs(m_lsin6->sin6_port));
657 	}
658 	if (cc < space)
659 		epd->pos += cc;
660 	return 0;
661 }
662 
663 static int ep_release(struct inode *inode, struct file *file)
664 {
665 	struct c4iw_debugfs_data *epd = file->private_data;
666 	if (!epd) {
667 		pr_info("%s null qpd?\n", __func__);
668 		return 0;
669 	}
670 	vfree(epd->buf);
671 	kfree(epd);
672 	return 0;
673 }
674 
675 static int ep_open(struct inode *inode, struct file *file)
676 {
677 	struct c4iw_debugfs_data *epd;
678 	int ret = 0;
679 	int count = 1;
680 
681 	epd = kmalloc(sizeof(*epd), GFP_KERNEL);
682 	if (!epd) {
683 		ret = -ENOMEM;
684 		goto out;
685 	}
686 	epd->devp = inode->i_private;
687 	epd->pos = 0;
688 
689 	spin_lock_irq(&epd->devp->lock);
690 	idr_for_each(&epd->devp->hwtid_idr, count_idrs, &count);
691 	idr_for_each(&epd->devp->atid_idr, count_idrs, &count);
692 	idr_for_each(&epd->devp->stid_idr, count_idrs, &count);
693 	spin_unlock_irq(&epd->devp->lock);
694 
695 	epd->bufsize = count * 240;
696 	epd->buf = vmalloc(epd->bufsize);
697 	if (!epd->buf) {
698 		ret = -ENOMEM;
699 		goto err1;
700 	}
701 
702 	spin_lock_irq(&epd->devp->lock);
703 	idr_for_each(&epd->devp->hwtid_idr, dump_ep, epd);
704 	idr_for_each(&epd->devp->atid_idr, dump_ep, epd);
705 	idr_for_each(&epd->devp->stid_idr, dump_listen_ep, epd);
706 	spin_unlock_irq(&epd->devp->lock);
707 
708 	file->private_data = epd;
709 	goto out;
710 err1:
711 	kfree(epd);
712 out:
713 	return ret;
714 }
715 
716 static const struct file_operations ep_debugfs_fops = {
717 	.owner   = THIS_MODULE,
718 	.open    = ep_open,
719 	.release = ep_release,
720 	.read    = debugfs_read,
721 };
722 
723 static void setup_debugfs(struct c4iw_dev *devp)
724 {
725 	debugfs_create_file_size("qps", S_IWUSR, devp->debugfs_root,
726 				 (void *)devp, &qp_debugfs_fops, 4096);
727 
728 	debugfs_create_file_size("stags", S_IWUSR, devp->debugfs_root,
729 				 (void *)devp, &stag_debugfs_fops, 4096);
730 
731 	debugfs_create_file_size("stats", S_IWUSR, devp->debugfs_root,
732 				 (void *)devp, &stats_debugfs_fops, 4096);
733 
734 	debugfs_create_file_size("eps", S_IWUSR, devp->debugfs_root,
735 				 (void *)devp, &ep_debugfs_fops, 4096);
736 
737 	if (c4iw_wr_log)
738 		debugfs_create_file_size("wr_log", S_IWUSR, devp->debugfs_root,
739 					 (void *)devp, &wr_log_debugfs_fops, 4096);
740 }
741 
742 void c4iw_release_dev_ucontext(struct c4iw_rdev *rdev,
743 			       struct c4iw_dev_ucontext *uctx)
744 {
745 	struct list_head *pos, *nxt;
746 	struct c4iw_qid_list *entry;
747 
748 	mutex_lock(&uctx->lock);
749 	list_for_each_safe(pos, nxt, &uctx->qpids) {
750 		entry = list_entry(pos, struct c4iw_qid_list, entry);
751 		list_del_init(&entry->entry);
752 		if (!(entry->qid & rdev->qpmask)) {
753 			c4iw_put_resource(&rdev->resource.qid_table,
754 					  entry->qid);
755 			mutex_lock(&rdev->stats.lock);
756 			rdev->stats.qid.cur -= rdev->qpmask + 1;
757 			mutex_unlock(&rdev->stats.lock);
758 		}
759 		kfree(entry);
760 	}
761 
762 	list_for_each_safe(pos, nxt, &uctx->cqids) {
763 		entry = list_entry(pos, struct c4iw_qid_list, entry);
764 		list_del_init(&entry->entry);
765 		kfree(entry);
766 	}
767 	mutex_unlock(&uctx->lock);
768 }
769 
770 void c4iw_init_dev_ucontext(struct c4iw_rdev *rdev,
771 			    struct c4iw_dev_ucontext *uctx)
772 {
773 	INIT_LIST_HEAD(&uctx->qpids);
774 	INIT_LIST_HEAD(&uctx->cqids);
775 	mutex_init(&uctx->lock);
776 }
777 
778 /* Caller takes care of locking if needed */
779 static int c4iw_rdev_open(struct c4iw_rdev *rdev)
780 {
781 	int err;
782 	unsigned int factor;
783 
784 	c4iw_init_dev_ucontext(rdev, &rdev->uctx);
785 
786 	/*
787 	 * This implementation assumes udb_density == ucq_density!  Eventually
788 	 * we might need to support this but for now fail the open. Also the
789 	 * cqid and qpid range must match for now.
790 	 */
791 	if (rdev->lldi.udb_density != rdev->lldi.ucq_density) {
792 		pr_err("%s: unsupported udb/ucq densities %u/%u\n",
793 		       pci_name(rdev->lldi.pdev), rdev->lldi.udb_density,
794 		       rdev->lldi.ucq_density);
795 		return -EINVAL;
796 	}
797 	if (rdev->lldi.vr->qp.start != rdev->lldi.vr->cq.start ||
798 	    rdev->lldi.vr->qp.size != rdev->lldi.vr->cq.size) {
799 		pr_err("%s: unsupported qp and cq id ranges qp start %u size %u cq start %u size %u\n",
800 		       pci_name(rdev->lldi.pdev), rdev->lldi.vr->qp.start,
801 		       rdev->lldi.vr->qp.size, rdev->lldi.vr->cq.size,
802 		       rdev->lldi.vr->cq.size);
803 		return -EINVAL;
804 	}
805 
806 	/* This implementation requires a sge_host_page_size <= PAGE_SIZE. */
807 	if (rdev->lldi.sge_host_page_size > PAGE_SIZE) {
808 		pr_err("%s: unsupported sge host page size %u\n",
809 		       pci_name(rdev->lldi.pdev),
810 		       rdev->lldi.sge_host_page_size);
811 		return -EINVAL;
812 	}
813 
814 	factor = PAGE_SIZE / rdev->lldi.sge_host_page_size;
815 	rdev->qpmask = (rdev->lldi.udb_density * factor) - 1;
816 	rdev->cqmask = (rdev->lldi.ucq_density * factor) - 1;
817 
818 	pr_debug("dev %s stag start 0x%0x size 0x%0x num stags %d pbl start 0x%0x size 0x%0x rq start 0x%0x size 0x%0x qp qid start %u size %u cq qid start %u size %u srq size %u\n",
819 		 pci_name(rdev->lldi.pdev), rdev->lldi.vr->stag.start,
820 		 rdev->lldi.vr->stag.size, c4iw_num_stags(rdev),
821 		 rdev->lldi.vr->pbl.start,
822 		 rdev->lldi.vr->pbl.size, rdev->lldi.vr->rq.start,
823 		 rdev->lldi.vr->rq.size,
824 		 rdev->lldi.vr->qp.start,
825 		 rdev->lldi.vr->qp.size,
826 		 rdev->lldi.vr->cq.start,
827 		 rdev->lldi.vr->cq.size,
828 		 rdev->lldi.vr->srq.size);
829 	pr_debug("udb %pR db_reg %p gts_reg %p qpmask 0x%x cqmask 0x%x\n",
830 		 &rdev->lldi.pdev->resource[2],
831 		 rdev->lldi.db_reg, rdev->lldi.gts_reg,
832 		 rdev->qpmask, rdev->cqmask);
833 
834 	if (c4iw_num_stags(rdev) == 0)
835 		return -EINVAL;
836 
837 	rdev->stats.pd.total = T4_MAX_NUM_PD;
838 	rdev->stats.stag.total = rdev->lldi.vr->stag.size;
839 	rdev->stats.pbl.total = rdev->lldi.vr->pbl.size;
840 	rdev->stats.rqt.total = rdev->lldi.vr->rq.size;
841 	rdev->stats.srqt.total = rdev->lldi.vr->srq.size;
842 	rdev->stats.ocqp.total = rdev->lldi.vr->ocq.size;
843 	rdev->stats.qid.total = rdev->lldi.vr->qp.size;
844 
845 	err = c4iw_init_resource(rdev, c4iw_num_stags(rdev),
846 				 T4_MAX_NUM_PD, rdev->lldi.vr->srq.size);
847 	if (err) {
848 		pr_err("error %d initializing resources\n", err);
849 		return err;
850 	}
851 	err = c4iw_pblpool_create(rdev);
852 	if (err) {
853 		pr_err("error %d initializing pbl pool\n", err);
854 		goto destroy_resource;
855 	}
856 	err = c4iw_rqtpool_create(rdev);
857 	if (err) {
858 		pr_err("error %d initializing rqt pool\n", err);
859 		goto destroy_pblpool;
860 	}
861 	err = c4iw_ocqp_pool_create(rdev);
862 	if (err) {
863 		pr_err("error %d initializing ocqp pool\n", err);
864 		goto destroy_rqtpool;
865 	}
866 	rdev->status_page = (struct t4_dev_status_page *)
867 			    __get_free_page(GFP_KERNEL);
868 	if (!rdev->status_page) {
869 		err = -ENOMEM;
870 		goto destroy_ocqp_pool;
871 	}
872 	rdev->status_page->qp_start = rdev->lldi.vr->qp.start;
873 	rdev->status_page->qp_size = rdev->lldi.vr->qp.size;
874 	rdev->status_page->cq_start = rdev->lldi.vr->cq.start;
875 	rdev->status_page->cq_size = rdev->lldi.vr->cq.size;
876 	rdev->status_page->write_cmpl_supported = rdev->lldi.write_cmpl_support;
877 
878 	if (c4iw_wr_log) {
879 		rdev->wr_log = kcalloc(1 << c4iw_wr_log_size_order,
880 				       sizeof(*rdev->wr_log),
881 				       GFP_KERNEL);
882 		if (rdev->wr_log) {
883 			rdev->wr_log_size = 1 << c4iw_wr_log_size_order;
884 			atomic_set(&rdev->wr_log_idx, 0);
885 		}
886 	}
887 
888 	rdev->free_workq = create_singlethread_workqueue("iw_cxgb4_free");
889 	if (!rdev->free_workq) {
890 		err = -ENOMEM;
891 		goto err_free_status_page_and_wr_log;
892 	}
893 
894 	rdev->status_page->db_off = 0;
895 
896 	init_completion(&rdev->rqt_compl);
897 	init_completion(&rdev->pbl_compl);
898 	kref_init(&rdev->rqt_kref);
899 	kref_init(&rdev->pbl_kref);
900 
901 	return 0;
902 err_free_status_page_and_wr_log:
903 	if (c4iw_wr_log && rdev->wr_log)
904 		kfree(rdev->wr_log);
905 	free_page((unsigned long)rdev->status_page);
906 destroy_ocqp_pool:
907 	c4iw_ocqp_pool_destroy(rdev);
908 destroy_rqtpool:
909 	c4iw_rqtpool_destroy(rdev);
910 destroy_pblpool:
911 	c4iw_pblpool_destroy(rdev);
912 destroy_resource:
913 	c4iw_destroy_resource(&rdev->resource);
914 	return err;
915 }
916 
917 static void c4iw_rdev_close(struct c4iw_rdev *rdev)
918 {
919 	kfree(rdev->wr_log);
920 	c4iw_release_dev_ucontext(rdev, &rdev->uctx);
921 	free_page((unsigned long)rdev->status_page);
922 	c4iw_pblpool_destroy(rdev);
923 	c4iw_rqtpool_destroy(rdev);
924 	wait_for_completion(&rdev->pbl_compl);
925 	wait_for_completion(&rdev->rqt_compl);
926 	c4iw_ocqp_pool_destroy(rdev);
927 	destroy_workqueue(rdev->free_workq);
928 	c4iw_destroy_resource(&rdev->resource);
929 }
930 
931 void c4iw_dealloc(struct uld_ctx *ctx)
932 {
933 	c4iw_rdev_close(&ctx->dev->rdev);
934 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->cqidr));
935 	idr_destroy(&ctx->dev->cqidr);
936 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->qpidr));
937 	idr_destroy(&ctx->dev->qpidr);
938 	WARN_ON_ONCE(!idr_is_empty(&ctx->dev->mmidr));
939 	idr_destroy(&ctx->dev->mmidr);
940 	wait_event(ctx->dev->wait, idr_is_empty(&ctx->dev->hwtid_idr));
941 	idr_destroy(&ctx->dev->hwtid_idr);
942 	idr_destroy(&ctx->dev->stid_idr);
943 	idr_destroy(&ctx->dev->atid_idr);
944 	if (ctx->dev->rdev.bar2_kva)
945 		iounmap(ctx->dev->rdev.bar2_kva);
946 	if (ctx->dev->rdev.oc_mw_kva)
947 		iounmap(ctx->dev->rdev.oc_mw_kva);
948 	ib_dealloc_device(&ctx->dev->ibdev);
949 	ctx->dev = NULL;
950 }
951 
952 static void c4iw_remove(struct uld_ctx *ctx)
953 {
954 	pr_debug("c4iw_dev %p\n", ctx->dev);
955 	c4iw_unregister_device(ctx->dev);
956 	c4iw_dealloc(ctx);
957 }
958 
959 static int rdma_supported(const struct cxgb4_lld_info *infop)
960 {
961 	return infop->vr->stag.size > 0 && infop->vr->pbl.size > 0 &&
962 	       infop->vr->rq.size > 0 && infop->vr->qp.size > 0 &&
963 	       infop->vr->cq.size > 0;
964 }
965 
966 static struct c4iw_dev *c4iw_alloc(const struct cxgb4_lld_info *infop)
967 {
968 	struct c4iw_dev *devp;
969 	int ret;
970 
971 	if (!rdma_supported(infop)) {
972 		pr_info("%s: RDMA not supported on this device\n",
973 			pci_name(infop->pdev));
974 		return ERR_PTR(-ENOSYS);
975 	}
976 	if (!ocqp_supported(infop))
977 		pr_info("%s: On-Chip Queues not supported on this device\n",
978 			pci_name(infop->pdev));
979 
980 	devp = ib_alloc_device(c4iw_dev, ibdev);
981 	if (!devp) {
982 		pr_err("Cannot allocate ib device\n");
983 		return ERR_PTR(-ENOMEM);
984 	}
985 	devp->rdev.lldi = *infop;
986 
987 	/* init various hw-queue params based on lld info */
988 	pr_debug("Ing. padding boundary is %d, egrsstatuspagesize = %d\n",
989 		 devp->rdev.lldi.sge_ingpadboundary,
990 		 devp->rdev.lldi.sge_egrstatuspagesize);
991 
992 	devp->rdev.hw_queue.t4_eq_status_entries =
993 		devp->rdev.lldi.sge_egrstatuspagesize / 64;
994 	devp->rdev.hw_queue.t4_max_eq_size = 65520;
995 	devp->rdev.hw_queue.t4_max_iq_size = 65520;
996 	devp->rdev.hw_queue.t4_max_rq_size = 8192 -
997 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
998 	devp->rdev.hw_queue.t4_max_sq_size =
999 		devp->rdev.hw_queue.t4_max_eq_size -
1000 		devp->rdev.hw_queue.t4_eq_status_entries - 1;
1001 	devp->rdev.hw_queue.t4_max_qp_depth =
1002 		devp->rdev.hw_queue.t4_max_rq_size;
1003 	devp->rdev.hw_queue.t4_max_cq_depth =
1004 		devp->rdev.hw_queue.t4_max_iq_size - 2;
1005 	devp->rdev.hw_queue.t4_stat_len =
1006 		devp->rdev.lldi.sge_egrstatuspagesize;
1007 
1008 	/*
1009 	 * For T5/T6 devices, we map all of BAR2 with WC.
1010 	 * For T4 devices with onchip qp mem, we map only that part
1011 	 * of BAR2 with WC.
1012 	 */
1013 	devp->rdev.bar2_pa = pci_resource_start(devp->rdev.lldi.pdev, 2);
1014 	if (!is_t4(devp->rdev.lldi.adapter_type)) {
1015 		devp->rdev.bar2_kva = ioremap_wc(devp->rdev.bar2_pa,
1016 			pci_resource_len(devp->rdev.lldi.pdev, 2));
1017 		if (!devp->rdev.bar2_kva) {
1018 			pr_err("Unable to ioremap BAR2\n");
1019 			ib_dealloc_device(&devp->ibdev);
1020 			return ERR_PTR(-EINVAL);
1021 		}
1022 	} else if (ocqp_supported(infop)) {
1023 		devp->rdev.oc_mw_pa =
1024 			pci_resource_start(devp->rdev.lldi.pdev, 2) +
1025 			pci_resource_len(devp->rdev.lldi.pdev, 2) -
1026 			roundup_pow_of_two(devp->rdev.lldi.vr->ocq.size);
1027 		devp->rdev.oc_mw_kva = ioremap_wc(devp->rdev.oc_mw_pa,
1028 			devp->rdev.lldi.vr->ocq.size);
1029 		if (!devp->rdev.oc_mw_kva) {
1030 			pr_err("Unable to ioremap onchip mem\n");
1031 			ib_dealloc_device(&devp->ibdev);
1032 			return ERR_PTR(-EINVAL);
1033 		}
1034 	}
1035 
1036 	pr_debug("ocq memory: hw_start 0x%x size %u mw_pa 0x%lx mw_kva %p\n",
1037 		 devp->rdev.lldi.vr->ocq.start, devp->rdev.lldi.vr->ocq.size,
1038 		 devp->rdev.oc_mw_pa, devp->rdev.oc_mw_kva);
1039 
1040 	ret = c4iw_rdev_open(&devp->rdev);
1041 	if (ret) {
1042 		pr_err("Unable to open CXIO rdev err %d\n", ret);
1043 		ib_dealloc_device(&devp->ibdev);
1044 		return ERR_PTR(ret);
1045 	}
1046 
1047 	idr_init(&devp->cqidr);
1048 	idr_init(&devp->qpidr);
1049 	idr_init(&devp->mmidr);
1050 	idr_init(&devp->hwtid_idr);
1051 	idr_init(&devp->stid_idr);
1052 	idr_init(&devp->atid_idr);
1053 	spin_lock_init(&devp->lock);
1054 	mutex_init(&devp->rdev.stats.lock);
1055 	mutex_init(&devp->db_mutex);
1056 	INIT_LIST_HEAD(&devp->db_fc_list);
1057 	init_waitqueue_head(&devp->wait);
1058 	devp->avail_ird = devp->rdev.lldi.max_ird_adapter;
1059 
1060 	if (c4iw_debugfs_root) {
1061 		devp->debugfs_root = debugfs_create_dir(
1062 					pci_name(devp->rdev.lldi.pdev),
1063 					c4iw_debugfs_root);
1064 		setup_debugfs(devp);
1065 	}
1066 
1067 
1068 	return devp;
1069 }
1070 
1071 static void *c4iw_uld_add(const struct cxgb4_lld_info *infop)
1072 {
1073 	struct uld_ctx *ctx;
1074 	static int vers_printed;
1075 	int i;
1076 
1077 	if (!vers_printed++)
1078 		pr_info("Chelsio T4/T5 RDMA Driver - version %s\n",
1079 			DRV_VERSION);
1080 
1081 	ctx = kzalloc(sizeof *ctx, GFP_KERNEL);
1082 	if (!ctx) {
1083 		ctx = ERR_PTR(-ENOMEM);
1084 		goto out;
1085 	}
1086 	ctx->lldi = *infop;
1087 
1088 	pr_debug("found device %s nchan %u nrxq %u ntxq %u nports %u\n",
1089 		 pci_name(ctx->lldi.pdev),
1090 		 ctx->lldi.nchan, ctx->lldi.nrxq,
1091 		 ctx->lldi.ntxq, ctx->lldi.nports);
1092 
1093 	mutex_lock(&dev_mutex);
1094 	list_add_tail(&ctx->entry, &uld_ctx_list);
1095 	mutex_unlock(&dev_mutex);
1096 
1097 	for (i = 0; i < ctx->lldi.nrxq; i++)
1098 		pr_debug("rxqid[%u] %u\n", i, ctx->lldi.rxq_ids[i]);
1099 out:
1100 	return ctx;
1101 }
1102 
1103 static inline struct sk_buff *copy_gl_to_skb_pkt(const struct pkt_gl *gl,
1104 						 const __be64 *rsp,
1105 						 u32 pktshift)
1106 {
1107 	struct sk_buff *skb;
1108 
1109 	/*
1110 	 * Allocate space for cpl_pass_accept_req which will be synthesized by
1111 	 * driver. Once the driver synthesizes the request the skb will go
1112 	 * through the regular cpl_pass_accept_req processing.
1113 	 * The math here assumes sizeof cpl_pass_accept_req >= sizeof
1114 	 * cpl_rx_pkt.
1115 	 */
1116 	skb = alloc_skb(gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1117 			sizeof(struct rss_header) - pktshift, GFP_ATOMIC);
1118 	if (unlikely(!skb))
1119 		return NULL;
1120 
1121 	__skb_put(skb, gl->tot_len + sizeof(struct cpl_pass_accept_req) +
1122 		  sizeof(struct rss_header) - pktshift);
1123 
1124 	/*
1125 	 * This skb will contain:
1126 	 *   rss_header from the rspq descriptor (1 flit)
1127 	 *   cpl_rx_pkt struct from the rspq descriptor (2 flits)
1128 	 *   space for the difference between the size of an
1129 	 *      rx_pkt and pass_accept_req cpl (1 flit)
1130 	 *   the packet data from the gl
1131 	 */
1132 	skb_copy_to_linear_data(skb, rsp, sizeof(struct cpl_pass_accept_req) +
1133 				sizeof(struct rss_header));
1134 	skb_copy_to_linear_data_offset(skb, sizeof(struct rss_header) +
1135 				       sizeof(struct cpl_pass_accept_req),
1136 				       gl->va + pktshift,
1137 				       gl->tot_len - pktshift);
1138 	return skb;
1139 }
1140 
1141 static inline int recv_rx_pkt(struct c4iw_dev *dev, const struct pkt_gl *gl,
1142 			   const __be64 *rsp)
1143 {
1144 	unsigned int opcode = *(u8 *)rsp;
1145 	struct sk_buff *skb;
1146 
1147 	if (opcode != CPL_RX_PKT)
1148 		goto out;
1149 
1150 	skb = copy_gl_to_skb_pkt(gl , rsp, dev->rdev.lldi.sge_pktshift);
1151 	if (skb == NULL)
1152 		goto out;
1153 
1154 	if (c4iw_handlers[opcode] == NULL) {
1155 		pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1156 		kfree_skb(skb);
1157 		goto out;
1158 	}
1159 	c4iw_handlers[opcode](dev, skb);
1160 	return 1;
1161 out:
1162 	return 0;
1163 }
1164 
1165 static int c4iw_uld_rx_handler(void *handle, const __be64 *rsp,
1166 			const struct pkt_gl *gl)
1167 {
1168 	struct uld_ctx *ctx = handle;
1169 	struct c4iw_dev *dev = ctx->dev;
1170 	struct sk_buff *skb;
1171 	u8 opcode;
1172 
1173 	if (gl == NULL) {
1174 		/* omit RSS and rsp_ctrl at end of descriptor */
1175 		unsigned int len = 64 - sizeof(struct rsp_ctrl) - 8;
1176 
1177 		skb = alloc_skb(256, GFP_ATOMIC);
1178 		if (!skb)
1179 			goto nomem;
1180 		__skb_put(skb, len);
1181 		skb_copy_to_linear_data(skb, &rsp[1], len);
1182 	} else if (gl == CXGB4_MSG_AN) {
1183 		const struct rsp_ctrl *rc = (void *)rsp;
1184 
1185 		u32 qid = be32_to_cpu(rc->pldbuflen_qid);
1186 		c4iw_ev_handler(dev, qid);
1187 		return 0;
1188 	} else if (unlikely(*(u8 *)rsp != *(u8 *)gl->va)) {
1189 		if (recv_rx_pkt(dev, gl, rsp))
1190 			return 0;
1191 
1192 		pr_info("%s: unexpected FL contents at %p, RSS %#llx, FL %#llx, len %u\n",
1193 			pci_name(ctx->lldi.pdev), gl->va,
1194 			be64_to_cpu(*rsp),
1195 			be64_to_cpu(*(__force __be64 *)gl->va),
1196 			gl->tot_len);
1197 
1198 		return 0;
1199 	} else {
1200 		skb = cxgb4_pktgl_to_skb(gl, 128, 128);
1201 		if (unlikely(!skb))
1202 			goto nomem;
1203 	}
1204 
1205 	opcode = *(u8 *)rsp;
1206 	if (c4iw_handlers[opcode]) {
1207 		c4iw_handlers[opcode](dev, skb);
1208 	} else {
1209 		pr_info("%s no handler opcode 0x%x...\n", __func__, opcode);
1210 		kfree_skb(skb);
1211 	}
1212 
1213 	return 0;
1214 nomem:
1215 	return -1;
1216 }
1217 
1218 static int c4iw_uld_state_change(void *handle, enum cxgb4_state new_state)
1219 {
1220 	struct uld_ctx *ctx = handle;
1221 
1222 	pr_debug("new_state %u\n", new_state);
1223 	switch (new_state) {
1224 	case CXGB4_STATE_UP:
1225 		pr_info("%s: Up\n", pci_name(ctx->lldi.pdev));
1226 		if (!ctx->dev) {
1227 			ctx->dev = c4iw_alloc(&ctx->lldi);
1228 			if (IS_ERR(ctx->dev)) {
1229 				pr_err("%s: initialization failed: %ld\n",
1230 				       pci_name(ctx->lldi.pdev),
1231 				       PTR_ERR(ctx->dev));
1232 				ctx->dev = NULL;
1233 				break;
1234 			}
1235 
1236 			INIT_WORK(&ctx->reg_work, c4iw_register_device);
1237 			queue_work(reg_workq, &ctx->reg_work);
1238 		}
1239 		break;
1240 	case CXGB4_STATE_DOWN:
1241 		pr_info("%s: Down\n", pci_name(ctx->lldi.pdev));
1242 		if (ctx->dev)
1243 			c4iw_remove(ctx);
1244 		break;
1245 	case CXGB4_STATE_FATAL_ERROR:
1246 	case CXGB4_STATE_START_RECOVERY:
1247 		pr_info("%s: Fatal Error\n", pci_name(ctx->lldi.pdev));
1248 		if (ctx->dev) {
1249 			struct ib_event event;
1250 
1251 			ctx->dev->rdev.flags |= T4_FATAL_ERROR;
1252 			memset(&event, 0, sizeof event);
1253 			event.event  = IB_EVENT_DEVICE_FATAL;
1254 			event.device = &ctx->dev->ibdev;
1255 			ib_dispatch_event(&event);
1256 			c4iw_remove(ctx);
1257 		}
1258 		break;
1259 	case CXGB4_STATE_DETACH:
1260 		pr_info("%s: Detach\n", pci_name(ctx->lldi.pdev));
1261 		if (ctx->dev)
1262 			c4iw_remove(ctx);
1263 		break;
1264 	}
1265 	return 0;
1266 }
1267 
1268 static int disable_qp_db(int id, void *p, void *data)
1269 {
1270 	struct c4iw_qp *qp = p;
1271 
1272 	t4_disable_wq_db(&qp->wq);
1273 	return 0;
1274 }
1275 
1276 static void stop_queues(struct uld_ctx *ctx)
1277 {
1278 	unsigned long flags;
1279 
1280 	spin_lock_irqsave(&ctx->dev->lock, flags);
1281 	ctx->dev->rdev.stats.db_state_transitions++;
1282 	ctx->dev->db_state = STOPPED;
1283 	if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED)
1284 		idr_for_each(&ctx->dev->qpidr, disable_qp_db, NULL);
1285 	else
1286 		ctx->dev->rdev.status_page->db_off = 1;
1287 	spin_unlock_irqrestore(&ctx->dev->lock, flags);
1288 }
1289 
1290 static int enable_qp_db(int id, void *p, void *data)
1291 {
1292 	struct c4iw_qp *qp = p;
1293 
1294 	t4_enable_wq_db(&qp->wq);
1295 	return 0;
1296 }
1297 
1298 static void resume_rc_qp(struct c4iw_qp *qp)
1299 {
1300 	spin_lock(&qp->lock);
1301 	t4_ring_sq_db(&qp->wq, qp->wq.sq.wq_pidx_inc, NULL);
1302 	qp->wq.sq.wq_pidx_inc = 0;
1303 	t4_ring_rq_db(&qp->wq, qp->wq.rq.wq_pidx_inc, NULL);
1304 	qp->wq.rq.wq_pidx_inc = 0;
1305 	spin_unlock(&qp->lock);
1306 }
1307 
1308 static void resume_a_chunk(struct uld_ctx *ctx)
1309 {
1310 	int i;
1311 	struct c4iw_qp *qp;
1312 
1313 	for (i = 0; i < DB_FC_RESUME_SIZE; i++) {
1314 		qp = list_first_entry(&ctx->dev->db_fc_list, struct c4iw_qp,
1315 				      db_fc_entry);
1316 		list_del_init(&qp->db_fc_entry);
1317 		resume_rc_qp(qp);
1318 		if (list_empty(&ctx->dev->db_fc_list))
1319 			break;
1320 	}
1321 }
1322 
1323 static void resume_queues(struct uld_ctx *ctx)
1324 {
1325 	spin_lock_irq(&ctx->dev->lock);
1326 	if (ctx->dev->db_state != STOPPED)
1327 		goto out;
1328 	ctx->dev->db_state = FLOW_CONTROL;
1329 	while (1) {
1330 		if (list_empty(&ctx->dev->db_fc_list)) {
1331 			WARN_ON(ctx->dev->db_state != FLOW_CONTROL);
1332 			ctx->dev->db_state = NORMAL;
1333 			ctx->dev->rdev.stats.db_state_transitions++;
1334 			if (ctx->dev->rdev.flags & T4_STATUS_PAGE_DISABLED) {
1335 				idr_for_each(&ctx->dev->qpidr, enable_qp_db,
1336 					     NULL);
1337 			} else {
1338 				ctx->dev->rdev.status_page->db_off = 0;
1339 			}
1340 			break;
1341 		} else {
1342 			if (cxgb4_dbfifo_count(ctx->dev->rdev.lldi.ports[0], 1)
1343 			    < (ctx->dev->rdev.lldi.dbfifo_int_thresh <<
1344 			       DB_FC_DRAIN_THRESH)) {
1345 				resume_a_chunk(ctx);
1346 			}
1347 			if (!list_empty(&ctx->dev->db_fc_list)) {
1348 				spin_unlock_irq(&ctx->dev->lock);
1349 				if (DB_FC_RESUME_DELAY) {
1350 					set_current_state(TASK_UNINTERRUPTIBLE);
1351 					schedule_timeout(DB_FC_RESUME_DELAY);
1352 				}
1353 				spin_lock_irq(&ctx->dev->lock);
1354 				if (ctx->dev->db_state != FLOW_CONTROL)
1355 					break;
1356 			}
1357 		}
1358 	}
1359 out:
1360 	if (ctx->dev->db_state != NORMAL)
1361 		ctx->dev->rdev.stats.db_fc_interruptions++;
1362 	spin_unlock_irq(&ctx->dev->lock);
1363 }
1364 
1365 struct qp_list {
1366 	unsigned idx;
1367 	struct c4iw_qp **qps;
1368 };
1369 
1370 static int add_and_ref_qp(int id, void *p, void *data)
1371 {
1372 	struct qp_list *qp_listp = data;
1373 	struct c4iw_qp *qp = p;
1374 
1375 	c4iw_qp_add_ref(&qp->ibqp);
1376 	qp_listp->qps[qp_listp->idx++] = qp;
1377 	return 0;
1378 }
1379 
1380 static int count_qps(int id, void *p, void *data)
1381 {
1382 	unsigned *countp = data;
1383 	(*countp)++;
1384 	return 0;
1385 }
1386 
1387 static void deref_qps(struct qp_list *qp_list)
1388 {
1389 	int idx;
1390 
1391 	for (idx = 0; idx < qp_list->idx; idx++)
1392 		c4iw_qp_rem_ref(&qp_list->qps[idx]->ibqp);
1393 }
1394 
1395 static void recover_lost_dbs(struct uld_ctx *ctx, struct qp_list *qp_list)
1396 {
1397 	int idx;
1398 	int ret;
1399 
1400 	for (idx = 0; idx < qp_list->idx; idx++) {
1401 		struct c4iw_qp *qp = qp_list->qps[idx];
1402 
1403 		spin_lock_irq(&qp->rhp->lock);
1404 		spin_lock(&qp->lock);
1405 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1406 					  qp->wq.sq.qid,
1407 					  t4_sq_host_wq_pidx(&qp->wq),
1408 					  t4_sq_wq_size(&qp->wq));
1409 		if (ret) {
1410 			pr_err("%s: Fatal error - DB overflow recovery failed - error syncing SQ qid %u\n",
1411 			       pci_name(ctx->lldi.pdev), qp->wq.sq.qid);
1412 			spin_unlock(&qp->lock);
1413 			spin_unlock_irq(&qp->rhp->lock);
1414 			return;
1415 		}
1416 		qp->wq.sq.wq_pidx_inc = 0;
1417 
1418 		ret = cxgb4_sync_txq_pidx(qp->rhp->rdev.lldi.ports[0],
1419 					  qp->wq.rq.qid,
1420 					  t4_rq_host_wq_pidx(&qp->wq),
1421 					  t4_rq_wq_size(&qp->wq));
1422 
1423 		if (ret) {
1424 			pr_err("%s: Fatal error - DB overflow recovery failed - error syncing RQ qid %u\n",
1425 			       pci_name(ctx->lldi.pdev), qp->wq.rq.qid);
1426 			spin_unlock(&qp->lock);
1427 			spin_unlock_irq(&qp->rhp->lock);
1428 			return;
1429 		}
1430 		qp->wq.rq.wq_pidx_inc = 0;
1431 		spin_unlock(&qp->lock);
1432 		spin_unlock_irq(&qp->rhp->lock);
1433 
1434 		/* Wait for the dbfifo to drain */
1435 		while (cxgb4_dbfifo_count(qp->rhp->rdev.lldi.ports[0], 1) > 0) {
1436 			set_current_state(TASK_UNINTERRUPTIBLE);
1437 			schedule_timeout(usecs_to_jiffies(10));
1438 		}
1439 	}
1440 }
1441 
1442 static void recover_queues(struct uld_ctx *ctx)
1443 {
1444 	int count = 0;
1445 	struct qp_list qp_list;
1446 	int ret;
1447 
1448 	/* slow everybody down */
1449 	set_current_state(TASK_UNINTERRUPTIBLE);
1450 	schedule_timeout(usecs_to_jiffies(1000));
1451 
1452 	/* flush the SGE contexts */
1453 	ret = cxgb4_flush_eq_cache(ctx->dev->rdev.lldi.ports[0]);
1454 	if (ret) {
1455 		pr_err("%s: Fatal error - DB overflow recovery failed\n",
1456 		       pci_name(ctx->lldi.pdev));
1457 		return;
1458 	}
1459 
1460 	/* Count active queues so we can build a list of queues to recover */
1461 	spin_lock_irq(&ctx->dev->lock);
1462 	WARN_ON(ctx->dev->db_state != STOPPED);
1463 	ctx->dev->db_state = RECOVERY;
1464 	idr_for_each(&ctx->dev->qpidr, count_qps, &count);
1465 
1466 	qp_list.qps = kcalloc(count, sizeof(*qp_list.qps), GFP_ATOMIC);
1467 	if (!qp_list.qps) {
1468 		spin_unlock_irq(&ctx->dev->lock);
1469 		return;
1470 	}
1471 	qp_list.idx = 0;
1472 
1473 	/* add and ref each qp so it doesn't get freed */
1474 	idr_for_each(&ctx->dev->qpidr, add_and_ref_qp, &qp_list);
1475 
1476 	spin_unlock_irq(&ctx->dev->lock);
1477 
1478 	/* now traverse the list in a safe context to recover the db state*/
1479 	recover_lost_dbs(ctx, &qp_list);
1480 
1481 	/* we're almost done!  deref the qps and clean up */
1482 	deref_qps(&qp_list);
1483 	kfree(qp_list.qps);
1484 
1485 	spin_lock_irq(&ctx->dev->lock);
1486 	WARN_ON(ctx->dev->db_state != RECOVERY);
1487 	ctx->dev->db_state = STOPPED;
1488 	spin_unlock_irq(&ctx->dev->lock);
1489 }
1490 
1491 static int c4iw_uld_control(void *handle, enum cxgb4_control control, ...)
1492 {
1493 	struct uld_ctx *ctx = handle;
1494 
1495 	switch (control) {
1496 	case CXGB4_CONTROL_DB_FULL:
1497 		stop_queues(ctx);
1498 		ctx->dev->rdev.stats.db_full++;
1499 		break;
1500 	case CXGB4_CONTROL_DB_EMPTY:
1501 		resume_queues(ctx);
1502 		mutex_lock(&ctx->dev->rdev.stats.lock);
1503 		ctx->dev->rdev.stats.db_empty++;
1504 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1505 		break;
1506 	case CXGB4_CONTROL_DB_DROP:
1507 		recover_queues(ctx);
1508 		mutex_lock(&ctx->dev->rdev.stats.lock);
1509 		ctx->dev->rdev.stats.db_drop++;
1510 		mutex_unlock(&ctx->dev->rdev.stats.lock);
1511 		break;
1512 	default:
1513 		pr_warn("%s: unknown control cmd %u\n",
1514 			pci_name(ctx->lldi.pdev), control);
1515 		break;
1516 	}
1517 	return 0;
1518 }
1519 
1520 static struct cxgb4_uld_info c4iw_uld_info = {
1521 	.name = DRV_NAME,
1522 	.nrxq = MAX_ULD_QSETS,
1523 	.ntxq = MAX_ULD_QSETS,
1524 	.rxq_size = 511,
1525 	.ciq = true,
1526 	.lro = false,
1527 	.add = c4iw_uld_add,
1528 	.rx_handler = c4iw_uld_rx_handler,
1529 	.state_change = c4iw_uld_state_change,
1530 	.control = c4iw_uld_control,
1531 };
1532 
1533 void _c4iw_free_wr_wait(struct kref *kref)
1534 {
1535 	struct c4iw_wr_wait *wr_waitp;
1536 
1537 	wr_waitp = container_of(kref, struct c4iw_wr_wait, kref);
1538 	pr_debug("Free wr_wait %p\n", wr_waitp);
1539 	kfree(wr_waitp);
1540 }
1541 
1542 struct c4iw_wr_wait *c4iw_alloc_wr_wait(gfp_t gfp)
1543 {
1544 	struct c4iw_wr_wait *wr_waitp;
1545 
1546 	wr_waitp = kzalloc(sizeof(*wr_waitp), gfp);
1547 	if (wr_waitp) {
1548 		kref_init(&wr_waitp->kref);
1549 		pr_debug("wr_wait %p\n", wr_waitp);
1550 	}
1551 	return wr_waitp;
1552 }
1553 
1554 static int __init c4iw_init_module(void)
1555 {
1556 	int err;
1557 
1558 	err = c4iw_cm_init();
1559 	if (err)
1560 		return err;
1561 
1562 	c4iw_debugfs_root = debugfs_create_dir(DRV_NAME, NULL);
1563 
1564 	reg_workq = create_singlethread_workqueue("Register_iWARP_device");
1565 	if (!reg_workq) {
1566 		pr_err("Failed creating workqueue to register iwarp device\n");
1567 		return -ENOMEM;
1568 	}
1569 
1570 	cxgb4_register_uld(CXGB4_ULD_RDMA, &c4iw_uld_info);
1571 
1572 	return 0;
1573 }
1574 
1575 static void __exit c4iw_exit_module(void)
1576 {
1577 	struct uld_ctx *ctx, *tmp;
1578 
1579 	mutex_lock(&dev_mutex);
1580 	list_for_each_entry_safe(ctx, tmp, &uld_ctx_list, entry) {
1581 		if (ctx->dev)
1582 			c4iw_remove(ctx);
1583 		kfree(ctx);
1584 	}
1585 	mutex_unlock(&dev_mutex);
1586 	flush_workqueue(reg_workq);
1587 	destroy_workqueue(reg_workq);
1588 	cxgb4_unregister_uld(CXGB4_ULD_RDMA);
1589 	c4iw_cm_term();
1590 	debugfs_remove_recursive(c4iw_debugfs_root);
1591 }
1592 
1593 module_init(c4iw_init_module);
1594 module_exit(c4iw_exit_module);
1595