1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 static int peer2peer = 1; 103 module_param(peer2peer, int, 0644); 104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 105 106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 107 module_param(p2p_type, int, 0644); 108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 109 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 110 111 static int ep_timeout_secs = 60; 112 module_param(ep_timeout_secs, int, 0644); 113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 114 "in seconds (default=60)"); 115 116 static int mpa_rev = 2; 117 module_param(mpa_rev, int, 0644); 118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 120 " compliant (default=2)"); 121 122 static int markers_enabled; 123 module_param(markers_enabled, int, 0644); 124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 125 126 static int crc_enabled = 1; 127 module_param(crc_enabled, int, 0644); 128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 129 130 static int rcv_win = 256 * 1024; 131 module_param(rcv_win, int, 0644); 132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 133 134 static int snd_win = 128 * 1024; 135 module_param(snd_win, int, 0644); 136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 137 138 static struct workqueue_struct *workq; 139 140 static struct sk_buff_head rxq; 141 142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 143 static void ep_timeout(struct timer_list *t); 144 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 146 147 static LIST_HEAD(timeout_list); 148 static spinlock_t timeout_lock; 149 150 static void deref_cm_id(struct c4iw_ep_common *epc) 151 { 152 epc->cm_id->rem_ref(epc->cm_id); 153 epc->cm_id = NULL; 154 set_bit(CM_ID_DEREFED, &epc->history); 155 } 156 157 static void ref_cm_id(struct c4iw_ep_common *epc) 158 { 159 set_bit(CM_ID_REFED, &epc->history); 160 epc->cm_id->add_ref(epc->cm_id); 161 } 162 163 static void deref_qp(struct c4iw_ep *ep) 164 { 165 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 166 clear_bit(QP_REFERENCED, &ep->com.flags); 167 set_bit(QP_DEREFED, &ep->com.history); 168 } 169 170 static void ref_qp(struct c4iw_ep *ep) 171 { 172 set_bit(QP_REFERENCED, &ep->com.flags); 173 set_bit(QP_REFED, &ep->com.history); 174 c4iw_qp_add_ref(&ep->com.qp->ibqp); 175 } 176 177 static void start_ep_timer(struct c4iw_ep *ep) 178 { 179 pr_debug("ep %p\n", ep); 180 if (timer_pending(&ep->timer)) { 181 pr_err("%s timer already started! ep %p\n", 182 __func__, ep); 183 return; 184 } 185 clear_bit(TIMEOUT, &ep->com.flags); 186 c4iw_get_ep(&ep->com); 187 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 188 add_timer(&ep->timer); 189 } 190 191 static int stop_ep_timer(struct c4iw_ep *ep) 192 { 193 pr_debug("ep %p stopping\n", ep); 194 del_timer_sync(&ep->timer); 195 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 196 c4iw_put_ep(&ep->com); 197 return 0; 198 } 199 return 1; 200 } 201 202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 203 struct l2t_entry *l2e) 204 { 205 int error = 0; 206 207 if (c4iw_fatal_error(rdev)) { 208 kfree_skb(skb); 209 pr_err("%s - device in error state - dropping\n", __func__); 210 return -EIO; 211 } 212 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 213 if (error < 0) 214 kfree_skb(skb); 215 else if (error == NET_XMIT_DROP) 216 return -ENOMEM; 217 return error < 0 ? error : 0; 218 } 219 220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 221 { 222 int error = 0; 223 224 if (c4iw_fatal_error(rdev)) { 225 kfree_skb(skb); 226 pr_err("%s - device in error state - dropping\n", __func__); 227 return -EIO; 228 } 229 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 230 if (error < 0) 231 kfree_skb(skb); 232 return error < 0 ? error : 0; 233 } 234 235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 236 { 237 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 238 239 skb = get_skb(skb, len, GFP_KERNEL); 240 if (!skb) 241 return; 242 243 cxgb_mk_tid_release(skb, len, hwtid, 0); 244 c4iw_ofld_send(rdev, skb); 245 return; 246 } 247 248 static void set_emss(struct c4iw_ep *ep, u16 opt) 249 { 250 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 251 ((AF_INET == ep->com.remote_addr.ss_family) ? 252 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 253 sizeof(struct tcphdr); 254 ep->mss = ep->emss; 255 if (TCPOPT_TSTAMP_G(opt)) 256 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 257 if (ep->emss < 128) 258 ep->emss = 128; 259 if (ep->emss & 7) 260 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n", 261 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss, 263 ep->emss); 264 } 265 266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 267 { 268 enum c4iw_ep_state state; 269 270 mutex_lock(&epc->mutex); 271 state = epc->state; 272 mutex_unlock(&epc->mutex); 273 return state; 274 } 275 276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 277 { 278 epc->state = new; 279 } 280 281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 282 { 283 mutex_lock(&epc->mutex); 284 pr_debug("%s -> %s\n", states[epc->state], states[new]); 285 __state_set(epc, new); 286 mutex_unlock(&epc->mutex); 287 return; 288 } 289 290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 291 { 292 struct sk_buff *skb; 293 unsigned int i; 294 size_t len; 295 296 len = roundup(sizeof(union cpl_wr_size), 16); 297 for (i = 0; i < size; i++) { 298 skb = alloc_skb(len, GFP_KERNEL); 299 if (!skb) 300 goto fail; 301 skb_queue_tail(ep_skb_list, skb); 302 } 303 return 0; 304 fail: 305 skb_queue_purge(ep_skb_list); 306 return -ENOMEM; 307 } 308 309 static void *alloc_ep(int size, gfp_t gfp) 310 { 311 struct c4iw_ep_common *epc; 312 313 epc = kzalloc(size, gfp); 314 if (epc) { 315 epc->wr_waitp = c4iw_alloc_wr_wait(gfp); 316 if (!epc->wr_waitp) { 317 kfree(epc); 318 epc = NULL; 319 goto out; 320 } 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(epc->wr_waitp); 324 } 325 pr_debug("alloc ep %p\n", epc); 326 out: 327 return epc; 328 } 329 330 static void remove_ep_tid(struct c4iw_ep *ep) 331 { 332 unsigned long flags; 333 334 spin_lock_irqsave(&ep->com.dev->lock, flags); 335 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 336 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 337 wake_up(&ep->com.dev->wait); 338 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 339 } 340 341 static void insert_ep_tid(struct c4iw_ep *ep) 342 { 343 unsigned long flags; 344 345 spin_lock_irqsave(&ep->com.dev->lock, flags); 346 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 347 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 348 } 349 350 /* 351 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 352 */ 353 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 354 { 355 struct c4iw_ep *ep; 356 unsigned long flags; 357 358 spin_lock_irqsave(&dev->lock, flags); 359 ep = idr_find(&dev->hwtid_idr, tid); 360 if (ep) 361 c4iw_get_ep(&ep->com); 362 spin_unlock_irqrestore(&dev->lock, flags); 363 return ep; 364 } 365 366 /* 367 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 368 */ 369 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 370 unsigned int stid) 371 { 372 struct c4iw_listen_ep *ep; 373 unsigned long flags; 374 375 spin_lock_irqsave(&dev->lock, flags); 376 ep = idr_find(&dev->stid_idr, stid); 377 if (ep) 378 c4iw_get_ep(&ep->com); 379 spin_unlock_irqrestore(&dev->lock, flags); 380 return ep; 381 } 382 383 void _c4iw_free_ep(struct kref *kref) 384 { 385 struct c4iw_ep *ep; 386 387 ep = container_of(kref, struct c4iw_ep, com.kref); 388 pr_debug("ep %p state %s\n", ep, states[ep->com.state]); 389 if (test_bit(QP_REFERENCED, &ep->com.flags)) 390 deref_qp(ep); 391 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 392 if (ep->com.remote_addr.ss_family == AF_INET6) { 393 struct sockaddr_in6 *sin6 = 394 (struct sockaddr_in6 *) 395 &ep->com.local_addr; 396 397 cxgb4_clip_release( 398 ep->com.dev->rdev.lldi.ports[0], 399 (const u32 *)&sin6->sin6_addr.s6_addr, 400 1); 401 } 402 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 403 ep->com.local_addr.ss_family); 404 dst_release(ep->dst); 405 cxgb4_l2t_release(ep->l2t); 406 if (ep->mpa_skb) 407 kfree_skb(ep->mpa_skb); 408 } 409 if (!skb_queue_empty(&ep->com.ep_skb_list)) 410 skb_queue_purge(&ep->com.ep_skb_list); 411 c4iw_put_wr_wait(ep->com.wr_waitp); 412 kfree(ep); 413 } 414 415 static void release_ep_resources(struct c4iw_ep *ep) 416 { 417 set_bit(RELEASE_RESOURCES, &ep->com.flags); 418 419 /* 420 * If we have a hwtid, then remove it from the idr table 421 * so lookups will no longer find this endpoint. Otherwise 422 * we have a race where one thread finds the ep ptr just 423 * before the other thread is freeing the ep memory. 424 */ 425 if (ep->hwtid != -1) 426 remove_ep_tid(ep); 427 c4iw_put_ep(&ep->com); 428 } 429 430 static int status2errno(int status) 431 { 432 switch (status) { 433 case CPL_ERR_NONE: 434 return 0; 435 case CPL_ERR_CONN_RESET: 436 return -ECONNRESET; 437 case CPL_ERR_ARP_MISS: 438 return -EHOSTUNREACH; 439 case CPL_ERR_CONN_TIMEDOUT: 440 return -ETIMEDOUT; 441 case CPL_ERR_TCAM_FULL: 442 return -ENOMEM; 443 case CPL_ERR_CONN_EXIST: 444 return -EADDRINUSE; 445 default: 446 return -EIO; 447 } 448 } 449 450 /* 451 * Try and reuse skbs already allocated... 452 */ 453 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 454 { 455 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 456 skb_trim(skb, 0); 457 skb_get(skb); 458 skb_reset_transport_header(skb); 459 } else { 460 skb = alloc_skb(len, gfp); 461 } 462 t4_set_arp_err_handler(skb, NULL, NULL); 463 return skb; 464 } 465 466 static struct net_device *get_real_dev(struct net_device *egress_dev) 467 { 468 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 469 } 470 471 static void arp_failure_discard(void *handle, struct sk_buff *skb) 472 { 473 pr_err("ARP failure\n"); 474 kfree_skb(skb); 475 } 476 477 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 478 { 479 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 480 } 481 482 enum { 483 NUM_FAKE_CPLS = 2, 484 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 485 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 486 }; 487 488 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 489 { 490 struct c4iw_ep *ep; 491 492 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 493 release_ep_resources(ep); 494 kfree_skb(skb); 495 return 0; 496 } 497 498 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 499 { 500 struct c4iw_ep *ep; 501 502 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 503 c4iw_put_ep(&ep->parent_ep->com); 504 release_ep_resources(ep); 505 kfree_skb(skb); 506 return 0; 507 } 508 509 /* 510 * Fake up a special CPL opcode and call sched() so process_work() will call 511 * _put_ep_safe() in a safe context to free the ep resources. This is needed 512 * because ARP error handlers are called in an ATOMIC context, and 513 * _c4iw_free_ep() needs to block. 514 */ 515 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 516 int cpl) 517 { 518 struct cpl_act_establish *rpl = cplhdr(skb); 519 520 /* Set our special ARP_FAILURE opcode */ 521 rpl->ot.opcode = cpl; 522 523 /* 524 * Save ep in the skb->cb area, after where sched() will save the dev 525 * ptr. 526 */ 527 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 528 sched(ep->com.dev, skb); 529 } 530 531 /* Handle an ARP failure for an accept */ 532 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 533 { 534 struct c4iw_ep *ep = handle; 535 536 pr_err("ARP failure during accept - tid %u - dropping connection\n", 537 ep->hwtid); 538 539 __state_set(&ep->com, DEAD); 540 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 541 } 542 543 /* 544 * Handle an ARP failure for an active open. 545 */ 546 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 547 { 548 struct c4iw_ep *ep = handle; 549 550 pr_err("ARP failure during connect\n"); 551 connect_reply_upcall(ep, -EHOSTUNREACH); 552 __state_set(&ep->com, DEAD); 553 if (ep->com.remote_addr.ss_family == AF_INET6) { 554 struct sockaddr_in6 *sin6 = 555 (struct sockaddr_in6 *)&ep->com.local_addr; 556 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 557 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 558 } 559 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 560 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 561 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 562 } 563 564 /* 565 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 566 * and send it along. 567 */ 568 static void abort_arp_failure(void *handle, struct sk_buff *skb) 569 { 570 int ret; 571 struct c4iw_ep *ep = handle; 572 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 573 struct cpl_abort_req *req = cplhdr(skb); 574 575 pr_debug("rdev %p\n", rdev); 576 req->cmd = CPL_ABORT_NO_RST; 577 skb_get(skb); 578 ret = c4iw_ofld_send(rdev, skb); 579 if (ret) { 580 __state_set(&ep->com, DEAD); 581 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 582 } else 583 kfree_skb(skb); 584 } 585 586 static int send_flowc(struct c4iw_ep *ep) 587 { 588 struct fw_flowc_wr *flowc; 589 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 590 u16 vlan = ep->l2t->vlan; 591 int nparams; 592 int flowclen, flowclen16; 593 594 if (WARN_ON(!skb)) 595 return -ENOMEM; 596 597 if (vlan == CPL_L2T_VLAN_NONE) 598 nparams = 9; 599 else 600 nparams = 10; 601 602 flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]); 603 flowclen16 = DIV_ROUND_UP(flowclen, 16); 604 flowclen = flowclen16 * 16; 605 606 flowc = __skb_put(skb, flowclen); 607 memset(flowc, 0, flowclen); 608 609 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 610 FW_FLOWC_WR_NPARAMS_V(nparams)); 611 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) | 612 FW_WR_FLOWID_V(ep->hwtid)); 613 614 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 615 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 616 (ep->com.dev->rdev.lldi.pf)); 617 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 618 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 619 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 620 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 621 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 622 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 623 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 624 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 625 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 626 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 627 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 628 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 629 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 630 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 631 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE; 632 flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale); 633 if (nparams == 10) { 634 u16 pri; 635 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 636 flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 637 flowc->mnemval[9].val = cpu_to_be32(pri); 638 } 639 640 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 641 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 642 } 643 644 static int send_halfclose(struct c4iw_ep *ep) 645 { 646 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 647 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 648 649 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 650 if (WARN_ON(!skb)) 651 return -ENOMEM; 652 653 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 654 NULL, arp_failure_discard); 655 656 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 657 } 658 659 static int send_abort(struct c4iw_ep *ep) 660 { 661 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 662 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 663 664 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 665 if (WARN_ON(!req_skb)) 666 return -ENOMEM; 667 668 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 669 ep, abort_arp_failure); 670 671 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 672 } 673 674 static int send_connect(struct c4iw_ep *ep) 675 { 676 struct cpl_act_open_req *req = NULL; 677 struct cpl_t5_act_open_req *t5req = NULL; 678 struct cpl_t6_act_open_req *t6req = NULL; 679 struct cpl_act_open_req6 *req6 = NULL; 680 struct cpl_t5_act_open_req6 *t5req6 = NULL; 681 struct cpl_t6_act_open_req6 *t6req6 = NULL; 682 struct sk_buff *skb; 683 u64 opt0; 684 u32 opt2; 685 unsigned int mtu_idx; 686 u32 wscale; 687 int win, sizev4, sizev6, wrlen; 688 struct sockaddr_in *la = (struct sockaddr_in *) 689 &ep->com.local_addr; 690 struct sockaddr_in *ra = (struct sockaddr_in *) 691 &ep->com.remote_addr; 692 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 693 &ep->com.local_addr; 694 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 695 &ep->com.remote_addr; 696 int ret; 697 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 698 u32 isn = (prandom_u32() & ~7UL) - 1; 699 struct net_device *netdev; 700 u64 params; 701 702 netdev = ep->com.dev->rdev.lldi.ports[0]; 703 704 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 705 case CHELSIO_T4: 706 sizev4 = sizeof(struct cpl_act_open_req); 707 sizev6 = sizeof(struct cpl_act_open_req6); 708 break; 709 case CHELSIO_T5: 710 sizev4 = sizeof(struct cpl_t5_act_open_req); 711 sizev6 = sizeof(struct cpl_t5_act_open_req6); 712 break; 713 case CHELSIO_T6: 714 sizev4 = sizeof(struct cpl_t6_act_open_req); 715 sizev6 = sizeof(struct cpl_t6_act_open_req6); 716 break; 717 default: 718 pr_err("T%d Chip is not supported\n", 719 CHELSIO_CHIP_VERSION(adapter_type)); 720 return -EINVAL; 721 } 722 723 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 724 roundup(sizev4, 16) : 725 roundup(sizev6, 16); 726 727 pr_debug("ep %p atid %u\n", ep, ep->atid); 728 729 skb = get_skb(NULL, wrlen, GFP_KERNEL); 730 if (!skb) { 731 pr_err("%s - failed to alloc skb\n", __func__); 732 return -ENOMEM; 733 } 734 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 735 736 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 737 enable_tcp_timestamps, 738 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 739 wscale = cxgb_compute_wscale(rcv_win); 740 741 /* 742 * Specify the largest window that will fit in opt0. The 743 * remainder will be specified in the rx_data_ack. 744 */ 745 win = ep->rcv_win >> 10; 746 if (win > RCV_BUFSIZ_M) 747 win = RCV_BUFSIZ_M; 748 749 opt0 = (nocong ? NO_CONG_F : 0) | 750 KEEP_ALIVE_F | 751 DELACK_F | 752 WND_SCALE_V(wscale) | 753 MSS_IDX_V(mtu_idx) | 754 L2T_IDX_V(ep->l2t->idx) | 755 TX_CHAN_V(ep->tx_chan) | 756 SMAC_SEL_V(ep->smac_idx) | 757 DSCP_V(ep->tos >> 2) | 758 ULP_MODE_V(ULP_MODE_TCPDDP) | 759 RCV_BUFSIZ_V(win); 760 opt2 = RX_CHANNEL_V(0) | 761 CCTRL_ECN_V(enable_ecn) | 762 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 763 if (enable_tcp_timestamps) 764 opt2 |= TSTAMPS_EN_F; 765 if (enable_tcp_sack) 766 opt2 |= SACK_EN_F; 767 if (wscale && enable_tcp_window_scaling) 768 opt2 |= WND_SCALE_EN_F; 769 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 770 if (peer2peer) 771 isn += 4; 772 773 opt2 |= T5_OPT_2_VALID_F; 774 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 775 opt2 |= T5_ISS_F; 776 } 777 778 params = cxgb4_select_ntuple(netdev, ep->l2t); 779 780 if (ep->com.remote_addr.ss_family == AF_INET6) 781 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 782 (const u32 *)&la6->sin6_addr.s6_addr, 1); 783 784 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 785 786 if (ep->com.remote_addr.ss_family == AF_INET) { 787 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 788 case CHELSIO_T4: 789 req = skb_put(skb, wrlen); 790 INIT_TP_WR(req, 0); 791 break; 792 case CHELSIO_T5: 793 t5req = skb_put(skb, wrlen); 794 INIT_TP_WR(t5req, 0); 795 req = (struct cpl_act_open_req *)t5req; 796 break; 797 case CHELSIO_T6: 798 t6req = skb_put(skb, wrlen); 799 INIT_TP_WR(t6req, 0); 800 req = (struct cpl_act_open_req *)t6req; 801 t5req = (struct cpl_t5_act_open_req *)t6req; 802 break; 803 default: 804 pr_err("T%d Chip is not supported\n", 805 CHELSIO_CHIP_VERSION(adapter_type)); 806 ret = -EINVAL; 807 goto clip_release; 808 } 809 810 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 811 ((ep->rss_qid<<14) | ep->atid))); 812 req->local_port = la->sin_port; 813 req->peer_port = ra->sin_port; 814 req->local_ip = la->sin_addr.s_addr; 815 req->peer_ip = ra->sin_addr.s_addr; 816 req->opt0 = cpu_to_be64(opt0); 817 818 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 819 req->params = cpu_to_be32(params); 820 req->opt2 = cpu_to_be32(opt2); 821 } else { 822 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 823 t5req->params = 824 cpu_to_be64(FILTER_TUPLE_V(params)); 825 t5req->rsvd = cpu_to_be32(isn); 826 pr_debug("snd_isn %u\n", t5req->rsvd); 827 t5req->opt2 = cpu_to_be32(opt2); 828 } else { 829 t6req->params = 830 cpu_to_be64(FILTER_TUPLE_V(params)); 831 t6req->rsvd = cpu_to_be32(isn); 832 pr_debug("snd_isn %u\n", t6req->rsvd); 833 t6req->opt2 = cpu_to_be32(opt2); 834 } 835 } 836 } else { 837 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 838 case CHELSIO_T4: 839 req6 = skb_put(skb, wrlen); 840 INIT_TP_WR(req6, 0); 841 break; 842 case CHELSIO_T5: 843 t5req6 = skb_put(skb, wrlen); 844 INIT_TP_WR(t5req6, 0); 845 req6 = (struct cpl_act_open_req6 *)t5req6; 846 break; 847 case CHELSIO_T6: 848 t6req6 = skb_put(skb, wrlen); 849 INIT_TP_WR(t6req6, 0); 850 req6 = (struct cpl_act_open_req6 *)t6req6; 851 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 852 break; 853 default: 854 pr_err("T%d Chip is not supported\n", 855 CHELSIO_CHIP_VERSION(adapter_type)); 856 ret = -EINVAL; 857 goto clip_release; 858 } 859 860 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 861 ((ep->rss_qid<<14)|ep->atid))); 862 req6->local_port = la6->sin6_port; 863 req6->peer_port = ra6->sin6_port; 864 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 865 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 866 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 867 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 868 req6->opt0 = cpu_to_be64(opt0); 869 870 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 871 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 872 ep->l2t)); 873 req6->opt2 = cpu_to_be32(opt2); 874 } else { 875 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 876 t5req6->params = 877 cpu_to_be64(FILTER_TUPLE_V(params)); 878 t5req6->rsvd = cpu_to_be32(isn); 879 pr_debug("snd_isn %u\n", t5req6->rsvd); 880 t5req6->opt2 = cpu_to_be32(opt2); 881 } else { 882 t6req6->params = 883 cpu_to_be64(FILTER_TUPLE_V(params)); 884 t6req6->rsvd = cpu_to_be32(isn); 885 pr_debug("snd_isn %u\n", t6req6->rsvd); 886 t6req6->opt2 = cpu_to_be32(opt2); 887 } 888 889 } 890 } 891 892 set_bit(ACT_OPEN_REQ, &ep->com.history); 893 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 894 clip_release: 895 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 896 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 897 (const u32 *)&la6->sin6_addr.s6_addr, 1); 898 return ret; 899 } 900 901 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 902 u8 mpa_rev_to_use) 903 { 904 int mpalen, wrlen, ret; 905 struct fw_ofld_tx_data_wr *req; 906 struct mpa_message *mpa; 907 struct mpa_v2_conn_params mpa_v2_params; 908 909 pr_debug("ep %p tid %u pd_len %d\n", 910 ep, ep->hwtid, ep->plen); 911 912 mpalen = sizeof(*mpa) + ep->plen; 913 if (mpa_rev_to_use == 2) 914 mpalen += sizeof(struct mpa_v2_conn_params); 915 wrlen = roundup(mpalen + sizeof *req, 16); 916 skb = get_skb(skb, wrlen, GFP_KERNEL); 917 if (!skb) { 918 connect_reply_upcall(ep, -ENOMEM); 919 return -ENOMEM; 920 } 921 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 922 923 req = skb_put_zero(skb, wrlen); 924 req->op_to_immdlen = cpu_to_be32( 925 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 926 FW_WR_COMPL_F | 927 FW_WR_IMMDLEN_V(mpalen)); 928 req->flowid_len16 = cpu_to_be32( 929 FW_WR_FLOWID_V(ep->hwtid) | 930 FW_WR_LEN16_V(wrlen >> 4)); 931 req->plen = cpu_to_be32(mpalen); 932 req->tunnel_to_proxy = cpu_to_be32( 933 FW_OFLD_TX_DATA_WR_FLUSH_F | 934 FW_OFLD_TX_DATA_WR_SHOVE_F); 935 936 mpa = (struct mpa_message *)(req + 1); 937 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 938 939 mpa->flags = 0; 940 if (crc_enabled) 941 mpa->flags |= MPA_CRC; 942 if (markers_enabled) { 943 mpa->flags |= MPA_MARKERS; 944 ep->mpa_attr.recv_marker_enabled = 1; 945 } else { 946 ep->mpa_attr.recv_marker_enabled = 0; 947 } 948 if (mpa_rev_to_use == 2) 949 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 950 951 mpa->private_data_size = htons(ep->plen); 952 mpa->revision = mpa_rev_to_use; 953 if (mpa_rev_to_use == 1) { 954 ep->tried_with_mpa_v1 = 1; 955 ep->retry_with_mpa_v1 = 0; 956 } 957 958 if (mpa_rev_to_use == 2) { 959 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 960 sizeof (struct mpa_v2_conn_params)); 961 pr_debug("initiator ird %u ord %u\n", ep->ird, 962 ep->ord); 963 mpa_v2_params.ird = htons((u16)ep->ird); 964 mpa_v2_params.ord = htons((u16)ep->ord); 965 966 if (peer2peer) { 967 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 968 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 969 mpa_v2_params.ord |= 970 htons(MPA_V2_RDMA_WRITE_RTR); 971 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 972 mpa_v2_params.ord |= 973 htons(MPA_V2_RDMA_READ_RTR); 974 } 975 memcpy(mpa->private_data, &mpa_v2_params, 976 sizeof(struct mpa_v2_conn_params)); 977 978 if (ep->plen) 979 memcpy(mpa->private_data + 980 sizeof(struct mpa_v2_conn_params), 981 ep->mpa_pkt + sizeof(*mpa), ep->plen); 982 } else 983 if (ep->plen) 984 memcpy(mpa->private_data, 985 ep->mpa_pkt + sizeof(*mpa), ep->plen); 986 987 /* 988 * Reference the mpa skb. This ensures the data area 989 * will remain in memory until the hw acks the tx. 990 * Function fw4_ack() will deref it. 991 */ 992 skb_get(skb); 993 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 994 ep->mpa_skb = skb; 995 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 996 if (ret) 997 return ret; 998 start_ep_timer(ep); 999 __state_set(&ep->com, MPA_REQ_SENT); 1000 ep->mpa_attr.initiator = 1; 1001 ep->snd_seq += mpalen; 1002 return ret; 1003 } 1004 1005 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1006 { 1007 int mpalen, wrlen; 1008 struct fw_ofld_tx_data_wr *req; 1009 struct mpa_message *mpa; 1010 struct sk_buff *skb; 1011 struct mpa_v2_conn_params mpa_v2_params; 1012 1013 pr_debug("ep %p tid %u pd_len %d\n", 1014 ep, ep->hwtid, ep->plen); 1015 1016 mpalen = sizeof(*mpa) + plen; 1017 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1018 mpalen += sizeof(struct mpa_v2_conn_params); 1019 wrlen = roundup(mpalen + sizeof *req, 16); 1020 1021 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1022 if (!skb) { 1023 pr_err("%s - cannot alloc skb!\n", __func__); 1024 return -ENOMEM; 1025 } 1026 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1027 1028 req = skb_put_zero(skb, wrlen); 1029 req->op_to_immdlen = cpu_to_be32( 1030 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1031 FW_WR_COMPL_F | 1032 FW_WR_IMMDLEN_V(mpalen)); 1033 req->flowid_len16 = cpu_to_be32( 1034 FW_WR_FLOWID_V(ep->hwtid) | 1035 FW_WR_LEN16_V(wrlen >> 4)); 1036 req->plen = cpu_to_be32(mpalen); 1037 req->tunnel_to_proxy = cpu_to_be32( 1038 FW_OFLD_TX_DATA_WR_FLUSH_F | 1039 FW_OFLD_TX_DATA_WR_SHOVE_F); 1040 1041 mpa = (struct mpa_message *)(req + 1); 1042 memset(mpa, 0, sizeof(*mpa)); 1043 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1044 mpa->flags = MPA_REJECT; 1045 mpa->revision = ep->mpa_attr.version; 1046 mpa->private_data_size = htons(plen); 1047 1048 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1049 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1050 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1051 sizeof (struct mpa_v2_conn_params)); 1052 mpa_v2_params.ird = htons(((u16)ep->ird) | 1053 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1054 0)); 1055 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1056 (p2p_type == 1057 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1058 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1059 FW_RI_INIT_P2PTYPE_READ_REQ ? 1060 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1061 memcpy(mpa->private_data, &mpa_v2_params, 1062 sizeof(struct mpa_v2_conn_params)); 1063 1064 if (ep->plen) 1065 memcpy(mpa->private_data + 1066 sizeof(struct mpa_v2_conn_params), pdata, plen); 1067 } else 1068 if (plen) 1069 memcpy(mpa->private_data, pdata, plen); 1070 1071 /* 1072 * Reference the mpa skb again. This ensures the data area 1073 * will remain in memory until the hw acks the tx. 1074 * Function fw4_ack() will deref it. 1075 */ 1076 skb_get(skb); 1077 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1078 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1079 ep->mpa_skb = skb; 1080 ep->snd_seq += mpalen; 1081 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1082 } 1083 1084 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1085 { 1086 int mpalen, wrlen; 1087 struct fw_ofld_tx_data_wr *req; 1088 struct mpa_message *mpa; 1089 struct sk_buff *skb; 1090 struct mpa_v2_conn_params mpa_v2_params; 1091 1092 pr_debug("ep %p tid %u pd_len %d\n", 1093 ep, ep->hwtid, ep->plen); 1094 1095 mpalen = sizeof(*mpa) + plen; 1096 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1097 mpalen += sizeof(struct mpa_v2_conn_params); 1098 wrlen = roundup(mpalen + sizeof *req, 16); 1099 1100 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1101 if (!skb) { 1102 pr_err("%s - cannot alloc skb!\n", __func__); 1103 return -ENOMEM; 1104 } 1105 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1106 1107 req = skb_put_zero(skb, wrlen); 1108 req->op_to_immdlen = cpu_to_be32( 1109 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1110 FW_WR_COMPL_F | 1111 FW_WR_IMMDLEN_V(mpalen)); 1112 req->flowid_len16 = cpu_to_be32( 1113 FW_WR_FLOWID_V(ep->hwtid) | 1114 FW_WR_LEN16_V(wrlen >> 4)); 1115 req->plen = cpu_to_be32(mpalen); 1116 req->tunnel_to_proxy = cpu_to_be32( 1117 FW_OFLD_TX_DATA_WR_FLUSH_F | 1118 FW_OFLD_TX_DATA_WR_SHOVE_F); 1119 1120 mpa = (struct mpa_message *)(req + 1); 1121 memset(mpa, 0, sizeof(*mpa)); 1122 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1123 mpa->flags = 0; 1124 if (ep->mpa_attr.crc_enabled) 1125 mpa->flags |= MPA_CRC; 1126 if (ep->mpa_attr.recv_marker_enabled) 1127 mpa->flags |= MPA_MARKERS; 1128 mpa->revision = ep->mpa_attr.version; 1129 mpa->private_data_size = htons(plen); 1130 1131 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1132 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1133 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1134 sizeof (struct mpa_v2_conn_params)); 1135 mpa_v2_params.ird = htons((u16)ep->ird); 1136 mpa_v2_params.ord = htons((u16)ep->ord); 1137 if (peer2peer && (ep->mpa_attr.p2p_type != 1138 FW_RI_INIT_P2PTYPE_DISABLED)) { 1139 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1140 1141 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1142 mpa_v2_params.ord |= 1143 htons(MPA_V2_RDMA_WRITE_RTR); 1144 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1145 mpa_v2_params.ord |= 1146 htons(MPA_V2_RDMA_READ_RTR); 1147 } 1148 1149 memcpy(mpa->private_data, &mpa_v2_params, 1150 sizeof(struct mpa_v2_conn_params)); 1151 1152 if (ep->plen) 1153 memcpy(mpa->private_data + 1154 sizeof(struct mpa_v2_conn_params), pdata, plen); 1155 } else 1156 if (plen) 1157 memcpy(mpa->private_data, pdata, plen); 1158 1159 /* 1160 * Reference the mpa skb. This ensures the data area 1161 * will remain in memory until the hw acks the tx. 1162 * Function fw4_ack() will deref it. 1163 */ 1164 skb_get(skb); 1165 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1166 ep->mpa_skb = skb; 1167 __state_set(&ep->com, MPA_REP_SENT); 1168 ep->snd_seq += mpalen; 1169 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1170 } 1171 1172 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1173 { 1174 struct c4iw_ep *ep; 1175 struct cpl_act_establish *req = cplhdr(skb); 1176 unsigned short tcp_opt = ntohs(req->tcp_opt); 1177 unsigned int tid = GET_TID(req); 1178 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1179 struct tid_info *t = dev->rdev.lldi.tids; 1180 int ret; 1181 1182 ep = lookup_atid(t, atid); 1183 1184 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid, 1185 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1186 1187 mutex_lock(&ep->com.mutex); 1188 dst_confirm(ep->dst); 1189 1190 /* setup the hwtid for this connection */ 1191 ep->hwtid = tid; 1192 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family); 1193 insert_ep_tid(ep); 1194 1195 ep->snd_seq = be32_to_cpu(req->snd_isn); 1196 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1197 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); 1198 1199 set_emss(ep, tcp_opt); 1200 1201 /* dealloc the atid */ 1202 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1203 cxgb4_free_atid(t, atid); 1204 set_bit(ACT_ESTAB, &ep->com.history); 1205 1206 /* start MPA negotiation */ 1207 ret = send_flowc(ep); 1208 if (ret) 1209 goto err; 1210 if (ep->retry_with_mpa_v1) 1211 ret = send_mpa_req(ep, skb, 1); 1212 else 1213 ret = send_mpa_req(ep, skb, mpa_rev); 1214 if (ret) 1215 goto err; 1216 mutex_unlock(&ep->com.mutex); 1217 return 0; 1218 err: 1219 mutex_unlock(&ep->com.mutex); 1220 connect_reply_upcall(ep, -ENOMEM); 1221 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1222 return 0; 1223 } 1224 1225 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1226 { 1227 struct iw_cm_event event; 1228 1229 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1230 memset(&event, 0, sizeof(event)); 1231 event.event = IW_CM_EVENT_CLOSE; 1232 event.status = status; 1233 if (ep->com.cm_id) { 1234 pr_debug("close complete delivered ep %p cm_id %p tid %u\n", 1235 ep, ep->com.cm_id, ep->hwtid); 1236 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1237 deref_cm_id(&ep->com); 1238 set_bit(CLOSE_UPCALL, &ep->com.history); 1239 } 1240 } 1241 1242 static void peer_close_upcall(struct c4iw_ep *ep) 1243 { 1244 struct iw_cm_event event; 1245 1246 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1247 memset(&event, 0, sizeof(event)); 1248 event.event = IW_CM_EVENT_DISCONNECT; 1249 if (ep->com.cm_id) { 1250 pr_debug("peer close delivered ep %p cm_id %p tid %u\n", 1251 ep, ep->com.cm_id, ep->hwtid); 1252 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1253 set_bit(DISCONN_UPCALL, &ep->com.history); 1254 } 1255 } 1256 1257 static void peer_abort_upcall(struct c4iw_ep *ep) 1258 { 1259 struct iw_cm_event event; 1260 1261 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1262 memset(&event, 0, sizeof(event)); 1263 event.event = IW_CM_EVENT_CLOSE; 1264 event.status = -ECONNRESET; 1265 if (ep->com.cm_id) { 1266 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, 1267 ep->com.cm_id, ep->hwtid); 1268 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1269 deref_cm_id(&ep->com); 1270 set_bit(ABORT_UPCALL, &ep->com.history); 1271 } 1272 } 1273 1274 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1275 { 1276 struct iw_cm_event event; 1277 1278 pr_debug("ep %p tid %u status %d\n", 1279 ep, ep->hwtid, status); 1280 memset(&event, 0, sizeof(event)); 1281 event.event = IW_CM_EVENT_CONNECT_REPLY; 1282 event.status = status; 1283 memcpy(&event.local_addr, &ep->com.local_addr, 1284 sizeof(ep->com.local_addr)); 1285 memcpy(&event.remote_addr, &ep->com.remote_addr, 1286 sizeof(ep->com.remote_addr)); 1287 1288 if ((status == 0) || (status == -ECONNREFUSED)) { 1289 if (!ep->tried_with_mpa_v1) { 1290 /* this means MPA_v2 is used */ 1291 event.ord = ep->ird; 1292 event.ird = ep->ord; 1293 event.private_data_len = ep->plen - 1294 sizeof(struct mpa_v2_conn_params); 1295 event.private_data = ep->mpa_pkt + 1296 sizeof(struct mpa_message) + 1297 sizeof(struct mpa_v2_conn_params); 1298 } else { 1299 /* this means MPA_v1 is used */ 1300 event.ord = cur_max_read_depth(ep->com.dev); 1301 event.ird = cur_max_read_depth(ep->com.dev); 1302 event.private_data_len = ep->plen; 1303 event.private_data = ep->mpa_pkt + 1304 sizeof(struct mpa_message); 1305 } 1306 } 1307 1308 pr_debug("ep %p tid %u status %d\n", ep, 1309 ep->hwtid, status); 1310 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1311 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1312 1313 if (status < 0) 1314 deref_cm_id(&ep->com); 1315 } 1316 1317 static int connect_request_upcall(struct c4iw_ep *ep) 1318 { 1319 struct iw_cm_event event; 1320 int ret; 1321 1322 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1323 memset(&event, 0, sizeof(event)); 1324 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1325 memcpy(&event.local_addr, &ep->com.local_addr, 1326 sizeof(ep->com.local_addr)); 1327 memcpy(&event.remote_addr, &ep->com.remote_addr, 1328 sizeof(ep->com.remote_addr)); 1329 event.provider_data = ep; 1330 if (!ep->tried_with_mpa_v1) { 1331 /* this means MPA_v2 is used */ 1332 event.ord = ep->ord; 1333 event.ird = ep->ird; 1334 event.private_data_len = ep->plen - 1335 sizeof(struct mpa_v2_conn_params); 1336 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1337 sizeof(struct mpa_v2_conn_params); 1338 } else { 1339 /* this means MPA_v1 is used. Send max supported */ 1340 event.ord = cur_max_read_depth(ep->com.dev); 1341 event.ird = cur_max_read_depth(ep->com.dev); 1342 event.private_data_len = ep->plen; 1343 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1344 } 1345 c4iw_get_ep(&ep->com); 1346 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1347 &event); 1348 if (ret) 1349 c4iw_put_ep(&ep->com); 1350 set_bit(CONNREQ_UPCALL, &ep->com.history); 1351 c4iw_put_ep(&ep->parent_ep->com); 1352 return ret; 1353 } 1354 1355 static void established_upcall(struct c4iw_ep *ep) 1356 { 1357 struct iw_cm_event event; 1358 1359 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1360 memset(&event, 0, sizeof(event)); 1361 event.event = IW_CM_EVENT_ESTABLISHED; 1362 event.ird = ep->ord; 1363 event.ord = ep->ird; 1364 if (ep->com.cm_id) { 1365 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1366 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1367 set_bit(ESTAB_UPCALL, &ep->com.history); 1368 } 1369 } 1370 1371 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1372 { 1373 struct sk_buff *skb; 1374 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1375 u32 credit_dack; 1376 1377 pr_debug("ep %p tid %u credits %u\n", 1378 ep, ep->hwtid, credits); 1379 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1380 if (!skb) { 1381 pr_err("update_rx_credits - cannot alloc skb!\n"); 1382 return 0; 1383 } 1384 1385 /* 1386 * If we couldn't specify the entire rcv window at connection setup 1387 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1388 * then add the overage in to the credits returned. 1389 */ 1390 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1391 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1392 1393 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1394 RX_DACK_MODE_V(dack_mode); 1395 1396 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1397 credit_dack); 1398 1399 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1400 return credits; 1401 } 1402 1403 #define RELAXED_IRD_NEGOTIATION 1 1404 1405 /* 1406 * process_mpa_reply - process streaming mode MPA reply 1407 * 1408 * Returns: 1409 * 1410 * 0 upon success indicating a connect request was delivered to the ULP 1411 * or the mpa request is incomplete but valid so far. 1412 * 1413 * 1 if a failure requires the caller to close the connection. 1414 * 1415 * 2 if a failure requires the caller to abort the connection. 1416 */ 1417 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1418 { 1419 struct mpa_message *mpa; 1420 struct mpa_v2_conn_params *mpa_v2_params; 1421 u16 plen; 1422 u16 resp_ird, resp_ord; 1423 u8 rtr_mismatch = 0, insuff_ird = 0; 1424 struct c4iw_qp_attributes attrs; 1425 enum c4iw_qp_attr_mask mask; 1426 int err; 1427 int disconnect = 0; 1428 1429 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1430 1431 /* 1432 * If we get more than the supported amount of private data 1433 * then we must fail this connection. 1434 */ 1435 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1436 err = -EINVAL; 1437 goto err_stop_timer; 1438 } 1439 1440 /* 1441 * copy the new data into our accumulation buffer. 1442 */ 1443 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1444 skb->len); 1445 ep->mpa_pkt_len += skb->len; 1446 1447 /* 1448 * if we don't even have the mpa message, then bail. 1449 */ 1450 if (ep->mpa_pkt_len < sizeof(*mpa)) 1451 return 0; 1452 mpa = (struct mpa_message *) ep->mpa_pkt; 1453 1454 /* Validate MPA header. */ 1455 if (mpa->revision > mpa_rev) { 1456 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1457 __func__, mpa_rev, mpa->revision); 1458 err = -EPROTO; 1459 goto err_stop_timer; 1460 } 1461 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1462 err = -EPROTO; 1463 goto err_stop_timer; 1464 } 1465 1466 plen = ntohs(mpa->private_data_size); 1467 1468 /* 1469 * Fail if there's too much private data. 1470 */ 1471 if (plen > MPA_MAX_PRIVATE_DATA) { 1472 err = -EPROTO; 1473 goto err_stop_timer; 1474 } 1475 1476 /* 1477 * If plen does not account for pkt size 1478 */ 1479 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1480 err = -EPROTO; 1481 goto err_stop_timer; 1482 } 1483 1484 ep->plen = (u8) plen; 1485 1486 /* 1487 * If we don't have all the pdata yet, then bail. 1488 * We'll continue process when more data arrives. 1489 */ 1490 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1491 return 0; 1492 1493 if (mpa->flags & MPA_REJECT) { 1494 err = -ECONNREFUSED; 1495 goto err_stop_timer; 1496 } 1497 1498 /* 1499 * Stop mpa timer. If it expired, then 1500 * we ignore the MPA reply. process_timeout() 1501 * will abort the connection. 1502 */ 1503 if (stop_ep_timer(ep)) 1504 return 0; 1505 1506 /* 1507 * If we get here we have accumulated the entire mpa 1508 * start reply message including private data. And 1509 * the MPA header is valid. 1510 */ 1511 __state_set(&ep->com, FPDU_MODE); 1512 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1513 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1514 ep->mpa_attr.version = mpa->revision; 1515 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1516 1517 if (mpa->revision == 2) { 1518 ep->mpa_attr.enhanced_rdma_conn = 1519 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1520 if (ep->mpa_attr.enhanced_rdma_conn) { 1521 mpa_v2_params = (struct mpa_v2_conn_params *) 1522 (ep->mpa_pkt + sizeof(*mpa)); 1523 resp_ird = ntohs(mpa_v2_params->ird) & 1524 MPA_V2_IRD_ORD_MASK; 1525 resp_ord = ntohs(mpa_v2_params->ord) & 1526 MPA_V2_IRD_ORD_MASK; 1527 pr_debug("responder ird %u ord %u ep ird %u ord %u\n", 1528 resp_ird, resp_ord, ep->ird, ep->ord); 1529 1530 /* 1531 * This is a double-check. Ideally, below checks are 1532 * not required since ird/ord stuff has been taken 1533 * care of in c4iw_accept_cr 1534 */ 1535 if (ep->ird < resp_ord) { 1536 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1537 ep->com.dev->rdev.lldi.max_ordird_qp) 1538 ep->ird = resp_ord; 1539 else 1540 insuff_ird = 1; 1541 } else if (ep->ird > resp_ord) { 1542 ep->ird = resp_ord; 1543 } 1544 if (ep->ord > resp_ird) { 1545 if (RELAXED_IRD_NEGOTIATION) 1546 ep->ord = resp_ird; 1547 else 1548 insuff_ird = 1; 1549 } 1550 if (insuff_ird) { 1551 err = -ENOMEM; 1552 ep->ird = resp_ord; 1553 ep->ord = resp_ird; 1554 } 1555 1556 if (ntohs(mpa_v2_params->ird) & 1557 MPA_V2_PEER2PEER_MODEL) { 1558 if (ntohs(mpa_v2_params->ord) & 1559 MPA_V2_RDMA_WRITE_RTR) 1560 ep->mpa_attr.p2p_type = 1561 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1562 else if (ntohs(mpa_v2_params->ord) & 1563 MPA_V2_RDMA_READ_RTR) 1564 ep->mpa_attr.p2p_type = 1565 FW_RI_INIT_P2PTYPE_READ_REQ; 1566 } 1567 } 1568 } else if (mpa->revision == 1) 1569 if (peer2peer) 1570 ep->mpa_attr.p2p_type = p2p_type; 1571 1572 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", 1573 ep->mpa_attr.crc_enabled, 1574 ep->mpa_attr.recv_marker_enabled, 1575 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1576 ep->mpa_attr.p2p_type, p2p_type); 1577 1578 /* 1579 * If responder's RTR does not match with that of initiator, assign 1580 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1581 * generated when moving QP to RTS state. 1582 * A TERM message will be sent after QP has moved to RTS state 1583 */ 1584 if ((ep->mpa_attr.version == 2) && peer2peer && 1585 (ep->mpa_attr.p2p_type != p2p_type)) { 1586 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1587 rtr_mismatch = 1; 1588 } 1589 1590 attrs.mpa_attr = ep->mpa_attr; 1591 attrs.max_ird = ep->ird; 1592 attrs.max_ord = ep->ord; 1593 attrs.llp_stream_handle = ep; 1594 attrs.next_state = C4IW_QP_STATE_RTS; 1595 1596 mask = C4IW_QP_ATTR_NEXT_STATE | 1597 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1598 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1599 1600 /* bind QP and TID with INIT_WR */ 1601 err = c4iw_modify_qp(ep->com.qp->rhp, 1602 ep->com.qp, mask, &attrs, 1); 1603 if (err) 1604 goto err; 1605 1606 /* 1607 * If responder's RTR requirement did not match with what initiator 1608 * supports, generate TERM message 1609 */ 1610 if (rtr_mismatch) { 1611 pr_err("%s: RTR mismatch, sending TERM\n", __func__); 1612 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1613 attrs.ecode = MPA_NOMATCH_RTR; 1614 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1615 attrs.send_term = 1; 1616 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1617 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1618 err = -ENOMEM; 1619 disconnect = 1; 1620 goto out; 1621 } 1622 1623 /* 1624 * Generate TERM if initiator IRD is not sufficient for responder 1625 * provided ORD. Currently, we do the same behaviour even when 1626 * responder provided IRD is also not sufficient as regards to 1627 * initiator ORD. 1628 */ 1629 if (insuff_ird) { 1630 pr_err("%s: Insufficient IRD, sending TERM\n", __func__); 1631 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1632 attrs.ecode = MPA_INSUFF_IRD; 1633 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1634 attrs.send_term = 1; 1635 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1636 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1637 err = -ENOMEM; 1638 disconnect = 1; 1639 goto out; 1640 } 1641 goto out; 1642 err_stop_timer: 1643 stop_ep_timer(ep); 1644 err: 1645 disconnect = 2; 1646 out: 1647 connect_reply_upcall(ep, err); 1648 return disconnect; 1649 } 1650 1651 /* 1652 * process_mpa_request - process streaming mode MPA request 1653 * 1654 * Returns: 1655 * 1656 * 0 upon success indicating a connect request was delivered to the ULP 1657 * or the mpa request is incomplete but valid so far. 1658 * 1659 * 1 if a failure requires the caller to close the connection. 1660 * 1661 * 2 if a failure requires the caller to abort the connection. 1662 */ 1663 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1664 { 1665 struct mpa_message *mpa; 1666 struct mpa_v2_conn_params *mpa_v2_params; 1667 u16 plen; 1668 1669 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1670 1671 /* 1672 * If we get more than the supported amount of private data 1673 * then we must fail this connection. 1674 */ 1675 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1676 goto err_stop_timer; 1677 1678 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1679 1680 /* 1681 * Copy the new data into our accumulation buffer. 1682 */ 1683 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1684 skb->len); 1685 ep->mpa_pkt_len += skb->len; 1686 1687 /* 1688 * If we don't even have the mpa message, then bail. 1689 * We'll continue process when more data arrives. 1690 */ 1691 if (ep->mpa_pkt_len < sizeof(*mpa)) 1692 return 0; 1693 1694 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1695 mpa = (struct mpa_message *) ep->mpa_pkt; 1696 1697 /* 1698 * Validate MPA Header. 1699 */ 1700 if (mpa->revision > mpa_rev) { 1701 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1702 __func__, mpa_rev, mpa->revision); 1703 goto err_stop_timer; 1704 } 1705 1706 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1707 goto err_stop_timer; 1708 1709 plen = ntohs(mpa->private_data_size); 1710 1711 /* 1712 * Fail if there's too much private data. 1713 */ 1714 if (plen > MPA_MAX_PRIVATE_DATA) 1715 goto err_stop_timer; 1716 1717 /* 1718 * If plen does not account for pkt size 1719 */ 1720 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1721 goto err_stop_timer; 1722 ep->plen = (u8) plen; 1723 1724 /* 1725 * If we don't have all the pdata yet, then bail. 1726 */ 1727 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1728 return 0; 1729 1730 /* 1731 * If we get here we have accumulated the entire mpa 1732 * start reply message including private data. 1733 */ 1734 ep->mpa_attr.initiator = 0; 1735 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1736 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1737 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1738 ep->mpa_attr.version = mpa->revision; 1739 if (mpa->revision == 1) 1740 ep->tried_with_mpa_v1 = 1; 1741 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1742 1743 if (mpa->revision == 2) { 1744 ep->mpa_attr.enhanced_rdma_conn = 1745 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1746 if (ep->mpa_attr.enhanced_rdma_conn) { 1747 mpa_v2_params = (struct mpa_v2_conn_params *) 1748 (ep->mpa_pkt + sizeof(*mpa)); 1749 ep->ird = ntohs(mpa_v2_params->ird) & 1750 MPA_V2_IRD_ORD_MASK; 1751 ep->ird = min_t(u32, ep->ird, 1752 cur_max_read_depth(ep->com.dev)); 1753 ep->ord = ntohs(mpa_v2_params->ord) & 1754 MPA_V2_IRD_ORD_MASK; 1755 ep->ord = min_t(u32, ep->ord, 1756 cur_max_read_depth(ep->com.dev)); 1757 pr_debug("initiator ird %u ord %u\n", 1758 ep->ird, ep->ord); 1759 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1760 if (peer2peer) { 1761 if (ntohs(mpa_v2_params->ord) & 1762 MPA_V2_RDMA_WRITE_RTR) 1763 ep->mpa_attr.p2p_type = 1764 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1765 else if (ntohs(mpa_v2_params->ord) & 1766 MPA_V2_RDMA_READ_RTR) 1767 ep->mpa_attr.p2p_type = 1768 FW_RI_INIT_P2PTYPE_READ_REQ; 1769 } 1770 } 1771 } else if (mpa->revision == 1) 1772 if (peer2peer) 1773 ep->mpa_attr.p2p_type = p2p_type; 1774 1775 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", 1776 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1777 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1778 ep->mpa_attr.p2p_type); 1779 1780 __state_set(&ep->com, MPA_REQ_RCVD); 1781 1782 /* drive upcall */ 1783 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1784 if (ep->parent_ep->com.state != DEAD) { 1785 if (connect_request_upcall(ep)) 1786 goto err_unlock_parent; 1787 } else { 1788 goto err_unlock_parent; 1789 } 1790 mutex_unlock(&ep->parent_ep->com.mutex); 1791 return 0; 1792 1793 err_unlock_parent: 1794 mutex_unlock(&ep->parent_ep->com.mutex); 1795 goto err_out; 1796 err_stop_timer: 1797 (void)stop_ep_timer(ep); 1798 err_out: 1799 return 2; 1800 } 1801 1802 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1803 { 1804 struct c4iw_ep *ep; 1805 struct cpl_rx_data *hdr = cplhdr(skb); 1806 unsigned int dlen = ntohs(hdr->len); 1807 unsigned int tid = GET_TID(hdr); 1808 __u8 status = hdr->status; 1809 int disconnect = 0; 1810 1811 ep = get_ep_from_tid(dev, tid); 1812 if (!ep) 1813 return 0; 1814 pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen); 1815 skb_pull(skb, sizeof(*hdr)); 1816 skb_trim(skb, dlen); 1817 mutex_lock(&ep->com.mutex); 1818 1819 switch (ep->com.state) { 1820 case MPA_REQ_SENT: 1821 update_rx_credits(ep, dlen); 1822 ep->rcv_seq += dlen; 1823 disconnect = process_mpa_reply(ep, skb); 1824 break; 1825 case MPA_REQ_WAIT: 1826 update_rx_credits(ep, dlen); 1827 ep->rcv_seq += dlen; 1828 disconnect = process_mpa_request(ep, skb); 1829 break; 1830 case FPDU_MODE: { 1831 struct c4iw_qp_attributes attrs; 1832 1833 update_rx_credits(ep, dlen); 1834 if (status) 1835 pr_err("%s Unexpected streaming data." \ 1836 " qpid %u ep %p state %d tid %u status %d\n", 1837 __func__, ep->com.qp->wq.sq.qid, ep, 1838 ep->com.state, ep->hwtid, status); 1839 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1840 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1841 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1842 disconnect = 1; 1843 break; 1844 } 1845 default: 1846 break; 1847 } 1848 mutex_unlock(&ep->com.mutex); 1849 if (disconnect) 1850 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1851 c4iw_put_ep(&ep->com); 1852 return 0; 1853 } 1854 1855 static void complete_cached_srq_buffers(struct c4iw_ep *ep, 1856 __be32 srqidx_status) 1857 { 1858 enum chip_type adapter_type; 1859 u32 srqidx; 1860 1861 adapter_type = ep->com.dev->rdev.lldi.adapter_type; 1862 srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(srqidx_status)); 1863 1864 /* 1865 * If this TCB had a srq buffer cached, then we must complete 1866 * it. For user mode, that means saving the srqidx in the 1867 * user/kernel status page for this qp. For kernel mode, just 1868 * synthesize the CQE now. 1869 */ 1870 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) { 1871 if (ep->com.qp->ibqp.uobject) 1872 t4_set_wq_in_error(&ep->com.qp->wq, srqidx); 1873 else 1874 c4iw_flush_srqidx(ep->com.qp, srqidx); 1875 } 1876 } 1877 1878 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1879 { 1880 struct c4iw_ep *ep; 1881 struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb); 1882 int release = 0; 1883 unsigned int tid = GET_TID(rpl); 1884 1885 ep = get_ep_from_tid(dev, tid); 1886 if (!ep) { 1887 pr_warn("Abort rpl to freed endpoint\n"); 1888 return 0; 1889 } 1890 1891 complete_cached_srq_buffers(ep, rpl->srqidx_status); 1892 1893 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1894 mutex_lock(&ep->com.mutex); 1895 switch (ep->com.state) { 1896 case ABORTING: 1897 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 1898 __state_set(&ep->com, DEAD); 1899 release = 1; 1900 break; 1901 default: 1902 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); 1903 break; 1904 } 1905 mutex_unlock(&ep->com.mutex); 1906 1907 if (release) 1908 release_ep_resources(ep); 1909 c4iw_put_ep(&ep->com); 1910 return 0; 1911 } 1912 1913 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1914 { 1915 struct sk_buff *skb; 1916 struct fw_ofld_connection_wr *req; 1917 unsigned int mtu_idx; 1918 u32 wscale; 1919 struct sockaddr_in *sin; 1920 int win; 1921 1922 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1923 req = __skb_put_zero(skb, sizeof(*req)); 1924 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1925 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1926 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1927 ep->com.dev->rdev.lldi.ports[0], 1928 ep->l2t)); 1929 sin = (struct sockaddr_in *)&ep->com.local_addr; 1930 req->le.lport = sin->sin_port; 1931 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1932 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1933 req->le.pport = sin->sin_port; 1934 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1935 req->tcb.t_state_to_astid = 1936 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1937 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1938 req->tcb.cplrxdataack_cplpassacceptrpl = 1939 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1940 req->tcb.tx_max = (__force __be32) jiffies; 1941 req->tcb.rcv_adv = htons(1); 1942 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1943 enable_tcp_timestamps, 1944 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1945 wscale = cxgb_compute_wscale(rcv_win); 1946 1947 /* 1948 * Specify the largest window that will fit in opt0. The 1949 * remainder will be specified in the rx_data_ack. 1950 */ 1951 win = ep->rcv_win >> 10; 1952 if (win > RCV_BUFSIZ_M) 1953 win = RCV_BUFSIZ_M; 1954 1955 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 1956 (nocong ? NO_CONG_F : 0) | 1957 KEEP_ALIVE_F | 1958 DELACK_F | 1959 WND_SCALE_V(wscale) | 1960 MSS_IDX_V(mtu_idx) | 1961 L2T_IDX_V(ep->l2t->idx) | 1962 TX_CHAN_V(ep->tx_chan) | 1963 SMAC_SEL_V(ep->smac_idx) | 1964 DSCP_V(ep->tos >> 2) | 1965 ULP_MODE_V(ULP_MODE_TCPDDP) | 1966 RCV_BUFSIZ_V(win)); 1967 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 1968 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 1969 RX_CHANNEL_V(0) | 1970 CCTRL_ECN_V(enable_ecn) | 1971 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 1972 if (enable_tcp_timestamps) 1973 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 1974 if (enable_tcp_sack) 1975 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 1976 if (wscale && enable_tcp_window_scaling) 1977 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 1978 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 1979 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 1980 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 1981 set_bit(ACT_OFLD_CONN, &ep->com.history); 1982 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1983 } 1984 1985 /* 1986 * Some of the error codes above implicitly indicate that there is no TID 1987 * allocated with the result of an ACT_OPEN. We use this predicate to make 1988 * that explicit. 1989 */ 1990 static inline int act_open_has_tid(int status) 1991 { 1992 return (status != CPL_ERR_TCAM_PARITY && 1993 status != CPL_ERR_TCAM_MISS && 1994 status != CPL_ERR_TCAM_FULL && 1995 status != CPL_ERR_CONN_EXIST_SYNRECV && 1996 status != CPL_ERR_CONN_EXIST); 1997 } 1998 1999 static char *neg_adv_str(unsigned int status) 2000 { 2001 switch (status) { 2002 case CPL_ERR_RTX_NEG_ADVICE: 2003 return "Retransmit timeout"; 2004 case CPL_ERR_PERSIST_NEG_ADVICE: 2005 return "Persist timeout"; 2006 case CPL_ERR_KEEPALV_NEG_ADVICE: 2007 return "Keepalive timeout"; 2008 default: 2009 return "Unknown"; 2010 } 2011 } 2012 2013 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 2014 { 2015 ep->snd_win = snd_win; 2016 ep->rcv_win = rcv_win; 2017 pr_debug("snd_win %d rcv_win %d\n", 2018 ep->snd_win, ep->rcv_win); 2019 } 2020 2021 #define ACT_OPEN_RETRY_COUNT 2 2022 2023 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2024 struct dst_entry *dst, struct c4iw_dev *cdev, 2025 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2026 { 2027 struct neighbour *n; 2028 int err, step; 2029 struct net_device *pdev; 2030 2031 n = dst_neigh_lookup(dst, peer_ip); 2032 if (!n) 2033 return -ENODEV; 2034 2035 rcu_read_lock(); 2036 err = -ENOMEM; 2037 if (n->dev->flags & IFF_LOOPBACK) { 2038 if (iptype == 4) 2039 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2040 else if (IS_ENABLED(CONFIG_IPV6)) 2041 for_each_netdev(&init_net, pdev) { 2042 if (ipv6_chk_addr(&init_net, 2043 (struct in6_addr *)peer_ip, 2044 pdev, 1)) 2045 break; 2046 } 2047 else 2048 pdev = NULL; 2049 2050 if (!pdev) { 2051 err = -ENODEV; 2052 goto out; 2053 } 2054 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2055 n, pdev, rt_tos2priority(tos)); 2056 if (!ep->l2t) { 2057 dev_put(pdev); 2058 goto out; 2059 } 2060 ep->mtu = pdev->mtu; 2061 ep->tx_chan = cxgb4_port_chan(pdev); 2062 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2063 cxgb4_port_viid(pdev)); 2064 step = cdev->rdev.lldi.ntxq / 2065 cdev->rdev.lldi.nchan; 2066 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2067 step = cdev->rdev.lldi.nrxq / 2068 cdev->rdev.lldi.nchan; 2069 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2070 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2071 cxgb4_port_idx(pdev) * step]; 2072 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2073 dev_put(pdev); 2074 } else { 2075 pdev = get_real_dev(n->dev); 2076 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2077 n, pdev, 0); 2078 if (!ep->l2t) 2079 goto out; 2080 ep->mtu = dst_mtu(dst); 2081 ep->tx_chan = cxgb4_port_chan(pdev); 2082 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2083 cxgb4_port_viid(pdev)); 2084 step = cdev->rdev.lldi.ntxq / 2085 cdev->rdev.lldi.nchan; 2086 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2087 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2088 step = cdev->rdev.lldi.nrxq / 2089 cdev->rdev.lldi.nchan; 2090 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2091 cxgb4_port_idx(pdev) * step]; 2092 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2093 2094 if (clear_mpa_v1) { 2095 ep->retry_with_mpa_v1 = 0; 2096 ep->tried_with_mpa_v1 = 0; 2097 } 2098 } 2099 err = 0; 2100 out: 2101 rcu_read_unlock(); 2102 2103 neigh_release(n); 2104 2105 return err; 2106 } 2107 2108 static int c4iw_reconnect(struct c4iw_ep *ep) 2109 { 2110 int err = 0; 2111 int size = 0; 2112 struct sockaddr_in *laddr = (struct sockaddr_in *) 2113 &ep->com.cm_id->m_local_addr; 2114 struct sockaddr_in *raddr = (struct sockaddr_in *) 2115 &ep->com.cm_id->m_remote_addr; 2116 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2117 &ep->com.cm_id->m_local_addr; 2118 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2119 &ep->com.cm_id->m_remote_addr; 2120 int iptype; 2121 __u8 *ra; 2122 2123 pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id); 2124 c4iw_init_wr_wait(ep->com.wr_waitp); 2125 2126 /* When MPA revision is different on nodes, the node with MPA_rev=2 2127 * tries to reconnect with MPA_rev 1 for the same EP through 2128 * c4iw_reconnect(), where the same EP is assigned with new tid for 2129 * further connection establishment. As we are using the same EP pointer 2130 * for reconnect, few skbs are used during the previous c4iw_connect(), 2131 * which leaves the EP with inadequate skbs for further 2132 * c4iw_reconnect(), Further causing a crash due to an empty 2133 * skb_list() during peer_abort(). Allocate skbs which is already used. 2134 */ 2135 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2136 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2137 err = -ENOMEM; 2138 goto fail1; 2139 } 2140 2141 /* 2142 * Allocate an active TID to initiate a TCP connection. 2143 */ 2144 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2145 if (ep->atid == -1) { 2146 pr_err("%s - cannot alloc atid\n", __func__); 2147 err = -ENOMEM; 2148 goto fail2; 2149 } 2150 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2151 2152 /* find a route */ 2153 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2154 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2155 laddr->sin_addr.s_addr, 2156 raddr->sin_addr.s_addr, 2157 laddr->sin_port, 2158 raddr->sin_port, ep->com.cm_id->tos); 2159 iptype = 4; 2160 ra = (__u8 *)&raddr->sin_addr; 2161 } else { 2162 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2163 get_real_dev, 2164 laddr6->sin6_addr.s6_addr, 2165 raddr6->sin6_addr.s6_addr, 2166 laddr6->sin6_port, 2167 raddr6->sin6_port, 0, 2168 raddr6->sin6_scope_id); 2169 iptype = 6; 2170 ra = (__u8 *)&raddr6->sin6_addr; 2171 } 2172 if (!ep->dst) { 2173 pr_err("%s - cannot find route\n", __func__); 2174 err = -EHOSTUNREACH; 2175 goto fail3; 2176 } 2177 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2178 ep->com.dev->rdev.lldi.adapter_type, 2179 ep->com.cm_id->tos); 2180 if (err) { 2181 pr_err("%s - cannot alloc l2e\n", __func__); 2182 goto fail4; 2183 } 2184 2185 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2186 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2187 ep->l2t->idx); 2188 2189 state_set(&ep->com, CONNECTING); 2190 ep->tos = ep->com.cm_id->tos; 2191 2192 /* send connect request to rnic */ 2193 err = send_connect(ep); 2194 if (!err) 2195 goto out; 2196 2197 cxgb4_l2t_release(ep->l2t); 2198 fail4: 2199 dst_release(ep->dst); 2200 fail3: 2201 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2202 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2203 fail2: 2204 /* 2205 * remember to send notification to upper layer. 2206 * We are in here so the upper layer is not aware that this is 2207 * re-connect attempt and so, upper layer is still waiting for 2208 * response of 1st connect request. 2209 */ 2210 connect_reply_upcall(ep, -ECONNRESET); 2211 fail1: 2212 c4iw_put_ep(&ep->com); 2213 out: 2214 return err; 2215 } 2216 2217 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2218 { 2219 struct c4iw_ep *ep; 2220 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2221 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2222 ntohl(rpl->atid_status))); 2223 struct tid_info *t = dev->rdev.lldi.tids; 2224 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2225 struct sockaddr_in *la; 2226 struct sockaddr_in *ra; 2227 struct sockaddr_in6 *la6; 2228 struct sockaddr_in6 *ra6; 2229 int ret = 0; 2230 2231 ep = lookup_atid(t, atid); 2232 la = (struct sockaddr_in *)&ep->com.local_addr; 2233 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2234 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2235 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2236 2237 pr_debug("ep %p atid %u status %u errno %d\n", ep, atid, 2238 status, status2errno(status)); 2239 2240 if (cxgb_is_neg_adv(status)) { 2241 pr_debug("Connection problems for atid %u status %u (%s)\n", 2242 atid, status, neg_adv_str(status)); 2243 ep->stats.connect_neg_adv++; 2244 mutex_lock(&dev->rdev.stats.lock); 2245 dev->rdev.stats.neg_adv++; 2246 mutex_unlock(&dev->rdev.stats.lock); 2247 return 0; 2248 } 2249 2250 set_bit(ACT_OPEN_RPL, &ep->com.history); 2251 2252 /* 2253 * Log interesting failures. 2254 */ 2255 switch (status) { 2256 case CPL_ERR_CONN_RESET: 2257 case CPL_ERR_CONN_TIMEDOUT: 2258 break; 2259 case CPL_ERR_TCAM_FULL: 2260 mutex_lock(&dev->rdev.stats.lock); 2261 dev->rdev.stats.tcam_full++; 2262 mutex_unlock(&dev->rdev.stats.lock); 2263 if (ep->com.local_addr.ss_family == AF_INET && 2264 dev->rdev.lldi.enable_fw_ofld_conn) { 2265 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2266 ntohl(rpl->atid_status)))); 2267 if (ret) 2268 goto fail; 2269 return 0; 2270 } 2271 break; 2272 case CPL_ERR_CONN_EXIST: 2273 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2274 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2275 if (ep->com.remote_addr.ss_family == AF_INET6) { 2276 struct sockaddr_in6 *sin6 = 2277 (struct sockaddr_in6 *) 2278 &ep->com.local_addr; 2279 cxgb4_clip_release( 2280 ep->com.dev->rdev.lldi.ports[0], 2281 (const u32 *) 2282 &sin6->sin6_addr.s6_addr, 1); 2283 } 2284 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2285 atid); 2286 cxgb4_free_atid(t, atid); 2287 dst_release(ep->dst); 2288 cxgb4_l2t_release(ep->l2t); 2289 c4iw_reconnect(ep); 2290 return 0; 2291 } 2292 break; 2293 default: 2294 if (ep->com.local_addr.ss_family == AF_INET) { 2295 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2296 atid, status, status2errno(status), 2297 &la->sin_addr.s_addr, ntohs(la->sin_port), 2298 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2299 } else { 2300 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2301 atid, status, status2errno(status), 2302 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2303 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2304 } 2305 break; 2306 } 2307 2308 fail: 2309 connect_reply_upcall(ep, status2errno(status)); 2310 state_set(&ep->com, DEAD); 2311 2312 if (ep->com.remote_addr.ss_family == AF_INET6) { 2313 struct sockaddr_in6 *sin6 = 2314 (struct sockaddr_in6 *)&ep->com.local_addr; 2315 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2316 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2317 } 2318 if (status && act_open_has_tid(status)) 2319 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl), 2320 ep->com.local_addr.ss_family); 2321 2322 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2323 cxgb4_free_atid(t, atid); 2324 dst_release(ep->dst); 2325 cxgb4_l2t_release(ep->l2t); 2326 c4iw_put_ep(&ep->com); 2327 2328 return 0; 2329 } 2330 2331 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2332 { 2333 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2334 unsigned int stid = GET_TID(rpl); 2335 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2336 2337 if (!ep) { 2338 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2339 goto out; 2340 } 2341 pr_debug("ep %p status %d error %d\n", ep, 2342 rpl->status, status2errno(rpl->status)); 2343 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2344 c4iw_put_ep(&ep->com); 2345 out: 2346 return 0; 2347 } 2348 2349 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2350 { 2351 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2352 unsigned int stid = GET_TID(rpl); 2353 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2354 2355 if (!ep) { 2356 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2357 goto out; 2358 } 2359 pr_debug("ep %p\n", ep); 2360 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2361 c4iw_put_ep(&ep->com); 2362 out: 2363 return 0; 2364 } 2365 2366 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2367 struct cpl_pass_accept_req *req) 2368 { 2369 struct cpl_pass_accept_rpl *rpl; 2370 unsigned int mtu_idx; 2371 u64 opt0; 2372 u32 opt2; 2373 u32 wscale; 2374 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2375 int win; 2376 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2377 2378 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2379 2380 skb_get(skb); 2381 rpl = cplhdr(skb); 2382 if (!is_t4(adapter_type)) { 2383 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2384 rpl5 = (void *)rpl; 2385 INIT_TP_WR(rpl5, ep->hwtid); 2386 } else { 2387 skb_trim(skb, sizeof(*rpl)); 2388 INIT_TP_WR(rpl, ep->hwtid); 2389 } 2390 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2391 ep->hwtid)); 2392 2393 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2394 enable_tcp_timestamps && req->tcpopt.tstamp, 2395 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2396 wscale = cxgb_compute_wscale(rcv_win); 2397 2398 /* 2399 * Specify the largest window that will fit in opt0. The 2400 * remainder will be specified in the rx_data_ack. 2401 */ 2402 win = ep->rcv_win >> 10; 2403 if (win > RCV_BUFSIZ_M) 2404 win = RCV_BUFSIZ_M; 2405 opt0 = (nocong ? NO_CONG_F : 0) | 2406 KEEP_ALIVE_F | 2407 DELACK_F | 2408 WND_SCALE_V(wscale) | 2409 MSS_IDX_V(mtu_idx) | 2410 L2T_IDX_V(ep->l2t->idx) | 2411 TX_CHAN_V(ep->tx_chan) | 2412 SMAC_SEL_V(ep->smac_idx) | 2413 DSCP_V(ep->tos >> 2) | 2414 ULP_MODE_V(ULP_MODE_TCPDDP) | 2415 RCV_BUFSIZ_V(win); 2416 opt2 = RX_CHANNEL_V(0) | 2417 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2418 2419 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2420 opt2 |= TSTAMPS_EN_F; 2421 if (enable_tcp_sack && req->tcpopt.sack) 2422 opt2 |= SACK_EN_F; 2423 if (wscale && enable_tcp_window_scaling) 2424 opt2 |= WND_SCALE_EN_F; 2425 if (enable_ecn) { 2426 const struct tcphdr *tcph; 2427 u32 hlen = ntohl(req->hdr_len); 2428 2429 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2430 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2431 IP_HDR_LEN_G(hlen); 2432 else 2433 tcph = (const void *)(req + 1) + 2434 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2435 if (tcph->ece && tcph->cwr) 2436 opt2 |= CCTRL_ECN_V(1); 2437 } 2438 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2439 u32 isn = (prandom_u32() & ~7UL) - 1; 2440 opt2 |= T5_OPT_2_VALID_F; 2441 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2442 opt2 |= T5_ISS_F; 2443 rpl5 = (void *)rpl; 2444 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2445 if (peer2peer) 2446 isn += 4; 2447 rpl5->iss = cpu_to_be32(isn); 2448 pr_debug("iss %u\n", be32_to_cpu(rpl5->iss)); 2449 } 2450 2451 rpl->opt0 = cpu_to_be64(opt0); 2452 rpl->opt2 = cpu_to_be32(opt2); 2453 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2454 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2455 2456 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2457 } 2458 2459 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2460 { 2461 pr_debug("c4iw_dev %p tid %u\n", dev, hwtid); 2462 skb_trim(skb, sizeof(struct cpl_tid_release)); 2463 release_tid(&dev->rdev, hwtid, skb); 2464 return; 2465 } 2466 2467 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2468 { 2469 struct c4iw_ep *child_ep = NULL, *parent_ep; 2470 struct cpl_pass_accept_req *req = cplhdr(skb); 2471 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2472 struct tid_info *t = dev->rdev.lldi.tids; 2473 unsigned int hwtid = GET_TID(req); 2474 struct dst_entry *dst; 2475 __u8 local_ip[16], peer_ip[16]; 2476 __be16 local_port, peer_port; 2477 struct sockaddr_in6 *sin6; 2478 int err; 2479 u16 peer_mss = ntohs(req->tcpopt.mss); 2480 int iptype; 2481 unsigned short hdrs; 2482 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2483 2484 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2485 if (!parent_ep) { 2486 pr_err("%s connect request on invalid stid %d\n", 2487 __func__, stid); 2488 goto reject; 2489 } 2490 2491 if (state_read(&parent_ep->com) != LISTEN) { 2492 pr_err("%s - listening ep not in LISTEN\n", __func__); 2493 goto reject; 2494 } 2495 2496 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2497 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2498 2499 /* Find output route */ 2500 if (iptype == 4) { 2501 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2502 , parent_ep, hwtid, 2503 local_ip, peer_ip, ntohs(local_port), 2504 ntohs(peer_port), peer_mss); 2505 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2506 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2507 local_port, peer_port, tos); 2508 } else { 2509 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2510 , parent_ep, hwtid, 2511 local_ip, peer_ip, ntohs(local_port), 2512 ntohs(peer_port), peer_mss); 2513 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2514 local_ip, peer_ip, local_port, peer_port, 2515 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2516 ((struct sockaddr_in6 *) 2517 &parent_ep->com.local_addr)->sin6_scope_id); 2518 } 2519 if (!dst) { 2520 pr_err("%s - failed to find dst entry!\n", __func__); 2521 goto reject; 2522 } 2523 2524 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2525 if (!child_ep) { 2526 pr_err("%s - failed to allocate ep entry!\n", __func__); 2527 dst_release(dst); 2528 goto reject; 2529 } 2530 2531 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2532 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2533 if (err) { 2534 pr_err("%s - failed to allocate l2t entry!\n", __func__); 2535 dst_release(dst); 2536 kfree(child_ep); 2537 goto reject; 2538 } 2539 2540 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + 2541 sizeof(struct tcphdr) + 2542 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2543 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2544 child_ep->mtu = peer_mss + hdrs; 2545 2546 skb_queue_head_init(&child_ep->com.ep_skb_list); 2547 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2548 goto fail; 2549 2550 state_set(&child_ep->com, CONNECTING); 2551 child_ep->com.dev = dev; 2552 child_ep->com.cm_id = NULL; 2553 2554 if (iptype == 4) { 2555 struct sockaddr_in *sin = (struct sockaddr_in *) 2556 &child_ep->com.local_addr; 2557 2558 sin->sin_family = AF_INET; 2559 sin->sin_port = local_port; 2560 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2561 2562 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2563 sin->sin_family = AF_INET; 2564 sin->sin_port = ((struct sockaddr_in *) 2565 &parent_ep->com.local_addr)->sin_port; 2566 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2567 2568 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2569 sin->sin_family = AF_INET; 2570 sin->sin_port = peer_port; 2571 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2572 } else { 2573 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2574 sin6->sin6_family = PF_INET6; 2575 sin6->sin6_port = local_port; 2576 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2577 2578 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2579 sin6->sin6_family = PF_INET6; 2580 sin6->sin6_port = ((struct sockaddr_in6 *) 2581 &parent_ep->com.local_addr)->sin6_port; 2582 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2583 2584 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2585 sin6->sin6_family = PF_INET6; 2586 sin6->sin6_port = peer_port; 2587 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2588 } 2589 2590 c4iw_get_ep(&parent_ep->com); 2591 child_ep->parent_ep = parent_ep; 2592 child_ep->tos = tos; 2593 child_ep->dst = dst; 2594 child_ep->hwtid = hwtid; 2595 2596 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n", 2597 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2598 2599 timer_setup(&child_ep->timer, ep_timeout, 0); 2600 cxgb4_insert_tid(t, child_ep, hwtid, 2601 child_ep->com.local_addr.ss_family); 2602 insert_ep_tid(child_ep); 2603 if (accept_cr(child_ep, skb, req)) { 2604 c4iw_put_ep(&parent_ep->com); 2605 release_ep_resources(child_ep); 2606 } else { 2607 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2608 } 2609 if (iptype == 6) { 2610 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2611 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2612 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2613 } 2614 goto out; 2615 fail: 2616 c4iw_put_ep(&child_ep->com); 2617 reject: 2618 reject_cr(dev, hwtid, skb); 2619 out: 2620 if (parent_ep) 2621 c4iw_put_ep(&parent_ep->com); 2622 return 0; 2623 } 2624 2625 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2626 { 2627 struct c4iw_ep *ep; 2628 struct cpl_pass_establish *req = cplhdr(skb); 2629 unsigned int tid = GET_TID(req); 2630 int ret; 2631 u16 tcp_opt = ntohs(req->tcp_opt); 2632 2633 ep = get_ep_from_tid(dev, tid); 2634 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2635 ep->snd_seq = be32_to_cpu(req->snd_isn); 2636 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2637 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); 2638 2639 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt); 2640 2641 set_emss(ep, tcp_opt); 2642 2643 dst_confirm(ep->dst); 2644 mutex_lock(&ep->com.mutex); 2645 ep->com.state = MPA_REQ_WAIT; 2646 start_ep_timer(ep); 2647 set_bit(PASS_ESTAB, &ep->com.history); 2648 ret = send_flowc(ep); 2649 mutex_unlock(&ep->com.mutex); 2650 if (ret) 2651 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2652 c4iw_put_ep(&ep->com); 2653 2654 return 0; 2655 } 2656 2657 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2658 { 2659 struct cpl_peer_close *hdr = cplhdr(skb); 2660 struct c4iw_ep *ep; 2661 struct c4iw_qp_attributes attrs; 2662 int disconnect = 1; 2663 int release = 0; 2664 unsigned int tid = GET_TID(hdr); 2665 int ret; 2666 2667 ep = get_ep_from_tid(dev, tid); 2668 if (!ep) 2669 return 0; 2670 2671 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2672 dst_confirm(ep->dst); 2673 2674 set_bit(PEER_CLOSE, &ep->com.history); 2675 mutex_lock(&ep->com.mutex); 2676 switch (ep->com.state) { 2677 case MPA_REQ_WAIT: 2678 __state_set(&ep->com, CLOSING); 2679 break; 2680 case MPA_REQ_SENT: 2681 __state_set(&ep->com, CLOSING); 2682 connect_reply_upcall(ep, -ECONNRESET); 2683 break; 2684 case MPA_REQ_RCVD: 2685 2686 /* 2687 * We're gonna mark this puppy DEAD, but keep 2688 * the reference on it until the ULP accepts or 2689 * rejects the CR. Also wake up anyone waiting 2690 * in rdma connection migration (see c4iw_accept_cr()). 2691 */ 2692 __state_set(&ep->com, CLOSING); 2693 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2694 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2695 break; 2696 case MPA_REP_SENT: 2697 __state_set(&ep->com, CLOSING); 2698 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2699 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2700 break; 2701 case FPDU_MODE: 2702 start_ep_timer(ep); 2703 __state_set(&ep->com, CLOSING); 2704 attrs.next_state = C4IW_QP_STATE_CLOSING; 2705 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2706 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2707 if (ret != -ECONNRESET) { 2708 peer_close_upcall(ep); 2709 disconnect = 1; 2710 } 2711 break; 2712 case ABORTING: 2713 disconnect = 0; 2714 break; 2715 case CLOSING: 2716 __state_set(&ep->com, MORIBUND); 2717 disconnect = 0; 2718 break; 2719 case MORIBUND: 2720 (void)stop_ep_timer(ep); 2721 if (ep->com.cm_id && ep->com.qp) { 2722 attrs.next_state = C4IW_QP_STATE_IDLE; 2723 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2724 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2725 } 2726 close_complete_upcall(ep, 0); 2727 __state_set(&ep->com, DEAD); 2728 release = 1; 2729 disconnect = 0; 2730 break; 2731 case DEAD: 2732 disconnect = 0; 2733 break; 2734 default: 2735 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2736 } 2737 mutex_unlock(&ep->com.mutex); 2738 if (disconnect) 2739 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2740 if (release) 2741 release_ep_resources(ep); 2742 c4iw_put_ep(&ep->com); 2743 return 0; 2744 } 2745 2746 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2747 { 2748 struct cpl_abort_req_rss6 *req = cplhdr(skb); 2749 struct c4iw_ep *ep; 2750 struct sk_buff *rpl_skb; 2751 struct c4iw_qp_attributes attrs; 2752 int ret; 2753 int release = 0; 2754 unsigned int tid = GET_TID(req); 2755 u8 status; 2756 2757 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2758 2759 ep = get_ep_from_tid(dev, tid); 2760 if (!ep) 2761 return 0; 2762 2763 status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status)); 2764 2765 if (cxgb_is_neg_adv(status)) { 2766 pr_debug("Negative advice on abort- tid %u status %d (%s)\n", 2767 ep->hwtid, status, neg_adv_str(status)); 2768 ep->stats.abort_neg_adv++; 2769 mutex_lock(&dev->rdev.stats.lock); 2770 dev->rdev.stats.neg_adv++; 2771 mutex_unlock(&dev->rdev.stats.lock); 2772 goto deref_ep; 2773 } 2774 2775 complete_cached_srq_buffers(ep, req->srqidx_status); 2776 2777 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, 2778 ep->com.state); 2779 set_bit(PEER_ABORT, &ep->com.history); 2780 2781 /* 2782 * Wake up any threads in rdma_init() or rdma_fini(). 2783 * However, this is not needed if com state is just 2784 * MPA_REQ_SENT 2785 */ 2786 if (ep->com.state != MPA_REQ_SENT) 2787 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2788 2789 mutex_lock(&ep->com.mutex); 2790 switch (ep->com.state) { 2791 case CONNECTING: 2792 c4iw_put_ep(&ep->parent_ep->com); 2793 break; 2794 case MPA_REQ_WAIT: 2795 (void)stop_ep_timer(ep); 2796 break; 2797 case MPA_REQ_SENT: 2798 (void)stop_ep_timer(ep); 2799 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2800 connect_reply_upcall(ep, -ECONNRESET); 2801 else { 2802 /* 2803 * we just don't send notification upwards because we 2804 * want to retry with mpa_v1 without upper layers even 2805 * knowing it. 2806 * 2807 * do some housekeeping so as to re-initiate the 2808 * connection 2809 */ 2810 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n", 2811 __func__, mpa_rev); 2812 ep->retry_with_mpa_v1 = 1; 2813 } 2814 break; 2815 case MPA_REP_SENT: 2816 break; 2817 case MPA_REQ_RCVD: 2818 break; 2819 case MORIBUND: 2820 case CLOSING: 2821 stop_ep_timer(ep); 2822 /*FALLTHROUGH*/ 2823 case FPDU_MODE: 2824 if (ep->com.cm_id && ep->com.qp) { 2825 attrs.next_state = C4IW_QP_STATE_ERROR; 2826 ret = c4iw_modify_qp(ep->com.qp->rhp, 2827 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2828 &attrs, 1); 2829 if (ret) 2830 pr_err("%s - qp <- error failed!\n", __func__); 2831 } 2832 peer_abort_upcall(ep); 2833 break; 2834 case ABORTING: 2835 break; 2836 case DEAD: 2837 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2838 mutex_unlock(&ep->com.mutex); 2839 goto deref_ep; 2840 default: 2841 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2842 break; 2843 } 2844 dst_confirm(ep->dst); 2845 if (ep->com.state != ABORTING) { 2846 __state_set(&ep->com, DEAD); 2847 /* we don't release if we want to retry with mpa_v1 */ 2848 if (!ep->retry_with_mpa_v1) 2849 release = 1; 2850 } 2851 mutex_unlock(&ep->com.mutex); 2852 2853 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2854 if (WARN_ON(!rpl_skb)) { 2855 release = 1; 2856 goto out; 2857 } 2858 2859 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2860 2861 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2862 out: 2863 if (release) 2864 release_ep_resources(ep); 2865 else if (ep->retry_with_mpa_v1) { 2866 if (ep->com.remote_addr.ss_family == AF_INET6) { 2867 struct sockaddr_in6 *sin6 = 2868 (struct sockaddr_in6 *) 2869 &ep->com.local_addr; 2870 cxgb4_clip_release( 2871 ep->com.dev->rdev.lldi.ports[0], 2872 (const u32 *)&sin6->sin6_addr.s6_addr, 2873 1); 2874 } 2875 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2876 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 2877 ep->com.local_addr.ss_family); 2878 dst_release(ep->dst); 2879 cxgb4_l2t_release(ep->l2t); 2880 c4iw_reconnect(ep); 2881 } 2882 2883 deref_ep: 2884 c4iw_put_ep(&ep->com); 2885 /* Dereferencing ep, referenced in peer_abort_intr() */ 2886 c4iw_put_ep(&ep->com); 2887 return 0; 2888 } 2889 2890 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2891 { 2892 struct c4iw_ep *ep; 2893 struct c4iw_qp_attributes attrs; 2894 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2895 int release = 0; 2896 unsigned int tid = GET_TID(rpl); 2897 2898 ep = get_ep_from_tid(dev, tid); 2899 if (!ep) 2900 return 0; 2901 2902 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2903 2904 /* The cm_id may be null if we failed to connect */ 2905 mutex_lock(&ep->com.mutex); 2906 set_bit(CLOSE_CON_RPL, &ep->com.history); 2907 switch (ep->com.state) { 2908 case CLOSING: 2909 __state_set(&ep->com, MORIBUND); 2910 break; 2911 case MORIBUND: 2912 (void)stop_ep_timer(ep); 2913 if ((ep->com.cm_id) && (ep->com.qp)) { 2914 attrs.next_state = C4IW_QP_STATE_IDLE; 2915 c4iw_modify_qp(ep->com.qp->rhp, 2916 ep->com.qp, 2917 C4IW_QP_ATTR_NEXT_STATE, 2918 &attrs, 1); 2919 } 2920 close_complete_upcall(ep, 0); 2921 __state_set(&ep->com, DEAD); 2922 release = 1; 2923 break; 2924 case ABORTING: 2925 case DEAD: 2926 break; 2927 default: 2928 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2929 break; 2930 } 2931 mutex_unlock(&ep->com.mutex); 2932 if (release) 2933 release_ep_resources(ep); 2934 c4iw_put_ep(&ep->com); 2935 return 0; 2936 } 2937 2938 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 2939 { 2940 struct cpl_rdma_terminate *rpl = cplhdr(skb); 2941 unsigned int tid = GET_TID(rpl); 2942 struct c4iw_ep *ep; 2943 struct c4iw_qp_attributes attrs; 2944 2945 ep = get_ep_from_tid(dev, tid); 2946 2947 if (ep && ep->com.qp) { 2948 pr_warn("TERM received tid %u qpid %u\n", 2949 tid, ep->com.qp->wq.sq.qid); 2950 attrs.next_state = C4IW_QP_STATE_TERMINATE; 2951 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2952 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2953 } else 2954 pr_warn("TERM received tid %u no ep/qp\n", tid); 2955 c4iw_put_ep(&ep->com); 2956 2957 return 0; 2958 } 2959 2960 /* 2961 * Upcall from the adapter indicating data has been transmitted. 2962 * For us its just the single MPA request or reply. We can now free 2963 * the skb holding the mpa message. 2964 */ 2965 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 2966 { 2967 struct c4iw_ep *ep; 2968 struct cpl_fw4_ack *hdr = cplhdr(skb); 2969 u8 credits = hdr->credits; 2970 unsigned int tid = GET_TID(hdr); 2971 2972 2973 ep = get_ep_from_tid(dev, tid); 2974 if (!ep) 2975 return 0; 2976 pr_debug("ep %p tid %u credits %u\n", 2977 ep, ep->hwtid, credits); 2978 if (credits == 0) { 2979 pr_debug("0 credit ack ep %p tid %u state %u\n", 2980 ep, ep->hwtid, state_read(&ep->com)); 2981 goto out; 2982 } 2983 2984 dst_confirm(ep->dst); 2985 if (ep->mpa_skb) { 2986 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", 2987 ep, ep->hwtid, state_read(&ep->com), 2988 ep->mpa_attr.initiator ? 1 : 0); 2989 mutex_lock(&ep->com.mutex); 2990 kfree_skb(ep->mpa_skb); 2991 ep->mpa_skb = NULL; 2992 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 2993 stop_ep_timer(ep); 2994 mutex_unlock(&ep->com.mutex); 2995 } 2996 out: 2997 c4iw_put_ep(&ep->com); 2998 return 0; 2999 } 3000 3001 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 3002 { 3003 int abort; 3004 struct c4iw_ep *ep = to_ep(cm_id); 3005 3006 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3007 3008 mutex_lock(&ep->com.mutex); 3009 if (ep->com.state != MPA_REQ_RCVD) { 3010 mutex_unlock(&ep->com.mutex); 3011 c4iw_put_ep(&ep->com); 3012 return -ECONNRESET; 3013 } 3014 set_bit(ULP_REJECT, &ep->com.history); 3015 if (mpa_rev == 0) 3016 abort = 1; 3017 else 3018 abort = send_mpa_reject(ep, pdata, pdata_len); 3019 mutex_unlock(&ep->com.mutex); 3020 3021 stop_ep_timer(ep); 3022 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 3023 c4iw_put_ep(&ep->com); 3024 return 0; 3025 } 3026 3027 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3028 { 3029 int err; 3030 struct c4iw_qp_attributes attrs; 3031 enum c4iw_qp_attr_mask mask; 3032 struct c4iw_ep *ep = to_ep(cm_id); 3033 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3034 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3035 int abort = 0; 3036 3037 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3038 3039 mutex_lock(&ep->com.mutex); 3040 if (ep->com.state != MPA_REQ_RCVD) { 3041 err = -ECONNRESET; 3042 goto err_out; 3043 } 3044 3045 if (!qp) { 3046 err = -EINVAL; 3047 goto err_out; 3048 } 3049 3050 set_bit(ULP_ACCEPT, &ep->com.history); 3051 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3052 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3053 err = -EINVAL; 3054 goto err_abort; 3055 } 3056 3057 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3058 if (conn_param->ord > ep->ird) { 3059 if (RELAXED_IRD_NEGOTIATION) { 3060 conn_param->ord = ep->ird; 3061 } else { 3062 ep->ird = conn_param->ird; 3063 ep->ord = conn_param->ord; 3064 send_mpa_reject(ep, conn_param->private_data, 3065 conn_param->private_data_len); 3066 err = -ENOMEM; 3067 goto err_abort; 3068 } 3069 } 3070 if (conn_param->ird < ep->ord) { 3071 if (RELAXED_IRD_NEGOTIATION && 3072 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3073 conn_param->ird = ep->ord; 3074 } else { 3075 err = -ENOMEM; 3076 goto err_abort; 3077 } 3078 } 3079 } 3080 ep->ird = conn_param->ird; 3081 ep->ord = conn_param->ord; 3082 3083 if (ep->mpa_attr.version == 1) { 3084 if (peer2peer && ep->ird == 0) 3085 ep->ird = 1; 3086 } else { 3087 if (peer2peer && 3088 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3089 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3090 ep->ird = 1; 3091 } 3092 3093 pr_debug("ird %d ord %d\n", ep->ird, ep->ord); 3094 3095 ep->com.cm_id = cm_id; 3096 ref_cm_id(&ep->com); 3097 ep->com.qp = qp; 3098 ref_qp(ep); 3099 3100 /* bind QP to EP and move to RTS */ 3101 attrs.mpa_attr = ep->mpa_attr; 3102 attrs.max_ird = ep->ird; 3103 attrs.max_ord = ep->ord; 3104 attrs.llp_stream_handle = ep; 3105 attrs.next_state = C4IW_QP_STATE_RTS; 3106 3107 /* bind QP and TID with INIT_WR */ 3108 mask = C4IW_QP_ATTR_NEXT_STATE | 3109 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3110 C4IW_QP_ATTR_MPA_ATTR | 3111 C4IW_QP_ATTR_MAX_IRD | 3112 C4IW_QP_ATTR_MAX_ORD; 3113 3114 err = c4iw_modify_qp(ep->com.qp->rhp, 3115 ep->com.qp, mask, &attrs, 1); 3116 if (err) 3117 goto err_deref_cm_id; 3118 3119 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3120 err = send_mpa_reply(ep, conn_param->private_data, 3121 conn_param->private_data_len); 3122 if (err) 3123 goto err_deref_cm_id; 3124 3125 __state_set(&ep->com, FPDU_MODE); 3126 established_upcall(ep); 3127 mutex_unlock(&ep->com.mutex); 3128 c4iw_put_ep(&ep->com); 3129 return 0; 3130 err_deref_cm_id: 3131 deref_cm_id(&ep->com); 3132 err_abort: 3133 abort = 1; 3134 err_out: 3135 mutex_unlock(&ep->com.mutex); 3136 if (abort) 3137 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3138 c4iw_put_ep(&ep->com); 3139 return err; 3140 } 3141 3142 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3143 { 3144 struct in_device *ind; 3145 int found = 0; 3146 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3147 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3148 3149 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3150 if (!ind) 3151 return -EADDRNOTAVAIL; 3152 for_primary_ifa(ind) { 3153 laddr->sin_addr.s_addr = ifa->ifa_address; 3154 raddr->sin_addr.s_addr = ifa->ifa_address; 3155 found = 1; 3156 break; 3157 } 3158 endfor_ifa(ind); 3159 in_dev_put(ind); 3160 return found ? 0 : -EADDRNOTAVAIL; 3161 } 3162 3163 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3164 unsigned char banned_flags) 3165 { 3166 struct inet6_dev *idev; 3167 int err = -EADDRNOTAVAIL; 3168 3169 rcu_read_lock(); 3170 idev = __in6_dev_get(dev); 3171 if (idev != NULL) { 3172 struct inet6_ifaddr *ifp; 3173 3174 read_lock_bh(&idev->lock); 3175 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3176 if (ifp->scope == IFA_LINK && 3177 !(ifp->flags & banned_flags)) { 3178 memcpy(addr, &ifp->addr, 16); 3179 err = 0; 3180 break; 3181 } 3182 } 3183 read_unlock_bh(&idev->lock); 3184 } 3185 rcu_read_unlock(); 3186 return err; 3187 } 3188 3189 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3190 { 3191 struct in6_addr uninitialized_var(addr); 3192 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3193 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3194 3195 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3196 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3197 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3198 return 0; 3199 } 3200 return -EADDRNOTAVAIL; 3201 } 3202 3203 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3204 { 3205 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3206 struct c4iw_ep *ep; 3207 int err = 0; 3208 struct sockaddr_in *laddr; 3209 struct sockaddr_in *raddr; 3210 struct sockaddr_in6 *laddr6; 3211 struct sockaddr_in6 *raddr6; 3212 __u8 *ra; 3213 int iptype; 3214 3215 if ((conn_param->ord > cur_max_read_depth(dev)) || 3216 (conn_param->ird > cur_max_read_depth(dev))) { 3217 err = -EINVAL; 3218 goto out; 3219 } 3220 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3221 if (!ep) { 3222 pr_err("%s - cannot alloc ep\n", __func__); 3223 err = -ENOMEM; 3224 goto out; 3225 } 3226 3227 skb_queue_head_init(&ep->com.ep_skb_list); 3228 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3229 err = -ENOMEM; 3230 goto fail1; 3231 } 3232 3233 timer_setup(&ep->timer, ep_timeout, 0); 3234 ep->plen = conn_param->private_data_len; 3235 if (ep->plen) 3236 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3237 conn_param->private_data, ep->plen); 3238 ep->ird = conn_param->ird; 3239 ep->ord = conn_param->ord; 3240 3241 if (peer2peer && ep->ord == 0) 3242 ep->ord = 1; 3243 3244 ep->com.cm_id = cm_id; 3245 ref_cm_id(&ep->com); 3246 cm_id->provider_data = ep; 3247 ep->com.dev = dev; 3248 ep->com.qp = get_qhp(dev, conn_param->qpn); 3249 if (!ep->com.qp) { 3250 pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3251 err = -EINVAL; 3252 goto fail2; 3253 } 3254 ref_qp(ep); 3255 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn, 3256 ep->com.qp, cm_id); 3257 3258 /* 3259 * Allocate an active TID to initiate a TCP connection. 3260 */ 3261 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3262 if (ep->atid == -1) { 3263 pr_err("%s - cannot alloc atid\n", __func__); 3264 err = -ENOMEM; 3265 goto fail2; 3266 } 3267 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3268 3269 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3270 sizeof(ep->com.local_addr)); 3271 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3272 sizeof(ep->com.remote_addr)); 3273 3274 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3275 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3276 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3277 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3278 3279 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3280 iptype = 4; 3281 ra = (__u8 *)&raddr->sin_addr; 3282 3283 /* 3284 * Handle loopback requests to INADDR_ANY. 3285 */ 3286 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3287 err = pick_local_ipaddrs(dev, cm_id); 3288 if (err) 3289 goto fail2; 3290 } 3291 3292 /* find a route */ 3293 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3294 &laddr->sin_addr, ntohs(laddr->sin_port), 3295 ra, ntohs(raddr->sin_port)); 3296 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3297 laddr->sin_addr.s_addr, 3298 raddr->sin_addr.s_addr, 3299 laddr->sin_port, 3300 raddr->sin_port, cm_id->tos); 3301 } else { 3302 iptype = 6; 3303 ra = (__u8 *)&raddr6->sin6_addr; 3304 3305 /* 3306 * Handle loopback requests to INADDR_ANY. 3307 */ 3308 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3309 err = pick_local_ip6addrs(dev, cm_id); 3310 if (err) 3311 goto fail2; 3312 } 3313 3314 /* find a route */ 3315 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3316 laddr6->sin6_addr.s6_addr, 3317 ntohs(laddr6->sin6_port), 3318 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3319 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3320 laddr6->sin6_addr.s6_addr, 3321 raddr6->sin6_addr.s6_addr, 3322 laddr6->sin6_port, 3323 raddr6->sin6_port, 0, 3324 raddr6->sin6_scope_id); 3325 } 3326 if (!ep->dst) { 3327 pr_err("%s - cannot find route\n", __func__); 3328 err = -EHOSTUNREACH; 3329 goto fail3; 3330 } 3331 3332 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3333 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3334 if (err) { 3335 pr_err("%s - cannot alloc l2e\n", __func__); 3336 goto fail4; 3337 } 3338 3339 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3340 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3341 ep->l2t->idx); 3342 3343 state_set(&ep->com, CONNECTING); 3344 ep->tos = cm_id->tos; 3345 3346 /* send connect request to rnic */ 3347 err = send_connect(ep); 3348 if (!err) 3349 goto out; 3350 3351 cxgb4_l2t_release(ep->l2t); 3352 fail4: 3353 dst_release(ep->dst); 3354 fail3: 3355 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3356 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3357 fail2: 3358 skb_queue_purge(&ep->com.ep_skb_list); 3359 deref_cm_id(&ep->com); 3360 fail1: 3361 c4iw_put_ep(&ep->com); 3362 out: 3363 return err; 3364 } 3365 3366 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3367 { 3368 int err; 3369 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3370 &ep->com.local_addr; 3371 3372 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3373 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3374 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3375 if (err) 3376 return err; 3377 } 3378 c4iw_init_wr_wait(ep->com.wr_waitp); 3379 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3380 ep->stid, &sin6->sin6_addr, 3381 sin6->sin6_port, 3382 ep->com.dev->rdev.lldi.rxq_ids[0]); 3383 if (!err) 3384 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3385 ep->com.wr_waitp, 3386 0, 0, __func__); 3387 else if (err > 0) 3388 err = net_xmit_errno(err); 3389 if (err) { 3390 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3391 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3392 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3393 err, ep->stid, 3394 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3395 } 3396 return err; 3397 } 3398 3399 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3400 { 3401 int err; 3402 struct sockaddr_in *sin = (struct sockaddr_in *) 3403 &ep->com.local_addr; 3404 3405 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3406 do { 3407 err = cxgb4_create_server_filter( 3408 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3409 sin->sin_addr.s_addr, sin->sin_port, 0, 3410 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3411 if (err == -EBUSY) { 3412 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3413 err = -EIO; 3414 break; 3415 } 3416 set_current_state(TASK_UNINTERRUPTIBLE); 3417 schedule_timeout(usecs_to_jiffies(100)); 3418 } 3419 } while (err == -EBUSY); 3420 } else { 3421 c4iw_init_wr_wait(ep->com.wr_waitp); 3422 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3423 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3424 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3425 if (!err) 3426 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3427 ep->com.wr_waitp, 3428 0, 0, __func__); 3429 else if (err > 0) 3430 err = net_xmit_errno(err); 3431 } 3432 if (err) 3433 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3434 , err, ep->stid, 3435 &sin->sin_addr, ntohs(sin->sin_port)); 3436 return err; 3437 } 3438 3439 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3440 { 3441 int err = 0; 3442 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3443 struct c4iw_listen_ep *ep; 3444 3445 might_sleep(); 3446 3447 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3448 if (!ep) { 3449 pr_err("%s - cannot alloc ep\n", __func__); 3450 err = -ENOMEM; 3451 goto fail1; 3452 } 3453 skb_queue_head_init(&ep->com.ep_skb_list); 3454 pr_debug("ep %p\n", ep); 3455 ep->com.cm_id = cm_id; 3456 ref_cm_id(&ep->com); 3457 ep->com.dev = dev; 3458 ep->backlog = backlog; 3459 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3460 sizeof(ep->com.local_addr)); 3461 3462 /* 3463 * Allocate a server TID. 3464 */ 3465 if (dev->rdev.lldi.enable_fw_ofld_conn && 3466 ep->com.local_addr.ss_family == AF_INET) 3467 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3468 cm_id->m_local_addr.ss_family, ep); 3469 else 3470 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3471 cm_id->m_local_addr.ss_family, ep); 3472 3473 if (ep->stid == -1) { 3474 pr_err("%s - cannot alloc stid\n", __func__); 3475 err = -ENOMEM; 3476 goto fail2; 3477 } 3478 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3479 3480 state_set(&ep->com, LISTEN); 3481 if (ep->com.local_addr.ss_family == AF_INET) 3482 err = create_server4(dev, ep); 3483 else 3484 err = create_server6(dev, ep); 3485 if (!err) { 3486 cm_id->provider_data = ep; 3487 goto out; 3488 } 3489 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3490 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3491 ep->com.local_addr.ss_family); 3492 fail2: 3493 deref_cm_id(&ep->com); 3494 c4iw_put_ep(&ep->com); 3495 fail1: 3496 out: 3497 return err; 3498 } 3499 3500 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3501 { 3502 int err; 3503 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3504 3505 pr_debug("ep %p\n", ep); 3506 3507 might_sleep(); 3508 state_set(&ep->com, DEAD); 3509 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3510 ep->com.local_addr.ss_family == AF_INET) { 3511 err = cxgb4_remove_server_filter( 3512 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3513 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3514 } else { 3515 struct sockaddr_in6 *sin6; 3516 c4iw_init_wr_wait(ep->com.wr_waitp); 3517 err = cxgb4_remove_server( 3518 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3519 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3520 if (err) 3521 goto done; 3522 err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 3523 0, 0, __func__); 3524 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3525 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3526 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3527 } 3528 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3529 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3530 ep->com.local_addr.ss_family); 3531 done: 3532 deref_cm_id(&ep->com); 3533 c4iw_put_ep(&ep->com); 3534 return err; 3535 } 3536 3537 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3538 { 3539 int ret = 0; 3540 int close = 0; 3541 int fatal = 0; 3542 struct c4iw_rdev *rdev; 3543 3544 mutex_lock(&ep->com.mutex); 3545 3546 pr_debug("ep %p state %s, abrupt %d\n", ep, 3547 states[ep->com.state], abrupt); 3548 3549 /* 3550 * Ref the ep here in case we have fatal errors causing the 3551 * ep to be released and freed. 3552 */ 3553 c4iw_get_ep(&ep->com); 3554 3555 rdev = &ep->com.dev->rdev; 3556 if (c4iw_fatal_error(rdev)) { 3557 fatal = 1; 3558 close_complete_upcall(ep, -EIO); 3559 ep->com.state = DEAD; 3560 } 3561 switch (ep->com.state) { 3562 case MPA_REQ_WAIT: 3563 case MPA_REQ_SENT: 3564 case MPA_REQ_RCVD: 3565 case MPA_REP_SENT: 3566 case FPDU_MODE: 3567 case CONNECTING: 3568 close = 1; 3569 if (abrupt) 3570 ep->com.state = ABORTING; 3571 else { 3572 ep->com.state = CLOSING; 3573 3574 /* 3575 * if we close before we see the fw4_ack() then we fix 3576 * up the timer state since we're reusing it. 3577 */ 3578 if (ep->mpa_skb && 3579 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3580 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3581 stop_ep_timer(ep); 3582 } 3583 start_ep_timer(ep); 3584 } 3585 set_bit(CLOSE_SENT, &ep->com.flags); 3586 break; 3587 case CLOSING: 3588 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3589 close = 1; 3590 if (abrupt) { 3591 (void)stop_ep_timer(ep); 3592 ep->com.state = ABORTING; 3593 } else 3594 ep->com.state = MORIBUND; 3595 } 3596 break; 3597 case MORIBUND: 3598 case ABORTING: 3599 case DEAD: 3600 pr_debug("ignoring disconnect ep %p state %u\n", 3601 ep, ep->com.state); 3602 break; 3603 default: 3604 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 3605 break; 3606 } 3607 3608 if (close) { 3609 if (abrupt) { 3610 set_bit(EP_DISC_ABORT, &ep->com.history); 3611 close_complete_upcall(ep, -ECONNRESET); 3612 ret = send_abort(ep); 3613 } else { 3614 set_bit(EP_DISC_CLOSE, &ep->com.history); 3615 ret = send_halfclose(ep); 3616 } 3617 if (ret) { 3618 set_bit(EP_DISC_FAIL, &ep->com.history); 3619 if (!abrupt) { 3620 stop_ep_timer(ep); 3621 close_complete_upcall(ep, -EIO); 3622 } 3623 if (ep->com.qp) { 3624 struct c4iw_qp_attributes attrs; 3625 3626 attrs.next_state = C4IW_QP_STATE_ERROR; 3627 ret = c4iw_modify_qp(ep->com.qp->rhp, 3628 ep->com.qp, 3629 C4IW_QP_ATTR_NEXT_STATE, 3630 &attrs, 1); 3631 if (ret) 3632 pr_err("%s - qp <- error failed!\n", 3633 __func__); 3634 } 3635 fatal = 1; 3636 } 3637 } 3638 mutex_unlock(&ep->com.mutex); 3639 c4iw_put_ep(&ep->com); 3640 if (fatal) 3641 release_ep_resources(ep); 3642 return ret; 3643 } 3644 3645 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3646 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3647 { 3648 struct c4iw_ep *ep; 3649 int atid = be32_to_cpu(req->tid); 3650 3651 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3652 (__force u32) req->tid); 3653 if (!ep) 3654 return; 3655 3656 switch (req->retval) { 3657 case FW_ENOMEM: 3658 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3659 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3660 send_fw_act_open_req(ep, atid); 3661 return; 3662 } 3663 /* fall through */ 3664 case FW_EADDRINUSE: 3665 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3666 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3667 send_fw_act_open_req(ep, atid); 3668 return; 3669 } 3670 break; 3671 default: 3672 pr_info("%s unexpected ofld conn wr retval %d\n", 3673 __func__, req->retval); 3674 break; 3675 } 3676 pr_err("active ofld_connect_wr failure %d atid %d\n", 3677 req->retval, atid); 3678 mutex_lock(&dev->rdev.stats.lock); 3679 dev->rdev.stats.act_ofld_conn_fails++; 3680 mutex_unlock(&dev->rdev.stats.lock); 3681 connect_reply_upcall(ep, status2errno(req->retval)); 3682 state_set(&ep->com, DEAD); 3683 if (ep->com.remote_addr.ss_family == AF_INET6) { 3684 struct sockaddr_in6 *sin6 = 3685 (struct sockaddr_in6 *)&ep->com.local_addr; 3686 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3687 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3688 } 3689 remove_handle(dev, &dev->atid_idr, atid); 3690 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3691 dst_release(ep->dst); 3692 cxgb4_l2t_release(ep->l2t); 3693 c4iw_put_ep(&ep->com); 3694 } 3695 3696 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3697 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3698 { 3699 struct sk_buff *rpl_skb; 3700 struct cpl_pass_accept_req *cpl; 3701 int ret; 3702 3703 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3704 if (req->retval) { 3705 pr_err("%s passive open failure %d\n", __func__, req->retval); 3706 mutex_lock(&dev->rdev.stats.lock); 3707 dev->rdev.stats.pas_ofld_conn_fails++; 3708 mutex_unlock(&dev->rdev.stats.lock); 3709 kfree_skb(rpl_skb); 3710 } else { 3711 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3712 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3713 (__force u32) htonl( 3714 (__force u32) req->tid))); 3715 ret = pass_accept_req(dev, rpl_skb); 3716 if (!ret) 3717 kfree_skb(rpl_skb); 3718 } 3719 return; 3720 } 3721 3722 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3723 { 3724 struct cpl_fw6_msg *rpl = cplhdr(skb); 3725 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3726 3727 switch (rpl->type) { 3728 case FW6_TYPE_CQE: 3729 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3730 break; 3731 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3732 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3733 switch (req->t_state) { 3734 case TCP_SYN_SENT: 3735 active_ofld_conn_reply(dev, skb, req); 3736 break; 3737 case TCP_SYN_RECV: 3738 passive_ofld_conn_reply(dev, skb, req); 3739 break; 3740 default: 3741 pr_err("%s unexpected ofld conn wr state %d\n", 3742 __func__, req->t_state); 3743 break; 3744 } 3745 break; 3746 } 3747 return 0; 3748 } 3749 3750 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3751 { 3752 __be32 l2info; 3753 __be16 hdr_len, vlantag, len; 3754 u16 eth_hdr_len; 3755 int tcp_hdr_len, ip_hdr_len; 3756 u8 intf; 3757 struct cpl_rx_pkt *cpl = cplhdr(skb); 3758 struct cpl_pass_accept_req *req; 3759 struct tcp_options_received tmp_opt; 3760 struct c4iw_dev *dev; 3761 enum chip_type type; 3762 3763 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3764 /* Store values from cpl_rx_pkt in temporary location. */ 3765 vlantag = cpl->vlan; 3766 len = cpl->len; 3767 l2info = cpl->l2info; 3768 hdr_len = cpl->hdr_len; 3769 intf = cpl->iff; 3770 3771 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3772 3773 /* 3774 * We need to parse the TCP options from SYN packet. 3775 * to generate cpl_pass_accept_req. 3776 */ 3777 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3778 tcp_clear_options(&tmp_opt); 3779 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL); 3780 3781 req = __skb_push(skb, sizeof(*req)); 3782 memset(req, 0, sizeof(*req)); 3783 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3784 SYN_MAC_IDX_V(RX_MACIDX_G( 3785 be32_to_cpu(l2info))) | 3786 SYN_XACT_MATCH_F); 3787 type = dev->rdev.lldi.adapter_type; 3788 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3789 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3790 req->hdr_len = 3791 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3792 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3793 eth_hdr_len = is_t4(type) ? 3794 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3795 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3796 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3797 IP_HDR_LEN_V(ip_hdr_len) | 3798 ETH_HDR_LEN_V(eth_hdr_len)); 3799 } else { /* T6 and later */ 3800 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3801 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3802 T6_IP_HDR_LEN_V(ip_hdr_len) | 3803 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3804 } 3805 req->vlan = vlantag; 3806 req->len = len; 3807 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3808 PASS_OPEN_TOS_V(tos)); 3809 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3810 if (tmp_opt.wscale_ok) 3811 req->tcpopt.wsf = tmp_opt.snd_wscale; 3812 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3813 if (tmp_opt.sack_ok) 3814 req->tcpopt.sack = 1; 3815 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3816 return; 3817 } 3818 3819 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3820 __be32 laddr, __be16 lport, 3821 __be32 raddr, __be16 rport, 3822 u32 rcv_isn, u32 filter, u16 window, 3823 u32 rss_qid, u8 port_id) 3824 { 3825 struct sk_buff *req_skb; 3826 struct fw_ofld_connection_wr *req; 3827 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3828 int ret; 3829 3830 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3831 if (!req_skb) 3832 return; 3833 req = __skb_put_zero(req_skb, sizeof(*req)); 3834 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3835 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3836 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3837 req->le.filter = (__force __be32) filter; 3838 req->le.lport = lport; 3839 req->le.pport = rport; 3840 req->le.u.ipv4.lip = laddr; 3841 req->le.u.ipv4.pip = raddr; 3842 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3843 req->tcb.rcv_adv = htons(window); 3844 req->tcb.t_state_to_astid = 3845 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3846 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3847 FW_OFLD_CONNECTION_WR_ASTID_V( 3848 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3849 3850 /* 3851 * We store the qid in opt2 which will be used by the firmware 3852 * to send us the wr response. 3853 */ 3854 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3855 3856 /* 3857 * We initialize the MSS index in TCB to 0xF. 3858 * So that when driver sends cpl_pass_accept_rpl 3859 * TCB picks up the correct value. If this was 0 3860 * TP will ignore any value > 0 for MSS index. 3861 */ 3862 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3863 req->cookie = (uintptr_t)skb; 3864 3865 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3866 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3867 if (ret < 0) { 3868 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3869 ret); 3870 kfree_skb(skb); 3871 kfree_skb(req_skb); 3872 } 3873 } 3874 3875 /* 3876 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3877 * messages when a filter is being used instead of server to 3878 * redirect a syn packet. When packets hit filter they are redirected 3879 * to the offload queue and driver tries to establish the connection 3880 * using firmware work request. 3881 */ 3882 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3883 { 3884 int stid; 3885 unsigned int filter; 3886 struct ethhdr *eh = NULL; 3887 struct vlan_ethhdr *vlan_eh = NULL; 3888 struct iphdr *iph; 3889 struct tcphdr *tcph; 3890 struct rss_header *rss = (void *)skb->data; 3891 struct cpl_rx_pkt *cpl = (void *)skb->data; 3892 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3893 struct l2t_entry *e; 3894 struct dst_entry *dst; 3895 struct c4iw_ep *lep = NULL; 3896 u16 window; 3897 struct port_info *pi; 3898 struct net_device *pdev; 3899 u16 rss_qid, eth_hdr_len; 3900 int step; 3901 struct neighbour *neigh; 3902 3903 /* Drop all non-SYN packets */ 3904 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3905 goto reject; 3906 3907 /* 3908 * Drop all packets which did not hit the filter. 3909 * Unlikely to happen. 3910 */ 3911 if (!(rss->filter_hit && rss->filter_tid)) 3912 goto reject; 3913 3914 /* 3915 * Calculate the server tid from filter hit index from cpl_rx_pkt. 3916 */ 3917 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 3918 3919 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 3920 if (!lep) { 3921 pr_warn("%s connect request on invalid stid %d\n", 3922 __func__, stid); 3923 goto reject; 3924 } 3925 3926 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 3927 case CHELSIO_T4: 3928 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3929 break; 3930 case CHELSIO_T5: 3931 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3932 break; 3933 case CHELSIO_T6: 3934 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3935 break; 3936 default: 3937 pr_err("T%d Chip is not supported\n", 3938 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 3939 goto reject; 3940 } 3941 3942 if (eth_hdr_len == ETH_HLEN) { 3943 eh = (struct ethhdr *)(req + 1); 3944 iph = (struct iphdr *)(eh + 1); 3945 } else { 3946 vlan_eh = (struct vlan_ethhdr *)(req + 1); 3947 iph = (struct iphdr *)(vlan_eh + 1); 3948 skb->vlan_tci = ntohs(cpl->vlan); 3949 } 3950 3951 if (iph->version != 0x4) 3952 goto reject; 3953 3954 tcph = (struct tcphdr *)(iph + 1); 3955 skb_set_network_header(skb, (void *)iph - (void *)rss); 3956 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 3957 skb_get(skb); 3958 3959 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n", 3960 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 3961 ntohs(tcph->source), iph->tos); 3962 3963 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3964 iph->daddr, iph->saddr, tcph->dest, 3965 tcph->source, iph->tos); 3966 if (!dst) { 3967 pr_err("%s - failed to find dst entry!\n", __func__); 3968 goto reject; 3969 } 3970 neigh = dst_neigh_lookup_skb(dst, skb); 3971 3972 if (!neigh) { 3973 pr_err("%s - failed to allocate neigh!\n", __func__); 3974 goto free_dst; 3975 } 3976 3977 if (neigh->dev->flags & IFF_LOOPBACK) { 3978 pdev = ip_dev_find(&init_net, iph->daddr); 3979 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3980 pdev, 0); 3981 pi = (struct port_info *)netdev_priv(pdev); 3982 dev_put(pdev); 3983 } else { 3984 pdev = get_real_dev(neigh->dev); 3985 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3986 pdev, 0); 3987 pi = (struct port_info *)netdev_priv(pdev); 3988 } 3989 neigh_release(neigh); 3990 if (!e) { 3991 pr_err("%s - failed to allocate l2t entry!\n", 3992 __func__); 3993 goto free_dst; 3994 } 3995 3996 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 3997 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 3998 window = (__force u16) htons((__force u16)tcph->window); 3999 4000 /* Calcuate filter portion for LE region. */ 4001 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 4002 dev->rdev.lldi.ports[0], 4003 e)); 4004 4005 /* 4006 * Synthesize the cpl_pass_accept_req. We have everything except the 4007 * TID. Once firmware sends a reply with TID we update the TID field 4008 * in cpl and pass it through the regular cpl_pass_accept_req path. 4009 */ 4010 build_cpl_pass_accept_req(skb, stid, iph->tos); 4011 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 4012 tcph->source, ntohl(tcph->seq), filter, window, 4013 rss_qid, pi->port_id); 4014 cxgb4_l2t_release(e); 4015 free_dst: 4016 dst_release(dst); 4017 reject: 4018 if (lep) 4019 c4iw_put_ep(&lep->com); 4020 return 0; 4021 } 4022 4023 /* 4024 * These are the real handlers that are called from a 4025 * work queue. 4026 */ 4027 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4028 [CPL_ACT_ESTABLISH] = act_establish, 4029 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4030 [CPL_RX_DATA] = rx_data, 4031 [CPL_ABORT_RPL_RSS] = abort_rpl, 4032 [CPL_ABORT_RPL] = abort_rpl, 4033 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4034 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4035 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4036 [CPL_PASS_ESTABLISH] = pass_establish, 4037 [CPL_PEER_CLOSE] = peer_close, 4038 [CPL_ABORT_REQ_RSS] = peer_abort, 4039 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4040 [CPL_RDMA_TERMINATE] = terminate, 4041 [CPL_FW4_ACK] = fw4_ack, 4042 [CPL_FW6_MSG] = deferred_fw6_msg, 4043 [CPL_RX_PKT] = rx_pkt, 4044 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4045 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4046 }; 4047 4048 static void process_timeout(struct c4iw_ep *ep) 4049 { 4050 struct c4iw_qp_attributes attrs; 4051 int abort = 1; 4052 4053 mutex_lock(&ep->com.mutex); 4054 pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state); 4055 set_bit(TIMEDOUT, &ep->com.history); 4056 switch (ep->com.state) { 4057 case MPA_REQ_SENT: 4058 connect_reply_upcall(ep, -ETIMEDOUT); 4059 break; 4060 case MPA_REQ_WAIT: 4061 case MPA_REQ_RCVD: 4062 case MPA_REP_SENT: 4063 case FPDU_MODE: 4064 break; 4065 case CLOSING: 4066 case MORIBUND: 4067 if (ep->com.cm_id && ep->com.qp) { 4068 attrs.next_state = C4IW_QP_STATE_ERROR; 4069 c4iw_modify_qp(ep->com.qp->rhp, 4070 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4071 &attrs, 1); 4072 } 4073 close_complete_upcall(ep, -ETIMEDOUT); 4074 break; 4075 case ABORTING: 4076 case DEAD: 4077 4078 /* 4079 * These states are expected if the ep timed out at the same 4080 * time as another thread was calling stop_ep_timer(). 4081 * So we silently do nothing for these states. 4082 */ 4083 abort = 0; 4084 break; 4085 default: 4086 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4087 __func__, ep, ep->hwtid, ep->com.state); 4088 abort = 0; 4089 } 4090 mutex_unlock(&ep->com.mutex); 4091 if (abort) 4092 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4093 c4iw_put_ep(&ep->com); 4094 } 4095 4096 static void process_timedout_eps(void) 4097 { 4098 struct c4iw_ep *ep; 4099 4100 spin_lock_irq(&timeout_lock); 4101 while (!list_empty(&timeout_list)) { 4102 struct list_head *tmp; 4103 4104 tmp = timeout_list.next; 4105 list_del(tmp); 4106 tmp->next = NULL; 4107 tmp->prev = NULL; 4108 spin_unlock_irq(&timeout_lock); 4109 ep = list_entry(tmp, struct c4iw_ep, entry); 4110 process_timeout(ep); 4111 spin_lock_irq(&timeout_lock); 4112 } 4113 spin_unlock_irq(&timeout_lock); 4114 } 4115 4116 static void process_work(struct work_struct *work) 4117 { 4118 struct sk_buff *skb = NULL; 4119 struct c4iw_dev *dev; 4120 struct cpl_act_establish *rpl; 4121 unsigned int opcode; 4122 int ret; 4123 4124 process_timedout_eps(); 4125 while ((skb = skb_dequeue(&rxq))) { 4126 rpl = cplhdr(skb); 4127 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4128 opcode = rpl->ot.opcode; 4129 4130 if (opcode >= ARRAY_SIZE(work_handlers) || 4131 !work_handlers[opcode]) { 4132 pr_err("No handler for opcode 0x%x.\n", opcode); 4133 kfree_skb(skb); 4134 } else { 4135 ret = work_handlers[opcode](dev, skb); 4136 if (!ret) 4137 kfree_skb(skb); 4138 } 4139 process_timedout_eps(); 4140 } 4141 } 4142 4143 static DECLARE_WORK(skb_work, process_work); 4144 4145 static void ep_timeout(struct timer_list *t) 4146 { 4147 struct c4iw_ep *ep = from_timer(ep, t, timer); 4148 int kickit = 0; 4149 4150 spin_lock(&timeout_lock); 4151 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4152 /* 4153 * Only insert if it is not already on the list. 4154 */ 4155 if (!ep->entry.next) { 4156 list_add_tail(&ep->entry, &timeout_list); 4157 kickit = 1; 4158 } 4159 } 4160 spin_unlock(&timeout_lock); 4161 if (kickit) 4162 queue_work(workq, &skb_work); 4163 } 4164 4165 /* 4166 * All the CM events are handled on a work queue to have a safe context. 4167 */ 4168 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4169 { 4170 4171 /* 4172 * Save dev in the skb->cb area. 4173 */ 4174 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4175 4176 /* 4177 * Queue the skb and schedule the worker thread. 4178 */ 4179 skb_queue_tail(&rxq, skb); 4180 queue_work(workq, &skb_work); 4181 return 0; 4182 } 4183 4184 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4185 { 4186 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4187 4188 if (rpl->status != CPL_ERR_NONE) { 4189 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", 4190 rpl->status, GET_TID(rpl)); 4191 } 4192 kfree_skb(skb); 4193 return 0; 4194 } 4195 4196 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4197 { 4198 struct cpl_fw6_msg *rpl = cplhdr(skb); 4199 struct c4iw_wr_wait *wr_waitp; 4200 int ret; 4201 4202 pr_debug("type %u\n", rpl->type); 4203 4204 switch (rpl->type) { 4205 case FW6_TYPE_WR_RPL: 4206 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4207 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4208 pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret); 4209 if (wr_waitp) 4210 c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0); 4211 kfree_skb(skb); 4212 break; 4213 case FW6_TYPE_CQE: 4214 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4215 sched(dev, skb); 4216 break; 4217 default: 4218 pr_err("%s unexpected fw6 msg type %u\n", 4219 __func__, rpl->type); 4220 kfree_skb(skb); 4221 break; 4222 } 4223 return 0; 4224 } 4225 4226 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4227 { 4228 struct cpl_abort_req_rss *req = cplhdr(skb); 4229 struct c4iw_ep *ep; 4230 unsigned int tid = GET_TID(req); 4231 4232 ep = get_ep_from_tid(dev, tid); 4233 /* This EP will be dereferenced in peer_abort() */ 4234 if (!ep) { 4235 pr_warn("Abort on non-existent endpoint, tid %d\n", tid); 4236 kfree_skb(skb); 4237 return 0; 4238 } 4239 if (cxgb_is_neg_adv(req->status)) { 4240 pr_debug("Negative advice on abort- tid %u status %d (%s)\n", 4241 ep->hwtid, req->status, 4242 neg_adv_str(req->status)); 4243 goto out; 4244 } 4245 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state); 4246 4247 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 4248 out: 4249 sched(dev, skb); 4250 return 0; 4251 } 4252 4253 /* 4254 * Most upcalls from the T4 Core go to sched() to 4255 * schedule the processing on a work queue. 4256 */ 4257 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4258 [CPL_ACT_ESTABLISH] = sched, 4259 [CPL_ACT_OPEN_RPL] = sched, 4260 [CPL_RX_DATA] = sched, 4261 [CPL_ABORT_RPL_RSS] = sched, 4262 [CPL_ABORT_RPL] = sched, 4263 [CPL_PASS_OPEN_RPL] = sched, 4264 [CPL_CLOSE_LISTSRV_RPL] = sched, 4265 [CPL_PASS_ACCEPT_REQ] = sched, 4266 [CPL_PASS_ESTABLISH] = sched, 4267 [CPL_PEER_CLOSE] = sched, 4268 [CPL_CLOSE_CON_RPL] = sched, 4269 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4270 [CPL_RDMA_TERMINATE] = sched, 4271 [CPL_FW4_ACK] = sched, 4272 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4273 [CPL_FW6_MSG] = fw6_msg, 4274 [CPL_RX_PKT] = sched 4275 }; 4276 4277 int __init c4iw_cm_init(void) 4278 { 4279 spin_lock_init(&timeout_lock); 4280 skb_queue_head_init(&rxq); 4281 4282 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4283 if (!workq) 4284 return -ENOMEM; 4285 4286 return 0; 4287 } 4288 4289 void c4iw_cm_term(void) 4290 { 4291 WARN_ON(!list_empty(&timeout_list)); 4292 flush_workqueue(workq); 4293 destroy_workqueue(workq); 4294 } 4295