1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 int c4iw_debug; 103 module_param(c4iw_debug, int, 0644); 104 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)"); 105 106 static int peer2peer = 1; 107 module_param(peer2peer, int, 0644); 108 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 109 110 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 111 module_param(p2p_type, int, 0644); 112 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 113 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 114 115 static int ep_timeout_secs = 60; 116 module_param(ep_timeout_secs, int, 0644); 117 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 118 "in seconds (default=60)"); 119 120 static int mpa_rev = 2; 121 module_param(mpa_rev, int, 0644); 122 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 123 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 124 " compliant (default=2)"); 125 126 static int markers_enabled; 127 module_param(markers_enabled, int, 0644); 128 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 129 130 static int crc_enabled = 1; 131 module_param(crc_enabled, int, 0644); 132 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 133 134 static int rcv_win = 256 * 1024; 135 module_param(rcv_win, int, 0644); 136 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 137 138 static int snd_win = 128 * 1024; 139 module_param(snd_win, int, 0644); 140 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 141 142 static struct workqueue_struct *workq; 143 144 static struct sk_buff_head rxq; 145 146 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 147 static void ep_timeout(unsigned long arg); 148 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 149 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 150 151 static LIST_HEAD(timeout_list); 152 static spinlock_t timeout_lock; 153 154 static void deref_cm_id(struct c4iw_ep_common *epc) 155 { 156 epc->cm_id->rem_ref(epc->cm_id); 157 epc->cm_id = NULL; 158 set_bit(CM_ID_DEREFED, &epc->history); 159 } 160 161 static void ref_cm_id(struct c4iw_ep_common *epc) 162 { 163 set_bit(CM_ID_REFED, &epc->history); 164 epc->cm_id->add_ref(epc->cm_id); 165 } 166 167 static void deref_qp(struct c4iw_ep *ep) 168 { 169 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 170 clear_bit(QP_REFERENCED, &ep->com.flags); 171 set_bit(QP_DEREFED, &ep->com.history); 172 } 173 174 static void ref_qp(struct c4iw_ep *ep) 175 { 176 set_bit(QP_REFERENCED, &ep->com.flags); 177 set_bit(QP_REFED, &ep->com.history); 178 c4iw_qp_add_ref(&ep->com.qp->ibqp); 179 } 180 181 static void start_ep_timer(struct c4iw_ep *ep) 182 { 183 PDBG("%s ep %p\n", __func__, ep); 184 if (timer_pending(&ep->timer)) { 185 pr_err("%s timer already started! ep %p\n", 186 __func__, ep); 187 return; 188 } 189 clear_bit(TIMEOUT, &ep->com.flags); 190 c4iw_get_ep(&ep->com); 191 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 192 ep->timer.data = (unsigned long)ep; 193 ep->timer.function = ep_timeout; 194 add_timer(&ep->timer); 195 } 196 197 static int stop_ep_timer(struct c4iw_ep *ep) 198 { 199 PDBG("%s ep %p stopping\n", __func__, ep); 200 del_timer_sync(&ep->timer); 201 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 202 c4iw_put_ep(&ep->com); 203 return 0; 204 } 205 return 1; 206 } 207 208 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 209 struct l2t_entry *l2e) 210 { 211 int error = 0; 212 213 if (c4iw_fatal_error(rdev)) { 214 kfree_skb(skb); 215 PDBG("%s - device in error state - dropping\n", __func__); 216 return -EIO; 217 } 218 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 219 if (error < 0) 220 kfree_skb(skb); 221 else if (error == NET_XMIT_DROP) 222 return -ENOMEM; 223 return error < 0 ? error : 0; 224 } 225 226 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 227 { 228 int error = 0; 229 230 if (c4iw_fatal_error(rdev)) { 231 kfree_skb(skb); 232 PDBG("%s - device in error state - dropping\n", __func__); 233 return -EIO; 234 } 235 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 236 if (error < 0) 237 kfree_skb(skb); 238 return error < 0 ? error : 0; 239 } 240 241 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 242 { 243 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 244 245 skb = get_skb(skb, len, GFP_KERNEL); 246 if (!skb) 247 return; 248 249 cxgb_mk_tid_release(skb, len, hwtid, 0); 250 c4iw_ofld_send(rdev, skb); 251 return; 252 } 253 254 static void set_emss(struct c4iw_ep *ep, u16 opt) 255 { 256 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 257 ((AF_INET == ep->com.remote_addr.ss_family) ? 258 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 259 sizeof(struct tcphdr); 260 ep->mss = ep->emss; 261 if (TCPOPT_TSTAMP_G(opt)) 262 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 263 if (ep->emss < 128) 264 ep->emss = 128; 265 if (ep->emss & 7) 266 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n", 267 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 268 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt), 269 ep->mss, ep->emss); 270 } 271 272 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 273 { 274 enum c4iw_ep_state state; 275 276 mutex_lock(&epc->mutex); 277 state = epc->state; 278 mutex_unlock(&epc->mutex); 279 return state; 280 } 281 282 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 283 { 284 epc->state = new; 285 } 286 287 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 288 { 289 mutex_lock(&epc->mutex); 290 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]); 291 __state_set(epc, new); 292 mutex_unlock(&epc->mutex); 293 return; 294 } 295 296 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 297 { 298 struct sk_buff *skb; 299 unsigned int i; 300 size_t len; 301 302 len = roundup(sizeof(union cpl_wr_size), 16); 303 for (i = 0; i < size; i++) { 304 skb = alloc_skb(len, GFP_KERNEL); 305 if (!skb) 306 goto fail; 307 skb_queue_tail(ep_skb_list, skb); 308 } 309 return 0; 310 fail: 311 skb_queue_purge(ep_skb_list); 312 return -ENOMEM; 313 } 314 315 static void *alloc_ep(int size, gfp_t gfp) 316 { 317 struct c4iw_ep_common *epc; 318 319 epc = kzalloc(size, gfp); 320 if (epc) { 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(&epc->wr_wait); 324 } 325 PDBG("%s alloc ep %p\n", __func__, epc); 326 return epc; 327 } 328 329 static void remove_ep_tid(struct c4iw_ep *ep) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(&ep->com.dev->lock, flags); 334 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 335 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 336 wake_up(&ep->com.dev->wait); 337 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 338 } 339 340 static void insert_ep_tid(struct c4iw_ep *ep) 341 { 342 unsigned long flags; 343 344 spin_lock_irqsave(&ep->com.dev->lock, flags); 345 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 346 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 347 } 348 349 /* 350 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 351 */ 352 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 353 { 354 struct c4iw_ep *ep; 355 unsigned long flags; 356 357 spin_lock_irqsave(&dev->lock, flags); 358 ep = idr_find(&dev->hwtid_idr, tid); 359 if (ep) 360 c4iw_get_ep(&ep->com); 361 spin_unlock_irqrestore(&dev->lock, flags); 362 return ep; 363 } 364 365 /* 366 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 367 */ 368 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 369 unsigned int stid) 370 { 371 struct c4iw_listen_ep *ep; 372 unsigned long flags; 373 374 spin_lock_irqsave(&dev->lock, flags); 375 ep = idr_find(&dev->stid_idr, stid); 376 if (ep) 377 c4iw_get_ep(&ep->com); 378 spin_unlock_irqrestore(&dev->lock, flags); 379 return ep; 380 } 381 382 void _c4iw_free_ep(struct kref *kref) 383 { 384 struct c4iw_ep *ep; 385 386 ep = container_of(kref, struct c4iw_ep, com.kref); 387 PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]); 388 if (test_bit(QP_REFERENCED, &ep->com.flags)) 389 deref_qp(ep); 390 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 391 if (ep->com.remote_addr.ss_family == AF_INET6) { 392 struct sockaddr_in6 *sin6 = 393 (struct sockaddr_in6 *) 394 &ep->com.local_addr; 395 396 cxgb4_clip_release( 397 ep->com.dev->rdev.lldi.ports[0], 398 (const u32 *)&sin6->sin6_addr.s6_addr, 399 1); 400 } 401 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 402 dst_release(ep->dst); 403 cxgb4_l2t_release(ep->l2t); 404 if (ep->mpa_skb) 405 kfree_skb(ep->mpa_skb); 406 } 407 if (!skb_queue_empty(&ep->com.ep_skb_list)) 408 skb_queue_purge(&ep->com.ep_skb_list); 409 kfree(ep); 410 } 411 412 static void release_ep_resources(struct c4iw_ep *ep) 413 { 414 set_bit(RELEASE_RESOURCES, &ep->com.flags); 415 416 /* 417 * If we have a hwtid, then remove it from the idr table 418 * so lookups will no longer find this endpoint. Otherwise 419 * we have a race where one thread finds the ep ptr just 420 * before the other thread is freeing the ep memory. 421 */ 422 if (ep->hwtid != -1) 423 remove_ep_tid(ep); 424 c4iw_put_ep(&ep->com); 425 } 426 427 static int status2errno(int status) 428 { 429 switch (status) { 430 case CPL_ERR_NONE: 431 return 0; 432 case CPL_ERR_CONN_RESET: 433 return -ECONNRESET; 434 case CPL_ERR_ARP_MISS: 435 return -EHOSTUNREACH; 436 case CPL_ERR_CONN_TIMEDOUT: 437 return -ETIMEDOUT; 438 case CPL_ERR_TCAM_FULL: 439 return -ENOMEM; 440 case CPL_ERR_CONN_EXIST: 441 return -EADDRINUSE; 442 default: 443 return -EIO; 444 } 445 } 446 447 /* 448 * Try and reuse skbs already allocated... 449 */ 450 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 451 { 452 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 453 skb_trim(skb, 0); 454 skb_get(skb); 455 skb_reset_transport_header(skb); 456 } else { 457 skb = alloc_skb(len, gfp); 458 } 459 t4_set_arp_err_handler(skb, NULL, NULL); 460 return skb; 461 } 462 463 static struct net_device *get_real_dev(struct net_device *egress_dev) 464 { 465 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 466 } 467 468 static void arp_failure_discard(void *handle, struct sk_buff *skb) 469 { 470 pr_err(MOD "ARP failure\n"); 471 kfree_skb(skb); 472 } 473 474 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 475 { 476 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 477 } 478 479 enum { 480 NUM_FAKE_CPLS = 2, 481 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 482 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 483 }; 484 485 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 486 { 487 struct c4iw_ep *ep; 488 489 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 490 release_ep_resources(ep); 491 return 0; 492 } 493 494 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 495 { 496 struct c4iw_ep *ep; 497 498 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 499 c4iw_put_ep(&ep->parent_ep->com); 500 release_ep_resources(ep); 501 return 0; 502 } 503 504 /* 505 * Fake up a special CPL opcode and call sched() so process_work() will call 506 * _put_ep_safe() in a safe context to free the ep resources. This is needed 507 * because ARP error handlers are called in an ATOMIC context, and 508 * _c4iw_free_ep() needs to block. 509 */ 510 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 511 int cpl) 512 { 513 struct cpl_act_establish *rpl = cplhdr(skb); 514 515 /* Set our special ARP_FAILURE opcode */ 516 rpl->ot.opcode = cpl; 517 518 /* 519 * Save ep in the skb->cb area, after where sched() will save the dev 520 * ptr. 521 */ 522 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 523 sched(ep->com.dev, skb); 524 } 525 526 /* Handle an ARP failure for an accept */ 527 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 528 { 529 struct c4iw_ep *ep = handle; 530 531 pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n", 532 ep->hwtid); 533 534 __state_set(&ep->com, DEAD); 535 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 536 } 537 538 /* 539 * Handle an ARP failure for an active open. 540 */ 541 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 542 { 543 struct c4iw_ep *ep = handle; 544 545 printk(KERN_ERR MOD "ARP failure during connect\n"); 546 connect_reply_upcall(ep, -EHOSTUNREACH); 547 __state_set(&ep->com, DEAD); 548 if (ep->com.remote_addr.ss_family == AF_INET6) { 549 struct sockaddr_in6 *sin6 = 550 (struct sockaddr_in6 *)&ep->com.local_addr; 551 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 552 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 553 } 554 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 555 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 556 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 557 } 558 559 /* 560 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 561 * and send it along. 562 */ 563 static void abort_arp_failure(void *handle, struct sk_buff *skb) 564 { 565 int ret; 566 struct c4iw_ep *ep = handle; 567 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 568 struct cpl_abort_req *req = cplhdr(skb); 569 570 PDBG("%s rdev %p\n", __func__, rdev); 571 req->cmd = CPL_ABORT_NO_RST; 572 ret = c4iw_ofld_send(rdev, skb); 573 if (ret) { 574 __state_set(&ep->com, DEAD); 575 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 576 } 577 } 578 579 static int send_flowc(struct c4iw_ep *ep) 580 { 581 struct fw_flowc_wr *flowc; 582 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 583 int i; 584 u16 vlan = ep->l2t->vlan; 585 int nparams; 586 587 if (WARN_ON(!skb)) 588 return -ENOMEM; 589 590 if (vlan == CPL_L2T_VLAN_NONE) 591 nparams = 8; 592 else 593 nparams = 9; 594 595 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN); 596 597 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 598 FW_FLOWC_WR_NPARAMS_V(nparams)); 599 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN, 600 16)) | FW_WR_FLOWID_V(ep->hwtid)); 601 602 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 603 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 604 (ep->com.dev->rdev.lldi.pf)); 605 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 606 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 607 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 608 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 609 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 610 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 611 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 612 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 613 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 614 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 615 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 616 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 617 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 618 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 619 if (nparams == 9) { 620 u16 pri; 621 622 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 623 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 624 flowc->mnemval[8].val = cpu_to_be32(pri); 625 } else { 626 /* Pad WR to 16 byte boundary */ 627 flowc->mnemval[8].mnemonic = 0; 628 flowc->mnemval[8].val = 0; 629 } 630 for (i = 0; i < 9; i++) { 631 flowc->mnemval[i].r4[0] = 0; 632 flowc->mnemval[i].r4[1] = 0; 633 flowc->mnemval[i].r4[2] = 0; 634 } 635 636 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 637 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 638 } 639 640 static int send_halfclose(struct c4iw_ep *ep) 641 { 642 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 643 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 644 645 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 646 if (WARN_ON(!skb)) 647 return -ENOMEM; 648 649 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 650 NULL, arp_failure_discard); 651 652 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 653 } 654 655 static int send_abort(struct c4iw_ep *ep) 656 { 657 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 658 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 659 660 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 661 if (WARN_ON(!req_skb)) 662 return -ENOMEM; 663 664 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 665 ep, abort_arp_failure); 666 667 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 668 } 669 670 static int send_connect(struct c4iw_ep *ep) 671 { 672 struct cpl_act_open_req *req = NULL; 673 struct cpl_t5_act_open_req *t5req = NULL; 674 struct cpl_t6_act_open_req *t6req = NULL; 675 struct cpl_act_open_req6 *req6 = NULL; 676 struct cpl_t5_act_open_req6 *t5req6 = NULL; 677 struct cpl_t6_act_open_req6 *t6req6 = NULL; 678 struct sk_buff *skb; 679 u64 opt0; 680 u32 opt2; 681 unsigned int mtu_idx; 682 u32 wscale; 683 int win, sizev4, sizev6, wrlen; 684 struct sockaddr_in *la = (struct sockaddr_in *) 685 &ep->com.local_addr; 686 struct sockaddr_in *ra = (struct sockaddr_in *) 687 &ep->com.remote_addr; 688 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 689 &ep->com.local_addr; 690 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 691 &ep->com.remote_addr; 692 int ret; 693 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 694 u32 isn = (prandom_u32() & ~7UL) - 1; 695 struct net_device *netdev; 696 u64 params; 697 698 netdev = ep->com.dev->rdev.lldi.ports[0]; 699 700 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 701 case CHELSIO_T4: 702 sizev4 = sizeof(struct cpl_act_open_req); 703 sizev6 = sizeof(struct cpl_act_open_req6); 704 break; 705 case CHELSIO_T5: 706 sizev4 = sizeof(struct cpl_t5_act_open_req); 707 sizev6 = sizeof(struct cpl_t5_act_open_req6); 708 break; 709 case CHELSIO_T6: 710 sizev4 = sizeof(struct cpl_t6_act_open_req); 711 sizev6 = sizeof(struct cpl_t6_act_open_req6); 712 break; 713 default: 714 pr_err("T%d Chip is not supported\n", 715 CHELSIO_CHIP_VERSION(adapter_type)); 716 return -EINVAL; 717 } 718 719 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 720 roundup(sizev4, 16) : 721 roundup(sizev6, 16); 722 723 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid); 724 725 skb = get_skb(NULL, wrlen, GFP_KERNEL); 726 if (!skb) { 727 printk(KERN_ERR MOD "%s - failed to alloc skb.\n", 728 __func__); 729 return -ENOMEM; 730 } 731 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 732 733 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 734 enable_tcp_timestamps, 735 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 736 wscale = cxgb_compute_wscale(rcv_win); 737 738 /* 739 * Specify the largest window that will fit in opt0. The 740 * remainder will be specified in the rx_data_ack. 741 */ 742 win = ep->rcv_win >> 10; 743 if (win > RCV_BUFSIZ_M) 744 win = RCV_BUFSIZ_M; 745 746 opt0 = (nocong ? NO_CONG_F : 0) | 747 KEEP_ALIVE_F | 748 DELACK_F | 749 WND_SCALE_V(wscale) | 750 MSS_IDX_V(mtu_idx) | 751 L2T_IDX_V(ep->l2t->idx) | 752 TX_CHAN_V(ep->tx_chan) | 753 SMAC_SEL_V(ep->smac_idx) | 754 DSCP_V(ep->tos >> 2) | 755 ULP_MODE_V(ULP_MODE_TCPDDP) | 756 RCV_BUFSIZ_V(win); 757 opt2 = RX_CHANNEL_V(0) | 758 CCTRL_ECN_V(enable_ecn) | 759 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 760 if (enable_tcp_timestamps) 761 opt2 |= TSTAMPS_EN_F; 762 if (enable_tcp_sack) 763 opt2 |= SACK_EN_F; 764 if (wscale && enable_tcp_window_scaling) 765 opt2 |= WND_SCALE_EN_F; 766 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 767 if (peer2peer) 768 isn += 4; 769 770 opt2 |= T5_OPT_2_VALID_F; 771 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 772 opt2 |= T5_ISS_F; 773 } 774 775 params = cxgb4_select_ntuple(netdev, ep->l2t); 776 777 if (ep->com.remote_addr.ss_family == AF_INET6) 778 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 779 (const u32 *)&la6->sin6_addr.s6_addr, 1); 780 781 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 782 783 if (ep->com.remote_addr.ss_family == AF_INET) { 784 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 785 case CHELSIO_T4: 786 req = (struct cpl_act_open_req *)skb_put(skb, wrlen); 787 INIT_TP_WR(req, 0); 788 break; 789 case CHELSIO_T5: 790 t5req = (struct cpl_t5_act_open_req *)skb_put(skb, 791 wrlen); 792 INIT_TP_WR(t5req, 0); 793 req = (struct cpl_act_open_req *)t5req; 794 break; 795 case CHELSIO_T6: 796 t6req = (struct cpl_t6_act_open_req *)skb_put(skb, 797 wrlen); 798 INIT_TP_WR(t6req, 0); 799 req = (struct cpl_act_open_req *)t6req; 800 t5req = (struct cpl_t5_act_open_req *)t6req; 801 break; 802 default: 803 pr_err("T%d Chip is not supported\n", 804 CHELSIO_CHIP_VERSION(adapter_type)); 805 ret = -EINVAL; 806 goto clip_release; 807 } 808 809 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 810 ((ep->rss_qid<<14) | ep->atid))); 811 req->local_port = la->sin_port; 812 req->peer_port = ra->sin_port; 813 req->local_ip = la->sin_addr.s_addr; 814 req->peer_ip = ra->sin_addr.s_addr; 815 req->opt0 = cpu_to_be64(opt0); 816 817 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 818 req->params = cpu_to_be32(params); 819 req->opt2 = cpu_to_be32(opt2); 820 } else { 821 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 822 t5req->params = 823 cpu_to_be64(FILTER_TUPLE_V(params)); 824 t5req->rsvd = cpu_to_be32(isn); 825 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd); 826 t5req->opt2 = cpu_to_be32(opt2); 827 } else { 828 t6req->params = 829 cpu_to_be64(FILTER_TUPLE_V(params)); 830 t6req->rsvd = cpu_to_be32(isn); 831 PDBG("%s snd_isn %u\n", __func__, t6req->rsvd); 832 t6req->opt2 = cpu_to_be32(opt2); 833 } 834 } 835 } else { 836 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 837 case CHELSIO_T4: 838 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen); 839 INIT_TP_WR(req6, 0); 840 break; 841 case CHELSIO_T5: 842 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb, 843 wrlen); 844 INIT_TP_WR(t5req6, 0); 845 req6 = (struct cpl_act_open_req6 *)t5req6; 846 break; 847 case CHELSIO_T6: 848 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb, 849 wrlen); 850 INIT_TP_WR(t6req6, 0); 851 req6 = (struct cpl_act_open_req6 *)t6req6; 852 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 853 break; 854 default: 855 pr_err("T%d Chip is not supported\n", 856 CHELSIO_CHIP_VERSION(adapter_type)); 857 ret = -EINVAL; 858 goto clip_release; 859 } 860 861 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 862 ((ep->rss_qid<<14)|ep->atid))); 863 req6->local_port = la6->sin6_port; 864 req6->peer_port = ra6->sin6_port; 865 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 866 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 867 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 868 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 869 req6->opt0 = cpu_to_be64(opt0); 870 871 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 872 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 873 ep->l2t)); 874 req6->opt2 = cpu_to_be32(opt2); 875 } else { 876 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 877 t5req6->params = 878 cpu_to_be64(FILTER_TUPLE_V(params)); 879 t5req6->rsvd = cpu_to_be32(isn); 880 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd); 881 t5req6->opt2 = cpu_to_be32(opt2); 882 } else { 883 t6req6->params = 884 cpu_to_be64(FILTER_TUPLE_V(params)); 885 t6req6->rsvd = cpu_to_be32(isn); 886 PDBG("%s snd_isn %u\n", __func__, t6req6->rsvd); 887 t6req6->opt2 = cpu_to_be32(opt2); 888 } 889 890 } 891 } 892 893 set_bit(ACT_OPEN_REQ, &ep->com.history); 894 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 895 clip_release: 896 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 897 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 898 (const u32 *)&la6->sin6_addr.s6_addr, 1); 899 return ret; 900 } 901 902 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 903 u8 mpa_rev_to_use) 904 { 905 int mpalen, wrlen, ret; 906 struct fw_ofld_tx_data_wr *req; 907 struct mpa_message *mpa; 908 struct mpa_v2_conn_params mpa_v2_params; 909 910 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 911 912 BUG_ON(skb_cloned(skb)); 913 914 mpalen = sizeof(*mpa) + ep->plen; 915 if (mpa_rev_to_use == 2) 916 mpalen += sizeof(struct mpa_v2_conn_params); 917 wrlen = roundup(mpalen + sizeof *req, 16); 918 skb = get_skb(skb, wrlen, GFP_KERNEL); 919 if (!skb) { 920 connect_reply_upcall(ep, -ENOMEM); 921 return -ENOMEM; 922 } 923 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 924 925 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 926 memset(req, 0, wrlen); 927 req->op_to_immdlen = cpu_to_be32( 928 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 929 FW_WR_COMPL_F | 930 FW_WR_IMMDLEN_V(mpalen)); 931 req->flowid_len16 = cpu_to_be32( 932 FW_WR_FLOWID_V(ep->hwtid) | 933 FW_WR_LEN16_V(wrlen >> 4)); 934 req->plen = cpu_to_be32(mpalen); 935 req->tunnel_to_proxy = cpu_to_be32( 936 FW_OFLD_TX_DATA_WR_FLUSH_F | 937 FW_OFLD_TX_DATA_WR_SHOVE_F); 938 939 mpa = (struct mpa_message *)(req + 1); 940 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 941 942 mpa->flags = 0; 943 if (crc_enabled) 944 mpa->flags |= MPA_CRC; 945 if (markers_enabled) { 946 mpa->flags |= MPA_MARKERS; 947 ep->mpa_attr.recv_marker_enabled = 1; 948 } else { 949 ep->mpa_attr.recv_marker_enabled = 0; 950 } 951 if (mpa_rev_to_use == 2) 952 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 953 954 mpa->private_data_size = htons(ep->plen); 955 mpa->revision = mpa_rev_to_use; 956 if (mpa_rev_to_use == 1) { 957 ep->tried_with_mpa_v1 = 1; 958 ep->retry_with_mpa_v1 = 0; 959 } 960 961 if (mpa_rev_to_use == 2) { 962 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 963 sizeof (struct mpa_v2_conn_params)); 964 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird, 965 ep->ord); 966 mpa_v2_params.ird = htons((u16)ep->ird); 967 mpa_v2_params.ord = htons((u16)ep->ord); 968 969 if (peer2peer) { 970 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 971 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 972 mpa_v2_params.ord |= 973 htons(MPA_V2_RDMA_WRITE_RTR); 974 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 975 mpa_v2_params.ord |= 976 htons(MPA_V2_RDMA_READ_RTR); 977 } 978 memcpy(mpa->private_data, &mpa_v2_params, 979 sizeof(struct mpa_v2_conn_params)); 980 981 if (ep->plen) 982 memcpy(mpa->private_data + 983 sizeof(struct mpa_v2_conn_params), 984 ep->mpa_pkt + sizeof(*mpa), ep->plen); 985 } else 986 if (ep->plen) 987 memcpy(mpa->private_data, 988 ep->mpa_pkt + sizeof(*mpa), ep->plen); 989 990 /* 991 * Reference the mpa skb. This ensures the data area 992 * will remain in memory until the hw acks the tx. 993 * Function fw4_ack() will deref it. 994 */ 995 skb_get(skb); 996 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 997 BUG_ON(ep->mpa_skb); 998 ep->mpa_skb = skb; 999 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1000 if (ret) 1001 return ret; 1002 start_ep_timer(ep); 1003 __state_set(&ep->com, MPA_REQ_SENT); 1004 ep->mpa_attr.initiator = 1; 1005 ep->snd_seq += mpalen; 1006 return ret; 1007 } 1008 1009 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1010 { 1011 int mpalen, wrlen; 1012 struct fw_ofld_tx_data_wr *req; 1013 struct mpa_message *mpa; 1014 struct sk_buff *skb; 1015 struct mpa_v2_conn_params mpa_v2_params; 1016 1017 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 1018 1019 mpalen = sizeof(*mpa) + plen; 1020 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1021 mpalen += sizeof(struct mpa_v2_conn_params); 1022 wrlen = roundup(mpalen + sizeof *req, 16); 1023 1024 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1025 if (!skb) { 1026 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); 1027 return -ENOMEM; 1028 } 1029 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1030 1031 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 1032 memset(req, 0, wrlen); 1033 req->op_to_immdlen = cpu_to_be32( 1034 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1035 FW_WR_COMPL_F | 1036 FW_WR_IMMDLEN_V(mpalen)); 1037 req->flowid_len16 = cpu_to_be32( 1038 FW_WR_FLOWID_V(ep->hwtid) | 1039 FW_WR_LEN16_V(wrlen >> 4)); 1040 req->plen = cpu_to_be32(mpalen); 1041 req->tunnel_to_proxy = cpu_to_be32( 1042 FW_OFLD_TX_DATA_WR_FLUSH_F | 1043 FW_OFLD_TX_DATA_WR_SHOVE_F); 1044 1045 mpa = (struct mpa_message *)(req + 1); 1046 memset(mpa, 0, sizeof(*mpa)); 1047 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1048 mpa->flags = MPA_REJECT; 1049 mpa->revision = ep->mpa_attr.version; 1050 mpa->private_data_size = htons(plen); 1051 1052 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1053 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1054 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1055 sizeof (struct mpa_v2_conn_params)); 1056 mpa_v2_params.ird = htons(((u16)ep->ird) | 1057 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1058 0)); 1059 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1060 (p2p_type == 1061 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1062 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1063 FW_RI_INIT_P2PTYPE_READ_REQ ? 1064 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1065 memcpy(mpa->private_data, &mpa_v2_params, 1066 sizeof(struct mpa_v2_conn_params)); 1067 1068 if (ep->plen) 1069 memcpy(mpa->private_data + 1070 sizeof(struct mpa_v2_conn_params), pdata, plen); 1071 } else 1072 if (plen) 1073 memcpy(mpa->private_data, pdata, plen); 1074 1075 /* 1076 * Reference the mpa skb again. This ensures the data area 1077 * will remain in memory until the hw acks the tx. 1078 * Function fw4_ack() will deref it. 1079 */ 1080 skb_get(skb); 1081 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1082 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1083 BUG_ON(ep->mpa_skb); 1084 ep->mpa_skb = skb; 1085 ep->snd_seq += mpalen; 1086 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1087 } 1088 1089 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1090 { 1091 int mpalen, wrlen; 1092 struct fw_ofld_tx_data_wr *req; 1093 struct mpa_message *mpa; 1094 struct sk_buff *skb; 1095 struct mpa_v2_conn_params mpa_v2_params; 1096 1097 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 1098 1099 mpalen = sizeof(*mpa) + plen; 1100 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1101 mpalen += sizeof(struct mpa_v2_conn_params); 1102 wrlen = roundup(mpalen + sizeof *req, 16); 1103 1104 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1105 if (!skb) { 1106 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); 1107 return -ENOMEM; 1108 } 1109 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1110 1111 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen); 1112 memset(req, 0, wrlen); 1113 req->op_to_immdlen = cpu_to_be32( 1114 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1115 FW_WR_COMPL_F | 1116 FW_WR_IMMDLEN_V(mpalen)); 1117 req->flowid_len16 = cpu_to_be32( 1118 FW_WR_FLOWID_V(ep->hwtid) | 1119 FW_WR_LEN16_V(wrlen >> 4)); 1120 req->plen = cpu_to_be32(mpalen); 1121 req->tunnel_to_proxy = cpu_to_be32( 1122 FW_OFLD_TX_DATA_WR_FLUSH_F | 1123 FW_OFLD_TX_DATA_WR_SHOVE_F); 1124 1125 mpa = (struct mpa_message *)(req + 1); 1126 memset(mpa, 0, sizeof(*mpa)); 1127 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1128 mpa->flags = 0; 1129 if (ep->mpa_attr.crc_enabled) 1130 mpa->flags |= MPA_CRC; 1131 if (ep->mpa_attr.recv_marker_enabled) 1132 mpa->flags |= MPA_MARKERS; 1133 mpa->revision = ep->mpa_attr.version; 1134 mpa->private_data_size = htons(plen); 1135 1136 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1137 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1138 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1139 sizeof (struct mpa_v2_conn_params)); 1140 mpa_v2_params.ird = htons((u16)ep->ird); 1141 mpa_v2_params.ord = htons((u16)ep->ord); 1142 if (peer2peer && (ep->mpa_attr.p2p_type != 1143 FW_RI_INIT_P2PTYPE_DISABLED)) { 1144 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1145 1146 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1147 mpa_v2_params.ord |= 1148 htons(MPA_V2_RDMA_WRITE_RTR); 1149 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1150 mpa_v2_params.ord |= 1151 htons(MPA_V2_RDMA_READ_RTR); 1152 } 1153 1154 memcpy(mpa->private_data, &mpa_v2_params, 1155 sizeof(struct mpa_v2_conn_params)); 1156 1157 if (ep->plen) 1158 memcpy(mpa->private_data + 1159 sizeof(struct mpa_v2_conn_params), pdata, plen); 1160 } else 1161 if (plen) 1162 memcpy(mpa->private_data, pdata, plen); 1163 1164 /* 1165 * Reference the mpa skb. This ensures the data area 1166 * will remain in memory until the hw acks the tx. 1167 * Function fw4_ack() will deref it. 1168 */ 1169 skb_get(skb); 1170 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1171 ep->mpa_skb = skb; 1172 __state_set(&ep->com, MPA_REP_SENT); 1173 ep->snd_seq += mpalen; 1174 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1175 } 1176 1177 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1178 { 1179 struct c4iw_ep *ep; 1180 struct cpl_act_establish *req = cplhdr(skb); 1181 unsigned int tid = GET_TID(req); 1182 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1183 struct tid_info *t = dev->rdev.lldi.tids; 1184 int ret; 1185 1186 ep = lookup_atid(t, atid); 1187 1188 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid, 1189 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1190 1191 mutex_lock(&ep->com.mutex); 1192 dst_confirm(ep->dst); 1193 1194 /* setup the hwtid for this connection */ 1195 ep->hwtid = tid; 1196 cxgb4_insert_tid(t, ep, tid); 1197 insert_ep_tid(ep); 1198 1199 ep->snd_seq = be32_to_cpu(req->snd_isn); 1200 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1201 1202 set_emss(ep, ntohs(req->tcp_opt)); 1203 1204 /* dealloc the atid */ 1205 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1206 cxgb4_free_atid(t, atid); 1207 set_bit(ACT_ESTAB, &ep->com.history); 1208 1209 /* start MPA negotiation */ 1210 ret = send_flowc(ep); 1211 if (ret) 1212 goto err; 1213 if (ep->retry_with_mpa_v1) 1214 ret = send_mpa_req(ep, skb, 1); 1215 else 1216 ret = send_mpa_req(ep, skb, mpa_rev); 1217 if (ret) 1218 goto err; 1219 mutex_unlock(&ep->com.mutex); 1220 return 0; 1221 err: 1222 mutex_unlock(&ep->com.mutex); 1223 connect_reply_upcall(ep, -ENOMEM); 1224 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1225 return 0; 1226 } 1227 1228 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1229 { 1230 struct iw_cm_event event; 1231 1232 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1233 memset(&event, 0, sizeof(event)); 1234 event.event = IW_CM_EVENT_CLOSE; 1235 event.status = status; 1236 if (ep->com.cm_id) { 1237 PDBG("close complete delivered ep %p cm_id %p tid %u\n", 1238 ep, ep->com.cm_id, ep->hwtid); 1239 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1240 deref_cm_id(&ep->com); 1241 set_bit(CLOSE_UPCALL, &ep->com.history); 1242 } 1243 } 1244 1245 static void peer_close_upcall(struct c4iw_ep *ep) 1246 { 1247 struct iw_cm_event event; 1248 1249 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1250 memset(&event, 0, sizeof(event)); 1251 event.event = IW_CM_EVENT_DISCONNECT; 1252 if (ep->com.cm_id) { 1253 PDBG("peer close delivered ep %p cm_id %p tid %u\n", 1254 ep, ep->com.cm_id, ep->hwtid); 1255 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1256 set_bit(DISCONN_UPCALL, &ep->com.history); 1257 } 1258 } 1259 1260 static void peer_abort_upcall(struct c4iw_ep *ep) 1261 { 1262 struct iw_cm_event event; 1263 1264 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1265 memset(&event, 0, sizeof(event)); 1266 event.event = IW_CM_EVENT_CLOSE; 1267 event.status = -ECONNRESET; 1268 if (ep->com.cm_id) { 1269 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep, 1270 ep->com.cm_id, ep->hwtid); 1271 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1272 deref_cm_id(&ep->com); 1273 set_bit(ABORT_UPCALL, &ep->com.history); 1274 } 1275 } 1276 1277 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1278 { 1279 struct iw_cm_event event; 1280 1281 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status); 1282 memset(&event, 0, sizeof(event)); 1283 event.event = IW_CM_EVENT_CONNECT_REPLY; 1284 event.status = status; 1285 memcpy(&event.local_addr, &ep->com.local_addr, 1286 sizeof(ep->com.local_addr)); 1287 memcpy(&event.remote_addr, &ep->com.remote_addr, 1288 sizeof(ep->com.remote_addr)); 1289 1290 if ((status == 0) || (status == -ECONNREFUSED)) { 1291 if (!ep->tried_with_mpa_v1) { 1292 /* this means MPA_v2 is used */ 1293 event.ord = ep->ird; 1294 event.ird = ep->ord; 1295 event.private_data_len = ep->plen - 1296 sizeof(struct mpa_v2_conn_params); 1297 event.private_data = ep->mpa_pkt + 1298 sizeof(struct mpa_message) + 1299 sizeof(struct mpa_v2_conn_params); 1300 } else { 1301 /* this means MPA_v1 is used */ 1302 event.ord = cur_max_read_depth(ep->com.dev); 1303 event.ird = cur_max_read_depth(ep->com.dev); 1304 event.private_data_len = ep->plen; 1305 event.private_data = ep->mpa_pkt + 1306 sizeof(struct mpa_message); 1307 } 1308 } 1309 1310 PDBG("%s ep %p tid %u status %d\n", __func__, ep, 1311 ep->hwtid, status); 1312 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1313 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1314 1315 if (status < 0) 1316 deref_cm_id(&ep->com); 1317 } 1318 1319 static int connect_request_upcall(struct c4iw_ep *ep) 1320 { 1321 struct iw_cm_event event; 1322 int ret; 1323 1324 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1325 memset(&event, 0, sizeof(event)); 1326 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1327 memcpy(&event.local_addr, &ep->com.local_addr, 1328 sizeof(ep->com.local_addr)); 1329 memcpy(&event.remote_addr, &ep->com.remote_addr, 1330 sizeof(ep->com.remote_addr)); 1331 event.provider_data = ep; 1332 if (!ep->tried_with_mpa_v1) { 1333 /* this means MPA_v2 is used */ 1334 event.ord = ep->ord; 1335 event.ird = ep->ird; 1336 event.private_data_len = ep->plen - 1337 sizeof(struct mpa_v2_conn_params); 1338 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1339 sizeof(struct mpa_v2_conn_params); 1340 } else { 1341 /* this means MPA_v1 is used. Send max supported */ 1342 event.ord = cur_max_read_depth(ep->com.dev); 1343 event.ird = cur_max_read_depth(ep->com.dev); 1344 event.private_data_len = ep->plen; 1345 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1346 } 1347 c4iw_get_ep(&ep->com); 1348 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1349 &event); 1350 if (ret) 1351 c4iw_put_ep(&ep->com); 1352 set_bit(CONNREQ_UPCALL, &ep->com.history); 1353 c4iw_put_ep(&ep->parent_ep->com); 1354 return ret; 1355 } 1356 1357 static void established_upcall(struct c4iw_ep *ep) 1358 { 1359 struct iw_cm_event event; 1360 1361 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1362 memset(&event, 0, sizeof(event)); 1363 event.event = IW_CM_EVENT_ESTABLISHED; 1364 event.ird = ep->ord; 1365 event.ord = ep->ird; 1366 if (ep->com.cm_id) { 1367 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1368 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1369 set_bit(ESTAB_UPCALL, &ep->com.history); 1370 } 1371 } 1372 1373 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1374 { 1375 struct sk_buff *skb; 1376 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1377 u32 credit_dack; 1378 1379 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); 1380 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1381 if (!skb) { 1382 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n"); 1383 return 0; 1384 } 1385 1386 /* 1387 * If we couldn't specify the entire rcv window at connection setup 1388 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1389 * then add the overage in to the credits returned. 1390 */ 1391 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1392 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1393 1394 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1395 RX_DACK_MODE_V(dack_mode); 1396 1397 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1398 credit_dack); 1399 1400 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1401 return credits; 1402 } 1403 1404 #define RELAXED_IRD_NEGOTIATION 1 1405 1406 /* 1407 * process_mpa_reply - process streaming mode MPA reply 1408 * 1409 * Returns: 1410 * 1411 * 0 upon success indicating a connect request was delivered to the ULP 1412 * or the mpa request is incomplete but valid so far. 1413 * 1414 * 1 if a failure requires the caller to close the connection. 1415 * 1416 * 2 if a failure requires the caller to abort the connection. 1417 */ 1418 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1419 { 1420 struct mpa_message *mpa; 1421 struct mpa_v2_conn_params *mpa_v2_params; 1422 u16 plen; 1423 u16 resp_ird, resp_ord; 1424 u8 rtr_mismatch = 0, insuff_ird = 0; 1425 struct c4iw_qp_attributes attrs; 1426 enum c4iw_qp_attr_mask mask; 1427 int err; 1428 int disconnect = 0; 1429 1430 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1431 1432 /* 1433 * If we get more than the supported amount of private data 1434 * then we must fail this connection. 1435 */ 1436 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1437 err = -EINVAL; 1438 goto err_stop_timer; 1439 } 1440 1441 /* 1442 * copy the new data into our accumulation buffer. 1443 */ 1444 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1445 skb->len); 1446 ep->mpa_pkt_len += skb->len; 1447 1448 /* 1449 * if we don't even have the mpa message, then bail. 1450 */ 1451 if (ep->mpa_pkt_len < sizeof(*mpa)) 1452 return 0; 1453 mpa = (struct mpa_message *) ep->mpa_pkt; 1454 1455 /* Validate MPA header. */ 1456 if (mpa->revision > mpa_rev) { 1457 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," 1458 " Received = %d\n", __func__, mpa_rev, mpa->revision); 1459 err = -EPROTO; 1460 goto err_stop_timer; 1461 } 1462 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1463 err = -EPROTO; 1464 goto err_stop_timer; 1465 } 1466 1467 plen = ntohs(mpa->private_data_size); 1468 1469 /* 1470 * Fail if there's too much private data. 1471 */ 1472 if (plen > MPA_MAX_PRIVATE_DATA) { 1473 err = -EPROTO; 1474 goto err_stop_timer; 1475 } 1476 1477 /* 1478 * If plen does not account for pkt size 1479 */ 1480 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1481 err = -EPROTO; 1482 goto err_stop_timer; 1483 } 1484 1485 ep->plen = (u8) plen; 1486 1487 /* 1488 * If we don't have all the pdata yet, then bail. 1489 * We'll continue process when more data arrives. 1490 */ 1491 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1492 return 0; 1493 1494 if (mpa->flags & MPA_REJECT) { 1495 err = -ECONNREFUSED; 1496 goto err_stop_timer; 1497 } 1498 1499 /* 1500 * Stop mpa timer. If it expired, then 1501 * we ignore the MPA reply. process_timeout() 1502 * will abort the connection. 1503 */ 1504 if (stop_ep_timer(ep)) 1505 return 0; 1506 1507 /* 1508 * If we get here we have accumulated the entire mpa 1509 * start reply message including private data. And 1510 * the MPA header is valid. 1511 */ 1512 __state_set(&ep->com, FPDU_MODE); 1513 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1514 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1515 ep->mpa_attr.version = mpa->revision; 1516 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1517 1518 if (mpa->revision == 2) { 1519 ep->mpa_attr.enhanced_rdma_conn = 1520 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1521 if (ep->mpa_attr.enhanced_rdma_conn) { 1522 mpa_v2_params = (struct mpa_v2_conn_params *) 1523 (ep->mpa_pkt + sizeof(*mpa)); 1524 resp_ird = ntohs(mpa_v2_params->ird) & 1525 MPA_V2_IRD_ORD_MASK; 1526 resp_ord = ntohs(mpa_v2_params->ord) & 1527 MPA_V2_IRD_ORD_MASK; 1528 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n", 1529 __func__, resp_ird, resp_ord, ep->ird, ep->ord); 1530 1531 /* 1532 * This is a double-check. Ideally, below checks are 1533 * not required since ird/ord stuff has been taken 1534 * care of in c4iw_accept_cr 1535 */ 1536 if (ep->ird < resp_ord) { 1537 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1538 ep->com.dev->rdev.lldi.max_ordird_qp) 1539 ep->ird = resp_ord; 1540 else 1541 insuff_ird = 1; 1542 } else if (ep->ird > resp_ord) { 1543 ep->ird = resp_ord; 1544 } 1545 if (ep->ord > resp_ird) { 1546 if (RELAXED_IRD_NEGOTIATION) 1547 ep->ord = resp_ird; 1548 else 1549 insuff_ird = 1; 1550 } 1551 if (insuff_ird) { 1552 err = -ENOMEM; 1553 ep->ird = resp_ord; 1554 ep->ord = resp_ird; 1555 } 1556 1557 if (ntohs(mpa_v2_params->ird) & 1558 MPA_V2_PEER2PEER_MODEL) { 1559 if (ntohs(mpa_v2_params->ord) & 1560 MPA_V2_RDMA_WRITE_RTR) 1561 ep->mpa_attr.p2p_type = 1562 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1563 else if (ntohs(mpa_v2_params->ord) & 1564 MPA_V2_RDMA_READ_RTR) 1565 ep->mpa_attr.p2p_type = 1566 FW_RI_INIT_P2PTYPE_READ_REQ; 1567 } 1568 } 1569 } else if (mpa->revision == 1) 1570 if (peer2peer) 1571 ep->mpa_attr.p2p_type = p2p_type; 1572 1573 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " 1574 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = " 1575 "%d\n", __func__, ep->mpa_attr.crc_enabled, 1576 ep->mpa_attr.recv_marker_enabled, 1577 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1578 ep->mpa_attr.p2p_type, p2p_type); 1579 1580 /* 1581 * If responder's RTR does not match with that of initiator, assign 1582 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1583 * generated when moving QP to RTS state. 1584 * A TERM message will be sent after QP has moved to RTS state 1585 */ 1586 if ((ep->mpa_attr.version == 2) && peer2peer && 1587 (ep->mpa_attr.p2p_type != p2p_type)) { 1588 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1589 rtr_mismatch = 1; 1590 } 1591 1592 attrs.mpa_attr = ep->mpa_attr; 1593 attrs.max_ird = ep->ird; 1594 attrs.max_ord = ep->ord; 1595 attrs.llp_stream_handle = ep; 1596 attrs.next_state = C4IW_QP_STATE_RTS; 1597 1598 mask = C4IW_QP_ATTR_NEXT_STATE | 1599 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1600 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1601 1602 /* bind QP and TID with INIT_WR */ 1603 err = c4iw_modify_qp(ep->com.qp->rhp, 1604 ep->com.qp, mask, &attrs, 1); 1605 if (err) 1606 goto err; 1607 1608 /* 1609 * If responder's RTR requirement did not match with what initiator 1610 * supports, generate TERM message 1611 */ 1612 if (rtr_mismatch) { 1613 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__); 1614 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1615 attrs.ecode = MPA_NOMATCH_RTR; 1616 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1617 attrs.send_term = 1; 1618 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1619 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1620 err = -ENOMEM; 1621 disconnect = 1; 1622 goto out; 1623 } 1624 1625 /* 1626 * Generate TERM if initiator IRD is not sufficient for responder 1627 * provided ORD. Currently, we do the same behaviour even when 1628 * responder provided IRD is also not sufficient as regards to 1629 * initiator ORD. 1630 */ 1631 if (insuff_ird) { 1632 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n", 1633 __func__); 1634 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1635 attrs.ecode = MPA_INSUFF_IRD; 1636 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1637 attrs.send_term = 1; 1638 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1639 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1640 err = -ENOMEM; 1641 disconnect = 1; 1642 goto out; 1643 } 1644 goto out; 1645 err_stop_timer: 1646 stop_ep_timer(ep); 1647 err: 1648 disconnect = 2; 1649 out: 1650 connect_reply_upcall(ep, err); 1651 return disconnect; 1652 } 1653 1654 /* 1655 * process_mpa_request - process streaming mode MPA request 1656 * 1657 * Returns: 1658 * 1659 * 0 upon success indicating a connect request was delivered to the ULP 1660 * or the mpa request is incomplete but valid so far. 1661 * 1662 * 1 if a failure requires the caller to close the connection. 1663 * 1664 * 2 if a failure requires the caller to abort the connection. 1665 */ 1666 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1667 { 1668 struct mpa_message *mpa; 1669 struct mpa_v2_conn_params *mpa_v2_params; 1670 u16 plen; 1671 1672 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1673 1674 /* 1675 * If we get more than the supported amount of private data 1676 * then we must fail this connection. 1677 */ 1678 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1679 goto err_stop_timer; 1680 1681 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1682 1683 /* 1684 * Copy the new data into our accumulation buffer. 1685 */ 1686 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1687 skb->len); 1688 ep->mpa_pkt_len += skb->len; 1689 1690 /* 1691 * If we don't even have the mpa message, then bail. 1692 * We'll continue process when more data arrives. 1693 */ 1694 if (ep->mpa_pkt_len < sizeof(*mpa)) 1695 return 0; 1696 1697 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1698 mpa = (struct mpa_message *) ep->mpa_pkt; 1699 1700 /* 1701 * Validate MPA Header. 1702 */ 1703 if (mpa->revision > mpa_rev) { 1704 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," 1705 " Received = %d\n", __func__, mpa_rev, mpa->revision); 1706 goto err_stop_timer; 1707 } 1708 1709 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1710 goto err_stop_timer; 1711 1712 plen = ntohs(mpa->private_data_size); 1713 1714 /* 1715 * Fail if there's too much private data. 1716 */ 1717 if (plen > MPA_MAX_PRIVATE_DATA) 1718 goto err_stop_timer; 1719 1720 /* 1721 * If plen does not account for pkt size 1722 */ 1723 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1724 goto err_stop_timer; 1725 ep->plen = (u8) plen; 1726 1727 /* 1728 * If we don't have all the pdata yet, then bail. 1729 */ 1730 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1731 return 0; 1732 1733 /* 1734 * If we get here we have accumulated the entire mpa 1735 * start reply message including private data. 1736 */ 1737 ep->mpa_attr.initiator = 0; 1738 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1739 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1740 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1741 ep->mpa_attr.version = mpa->revision; 1742 if (mpa->revision == 1) 1743 ep->tried_with_mpa_v1 = 1; 1744 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1745 1746 if (mpa->revision == 2) { 1747 ep->mpa_attr.enhanced_rdma_conn = 1748 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1749 if (ep->mpa_attr.enhanced_rdma_conn) { 1750 mpa_v2_params = (struct mpa_v2_conn_params *) 1751 (ep->mpa_pkt + sizeof(*mpa)); 1752 ep->ird = ntohs(mpa_v2_params->ird) & 1753 MPA_V2_IRD_ORD_MASK; 1754 ep->ird = min_t(u32, ep->ird, 1755 cur_max_read_depth(ep->com.dev)); 1756 ep->ord = ntohs(mpa_v2_params->ord) & 1757 MPA_V2_IRD_ORD_MASK; 1758 ep->ord = min_t(u32, ep->ord, 1759 cur_max_read_depth(ep->com.dev)); 1760 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird, 1761 ep->ord); 1762 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1763 if (peer2peer) { 1764 if (ntohs(mpa_v2_params->ord) & 1765 MPA_V2_RDMA_WRITE_RTR) 1766 ep->mpa_attr.p2p_type = 1767 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1768 else if (ntohs(mpa_v2_params->ord) & 1769 MPA_V2_RDMA_READ_RTR) 1770 ep->mpa_attr.p2p_type = 1771 FW_RI_INIT_P2PTYPE_READ_REQ; 1772 } 1773 } 1774 } else if (mpa->revision == 1) 1775 if (peer2peer) 1776 ep->mpa_attr.p2p_type = p2p_type; 1777 1778 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " 1779 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__, 1780 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1781 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1782 ep->mpa_attr.p2p_type); 1783 1784 __state_set(&ep->com, MPA_REQ_RCVD); 1785 1786 /* drive upcall */ 1787 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1788 if (ep->parent_ep->com.state != DEAD) { 1789 if (connect_request_upcall(ep)) 1790 goto err_unlock_parent; 1791 } else { 1792 goto err_unlock_parent; 1793 } 1794 mutex_unlock(&ep->parent_ep->com.mutex); 1795 return 0; 1796 1797 err_unlock_parent: 1798 mutex_unlock(&ep->parent_ep->com.mutex); 1799 goto err_out; 1800 err_stop_timer: 1801 (void)stop_ep_timer(ep); 1802 err_out: 1803 return 2; 1804 } 1805 1806 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1807 { 1808 struct c4iw_ep *ep; 1809 struct cpl_rx_data *hdr = cplhdr(skb); 1810 unsigned int dlen = ntohs(hdr->len); 1811 unsigned int tid = GET_TID(hdr); 1812 __u8 status = hdr->status; 1813 int disconnect = 0; 1814 1815 ep = get_ep_from_tid(dev, tid); 1816 if (!ep) 1817 return 0; 1818 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen); 1819 skb_pull(skb, sizeof(*hdr)); 1820 skb_trim(skb, dlen); 1821 mutex_lock(&ep->com.mutex); 1822 1823 switch (ep->com.state) { 1824 case MPA_REQ_SENT: 1825 update_rx_credits(ep, dlen); 1826 ep->rcv_seq += dlen; 1827 disconnect = process_mpa_reply(ep, skb); 1828 break; 1829 case MPA_REQ_WAIT: 1830 update_rx_credits(ep, dlen); 1831 ep->rcv_seq += dlen; 1832 disconnect = process_mpa_request(ep, skb); 1833 break; 1834 case FPDU_MODE: { 1835 struct c4iw_qp_attributes attrs; 1836 1837 update_rx_credits(ep, dlen); 1838 BUG_ON(!ep->com.qp); 1839 if (status) 1840 pr_err("%s Unexpected streaming data." \ 1841 " qpid %u ep %p state %d tid %u status %d\n", 1842 __func__, ep->com.qp->wq.sq.qid, ep, 1843 ep->com.state, ep->hwtid, status); 1844 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1845 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1846 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1847 disconnect = 1; 1848 break; 1849 } 1850 default: 1851 break; 1852 } 1853 mutex_unlock(&ep->com.mutex); 1854 if (disconnect) 1855 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1856 c4iw_put_ep(&ep->com); 1857 return 0; 1858 } 1859 1860 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1861 { 1862 struct c4iw_ep *ep; 1863 struct cpl_abort_rpl_rss *rpl = cplhdr(skb); 1864 int release = 0; 1865 unsigned int tid = GET_TID(rpl); 1866 1867 ep = get_ep_from_tid(dev, tid); 1868 if (!ep) { 1869 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n"); 1870 return 0; 1871 } 1872 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1873 mutex_lock(&ep->com.mutex); 1874 switch (ep->com.state) { 1875 case ABORTING: 1876 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 1877 __state_set(&ep->com, DEAD); 1878 release = 1; 1879 break; 1880 default: 1881 printk(KERN_ERR "%s ep %p state %d\n", 1882 __func__, ep, ep->com.state); 1883 break; 1884 } 1885 mutex_unlock(&ep->com.mutex); 1886 1887 if (release) 1888 release_ep_resources(ep); 1889 c4iw_put_ep(&ep->com); 1890 return 0; 1891 } 1892 1893 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1894 { 1895 struct sk_buff *skb; 1896 struct fw_ofld_connection_wr *req; 1897 unsigned int mtu_idx; 1898 u32 wscale; 1899 struct sockaddr_in *sin; 1900 int win; 1901 1902 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1903 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req)); 1904 memset(req, 0, sizeof(*req)); 1905 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1906 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1907 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1908 ep->com.dev->rdev.lldi.ports[0], 1909 ep->l2t)); 1910 sin = (struct sockaddr_in *)&ep->com.local_addr; 1911 req->le.lport = sin->sin_port; 1912 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1913 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1914 req->le.pport = sin->sin_port; 1915 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1916 req->tcb.t_state_to_astid = 1917 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1918 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1919 req->tcb.cplrxdataack_cplpassacceptrpl = 1920 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1921 req->tcb.tx_max = (__force __be32) jiffies; 1922 req->tcb.rcv_adv = htons(1); 1923 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1924 enable_tcp_timestamps, 1925 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1926 wscale = cxgb_compute_wscale(rcv_win); 1927 1928 /* 1929 * Specify the largest window that will fit in opt0. The 1930 * remainder will be specified in the rx_data_ack. 1931 */ 1932 win = ep->rcv_win >> 10; 1933 if (win > RCV_BUFSIZ_M) 1934 win = RCV_BUFSIZ_M; 1935 1936 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 1937 (nocong ? NO_CONG_F : 0) | 1938 KEEP_ALIVE_F | 1939 DELACK_F | 1940 WND_SCALE_V(wscale) | 1941 MSS_IDX_V(mtu_idx) | 1942 L2T_IDX_V(ep->l2t->idx) | 1943 TX_CHAN_V(ep->tx_chan) | 1944 SMAC_SEL_V(ep->smac_idx) | 1945 DSCP_V(ep->tos >> 2) | 1946 ULP_MODE_V(ULP_MODE_TCPDDP) | 1947 RCV_BUFSIZ_V(win)); 1948 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 1949 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 1950 RX_CHANNEL_V(0) | 1951 CCTRL_ECN_V(enable_ecn) | 1952 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 1953 if (enable_tcp_timestamps) 1954 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 1955 if (enable_tcp_sack) 1956 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 1957 if (wscale && enable_tcp_window_scaling) 1958 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 1959 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 1960 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 1961 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 1962 set_bit(ACT_OFLD_CONN, &ep->com.history); 1963 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1964 } 1965 1966 /* 1967 * Some of the error codes above implicitly indicate that there is no TID 1968 * allocated with the result of an ACT_OPEN. We use this predicate to make 1969 * that explicit. 1970 */ 1971 static inline int act_open_has_tid(int status) 1972 { 1973 return (status != CPL_ERR_TCAM_PARITY && 1974 status != CPL_ERR_TCAM_MISS && 1975 status != CPL_ERR_TCAM_FULL && 1976 status != CPL_ERR_CONN_EXIST_SYNRECV && 1977 status != CPL_ERR_CONN_EXIST); 1978 } 1979 1980 static char *neg_adv_str(unsigned int status) 1981 { 1982 switch (status) { 1983 case CPL_ERR_RTX_NEG_ADVICE: 1984 return "Retransmit timeout"; 1985 case CPL_ERR_PERSIST_NEG_ADVICE: 1986 return "Persist timeout"; 1987 case CPL_ERR_KEEPALV_NEG_ADVICE: 1988 return "Keepalive timeout"; 1989 default: 1990 return "Unknown"; 1991 } 1992 } 1993 1994 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 1995 { 1996 ep->snd_win = snd_win; 1997 ep->rcv_win = rcv_win; 1998 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win); 1999 } 2000 2001 #define ACT_OPEN_RETRY_COUNT 2 2002 2003 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2004 struct dst_entry *dst, struct c4iw_dev *cdev, 2005 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2006 { 2007 struct neighbour *n; 2008 int err, step; 2009 struct net_device *pdev; 2010 2011 n = dst_neigh_lookup(dst, peer_ip); 2012 if (!n) 2013 return -ENODEV; 2014 2015 rcu_read_lock(); 2016 err = -ENOMEM; 2017 if (n->dev->flags & IFF_LOOPBACK) { 2018 if (iptype == 4) 2019 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2020 else if (IS_ENABLED(CONFIG_IPV6)) 2021 for_each_netdev(&init_net, pdev) { 2022 if (ipv6_chk_addr(&init_net, 2023 (struct in6_addr *)peer_ip, 2024 pdev, 1)) 2025 break; 2026 } 2027 else 2028 pdev = NULL; 2029 2030 if (!pdev) { 2031 err = -ENODEV; 2032 goto out; 2033 } 2034 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2035 n, pdev, rt_tos2priority(tos)); 2036 if (!ep->l2t) { 2037 dev_put(pdev); 2038 goto out; 2039 } 2040 ep->mtu = pdev->mtu; 2041 ep->tx_chan = cxgb4_port_chan(pdev); 2042 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2043 cxgb4_port_viid(pdev)); 2044 step = cdev->rdev.lldi.ntxq / 2045 cdev->rdev.lldi.nchan; 2046 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2047 step = cdev->rdev.lldi.nrxq / 2048 cdev->rdev.lldi.nchan; 2049 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2050 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2051 cxgb4_port_idx(pdev) * step]; 2052 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2053 dev_put(pdev); 2054 } else { 2055 pdev = get_real_dev(n->dev); 2056 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2057 n, pdev, 0); 2058 if (!ep->l2t) 2059 goto out; 2060 ep->mtu = dst_mtu(dst); 2061 ep->tx_chan = cxgb4_port_chan(pdev); 2062 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2063 cxgb4_port_viid(pdev)); 2064 step = cdev->rdev.lldi.ntxq / 2065 cdev->rdev.lldi.nchan; 2066 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2067 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2068 step = cdev->rdev.lldi.nrxq / 2069 cdev->rdev.lldi.nchan; 2070 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2071 cxgb4_port_idx(pdev) * step]; 2072 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2073 2074 if (clear_mpa_v1) { 2075 ep->retry_with_mpa_v1 = 0; 2076 ep->tried_with_mpa_v1 = 0; 2077 } 2078 } 2079 err = 0; 2080 out: 2081 rcu_read_unlock(); 2082 2083 neigh_release(n); 2084 2085 return err; 2086 } 2087 2088 static int c4iw_reconnect(struct c4iw_ep *ep) 2089 { 2090 int err = 0; 2091 int size = 0; 2092 struct sockaddr_in *laddr = (struct sockaddr_in *) 2093 &ep->com.cm_id->m_local_addr; 2094 struct sockaddr_in *raddr = (struct sockaddr_in *) 2095 &ep->com.cm_id->m_remote_addr; 2096 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2097 &ep->com.cm_id->m_local_addr; 2098 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2099 &ep->com.cm_id->m_remote_addr; 2100 int iptype; 2101 __u8 *ra; 2102 2103 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id); 2104 init_timer(&ep->timer); 2105 c4iw_init_wr_wait(&ep->com.wr_wait); 2106 2107 /* When MPA revision is different on nodes, the node with MPA_rev=2 2108 * tries to reconnect with MPA_rev 1 for the same EP through 2109 * c4iw_reconnect(), where the same EP is assigned with new tid for 2110 * further connection establishment. As we are using the same EP pointer 2111 * for reconnect, few skbs are used during the previous c4iw_connect(), 2112 * which leaves the EP with inadequate skbs for further 2113 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty 2114 * skb_list() during peer_abort(). Allocate skbs which is already used. 2115 */ 2116 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2117 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2118 err = -ENOMEM; 2119 goto fail1; 2120 } 2121 2122 /* 2123 * Allocate an active TID to initiate a TCP connection. 2124 */ 2125 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2126 if (ep->atid == -1) { 2127 pr_err("%s - cannot alloc atid.\n", __func__); 2128 err = -ENOMEM; 2129 goto fail2; 2130 } 2131 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2132 2133 /* find a route */ 2134 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2135 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2136 laddr->sin_addr.s_addr, 2137 raddr->sin_addr.s_addr, 2138 laddr->sin_port, 2139 raddr->sin_port, ep->com.cm_id->tos); 2140 iptype = 4; 2141 ra = (__u8 *)&raddr->sin_addr; 2142 } else { 2143 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2144 get_real_dev, 2145 laddr6->sin6_addr.s6_addr, 2146 raddr6->sin6_addr.s6_addr, 2147 laddr6->sin6_port, 2148 raddr6->sin6_port, 0, 2149 raddr6->sin6_scope_id); 2150 iptype = 6; 2151 ra = (__u8 *)&raddr6->sin6_addr; 2152 } 2153 if (!ep->dst) { 2154 pr_err("%s - cannot find route.\n", __func__); 2155 err = -EHOSTUNREACH; 2156 goto fail3; 2157 } 2158 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2159 ep->com.dev->rdev.lldi.adapter_type, 2160 ep->com.cm_id->tos); 2161 if (err) { 2162 pr_err("%s - cannot alloc l2e.\n", __func__); 2163 goto fail4; 2164 } 2165 2166 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2167 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2168 ep->l2t->idx); 2169 2170 state_set(&ep->com, CONNECTING); 2171 ep->tos = ep->com.cm_id->tos; 2172 2173 /* send connect request to rnic */ 2174 err = send_connect(ep); 2175 if (!err) 2176 goto out; 2177 2178 cxgb4_l2t_release(ep->l2t); 2179 fail4: 2180 dst_release(ep->dst); 2181 fail3: 2182 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2183 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2184 fail2: 2185 /* 2186 * remember to send notification to upper layer. 2187 * We are in here so the upper layer is not aware that this is 2188 * re-connect attempt and so, upper layer is still waiting for 2189 * response of 1st connect request. 2190 */ 2191 connect_reply_upcall(ep, -ECONNRESET); 2192 fail1: 2193 c4iw_put_ep(&ep->com); 2194 out: 2195 return err; 2196 } 2197 2198 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2199 { 2200 struct c4iw_ep *ep; 2201 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2202 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2203 ntohl(rpl->atid_status))); 2204 struct tid_info *t = dev->rdev.lldi.tids; 2205 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2206 struct sockaddr_in *la; 2207 struct sockaddr_in *ra; 2208 struct sockaddr_in6 *la6; 2209 struct sockaddr_in6 *ra6; 2210 int ret = 0; 2211 2212 ep = lookup_atid(t, atid); 2213 la = (struct sockaddr_in *)&ep->com.local_addr; 2214 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2215 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2216 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2217 2218 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid, 2219 status, status2errno(status)); 2220 2221 if (cxgb_is_neg_adv(status)) { 2222 PDBG("%s Connection problems for atid %u status %u (%s)\n", 2223 __func__, atid, status, neg_adv_str(status)); 2224 ep->stats.connect_neg_adv++; 2225 mutex_lock(&dev->rdev.stats.lock); 2226 dev->rdev.stats.neg_adv++; 2227 mutex_unlock(&dev->rdev.stats.lock); 2228 return 0; 2229 } 2230 2231 set_bit(ACT_OPEN_RPL, &ep->com.history); 2232 2233 /* 2234 * Log interesting failures. 2235 */ 2236 switch (status) { 2237 case CPL_ERR_CONN_RESET: 2238 case CPL_ERR_CONN_TIMEDOUT: 2239 break; 2240 case CPL_ERR_TCAM_FULL: 2241 mutex_lock(&dev->rdev.stats.lock); 2242 dev->rdev.stats.tcam_full++; 2243 mutex_unlock(&dev->rdev.stats.lock); 2244 if (ep->com.local_addr.ss_family == AF_INET && 2245 dev->rdev.lldi.enable_fw_ofld_conn) { 2246 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2247 ntohl(rpl->atid_status)))); 2248 if (ret) 2249 goto fail; 2250 return 0; 2251 } 2252 break; 2253 case CPL_ERR_CONN_EXIST: 2254 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2255 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2256 if (ep->com.remote_addr.ss_family == AF_INET6) { 2257 struct sockaddr_in6 *sin6 = 2258 (struct sockaddr_in6 *) 2259 &ep->com.local_addr; 2260 cxgb4_clip_release( 2261 ep->com.dev->rdev.lldi.ports[0], 2262 (const u32 *) 2263 &sin6->sin6_addr.s6_addr, 1); 2264 } 2265 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2266 atid); 2267 cxgb4_free_atid(t, atid); 2268 dst_release(ep->dst); 2269 cxgb4_l2t_release(ep->l2t); 2270 c4iw_reconnect(ep); 2271 return 0; 2272 } 2273 break; 2274 default: 2275 if (ep->com.local_addr.ss_family == AF_INET) { 2276 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2277 atid, status, status2errno(status), 2278 &la->sin_addr.s_addr, ntohs(la->sin_port), 2279 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2280 } else { 2281 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2282 atid, status, status2errno(status), 2283 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2284 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2285 } 2286 break; 2287 } 2288 2289 fail: 2290 connect_reply_upcall(ep, status2errno(status)); 2291 state_set(&ep->com, DEAD); 2292 2293 if (ep->com.remote_addr.ss_family == AF_INET6) { 2294 struct sockaddr_in6 *sin6 = 2295 (struct sockaddr_in6 *)&ep->com.local_addr; 2296 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2297 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2298 } 2299 if (status && act_open_has_tid(status)) 2300 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl)); 2301 2302 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2303 cxgb4_free_atid(t, atid); 2304 dst_release(ep->dst); 2305 cxgb4_l2t_release(ep->l2t); 2306 c4iw_put_ep(&ep->com); 2307 2308 return 0; 2309 } 2310 2311 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2312 { 2313 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2314 unsigned int stid = GET_TID(rpl); 2315 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2316 2317 if (!ep) { 2318 PDBG("%s stid %d lookup failure!\n", __func__, stid); 2319 goto out; 2320 } 2321 PDBG("%s ep %p status %d error %d\n", __func__, ep, 2322 rpl->status, status2errno(rpl->status)); 2323 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2324 c4iw_put_ep(&ep->com); 2325 out: 2326 return 0; 2327 } 2328 2329 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2330 { 2331 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2332 unsigned int stid = GET_TID(rpl); 2333 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2334 2335 PDBG("%s ep %p\n", __func__, ep); 2336 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2337 c4iw_put_ep(&ep->com); 2338 return 0; 2339 } 2340 2341 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2342 struct cpl_pass_accept_req *req) 2343 { 2344 struct cpl_pass_accept_rpl *rpl; 2345 unsigned int mtu_idx; 2346 u64 opt0; 2347 u32 opt2; 2348 u32 wscale; 2349 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2350 int win; 2351 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2352 2353 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2354 BUG_ON(skb_cloned(skb)); 2355 2356 skb_get(skb); 2357 rpl = cplhdr(skb); 2358 if (!is_t4(adapter_type)) { 2359 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2360 rpl5 = (void *)rpl; 2361 INIT_TP_WR(rpl5, ep->hwtid); 2362 } else { 2363 skb_trim(skb, sizeof(*rpl)); 2364 INIT_TP_WR(rpl, ep->hwtid); 2365 } 2366 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2367 ep->hwtid)); 2368 2369 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2370 enable_tcp_timestamps && req->tcpopt.tstamp, 2371 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2372 wscale = cxgb_compute_wscale(rcv_win); 2373 2374 /* 2375 * Specify the largest window that will fit in opt0. The 2376 * remainder will be specified in the rx_data_ack. 2377 */ 2378 win = ep->rcv_win >> 10; 2379 if (win > RCV_BUFSIZ_M) 2380 win = RCV_BUFSIZ_M; 2381 opt0 = (nocong ? NO_CONG_F : 0) | 2382 KEEP_ALIVE_F | 2383 DELACK_F | 2384 WND_SCALE_V(wscale) | 2385 MSS_IDX_V(mtu_idx) | 2386 L2T_IDX_V(ep->l2t->idx) | 2387 TX_CHAN_V(ep->tx_chan) | 2388 SMAC_SEL_V(ep->smac_idx) | 2389 DSCP_V(ep->tos >> 2) | 2390 ULP_MODE_V(ULP_MODE_TCPDDP) | 2391 RCV_BUFSIZ_V(win); 2392 opt2 = RX_CHANNEL_V(0) | 2393 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2394 2395 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2396 opt2 |= TSTAMPS_EN_F; 2397 if (enable_tcp_sack && req->tcpopt.sack) 2398 opt2 |= SACK_EN_F; 2399 if (wscale && enable_tcp_window_scaling) 2400 opt2 |= WND_SCALE_EN_F; 2401 if (enable_ecn) { 2402 const struct tcphdr *tcph; 2403 u32 hlen = ntohl(req->hdr_len); 2404 2405 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2406 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2407 IP_HDR_LEN_G(hlen); 2408 else 2409 tcph = (const void *)(req + 1) + 2410 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2411 if (tcph->ece && tcph->cwr) 2412 opt2 |= CCTRL_ECN_V(1); 2413 } 2414 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2415 u32 isn = (prandom_u32() & ~7UL) - 1; 2416 opt2 |= T5_OPT_2_VALID_F; 2417 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2418 opt2 |= T5_ISS_F; 2419 rpl5 = (void *)rpl; 2420 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2421 if (peer2peer) 2422 isn += 4; 2423 rpl5->iss = cpu_to_be32(isn); 2424 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss)); 2425 } 2426 2427 rpl->opt0 = cpu_to_be64(opt0); 2428 rpl->opt2 = cpu_to_be32(opt2); 2429 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2430 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2431 2432 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2433 } 2434 2435 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2436 { 2437 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid); 2438 BUG_ON(skb_cloned(skb)); 2439 skb_trim(skb, sizeof(struct cpl_tid_release)); 2440 release_tid(&dev->rdev, hwtid, skb); 2441 return; 2442 } 2443 2444 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2445 { 2446 struct c4iw_ep *child_ep = NULL, *parent_ep; 2447 struct cpl_pass_accept_req *req = cplhdr(skb); 2448 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2449 struct tid_info *t = dev->rdev.lldi.tids; 2450 unsigned int hwtid = GET_TID(req); 2451 struct dst_entry *dst; 2452 __u8 local_ip[16], peer_ip[16]; 2453 __be16 local_port, peer_port; 2454 struct sockaddr_in6 *sin6; 2455 int err; 2456 u16 peer_mss = ntohs(req->tcpopt.mss); 2457 int iptype; 2458 unsigned short hdrs; 2459 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2460 2461 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2462 if (!parent_ep) { 2463 PDBG("%s connect request on invalid stid %d\n", __func__, stid); 2464 goto reject; 2465 } 2466 2467 if (state_read(&parent_ep->com) != LISTEN) { 2468 PDBG("%s - listening ep not in LISTEN\n", __func__); 2469 goto reject; 2470 } 2471 2472 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2473 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2474 2475 /* Find output route */ 2476 if (iptype == 4) { 2477 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2478 , __func__, parent_ep, hwtid, 2479 local_ip, peer_ip, ntohs(local_port), 2480 ntohs(peer_port), peer_mss); 2481 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2482 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2483 local_port, peer_port, tos); 2484 } else { 2485 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2486 , __func__, parent_ep, hwtid, 2487 local_ip, peer_ip, ntohs(local_port), 2488 ntohs(peer_port), peer_mss); 2489 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2490 local_ip, peer_ip, local_port, peer_port, 2491 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2492 ((struct sockaddr_in6 *) 2493 &parent_ep->com.local_addr)->sin6_scope_id); 2494 } 2495 if (!dst) { 2496 printk(KERN_ERR MOD "%s - failed to find dst entry!\n", 2497 __func__); 2498 goto reject; 2499 } 2500 2501 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2502 if (!child_ep) { 2503 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n", 2504 __func__); 2505 dst_release(dst); 2506 goto reject; 2507 } 2508 2509 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2510 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2511 if (err) { 2512 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n", 2513 __func__); 2514 dst_release(dst); 2515 kfree(child_ep); 2516 goto reject; 2517 } 2518 2519 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) + 2520 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2521 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2522 child_ep->mtu = peer_mss + hdrs; 2523 2524 skb_queue_head_init(&child_ep->com.ep_skb_list); 2525 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2526 goto fail; 2527 2528 state_set(&child_ep->com, CONNECTING); 2529 child_ep->com.dev = dev; 2530 child_ep->com.cm_id = NULL; 2531 2532 if (iptype == 4) { 2533 struct sockaddr_in *sin = (struct sockaddr_in *) 2534 &child_ep->com.local_addr; 2535 2536 sin->sin_family = AF_INET; 2537 sin->sin_port = local_port; 2538 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2539 2540 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2541 sin->sin_family = AF_INET; 2542 sin->sin_port = ((struct sockaddr_in *) 2543 &parent_ep->com.local_addr)->sin_port; 2544 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2545 2546 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2547 sin->sin_family = AF_INET; 2548 sin->sin_port = peer_port; 2549 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2550 } else { 2551 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2552 sin6->sin6_family = PF_INET6; 2553 sin6->sin6_port = local_port; 2554 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2555 2556 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2557 sin6->sin6_family = PF_INET6; 2558 sin6->sin6_port = ((struct sockaddr_in6 *) 2559 &parent_ep->com.local_addr)->sin6_port; 2560 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2561 2562 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2563 sin6->sin6_family = PF_INET6; 2564 sin6->sin6_port = peer_port; 2565 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2566 } 2567 2568 c4iw_get_ep(&parent_ep->com); 2569 child_ep->parent_ep = parent_ep; 2570 child_ep->tos = tos; 2571 child_ep->dst = dst; 2572 child_ep->hwtid = hwtid; 2573 2574 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__, 2575 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2576 2577 init_timer(&child_ep->timer); 2578 cxgb4_insert_tid(t, child_ep, hwtid); 2579 insert_ep_tid(child_ep); 2580 if (accept_cr(child_ep, skb, req)) { 2581 c4iw_put_ep(&parent_ep->com); 2582 release_ep_resources(child_ep); 2583 } else { 2584 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2585 } 2586 if (iptype == 6) { 2587 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2588 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2589 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2590 } 2591 goto out; 2592 fail: 2593 c4iw_put_ep(&child_ep->com); 2594 reject: 2595 reject_cr(dev, hwtid, skb); 2596 if (parent_ep) 2597 c4iw_put_ep(&parent_ep->com); 2598 out: 2599 return 0; 2600 } 2601 2602 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2603 { 2604 struct c4iw_ep *ep; 2605 struct cpl_pass_establish *req = cplhdr(skb); 2606 unsigned int tid = GET_TID(req); 2607 int ret; 2608 2609 ep = get_ep_from_tid(dev, tid); 2610 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2611 ep->snd_seq = be32_to_cpu(req->snd_isn); 2612 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2613 2614 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid, 2615 ntohs(req->tcp_opt)); 2616 2617 set_emss(ep, ntohs(req->tcp_opt)); 2618 2619 dst_confirm(ep->dst); 2620 mutex_lock(&ep->com.mutex); 2621 ep->com.state = MPA_REQ_WAIT; 2622 start_ep_timer(ep); 2623 set_bit(PASS_ESTAB, &ep->com.history); 2624 ret = send_flowc(ep); 2625 mutex_unlock(&ep->com.mutex); 2626 if (ret) 2627 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2628 c4iw_put_ep(&ep->com); 2629 2630 return 0; 2631 } 2632 2633 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2634 { 2635 struct cpl_peer_close *hdr = cplhdr(skb); 2636 struct c4iw_ep *ep; 2637 struct c4iw_qp_attributes attrs; 2638 int disconnect = 1; 2639 int release = 0; 2640 unsigned int tid = GET_TID(hdr); 2641 int ret; 2642 2643 ep = get_ep_from_tid(dev, tid); 2644 if (!ep) 2645 return 0; 2646 2647 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2648 dst_confirm(ep->dst); 2649 2650 set_bit(PEER_CLOSE, &ep->com.history); 2651 mutex_lock(&ep->com.mutex); 2652 switch (ep->com.state) { 2653 case MPA_REQ_WAIT: 2654 __state_set(&ep->com, CLOSING); 2655 break; 2656 case MPA_REQ_SENT: 2657 __state_set(&ep->com, CLOSING); 2658 connect_reply_upcall(ep, -ECONNRESET); 2659 break; 2660 case MPA_REQ_RCVD: 2661 2662 /* 2663 * We're gonna mark this puppy DEAD, but keep 2664 * the reference on it until the ULP accepts or 2665 * rejects the CR. Also wake up anyone waiting 2666 * in rdma connection migration (see c4iw_accept_cr()). 2667 */ 2668 __state_set(&ep->com, CLOSING); 2669 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); 2670 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2671 break; 2672 case MPA_REP_SENT: 2673 __state_set(&ep->com, CLOSING); 2674 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); 2675 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2676 break; 2677 case FPDU_MODE: 2678 start_ep_timer(ep); 2679 __state_set(&ep->com, CLOSING); 2680 attrs.next_state = C4IW_QP_STATE_CLOSING; 2681 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2682 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2683 if (ret != -ECONNRESET) { 2684 peer_close_upcall(ep); 2685 disconnect = 1; 2686 } 2687 break; 2688 case ABORTING: 2689 disconnect = 0; 2690 break; 2691 case CLOSING: 2692 __state_set(&ep->com, MORIBUND); 2693 disconnect = 0; 2694 break; 2695 case MORIBUND: 2696 (void)stop_ep_timer(ep); 2697 if (ep->com.cm_id && ep->com.qp) { 2698 attrs.next_state = C4IW_QP_STATE_IDLE; 2699 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2700 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2701 } 2702 close_complete_upcall(ep, 0); 2703 __state_set(&ep->com, DEAD); 2704 release = 1; 2705 disconnect = 0; 2706 break; 2707 case DEAD: 2708 disconnect = 0; 2709 break; 2710 default: 2711 BUG_ON(1); 2712 } 2713 mutex_unlock(&ep->com.mutex); 2714 if (disconnect) 2715 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2716 if (release) 2717 release_ep_resources(ep); 2718 c4iw_put_ep(&ep->com); 2719 return 0; 2720 } 2721 2722 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2723 { 2724 struct cpl_abort_req_rss *req = cplhdr(skb); 2725 struct c4iw_ep *ep; 2726 struct sk_buff *rpl_skb; 2727 struct c4iw_qp_attributes attrs; 2728 int ret; 2729 int release = 0; 2730 unsigned int tid = GET_TID(req); 2731 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2732 2733 ep = get_ep_from_tid(dev, tid); 2734 if (!ep) 2735 return 0; 2736 2737 if (cxgb_is_neg_adv(req->status)) { 2738 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n", 2739 __func__, ep->hwtid, req->status, 2740 neg_adv_str(req->status)); 2741 ep->stats.abort_neg_adv++; 2742 mutex_lock(&dev->rdev.stats.lock); 2743 dev->rdev.stats.neg_adv++; 2744 mutex_unlock(&dev->rdev.stats.lock); 2745 goto deref_ep; 2746 } 2747 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 2748 ep->com.state); 2749 set_bit(PEER_ABORT, &ep->com.history); 2750 2751 /* 2752 * Wake up any threads in rdma_init() or rdma_fini(). 2753 * However, this is not needed if com state is just 2754 * MPA_REQ_SENT 2755 */ 2756 if (ep->com.state != MPA_REQ_SENT) 2757 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2758 2759 mutex_lock(&ep->com.mutex); 2760 switch (ep->com.state) { 2761 case CONNECTING: 2762 c4iw_put_ep(&ep->parent_ep->com); 2763 break; 2764 case MPA_REQ_WAIT: 2765 (void)stop_ep_timer(ep); 2766 break; 2767 case MPA_REQ_SENT: 2768 (void)stop_ep_timer(ep); 2769 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2770 connect_reply_upcall(ep, -ECONNRESET); 2771 else { 2772 /* 2773 * we just don't send notification upwards because we 2774 * want to retry with mpa_v1 without upper layers even 2775 * knowing it. 2776 * 2777 * do some housekeeping so as to re-initiate the 2778 * connection 2779 */ 2780 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__, 2781 mpa_rev); 2782 ep->retry_with_mpa_v1 = 1; 2783 } 2784 break; 2785 case MPA_REP_SENT: 2786 break; 2787 case MPA_REQ_RCVD: 2788 break; 2789 case MORIBUND: 2790 case CLOSING: 2791 stop_ep_timer(ep); 2792 /*FALLTHROUGH*/ 2793 case FPDU_MODE: 2794 if (ep->com.cm_id && ep->com.qp) { 2795 attrs.next_state = C4IW_QP_STATE_ERROR; 2796 ret = c4iw_modify_qp(ep->com.qp->rhp, 2797 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2798 &attrs, 1); 2799 if (ret) 2800 printk(KERN_ERR MOD 2801 "%s - qp <- error failed!\n", 2802 __func__); 2803 } 2804 peer_abort_upcall(ep); 2805 break; 2806 case ABORTING: 2807 break; 2808 case DEAD: 2809 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2810 mutex_unlock(&ep->com.mutex); 2811 goto deref_ep; 2812 default: 2813 BUG_ON(1); 2814 break; 2815 } 2816 dst_confirm(ep->dst); 2817 if (ep->com.state != ABORTING) { 2818 __state_set(&ep->com, DEAD); 2819 /* we don't release if we want to retry with mpa_v1 */ 2820 if (!ep->retry_with_mpa_v1) 2821 release = 1; 2822 } 2823 mutex_unlock(&ep->com.mutex); 2824 2825 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2826 if (WARN_ON(!rpl_skb)) { 2827 release = 1; 2828 goto out; 2829 } 2830 2831 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2832 2833 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2834 out: 2835 if (release) 2836 release_ep_resources(ep); 2837 else if (ep->retry_with_mpa_v1) { 2838 if (ep->com.remote_addr.ss_family == AF_INET6) { 2839 struct sockaddr_in6 *sin6 = 2840 (struct sockaddr_in6 *) 2841 &ep->com.local_addr; 2842 cxgb4_clip_release( 2843 ep->com.dev->rdev.lldi.ports[0], 2844 (const u32 *)&sin6->sin6_addr.s6_addr, 2845 1); 2846 } 2847 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2848 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 2849 dst_release(ep->dst); 2850 cxgb4_l2t_release(ep->l2t); 2851 c4iw_reconnect(ep); 2852 } 2853 2854 deref_ep: 2855 c4iw_put_ep(&ep->com); 2856 /* Dereferencing ep, referenced in peer_abort_intr() */ 2857 c4iw_put_ep(&ep->com); 2858 return 0; 2859 } 2860 2861 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2862 { 2863 struct c4iw_ep *ep; 2864 struct c4iw_qp_attributes attrs; 2865 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2866 int release = 0; 2867 unsigned int tid = GET_TID(rpl); 2868 2869 ep = get_ep_from_tid(dev, tid); 2870 if (!ep) 2871 return 0; 2872 2873 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2874 BUG_ON(!ep); 2875 2876 /* The cm_id may be null if we failed to connect */ 2877 mutex_lock(&ep->com.mutex); 2878 set_bit(CLOSE_CON_RPL, &ep->com.history); 2879 switch (ep->com.state) { 2880 case CLOSING: 2881 __state_set(&ep->com, MORIBUND); 2882 break; 2883 case MORIBUND: 2884 (void)stop_ep_timer(ep); 2885 if ((ep->com.cm_id) && (ep->com.qp)) { 2886 attrs.next_state = C4IW_QP_STATE_IDLE; 2887 c4iw_modify_qp(ep->com.qp->rhp, 2888 ep->com.qp, 2889 C4IW_QP_ATTR_NEXT_STATE, 2890 &attrs, 1); 2891 } 2892 close_complete_upcall(ep, 0); 2893 __state_set(&ep->com, DEAD); 2894 release = 1; 2895 break; 2896 case ABORTING: 2897 case DEAD: 2898 break; 2899 default: 2900 BUG_ON(1); 2901 break; 2902 } 2903 mutex_unlock(&ep->com.mutex); 2904 if (release) 2905 release_ep_resources(ep); 2906 c4iw_put_ep(&ep->com); 2907 return 0; 2908 } 2909 2910 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 2911 { 2912 struct cpl_rdma_terminate *rpl = cplhdr(skb); 2913 unsigned int tid = GET_TID(rpl); 2914 struct c4iw_ep *ep; 2915 struct c4iw_qp_attributes attrs; 2916 2917 ep = get_ep_from_tid(dev, tid); 2918 BUG_ON(!ep); 2919 2920 if (ep && ep->com.qp) { 2921 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid, 2922 ep->com.qp->wq.sq.qid); 2923 attrs.next_state = C4IW_QP_STATE_TERMINATE; 2924 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2925 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2926 } else 2927 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid); 2928 c4iw_put_ep(&ep->com); 2929 2930 return 0; 2931 } 2932 2933 /* 2934 * Upcall from the adapter indicating data has been transmitted. 2935 * For us its just the single MPA request or reply. We can now free 2936 * the skb holding the mpa message. 2937 */ 2938 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 2939 { 2940 struct c4iw_ep *ep; 2941 struct cpl_fw4_ack *hdr = cplhdr(skb); 2942 u8 credits = hdr->credits; 2943 unsigned int tid = GET_TID(hdr); 2944 2945 2946 ep = get_ep_from_tid(dev, tid); 2947 if (!ep) 2948 return 0; 2949 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); 2950 if (credits == 0) { 2951 PDBG("%s 0 credit ack ep %p tid %u state %u\n", 2952 __func__, ep, ep->hwtid, state_read(&ep->com)); 2953 goto out; 2954 } 2955 2956 dst_confirm(ep->dst); 2957 if (ep->mpa_skb) { 2958 PDBG("%s last streaming msg ack ep %p tid %u state %u " 2959 "initiator %u freeing skb\n", __func__, ep, ep->hwtid, 2960 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); 2961 mutex_lock(&ep->com.mutex); 2962 kfree_skb(ep->mpa_skb); 2963 ep->mpa_skb = NULL; 2964 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 2965 stop_ep_timer(ep); 2966 mutex_unlock(&ep->com.mutex); 2967 } 2968 out: 2969 c4iw_put_ep(&ep->com); 2970 return 0; 2971 } 2972 2973 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 2974 { 2975 int abort; 2976 struct c4iw_ep *ep = to_ep(cm_id); 2977 2978 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2979 2980 mutex_lock(&ep->com.mutex); 2981 if (ep->com.state != MPA_REQ_RCVD) { 2982 mutex_unlock(&ep->com.mutex); 2983 c4iw_put_ep(&ep->com); 2984 return -ECONNRESET; 2985 } 2986 set_bit(ULP_REJECT, &ep->com.history); 2987 if (mpa_rev == 0) 2988 abort = 1; 2989 else 2990 abort = send_mpa_reject(ep, pdata, pdata_len); 2991 mutex_unlock(&ep->com.mutex); 2992 2993 stop_ep_timer(ep); 2994 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 2995 c4iw_put_ep(&ep->com); 2996 return 0; 2997 } 2998 2999 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3000 { 3001 int err; 3002 struct c4iw_qp_attributes attrs; 3003 enum c4iw_qp_attr_mask mask; 3004 struct c4iw_ep *ep = to_ep(cm_id); 3005 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3006 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3007 int abort = 0; 3008 3009 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 3010 3011 mutex_lock(&ep->com.mutex); 3012 if (ep->com.state != MPA_REQ_RCVD) { 3013 err = -ECONNRESET; 3014 goto err_out; 3015 } 3016 3017 BUG_ON(!qp); 3018 3019 set_bit(ULP_ACCEPT, &ep->com.history); 3020 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3021 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3022 err = -EINVAL; 3023 goto err_abort; 3024 } 3025 3026 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3027 if (conn_param->ord > ep->ird) { 3028 if (RELAXED_IRD_NEGOTIATION) { 3029 conn_param->ord = ep->ird; 3030 } else { 3031 ep->ird = conn_param->ird; 3032 ep->ord = conn_param->ord; 3033 send_mpa_reject(ep, conn_param->private_data, 3034 conn_param->private_data_len); 3035 err = -ENOMEM; 3036 goto err_abort; 3037 } 3038 } 3039 if (conn_param->ird < ep->ord) { 3040 if (RELAXED_IRD_NEGOTIATION && 3041 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3042 conn_param->ird = ep->ord; 3043 } else { 3044 err = -ENOMEM; 3045 goto err_abort; 3046 } 3047 } 3048 } 3049 ep->ird = conn_param->ird; 3050 ep->ord = conn_param->ord; 3051 3052 if (ep->mpa_attr.version == 1) { 3053 if (peer2peer && ep->ird == 0) 3054 ep->ird = 1; 3055 } else { 3056 if (peer2peer && 3057 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3058 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3059 ep->ird = 1; 3060 } 3061 3062 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); 3063 3064 ep->com.cm_id = cm_id; 3065 ref_cm_id(&ep->com); 3066 ep->com.qp = qp; 3067 ref_qp(ep); 3068 3069 /* bind QP to EP and move to RTS */ 3070 attrs.mpa_attr = ep->mpa_attr; 3071 attrs.max_ird = ep->ird; 3072 attrs.max_ord = ep->ord; 3073 attrs.llp_stream_handle = ep; 3074 attrs.next_state = C4IW_QP_STATE_RTS; 3075 3076 /* bind QP and TID with INIT_WR */ 3077 mask = C4IW_QP_ATTR_NEXT_STATE | 3078 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3079 C4IW_QP_ATTR_MPA_ATTR | 3080 C4IW_QP_ATTR_MAX_IRD | 3081 C4IW_QP_ATTR_MAX_ORD; 3082 3083 err = c4iw_modify_qp(ep->com.qp->rhp, 3084 ep->com.qp, mask, &attrs, 1); 3085 if (err) 3086 goto err_deref_cm_id; 3087 3088 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3089 err = send_mpa_reply(ep, conn_param->private_data, 3090 conn_param->private_data_len); 3091 if (err) 3092 goto err_deref_cm_id; 3093 3094 __state_set(&ep->com, FPDU_MODE); 3095 established_upcall(ep); 3096 mutex_unlock(&ep->com.mutex); 3097 c4iw_put_ep(&ep->com); 3098 return 0; 3099 err_deref_cm_id: 3100 deref_cm_id(&ep->com); 3101 err_abort: 3102 abort = 1; 3103 err_out: 3104 mutex_unlock(&ep->com.mutex); 3105 if (abort) 3106 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3107 c4iw_put_ep(&ep->com); 3108 return err; 3109 } 3110 3111 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3112 { 3113 struct in_device *ind; 3114 int found = 0; 3115 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3116 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3117 3118 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3119 if (!ind) 3120 return -EADDRNOTAVAIL; 3121 for_primary_ifa(ind) { 3122 laddr->sin_addr.s_addr = ifa->ifa_address; 3123 raddr->sin_addr.s_addr = ifa->ifa_address; 3124 found = 1; 3125 break; 3126 } 3127 endfor_ifa(ind); 3128 in_dev_put(ind); 3129 return found ? 0 : -EADDRNOTAVAIL; 3130 } 3131 3132 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3133 unsigned char banned_flags) 3134 { 3135 struct inet6_dev *idev; 3136 int err = -EADDRNOTAVAIL; 3137 3138 rcu_read_lock(); 3139 idev = __in6_dev_get(dev); 3140 if (idev != NULL) { 3141 struct inet6_ifaddr *ifp; 3142 3143 read_lock_bh(&idev->lock); 3144 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3145 if (ifp->scope == IFA_LINK && 3146 !(ifp->flags & banned_flags)) { 3147 memcpy(addr, &ifp->addr, 16); 3148 err = 0; 3149 break; 3150 } 3151 } 3152 read_unlock_bh(&idev->lock); 3153 } 3154 rcu_read_unlock(); 3155 return err; 3156 } 3157 3158 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3159 { 3160 struct in6_addr uninitialized_var(addr); 3161 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3162 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3163 3164 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3165 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3166 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3167 return 0; 3168 } 3169 return -EADDRNOTAVAIL; 3170 } 3171 3172 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3173 { 3174 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3175 struct c4iw_ep *ep; 3176 int err = 0; 3177 struct sockaddr_in *laddr; 3178 struct sockaddr_in *raddr; 3179 struct sockaddr_in6 *laddr6; 3180 struct sockaddr_in6 *raddr6; 3181 __u8 *ra; 3182 int iptype; 3183 3184 if ((conn_param->ord > cur_max_read_depth(dev)) || 3185 (conn_param->ird > cur_max_read_depth(dev))) { 3186 err = -EINVAL; 3187 goto out; 3188 } 3189 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3190 if (!ep) { 3191 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); 3192 err = -ENOMEM; 3193 goto out; 3194 } 3195 3196 skb_queue_head_init(&ep->com.ep_skb_list); 3197 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3198 err = -ENOMEM; 3199 goto fail1; 3200 } 3201 3202 init_timer(&ep->timer); 3203 ep->plen = conn_param->private_data_len; 3204 if (ep->plen) 3205 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3206 conn_param->private_data, ep->plen); 3207 ep->ird = conn_param->ird; 3208 ep->ord = conn_param->ord; 3209 3210 if (peer2peer && ep->ord == 0) 3211 ep->ord = 1; 3212 3213 ep->com.cm_id = cm_id; 3214 ref_cm_id(&ep->com); 3215 ep->com.dev = dev; 3216 ep->com.qp = get_qhp(dev, conn_param->qpn); 3217 if (!ep->com.qp) { 3218 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3219 err = -EINVAL; 3220 goto fail2; 3221 } 3222 ref_qp(ep); 3223 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, 3224 ep->com.qp, cm_id); 3225 3226 /* 3227 * Allocate an active TID to initiate a TCP connection. 3228 */ 3229 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3230 if (ep->atid == -1) { 3231 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); 3232 err = -ENOMEM; 3233 goto fail2; 3234 } 3235 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3236 3237 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3238 sizeof(ep->com.local_addr)); 3239 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3240 sizeof(ep->com.remote_addr)); 3241 3242 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3243 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3244 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3245 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3246 3247 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3248 iptype = 4; 3249 ra = (__u8 *)&raddr->sin_addr; 3250 3251 /* 3252 * Handle loopback requests to INADDR_ANY. 3253 */ 3254 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3255 err = pick_local_ipaddrs(dev, cm_id); 3256 if (err) 3257 goto fail2; 3258 } 3259 3260 /* find a route */ 3261 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3262 __func__, &laddr->sin_addr, ntohs(laddr->sin_port), 3263 ra, ntohs(raddr->sin_port)); 3264 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3265 laddr->sin_addr.s_addr, 3266 raddr->sin_addr.s_addr, 3267 laddr->sin_port, 3268 raddr->sin_port, cm_id->tos); 3269 } else { 3270 iptype = 6; 3271 ra = (__u8 *)&raddr6->sin6_addr; 3272 3273 /* 3274 * Handle loopback requests to INADDR_ANY. 3275 */ 3276 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3277 err = pick_local_ip6addrs(dev, cm_id); 3278 if (err) 3279 goto fail2; 3280 } 3281 3282 /* find a route */ 3283 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3284 __func__, laddr6->sin6_addr.s6_addr, 3285 ntohs(laddr6->sin6_port), 3286 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3287 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3288 laddr6->sin6_addr.s6_addr, 3289 raddr6->sin6_addr.s6_addr, 3290 laddr6->sin6_port, 3291 raddr6->sin6_port, 0, 3292 raddr6->sin6_scope_id); 3293 } 3294 if (!ep->dst) { 3295 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__); 3296 err = -EHOSTUNREACH; 3297 goto fail3; 3298 } 3299 3300 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3301 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3302 if (err) { 3303 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__); 3304 goto fail4; 3305 } 3306 3307 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3308 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3309 ep->l2t->idx); 3310 3311 state_set(&ep->com, CONNECTING); 3312 ep->tos = cm_id->tos; 3313 3314 /* send connect request to rnic */ 3315 err = send_connect(ep); 3316 if (!err) 3317 goto out; 3318 3319 cxgb4_l2t_release(ep->l2t); 3320 fail4: 3321 dst_release(ep->dst); 3322 fail3: 3323 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3324 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3325 fail2: 3326 skb_queue_purge(&ep->com.ep_skb_list); 3327 deref_cm_id(&ep->com); 3328 fail1: 3329 c4iw_put_ep(&ep->com); 3330 out: 3331 return err; 3332 } 3333 3334 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3335 { 3336 int err; 3337 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3338 &ep->com.local_addr; 3339 3340 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3341 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3342 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3343 if (err) 3344 return err; 3345 } 3346 c4iw_init_wr_wait(&ep->com.wr_wait); 3347 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3348 ep->stid, &sin6->sin6_addr, 3349 sin6->sin6_port, 3350 ep->com.dev->rdev.lldi.rxq_ids[0]); 3351 if (!err) 3352 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3353 &ep->com.wr_wait, 3354 0, 0, __func__); 3355 else if (err > 0) 3356 err = net_xmit_errno(err); 3357 if (err) { 3358 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3359 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3360 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3361 err, ep->stid, 3362 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3363 } 3364 return err; 3365 } 3366 3367 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3368 { 3369 int err; 3370 struct sockaddr_in *sin = (struct sockaddr_in *) 3371 &ep->com.local_addr; 3372 3373 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3374 do { 3375 err = cxgb4_create_server_filter( 3376 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3377 sin->sin_addr.s_addr, sin->sin_port, 0, 3378 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3379 if (err == -EBUSY) { 3380 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3381 err = -EIO; 3382 break; 3383 } 3384 set_current_state(TASK_UNINTERRUPTIBLE); 3385 schedule_timeout(usecs_to_jiffies(100)); 3386 } 3387 } while (err == -EBUSY); 3388 } else { 3389 c4iw_init_wr_wait(&ep->com.wr_wait); 3390 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3391 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3392 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3393 if (!err) 3394 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3395 &ep->com.wr_wait, 3396 0, 0, __func__); 3397 else if (err > 0) 3398 err = net_xmit_errno(err); 3399 } 3400 if (err) 3401 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3402 , err, ep->stid, 3403 &sin->sin_addr, ntohs(sin->sin_port)); 3404 return err; 3405 } 3406 3407 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3408 { 3409 int err = 0; 3410 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3411 struct c4iw_listen_ep *ep; 3412 3413 might_sleep(); 3414 3415 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3416 if (!ep) { 3417 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); 3418 err = -ENOMEM; 3419 goto fail1; 3420 } 3421 skb_queue_head_init(&ep->com.ep_skb_list); 3422 PDBG("%s ep %p\n", __func__, ep); 3423 ep->com.cm_id = cm_id; 3424 ref_cm_id(&ep->com); 3425 ep->com.dev = dev; 3426 ep->backlog = backlog; 3427 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3428 sizeof(ep->com.local_addr)); 3429 3430 /* 3431 * Allocate a server TID. 3432 */ 3433 if (dev->rdev.lldi.enable_fw_ofld_conn && 3434 ep->com.local_addr.ss_family == AF_INET) 3435 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3436 cm_id->m_local_addr.ss_family, ep); 3437 else 3438 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3439 cm_id->m_local_addr.ss_family, ep); 3440 3441 if (ep->stid == -1) { 3442 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__); 3443 err = -ENOMEM; 3444 goto fail2; 3445 } 3446 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3447 3448 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3449 sizeof(ep->com.local_addr)); 3450 3451 state_set(&ep->com, LISTEN); 3452 if (ep->com.local_addr.ss_family == AF_INET) 3453 err = create_server4(dev, ep); 3454 else 3455 err = create_server6(dev, ep); 3456 if (!err) { 3457 cm_id->provider_data = ep; 3458 goto out; 3459 } 3460 3461 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3462 ep->com.local_addr.ss_family); 3463 fail2: 3464 deref_cm_id(&ep->com); 3465 c4iw_put_ep(&ep->com); 3466 fail1: 3467 out: 3468 return err; 3469 } 3470 3471 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3472 { 3473 int err; 3474 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3475 3476 PDBG("%s ep %p\n", __func__, ep); 3477 3478 might_sleep(); 3479 state_set(&ep->com, DEAD); 3480 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3481 ep->com.local_addr.ss_family == AF_INET) { 3482 err = cxgb4_remove_server_filter( 3483 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3484 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3485 } else { 3486 struct sockaddr_in6 *sin6; 3487 c4iw_init_wr_wait(&ep->com.wr_wait); 3488 err = cxgb4_remove_server( 3489 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3490 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3491 if (err) 3492 goto done; 3493 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 3494 0, 0, __func__); 3495 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3496 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3497 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3498 } 3499 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3500 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3501 ep->com.local_addr.ss_family); 3502 done: 3503 deref_cm_id(&ep->com); 3504 c4iw_put_ep(&ep->com); 3505 return err; 3506 } 3507 3508 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3509 { 3510 int ret = 0; 3511 int close = 0; 3512 int fatal = 0; 3513 struct c4iw_rdev *rdev; 3514 3515 mutex_lock(&ep->com.mutex); 3516 3517 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep, 3518 states[ep->com.state], abrupt); 3519 3520 /* 3521 * Ref the ep here in case we have fatal errors causing the 3522 * ep to be released and freed. 3523 */ 3524 c4iw_get_ep(&ep->com); 3525 3526 rdev = &ep->com.dev->rdev; 3527 if (c4iw_fatal_error(rdev)) { 3528 fatal = 1; 3529 close_complete_upcall(ep, -EIO); 3530 ep->com.state = DEAD; 3531 } 3532 switch (ep->com.state) { 3533 case MPA_REQ_WAIT: 3534 case MPA_REQ_SENT: 3535 case MPA_REQ_RCVD: 3536 case MPA_REP_SENT: 3537 case FPDU_MODE: 3538 case CONNECTING: 3539 close = 1; 3540 if (abrupt) 3541 ep->com.state = ABORTING; 3542 else { 3543 ep->com.state = CLOSING; 3544 3545 /* 3546 * if we close before we see the fw4_ack() then we fix 3547 * up the timer state since we're reusing it. 3548 */ 3549 if (ep->mpa_skb && 3550 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3551 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3552 stop_ep_timer(ep); 3553 } 3554 start_ep_timer(ep); 3555 } 3556 set_bit(CLOSE_SENT, &ep->com.flags); 3557 break; 3558 case CLOSING: 3559 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3560 close = 1; 3561 if (abrupt) { 3562 (void)stop_ep_timer(ep); 3563 ep->com.state = ABORTING; 3564 } else 3565 ep->com.state = MORIBUND; 3566 } 3567 break; 3568 case MORIBUND: 3569 case ABORTING: 3570 case DEAD: 3571 PDBG("%s ignoring disconnect ep %p state %u\n", 3572 __func__, ep, ep->com.state); 3573 break; 3574 default: 3575 BUG(); 3576 break; 3577 } 3578 3579 if (close) { 3580 if (abrupt) { 3581 set_bit(EP_DISC_ABORT, &ep->com.history); 3582 close_complete_upcall(ep, -ECONNRESET); 3583 ret = send_abort(ep); 3584 } else { 3585 set_bit(EP_DISC_CLOSE, &ep->com.history); 3586 ret = send_halfclose(ep); 3587 } 3588 if (ret) { 3589 set_bit(EP_DISC_FAIL, &ep->com.history); 3590 if (!abrupt) { 3591 stop_ep_timer(ep); 3592 close_complete_upcall(ep, -EIO); 3593 } 3594 if (ep->com.qp) { 3595 struct c4iw_qp_attributes attrs; 3596 3597 attrs.next_state = C4IW_QP_STATE_ERROR; 3598 ret = c4iw_modify_qp(ep->com.qp->rhp, 3599 ep->com.qp, 3600 C4IW_QP_ATTR_NEXT_STATE, 3601 &attrs, 1); 3602 if (ret) 3603 pr_err(MOD 3604 "%s - qp <- error failed!\n", 3605 __func__); 3606 } 3607 fatal = 1; 3608 } 3609 } 3610 mutex_unlock(&ep->com.mutex); 3611 c4iw_put_ep(&ep->com); 3612 if (fatal) 3613 release_ep_resources(ep); 3614 return ret; 3615 } 3616 3617 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3618 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3619 { 3620 struct c4iw_ep *ep; 3621 int atid = be32_to_cpu(req->tid); 3622 3623 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3624 (__force u32) req->tid); 3625 if (!ep) 3626 return; 3627 3628 switch (req->retval) { 3629 case FW_ENOMEM: 3630 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3631 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3632 send_fw_act_open_req(ep, atid); 3633 return; 3634 } 3635 case FW_EADDRINUSE: 3636 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3637 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3638 send_fw_act_open_req(ep, atid); 3639 return; 3640 } 3641 break; 3642 default: 3643 pr_info("%s unexpected ofld conn wr retval %d\n", 3644 __func__, req->retval); 3645 break; 3646 } 3647 pr_err("active ofld_connect_wr failure %d atid %d\n", 3648 req->retval, atid); 3649 mutex_lock(&dev->rdev.stats.lock); 3650 dev->rdev.stats.act_ofld_conn_fails++; 3651 mutex_unlock(&dev->rdev.stats.lock); 3652 connect_reply_upcall(ep, status2errno(req->retval)); 3653 state_set(&ep->com, DEAD); 3654 if (ep->com.remote_addr.ss_family == AF_INET6) { 3655 struct sockaddr_in6 *sin6 = 3656 (struct sockaddr_in6 *)&ep->com.local_addr; 3657 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3658 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3659 } 3660 remove_handle(dev, &dev->atid_idr, atid); 3661 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3662 dst_release(ep->dst); 3663 cxgb4_l2t_release(ep->l2t); 3664 c4iw_put_ep(&ep->com); 3665 } 3666 3667 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3668 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3669 { 3670 struct sk_buff *rpl_skb; 3671 struct cpl_pass_accept_req *cpl; 3672 int ret; 3673 3674 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3675 BUG_ON(!rpl_skb); 3676 if (req->retval) { 3677 PDBG("%s passive open failure %d\n", __func__, req->retval); 3678 mutex_lock(&dev->rdev.stats.lock); 3679 dev->rdev.stats.pas_ofld_conn_fails++; 3680 mutex_unlock(&dev->rdev.stats.lock); 3681 kfree_skb(rpl_skb); 3682 } else { 3683 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3684 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3685 (__force u32) htonl( 3686 (__force u32) req->tid))); 3687 ret = pass_accept_req(dev, rpl_skb); 3688 if (!ret) 3689 kfree_skb(rpl_skb); 3690 } 3691 return; 3692 } 3693 3694 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3695 { 3696 struct cpl_fw6_msg *rpl = cplhdr(skb); 3697 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3698 3699 switch (rpl->type) { 3700 case FW6_TYPE_CQE: 3701 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3702 break; 3703 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3704 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3705 switch (req->t_state) { 3706 case TCP_SYN_SENT: 3707 active_ofld_conn_reply(dev, skb, req); 3708 break; 3709 case TCP_SYN_RECV: 3710 passive_ofld_conn_reply(dev, skb, req); 3711 break; 3712 default: 3713 pr_err("%s unexpected ofld conn wr state %d\n", 3714 __func__, req->t_state); 3715 break; 3716 } 3717 break; 3718 } 3719 return 0; 3720 } 3721 3722 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3723 { 3724 __be32 l2info; 3725 __be16 hdr_len, vlantag, len; 3726 u16 eth_hdr_len; 3727 int tcp_hdr_len, ip_hdr_len; 3728 u8 intf; 3729 struct cpl_rx_pkt *cpl = cplhdr(skb); 3730 struct cpl_pass_accept_req *req; 3731 struct tcp_options_received tmp_opt; 3732 struct c4iw_dev *dev; 3733 enum chip_type type; 3734 3735 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3736 /* Store values from cpl_rx_pkt in temporary location. */ 3737 vlantag = cpl->vlan; 3738 len = cpl->len; 3739 l2info = cpl->l2info; 3740 hdr_len = cpl->hdr_len; 3741 intf = cpl->iff; 3742 3743 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3744 3745 /* 3746 * We need to parse the TCP options from SYN packet. 3747 * to generate cpl_pass_accept_req. 3748 */ 3749 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3750 tcp_clear_options(&tmp_opt); 3751 tcp_parse_options(skb, &tmp_opt, 0, NULL); 3752 3753 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req)); 3754 memset(req, 0, sizeof(*req)); 3755 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3756 SYN_MAC_IDX_V(RX_MACIDX_G( 3757 be32_to_cpu(l2info))) | 3758 SYN_XACT_MATCH_F); 3759 type = dev->rdev.lldi.adapter_type; 3760 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3761 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3762 req->hdr_len = 3763 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3764 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3765 eth_hdr_len = is_t4(type) ? 3766 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3767 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3768 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3769 IP_HDR_LEN_V(ip_hdr_len) | 3770 ETH_HDR_LEN_V(eth_hdr_len)); 3771 } else { /* T6 and later */ 3772 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3773 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3774 T6_IP_HDR_LEN_V(ip_hdr_len) | 3775 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3776 } 3777 req->vlan = vlantag; 3778 req->len = len; 3779 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3780 PASS_OPEN_TOS_V(tos)); 3781 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3782 if (tmp_opt.wscale_ok) 3783 req->tcpopt.wsf = tmp_opt.snd_wscale; 3784 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3785 if (tmp_opt.sack_ok) 3786 req->tcpopt.sack = 1; 3787 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3788 return; 3789 } 3790 3791 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3792 __be32 laddr, __be16 lport, 3793 __be32 raddr, __be16 rport, 3794 u32 rcv_isn, u32 filter, u16 window, 3795 u32 rss_qid, u8 port_id) 3796 { 3797 struct sk_buff *req_skb; 3798 struct fw_ofld_connection_wr *req; 3799 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3800 int ret; 3801 3802 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3803 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req)); 3804 memset(req, 0, sizeof(*req)); 3805 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3806 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3807 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3808 req->le.filter = (__force __be32) filter; 3809 req->le.lport = lport; 3810 req->le.pport = rport; 3811 req->le.u.ipv4.lip = laddr; 3812 req->le.u.ipv4.pip = raddr; 3813 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3814 req->tcb.rcv_adv = htons(window); 3815 req->tcb.t_state_to_astid = 3816 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3817 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3818 FW_OFLD_CONNECTION_WR_ASTID_V( 3819 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3820 3821 /* 3822 * We store the qid in opt2 which will be used by the firmware 3823 * to send us the wr response. 3824 */ 3825 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3826 3827 /* 3828 * We initialize the MSS index in TCB to 0xF. 3829 * So that when driver sends cpl_pass_accept_rpl 3830 * TCB picks up the correct value. If this was 0 3831 * TP will ignore any value > 0 for MSS index. 3832 */ 3833 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3834 req->cookie = (uintptr_t)skb; 3835 3836 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3837 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3838 if (ret < 0) { 3839 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3840 ret); 3841 kfree_skb(skb); 3842 kfree_skb(req_skb); 3843 } 3844 } 3845 3846 /* 3847 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3848 * messages when a filter is being used instead of server to 3849 * redirect a syn packet. When packets hit filter they are redirected 3850 * to the offload queue and driver tries to establish the connection 3851 * using firmware work request. 3852 */ 3853 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3854 { 3855 int stid; 3856 unsigned int filter; 3857 struct ethhdr *eh = NULL; 3858 struct vlan_ethhdr *vlan_eh = NULL; 3859 struct iphdr *iph; 3860 struct tcphdr *tcph; 3861 struct rss_header *rss = (void *)skb->data; 3862 struct cpl_rx_pkt *cpl = (void *)skb->data; 3863 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3864 struct l2t_entry *e; 3865 struct dst_entry *dst; 3866 struct c4iw_ep *lep = NULL; 3867 u16 window; 3868 struct port_info *pi; 3869 struct net_device *pdev; 3870 u16 rss_qid, eth_hdr_len; 3871 int step; 3872 u32 tx_chan; 3873 struct neighbour *neigh; 3874 3875 /* Drop all non-SYN packets */ 3876 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3877 goto reject; 3878 3879 /* 3880 * Drop all packets which did not hit the filter. 3881 * Unlikely to happen. 3882 */ 3883 if (!(rss->filter_hit && rss->filter_tid)) 3884 goto reject; 3885 3886 /* 3887 * Calculate the server tid from filter hit index from cpl_rx_pkt. 3888 */ 3889 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 3890 3891 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 3892 if (!lep) { 3893 PDBG("%s connect request on invalid stid %d\n", __func__, stid); 3894 goto reject; 3895 } 3896 3897 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 3898 case CHELSIO_T4: 3899 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3900 break; 3901 case CHELSIO_T5: 3902 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3903 break; 3904 case CHELSIO_T6: 3905 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3906 break; 3907 default: 3908 pr_err("T%d Chip is not supported\n", 3909 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 3910 goto reject; 3911 } 3912 3913 if (eth_hdr_len == ETH_HLEN) { 3914 eh = (struct ethhdr *)(req + 1); 3915 iph = (struct iphdr *)(eh + 1); 3916 } else { 3917 vlan_eh = (struct vlan_ethhdr *)(req + 1); 3918 iph = (struct iphdr *)(vlan_eh + 1); 3919 skb->vlan_tci = ntohs(cpl->vlan); 3920 } 3921 3922 if (iph->version != 0x4) 3923 goto reject; 3924 3925 tcph = (struct tcphdr *)(iph + 1); 3926 skb_set_network_header(skb, (void *)iph - (void *)rss); 3927 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 3928 skb_get(skb); 3929 3930 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__, 3931 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 3932 ntohs(tcph->source), iph->tos); 3933 3934 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3935 iph->daddr, iph->saddr, tcph->dest, 3936 tcph->source, iph->tos); 3937 if (!dst) { 3938 pr_err("%s - failed to find dst entry!\n", 3939 __func__); 3940 goto reject; 3941 } 3942 neigh = dst_neigh_lookup_skb(dst, skb); 3943 3944 if (!neigh) { 3945 pr_err("%s - failed to allocate neigh!\n", 3946 __func__); 3947 goto free_dst; 3948 } 3949 3950 if (neigh->dev->flags & IFF_LOOPBACK) { 3951 pdev = ip_dev_find(&init_net, iph->daddr); 3952 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3953 pdev, 0); 3954 pi = (struct port_info *)netdev_priv(pdev); 3955 tx_chan = cxgb4_port_chan(pdev); 3956 dev_put(pdev); 3957 } else { 3958 pdev = get_real_dev(neigh->dev); 3959 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3960 pdev, 0); 3961 pi = (struct port_info *)netdev_priv(pdev); 3962 tx_chan = cxgb4_port_chan(pdev); 3963 } 3964 neigh_release(neigh); 3965 if (!e) { 3966 pr_err("%s - failed to allocate l2t entry!\n", 3967 __func__); 3968 goto free_dst; 3969 } 3970 3971 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 3972 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 3973 window = (__force u16) htons((__force u16)tcph->window); 3974 3975 /* Calcuate filter portion for LE region. */ 3976 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 3977 dev->rdev.lldi.ports[0], 3978 e)); 3979 3980 /* 3981 * Synthesize the cpl_pass_accept_req. We have everything except the 3982 * TID. Once firmware sends a reply with TID we update the TID field 3983 * in cpl and pass it through the regular cpl_pass_accept_req path. 3984 */ 3985 build_cpl_pass_accept_req(skb, stid, iph->tos); 3986 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 3987 tcph->source, ntohl(tcph->seq), filter, window, 3988 rss_qid, pi->port_id); 3989 cxgb4_l2t_release(e); 3990 free_dst: 3991 dst_release(dst); 3992 reject: 3993 if (lep) 3994 c4iw_put_ep(&lep->com); 3995 return 0; 3996 } 3997 3998 /* 3999 * These are the real handlers that are called from a 4000 * work queue. 4001 */ 4002 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4003 [CPL_ACT_ESTABLISH] = act_establish, 4004 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4005 [CPL_RX_DATA] = rx_data, 4006 [CPL_ABORT_RPL_RSS] = abort_rpl, 4007 [CPL_ABORT_RPL] = abort_rpl, 4008 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4009 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4010 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4011 [CPL_PASS_ESTABLISH] = pass_establish, 4012 [CPL_PEER_CLOSE] = peer_close, 4013 [CPL_ABORT_REQ_RSS] = peer_abort, 4014 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4015 [CPL_RDMA_TERMINATE] = terminate, 4016 [CPL_FW4_ACK] = fw4_ack, 4017 [CPL_FW6_MSG] = deferred_fw6_msg, 4018 [CPL_RX_PKT] = rx_pkt, 4019 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4020 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4021 }; 4022 4023 static void process_timeout(struct c4iw_ep *ep) 4024 { 4025 struct c4iw_qp_attributes attrs; 4026 int abort = 1; 4027 4028 mutex_lock(&ep->com.mutex); 4029 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, 4030 ep->com.state); 4031 set_bit(TIMEDOUT, &ep->com.history); 4032 switch (ep->com.state) { 4033 case MPA_REQ_SENT: 4034 connect_reply_upcall(ep, -ETIMEDOUT); 4035 break; 4036 case MPA_REQ_WAIT: 4037 case MPA_REQ_RCVD: 4038 case MPA_REP_SENT: 4039 case FPDU_MODE: 4040 break; 4041 case CLOSING: 4042 case MORIBUND: 4043 if (ep->com.cm_id && ep->com.qp) { 4044 attrs.next_state = C4IW_QP_STATE_ERROR; 4045 c4iw_modify_qp(ep->com.qp->rhp, 4046 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4047 &attrs, 1); 4048 } 4049 close_complete_upcall(ep, -ETIMEDOUT); 4050 break; 4051 case ABORTING: 4052 case DEAD: 4053 4054 /* 4055 * These states are expected if the ep timed out at the same 4056 * time as another thread was calling stop_ep_timer(). 4057 * So we silently do nothing for these states. 4058 */ 4059 abort = 0; 4060 break; 4061 default: 4062 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4063 __func__, ep, ep->hwtid, ep->com.state); 4064 abort = 0; 4065 } 4066 mutex_unlock(&ep->com.mutex); 4067 if (abort) 4068 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4069 c4iw_put_ep(&ep->com); 4070 } 4071 4072 static void process_timedout_eps(void) 4073 { 4074 struct c4iw_ep *ep; 4075 4076 spin_lock_irq(&timeout_lock); 4077 while (!list_empty(&timeout_list)) { 4078 struct list_head *tmp; 4079 4080 tmp = timeout_list.next; 4081 list_del(tmp); 4082 tmp->next = NULL; 4083 tmp->prev = NULL; 4084 spin_unlock_irq(&timeout_lock); 4085 ep = list_entry(tmp, struct c4iw_ep, entry); 4086 process_timeout(ep); 4087 spin_lock_irq(&timeout_lock); 4088 } 4089 spin_unlock_irq(&timeout_lock); 4090 } 4091 4092 static void process_work(struct work_struct *work) 4093 { 4094 struct sk_buff *skb = NULL; 4095 struct c4iw_dev *dev; 4096 struct cpl_act_establish *rpl; 4097 unsigned int opcode; 4098 int ret; 4099 4100 process_timedout_eps(); 4101 while ((skb = skb_dequeue(&rxq))) { 4102 rpl = cplhdr(skb); 4103 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4104 opcode = rpl->ot.opcode; 4105 4106 BUG_ON(!work_handlers[opcode]); 4107 ret = work_handlers[opcode](dev, skb); 4108 if (!ret) 4109 kfree_skb(skb); 4110 process_timedout_eps(); 4111 } 4112 } 4113 4114 static DECLARE_WORK(skb_work, process_work); 4115 4116 static void ep_timeout(unsigned long arg) 4117 { 4118 struct c4iw_ep *ep = (struct c4iw_ep *)arg; 4119 int kickit = 0; 4120 4121 spin_lock(&timeout_lock); 4122 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4123 /* 4124 * Only insert if it is not already on the list. 4125 */ 4126 if (!ep->entry.next) { 4127 list_add_tail(&ep->entry, &timeout_list); 4128 kickit = 1; 4129 } 4130 } 4131 spin_unlock(&timeout_lock); 4132 if (kickit) 4133 queue_work(workq, &skb_work); 4134 } 4135 4136 /* 4137 * All the CM events are handled on a work queue to have a safe context. 4138 */ 4139 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4140 { 4141 4142 /* 4143 * Save dev in the skb->cb area. 4144 */ 4145 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4146 4147 /* 4148 * Queue the skb and schedule the worker thread. 4149 */ 4150 skb_queue_tail(&rxq, skb); 4151 queue_work(workq, &skb_work); 4152 return 0; 4153 } 4154 4155 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4156 { 4157 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4158 4159 if (rpl->status != CPL_ERR_NONE) { 4160 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u " 4161 "for tid %u\n", rpl->status, GET_TID(rpl)); 4162 } 4163 kfree_skb(skb); 4164 return 0; 4165 } 4166 4167 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4168 { 4169 struct cpl_fw6_msg *rpl = cplhdr(skb); 4170 struct c4iw_wr_wait *wr_waitp; 4171 int ret; 4172 4173 PDBG("%s type %u\n", __func__, rpl->type); 4174 4175 switch (rpl->type) { 4176 case FW6_TYPE_WR_RPL: 4177 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4178 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4179 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret); 4180 if (wr_waitp) 4181 c4iw_wake_up(wr_waitp, ret ? -ret : 0); 4182 kfree_skb(skb); 4183 break; 4184 case FW6_TYPE_CQE: 4185 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4186 sched(dev, skb); 4187 break; 4188 default: 4189 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__, 4190 rpl->type); 4191 kfree_skb(skb); 4192 break; 4193 } 4194 return 0; 4195 } 4196 4197 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4198 { 4199 struct cpl_abort_req_rss *req = cplhdr(skb); 4200 struct c4iw_ep *ep; 4201 unsigned int tid = GET_TID(req); 4202 4203 ep = get_ep_from_tid(dev, tid); 4204 /* This EP will be dereferenced in peer_abort() */ 4205 if (!ep) { 4206 printk(KERN_WARNING MOD 4207 "Abort on non-existent endpoint, tid %d\n", tid); 4208 kfree_skb(skb); 4209 return 0; 4210 } 4211 if (cxgb_is_neg_adv(req->status)) { 4212 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n", 4213 __func__, ep->hwtid, req->status, 4214 neg_adv_str(req->status)); 4215 goto out; 4216 } 4217 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 4218 ep->com.state); 4219 4220 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 4221 out: 4222 sched(dev, skb); 4223 return 0; 4224 } 4225 4226 /* 4227 * Most upcalls from the T4 Core go to sched() to 4228 * schedule the processing on a work queue. 4229 */ 4230 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4231 [CPL_ACT_ESTABLISH] = sched, 4232 [CPL_ACT_OPEN_RPL] = sched, 4233 [CPL_RX_DATA] = sched, 4234 [CPL_ABORT_RPL_RSS] = sched, 4235 [CPL_ABORT_RPL] = sched, 4236 [CPL_PASS_OPEN_RPL] = sched, 4237 [CPL_CLOSE_LISTSRV_RPL] = sched, 4238 [CPL_PASS_ACCEPT_REQ] = sched, 4239 [CPL_PASS_ESTABLISH] = sched, 4240 [CPL_PEER_CLOSE] = sched, 4241 [CPL_CLOSE_CON_RPL] = sched, 4242 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4243 [CPL_RDMA_TERMINATE] = sched, 4244 [CPL_FW4_ACK] = sched, 4245 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4246 [CPL_FW6_MSG] = fw6_msg, 4247 [CPL_RX_PKT] = sched 4248 }; 4249 4250 int __init c4iw_cm_init(void) 4251 { 4252 spin_lock_init(&timeout_lock); 4253 skb_queue_head_init(&rxq); 4254 4255 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4256 if (!workq) 4257 return -ENOMEM; 4258 4259 return 0; 4260 } 4261 4262 void c4iw_cm_term(void) 4263 { 4264 WARN_ON(!list_empty(&timeout_list)); 4265 flush_workqueue(workq); 4266 destroy_workqueue(workq); 4267 } 4268