xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/cq.c (revision 151f4e2b)
1 /*
2  * Copyright (c) 2009-2010 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <rdma/uverbs_ioctl.h>
34 
35 #include "iw_cxgb4.h"
36 
37 static int destroy_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
38 		      struct c4iw_dev_ucontext *uctx, struct sk_buff *skb,
39 		      struct c4iw_wr_wait *wr_waitp)
40 {
41 	struct fw_ri_res_wr *res_wr;
42 	struct fw_ri_res *res;
43 	int wr_len;
44 	int ret;
45 
46 	wr_len = sizeof *res_wr + sizeof *res;
47 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
48 
49 	res_wr = __skb_put_zero(skb, wr_len);
50 	res_wr->op_nres = cpu_to_be32(
51 			FW_WR_OP_V(FW_RI_RES_WR) |
52 			FW_RI_RES_WR_NRES_V(1) |
53 			FW_WR_COMPL_F);
54 	res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
55 	res_wr->cookie = (uintptr_t)wr_waitp;
56 	res = res_wr->res;
57 	res->u.cq.restype = FW_RI_RES_TYPE_CQ;
58 	res->u.cq.op = FW_RI_RES_OP_RESET;
59 	res->u.cq.iqid = cpu_to_be32(cq->cqid);
60 
61 	c4iw_init_wr_wait(wr_waitp);
62 	ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
63 
64 	kfree(cq->sw_queue);
65 	dma_free_coherent(&(rdev->lldi.pdev->dev),
66 			  cq->memsize, cq->queue,
67 			  dma_unmap_addr(cq, mapping));
68 	c4iw_put_cqid(rdev, cq->cqid, uctx);
69 	return ret;
70 }
71 
72 static int create_cq(struct c4iw_rdev *rdev, struct t4_cq *cq,
73 		     struct c4iw_dev_ucontext *uctx,
74 		     struct c4iw_wr_wait *wr_waitp)
75 {
76 	struct fw_ri_res_wr *res_wr;
77 	struct fw_ri_res *res;
78 	int wr_len;
79 	int user = (uctx != &rdev->uctx);
80 	int ret;
81 	struct sk_buff *skb;
82 	struct c4iw_ucontext *ucontext = NULL;
83 
84 	if (user)
85 		ucontext = container_of(uctx, struct c4iw_ucontext, uctx);
86 
87 	cq->cqid = c4iw_get_cqid(rdev, uctx);
88 	if (!cq->cqid) {
89 		ret = -ENOMEM;
90 		goto err1;
91 	}
92 
93 	if (!user) {
94 		cq->sw_queue = kzalloc(cq->memsize, GFP_KERNEL);
95 		if (!cq->sw_queue) {
96 			ret = -ENOMEM;
97 			goto err2;
98 		}
99 	}
100 	cq->queue = dma_alloc_coherent(&rdev->lldi.pdev->dev, cq->memsize,
101 				       &cq->dma_addr, GFP_KERNEL);
102 	if (!cq->queue) {
103 		ret = -ENOMEM;
104 		goto err3;
105 	}
106 	dma_unmap_addr_set(cq, mapping, cq->dma_addr);
107 	memset(cq->queue, 0, cq->memsize);
108 
109 	if (user && ucontext->is_32b_cqe) {
110 		cq->qp_errp = &((struct t4_status_page *)
111 		((u8 *)cq->queue + (cq->size - 1) *
112 		 (sizeof(*cq->queue) / 2)))->qp_err;
113 	} else {
114 		cq->qp_errp = &((struct t4_status_page *)
115 		((u8 *)cq->queue + (cq->size - 1) *
116 		 sizeof(*cq->queue)))->qp_err;
117 	}
118 
119 	/* build fw_ri_res_wr */
120 	wr_len = sizeof *res_wr + sizeof *res;
121 
122 	skb = alloc_skb(wr_len, GFP_KERNEL);
123 	if (!skb) {
124 		ret = -ENOMEM;
125 		goto err4;
126 	}
127 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, 0);
128 
129 	res_wr = __skb_put_zero(skb, wr_len);
130 	res_wr->op_nres = cpu_to_be32(
131 			FW_WR_OP_V(FW_RI_RES_WR) |
132 			FW_RI_RES_WR_NRES_V(1) |
133 			FW_WR_COMPL_F);
134 	res_wr->len16_pkd = cpu_to_be32(DIV_ROUND_UP(wr_len, 16));
135 	res_wr->cookie = (uintptr_t)wr_waitp;
136 	res = res_wr->res;
137 	res->u.cq.restype = FW_RI_RES_TYPE_CQ;
138 	res->u.cq.op = FW_RI_RES_OP_WRITE;
139 	res->u.cq.iqid = cpu_to_be32(cq->cqid);
140 	res->u.cq.iqandst_to_iqandstindex = cpu_to_be32(
141 			FW_RI_RES_WR_IQANUS_V(0) |
142 			FW_RI_RES_WR_IQANUD_V(1) |
143 			FW_RI_RES_WR_IQANDST_F |
144 			FW_RI_RES_WR_IQANDSTINDEX_V(
145 				rdev->lldi.ciq_ids[cq->vector]));
146 	res->u.cq.iqdroprss_to_iqesize = cpu_to_be16(
147 			FW_RI_RES_WR_IQDROPRSS_F |
148 			FW_RI_RES_WR_IQPCIECH_V(2) |
149 			FW_RI_RES_WR_IQINTCNTTHRESH_V(0) |
150 			FW_RI_RES_WR_IQO_F |
151 			((user && ucontext->is_32b_cqe) ?
152 			 FW_RI_RES_WR_IQESIZE_V(1) :
153 			 FW_RI_RES_WR_IQESIZE_V(2)));
154 	res->u.cq.iqsize = cpu_to_be16(cq->size);
155 	res->u.cq.iqaddr = cpu_to_be64(cq->dma_addr);
156 
157 	c4iw_init_wr_wait(wr_waitp);
158 	ret = c4iw_ref_send_wait(rdev, skb, wr_waitp, 0, 0, __func__);
159 	if (ret)
160 		goto err4;
161 
162 	cq->gen = 1;
163 	cq->gts = rdev->lldi.gts_reg;
164 	cq->rdev = rdev;
165 
166 	cq->bar2_va = c4iw_bar2_addrs(rdev, cq->cqid, CXGB4_BAR2_QTYPE_INGRESS,
167 				      &cq->bar2_qid,
168 				      user ? &cq->bar2_pa : NULL);
169 	if (user && !cq->bar2_pa) {
170 		pr_warn("%s: cqid %u not in BAR2 range\n",
171 			pci_name(rdev->lldi.pdev), cq->cqid);
172 		ret = -EINVAL;
173 		goto err4;
174 	}
175 	return 0;
176 err4:
177 	dma_free_coherent(&rdev->lldi.pdev->dev, cq->memsize, cq->queue,
178 			  dma_unmap_addr(cq, mapping));
179 err3:
180 	kfree(cq->sw_queue);
181 err2:
182 	c4iw_put_cqid(rdev, cq->cqid, uctx);
183 err1:
184 	return ret;
185 }
186 
187 static void insert_recv_cqe(struct t4_wq *wq, struct t4_cq *cq, u32 srqidx)
188 {
189 	struct t4_cqe cqe;
190 
191 	pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
192 		 wq, cq, cq->sw_cidx, cq->sw_pidx);
193 	memset(&cqe, 0, sizeof(cqe));
194 	cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
195 				 CQE_OPCODE_V(FW_RI_SEND) |
196 				 CQE_TYPE_V(0) |
197 				 CQE_SWCQE_V(1) |
198 				 CQE_QPID_V(wq->sq.qid));
199 	cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
200 	if (srqidx)
201 		cqe.u.srcqe.abs_rqe_idx = cpu_to_be32(srqidx);
202 	cq->sw_queue[cq->sw_pidx] = cqe;
203 	t4_swcq_produce(cq);
204 }
205 
206 int c4iw_flush_rq(struct t4_wq *wq, struct t4_cq *cq, int count)
207 {
208 	int flushed = 0;
209 	int in_use = wq->rq.in_use - count;
210 
211 	pr_debug("wq %p cq %p rq.in_use %u skip count %u\n",
212 		 wq, cq, wq->rq.in_use, count);
213 	while (in_use--) {
214 		insert_recv_cqe(wq, cq, 0);
215 		flushed++;
216 	}
217 	return flushed;
218 }
219 
220 static void insert_sq_cqe(struct t4_wq *wq, struct t4_cq *cq,
221 			  struct t4_swsqe *swcqe)
222 {
223 	struct t4_cqe cqe;
224 
225 	pr_debug("wq %p cq %p sw_cidx %u sw_pidx %u\n",
226 		 wq, cq, cq->sw_cidx, cq->sw_pidx);
227 	memset(&cqe, 0, sizeof(cqe));
228 	cqe.header = cpu_to_be32(CQE_STATUS_V(T4_ERR_SWFLUSH) |
229 				 CQE_OPCODE_V(swcqe->opcode) |
230 				 CQE_TYPE_V(1) |
231 				 CQE_SWCQE_V(1) |
232 				 CQE_QPID_V(wq->sq.qid));
233 	CQE_WRID_SQ_IDX(&cqe) = swcqe->idx;
234 	cqe.bits_type_ts = cpu_to_be64(CQE_GENBIT_V((u64)cq->gen));
235 	cq->sw_queue[cq->sw_pidx] = cqe;
236 	t4_swcq_produce(cq);
237 }
238 
239 static void advance_oldest_read(struct t4_wq *wq);
240 
241 int c4iw_flush_sq(struct c4iw_qp *qhp)
242 {
243 	int flushed = 0;
244 	struct t4_wq *wq = &qhp->wq;
245 	struct c4iw_cq *chp = to_c4iw_cq(qhp->ibqp.send_cq);
246 	struct t4_cq *cq = &chp->cq;
247 	int idx;
248 	struct t4_swsqe *swsqe;
249 
250 	if (wq->sq.flush_cidx == -1)
251 		wq->sq.flush_cidx = wq->sq.cidx;
252 	idx = wq->sq.flush_cidx;
253 	while (idx != wq->sq.pidx) {
254 		swsqe = &wq->sq.sw_sq[idx];
255 		swsqe->flushed = 1;
256 		insert_sq_cqe(wq, cq, swsqe);
257 		if (wq->sq.oldest_read == swsqe) {
258 			advance_oldest_read(wq);
259 		}
260 		flushed++;
261 		if (++idx == wq->sq.size)
262 			idx = 0;
263 	}
264 	wq->sq.flush_cidx += flushed;
265 	if (wq->sq.flush_cidx >= wq->sq.size)
266 		wq->sq.flush_cidx -= wq->sq.size;
267 	return flushed;
268 }
269 
270 static void flush_completed_wrs(struct t4_wq *wq, struct t4_cq *cq)
271 {
272 	struct t4_swsqe *swsqe;
273 	int cidx;
274 
275 	if (wq->sq.flush_cidx == -1)
276 		wq->sq.flush_cidx = wq->sq.cidx;
277 	cidx = wq->sq.flush_cidx;
278 
279 	while (cidx != wq->sq.pidx) {
280 		swsqe = &wq->sq.sw_sq[cidx];
281 		if (!swsqe->signaled) {
282 			if (++cidx == wq->sq.size)
283 				cidx = 0;
284 		} else if (swsqe->complete) {
285 
286 			/*
287 			 * Insert this completed cqe into the swcq.
288 			 */
289 			pr_debug("moving cqe into swcq sq idx %u cq idx %u\n",
290 				 cidx, cq->sw_pidx);
291 			swsqe->cqe.header |= htonl(CQE_SWCQE_V(1));
292 			cq->sw_queue[cq->sw_pidx] = swsqe->cqe;
293 			t4_swcq_produce(cq);
294 			swsqe->flushed = 1;
295 			if (++cidx == wq->sq.size)
296 				cidx = 0;
297 			wq->sq.flush_cidx = cidx;
298 		} else
299 			break;
300 	}
301 }
302 
303 static void create_read_req_cqe(struct t4_wq *wq, struct t4_cqe *hw_cqe,
304 		struct t4_cqe *read_cqe)
305 {
306 	read_cqe->u.scqe.cidx = wq->sq.oldest_read->idx;
307 	read_cqe->len = htonl(wq->sq.oldest_read->read_len);
308 	read_cqe->header = htonl(CQE_QPID_V(CQE_QPID(hw_cqe)) |
309 			CQE_SWCQE_V(SW_CQE(hw_cqe)) |
310 			CQE_OPCODE_V(FW_RI_READ_REQ) |
311 			CQE_TYPE_V(1));
312 	read_cqe->bits_type_ts = hw_cqe->bits_type_ts;
313 }
314 
315 static void advance_oldest_read(struct t4_wq *wq)
316 {
317 
318 	u32 rptr = wq->sq.oldest_read - wq->sq.sw_sq + 1;
319 
320 	if (rptr == wq->sq.size)
321 		rptr = 0;
322 	while (rptr != wq->sq.pidx) {
323 		wq->sq.oldest_read = &wq->sq.sw_sq[rptr];
324 
325 		if (wq->sq.oldest_read->opcode == FW_RI_READ_REQ)
326 			return;
327 		if (++rptr == wq->sq.size)
328 			rptr = 0;
329 	}
330 	wq->sq.oldest_read = NULL;
331 }
332 
333 /*
334  * Move all CQEs from the HWCQ into the SWCQ.
335  * Deal with out-of-order and/or completions that complete
336  * prior unsignalled WRs.
337  */
338 void c4iw_flush_hw_cq(struct c4iw_cq *chp, struct c4iw_qp *flush_qhp)
339 {
340 	struct t4_cqe *hw_cqe, *swcqe, read_cqe;
341 	struct c4iw_qp *qhp;
342 	struct t4_swsqe *swsqe;
343 	int ret;
344 
345 	pr_debug("cqid 0x%x\n", chp->cq.cqid);
346 	ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
347 
348 	/*
349 	 * This logic is similar to poll_cq(), but not quite the same
350 	 * unfortunately.  Need to move pertinent HW CQEs to the SW CQ but
351 	 * also do any translation magic that poll_cq() normally does.
352 	 */
353 	while (!ret) {
354 		qhp = get_qhp(chp->rhp, CQE_QPID(hw_cqe));
355 
356 		/*
357 		 * drop CQEs with no associated QP
358 		 */
359 		if (qhp == NULL)
360 			goto next_cqe;
361 
362 		if (flush_qhp != qhp) {
363 			spin_lock(&qhp->lock);
364 
365 			if (qhp->wq.flushed == 1)
366 				goto next_cqe;
367 		}
368 
369 		if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE)
370 			goto next_cqe;
371 
372 		if (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP) {
373 
374 			/* If we have reached here because of async
375 			 * event or other error, and have egress error
376 			 * then drop
377 			 */
378 			if (CQE_TYPE(hw_cqe) == 1)
379 				goto next_cqe;
380 
381 			/* drop peer2peer RTR reads.
382 			 */
383 			if (CQE_WRID_STAG(hw_cqe) == 1)
384 				goto next_cqe;
385 
386 			/*
387 			 * Eat completions for unsignaled read WRs.
388 			 */
389 			if (!qhp->wq.sq.oldest_read->signaled) {
390 				advance_oldest_read(&qhp->wq);
391 				goto next_cqe;
392 			}
393 
394 			/*
395 			 * Don't write to the HWCQ, create a new read req CQE
396 			 * in local memory and move it into the swcq.
397 			 */
398 			create_read_req_cqe(&qhp->wq, hw_cqe, &read_cqe);
399 			hw_cqe = &read_cqe;
400 			advance_oldest_read(&qhp->wq);
401 		}
402 
403 		/* if its a SQ completion, then do the magic to move all the
404 		 * unsignaled and now in-order completions into the swcq.
405 		 */
406 		if (SQ_TYPE(hw_cqe)) {
407 			swsqe = &qhp->wq.sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
408 			swsqe->cqe = *hw_cqe;
409 			swsqe->complete = 1;
410 			flush_completed_wrs(&qhp->wq, &chp->cq);
411 		} else {
412 			swcqe = &chp->cq.sw_queue[chp->cq.sw_pidx];
413 			*swcqe = *hw_cqe;
414 			swcqe->header |= cpu_to_be32(CQE_SWCQE_V(1));
415 			t4_swcq_produce(&chp->cq);
416 		}
417 next_cqe:
418 		t4_hwcq_consume(&chp->cq);
419 		ret = t4_next_hw_cqe(&chp->cq, &hw_cqe);
420 		if (qhp && flush_qhp != qhp)
421 			spin_unlock(&qhp->lock);
422 	}
423 }
424 
425 static int cqe_completes_wr(struct t4_cqe *cqe, struct t4_wq *wq)
426 {
427 	if (DRAIN_CQE(cqe)) {
428 		WARN_ONCE(1, "Unexpected DRAIN CQE qp id %u!\n", wq->sq.qid);
429 		return 0;
430 	}
431 
432 	if (CQE_OPCODE(cqe) == FW_RI_TERMINATE)
433 		return 0;
434 
435 	if ((CQE_OPCODE(cqe) == FW_RI_RDMA_WRITE) && RQ_TYPE(cqe))
436 		return 0;
437 
438 	if ((CQE_OPCODE(cqe) == FW_RI_READ_RESP) && SQ_TYPE(cqe))
439 		return 0;
440 
441 	if (CQE_SEND_OPCODE(cqe) && RQ_TYPE(cqe) && t4_rq_empty(wq))
442 		return 0;
443 	return 1;
444 }
445 
446 void c4iw_count_rcqes(struct t4_cq *cq, struct t4_wq *wq, int *count)
447 {
448 	struct t4_cqe *cqe;
449 	u32 ptr;
450 
451 	*count = 0;
452 	pr_debug("count zero %d\n", *count);
453 	ptr = cq->sw_cidx;
454 	while (ptr != cq->sw_pidx) {
455 		cqe = &cq->sw_queue[ptr];
456 		if (RQ_TYPE(cqe) && (CQE_OPCODE(cqe) != FW_RI_READ_RESP) &&
457 		    (CQE_QPID(cqe) == wq->sq.qid) && cqe_completes_wr(cqe, wq))
458 			(*count)++;
459 		if (++ptr == cq->size)
460 			ptr = 0;
461 	}
462 	pr_debug("cq %p count %d\n", cq, *count);
463 }
464 
465 static void post_pending_srq_wrs(struct t4_srq *srq)
466 {
467 	struct t4_srq_pending_wr *pwr;
468 	u16 idx = 0;
469 
470 	while (srq->pending_in_use) {
471 		pwr = &srq->pending_wrs[srq->pending_cidx];
472 		srq->sw_rq[srq->pidx].wr_id = pwr->wr_id;
473 		srq->sw_rq[srq->pidx].valid = 1;
474 
475 		pr_debug("%s posting pending cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n",
476 			 __func__,
477 			 srq->cidx, srq->pidx, srq->wq_pidx,
478 			 srq->in_use, srq->size,
479 			 (unsigned long long)pwr->wr_id);
480 
481 		c4iw_copy_wr_to_srq(srq, &pwr->wqe, pwr->len16);
482 		t4_srq_consume_pending_wr(srq);
483 		t4_srq_produce(srq, pwr->len16);
484 		idx += DIV_ROUND_UP(pwr->len16 * 16, T4_EQ_ENTRY_SIZE);
485 	}
486 
487 	if (idx) {
488 		t4_ring_srq_db(srq, idx, pwr->len16, &pwr->wqe);
489 		srq->queue[srq->size].status.host_wq_pidx =
490 			srq->wq_pidx;
491 	}
492 }
493 
494 static u64 reap_srq_cqe(struct t4_cqe *hw_cqe, struct t4_srq *srq)
495 {
496 	int rel_idx = CQE_ABS_RQE_IDX(hw_cqe) - srq->rqt_abs_idx;
497 	u64 wr_id;
498 
499 	srq->sw_rq[rel_idx].valid = 0;
500 	wr_id = srq->sw_rq[rel_idx].wr_id;
501 
502 	if (rel_idx == srq->cidx) {
503 		pr_debug("%s in order cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u wr_id %llx\n",
504 			 __func__, rel_idx, srq->cidx, srq->pidx,
505 			 srq->wq_pidx, srq->in_use, srq->size,
506 			 (unsigned long long)srq->sw_rq[rel_idx].wr_id);
507 		t4_srq_consume(srq);
508 		while (srq->ooo_count && !srq->sw_rq[srq->cidx].valid) {
509 			pr_debug("%s eat ooo cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n",
510 				 __func__, srq->cidx, srq->pidx,
511 				 srq->wq_pidx, srq->in_use,
512 				 srq->size, srq->ooo_count,
513 				 (unsigned long long)
514 				 srq->sw_rq[srq->cidx].wr_id);
515 			t4_srq_consume_ooo(srq);
516 		}
517 		if (srq->ooo_count == 0 && srq->pending_in_use)
518 			post_pending_srq_wrs(srq);
519 	} else {
520 		pr_debug("%s ooo cqe rel_idx %u cidx %u pidx %u wq_pidx %u in_use %u rq_size %u ooo_count %u wr_id %llx\n",
521 			 __func__, rel_idx, srq->cidx,
522 			 srq->pidx, srq->wq_pidx,
523 			 srq->in_use, srq->size,
524 			 srq->ooo_count,
525 			 (unsigned long long)srq->sw_rq[rel_idx].wr_id);
526 		t4_srq_produce_ooo(srq);
527 	}
528 	return wr_id;
529 }
530 
531 /*
532  * poll_cq
533  *
534  * Caller must:
535  *     check the validity of the first CQE,
536  *     supply the wq assicated with the qpid.
537  *
538  * credit: cq credit to return to sge.
539  * cqe_flushed: 1 iff the CQE is flushed.
540  * cqe: copy of the polled CQE.
541  *
542  * return value:
543  *    0		    CQE returned ok.
544  *    -EAGAIN       CQE skipped, try again.
545  *    -EOVERFLOW    CQ overflow detected.
546  */
547 static int poll_cq(struct t4_wq *wq, struct t4_cq *cq, struct t4_cqe *cqe,
548 		   u8 *cqe_flushed, u64 *cookie, u32 *credit,
549 		   struct t4_srq *srq)
550 {
551 	int ret = 0;
552 	struct t4_cqe *hw_cqe, read_cqe;
553 
554 	*cqe_flushed = 0;
555 	*credit = 0;
556 	ret = t4_next_cqe(cq, &hw_cqe);
557 	if (ret)
558 		return ret;
559 
560 	pr_debug("CQE OVF %u qpid 0x%0x genbit %u type %u status 0x%0x opcode 0x%0x len 0x%0x wrid_hi_stag 0x%x wrid_low_msn 0x%x\n",
561 		 CQE_OVFBIT(hw_cqe), CQE_QPID(hw_cqe),
562 		 CQE_GENBIT(hw_cqe), CQE_TYPE(hw_cqe), CQE_STATUS(hw_cqe),
563 		 CQE_OPCODE(hw_cqe), CQE_LEN(hw_cqe), CQE_WRID_HI(hw_cqe),
564 		 CQE_WRID_LOW(hw_cqe));
565 
566 	/*
567 	 * skip cqe's not affiliated with a QP.
568 	 */
569 	if (wq == NULL) {
570 		ret = -EAGAIN;
571 		goto skip_cqe;
572 	}
573 
574 	/*
575 	* skip hw cqe's if the wq is flushed.
576 	*/
577 	if (wq->flushed && !SW_CQE(hw_cqe)) {
578 		ret = -EAGAIN;
579 		goto skip_cqe;
580 	}
581 
582 	/*
583 	 * skip TERMINATE cqes...
584 	 */
585 	if (CQE_OPCODE(hw_cqe) == FW_RI_TERMINATE) {
586 		ret = -EAGAIN;
587 		goto skip_cqe;
588 	}
589 
590 	/*
591 	 * Special cqe for drain WR completions...
592 	 */
593 	if (DRAIN_CQE(hw_cqe)) {
594 		*cookie = CQE_DRAIN_COOKIE(hw_cqe);
595 		*cqe = *hw_cqe;
596 		goto skip_cqe;
597 	}
598 
599 	/*
600 	 * Gotta tweak READ completions:
601 	 *	1) the cqe doesn't contain the sq_wptr from the wr.
602 	 *	2) opcode not reflected from the wr.
603 	 *	3) read_len not reflected from the wr.
604 	 *	4) cq_type is RQ_TYPE not SQ_TYPE.
605 	 */
606 	if (RQ_TYPE(hw_cqe) && (CQE_OPCODE(hw_cqe) == FW_RI_READ_RESP)) {
607 
608 		/* If we have reached here because of async
609 		 * event or other error, and have egress error
610 		 * then drop
611 		 */
612 		if (CQE_TYPE(hw_cqe) == 1) {
613 			if (CQE_STATUS(hw_cqe))
614 				t4_set_wq_in_error(wq, 0);
615 			ret = -EAGAIN;
616 			goto skip_cqe;
617 		}
618 
619 		/* If this is an unsolicited read response, then the read
620 		 * was generated by the kernel driver as part of peer-2-peer
621 		 * connection setup.  So ignore the completion.
622 		 */
623 		if (CQE_WRID_STAG(hw_cqe) == 1) {
624 			if (CQE_STATUS(hw_cqe))
625 				t4_set_wq_in_error(wq, 0);
626 			ret = -EAGAIN;
627 			goto skip_cqe;
628 		}
629 
630 		/*
631 		 * Eat completions for unsignaled read WRs.
632 		 */
633 		if (!wq->sq.oldest_read->signaled) {
634 			advance_oldest_read(wq);
635 			ret = -EAGAIN;
636 			goto skip_cqe;
637 		}
638 
639 		/*
640 		 * Don't write to the HWCQ, so create a new read req CQE
641 		 * in local memory.
642 		 */
643 		create_read_req_cqe(wq, hw_cqe, &read_cqe);
644 		hw_cqe = &read_cqe;
645 		advance_oldest_read(wq);
646 	}
647 
648 	if (CQE_STATUS(hw_cqe) || t4_wq_in_error(wq)) {
649 		*cqe_flushed = (CQE_STATUS(hw_cqe) == T4_ERR_SWFLUSH);
650 		t4_set_wq_in_error(wq, 0);
651 	}
652 
653 	/*
654 	 * RECV completion.
655 	 */
656 	if (RQ_TYPE(hw_cqe)) {
657 
658 		/*
659 		 * HW only validates 4 bits of MSN.  So we must validate that
660 		 * the MSN in the SEND is the next expected MSN.  If its not,
661 		 * then we complete this with T4_ERR_MSN and mark the wq in
662 		 * error.
663 		 */
664 		if (unlikely(!CQE_STATUS(hw_cqe) &&
665 			     CQE_WRID_MSN(hw_cqe) != wq->rq.msn)) {
666 			t4_set_wq_in_error(wq, 0);
667 			hw_cqe->header |= cpu_to_be32(CQE_STATUS_V(T4_ERR_MSN));
668 		}
669 		goto proc_cqe;
670 	}
671 
672 	/*
673 	 * If we get here its a send completion.
674 	 *
675 	 * Handle out of order completion. These get stuffed
676 	 * in the SW SQ. Then the SW SQ is walked to move any
677 	 * now in-order completions into the SW CQ.  This handles
678 	 * 2 cases:
679 	 *	1) reaping unsignaled WRs when the first subsequent
680 	 *	   signaled WR is completed.
681 	 *	2) out of order read completions.
682 	 */
683 	if (!SW_CQE(hw_cqe) && (CQE_WRID_SQ_IDX(hw_cqe) != wq->sq.cidx)) {
684 		struct t4_swsqe *swsqe;
685 
686 		pr_debug("out of order completion going in sw_sq at idx %u\n",
687 			 CQE_WRID_SQ_IDX(hw_cqe));
688 		swsqe = &wq->sq.sw_sq[CQE_WRID_SQ_IDX(hw_cqe)];
689 		swsqe->cqe = *hw_cqe;
690 		swsqe->complete = 1;
691 		ret = -EAGAIN;
692 		goto flush_wq;
693 	}
694 
695 proc_cqe:
696 	*cqe = *hw_cqe;
697 
698 	/*
699 	 * Reap the associated WR(s) that are freed up with this
700 	 * completion.
701 	 */
702 	if (SQ_TYPE(hw_cqe)) {
703 		int idx = CQE_WRID_SQ_IDX(hw_cqe);
704 
705 		/*
706 		* Account for any unsignaled completions completed by
707 		* this signaled completion.  In this case, cidx points
708 		* to the first unsignaled one, and idx points to the
709 		* signaled one.  So adjust in_use based on this delta.
710 		* if this is not completing any unsigned wrs, then the
711 		* delta will be 0. Handle wrapping also!
712 		*/
713 		if (idx < wq->sq.cidx)
714 			wq->sq.in_use -= wq->sq.size + idx - wq->sq.cidx;
715 		else
716 			wq->sq.in_use -= idx - wq->sq.cidx;
717 
718 		wq->sq.cidx = (uint16_t)idx;
719 		pr_debug("completing sq idx %u\n", wq->sq.cidx);
720 		*cookie = wq->sq.sw_sq[wq->sq.cidx].wr_id;
721 		if (c4iw_wr_log)
722 			c4iw_log_wr_stats(wq, hw_cqe);
723 		t4_sq_consume(wq);
724 	} else {
725 		if (!srq) {
726 			pr_debug("completing rq idx %u\n", wq->rq.cidx);
727 			*cookie = wq->rq.sw_rq[wq->rq.cidx].wr_id;
728 			if (c4iw_wr_log)
729 				c4iw_log_wr_stats(wq, hw_cqe);
730 			t4_rq_consume(wq);
731 		} else {
732 			*cookie = reap_srq_cqe(hw_cqe, srq);
733 		}
734 		wq->rq.msn++;
735 		goto skip_cqe;
736 	}
737 
738 flush_wq:
739 	/*
740 	 * Flush any completed cqes that are now in-order.
741 	 */
742 	flush_completed_wrs(wq, cq);
743 
744 skip_cqe:
745 	if (SW_CQE(hw_cqe)) {
746 		pr_debug("cq %p cqid 0x%x skip sw cqe cidx %u\n",
747 			 cq, cq->cqid, cq->sw_cidx);
748 		t4_swcq_consume(cq);
749 	} else {
750 		pr_debug("cq %p cqid 0x%x skip hw cqe cidx %u\n",
751 			 cq, cq->cqid, cq->cidx);
752 		t4_hwcq_consume(cq);
753 	}
754 	return ret;
755 }
756 
757 static int __c4iw_poll_cq_one(struct c4iw_cq *chp, struct c4iw_qp *qhp,
758 			      struct ib_wc *wc, struct c4iw_srq *srq)
759 {
760 	struct t4_cqe uninitialized_var(cqe);
761 	struct t4_wq *wq = qhp ? &qhp->wq : NULL;
762 	u32 credit = 0;
763 	u8 cqe_flushed;
764 	u64 cookie = 0;
765 	int ret;
766 
767 	ret = poll_cq(wq, &(chp->cq), &cqe, &cqe_flushed, &cookie, &credit,
768 		      srq ? &srq->wq : NULL);
769 	if (ret)
770 		goto out;
771 
772 	wc->wr_id = cookie;
773 	wc->qp = qhp ? &qhp->ibqp : NULL;
774 	wc->vendor_err = CQE_STATUS(&cqe);
775 	wc->wc_flags = 0;
776 
777 	/*
778 	 * Simulate a SRQ_LIMIT_REACHED HW notification if required.
779 	 */
780 	if (srq && !(srq->flags & T4_SRQ_LIMIT_SUPPORT) && srq->armed &&
781 	    srq->wq.in_use < srq->srq_limit)
782 		c4iw_dispatch_srq_limit_reached_event(srq);
783 
784 	pr_debug("qpid 0x%x type %d opcode %d status 0x%x len %u wrid hi 0x%x lo 0x%x cookie 0x%llx\n",
785 		 CQE_QPID(&cqe),
786 		 CQE_TYPE(&cqe), CQE_OPCODE(&cqe),
787 		 CQE_STATUS(&cqe), CQE_LEN(&cqe),
788 		 CQE_WRID_HI(&cqe), CQE_WRID_LOW(&cqe),
789 		 (unsigned long long)cookie);
790 
791 	if (CQE_TYPE(&cqe) == 0) {
792 		if (!CQE_STATUS(&cqe))
793 			wc->byte_len = CQE_LEN(&cqe);
794 		else
795 			wc->byte_len = 0;
796 
797 		switch (CQE_OPCODE(&cqe)) {
798 		case FW_RI_SEND:
799 			wc->opcode = IB_WC_RECV;
800 			break;
801 		case FW_RI_SEND_WITH_INV:
802 		case FW_RI_SEND_WITH_SE_INV:
803 			wc->opcode = IB_WC_RECV;
804 			wc->ex.invalidate_rkey = CQE_WRID_STAG(&cqe);
805 			wc->wc_flags |= IB_WC_WITH_INVALIDATE;
806 			c4iw_invalidate_mr(qhp->rhp, wc->ex.invalidate_rkey);
807 			break;
808 		case FW_RI_WRITE_IMMEDIATE:
809 			wc->opcode = IB_WC_RECV_RDMA_WITH_IMM;
810 			wc->ex.imm_data = CQE_IMM_DATA(&cqe);
811 			wc->wc_flags |= IB_WC_WITH_IMM;
812 			break;
813 		default:
814 			pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
815 			       CQE_OPCODE(&cqe), CQE_QPID(&cqe));
816 			ret = -EINVAL;
817 			goto out;
818 		}
819 	} else {
820 		switch (CQE_OPCODE(&cqe)) {
821 		case FW_RI_WRITE_IMMEDIATE:
822 		case FW_RI_RDMA_WRITE:
823 			wc->opcode = IB_WC_RDMA_WRITE;
824 			break;
825 		case FW_RI_READ_REQ:
826 			wc->opcode = IB_WC_RDMA_READ;
827 			wc->byte_len = CQE_LEN(&cqe);
828 			break;
829 		case FW_RI_SEND_WITH_INV:
830 		case FW_RI_SEND_WITH_SE_INV:
831 			wc->opcode = IB_WC_SEND;
832 			wc->wc_flags |= IB_WC_WITH_INVALIDATE;
833 			break;
834 		case FW_RI_SEND:
835 		case FW_RI_SEND_WITH_SE:
836 			wc->opcode = IB_WC_SEND;
837 			break;
838 
839 		case FW_RI_LOCAL_INV:
840 			wc->opcode = IB_WC_LOCAL_INV;
841 			break;
842 		case FW_RI_FAST_REGISTER:
843 			wc->opcode = IB_WC_REG_MR;
844 
845 			/* Invalidate the MR if the fastreg failed */
846 			if (CQE_STATUS(&cqe) != T4_ERR_SUCCESS)
847 				c4iw_invalidate_mr(qhp->rhp,
848 						   CQE_WRID_FR_STAG(&cqe));
849 			break;
850 		default:
851 			pr_err("Unexpected opcode %d in the CQE received for QPID=0x%0x\n",
852 			       CQE_OPCODE(&cqe), CQE_QPID(&cqe));
853 			ret = -EINVAL;
854 			goto out;
855 		}
856 	}
857 
858 	if (cqe_flushed)
859 		wc->status = IB_WC_WR_FLUSH_ERR;
860 	else {
861 
862 		switch (CQE_STATUS(&cqe)) {
863 		case T4_ERR_SUCCESS:
864 			wc->status = IB_WC_SUCCESS;
865 			break;
866 		case T4_ERR_STAG:
867 			wc->status = IB_WC_LOC_ACCESS_ERR;
868 			break;
869 		case T4_ERR_PDID:
870 			wc->status = IB_WC_LOC_PROT_ERR;
871 			break;
872 		case T4_ERR_QPID:
873 		case T4_ERR_ACCESS:
874 			wc->status = IB_WC_LOC_ACCESS_ERR;
875 			break;
876 		case T4_ERR_WRAP:
877 			wc->status = IB_WC_GENERAL_ERR;
878 			break;
879 		case T4_ERR_BOUND:
880 			wc->status = IB_WC_LOC_LEN_ERR;
881 			break;
882 		case T4_ERR_INVALIDATE_SHARED_MR:
883 		case T4_ERR_INVALIDATE_MR_WITH_MW_BOUND:
884 			wc->status = IB_WC_MW_BIND_ERR;
885 			break;
886 		case T4_ERR_CRC:
887 		case T4_ERR_MARKER:
888 		case T4_ERR_PDU_LEN_ERR:
889 		case T4_ERR_OUT_OF_RQE:
890 		case T4_ERR_DDP_VERSION:
891 		case T4_ERR_RDMA_VERSION:
892 		case T4_ERR_DDP_QUEUE_NUM:
893 		case T4_ERR_MSN:
894 		case T4_ERR_TBIT:
895 		case T4_ERR_MO:
896 		case T4_ERR_MSN_RANGE:
897 		case T4_ERR_IRD_OVERFLOW:
898 		case T4_ERR_OPCODE:
899 		case T4_ERR_INTERNAL_ERR:
900 			wc->status = IB_WC_FATAL_ERR;
901 			break;
902 		case T4_ERR_SWFLUSH:
903 			wc->status = IB_WC_WR_FLUSH_ERR;
904 			break;
905 		default:
906 			pr_err("Unexpected cqe_status 0x%x for QPID=0x%0x\n",
907 			       CQE_STATUS(&cqe), CQE_QPID(&cqe));
908 			wc->status = IB_WC_FATAL_ERR;
909 		}
910 	}
911 out:
912 	return ret;
913 }
914 
915 /*
916  * Get one cq entry from c4iw and map it to openib.
917  *
918  * Returns:
919  *	0			cqe returned
920  *	-ENODATA		EMPTY;
921  *	-EAGAIN			caller must try again
922  *	any other -errno	fatal error
923  */
924 static int c4iw_poll_cq_one(struct c4iw_cq *chp, struct ib_wc *wc)
925 {
926 	struct c4iw_srq *srq = NULL;
927 	struct c4iw_qp *qhp = NULL;
928 	struct t4_cqe *rd_cqe;
929 	int ret;
930 
931 	ret = t4_next_cqe(&chp->cq, &rd_cqe);
932 
933 	if (ret)
934 		return ret;
935 
936 	qhp = get_qhp(chp->rhp, CQE_QPID(rd_cqe));
937 	if (qhp) {
938 		spin_lock(&qhp->lock);
939 		srq = qhp->srq;
940 		if (srq)
941 			spin_lock(&srq->lock);
942 		ret = __c4iw_poll_cq_one(chp, qhp, wc, srq);
943 		spin_unlock(&qhp->lock);
944 		if (srq)
945 			spin_unlock(&srq->lock);
946 	} else {
947 		ret = __c4iw_poll_cq_one(chp, NULL, wc, NULL);
948 	}
949 	return ret;
950 }
951 
952 int c4iw_poll_cq(struct ib_cq *ibcq, int num_entries, struct ib_wc *wc)
953 {
954 	struct c4iw_cq *chp;
955 	unsigned long flags;
956 	int npolled;
957 	int err = 0;
958 
959 	chp = to_c4iw_cq(ibcq);
960 
961 	spin_lock_irqsave(&chp->lock, flags);
962 	for (npolled = 0; npolled < num_entries; ++npolled) {
963 		do {
964 			err = c4iw_poll_cq_one(chp, wc + npolled);
965 		} while (err == -EAGAIN);
966 		if (err)
967 			break;
968 	}
969 	spin_unlock_irqrestore(&chp->lock, flags);
970 	return !err || err == -ENODATA ? npolled : err;
971 }
972 
973 int c4iw_destroy_cq(struct ib_cq *ib_cq, struct ib_udata *udata)
974 {
975 	struct c4iw_cq *chp;
976 	struct c4iw_ucontext *ucontext;
977 
978 	pr_debug("ib_cq %p\n", ib_cq);
979 	chp = to_c4iw_cq(ib_cq);
980 
981 	xa_erase_irq(&chp->rhp->cqs, chp->cq.cqid);
982 	atomic_dec(&chp->refcnt);
983 	wait_event(chp->wait, !atomic_read(&chp->refcnt));
984 
985 	ucontext = rdma_udata_to_drv_context(udata, struct c4iw_ucontext,
986 					     ibucontext);
987 	destroy_cq(&chp->rhp->rdev, &chp->cq,
988 		   ucontext ? &ucontext->uctx : &chp->cq.rdev->uctx,
989 		   chp->destroy_skb, chp->wr_waitp);
990 	c4iw_put_wr_wait(chp->wr_waitp);
991 	kfree(chp);
992 	return 0;
993 }
994 
995 struct ib_cq *c4iw_create_cq(struct ib_device *ibdev,
996 			     const struct ib_cq_init_attr *attr,
997 			     struct ib_udata *udata)
998 {
999 	int entries = attr->cqe;
1000 	int vector = attr->comp_vector;
1001 	struct c4iw_dev *rhp;
1002 	struct c4iw_cq *chp;
1003 	struct c4iw_create_cq ucmd;
1004 	struct c4iw_create_cq_resp uresp;
1005 	int ret, wr_len;
1006 	size_t memsize, hwentries;
1007 	struct c4iw_mm_entry *mm, *mm2;
1008 	struct c4iw_ucontext *ucontext = rdma_udata_to_drv_context(
1009 		udata, struct c4iw_ucontext, ibucontext);
1010 
1011 	pr_debug("ib_dev %p entries %d\n", ibdev, entries);
1012 	if (attr->flags)
1013 		return ERR_PTR(-EINVAL);
1014 
1015 	rhp = to_c4iw_dev(ibdev);
1016 
1017 	if (vector >= rhp->rdev.lldi.nciq)
1018 		return ERR_PTR(-EINVAL);
1019 
1020 	if (udata) {
1021 		if (udata->inlen < sizeof(ucmd))
1022 			ucontext->is_32b_cqe = 1;
1023 	}
1024 
1025 	chp = kzalloc(sizeof(*chp), GFP_KERNEL);
1026 	if (!chp)
1027 		return ERR_PTR(-ENOMEM);
1028 
1029 	chp->wr_waitp = c4iw_alloc_wr_wait(GFP_KERNEL);
1030 	if (!chp->wr_waitp) {
1031 		ret = -ENOMEM;
1032 		goto err_free_chp;
1033 	}
1034 	c4iw_init_wr_wait(chp->wr_waitp);
1035 
1036 	wr_len = sizeof(struct fw_ri_res_wr) + sizeof(struct fw_ri_res);
1037 	chp->destroy_skb = alloc_skb(wr_len, GFP_KERNEL);
1038 	if (!chp->destroy_skb) {
1039 		ret = -ENOMEM;
1040 		goto err_free_wr_wait;
1041 	}
1042 
1043 	/* account for the status page. */
1044 	entries++;
1045 
1046 	/* IQ needs one extra entry to differentiate full vs empty. */
1047 	entries++;
1048 
1049 	/*
1050 	 * entries must be multiple of 16 for HW.
1051 	 */
1052 	entries = roundup(entries, 16);
1053 
1054 	/*
1055 	 * Make actual HW queue 2x to avoid cdix_inc overflows.
1056 	 */
1057 	hwentries = min(entries * 2, rhp->rdev.hw_queue.t4_max_iq_size);
1058 
1059 	/*
1060 	 * Make HW queue at least 64 entries so GTS updates aren't too
1061 	 * frequent.
1062 	 */
1063 	if (hwentries < 64)
1064 		hwentries = 64;
1065 
1066 	memsize = hwentries * ((ucontext && ucontext->is_32b_cqe) ?
1067 			(sizeof(*chp->cq.queue) / 2) : sizeof(*chp->cq.queue));
1068 
1069 	/*
1070 	 * memsize must be a multiple of the page size if its a user cq.
1071 	 */
1072 	if (udata)
1073 		memsize = roundup(memsize, PAGE_SIZE);
1074 
1075 	chp->cq.size = hwentries;
1076 	chp->cq.memsize = memsize;
1077 	chp->cq.vector = vector;
1078 
1079 	ret = create_cq(&rhp->rdev, &chp->cq,
1080 			ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1081 			chp->wr_waitp);
1082 	if (ret)
1083 		goto err_free_skb;
1084 
1085 	chp->rhp = rhp;
1086 	chp->cq.size--;				/* status page */
1087 	chp->ibcq.cqe = entries - 2;
1088 	spin_lock_init(&chp->lock);
1089 	spin_lock_init(&chp->comp_handler_lock);
1090 	atomic_set(&chp->refcnt, 1);
1091 	init_waitqueue_head(&chp->wait);
1092 	ret = xa_insert_irq(&rhp->cqs, chp->cq.cqid, chp, GFP_KERNEL);
1093 	if (ret)
1094 		goto err_destroy_cq;
1095 
1096 	if (ucontext) {
1097 		ret = -ENOMEM;
1098 		mm = kmalloc(sizeof *mm, GFP_KERNEL);
1099 		if (!mm)
1100 			goto err_remove_handle;
1101 		mm2 = kmalloc(sizeof *mm2, GFP_KERNEL);
1102 		if (!mm2)
1103 			goto err_free_mm;
1104 
1105 		memset(&uresp, 0, sizeof(uresp));
1106 		uresp.qid_mask = rhp->rdev.cqmask;
1107 		uresp.cqid = chp->cq.cqid;
1108 		uresp.size = chp->cq.size;
1109 		uresp.memsize = chp->cq.memsize;
1110 		spin_lock(&ucontext->mmap_lock);
1111 		uresp.key = ucontext->key;
1112 		ucontext->key += PAGE_SIZE;
1113 		uresp.gts_key = ucontext->key;
1114 		ucontext->key += PAGE_SIZE;
1115 		/* communicate to the userspace that
1116 		 * kernel driver supports 64B CQE
1117 		 */
1118 		uresp.flags |= C4IW_64B_CQE;
1119 
1120 		spin_unlock(&ucontext->mmap_lock);
1121 		ret = ib_copy_to_udata(udata, &uresp,
1122 				       ucontext->is_32b_cqe ?
1123 				       sizeof(uresp) - sizeof(uresp.flags) :
1124 				       sizeof(uresp));
1125 		if (ret)
1126 			goto err_free_mm2;
1127 
1128 		mm->key = uresp.key;
1129 		mm->addr = virt_to_phys(chp->cq.queue);
1130 		mm->len = chp->cq.memsize;
1131 		insert_mmap(ucontext, mm);
1132 
1133 		mm2->key = uresp.gts_key;
1134 		mm2->addr = chp->cq.bar2_pa;
1135 		mm2->len = PAGE_SIZE;
1136 		insert_mmap(ucontext, mm2);
1137 	}
1138 	pr_debug("cqid 0x%0x chp %p size %u memsize %zu, dma_addr 0x%0llx\n",
1139 		 chp->cq.cqid, chp, chp->cq.size,
1140 		 chp->cq.memsize, (unsigned long long)chp->cq.dma_addr);
1141 	return &chp->ibcq;
1142 err_free_mm2:
1143 	kfree(mm2);
1144 err_free_mm:
1145 	kfree(mm);
1146 err_remove_handle:
1147 	xa_erase_irq(&rhp->cqs, chp->cq.cqid);
1148 err_destroy_cq:
1149 	destroy_cq(&chp->rhp->rdev, &chp->cq,
1150 		   ucontext ? &ucontext->uctx : &rhp->rdev.uctx,
1151 		   chp->destroy_skb, chp->wr_waitp);
1152 err_free_skb:
1153 	kfree_skb(chp->destroy_skb);
1154 err_free_wr_wait:
1155 	c4iw_put_wr_wait(chp->wr_waitp);
1156 err_free_chp:
1157 	kfree(chp);
1158 	return ERR_PTR(ret);
1159 }
1160 
1161 int c4iw_arm_cq(struct ib_cq *ibcq, enum ib_cq_notify_flags flags)
1162 {
1163 	struct c4iw_cq *chp;
1164 	int ret = 0;
1165 	unsigned long flag;
1166 
1167 	chp = to_c4iw_cq(ibcq);
1168 	spin_lock_irqsave(&chp->lock, flag);
1169 	t4_arm_cq(&chp->cq,
1170 		  (flags & IB_CQ_SOLICITED_MASK) == IB_CQ_SOLICITED);
1171 	if (flags & IB_CQ_REPORT_MISSED_EVENTS)
1172 		ret = t4_cq_notempty(&chp->cq);
1173 	spin_unlock_irqrestore(&chp->lock, flag);
1174 	return ret;
1175 }
1176 
1177 void c4iw_flush_srqidx(struct c4iw_qp *qhp, u32 srqidx)
1178 {
1179 	struct c4iw_cq *rchp = to_c4iw_cq(qhp->ibqp.recv_cq);
1180 	unsigned long flag;
1181 
1182 	/* locking heirarchy: cq lock first, then qp lock. */
1183 	spin_lock_irqsave(&rchp->lock, flag);
1184 	spin_lock(&qhp->lock);
1185 
1186 	/* create a SRQ RECV CQE for srqidx */
1187 	insert_recv_cqe(&qhp->wq, &rchp->cq, srqidx);
1188 
1189 	spin_unlock(&qhp->lock);
1190 	spin_unlock_irqrestore(&rchp->lock, flag);
1191 }
1192