xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/cq.c (revision b34e08d5)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include "iw_cxgb4.h"
34 
35 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
36 		      struct c4iw_dev_ucontext *uctx)
37 {
38 	struct fw_ri_res_wr *res_wr;
39 	struct fw_ri_res *res;
40 	int wr_len;
41 	struct c4iw_wr_wait wr_wait;
42 	struct sk_buff *skb;
43 	int ret;
44 
45 	wr_len = sizeof *res_wr + sizeof *res;
46 	skb = alloc_skb(wr_len, GFP_KERNEL);
47 	if (!skb)
48 		return -ENOMEM;
49 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
50 
51 	res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
52 	memset(res_wr, 0, wr_len);
53 	res_wr->op_nres = cpu_to_be32(
54 			FW_WR_OP(FW_RI_RES_WR) |
55 			V_FW_RI_RES_WR_NRES(1) |
56 			FW_WR_COMPL(1));
57 	res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
58 	res_wr->cookie = (unsigned long) &wr_wait;
59 	res = res_wr->res;
60 	res->u.cq.restype = FW_RI_RES_TYPE_CQ;
61 	res->u.cq.op = FW_RI_RES_OP_RESET;
62 	res->u.cq.iqid = cpu_to_be32(cq->cqid);
63 
64 	c4iw_init_wr_wait(&wr_wait);
65 	ret = c4iw_ofld_send(rdev, skb);
66 	if (!ret) {
67 		ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
68 	}
69 
70 	kfree(cq->sw_queue);
71 	dma_free_coherent(&(rdev->lldi.pdev->dev),
72 			  cq->memsize, cq->queue,
73 			  dma_unmap_addr(cq, mapping));
74 	c4iw_put_cqid(rdev, cq->cqid, uctx);
75 	return ret;
76 }
77 
78 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
79 		     struct c4iw_dev_ucontext *uctx)
80 {
81 	struct fw_ri_res_wr *res_wr;
82 	struct fw_ri_res *res;
83 	int wr_len;
84 	int user = (uctx != &rdev->uctx);
85 	struct c4iw_wr_wait wr_wait;
86 	int ret;
87 	struct sk_buff *skb;
88 
89 	cq->cqid = c4iw_get_cqid(rdev, uctx);
90 	if (!cq->cqid) {
91 		ret = -ENOMEM;
92 		goto err1;
93 	}
94 
95 	if (!user) {
96 		cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
97 		if (!cq->sw_queue) {
98 			ret = -ENOMEM;
99 			goto err2;
100 		}
101 	}
102 	cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
103 				       &cq->dma_addr, GFP_KERNEL);
104 	if (!cq->queue) {
105 		ret = -ENOMEM;
106 		goto err3;
107 	}
108 	dma_unmap_addr_set(cq, mapping, cq->dma_addr);
109 	memset(cq->queue, 0, cq->memsize);
110 
111 	/* build fw_ri_res_wr */
112 	wr_len = sizeof *res_wr + sizeof *res;
113 
114 	skb = alloc_skb(wr_len, GFP_KERNEL);
115 	if (!skb) {
116 		ret = -ENOMEM;
117 		goto err4;
118 	}
119 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
120 
121 	res_wr = (struct fw_ri_res_wr *)__skb_put(skb, wr_len);
122 	memset(res_wr, 0, wr_len);
123 	res_wr->op_nres = cpu_to_be32(
124 			FW_WR_OP(FW_RI_RES_WR) |
125 			V_FW_RI_RES_WR_NRES(1) |
126 			FW_WR_COMPL(1));
127 	res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
128 	res_wr->cookie = (unsigned long) &wr_wait;
129 	res = res_wr->res;
130 	res->u.cq.restype = FW_RI_RES_TYPE_CQ;
131 	res->u.cq.op = FW_RI_RES_OP_WRITE;
132 	res->u.cq.iqid = cpu_to_be32(cq->cqid);
133 	res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
134 			V_FW_RI_RES_WR_IQANUS(0) |
135 			V_FW_RI_RES_WR_IQANUD(1) |
136 			F_FW_RI_RES_WR_IQANDST |
137 			V_FW_RI_RES_WR_IQANDSTINDEX(*rdev->lldi.rxq_ids));
138 	res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
139 			F_FW_RI_RES_WR_IQDROPRSS |
140 			V_FW_RI_RES_WR_IQPCIECH(2) |
141 			V_FW_RI_RES_WR_IQINTCNTTHRESH(0) |
142 			F_FW_RI_RES_WR_IQO |
143 			V_FW_RI_RES_WR_IQESIZE(1));
144 	res->u.cq.iqsize = cpu_to_be16(cq->size);
145 	res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
146 
147 	c4iw_init_wr_wait(&wr_wait);
148 
149 	ret = c4iw_ofld_send(rdev, skb);
150 	if (ret)
151 		goto err4;
152 	PDBG("%s wait_event wr_wait %p\n", __func__, &wr_wait);
153 	ret = c4iw_wait_for_reply(rdev, &wr_wait, 0, 0, __func__);
154 	if (ret)
155 		goto err4;
156 
157 	cq->gen = 1;
158 	cq->gts = rdev->lldi.gts_reg;
159 	cq->rdev = rdev;
160 	if (user) {
161 		cq->ugts = (u64)pci_resource_start(rdev->lldi.pdev, 2) +
162 					(cq->cqid << rdev->cqshift);
163 		cq->ugts &= PAGE_MASK;
164 	}
165 	return 0;
166 err4:
167 	dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
168 			  dma_unmap_addr(cq, mapping));
169 err3:
170 	kfree(cq->sw_queue);
171 err2:
172 	c4iw_put_cqid(rdev, cq->cqid, uctx);
173 err1:
174 	return ret;
175 }
176 
177 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq)
178 {
179 	struct t4_cqe cqe;
180 
181 	PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
182 	     wq, cq, cq->sw_cidx, cq->sw_pidx);
183 	memset(&cqe, 0, sizeof(cqe));
184 	cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
185 				 V_CQE_OPCODE(FW_RI_SEND) |
186 				 V_CQE_TYPE(0) |
187 				 V_CQE_SWCQE(1) |
188 				 V_CQE_QPID(wq->sq.qid));
189 	cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
190 	cq->sw_queue[cq->sw_pidx] = cqe;
191 	t4_swcq_produce(cq);
192 }
193 
194 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
195 {
196 	int flushed = 0;
197 	int in_use = wq->rq.in_use - count;
198 
199 	BUG_ON(in_use < 0);
200 	PDBG("%s wq %p cq %p rq.in_use %u skip count %u\n", __func__,
201 	     wq, cq, wq->rq.in_use, count);
202 	while (in_use--) {
203 		insert_recv_cqe(wq, cq);
204 		flushed++;
205 	}
206 	return flushed;
207 }
208 
209 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
210 			  struct t4_swsqe *swcqe)
211 {
212 	struct t4_cqe cqe;
213 
214 	PDBG("%s wq %p cq %p sw_cidx %u sw_pidx %u\n", __func__,
215 	     wq, cq, cq->sw_cidx, cq->sw_pidx);
216 	memset(&cqe, 0, sizeof(cqe));
217 	cqe.header = cpu_to_be32(V_CQE_STATUS(T4_ERR_SWFLUSH) |
218 				 V_CQE_OPCODE(swcqe->opcode) |
219 				 V_CQE_TYPE(1) |
220 				 V_CQE_SWCQE(1) |
221 				 V_CQE_QPID(wq->sq.qid));
222 	CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
223 	cqe.bits_type_ts = cpu_to_be64(V_CQE_GENBIT((u64)cq->gen));
224 	cq->sw_queue[cq->sw_pidx] = cqe;
225 	t4_swcq_produce(cq);
226 }
227 
228 static void advance_oldest_read(struct t4_wq *wq);
229 
230 int c4iw_flush_sq(struct c4iw_qp *qhp)
231 {
232 	int flushed = 0;
233 	struct t4_wq *wq = &qhp->wq;
234 	struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
235 	struct t4_cq *cq = &chp->cq;
236 	int idx;
237 	struct t4_swsqe *swsqe;
238 	int error = (qhp->attr.state != C4IW_QP_STATE_CLOSING &&
239 			qhp->attr.state != C4IW_QP_STATE_IDLE);
240 
241 	if (wq->sq.flush_cidx == -1)
242 		wq->sq.flush_cidx = wq->sq.cidx;
243 	idx = wq->sq.flush_cidx;
244 	BUG_ON(idx >= wq->sq.size);
245 	while (idx != wq->sq.pidx) {
246 		if (error) {
247 			swsqe = &wq->sq.sw_sq[idx];
248 			BUG_ON(swsqe->flushed);
249 			swsqe->flushed = 1;
250 			insert_sq_cqe(wq, cq, swsqe);
251 			if (wq->sq.oldest_read == swsqe) {
252 				BUG_ON(swsqe->opcode != FW_RI_READ_REQ);
253 				advance_oldest_read(wq);
254 			}
255 			flushed++;
256 		} else {
257 			t4_sq_consume(wq);
258 		}
259 		if (++idx == wq->sq.size)
260 			idx = 0;
261 	}
262 	wq->sq.flush_cidx += flushed;
263 	if (wq->sq.flush_cidx >= wq->sq.size)
264 		wq->sq.flush_cidx -= wq->sq.size;
265 	return flushed;
266 }
267 
268 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
269 {
270 	struct t4_swsqe *swsqe;
271 	int cidx;
272 
273 	if (wq->sq.flush_cidx == -1)
274 		wq->sq.flush_cidx = wq->sq.cidx;
275 	cidx = wq->sq.flush_cidx;
276 	BUG_ON(cidx > wq->sq.size);
277 
278 	while (cidx != wq->sq.pidx) {
279 		swsqe = &wq->sq.sw_sq[cidx];
280 		if (!swsqe->signaled) {
281 			if (++cidx == wq->sq.size)
282 				cidx = 0;
283 		} else if (swsqe->complete) {
284 
285 			BUG_ON(swsqe->flushed);
286 
287 			/*
288 			 * Insert this completed cqe into the swcq.
289 			 */
290 			PDBG("%s moving cqe into swcq sq idx %u cq idx %u\n",
291 					__func__, cidx, cq->sw_pidx);
292 			swsqe->cqe.header |= htonl(V_CQE_SWCQE(1));
293 			cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
294 			t4_swcq_produce(cq);
295 			swsqe->flushed = 1;
296 			if (++cidx == wq->sq.size)
297 				cidx = 0;
298 			wq->sq.flush_cidx = cidx;
299 		} else
300 			break;
301 	}
302 }
303 
304 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
305 		struct t4_cqe *read_cqe)
306 {
307 	read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
308 	read_cqe->len = htonl(wq->sq.oldest_read->read_len);
309 	read_cqe->header = htonl(V_CQE_QPID(CQE_QPID(hw_cqe)) |
310 			V_CQE_SWCQE(SW_CQE(hw_cqe)) |
311 			V_CQE_OPCODE(FW_RI_READ_REQ) |
312 			V_CQE_TYPE(1));
313 	read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
314 }
315 
316 static void advance_oldest_read(struct t4_wq *wq)
317 {
318 
319 	u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
320 
321 	if (rptr == wq->sq.size)
322 		rptr = 0;
323 	while (rptr != wq->sq.pidx) {
324 		wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
325 
326 		if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
327 			return;
328 		if (++rptr == wq->sq.size)
329 			rptr = 0;
330 	}
331 	wq->sq.oldest_read = NULL;
332 }
333 
334 /*
335  * Move all CQEs from the HWCQ into the SWCQ.
336  * Deal with out-of-order and/or completions that complete
337  * prior unsignalled WRs.
338  */
339 void c4iw_flush_hw_cq(struct c4iw_cq *chp)
340 {
341 	struct t4_cqe *hw_cqe, *swcqe, read_cqe;
342 	struct c4iw_qp *qhp;
343 	struct t4_swsqe *swsqe;
344 	int ret;
345 
346 	PDBG("%s  cqid 0x%x\n", __func__, chp->cq.cqid);
347 	ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
348 
349 	/*
350 	 * This logic is similar to poll_cq(), but not quite the same
351 	 * unfortunately.  Need to move pertinent HW CQEs to the SW CQ but
352 	 * also do any translation magic that poll_cq() normally does.
353 	 */
354 	while (!ret) {
355 		qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
356 
357 		/*
358 		 * drop CQEs with no associated QP
359 		 */
360 		if (qhp == NULL)
361 			goto next_cqe;
362 
363 		if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
364 			goto next_cqe;
365 
366 		if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
367 
368 			/* If we have reached here because of async
369 			 * event or other error, and have egress error
370 			 * then drop
371 			 */
372 			if (CQE_TYPE(hw_cqe) == 1)
373 				goto next_cqe;
374 
375 			/* drop peer2peer RTR reads.
376 			 */
377 			if (CQE_WRID_STAG(hw_cqe) == 1)
378 				goto next_cqe;
379 
380 			/*
381 			 * Eat completions for unsignaled read WRs.
382 			 */
383 			if (!qhp->wq.sq.oldest_read->signaled) {
384 				advance_oldest_read(&qhp->wq);
385 				goto next_cqe;
386 			}
387 
388 			/*
389 			 * Don't write to the HWCQ, create a new read req CQE
390 			 * in local memory and move it into the swcq.
391 			 */
392 			create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
393 			hw_cqe = &read_cqe;
394 			advance_oldest_read(&qhp->wq);
395 		}
396 
397 		/* if its a SQ completion, then do the magic to move all the
398 		 * unsignaled and now in-order completions into the swcq.
399 		 */
400 		if (SQ_TYPE(hw_cqe)) {
401 			swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
402 			swsqe->cqe = *hw_cqe;
403 			swsqe->complete = 1;
404 			flush_completed_wrs(&qhp->wq, &chp->cq);
405 		} else {
406 			swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
407 			*swcqe = *hw_cqe;
408 			swcqe->header |= cpu_to_be32(V_CQE_SWCQE(1));
409 			t4_swcq_produce(&chp->cq);
410 		}
411 next_cqe:
412 		t4_hwcq_consume(&chp->cq);
413 		ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
414 	}
415 }
416 
417 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
418 {
419 	if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
420 		return 0;
421 
422 	if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
423 		return 0;
424 
425 	if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
426 		return 0;
427 
428 	if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
429 		return 0;
430 	return 1;
431 }
432 
433 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
434 {
435 	struct t4_cqe *cqe;
436 	u32 ptr;
437 
438 	*count = 0;
439 	PDBG("%s count zero %d\n", __func__, *count);
440 	ptr = cq->sw_cidx;
441 	while (ptr != cq->sw_pidx) {
442 		cqe = &cq->sw_queue[ptr];
443 		if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
444 		    (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
445 			(*count)++;
446 		if (++ptr == cq->size)
447 			ptr = 0;
448 	}
449 	PDBG("%s cq %p count %d\n", __func__, cq, *count);
450 }
451 
452 /*
453  * poll_cq
454  *
455  * Caller must:
456  *     check the validity of the first CQE,
457  *     supply the wq assicated with the qpid.
458  *
459  * credit: cq credit to return to sge.
460  * cqe_flushed: 1 iff the CQE is flushed.
461  * cqe: copy of the polled CQE.
462  *
463  * return value:
464  *    0		    CQE returned ok.
465  *    -EAGAIN       CQE skipped, try again.
466  *    -EOVERFLOW    CQ overflow detected.
467  */
468 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
469 		   u8 *cqe_flushed, u64 *cookie, u32 *credit)
470 {
471 	int ret = 0;
472 	struct t4_cqe *hw_cqe, read_cqe;
473 
474 	*cqe_flushed = 0;
475 	*credit = 0;
476 	ret = t4_next_cqe(cq, &hw_cqe);
477 	if (ret)
478 		return ret;
479 
480 	PDBG("%s CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x"
481 	     " opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
482 	     __func__, CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
483 	     CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
484 	     CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
485 	     CQE_WRID_LOW(hw_cqe));
486 
487 	/*
488 	 * skip cqe's not affiliated with a QP.
489 	 */
490 	if (wq == NULL) {
491 		ret = -EAGAIN;
492 		goto skip_cqe;
493 	}
494 
495 	/*
496 	* skip hw cqe's if the wq is flushed.
497 	*/
498 	if (wq->flushed && !SW_CQE(hw_cqe)) {
499 		ret = -EAGAIN;
500 		goto skip_cqe;
501 	}
502 
503 	/*
504 	 * skip TERMINATE cqes...
505 	 */
506 	if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
507 		ret = -EAGAIN;
508 		goto skip_cqe;
509 	}
510 
511 	/*
512 	 * Gotta tweak READ completions:
513 	 *	1) the cqe doesn't contain the sq_wptr from the wr.
514 	 *	2) opcode not reflected from the wr.
515 	 *	3) read_len not reflected from the wr.
516 	 *	4) cq_type is RQ_TYPE not SQ_TYPE.
517 	 */
518 	if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
519 
520 		/* If we have reached here because of async
521 		 * event or other error, and have egress error
522 		 * then drop
523 		 */
524 		if (CQE_TYPE(hw_cqe) == 1) {
525 			if (CQE_STATUS(hw_cqe))
526 				t4_set_wq_in_error(wq);
527 			ret = -EAGAIN;
528 			goto skip_cqe;
529 		}
530 
531 		/* If this is an unsolicited read response, then the read
532 		 * was generated by the kernel driver as part of peer-2-peer
533 		 * connection setup.  So ignore the completion.
534 		 */
535 		if (CQE_WRID_STAG(hw_cqe) == 1) {
536 			if (CQE_STATUS(hw_cqe))
537 				t4_set_wq_in_error(wq);
538 			ret = -EAGAIN;
539 			goto skip_cqe;
540 		}
541 
542 		/*
543 		 * Eat completions for unsignaled read WRs.
544 		 */
545 		if (!wq->sq.oldest_read->signaled) {
546 			advance_oldest_read(wq);
547 			ret = -EAGAIN;
548 			goto skip_cqe;
549 		}
550 
551 		/*
552 		 * Don't write to the HWCQ, so create a new read req CQE
553 		 * in local memory.
554 		 */
555 		create_read_req_cqe(wq, hw_cqe, &read_cqe);
556 		hw_cqe = &read_cqe;
557 		advance_oldest_read(wq);
558 	}
559 
560 	if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
561 		*cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
562 		t4_set_wq_in_error(wq);
563 	}
564 
565 	/*
566 	 * RECV completion.
567 	 */
568 	if (RQ_TYPE(hw_cqe)) {
569 
570 		/*
571 		 * HW only validates 4 bits of MSN.  So we must validate that
572 		 * the MSN in the SEND is the next expected MSN.  If its not,
573 		 * then we complete this with T4_ERR_MSN and mark the wq in
574 		 * error.
575 		 */
576 
577 		if (t4_rq_empty(wq)) {
578 			t4_set_wq_in_error(wq);
579 			ret = -EAGAIN;
580 			goto skip_cqe;
581 		}
582 		if (unlikely((CQE_WRID_MSN(hw_cqe) != (wq->rq.msn)))) {
583 			t4_set_wq_in_error(wq);
584 			hw_cqe->header |= htonl(V_CQE_STATUS(T4_ERR_MSN));
585 			goto proc_cqe;
586 		}
587 		goto proc_cqe;
588 	}
589 
590 	/*
591 	 * If we get here its a send completion.
592 	 *
593 	 * Handle out of order completion. These get stuffed
594 	 * in the SW SQ. Then the SW SQ is walked to move any
595 	 * now in-order completions into the SW CQ.  This handles
596 	 * 2 cases:
597 	 *	1) reaping unsignaled WRs when the first subsequent
598 	 *	   signaled WR is completed.
599 	 *	2) out of order read completions.
600 	 */
601 	if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
602 		struct t4_swsqe *swsqe;
603 
604 		PDBG("%s out of order completion going in sw_sq at idx %u\n",
605 		     __func__, CQE_WRID_SQ_IDX(hw_cqe));
606 		swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
607 		swsqe->cqe = *hw_cqe;
608 		swsqe->complete = 1;
609 		ret = -EAGAIN;
610 		goto flush_wq;
611 	}
612 
613 proc_cqe:
614 	*cqe = *hw_cqe;
615 
616 	/*
617 	 * Reap the associated WR(s) that are freed up with this
618 	 * completion.
619 	 */
620 	if (SQ_TYPE(hw_cqe)) {
621 		int idx = CQE_WRID_SQ_IDX(hw_cqe);
622 		BUG_ON(idx >= wq->sq.size);
623 
624 		/*
625 		* Account for any unsignaled completions completed by
626 		* this signaled completion.  In this case, cidx points
627 		* to the first unsignaled one, and idx points to the
628 		* signaled one.  So adjust in_use based on this delta.
629 		* if this is not completing any unsigned wrs, then the
630 		* delta will be 0. Handle wrapping also!
631 		*/
632 		if (idx < wq->sq.cidx)
633 			wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
634 		else
635 			wq->sq.in_use -= idx - wq->sq.cidx;
636 		BUG_ON(wq->sq.in_use <= 0 && wq->sq.in_use >= wq->sq.size);
637 
638 		wq->sq.cidx = (uint16_t)idx;
639 		PDBG("%s completing sq idx %u\n", __func__, wq->sq.cidx);
640 		*cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
641 		t4_sq_consume(wq);
642 	} else {
643 		PDBG("%s completing rq idx %u\n", __func__, wq->rq.cidx);
644 		*cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
645 		BUG_ON(t4_rq_empty(wq));
646 		t4_rq_consume(wq);
647 		goto skip_cqe;
648 	}
649 
650 flush_wq:
651 	/*
652 	 * Flush any completed cqes that are now in-order.
653 	 */
654 	flush_completed_wrs(wq, cq);
655 
656 skip_cqe:
657 	if (SW_CQE(hw_cqe)) {
658 		PDBG("%s cq %p cqid 0x%x skip sw cqe cidx %u\n",
659 		     __func__, cq, cq->cqid, cq->sw_cidx);
660 		t4_swcq_consume(cq);
661 	} else {
662 		PDBG("%s cq %p cqid 0x%x skip hw cqe cidx %u\n",
663 		     __func__, cq, cq->cqid, cq->cidx);
664 		t4_hwcq_consume(cq);
665 	}
666 	return ret;
667 }
668 
669 /*
670  * Get one cq entry from c4iw and map it to openib.
671  *
672  * Returns:
673  *	0			cqe returned
674  *	-ENODATA		EMPTY;
675  *	-EAGAIN			caller must try again
676  *	any other -errno	fatal error
677  */
678 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
679 {
680 	struct c4iw_qp *qhp = NULL;
681 	struct t4_cqe cqe = {0, 0}, *rd_cqe;
682 	struct t4_wq *wq;
683 	u32 credit = 0;
684 	u8 cqe_flushed;
685 	u64 cookie = 0;
686 	int ret;
687 
688 	ret = t4_next_cqe(&chp->cq, &rd_cqe);
689 
690 	if (ret)
691 		return ret;
692 
693 	qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
694 	if (!qhp)
695 		wq = NULL;
696 	else {
697 		spin_lock(&qhp->lock);
698 		wq = &(qhp->wq);
699 	}
700 	ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit);
701 	if (ret)
702 		goto out;
703 
704 	wc->wr_id = cookie;
705 	wc->qp = &qhp->ibqp;
706 	wc->vendor_err = CQE_STATUS(&cqe);
707 	wc->wc_flags = 0;
708 
709 	PDBG("%s qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x "
710 	     "lo 0x%x cookie 0x%llx\n", __func__, CQE_QPID(&cqe),
711 	     CQE_TYPE(&cqe), CQE_OPCODE(&cqe), CQE_STATUS(&cqe), CQE_LEN(&cqe),
712 	     CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe), (unsigned long long)cookie);
713 
714 	if (CQE_TYPE(&cqe) == 0) {
715 		if (!CQE_STATUS(&cqe))
716 			wc->byte_len = CQE_LEN(&cqe);
717 		else
718 			wc->byte_len = 0;
719 		wc->opcode = IB_WC_RECV;
720 		if (CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_INV ||
721 		    CQE_OPCODE(&cqe) == FW_RI_SEND_WITH_SE_INV) {
722 			wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
723 			wc->wc_flags |= IB_WC_WITH_INVALIDATE;
724 		}
725 	} else {
726 		switch (CQE_OPCODE(&cqe)) {
727 		case FW_RI_RDMA_WRITE:
728 			wc->opcode = IB_WC_RDMA_WRITE;
729 			break;
730 		case FW_RI_READ_REQ:
731 			wc->opcode = IB_WC_RDMA_READ;
732 			wc->byte_len = CQE_LEN(&cqe);
733 			break;
734 		case FW_RI_SEND_WITH_INV:
735 		case FW_RI_SEND_WITH_SE_INV:
736 			wc->opcode = IB_WC_SEND;
737 			wc->wc_flags |= IB_WC_WITH_INVALIDATE;
738 			break;
739 		case FW_RI_SEND:
740 		case FW_RI_SEND_WITH_SE:
741 			wc->opcode = IB_WC_SEND;
742 			break;
743 		case FW_RI_BIND_MW:
744 			wc->opcode = IB_WC_BIND_MW;
745 			break;
746 
747 		case FW_RI_LOCAL_INV:
748 			wc->opcode = IB_WC_LOCAL_INV;
749 			break;
750 		case FW_RI_FAST_REGISTER:
751 			wc->opcode = IB_WC_FAST_REG_MR;
752 			break;
753 		default:
754 			printk(KERN_ERR MOD "Unexpected opcode %d "
755 			       "in the CQE received for QPID=0x%0x\n",
756 			       CQE_OPCODE(&cqe), CQE_QPID(&cqe));
757 			ret = -EINVAL;
758 			goto out;
759 		}
760 	}
761 
762 	if (cqe_flushed)
763 		wc->status = IB_WC_WR_FLUSH_ERR;
764 	else {
765 
766 		switch (CQE_STATUS(&cqe)) {
767 		case T4_ERR_SUCCESS:
768 			wc->status = IB_WC_SUCCESS;
769 			break;
770 		case T4_ERR_STAG:
771 			wc->status = IB_WC_LOC_ACCESS_ERR;
772 			break;
773 		case T4_ERR_PDID:
774 			wc->status = IB_WC_LOC_PROT_ERR;
775 			break;
776 		case T4_ERR_QPID:
777 		case T4_ERR_ACCESS:
778 			wc->status = IB_WC_LOC_ACCESS_ERR;
779 			break;
780 		case T4_ERR_WRAP:
781 			wc->status = IB_WC_GENERAL_ERR;
782 			break;
783 		case T4_ERR_BOUND:
784 			wc->status = IB_WC_LOC_LEN_ERR;
785 			break;
786 		case T4_ERR_INVALIDATE_SHARED_MR:
787 		case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
788 			wc->status = IB_WC_MW_BIND_ERR;
789 			break;
790 		case T4_ERR_CRC:
791 		case T4_ERR_MARKER:
792 		case T4_ERR_PDU_LEN_ERR:
793 		case T4_ERR_OUT_OF_RQE:
794 		case T4_ERR_DDP_VERSION:
795 		case T4_ERR_RDMA_VERSION:
796 		case T4_ERR_DDP_QUEUE_NUM:
797 		case T4_ERR_MSN:
798 		case T4_ERR_TBIT:
799 		case T4_ERR_MO:
800 		case T4_ERR_MSN_RANGE:
801 		case T4_ERR_IRD_OVERFLOW:
802 		case T4_ERR_OPCODE:
803 		case T4_ERR_INTERNAL_ERR:
804 			wc->status = IB_WC_FATAL_ERR;
805 			break;
806 		case T4_ERR_SWFLUSH:
807 			wc->status = IB_WC_WR_FLUSH_ERR;
808 			break;
809 		default:
810 			printk(KERN_ERR MOD
811 			       "Unexpected cqe_status 0x%x for QPID=0x%0x\n",
812 			       CQE_STATUS(&cqe), CQE_QPID(&cqe));
813 			ret = -EINVAL;
814 		}
815 	}
816 out:
817 	if (wq)
818 		spin_unlock(&qhp->lock);
819 	return ret;
820 }
821 
822 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
823 {
824 	struct c4iw_cq *chp;
825 	unsigned long flags;
826 	int npolled;
827 	int err = 0;
828 
829 	chp = to_c4iw_cq(ibcq);
830 
831 	spin_lock_irqsave(&chp->lock, flags);
832 	for (npolled = 0; npolled < num_entries; ++npolled) {
833 		do {
834 			err = c4iw_poll_cq_one(chp, wc + npolled);
835 		} while (err == -EAGAIN);
836 		if (err)
837 			break;
838 	}
839 	spin_unlock_irqrestore(&chp->lock, flags);
840 	return !err || err == -ENODATA ? npolled : err;
841 }
842 
843 int c4iw_destroy_cq(struct ib_cq *ib_cq)
844 {
845 	struct c4iw_cq *chp;
846 	struct c4iw_ucontext *ucontext;
847 
848 	PDBG("%s ib_cq %p\n", __func__, ib_cq);
849 	chp = to_c4iw_cq(ib_cq);
850 
851 	remove_handle(chp->rhp, &chp->rhp->cqidr, chp->cq.cqid);
852 	atomic_dec(&chp->refcnt);
853 	wait_event(chp->wait, !atomic_read(&chp->refcnt));
854 
855 	ucontext = ib_cq->uobject ? to_c4iw_ucontext(ib_cq->uobject->context)
856 				  : NULL;
857 	destroy_cq(&chp->rhp->rdev, &chp->cq,
858 		   ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx);
859 	kfree(chp);
860 	return 0;
861 }
862 
863 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev, int entries,
864 			     int vector, struct ib_ucontext *ib_context,
865 			     struct ib_udata *udata)
866 {
867 	struct c4iw_dev *rhp;
868 	struct c4iw_cq *chp;
869 	struct c4iw_create_cq_resp uresp;
870 	struct c4iw_ucontext *ucontext = NULL;
871 	int ret;
872 	size_t memsize, hwentries;
873 	struct c4iw_mm_entry *mm, *mm2;
874 
875 	PDBG("%s ib_dev %p entries %d\n", __func__, ibdev, entries);
876 
877 	rhp = to_c4iw_dev(ibdev);
878 
879 	chp = kzalloc(sizeof(*chp), GFP_KERNEL);
880 	if (!chp)
881 		return ERR_PTR(-ENOMEM);
882 
883 	if (ib_context)
884 		ucontext = to_c4iw_ucontext(ib_context);
885 
886 	/* account for the status page. */
887 	entries++;
888 
889 	/* IQ needs one extra entry to differentiate full vs empty. */
890 	entries++;
891 
892 	/*
893 	 * entries must be multiple of 16 for HW.
894 	 */
895 	entries = roundup(entries, 16);
896 
897 	/*
898 	 * Make actual HW queue 2x to avoid cdix_inc overflows.
899 	 */
900 	hwentries = min(entries * 2, T4_MAX_IQ_SIZE);
901 
902 	/*
903 	 * Make HW queue at least 64 entries so GTS updates aren't too
904 	 * frequent.
905 	 */
906 	if (hwentries < 64)
907 		hwentries = 64;
908 
909 	memsize = hwentries * sizeof *chp->cq.queue;
910 
911 	/*
912 	 * memsize must be a multiple of the page size if its a user cq.
913 	 */
914 	if (ucontext) {
915 		memsize = roundup(memsize, PAGE_SIZE);
916 		hwentries = memsize / sizeof *chp->cq.queue;
917 		while (hwentries > T4_MAX_IQ_SIZE) {
918 			memsize -= PAGE_SIZE;
919 			hwentries = memsize / sizeof *chp->cq.queue;
920 		}
921 	}
922 	chp->cq.size = hwentries;
923 	chp->cq.memsize = memsize;
924 
925 	ret = create_cq(&rhp->rdev, &chp->cq,
926 			ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
927 	if (ret)
928 		goto err1;
929 
930 	chp->rhp = rhp;
931 	chp->cq.size--;				/* status page */
932 	chp->ibcq.cqe = entries - 2;
933 	spin_lock_init(&chp->lock);
934 	spin_lock_init(&chp->comp_handler_lock);
935 	atomic_set(&chp->refcnt, 1);
936 	init_waitqueue_head(&chp->wait);
937 	ret = insert_handle(rhp, &rhp->cqidr, chp, chp->cq.cqid);
938 	if (ret)
939 		goto err2;
940 
941 	if (ucontext) {
942 		mm = kmalloc(sizeof *mm, GFP_KERNEL);
943 		if (!mm)
944 			goto err3;
945 		mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
946 		if (!mm2)
947 			goto err4;
948 
949 		memset(&uresp, 0, sizeof(uresp));
950 		uresp.qid_mask = rhp->rdev.cqmask;
951 		uresp.cqid = chp->cq.cqid;
952 		uresp.size = chp->cq.size;
953 		uresp.memsize = chp->cq.memsize;
954 		spin_lock(&ucontext->mmap_lock);
955 		uresp.key = ucontext->key;
956 		ucontext->key += PAGE_SIZE;
957 		uresp.gts_key = ucontext->key;
958 		ucontext->key += PAGE_SIZE;
959 		spin_unlock(&ucontext->mmap_lock);
960 		ret = ib_copy_to_udata(udata, &uresp, sizeof uresp);
961 		if (ret)
962 			goto err5;
963 
964 		mm->key = uresp.key;
965 		mm->addr = virt_to_phys(chp->cq.queue);
966 		mm->len = chp->cq.memsize;
967 		insert_mmap(ucontext, mm);
968 
969 		mm2->key = uresp.gts_key;
970 		mm2->addr = chp->cq.ugts;
971 		mm2->len = PAGE_SIZE;
972 		insert_mmap(ucontext, mm2);
973 	}
974 	PDBG("%s cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
975 	     __func__, chp->cq.cqid, chp, chp->cq.size,
976 	     chp->cq.memsize,
977 	     (unsigned long long) chp->cq.dma_addr);
978 	return &chp->ibcq;
979 err5:
980 	kfree(mm2);
981 err4:
982 	kfree(mm);
983 err3:
984 	remove_handle(rhp, &rhp->cqidr, chp->cq.cqid);
985 err2:
986 	destroy_cq(&chp->rhp->rdev, &chp->cq,
987 		   ucontext ? &ucontext->uctx : &rhp->rdev.uctx);
988 err1:
989 	kfree(chp);
990 	return ERR_PTR(ret);
991 }
992 
993 int c4iw_resize_cq(struct ib_cq *cq, int cqe, struct ib_udata *udata)
994 {
995 	return -ENOSYS;
996 }
997 
998 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
999 {
1000 	struct c4iw_cq *chp;
1001 	int ret;
1002 	unsigned long flag;
1003 
1004 	chp = to_c4iw_cq(ibcq);
1005 	spin_lock_irqsave(&chp->lock, flag);
1006 	ret = t4_arm_cq(&chp->cq,
1007 			(flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
1008 	spin_unlock_irqrestore(&chp->lock, flag);
1009 	if (ret && !(flags & IB_CQ_REPORT_MISSED_EVENTS))
1010 		ret = 0;
1011 	return ret;
1012 }
1013