1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=0)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 static int peer2peer = 1; 103 module_param(peer2peer, int, 0644); 104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 105 106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 107 module_param(p2p_type, int, 0644); 108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 109 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 110 111 static int ep_timeout_secs = 60; 112 module_param(ep_timeout_secs, int, 0644); 113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 114 "in seconds (default=60)"); 115 116 static int mpa_rev = 2; 117 module_param(mpa_rev, int, 0644); 118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 120 " compliant (default=2)"); 121 122 static int markers_enabled; 123 module_param(markers_enabled, int, 0644); 124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 125 126 static int crc_enabled = 1; 127 module_param(crc_enabled, int, 0644); 128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 129 130 static int rcv_win = 256 * 1024; 131 module_param(rcv_win, int, 0644); 132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 133 134 static int snd_win = 128 * 1024; 135 module_param(snd_win, int, 0644); 136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 137 138 static struct workqueue_struct *workq; 139 140 static struct sk_buff_head rxq; 141 142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 143 static void ep_timeout(struct timer_list *t); 144 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 146 147 static LIST_HEAD(timeout_list); 148 static DEFINE_SPINLOCK(timeout_lock); 149 150 static void deref_cm_id(struct c4iw_ep_common *epc) 151 { 152 epc->cm_id->rem_ref(epc->cm_id); 153 epc->cm_id = NULL; 154 set_bit(CM_ID_DEREFED, &epc->history); 155 } 156 157 static void ref_cm_id(struct c4iw_ep_common *epc) 158 { 159 set_bit(CM_ID_REFED, &epc->history); 160 epc->cm_id->add_ref(epc->cm_id); 161 } 162 163 static void deref_qp(struct c4iw_ep *ep) 164 { 165 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 166 clear_bit(QP_REFERENCED, &ep->com.flags); 167 set_bit(QP_DEREFED, &ep->com.history); 168 } 169 170 static void ref_qp(struct c4iw_ep *ep) 171 { 172 set_bit(QP_REFERENCED, &ep->com.flags); 173 set_bit(QP_REFED, &ep->com.history); 174 c4iw_qp_add_ref(&ep->com.qp->ibqp); 175 } 176 177 static void start_ep_timer(struct c4iw_ep *ep) 178 { 179 pr_debug("ep %p\n", ep); 180 if (timer_pending(&ep->timer)) { 181 pr_err("%s timer already started! ep %p\n", 182 __func__, ep); 183 return; 184 } 185 clear_bit(TIMEOUT, &ep->com.flags); 186 c4iw_get_ep(&ep->com); 187 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 188 add_timer(&ep->timer); 189 } 190 191 static int stop_ep_timer(struct c4iw_ep *ep) 192 { 193 pr_debug("ep %p stopping\n", ep); 194 del_timer_sync(&ep->timer); 195 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 196 c4iw_put_ep(&ep->com); 197 return 0; 198 } 199 return 1; 200 } 201 202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 203 struct l2t_entry *l2e) 204 { 205 int error = 0; 206 207 if (c4iw_fatal_error(rdev)) { 208 kfree_skb(skb); 209 pr_err("%s - device in error state - dropping\n", __func__); 210 return -EIO; 211 } 212 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 213 if (error < 0) 214 kfree_skb(skb); 215 else if (error == NET_XMIT_DROP) 216 return -ENOMEM; 217 return error < 0 ? error : 0; 218 } 219 220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 221 { 222 int error = 0; 223 224 if (c4iw_fatal_error(rdev)) { 225 kfree_skb(skb); 226 pr_err("%s - device in error state - dropping\n", __func__); 227 return -EIO; 228 } 229 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 230 if (error < 0) 231 kfree_skb(skb); 232 return error < 0 ? error : 0; 233 } 234 235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 236 { 237 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 238 239 skb = get_skb(skb, len, GFP_KERNEL); 240 if (!skb) 241 return; 242 243 cxgb_mk_tid_release(skb, len, hwtid, 0); 244 c4iw_ofld_send(rdev, skb); 245 return; 246 } 247 248 static void set_emss(struct c4iw_ep *ep, u16 opt) 249 { 250 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 251 ((AF_INET == ep->com.remote_addr.ss_family) ? 252 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 253 sizeof(struct tcphdr); 254 ep->mss = ep->emss; 255 if (TCPOPT_TSTAMP_G(opt)) 256 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 257 if (ep->emss < 128) 258 ep->emss = 128; 259 if (ep->emss & 7) 260 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n", 261 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss, 263 ep->emss); 264 } 265 266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 267 { 268 enum c4iw_ep_state state; 269 270 mutex_lock(&epc->mutex); 271 state = epc->state; 272 mutex_unlock(&epc->mutex); 273 return state; 274 } 275 276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 277 { 278 epc->state = new; 279 } 280 281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 282 { 283 mutex_lock(&epc->mutex); 284 pr_debug("%s -> %s\n", states[epc->state], states[new]); 285 __state_set(epc, new); 286 mutex_unlock(&epc->mutex); 287 return; 288 } 289 290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 291 { 292 struct sk_buff *skb; 293 unsigned int i; 294 size_t len; 295 296 len = roundup(sizeof(union cpl_wr_size), 16); 297 for (i = 0; i < size; i++) { 298 skb = alloc_skb(len, GFP_KERNEL); 299 if (!skb) 300 goto fail; 301 skb_queue_tail(ep_skb_list, skb); 302 } 303 return 0; 304 fail: 305 skb_queue_purge(ep_skb_list); 306 return -ENOMEM; 307 } 308 309 static void *alloc_ep(int size, gfp_t gfp) 310 { 311 struct c4iw_ep_common *epc; 312 313 epc = kzalloc(size, gfp); 314 if (epc) { 315 epc->wr_waitp = c4iw_alloc_wr_wait(gfp); 316 if (!epc->wr_waitp) { 317 kfree(epc); 318 epc = NULL; 319 goto out; 320 } 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(epc->wr_waitp); 324 } 325 pr_debug("alloc ep %p\n", epc); 326 out: 327 return epc; 328 } 329 330 static void remove_ep_tid(struct c4iw_ep *ep) 331 { 332 unsigned long flags; 333 334 xa_lock_irqsave(&ep->com.dev->hwtids, flags); 335 __xa_erase(&ep->com.dev->hwtids, ep->hwtid); 336 if (xa_empty(&ep->com.dev->hwtids)) 337 wake_up(&ep->com.dev->wait); 338 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags); 339 } 340 341 static int insert_ep_tid(struct c4iw_ep *ep) 342 { 343 unsigned long flags; 344 int err; 345 346 xa_lock_irqsave(&ep->com.dev->hwtids, flags); 347 err = __xa_insert(&ep->com.dev->hwtids, ep->hwtid, ep, GFP_KERNEL); 348 xa_unlock_irqrestore(&ep->com.dev->hwtids, flags); 349 350 return err; 351 } 352 353 /* 354 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 355 */ 356 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 357 { 358 struct c4iw_ep *ep; 359 unsigned long flags; 360 361 xa_lock_irqsave(&dev->hwtids, flags); 362 ep = xa_load(&dev->hwtids, tid); 363 if (ep) 364 c4iw_get_ep(&ep->com); 365 xa_unlock_irqrestore(&dev->hwtids, flags); 366 return ep; 367 } 368 369 /* 370 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 371 */ 372 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 373 unsigned int stid) 374 { 375 struct c4iw_listen_ep *ep; 376 unsigned long flags; 377 378 xa_lock_irqsave(&dev->stids, flags); 379 ep = xa_load(&dev->stids, stid); 380 if (ep) 381 c4iw_get_ep(&ep->com); 382 xa_unlock_irqrestore(&dev->stids, flags); 383 return ep; 384 } 385 386 void _c4iw_free_ep(struct kref *kref) 387 { 388 struct c4iw_ep *ep; 389 390 ep = container_of(kref, struct c4iw_ep, com.kref); 391 pr_debug("ep %p state %s\n", ep, states[ep->com.state]); 392 if (test_bit(QP_REFERENCED, &ep->com.flags)) 393 deref_qp(ep); 394 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 395 if (ep->com.remote_addr.ss_family == AF_INET6) { 396 struct sockaddr_in6 *sin6 = 397 (struct sockaddr_in6 *) 398 &ep->com.local_addr; 399 400 cxgb4_clip_release( 401 ep->com.dev->rdev.lldi.ports[0], 402 (const u32 *)&sin6->sin6_addr.s6_addr, 403 1); 404 } 405 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 406 ep->com.local_addr.ss_family); 407 dst_release(ep->dst); 408 cxgb4_l2t_release(ep->l2t); 409 kfree_skb(ep->mpa_skb); 410 } 411 if (!skb_queue_empty(&ep->com.ep_skb_list)) 412 skb_queue_purge(&ep->com.ep_skb_list); 413 c4iw_put_wr_wait(ep->com.wr_waitp); 414 kfree(ep); 415 } 416 417 static void release_ep_resources(struct c4iw_ep *ep) 418 { 419 set_bit(RELEASE_RESOURCES, &ep->com.flags); 420 421 /* 422 * If we have a hwtid, then remove it from the idr table 423 * so lookups will no longer find this endpoint. Otherwise 424 * we have a race where one thread finds the ep ptr just 425 * before the other thread is freeing the ep memory. 426 */ 427 if (ep->hwtid != -1) 428 remove_ep_tid(ep); 429 c4iw_put_ep(&ep->com); 430 } 431 432 static int status2errno(int status) 433 { 434 switch (status) { 435 case CPL_ERR_NONE: 436 return 0; 437 case CPL_ERR_CONN_RESET: 438 return -ECONNRESET; 439 case CPL_ERR_ARP_MISS: 440 return -EHOSTUNREACH; 441 case CPL_ERR_CONN_TIMEDOUT: 442 return -ETIMEDOUT; 443 case CPL_ERR_TCAM_FULL: 444 return -ENOMEM; 445 case CPL_ERR_CONN_EXIST: 446 return -EADDRINUSE; 447 default: 448 return -EIO; 449 } 450 } 451 452 /* 453 * Try and reuse skbs already allocated... 454 */ 455 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 456 { 457 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 458 skb_trim(skb, 0); 459 skb_get(skb); 460 skb_reset_transport_header(skb); 461 } else { 462 skb = alloc_skb(len, gfp); 463 if (!skb) 464 return NULL; 465 } 466 t4_set_arp_err_handler(skb, NULL, NULL); 467 return skb; 468 } 469 470 static struct net_device *get_real_dev(struct net_device *egress_dev) 471 { 472 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 473 } 474 475 static void arp_failure_discard(void *handle, struct sk_buff *skb) 476 { 477 pr_err("ARP failure\n"); 478 kfree_skb(skb); 479 } 480 481 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 482 { 483 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 484 } 485 486 enum { 487 NUM_FAKE_CPLS = 2, 488 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 489 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 490 }; 491 492 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 493 { 494 struct c4iw_ep *ep; 495 496 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 497 release_ep_resources(ep); 498 return 0; 499 } 500 501 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 502 { 503 struct c4iw_ep *ep; 504 505 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 506 c4iw_put_ep(&ep->parent_ep->com); 507 release_ep_resources(ep); 508 return 0; 509 } 510 511 /* 512 * Fake up a special CPL opcode and call sched() so process_work() will call 513 * _put_ep_safe() in a safe context to free the ep resources. This is needed 514 * because ARP error handlers are called in an ATOMIC context, and 515 * _c4iw_free_ep() needs to block. 516 */ 517 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 518 int cpl) 519 { 520 struct cpl_act_establish *rpl = cplhdr(skb); 521 522 /* Set our special ARP_FAILURE opcode */ 523 rpl->ot.opcode = cpl; 524 525 /* 526 * Save ep in the skb->cb area, after where sched() will save the dev 527 * ptr. 528 */ 529 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 530 sched(ep->com.dev, skb); 531 } 532 533 /* Handle an ARP failure for an accept */ 534 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 535 { 536 struct c4iw_ep *ep = handle; 537 538 pr_err("ARP failure during accept - tid %u - dropping connection\n", 539 ep->hwtid); 540 541 __state_set(&ep->com, DEAD); 542 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 543 } 544 545 /* 546 * Handle an ARP failure for an active open. 547 */ 548 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 549 { 550 struct c4iw_ep *ep = handle; 551 552 pr_err("ARP failure during connect\n"); 553 connect_reply_upcall(ep, -EHOSTUNREACH); 554 __state_set(&ep->com, DEAD); 555 if (ep->com.remote_addr.ss_family == AF_INET6) { 556 struct sockaddr_in6 *sin6 = 557 (struct sockaddr_in6 *)&ep->com.local_addr; 558 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 559 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 560 } 561 xa_erase_irq(&ep->com.dev->atids, ep->atid); 562 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 563 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 564 } 565 566 /* 567 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 568 * and send it along. 569 */ 570 static void abort_arp_failure(void *handle, struct sk_buff *skb) 571 { 572 int ret; 573 struct c4iw_ep *ep = handle; 574 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 575 struct cpl_abort_req *req = cplhdr(skb); 576 577 pr_debug("rdev %p\n", rdev); 578 req->cmd = CPL_ABORT_NO_RST; 579 skb_get(skb); 580 ret = c4iw_ofld_send(rdev, skb); 581 if (ret) { 582 __state_set(&ep->com, DEAD); 583 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 584 } else 585 kfree_skb(skb); 586 } 587 588 static int send_flowc(struct c4iw_ep *ep) 589 { 590 struct fw_flowc_wr *flowc; 591 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 592 u16 vlan = ep->l2t->vlan; 593 int nparams; 594 int flowclen, flowclen16; 595 596 if (WARN_ON(!skb)) 597 return -ENOMEM; 598 599 if (vlan == CPL_L2T_VLAN_NONE) 600 nparams = 9; 601 else 602 nparams = 10; 603 604 flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]); 605 flowclen16 = DIV_ROUND_UP(flowclen, 16); 606 flowclen = flowclen16 * 16; 607 608 flowc = __skb_put(skb, flowclen); 609 memset(flowc, 0, flowclen); 610 611 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 612 FW_FLOWC_WR_NPARAMS_V(nparams)); 613 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) | 614 FW_WR_FLOWID_V(ep->hwtid)); 615 616 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 617 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 618 (ep->com.dev->rdev.lldi.pf)); 619 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 620 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 621 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 622 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 623 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 624 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 625 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 626 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 627 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 628 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 629 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 630 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 631 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 632 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 633 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE; 634 flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale); 635 if (nparams == 10) { 636 u16 pri; 637 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 638 flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 639 flowc->mnemval[9].val = cpu_to_be32(pri); 640 } 641 642 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 643 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 644 } 645 646 static int send_halfclose(struct c4iw_ep *ep) 647 { 648 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 649 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 650 651 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 652 if (WARN_ON(!skb)) 653 return -ENOMEM; 654 655 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 656 NULL, arp_failure_discard); 657 658 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 659 } 660 661 static void read_tcb(struct c4iw_ep *ep) 662 { 663 struct sk_buff *skb; 664 struct cpl_get_tcb *req; 665 int wrlen = roundup(sizeof(*req), 16); 666 667 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 668 if (WARN_ON(!skb)) 669 return; 670 671 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 672 req = (struct cpl_get_tcb *) skb_put(skb, wrlen); 673 memset(req, 0, wrlen); 674 INIT_TP_WR(req, ep->hwtid); 675 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid)); 676 req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid)); 677 678 /* 679 * keep a ref on the ep so the tcb is not unlocked before this 680 * cpl completes. The ref is released in read_tcb_rpl(). 681 */ 682 c4iw_get_ep(&ep->com); 683 if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb))) 684 c4iw_put_ep(&ep->com); 685 } 686 687 static int send_abort_req(struct c4iw_ep *ep) 688 { 689 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 690 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 691 692 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 693 if (WARN_ON(!req_skb)) 694 return -ENOMEM; 695 696 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 697 ep, abort_arp_failure); 698 699 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 700 } 701 702 static int send_abort(struct c4iw_ep *ep) 703 { 704 if (!ep->com.qp || !ep->com.qp->srq) { 705 send_abort_req(ep); 706 return 0; 707 } 708 set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags); 709 read_tcb(ep); 710 return 0; 711 } 712 713 static int send_connect(struct c4iw_ep *ep) 714 { 715 struct cpl_act_open_req *req = NULL; 716 struct cpl_t5_act_open_req *t5req = NULL; 717 struct cpl_t6_act_open_req *t6req = NULL; 718 struct cpl_act_open_req6 *req6 = NULL; 719 struct cpl_t5_act_open_req6 *t5req6 = NULL; 720 struct cpl_t6_act_open_req6 *t6req6 = NULL; 721 struct sk_buff *skb; 722 u64 opt0; 723 u32 opt2; 724 unsigned int mtu_idx; 725 u32 wscale; 726 int win, sizev4, sizev6, wrlen; 727 struct sockaddr_in *la = (struct sockaddr_in *) 728 &ep->com.local_addr; 729 struct sockaddr_in *ra = (struct sockaddr_in *) 730 &ep->com.remote_addr; 731 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 732 &ep->com.local_addr; 733 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 734 &ep->com.remote_addr; 735 int ret; 736 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 737 u32 isn = (prandom_u32() & ~7UL) - 1; 738 struct net_device *netdev; 739 u64 params; 740 741 netdev = ep->com.dev->rdev.lldi.ports[0]; 742 743 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 744 case CHELSIO_T4: 745 sizev4 = sizeof(struct cpl_act_open_req); 746 sizev6 = sizeof(struct cpl_act_open_req6); 747 break; 748 case CHELSIO_T5: 749 sizev4 = sizeof(struct cpl_t5_act_open_req); 750 sizev6 = sizeof(struct cpl_t5_act_open_req6); 751 break; 752 case CHELSIO_T6: 753 sizev4 = sizeof(struct cpl_t6_act_open_req); 754 sizev6 = sizeof(struct cpl_t6_act_open_req6); 755 break; 756 default: 757 pr_err("T%d Chip is not supported\n", 758 CHELSIO_CHIP_VERSION(adapter_type)); 759 return -EINVAL; 760 } 761 762 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 763 roundup(sizev4, 16) : 764 roundup(sizev6, 16); 765 766 pr_debug("ep %p atid %u\n", ep, ep->atid); 767 768 skb = get_skb(NULL, wrlen, GFP_KERNEL); 769 if (!skb) { 770 pr_err("%s - failed to alloc skb\n", __func__); 771 return -ENOMEM; 772 } 773 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 774 775 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 776 enable_tcp_timestamps, 777 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 778 wscale = cxgb_compute_wscale(rcv_win); 779 780 /* 781 * Specify the largest window that will fit in opt0. The 782 * remainder will be specified in the rx_data_ack. 783 */ 784 win = ep->rcv_win >> 10; 785 if (win > RCV_BUFSIZ_M) 786 win = RCV_BUFSIZ_M; 787 788 opt0 = (nocong ? NO_CONG_F : 0) | 789 KEEP_ALIVE_F | 790 DELACK_F | 791 WND_SCALE_V(wscale) | 792 MSS_IDX_V(mtu_idx) | 793 L2T_IDX_V(ep->l2t->idx) | 794 TX_CHAN_V(ep->tx_chan) | 795 SMAC_SEL_V(ep->smac_idx) | 796 DSCP_V(ep->tos >> 2) | 797 ULP_MODE_V(ULP_MODE_TCPDDP) | 798 RCV_BUFSIZ_V(win); 799 opt2 = RX_CHANNEL_V(0) | 800 CCTRL_ECN_V(enable_ecn) | 801 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 802 if (enable_tcp_timestamps) 803 opt2 |= TSTAMPS_EN_F; 804 if (enable_tcp_sack) 805 opt2 |= SACK_EN_F; 806 if (wscale && enable_tcp_window_scaling) 807 opt2 |= WND_SCALE_EN_F; 808 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 809 if (peer2peer) 810 isn += 4; 811 812 opt2 |= T5_OPT_2_VALID_F; 813 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 814 opt2 |= T5_ISS_F; 815 } 816 817 params = cxgb4_select_ntuple(netdev, ep->l2t); 818 819 if (ep->com.remote_addr.ss_family == AF_INET6) 820 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 821 (const u32 *)&la6->sin6_addr.s6_addr, 1); 822 823 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 824 825 if (ep->com.remote_addr.ss_family == AF_INET) { 826 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 827 case CHELSIO_T4: 828 req = skb_put(skb, wrlen); 829 INIT_TP_WR(req, 0); 830 break; 831 case CHELSIO_T5: 832 t5req = skb_put(skb, wrlen); 833 INIT_TP_WR(t5req, 0); 834 req = (struct cpl_act_open_req *)t5req; 835 break; 836 case CHELSIO_T6: 837 t6req = skb_put(skb, wrlen); 838 INIT_TP_WR(t6req, 0); 839 req = (struct cpl_act_open_req *)t6req; 840 t5req = (struct cpl_t5_act_open_req *)t6req; 841 break; 842 default: 843 pr_err("T%d Chip is not supported\n", 844 CHELSIO_CHIP_VERSION(adapter_type)); 845 ret = -EINVAL; 846 goto clip_release; 847 } 848 849 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 850 ((ep->rss_qid<<14) | ep->atid))); 851 req->local_port = la->sin_port; 852 req->peer_port = ra->sin_port; 853 req->local_ip = la->sin_addr.s_addr; 854 req->peer_ip = ra->sin_addr.s_addr; 855 req->opt0 = cpu_to_be64(opt0); 856 857 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 858 req->params = cpu_to_be32(params); 859 req->opt2 = cpu_to_be32(opt2); 860 } else { 861 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 862 t5req->params = 863 cpu_to_be64(FILTER_TUPLE_V(params)); 864 t5req->rsvd = cpu_to_be32(isn); 865 pr_debug("snd_isn %u\n", t5req->rsvd); 866 t5req->opt2 = cpu_to_be32(opt2); 867 } else { 868 t6req->params = 869 cpu_to_be64(FILTER_TUPLE_V(params)); 870 t6req->rsvd = cpu_to_be32(isn); 871 pr_debug("snd_isn %u\n", t6req->rsvd); 872 t6req->opt2 = cpu_to_be32(opt2); 873 } 874 } 875 } else { 876 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 877 case CHELSIO_T4: 878 req6 = skb_put(skb, wrlen); 879 INIT_TP_WR(req6, 0); 880 break; 881 case CHELSIO_T5: 882 t5req6 = skb_put(skb, wrlen); 883 INIT_TP_WR(t5req6, 0); 884 req6 = (struct cpl_act_open_req6 *)t5req6; 885 break; 886 case CHELSIO_T6: 887 t6req6 = skb_put(skb, wrlen); 888 INIT_TP_WR(t6req6, 0); 889 req6 = (struct cpl_act_open_req6 *)t6req6; 890 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 891 break; 892 default: 893 pr_err("T%d Chip is not supported\n", 894 CHELSIO_CHIP_VERSION(adapter_type)); 895 ret = -EINVAL; 896 goto clip_release; 897 } 898 899 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 900 ((ep->rss_qid<<14)|ep->atid))); 901 req6->local_port = la6->sin6_port; 902 req6->peer_port = ra6->sin6_port; 903 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 904 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 905 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 906 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 907 req6->opt0 = cpu_to_be64(opt0); 908 909 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 910 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 911 ep->l2t)); 912 req6->opt2 = cpu_to_be32(opt2); 913 } else { 914 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 915 t5req6->params = 916 cpu_to_be64(FILTER_TUPLE_V(params)); 917 t5req6->rsvd = cpu_to_be32(isn); 918 pr_debug("snd_isn %u\n", t5req6->rsvd); 919 t5req6->opt2 = cpu_to_be32(opt2); 920 } else { 921 t6req6->params = 922 cpu_to_be64(FILTER_TUPLE_V(params)); 923 t6req6->rsvd = cpu_to_be32(isn); 924 pr_debug("snd_isn %u\n", t6req6->rsvd); 925 t6req6->opt2 = cpu_to_be32(opt2); 926 } 927 928 } 929 } 930 931 set_bit(ACT_OPEN_REQ, &ep->com.history); 932 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 933 clip_release: 934 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 935 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 936 (const u32 *)&la6->sin6_addr.s6_addr, 1); 937 return ret; 938 } 939 940 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 941 u8 mpa_rev_to_use) 942 { 943 int mpalen, wrlen, ret; 944 struct fw_ofld_tx_data_wr *req; 945 struct mpa_message *mpa; 946 struct mpa_v2_conn_params mpa_v2_params; 947 948 pr_debug("ep %p tid %u pd_len %d\n", 949 ep, ep->hwtid, ep->plen); 950 951 mpalen = sizeof(*mpa) + ep->plen; 952 if (mpa_rev_to_use == 2) 953 mpalen += sizeof(struct mpa_v2_conn_params); 954 wrlen = roundup(mpalen + sizeof(*req), 16); 955 skb = get_skb(skb, wrlen, GFP_KERNEL); 956 if (!skb) { 957 connect_reply_upcall(ep, -ENOMEM); 958 return -ENOMEM; 959 } 960 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 961 962 req = skb_put_zero(skb, wrlen); 963 req->op_to_immdlen = cpu_to_be32( 964 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 965 FW_WR_COMPL_F | 966 FW_WR_IMMDLEN_V(mpalen)); 967 req->flowid_len16 = cpu_to_be32( 968 FW_WR_FLOWID_V(ep->hwtid) | 969 FW_WR_LEN16_V(wrlen >> 4)); 970 req->plen = cpu_to_be32(mpalen); 971 req->tunnel_to_proxy = cpu_to_be32( 972 FW_OFLD_TX_DATA_WR_FLUSH_F | 973 FW_OFLD_TX_DATA_WR_SHOVE_F); 974 975 mpa = (struct mpa_message *)(req + 1); 976 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 977 978 mpa->flags = 0; 979 if (crc_enabled) 980 mpa->flags |= MPA_CRC; 981 if (markers_enabled) { 982 mpa->flags |= MPA_MARKERS; 983 ep->mpa_attr.recv_marker_enabled = 1; 984 } else { 985 ep->mpa_attr.recv_marker_enabled = 0; 986 } 987 if (mpa_rev_to_use == 2) 988 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 989 990 mpa->private_data_size = htons(ep->plen); 991 mpa->revision = mpa_rev_to_use; 992 if (mpa_rev_to_use == 1) { 993 ep->tried_with_mpa_v1 = 1; 994 ep->retry_with_mpa_v1 = 0; 995 } 996 997 if (mpa_rev_to_use == 2) { 998 mpa->private_data_size = 999 htons(ntohs(mpa->private_data_size) + 1000 sizeof(struct mpa_v2_conn_params)); 1001 pr_debug("initiator ird %u ord %u\n", ep->ird, 1002 ep->ord); 1003 mpa_v2_params.ird = htons((u16)ep->ird); 1004 mpa_v2_params.ord = htons((u16)ep->ord); 1005 1006 if (peer2peer) { 1007 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1008 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1009 mpa_v2_params.ord |= 1010 htons(MPA_V2_RDMA_WRITE_RTR); 1011 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1012 mpa_v2_params.ord |= 1013 htons(MPA_V2_RDMA_READ_RTR); 1014 } 1015 memcpy(mpa->private_data, &mpa_v2_params, 1016 sizeof(struct mpa_v2_conn_params)); 1017 1018 if (ep->plen) 1019 memcpy(mpa->private_data + 1020 sizeof(struct mpa_v2_conn_params), 1021 ep->mpa_pkt + sizeof(*mpa), ep->plen); 1022 } else 1023 if (ep->plen) 1024 memcpy(mpa->private_data, 1025 ep->mpa_pkt + sizeof(*mpa), ep->plen); 1026 1027 /* 1028 * Reference the mpa skb. This ensures the data area 1029 * will remain in memory until the hw acks the tx. 1030 * Function fw4_ack() will deref it. 1031 */ 1032 skb_get(skb); 1033 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 1034 ep->mpa_skb = skb; 1035 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1036 if (ret) 1037 return ret; 1038 start_ep_timer(ep); 1039 __state_set(&ep->com, MPA_REQ_SENT); 1040 ep->mpa_attr.initiator = 1; 1041 ep->snd_seq += mpalen; 1042 return ret; 1043 } 1044 1045 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1046 { 1047 int mpalen, wrlen; 1048 struct fw_ofld_tx_data_wr *req; 1049 struct mpa_message *mpa; 1050 struct sk_buff *skb; 1051 struct mpa_v2_conn_params mpa_v2_params; 1052 1053 pr_debug("ep %p tid %u pd_len %d\n", 1054 ep, ep->hwtid, ep->plen); 1055 1056 mpalen = sizeof(*mpa) + plen; 1057 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1058 mpalen += sizeof(struct mpa_v2_conn_params); 1059 wrlen = roundup(mpalen + sizeof(*req), 16); 1060 1061 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1062 if (!skb) { 1063 pr_err("%s - cannot alloc skb!\n", __func__); 1064 return -ENOMEM; 1065 } 1066 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1067 1068 req = skb_put_zero(skb, wrlen); 1069 req->op_to_immdlen = cpu_to_be32( 1070 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1071 FW_WR_COMPL_F | 1072 FW_WR_IMMDLEN_V(mpalen)); 1073 req->flowid_len16 = cpu_to_be32( 1074 FW_WR_FLOWID_V(ep->hwtid) | 1075 FW_WR_LEN16_V(wrlen >> 4)); 1076 req->plen = cpu_to_be32(mpalen); 1077 req->tunnel_to_proxy = cpu_to_be32( 1078 FW_OFLD_TX_DATA_WR_FLUSH_F | 1079 FW_OFLD_TX_DATA_WR_SHOVE_F); 1080 1081 mpa = (struct mpa_message *)(req + 1); 1082 memset(mpa, 0, sizeof(*mpa)); 1083 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1084 mpa->flags = MPA_REJECT; 1085 mpa->revision = ep->mpa_attr.version; 1086 mpa->private_data_size = htons(plen); 1087 1088 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1089 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1090 mpa->private_data_size = 1091 htons(ntohs(mpa->private_data_size) + 1092 sizeof(struct mpa_v2_conn_params)); 1093 mpa_v2_params.ird = htons(((u16)ep->ird) | 1094 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1095 0)); 1096 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1097 (p2p_type == 1098 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1099 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1100 FW_RI_INIT_P2PTYPE_READ_REQ ? 1101 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1102 memcpy(mpa->private_data, &mpa_v2_params, 1103 sizeof(struct mpa_v2_conn_params)); 1104 1105 if (ep->plen) 1106 memcpy(mpa->private_data + 1107 sizeof(struct mpa_v2_conn_params), pdata, plen); 1108 } else 1109 if (plen) 1110 memcpy(mpa->private_data, pdata, plen); 1111 1112 /* 1113 * Reference the mpa skb again. This ensures the data area 1114 * will remain in memory until the hw acks the tx. 1115 * Function fw4_ack() will deref it. 1116 */ 1117 skb_get(skb); 1118 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1119 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1120 ep->mpa_skb = skb; 1121 ep->snd_seq += mpalen; 1122 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1123 } 1124 1125 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1126 { 1127 int mpalen, wrlen; 1128 struct fw_ofld_tx_data_wr *req; 1129 struct mpa_message *mpa; 1130 struct sk_buff *skb; 1131 struct mpa_v2_conn_params mpa_v2_params; 1132 1133 pr_debug("ep %p tid %u pd_len %d\n", 1134 ep, ep->hwtid, ep->plen); 1135 1136 mpalen = sizeof(*mpa) + plen; 1137 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1138 mpalen += sizeof(struct mpa_v2_conn_params); 1139 wrlen = roundup(mpalen + sizeof(*req), 16); 1140 1141 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1142 if (!skb) { 1143 pr_err("%s - cannot alloc skb!\n", __func__); 1144 return -ENOMEM; 1145 } 1146 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1147 1148 req = skb_put_zero(skb, wrlen); 1149 req->op_to_immdlen = cpu_to_be32( 1150 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1151 FW_WR_COMPL_F | 1152 FW_WR_IMMDLEN_V(mpalen)); 1153 req->flowid_len16 = cpu_to_be32( 1154 FW_WR_FLOWID_V(ep->hwtid) | 1155 FW_WR_LEN16_V(wrlen >> 4)); 1156 req->plen = cpu_to_be32(mpalen); 1157 req->tunnel_to_proxy = cpu_to_be32( 1158 FW_OFLD_TX_DATA_WR_FLUSH_F | 1159 FW_OFLD_TX_DATA_WR_SHOVE_F); 1160 1161 mpa = (struct mpa_message *)(req + 1); 1162 memset(mpa, 0, sizeof(*mpa)); 1163 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1164 mpa->flags = 0; 1165 if (ep->mpa_attr.crc_enabled) 1166 mpa->flags |= MPA_CRC; 1167 if (ep->mpa_attr.recv_marker_enabled) 1168 mpa->flags |= MPA_MARKERS; 1169 mpa->revision = ep->mpa_attr.version; 1170 mpa->private_data_size = htons(plen); 1171 1172 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1173 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1174 mpa->private_data_size = 1175 htons(ntohs(mpa->private_data_size) + 1176 sizeof(struct mpa_v2_conn_params)); 1177 mpa_v2_params.ird = htons((u16)ep->ird); 1178 mpa_v2_params.ord = htons((u16)ep->ord); 1179 if (peer2peer && (ep->mpa_attr.p2p_type != 1180 FW_RI_INIT_P2PTYPE_DISABLED)) { 1181 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1182 1183 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1184 mpa_v2_params.ord |= 1185 htons(MPA_V2_RDMA_WRITE_RTR); 1186 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1187 mpa_v2_params.ord |= 1188 htons(MPA_V2_RDMA_READ_RTR); 1189 } 1190 1191 memcpy(mpa->private_data, &mpa_v2_params, 1192 sizeof(struct mpa_v2_conn_params)); 1193 1194 if (ep->plen) 1195 memcpy(mpa->private_data + 1196 sizeof(struct mpa_v2_conn_params), pdata, plen); 1197 } else 1198 if (plen) 1199 memcpy(mpa->private_data, pdata, plen); 1200 1201 /* 1202 * Reference the mpa skb. This ensures the data area 1203 * will remain in memory until the hw acks the tx. 1204 * Function fw4_ack() will deref it. 1205 */ 1206 skb_get(skb); 1207 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1208 ep->mpa_skb = skb; 1209 __state_set(&ep->com, MPA_REP_SENT); 1210 ep->snd_seq += mpalen; 1211 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1212 } 1213 1214 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1215 { 1216 struct c4iw_ep *ep; 1217 struct cpl_act_establish *req = cplhdr(skb); 1218 unsigned short tcp_opt = ntohs(req->tcp_opt); 1219 unsigned int tid = GET_TID(req); 1220 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1221 struct tid_info *t = dev->rdev.lldi.tids; 1222 int ret; 1223 1224 ep = lookup_atid(t, atid); 1225 1226 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid, 1227 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1228 1229 mutex_lock(&ep->com.mutex); 1230 dst_confirm(ep->dst); 1231 1232 /* setup the hwtid for this connection */ 1233 ep->hwtid = tid; 1234 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family); 1235 insert_ep_tid(ep); 1236 1237 ep->snd_seq = be32_to_cpu(req->snd_isn); 1238 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1239 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); 1240 1241 set_emss(ep, tcp_opt); 1242 1243 /* dealloc the atid */ 1244 xa_erase_irq(&ep->com.dev->atids, atid); 1245 cxgb4_free_atid(t, atid); 1246 set_bit(ACT_ESTAB, &ep->com.history); 1247 1248 /* start MPA negotiation */ 1249 ret = send_flowc(ep); 1250 if (ret) 1251 goto err; 1252 if (ep->retry_with_mpa_v1) 1253 ret = send_mpa_req(ep, skb, 1); 1254 else 1255 ret = send_mpa_req(ep, skb, mpa_rev); 1256 if (ret) 1257 goto err; 1258 mutex_unlock(&ep->com.mutex); 1259 return 0; 1260 err: 1261 mutex_unlock(&ep->com.mutex); 1262 connect_reply_upcall(ep, -ENOMEM); 1263 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1264 return 0; 1265 } 1266 1267 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1268 { 1269 struct iw_cm_event event; 1270 1271 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1272 memset(&event, 0, sizeof(event)); 1273 event.event = IW_CM_EVENT_CLOSE; 1274 event.status = status; 1275 if (ep->com.cm_id) { 1276 pr_debug("close complete delivered ep %p cm_id %p tid %u\n", 1277 ep, ep->com.cm_id, ep->hwtid); 1278 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1279 deref_cm_id(&ep->com); 1280 set_bit(CLOSE_UPCALL, &ep->com.history); 1281 } 1282 } 1283 1284 static void peer_close_upcall(struct c4iw_ep *ep) 1285 { 1286 struct iw_cm_event event; 1287 1288 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1289 memset(&event, 0, sizeof(event)); 1290 event.event = IW_CM_EVENT_DISCONNECT; 1291 if (ep->com.cm_id) { 1292 pr_debug("peer close delivered ep %p cm_id %p tid %u\n", 1293 ep, ep->com.cm_id, ep->hwtid); 1294 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1295 set_bit(DISCONN_UPCALL, &ep->com.history); 1296 } 1297 } 1298 1299 static void peer_abort_upcall(struct c4iw_ep *ep) 1300 { 1301 struct iw_cm_event event; 1302 1303 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1304 memset(&event, 0, sizeof(event)); 1305 event.event = IW_CM_EVENT_CLOSE; 1306 event.status = -ECONNRESET; 1307 if (ep->com.cm_id) { 1308 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, 1309 ep->com.cm_id, ep->hwtid); 1310 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1311 deref_cm_id(&ep->com); 1312 set_bit(ABORT_UPCALL, &ep->com.history); 1313 } 1314 } 1315 1316 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1317 { 1318 struct iw_cm_event event; 1319 1320 pr_debug("ep %p tid %u status %d\n", 1321 ep, ep->hwtid, status); 1322 memset(&event, 0, sizeof(event)); 1323 event.event = IW_CM_EVENT_CONNECT_REPLY; 1324 event.status = status; 1325 memcpy(&event.local_addr, &ep->com.local_addr, 1326 sizeof(ep->com.local_addr)); 1327 memcpy(&event.remote_addr, &ep->com.remote_addr, 1328 sizeof(ep->com.remote_addr)); 1329 1330 if ((status == 0) || (status == -ECONNREFUSED)) { 1331 if (!ep->tried_with_mpa_v1) { 1332 /* this means MPA_v2 is used */ 1333 event.ord = ep->ird; 1334 event.ird = ep->ord; 1335 event.private_data_len = ep->plen - 1336 sizeof(struct mpa_v2_conn_params); 1337 event.private_data = ep->mpa_pkt + 1338 sizeof(struct mpa_message) + 1339 sizeof(struct mpa_v2_conn_params); 1340 } else { 1341 /* this means MPA_v1 is used */ 1342 event.ord = cur_max_read_depth(ep->com.dev); 1343 event.ird = cur_max_read_depth(ep->com.dev); 1344 event.private_data_len = ep->plen; 1345 event.private_data = ep->mpa_pkt + 1346 sizeof(struct mpa_message); 1347 } 1348 } 1349 1350 pr_debug("ep %p tid %u status %d\n", ep, 1351 ep->hwtid, status); 1352 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1353 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1354 1355 if (status < 0) 1356 deref_cm_id(&ep->com); 1357 } 1358 1359 static int connect_request_upcall(struct c4iw_ep *ep) 1360 { 1361 struct iw_cm_event event; 1362 int ret; 1363 1364 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1365 memset(&event, 0, sizeof(event)); 1366 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1367 memcpy(&event.local_addr, &ep->com.local_addr, 1368 sizeof(ep->com.local_addr)); 1369 memcpy(&event.remote_addr, &ep->com.remote_addr, 1370 sizeof(ep->com.remote_addr)); 1371 event.provider_data = ep; 1372 if (!ep->tried_with_mpa_v1) { 1373 /* this means MPA_v2 is used */ 1374 event.ord = ep->ord; 1375 event.ird = ep->ird; 1376 event.private_data_len = ep->plen - 1377 sizeof(struct mpa_v2_conn_params); 1378 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1379 sizeof(struct mpa_v2_conn_params); 1380 } else { 1381 /* this means MPA_v1 is used. Send max supported */ 1382 event.ord = cur_max_read_depth(ep->com.dev); 1383 event.ird = cur_max_read_depth(ep->com.dev); 1384 event.private_data_len = ep->plen; 1385 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1386 } 1387 c4iw_get_ep(&ep->com); 1388 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1389 &event); 1390 if (ret) 1391 c4iw_put_ep(&ep->com); 1392 set_bit(CONNREQ_UPCALL, &ep->com.history); 1393 c4iw_put_ep(&ep->parent_ep->com); 1394 return ret; 1395 } 1396 1397 static void established_upcall(struct c4iw_ep *ep) 1398 { 1399 struct iw_cm_event event; 1400 1401 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1402 memset(&event, 0, sizeof(event)); 1403 event.event = IW_CM_EVENT_ESTABLISHED; 1404 event.ird = ep->ord; 1405 event.ord = ep->ird; 1406 if (ep->com.cm_id) { 1407 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1408 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1409 set_bit(ESTAB_UPCALL, &ep->com.history); 1410 } 1411 } 1412 1413 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1414 { 1415 struct sk_buff *skb; 1416 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1417 u32 credit_dack; 1418 1419 pr_debug("ep %p tid %u credits %u\n", 1420 ep, ep->hwtid, credits); 1421 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1422 if (!skb) { 1423 pr_err("update_rx_credits - cannot alloc skb!\n"); 1424 return 0; 1425 } 1426 1427 /* 1428 * If we couldn't specify the entire rcv window at connection setup 1429 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1430 * then add the overage in to the credits returned. 1431 */ 1432 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1433 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1434 1435 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1436 RX_DACK_MODE_V(dack_mode); 1437 1438 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1439 credit_dack); 1440 1441 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1442 return credits; 1443 } 1444 1445 #define RELAXED_IRD_NEGOTIATION 1 1446 1447 /* 1448 * process_mpa_reply - process streaming mode MPA reply 1449 * 1450 * Returns: 1451 * 1452 * 0 upon success indicating a connect request was delivered to the ULP 1453 * or the mpa request is incomplete but valid so far. 1454 * 1455 * 1 if a failure requires the caller to close the connection. 1456 * 1457 * 2 if a failure requires the caller to abort the connection. 1458 */ 1459 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1460 { 1461 struct mpa_message *mpa; 1462 struct mpa_v2_conn_params *mpa_v2_params; 1463 u16 plen; 1464 u16 resp_ird, resp_ord; 1465 u8 rtr_mismatch = 0, insuff_ird = 0; 1466 struct c4iw_qp_attributes attrs; 1467 enum c4iw_qp_attr_mask mask; 1468 int err; 1469 int disconnect = 0; 1470 1471 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1472 1473 /* 1474 * If we get more than the supported amount of private data 1475 * then we must fail this connection. 1476 */ 1477 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1478 err = -EINVAL; 1479 goto err_stop_timer; 1480 } 1481 1482 /* 1483 * copy the new data into our accumulation buffer. 1484 */ 1485 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1486 skb->len); 1487 ep->mpa_pkt_len += skb->len; 1488 1489 /* 1490 * if we don't even have the mpa message, then bail. 1491 */ 1492 if (ep->mpa_pkt_len < sizeof(*mpa)) 1493 return 0; 1494 mpa = (struct mpa_message *) ep->mpa_pkt; 1495 1496 /* Validate MPA header. */ 1497 if (mpa->revision > mpa_rev) { 1498 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1499 __func__, mpa_rev, mpa->revision); 1500 err = -EPROTO; 1501 goto err_stop_timer; 1502 } 1503 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1504 err = -EPROTO; 1505 goto err_stop_timer; 1506 } 1507 1508 plen = ntohs(mpa->private_data_size); 1509 1510 /* 1511 * Fail if there's too much private data. 1512 */ 1513 if (plen > MPA_MAX_PRIVATE_DATA) { 1514 err = -EPROTO; 1515 goto err_stop_timer; 1516 } 1517 1518 /* 1519 * If plen does not account for pkt size 1520 */ 1521 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1522 err = -EPROTO; 1523 goto err_stop_timer; 1524 } 1525 1526 ep->plen = (u8) plen; 1527 1528 /* 1529 * If we don't have all the pdata yet, then bail. 1530 * We'll continue process when more data arrives. 1531 */ 1532 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1533 return 0; 1534 1535 if (mpa->flags & MPA_REJECT) { 1536 err = -ECONNREFUSED; 1537 goto err_stop_timer; 1538 } 1539 1540 /* 1541 * Stop mpa timer. If it expired, then 1542 * we ignore the MPA reply. process_timeout() 1543 * will abort the connection. 1544 */ 1545 if (stop_ep_timer(ep)) 1546 return 0; 1547 1548 /* 1549 * If we get here we have accumulated the entire mpa 1550 * start reply message including private data. And 1551 * the MPA header is valid. 1552 */ 1553 __state_set(&ep->com, FPDU_MODE); 1554 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1555 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1556 ep->mpa_attr.version = mpa->revision; 1557 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1558 1559 if (mpa->revision == 2) { 1560 ep->mpa_attr.enhanced_rdma_conn = 1561 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1562 if (ep->mpa_attr.enhanced_rdma_conn) { 1563 mpa_v2_params = (struct mpa_v2_conn_params *) 1564 (ep->mpa_pkt + sizeof(*mpa)); 1565 resp_ird = ntohs(mpa_v2_params->ird) & 1566 MPA_V2_IRD_ORD_MASK; 1567 resp_ord = ntohs(mpa_v2_params->ord) & 1568 MPA_V2_IRD_ORD_MASK; 1569 pr_debug("responder ird %u ord %u ep ird %u ord %u\n", 1570 resp_ird, resp_ord, ep->ird, ep->ord); 1571 1572 /* 1573 * This is a double-check. Ideally, below checks are 1574 * not required since ird/ord stuff has been taken 1575 * care of in c4iw_accept_cr 1576 */ 1577 if (ep->ird < resp_ord) { 1578 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1579 ep->com.dev->rdev.lldi.max_ordird_qp) 1580 ep->ird = resp_ord; 1581 else 1582 insuff_ird = 1; 1583 } else if (ep->ird > resp_ord) { 1584 ep->ird = resp_ord; 1585 } 1586 if (ep->ord > resp_ird) { 1587 if (RELAXED_IRD_NEGOTIATION) 1588 ep->ord = resp_ird; 1589 else 1590 insuff_ird = 1; 1591 } 1592 if (insuff_ird) { 1593 err = -ENOMEM; 1594 ep->ird = resp_ord; 1595 ep->ord = resp_ird; 1596 } 1597 1598 if (ntohs(mpa_v2_params->ird) & 1599 MPA_V2_PEER2PEER_MODEL) { 1600 if (ntohs(mpa_v2_params->ord) & 1601 MPA_V2_RDMA_WRITE_RTR) 1602 ep->mpa_attr.p2p_type = 1603 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1604 else if (ntohs(mpa_v2_params->ord) & 1605 MPA_V2_RDMA_READ_RTR) 1606 ep->mpa_attr.p2p_type = 1607 FW_RI_INIT_P2PTYPE_READ_REQ; 1608 } 1609 } 1610 } else if (mpa->revision == 1) 1611 if (peer2peer) 1612 ep->mpa_attr.p2p_type = p2p_type; 1613 1614 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", 1615 ep->mpa_attr.crc_enabled, 1616 ep->mpa_attr.recv_marker_enabled, 1617 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1618 ep->mpa_attr.p2p_type, p2p_type); 1619 1620 /* 1621 * If responder's RTR does not match with that of initiator, assign 1622 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1623 * generated when moving QP to RTS state. 1624 * A TERM message will be sent after QP has moved to RTS state 1625 */ 1626 if ((ep->mpa_attr.version == 2) && peer2peer && 1627 (ep->mpa_attr.p2p_type != p2p_type)) { 1628 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1629 rtr_mismatch = 1; 1630 } 1631 1632 attrs.mpa_attr = ep->mpa_attr; 1633 attrs.max_ird = ep->ird; 1634 attrs.max_ord = ep->ord; 1635 attrs.llp_stream_handle = ep; 1636 attrs.next_state = C4IW_QP_STATE_RTS; 1637 1638 mask = C4IW_QP_ATTR_NEXT_STATE | 1639 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1640 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1641 1642 /* bind QP and TID with INIT_WR */ 1643 err = c4iw_modify_qp(ep->com.qp->rhp, 1644 ep->com.qp, mask, &attrs, 1); 1645 if (err) 1646 goto err; 1647 1648 /* 1649 * If responder's RTR requirement did not match with what initiator 1650 * supports, generate TERM message 1651 */ 1652 if (rtr_mismatch) { 1653 pr_err("%s: RTR mismatch, sending TERM\n", __func__); 1654 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1655 attrs.ecode = MPA_NOMATCH_RTR; 1656 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1657 attrs.send_term = 1; 1658 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1659 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1660 err = -ENOMEM; 1661 disconnect = 1; 1662 goto out; 1663 } 1664 1665 /* 1666 * Generate TERM if initiator IRD is not sufficient for responder 1667 * provided ORD. Currently, we do the same behaviour even when 1668 * responder provided IRD is also not sufficient as regards to 1669 * initiator ORD. 1670 */ 1671 if (insuff_ird) { 1672 pr_err("%s: Insufficient IRD, sending TERM\n", __func__); 1673 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1674 attrs.ecode = MPA_INSUFF_IRD; 1675 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1676 attrs.send_term = 1; 1677 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1678 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1679 err = -ENOMEM; 1680 disconnect = 1; 1681 goto out; 1682 } 1683 goto out; 1684 err_stop_timer: 1685 stop_ep_timer(ep); 1686 err: 1687 disconnect = 2; 1688 out: 1689 connect_reply_upcall(ep, err); 1690 return disconnect; 1691 } 1692 1693 /* 1694 * process_mpa_request - process streaming mode MPA request 1695 * 1696 * Returns: 1697 * 1698 * 0 upon success indicating a connect request was delivered to the ULP 1699 * or the mpa request is incomplete but valid so far. 1700 * 1701 * 1 if a failure requires the caller to close the connection. 1702 * 1703 * 2 if a failure requires the caller to abort the connection. 1704 */ 1705 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1706 { 1707 struct mpa_message *mpa; 1708 struct mpa_v2_conn_params *mpa_v2_params; 1709 u16 plen; 1710 1711 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1712 1713 /* 1714 * If we get more than the supported amount of private data 1715 * then we must fail this connection. 1716 */ 1717 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1718 goto err_stop_timer; 1719 1720 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1721 1722 /* 1723 * Copy the new data into our accumulation buffer. 1724 */ 1725 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1726 skb->len); 1727 ep->mpa_pkt_len += skb->len; 1728 1729 /* 1730 * If we don't even have the mpa message, then bail. 1731 * We'll continue process when more data arrives. 1732 */ 1733 if (ep->mpa_pkt_len < sizeof(*mpa)) 1734 return 0; 1735 1736 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1737 mpa = (struct mpa_message *) ep->mpa_pkt; 1738 1739 /* 1740 * Validate MPA Header. 1741 */ 1742 if (mpa->revision > mpa_rev) { 1743 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1744 __func__, mpa_rev, mpa->revision); 1745 goto err_stop_timer; 1746 } 1747 1748 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1749 goto err_stop_timer; 1750 1751 plen = ntohs(mpa->private_data_size); 1752 1753 /* 1754 * Fail if there's too much private data. 1755 */ 1756 if (plen > MPA_MAX_PRIVATE_DATA) 1757 goto err_stop_timer; 1758 1759 /* 1760 * If plen does not account for pkt size 1761 */ 1762 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1763 goto err_stop_timer; 1764 ep->plen = (u8) plen; 1765 1766 /* 1767 * If we don't have all the pdata yet, then bail. 1768 */ 1769 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1770 return 0; 1771 1772 /* 1773 * If we get here we have accumulated the entire mpa 1774 * start reply message including private data. 1775 */ 1776 ep->mpa_attr.initiator = 0; 1777 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1778 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1779 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1780 ep->mpa_attr.version = mpa->revision; 1781 if (mpa->revision == 1) 1782 ep->tried_with_mpa_v1 = 1; 1783 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1784 1785 if (mpa->revision == 2) { 1786 ep->mpa_attr.enhanced_rdma_conn = 1787 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1788 if (ep->mpa_attr.enhanced_rdma_conn) { 1789 mpa_v2_params = (struct mpa_v2_conn_params *) 1790 (ep->mpa_pkt + sizeof(*mpa)); 1791 ep->ird = ntohs(mpa_v2_params->ird) & 1792 MPA_V2_IRD_ORD_MASK; 1793 ep->ird = min_t(u32, ep->ird, 1794 cur_max_read_depth(ep->com.dev)); 1795 ep->ord = ntohs(mpa_v2_params->ord) & 1796 MPA_V2_IRD_ORD_MASK; 1797 ep->ord = min_t(u32, ep->ord, 1798 cur_max_read_depth(ep->com.dev)); 1799 pr_debug("initiator ird %u ord %u\n", 1800 ep->ird, ep->ord); 1801 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1802 if (peer2peer) { 1803 if (ntohs(mpa_v2_params->ord) & 1804 MPA_V2_RDMA_WRITE_RTR) 1805 ep->mpa_attr.p2p_type = 1806 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1807 else if (ntohs(mpa_v2_params->ord) & 1808 MPA_V2_RDMA_READ_RTR) 1809 ep->mpa_attr.p2p_type = 1810 FW_RI_INIT_P2PTYPE_READ_REQ; 1811 } 1812 } 1813 } else if (mpa->revision == 1) 1814 if (peer2peer) 1815 ep->mpa_attr.p2p_type = p2p_type; 1816 1817 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", 1818 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1819 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1820 ep->mpa_attr.p2p_type); 1821 1822 __state_set(&ep->com, MPA_REQ_RCVD); 1823 1824 /* drive upcall */ 1825 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1826 if (ep->parent_ep->com.state != DEAD) { 1827 if (connect_request_upcall(ep)) 1828 goto err_unlock_parent; 1829 } else { 1830 goto err_unlock_parent; 1831 } 1832 mutex_unlock(&ep->parent_ep->com.mutex); 1833 return 0; 1834 1835 err_unlock_parent: 1836 mutex_unlock(&ep->parent_ep->com.mutex); 1837 goto err_out; 1838 err_stop_timer: 1839 (void)stop_ep_timer(ep); 1840 err_out: 1841 return 2; 1842 } 1843 1844 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1845 { 1846 struct c4iw_ep *ep; 1847 struct cpl_rx_data *hdr = cplhdr(skb); 1848 unsigned int dlen = ntohs(hdr->len); 1849 unsigned int tid = GET_TID(hdr); 1850 __u8 status = hdr->status; 1851 int disconnect = 0; 1852 1853 ep = get_ep_from_tid(dev, tid); 1854 if (!ep) 1855 return 0; 1856 pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen); 1857 skb_pull(skb, sizeof(*hdr)); 1858 skb_trim(skb, dlen); 1859 mutex_lock(&ep->com.mutex); 1860 1861 switch (ep->com.state) { 1862 case MPA_REQ_SENT: 1863 update_rx_credits(ep, dlen); 1864 ep->rcv_seq += dlen; 1865 disconnect = process_mpa_reply(ep, skb); 1866 break; 1867 case MPA_REQ_WAIT: 1868 update_rx_credits(ep, dlen); 1869 ep->rcv_seq += dlen; 1870 disconnect = process_mpa_request(ep, skb); 1871 break; 1872 case FPDU_MODE: { 1873 struct c4iw_qp_attributes attrs; 1874 1875 update_rx_credits(ep, dlen); 1876 if (status) 1877 pr_err("%s Unexpected streaming data." \ 1878 " qpid %u ep %p state %d tid %u status %d\n", 1879 __func__, ep->com.qp->wq.sq.qid, ep, 1880 ep->com.state, ep->hwtid, status); 1881 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1882 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1883 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1884 disconnect = 1; 1885 break; 1886 } 1887 default: 1888 break; 1889 } 1890 mutex_unlock(&ep->com.mutex); 1891 if (disconnect) 1892 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1893 c4iw_put_ep(&ep->com); 1894 return 0; 1895 } 1896 1897 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx) 1898 { 1899 enum chip_type adapter_type; 1900 1901 adapter_type = ep->com.dev->rdev.lldi.adapter_type; 1902 1903 /* 1904 * If this TCB had a srq buffer cached, then we must complete 1905 * it. For user mode, that means saving the srqidx in the 1906 * user/kernel status page for this qp. For kernel mode, just 1907 * synthesize the CQE now. 1908 */ 1909 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) { 1910 if (ep->com.qp->ibqp.uobject) 1911 t4_set_wq_in_error(&ep->com.qp->wq, srqidx); 1912 else 1913 c4iw_flush_srqidx(ep->com.qp, srqidx); 1914 } 1915 } 1916 1917 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1918 { 1919 u32 srqidx; 1920 struct c4iw_ep *ep; 1921 struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb); 1922 int release = 0; 1923 unsigned int tid = GET_TID(rpl); 1924 1925 ep = get_ep_from_tid(dev, tid); 1926 if (!ep) { 1927 pr_warn("Abort rpl to freed endpoint\n"); 1928 return 0; 1929 } 1930 1931 if (ep->com.qp && ep->com.qp->srq) { 1932 srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status)); 1933 complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx); 1934 } 1935 1936 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1937 mutex_lock(&ep->com.mutex); 1938 switch (ep->com.state) { 1939 case ABORTING: 1940 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 1941 __state_set(&ep->com, DEAD); 1942 release = 1; 1943 break; 1944 default: 1945 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); 1946 break; 1947 } 1948 mutex_unlock(&ep->com.mutex); 1949 1950 if (release) { 1951 close_complete_upcall(ep, -ECONNRESET); 1952 release_ep_resources(ep); 1953 } 1954 c4iw_put_ep(&ep->com); 1955 return 0; 1956 } 1957 1958 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1959 { 1960 struct sk_buff *skb; 1961 struct fw_ofld_connection_wr *req; 1962 unsigned int mtu_idx; 1963 u32 wscale; 1964 struct sockaddr_in *sin; 1965 int win; 1966 1967 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1968 req = __skb_put_zero(skb, sizeof(*req)); 1969 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1970 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1971 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1972 ep->com.dev->rdev.lldi.ports[0], 1973 ep->l2t)); 1974 sin = (struct sockaddr_in *)&ep->com.local_addr; 1975 req->le.lport = sin->sin_port; 1976 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1977 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1978 req->le.pport = sin->sin_port; 1979 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1980 req->tcb.t_state_to_astid = 1981 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1982 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1983 req->tcb.cplrxdataack_cplpassacceptrpl = 1984 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1985 req->tcb.tx_max = (__force __be32) jiffies; 1986 req->tcb.rcv_adv = htons(1); 1987 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1988 enable_tcp_timestamps, 1989 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1990 wscale = cxgb_compute_wscale(rcv_win); 1991 1992 /* 1993 * Specify the largest window that will fit in opt0. The 1994 * remainder will be specified in the rx_data_ack. 1995 */ 1996 win = ep->rcv_win >> 10; 1997 if (win > RCV_BUFSIZ_M) 1998 win = RCV_BUFSIZ_M; 1999 2000 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 2001 (nocong ? NO_CONG_F : 0) | 2002 KEEP_ALIVE_F | 2003 DELACK_F | 2004 WND_SCALE_V(wscale) | 2005 MSS_IDX_V(mtu_idx) | 2006 L2T_IDX_V(ep->l2t->idx) | 2007 TX_CHAN_V(ep->tx_chan) | 2008 SMAC_SEL_V(ep->smac_idx) | 2009 DSCP_V(ep->tos >> 2) | 2010 ULP_MODE_V(ULP_MODE_TCPDDP) | 2011 RCV_BUFSIZ_V(win)); 2012 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 2013 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 2014 RX_CHANNEL_V(0) | 2015 CCTRL_ECN_V(enable_ecn) | 2016 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 2017 if (enable_tcp_timestamps) 2018 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 2019 if (enable_tcp_sack) 2020 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 2021 if (wscale && enable_tcp_window_scaling) 2022 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 2023 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 2024 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 2025 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 2026 set_bit(ACT_OFLD_CONN, &ep->com.history); 2027 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2028 } 2029 2030 /* 2031 * Some of the error codes above implicitly indicate that there is no TID 2032 * allocated with the result of an ACT_OPEN. We use this predicate to make 2033 * that explicit. 2034 */ 2035 static inline int act_open_has_tid(int status) 2036 { 2037 return (status != CPL_ERR_TCAM_PARITY && 2038 status != CPL_ERR_TCAM_MISS && 2039 status != CPL_ERR_TCAM_FULL && 2040 status != CPL_ERR_CONN_EXIST_SYNRECV && 2041 status != CPL_ERR_CONN_EXIST); 2042 } 2043 2044 static char *neg_adv_str(unsigned int status) 2045 { 2046 switch (status) { 2047 case CPL_ERR_RTX_NEG_ADVICE: 2048 return "Retransmit timeout"; 2049 case CPL_ERR_PERSIST_NEG_ADVICE: 2050 return "Persist timeout"; 2051 case CPL_ERR_KEEPALV_NEG_ADVICE: 2052 return "Keepalive timeout"; 2053 default: 2054 return "Unknown"; 2055 } 2056 } 2057 2058 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 2059 { 2060 ep->snd_win = snd_win; 2061 ep->rcv_win = rcv_win; 2062 pr_debug("snd_win %d rcv_win %d\n", 2063 ep->snd_win, ep->rcv_win); 2064 } 2065 2066 #define ACT_OPEN_RETRY_COUNT 2 2067 2068 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2069 struct dst_entry *dst, struct c4iw_dev *cdev, 2070 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2071 { 2072 struct neighbour *n; 2073 int err, step; 2074 struct net_device *pdev; 2075 2076 n = dst_neigh_lookup(dst, peer_ip); 2077 if (!n) 2078 return -ENODEV; 2079 2080 rcu_read_lock(); 2081 err = -ENOMEM; 2082 if (n->dev->flags & IFF_LOOPBACK) { 2083 if (iptype == 4) 2084 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2085 else if (IS_ENABLED(CONFIG_IPV6)) 2086 for_each_netdev(&init_net, pdev) { 2087 if (ipv6_chk_addr(&init_net, 2088 (struct in6_addr *)peer_ip, 2089 pdev, 1)) 2090 break; 2091 } 2092 else 2093 pdev = NULL; 2094 2095 if (!pdev) { 2096 err = -ENODEV; 2097 goto out; 2098 } 2099 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2100 n, pdev, rt_tos2priority(tos)); 2101 if (!ep->l2t) { 2102 dev_put(pdev); 2103 goto out; 2104 } 2105 ep->mtu = pdev->mtu; 2106 ep->tx_chan = cxgb4_port_chan(pdev); 2107 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx; 2108 step = cdev->rdev.lldi.ntxq / 2109 cdev->rdev.lldi.nchan; 2110 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2111 step = cdev->rdev.lldi.nrxq / 2112 cdev->rdev.lldi.nchan; 2113 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2114 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2115 cxgb4_port_idx(pdev) * step]; 2116 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2117 dev_put(pdev); 2118 } else { 2119 pdev = get_real_dev(n->dev); 2120 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2121 n, pdev, rt_tos2priority(tos)); 2122 if (!ep->l2t) 2123 goto out; 2124 ep->mtu = dst_mtu(dst); 2125 ep->tx_chan = cxgb4_port_chan(pdev); 2126 ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx; 2127 step = cdev->rdev.lldi.ntxq / 2128 cdev->rdev.lldi.nchan; 2129 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2130 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2131 step = cdev->rdev.lldi.nrxq / 2132 cdev->rdev.lldi.nchan; 2133 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2134 cxgb4_port_idx(pdev) * step]; 2135 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2136 2137 if (clear_mpa_v1) { 2138 ep->retry_with_mpa_v1 = 0; 2139 ep->tried_with_mpa_v1 = 0; 2140 } 2141 } 2142 err = 0; 2143 out: 2144 rcu_read_unlock(); 2145 2146 neigh_release(n); 2147 2148 return err; 2149 } 2150 2151 static int c4iw_reconnect(struct c4iw_ep *ep) 2152 { 2153 int err = 0; 2154 int size = 0; 2155 struct sockaddr_in *laddr = (struct sockaddr_in *) 2156 &ep->com.cm_id->m_local_addr; 2157 struct sockaddr_in *raddr = (struct sockaddr_in *) 2158 &ep->com.cm_id->m_remote_addr; 2159 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2160 &ep->com.cm_id->m_local_addr; 2161 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2162 &ep->com.cm_id->m_remote_addr; 2163 int iptype; 2164 __u8 *ra; 2165 2166 pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id); 2167 c4iw_init_wr_wait(ep->com.wr_waitp); 2168 2169 /* When MPA revision is different on nodes, the node with MPA_rev=2 2170 * tries to reconnect with MPA_rev 1 for the same EP through 2171 * c4iw_reconnect(), where the same EP is assigned with new tid for 2172 * further connection establishment. As we are using the same EP pointer 2173 * for reconnect, few skbs are used during the previous c4iw_connect(), 2174 * which leaves the EP with inadequate skbs for further 2175 * c4iw_reconnect(), Further causing a crash due to an empty 2176 * skb_list() during peer_abort(). Allocate skbs which is already used. 2177 */ 2178 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2179 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2180 err = -ENOMEM; 2181 goto fail1; 2182 } 2183 2184 /* 2185 * Allocate an active TID to initiate a TCP connection. 2186 */ 2187 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2188 if (ep->atid == -1) { 2189 pr_err("%s - cannot alloc atid\n", __func__); 2190 err = -ENOMEM; 2191 goto fail2; 2192 } 2193 err = xa_insert_irq(&ep->com.dev->atids, ep->atid, ep, GFP_KERNEL); 2194 if (err) 2195 goto fail2a; 2196 2197 /* find a route */ 2198 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2199 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2200 laddr->sin_addr.s_addr, 2201 raddr->sin_addr.s_addr, 2202 laddr->sin_port, 2203 raddr->sin_port, ep->com.cm_id->tos); 2204 iptype = 4; 2205 ra = (__u8 *)&raddr->sin_addr; 2206 } else { 2207 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2208 get_real_dev, 2209 laddr6->sin6_addr.s6_addr, 2210 raddr6->sin6_addr.s6_addr, 2211 laddr6->sin6_port, 2212 raddr6->sin6_port, 2213 ep->com.cm_id->tos, 2214 raddr6->sin6_scope_id); 2215 iptype = 6; 2216 ra = (__u8 *)&raddr6->sin6_addr; 2217 } 2218 if (!ep->dst) { 2219 pr_err("%s - cannot find route\n", __func__); 2220 err = -EHOSTUNREACH; 2221 goto fail3; 2222 } 2223 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2224 ep->com.dev->rdev.lldi.adapter_type, 2225 ep->com.cm_id->tos); 2226 if (err) { 2227 pr_err("%s - cannot alloc l2e\n", __func__); 2228 goto fail4; 2229 } 2230 2231 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2232 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2233 ep->l2t->idx); 2234 2235 state_set(&ep->com, CONNECTING); 2236 ep->tos = ep->com.cm_id->tos; 2237 2238 /* send connect request to rnic */ 2239 err = send_connect(ep); 2240 if (!err) 2241 goto out; 2242 2243 cxgb4_l2t_release(ep->l2t); 2244 fail4: 2245 dst_release(ep->dst); 2246 fail3: 2247 xa_erase_irq(&ep->com.dev->atids, ep->atid); 2248 fail2a: 2249 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2250 fail2: 2251 /* 2252 * remember to send notification to upper layer. 2253 * We are in here so the upper layer is not aware that this is 2254 * re-connect attempt and so, upper layer is still waiting for 2255 * response of 1st connect request. 2256 */ 2257 connect_reply_upcall(ep, -ECONNRESET); 2258 fail1: 2259 c4iw_put_ep(&ep->com); 2260 out: 2261 return err; 2262 } 2263 2264 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2265 { 2266 struct c4iw_ep *ep; 2267 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2268 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2269 ntohl(rpl->atid_status))); 2270 struct tid_info *t = dev->rdev.lldi.tids; 2271 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2272 struct sockaddr_in *la; 2273 struct sockaddr_in *ra; 2274 struct sockaddr_in6 *la6; 2275 struct sockaddr_in6 *ra6; 2276 int ret = 0; 2277 2278 ep = lookup_atid(t, atid); 2279 la = (struct sockaddr_in *)&ep->com.local_addr; 2280 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2281 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2282 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2283 2284 pr_debug("ep %p atid %u status %u errno %d\n", ep, atid, 2285 status, status2errno(status)); 2286 2287 if (cxgb_is_neg_adv(status)) { 2288 pr_debug("Connection problems for atid %u status %u (%s)\n", 2289 atid, status, neg_adv_str(status)); 2290 ep->stats.connect_neg_adv++; 2291 mutex_lock(&dev->rdev.stats.lock); 2292 dev->rdev.stats.neg_adv++; 2293 mutex_unlock(&dev->rdev.stats.lock); 2294 return 0; 2295 } 2296 2297 set_bit(ACT_OPEN_RPL, &ep->com.history); 2298 2299 /* 2300 * Log interesting failures. 2301 */ 2302 switch (status) { 2303 case CPL_ERR_CONN_RESET: 2304 case CPL_ERR_CONN_TIMEDOUT: 2305 break; 2306 case CPL_ERR_TCAM_FULL: 2307 mutex_lock(&dev->rdev.stats.lock); 2308 dev->rdev.stats.tcam_full++; 2309 mutex_unlock(&dev->rdev.stats.lock); 2310 if (ep->com.local_addr.ss_family == AF_INET && 2311 dev->rdev.lldi.enable_fw_ofld_conn) { 2312 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2313 ntohl(rpl->atid_status)))); 2314 if (ret) 2315 goto fail; 2316 return 0; 2317 } 2318 break; 2319 case CPL_ERR_CONN_EXIST: 2320 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2321 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2322 if (ep->com.remote_addr.ss_family == AF_INET6) { 2323 struct sockaddr_in6 *sin6 = 2324 (struct sockaddr_in6 *) 2325 &ep->com.local_addr; 2326 cxgb4_clip_release( 2327 ep->com.dev->rdev.lldi.ports[0], 2328 (const u32 *) 2329 &sin6->sin6_addr.s6_addr, 1); 2330 } 2331 xa_erase_irq(&ep->com.dev->atids, atid); 2332 cxgb4_free_atid(t, atid); 2333 dst_release(ep->dst); 2334 cxgb4_l2t_release(ep->l2t); 2335 c4iw_reconnect(ep); 2336 return 0; 2337 } 2338 break; 2339 default: 2340 if (ep->com.local_addr.ss_family == AF_INET) { 2341 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2342 atid, status, status2errno(status), 2343 &la->sin_addr.s_addr, ntohs(la->sin_port), 2344 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2345 } else { 2346 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2347 atid, status, status2errno(status), 2348 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2349 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2350 } 2351 break; 2352 } 2353 2354 fail: 2355 connect_reply_upcall(ep, status2errno(status)); 2356 state_set(&ep->com, DEAD); 2357 2358 if (ep->com.remote_addr.ss_family == AF_INET6) { 2359 struct sockaddr_in6 *sin6 = 2360 (struct sockaddr_in6 *)&ep->com.local_addr; 2361 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2362 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2363 } 2364 if (status && act_open_has_tid(status)) 2365 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl), 2366 ep->com.local_addr.ss_family); 2367 2368 xa_erase_irq(&ep->com.dev->atids, atid); 2369 cxgb4_free_atid(t, atid); 2370 dst_release(ep->dst); 2371 cxgb4_l2t_release(ep->l2t); 2372 c4iw_put_ep(&ep->com); 2373 2374 return 0; 2375 } 2376 2377 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2378 { 2379 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2380 unsigned int stid = GET_TID(rpl); 2381 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2382 2383 if (!ep) { 2384 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2385 goto out; 2386 } 2387 pr_debug("ep %p status %d error %d\n", ep, 2388 rpl->status, status2errno(rpl->status)); 2389 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2390 c4iw_put_ep(&ep->com); 2391 out: 2392 return 0; 2393 } 2394 2395 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2396 { 2397 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2398 unsigned int stid = GET_TID(rpl); 2399 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2400 2401 if (!ep) { 2402 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2403 goto out; 2404 } 2405 pr_debug("ep %p\n", ep); 2406 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2407 c4iw_put_ep(&ep->com); 2408 out: 2409 return 0; 2410 } 2411 2412 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2413 struct cpl_pass_accept_req *req) 2414 { 2415 struct cpl_pass_accept_rpl *rpl; 2416 unsigned int mtu_idx; 2417 u64 opt0; 2418 u32 opt2; 2419 u32 wscale; 2420 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2421 int win; 2422 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2423 2424 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2425 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2426 enable_tcp_timestamps && req->tcpopt.tstamp, 2427 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2428 wscale = cxgb_compute_wscale(rcv_win); 2429 2430 /* 2431 * Specify the largest window that will fit in opt0. The 2432 * remainder will be specified in the rx_data_ack. 2433 */ 2434 win = ep->rcv_win >> 10; 2435 if (win > RCV_BUFSIZ_M) 2436 win = RCV_BUFSIZ_M; 2437 opt0 = (nocong ? NO_CONG_F : 0) | 2438 KEEP_ALIVE_F | 2439 DELACK_F | 2440 WND_SCALE_V(wscale) | 2441 MSS_IDX_V(mtu_idx) | 2442 L2T_IDX_V(ep->l2t->idx) | 2443 TX_CHAN_V(ep->tx_chan) | 2444 SMAC_SEL_V(ep->smac_idx) | 2445 DSCP_V(ep->tos >> 2) | 2446 ULP_MODE_V(ULP_MODE_TCPDDP) | 2447 RCV_BUFSIZ_V(win); 2448 opt2 = RX_CHANNEL_V(0) | 2449 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2450 2451 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2452 opt2 |= TSTAMPS_EN_F; 2453 if (enable_tcp_sack && req->tcpopt.sack) 2454 opt2 |= SACK_EN_F; 2455 if (wscale && enable_tcp_window_scaling) 2456 opt2 |= WND_SCALE_EN_F; 2457 if (enable_ecn) { 2458 const struct tcphdr *tcph; 2459 u32 hlen = ntohl(req->hdr_len); 2460 2461 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2462 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2463 IP_HDR_LEN_G(hlen); 2464 else 2465 tcph = (const void *)(req + 1) + 2466 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2467 if (tcph->ece && tcph->cwr) 2468 opt2 |= CCTRL_ECN_V(1); 2469 } 2470 2471 skb_get(skb); 2472 rpl = cplhdr(skb); 2473 if (!is_t4(adapter_type)) { 2474 BUILD_BUG_ON(sizeof(*rpl5) != roundup(sizeof(*rpl5), 16)); 2475 skb_trim(skb, sizeof(*rpl5)); 2476 rpl5 = (void *)rpl; 2477 INIT_TP_WR(rpl5, ep->hwtid); 2478 } else { 2479 skb_trim(skb, sizeof(*rpl)); 2480 INIT_TP_WR(rpl, ep->hwtid); 2481 } 2482 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2483 ep->hwtid)); 2484 2485 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2486 u32 isn = (prandom_u32() & ~7UL) - 1; 2487 opt2 |= T5_OPT_2_VALID_F; 2488 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2489 opt2 |= T5_ISS_F; 2490 rpl5 = (void *)rpl; 2491 memset_after(rpl5, 0, iss); 2492 if (peer2peer) 2493 isn += 4; 2494 rpl5->iss = cpu_to_be32(isn); 2495 pr_debug("iss %u\n", be32_to_cpu(rpl5->iss)); 2496 } 2497 2498 rpl->opt0 = cpu_to_be64(opt0); 2499 rpl->opt2 = cpu_to_be32(opt2); 2500 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2501 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2502 2503 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2504 } 2505 2506 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2507 { 2508 pr_debug("c4iw_dev %p tid %u\n", dev, hwtid); 2509 skb_trim(skb, sizeof(struct cpl_tid_release)); 2510 release_tid(&dev->rdev, hwtid, skb); 2511 return; 2512 } 2513 2514 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2515 { 2516 struct c4iw_ep *child_ep = NULL, *parent_ep; 2517 struct cpl_pass_accept_req *req = cplhdr(skb); 2518 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2519 struct tid_info *t = dev->rdev.lldi.tids; 2520 unsigned int hwtid = GET_TID(req); 2521 struct dst_entry *dst; 2522 __u8 local_ip[16], peer_ip[16]; 2523 __be16 local_port, peer_port; 2524 struct sockaddr_in6 *sin6; 2525 int err; 2526 u16 peer_mss = ntohs(req->tcpopt.mss); 2527 int iptype; 2528 unsigned short hdrs; 2529 u8 tos; 2530 2531 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2532 if (!parent_ep) { 2533 pr_err("%s connect request on invalid stid %d\n", 2534 __func__, stid); 2535 goto reject; 2536 } 2537 2538 if (state_read(&parent_ep->com) != LISTEN) { 2539 pr_err("%s - listening ep not in LISTEN\n", __func__); 2540 goto reject; 2541 } 2542 2543 if (parent_ep->com.cm_id->tos_set) 2544 tos = parent_ep->com.cm_id->tos; 2545 else 2546 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2547 2548 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2549 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2550 2551 /* Find output route */ 2552 if (iptype == 4) { 2553 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2554 , parent_ep, hwtid, 2555 local_ip, peer_ip, ntohs(local_port), 2556 ntohs(peer_port), peer_mss); 2557 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2558 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2559 local_port, peer_port, tos); 2560 } else { 2561 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2562 , parent_ep, hwtid, 2563 local_ip, peer_ip, ntohs(local_port), 2564 ntohs(peer_port), peer_mss); 2565 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2566 local_ip, peer_ip, local_port, peer_port, 2567 tos, 2568 ((struct sockaddr_in6 *) 2569 &parent_ep->com.local_addr)->sin6_scope_id); 2570 } 2571 if (!dst) { 2572 pr_err("%s - failed to find dst entry!\n", __func__); 2573 goto reject; 2574 } 2575 2576 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2577 if (!child_ep) { 2578 pr_err("%s - failed to allocate ep entry!\n", __func__); 2579 dst_release(dst); 2580 goto reject; 2581 } 2582 2583 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2584 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2585 if (err) { 2586 pr_err("%s - failed to allocate l2t entry!\n", __func__); 2587 dst_release(dst); 2588 kfree(child_ep); 2589 goto reject; 2590 } 2591 2592 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + 2593 sizeof(struct tcphdr) + 2594 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2595 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2596 child_ep->mtu = peer_mss + hdrs; 2597 2598 skb_queue_head_init(&child_ep->com.ep_skb_list); 2599 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2600 goto fail; 2601 2602 state_set(&child_ep->com, CONNECTING); 2603 child_ep->com.dev = dev; 2604 child_ep->com.cm_id = NULL; 2605 2606 if (iptype == 4) { 2607 struct sockaddr_in *sin = (struct sockaddr_in *) 2608 &child_ep->com.local_addr; 2609 2610 sin->sin_family = AF_INET; 2611 sin->sin_port = local_port; 2612 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2613 2614 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2615 sin->sin_family = AF_INET; 2616 sin->sin_port = ((struct sockaddr_in *) 2617 &parent_ep->com.local_addr)->sin_port; 2618 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2619 2620 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2621 sin->sin_family = AF_INET; 2622 sin->sin_port = peer_port; 2623 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2624 } else { 2625 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2626 sin6->sin6_family = PF_INET6; 2627 sin6->sin6_port = local_port; 2628 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2629 2630 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2631 sin6->sin6_family = PF_INET6; 2632 sin6->sin6_port = ((struct sockaddr_in6 *) 2633 &parent_ep->com.local_addr)->sin6_port; 2634 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2635 2636 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2637 sin6->sin6_family = PF_INET6; 2638 sin6->sin6_port = peer_port; 2639 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2640 } 2641 2642 c4iw_get_ep(&parent_ep->com); 2643 child_ep->parent_ep = parent_ep; 2644 child_ep->tos = tos; 2645 child_ep->dst = dst; 2646 child_ep->hwtid = hwtid; 2647 2648 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n", 2649 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2650 2651 timer_setup(&child_ep->timer, ep_timeout, 0); 2652 cxgb4_insert_tid(t, child_ep, hwtid, 2653 child_ep->com.local_addr.ss_family); 2654 insert_ep_tid(child_ep); 2655 if (accept_cr(child_ep, skb, req)) { 2656 c4iw_put_ep(&parent_ep->com); 2657 release_ep_resources(child_ep); 2658 } else { 2659 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2660 } 2661 if (iptype == 6) { 2662 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2663 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2664 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2665 } 2666 goto out; 2667 fail: 2668 c4iw_put_ep(&child_ep->com); 2669 reject: 2670 reject_cr(dev, hwtid, skb); 2671 out: 2672 if (parent_ep) 2673 c4iw_put_ep(&parent_ep->com); 2674 return 0; 2675 } 2676 2677 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2678 { 2679 struct c4iw_ep *ep; 2680 struct cpl_pass_establish *req = cplhdr(skb); 2681 unsigned int tid = GET_TID(req); 2682 int ret; 2683 u16 tcp_opt = ntohs(req->tcp_opt); 2684 2685 ep = get_ep_from_tid(dev, tid); 2686 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2687 ep->snd_seq = be32_to_cpu(req->snd_isn); 2688 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2689 ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt); 2690 2691 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt); 2692 2693 set_emss(ep, tcp_opt); 2694 2695 dst_confirm(ep->dst); 2696 mutex_lock(&ep->com.mutex); 2697 ep->com.state = MPA_REQ_WAIT; 2698 start_ep_timer(ep); 2699 set_bit(PASS_ESTAB, &ep->com.history); 2700 ret = send_flowc(ep); 2701 mutex_unlock(&ep->com.mutex); 2702 if (ret) 2703 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2704 c4iw_put_ep(&ep->com); 2705 2706 return 0; 2707 } 2708 2709 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2710 { 2711 struct cpl_peer_close *hdr = cplhdr(skb); 2712 struct c4iw_ep *ep; 2713 struct c4iw_qp_attributes attrs; 2714 int disconnect = 1; 2715 int release = 0; 2716 unsigned int tid = GET_TID(hdr); 2717 int ret; 2718 2719 ep = get_ep_from_tid(dev, tid); 2720 if (!ep) 2721 return 0; 2722 2723 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2724 dst_confirm(ep->dst); 2725 2726 set_bit(PEER_CLOSE, &ep->com.history); 2727 mutex_lock(&ep->com.mutex); 2728 switch (ep->com.state) { 2729 case MPA_REQ_WAIT: 2730 __state_set(&ep->com, CLOSING); 2731 break; 2732 case MPA_REQ_SENT: 2733 __state_set(&ep->com, CLOSING); 2734 connect_reply_upcall(ep, -ECONNRESET); 2735 break; 2736 case MPA_REQ_RCVD: 2737 2738 /* 2739 * We're gonna mark this puppy DEAD, but keep 2740 * the reference on it until the ULP accepts or 2741 * rejects the CR. Also wake up anyone waiting 2742 * in rdma connection migration (see c4iw_accept_cr()). 2743 */ 2744 __state_set(&ep->com, CLOSING); 2745 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2746 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2747 break; 2748 case MPA_REP_SENT: 2749 __state_set(&ep->com, CLOSING); 2750 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2751 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2752 break; 2753 case FPDU_MODE: 2754 start_ep_timer(ep); 2755 __state_set(&ep->com, CLOSING); 2756 attrs.next_state = C4IW_QP_STATE_CLOSING; 2757 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2758 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2759 if (ret != -ECONNRESET) { 2760 peer_close_upcall(ep); 2761 disconnect = 1; 2762 } 2763 break; 2764 case ABORTING: 2765 disconnect = 0; 2766 break; 2767 case CLOSING: 2768 __state_set(&ep->com, MORIBUND); 2769 disconnect = 0; 2770 break; 2771 case MORIBUND: 2772 (void)stop_ep_timer(ep); 2773 if (ep->com.cm_id && ep->com.qp) { 2774 attrs.next_state = C4IW_QP_STATE_IDLE; 2775 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2776 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2777 } 2778 close_complete_upcall(ep, 0); 2779 __state_set(&ep->com, DEAD); 2780 release = 1; 2781 disconnect = 0; 2782 break; 2783 case DEAD: 2784 disconnect = 0; 2785 break; 2786 default: 2787 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2788 } 2789 mutex_unlock(&ep->com.mutex); 2790 if (disconnect) 2791 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2792 if (release) 2793 release_ep_resources(ep); 2794 c4iw_put_ep(&ep->com); 2795 return 0; 2796 } 2797 2798 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep) 2799 { 2800 complete_cached_srq_buffers(ep, ep->srqe_idx); 2801 if (ep->com.cm_id && ep->com.qp) { 2802 struct c4iw_qp_attributes attrs; 2803 2804 attrs.next_state = C4IW_QP_STATE_ERROR; 2805 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2806 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2807 } 2808 peer_abort_upcall(ep); 2809 release_ep_resources(ep); 2810 c4iw_put_ep(&ep->com); 2811 } 2812 2813 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2814 { 2815 struct cpl_abort_req_rss6 *req = cplhdr(skb); 2816 struct c4iw_ep *ep; 2817 struct sk_buff *rpl_skb; 2818 struct c4iw_qp_attributes attrs; 2819 int ret; 2820 int release = 0; 2821 unsigned int tid = GET_TID(req); 2822 u8 status; 2823 u32 srqidx; 2824 2825 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2826 2827 ep = get_ep_from_tid(dev, tid); 2828 if (!ep) 2829 return 0; 2830 2831 status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status)); 2832 2833 if (cxgb_is_neg_adv(status)) { 2834 pr_debug("Negative advice on abort- tid %u status %d (%s)\n", 2835 ep->hwtid, status, neg_adv_str(status)); 2836 ep->stats.abort_neg_adv++; 2837 mutex_lock(&dev->rdev.stats.lock); 2838 dev->rdev.stats.neg_adv++; 2839 mutex_unlock(&dev->rdev.stats.lock); 2840 goto deref_ep; 2841 } 2842 2843 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, 2844 ep->com.state); 2845 set_bit(PEER_ABORT, &ep->com.history); 2846 2847 /* 2848 * Wake up any threads in rdma_init() or rdma_fini(). 2849 * However, this is not needed if com state is just 2850 * MPA_REQ_SENT 2851 */ 2852 if (ep->com.state != MPA_REQ_SENT) 2853 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2854 2855 mutex_lock(&ep->com.mutex); 2856 switch (ep->com.state) { 2857 case CONNECTING: 2858 c4iw_put_ep(&ep->parent_ep->com); 2859 break; 2860 case MPA_REQ_WAIT: 2861 (void)stop_ep_timer(ep); 2862 break; 2863 case MPA_REQ_SENT: 2864 (void)stop_ep_timer(ep); 2865 if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 || 2866 (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2867 connect_reply_upcall(ep, -ECONNRESET); 2868 else { 2869 /* 2870 * we just don't send notification upwards because we 2871 * want to retry with mpa_v1 without upper layers even 2872 * knowing it. 2873 * 2874 * do some housekeeping so as to re-initiate the 2875 * connection 2876 */ 2877 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n", 2878 __func__, mpa_rev); 2879 ep->retry_with_mpa_v1 = 1; 2880 } 2881 break; 2882 case MPA_REP_SENT: 2883 break; 2884 case MPA_REQ_RCVD: 2885 break; 2886 case MORIBUND: 2887 case CLOSING: 2888 stop_ep_timer(ep); 2889 fallthrough; 2890 case FPDU_MODE: 2891 if (ep->com.qp && ep->com.qp->srq) { 2892 srqidx = ABORT_RSS_SRQIDX_G( 2893 be32_to_cpu(req->srqidx_status)); 2894 if (srqidx) { 2895 complete_cached_srq_buffers(ep, srqidx); 2896 } else { 2897 /* Hold ep ref until finish_peer_abort() */ 2898 c4iw_get_ep(&ep->com); 2899 __state_set(&ep->com, ABORTING); 2900 set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags); 2901 read_tcb(ep); 2902 break; 2903 2904 } 2905 } 2906 2907 if (ep->com.cm_id && ep->com.qp) { 2908 attrs.next_state = C4IW_QP_STATE_ERROR; 2909 ret = c4iw_modify_qp(ep->com.qp->rhp, 2910 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2911 &attrs, 1); 2912 if (ret) 2913 pr_err("%s - qp <- error failed!\n", __func__); 2914 } 2915 peer_abort_upcall(ep); 2916 break; 2917 case ABORTING: 2918 break; 2919 case DEAD: 2920 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2921 mutex_unlock(&ep->com.mutex); 2922 goto deref_ep; 2923 default: 2924 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2925 break; 2926 } 2927 dst_confirm(ep->dst); 2928 if (ep->com.state != ABORTING) { 2929 __state_set(&ep->com, DEAD); 2930 /* we don't release if we want to retry with mpa_v1 */ 2931 if (!ep->retry_with_mpa_v1) 2932 release = 1; 2933 } 2934 mutex_unlock(&ep->com.mutex); 2935 2936 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2937 if (WARN_ON(!rpl_skb)) { 2938 release = 1; 2939 goto out; 2940 } 2941 2942 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2943 2944 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2945 out: 2946 if (release) 2947 release_ep_resources(ep); 2948 else if (ep->retry_with_mpa_v1) { 2949 if (ep->com.remote_addr.ss_family == AF_INET6) { 2950 struct sockaddr_in6 *sin6 = 2951 (struct sockaddr_in6 *) 2952 &ep->com.local_addr; 2953 cxgb4_clip_release( 2954 ep->com.dev->rdev.lldi.ports[0], 2955 (const u32 *)&sin6->sin6_addr.s6_addr, 2956 1); 2957 } 2958 xa_erase_irq(&ep->com.dev->hwtids, ep->hwtid); 2959 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 2960 ep->com.local_addr.ss_family); 2961 dst_release(ep->dst); 2962 cxgb4_l2t_release(ep->l2t); 2963 c4iw_reconnect(ep); 2964 } 2965 2966 deref_ep: 2967 c4iw_put_ep(&ep->com); 2968 /* Dereferencing ep, referenced in peer_abort_intr() */ 2969 c4iw_put_ep(&ep->com); 2970 return 0; 2971 } 2972 2973 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2974 { 2975 struct c4iw_ep *ep; 2976 struct c4iw_qp_attributes attrs; 2977 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2978 int release = 0; 2979 unsigned int tid = GET_TID(rpl); 2980 2981 ep = get_ep_from_tid(dev, tid); 2982 if (!ep) 2983 return 0; 2984 2985 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2986 2987 /* The cm_id may be null if we failed to connect */ 2988 mutex_lock(&ep->com.mutex); 2989 set_bit(CLOSE_CON_RPL, &ep->com.history); 2990 switch (ep->com.state) { 2991 case CLOSING: 2992 __state_set(&ep->com, MORIBUND); 2993 break; 2994 case MORIBUND: 2995 (void)stop_ep_timer(ep); 2996 if ((ep->com.cm_id) && (ep->com.qp)) { 2997 attrs.next_state = C4IW_QP_STATE_IDLE; 2998 c4iw_modify_qp(ep->com.qp->rhp, 2999 ep->com.qp, 3000 C4IW_QP_ATTR_NEXT_STATE, 3001 &attrs, 1); 3002 } 3003 close_complete_upcall(ep, 0); 3004 __state_set(&ep->com, DEAD); 3005 release = 1; 3006 break; 3007 case ABORTING: 3008 case DEAD: 3009 break; 3010 default: 3011 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 3012 break; 3013 } 3014 mutex_unlock(&ep->com.mutex); 3015 if (release) 3016 release_ep_resources(ep); 3017 c4iw_put_ep(&ep->com); 3018 return 0; 3019 } 3020 3021 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 3022 { 3023 struct cpl_rdma_terminate *rpl = cplhdr(skb); 3024 unsigned int tid = GET_TID(rpl); 3025 struct c4iw_ep *ep; 3026 struct c4iw_qp_attributes attrs; 3027 3028 ep = get_ep_from_tid(dev, tid); 3029 3030 if (ep) { 3031 if (ep->com.qp) { 3032 pr_warn("TERM received tid %u qpid %u\n", tid, 3033 ep->com.qp->wq.sq.qid); 3034 attrs.next_state = C4IW_QP_STATE_TERMINATE; 3035 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 3036 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 3037 } 3038 3039 /* As per draft-hilland-iwarp-verbs-v1.0, sec 6.2.3, 3040 * when entering the TERM state the RNIC MUST initiate a CLOSE. 3041 */ 3042 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3043 c4iw_put_ep(&ep->com); 3044 } else 3045 pr_warn("TERM received tid %u no ep/qp\n", tid); 3046 3047 return 0; 3048 } 3049 3050 /* 3051 * Upcall from the adapter indicating data has been transmitted. 3052 * For us its just the single MPA request or reply. We can now free 3053 * the skb holding the mpa message. 3054 */ 3055 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 3056 { 3057 struct c4iw_ep *ep; 3058 struct cpl_fw4_ack *hdr = cplhdr(skb); 3059 u8 credits = hdr->credits; 3060 unsigned int tid = GET_TID(hdr); 3061 3062 3063 ep = get_ep_from_tid(dev, tid); 3064 if (!ep) 3065 return 0; 3066 pr_debug("ep %p tid %u credits %u\n", 3067 ep, ep->hwtid, credits); 3068 if (credits == 0) { 3069 pr_debug("0 credit ack ep %p tid %u state %u\n", 3070 ep, ep->hwtid, state_read(&ep->com)); 3071 goto out; 3072 } 3073 3074 dst_confirm(ep->dst); 3075 if (ep->mpa_skb) { 3076 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", 3077 ep, ep->hwtid, state_read(&ep->com), 3078 ep->mpa_attr.initiator ? 1 : 0); 3079 mutex_lock(&ep->com.mutex); 3080 kfree_skb(ep->mpa_skb); 3081 ep->mpa_skb = NULL; 3082 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 3083 stop_ep_timer(ep); 3084 mutex_unlock(&ep->com.mutex); 3085 } 3086 out: 3087 c4iw_put_ep(&ep->com); 3088 return 0; 3089 } 3090 3091 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 3092 { 3093 int abort; 3094 struct c4iw_ep *ep = to_ep(cm_id); 3095 3096 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3097 3098 mutex_lock(&ep->com.mutex); 3099 if (ep->com.state != MPA_REQ_RCVD) { 3100 mutex_unlock(&ep->com.mutex); 3101 c4iw_put_ep(&ep->com); 3102 return -ECONNRESET; 3103 } 3104 set_bit(ULP_REJECT, &ep->com.history); 3105 if (mpa_rev == 0) 3106 abort = 1; 3107 else 3108 abort = send_mpa_reject(ep, pdata, pdata_len); 3109 mutex_unlock(&ep->com.mutex); 3110 3111 stop_ep_timer(ep); 3112 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 3113 c4iw_put_ep(&ep->com); 3114 return 0; 3115 } 3116 3117 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3118 { 3119 int err; 3120 struct c4iw_qp_attributes attrs; 3121 enum c4iw_qp_attr_mask mask; 3122 struct c4iw_ep *ep = to_ep(cm_id); 3123 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3124 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3125 int abort = 0; 3126 3127 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3128 3129 mutex_lock(&ep->com.mutex); 3130 if (ep->com.state != MPA_REQ_RCVD) { 3131 err = -ECONNRESET; 3132 goto err_out; 3133 } 3134 3135 if (!qp) { 3136 err = -EINVAL; 3137 goto err_out; 3138 } 3139 3140 set_bit(ULP_ACCEPT, &ep->com.history); 3141 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3142 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3143 err = -EINVAL; 3144 goto err_abort; 3145 } 3146 3147 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3148 if (conn_param->ord > ep->ird) { 3149 if (RELAXED_IRD_NEGOTIATION) { 3150 conn_param->ord = ep->ird; 3151 } else { 3152 ep->ird = conn_param->ird; 3153 ep->ord = conn_param->ord; 3154 send_mpa_reject(ep, conn_param->private_data, 3155 conn_param->private_data_len); 3156 err = -ENOMEM; 3157 goto err_abort; 3158 } 3159 } 3160 if (conn_param->ird < ep->ord) { 3161 if (RELAXED_IRD_NEGOTIATION && 3162 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3163 conn_param->ird = ep->ord; 3164 } else { 3165 err = -ENOMEM; 3166 goto err_abort; 3167 } 3168 } 3169 } 3170 ep->ird = conn_param->ird; 3171 ep->ord = conn_param->ord; 3172 3173 if (ep->mpa_attr.version == 1) { 3174 if (peer2peer && ep->ird == 0) 3175 ep->ird = 1; 3176 } else { 3177 if (peer2peer && 3178 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3179 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3180 ep->ird = 1; 3181 } 3182 3183 pr_debug("ird %d ord %d\n", ep->ird, ep->ord); 3184 3185 ep->com.cm_id = cm_id; 3186 ref_cm_id(&ep->com); 3187 ep->com.qp = qp; 3188 ref_qp(ep); 3189 3190 /* bind QP to EP and move to RTS */ 3191 attrs.mpa_attr = ep->mpa_attr; 3192 attrs.max_ird = ep->ird; 3193 attrs.max_ord = ep->ord; 3194 attrs.llp_stream_handle = ep; 3195 attrs.next_state = C4IW_QP_STATE_RTS; 3196 3197 /* bind QP and TID with INIT_WR */ 3198 mask = C4IW_QP_ATTR_NEXT_STATE | 3199 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3200 C4IW_QP_ATTR_MPA_ATTR | 3201 C4IW_QP_ATTR_MAX_IRD | 3202 C4IW_QP_ATTR_MAX_ORD; 3203 3204 err = c4iw_modify_qp(ep->com.qp->rhp, 3205 ep->com.qp, mask, &attrs, 1); 3206 if (err) 3207 goto err_deref_cm_id; 3208 3209 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3210 err = send_mpa_reply(ep, conn_param->private_data, 3211 conn_param->private_data_len); 3212 if (err) 3213 goto err_deref_cm_id; 3214 3215 __state_set(&ep->com, FPDU_MODE); 3216 established_upcall(ep); 3217 mutex_unlock(&ep->com.mutex); 3218 c4iw_put_ep(&ep->com); 3219 return 0; 3220 err_deref_cm_id: 3221 deref_cm_id(&ep->com); 3222 err_abort: 3223 abort = 1; 3224 err_out: 3225 mutex_unlock(&ep->com.mutex); 3226 if (abort) 3227 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3228 c4iw_put_ep(&ep->com); 3229 return err; 3230 } 3231 3232 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3233 { 3234 struct in_device *ind; 3235 int found = 0; 3236 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3237 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3238 const struct in_ifaddr *ifa; 3239 3240 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3241 if (!ind) 3242 return -EADDRNOTAVAIL; 3243 rcu_read_lock(); 3244 in_dev_for_each_ifa_rcu(ifa, ind) { 3245 if (ifa->ifa_flags & IFA_F_SECONDARY) 3246 continue; 3247 laddr->sin_addr.s_addr = ifa->ifa_address; 3248 raddr->sin_addr.s_addr = ifa->ifa_address; 3249 found = 1; 3250 break; 3251 } 3252 rcu_read_unlock(); 3253 3254 in_dev_put(ind); 3255 return found ? 0 : -EADDRNOTAVAIL; 3256 } 3257 3258 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3259 unsigned char banned_flags) 3260 { 3261 struct inet6_dev *idev; 3262 int err = -EADDRNOTAVAIL; 3263 3264 rcu_read_lock(); 3265 idev = __in6_dev_get(dev); 3266 if (idev != NULL) { 3267 struct inet6_ifaddr *ifp; 3268 3269 read_lock_bh(&idev->lock); 3270 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3271 if (ifp->scope == IFA_LINK && 3272 !(ifp->flags & banned_flags)) { 3273 memcpy(addr, &ifp->addr, 16); 3274 err = 0; 3275 break; 3276 } 3277 } 3278 read_unlock_bh(&idev->lock); 3279 } 3280 rcu_read_unlock(); 3281 return err; 3282 } 3283 3284 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3285 { 3286 struct in6_addr addr; 3287 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3288 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3289 3290 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3291 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3292 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3293 return 0; 3294 } 3295 return -EADDRNOTAVAIL; 3296 } 3297 3298 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3299 { 3300 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3301 struct c4iw_ep *ep; 3302 int err = 0; 3303 struct sockaddr_in *laddr; 3304 struct sockaddr_in *raddr; 3305 struct sockaddr_in6 *laddr6; 3306 struct sockaddr_in6 *raddr6; 3307 __u8 *ra; 3308 int iptype; 3309 3310 if ((conn_param->ord > cur_max_read_depth(dev)) || 3311 (conn_param->ird > cur_max_read_depth(dev))) { 3312 err = -EINVAL; 3313 goto out; 3314 } 3315 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3316 if (!ep) { 3317 pr_err("%s - cannot alloc ep\n", __func__); 3318 err = -ENOMEM; 3319 goto out; 3320 } 3321 3322 skb_queue_head_init(&ep->com.ep_skb_list); 3323 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3324 err = -ENOMEM; 3325 goto fail1; 3326 } 3327 3328 timer_setup(&ep->timer, ep_timeout, 0); 3329 ep->plen = conn_param->private_data_len; 3330 if (ep->plen) 3331 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3332 conn_param->private_data, ep->plen); 3333 ep->ird = conn_param->ird; 3334 ep->ord = conn_param->ord; 3335 3336 if (peer2peer && ep->ord == 0) 3337 ep->ord = 1; 3338 3339 ep->com.cm_id = cm_id; 3340 ref_cm_id(&ep->com); 3341 cm_id->provider_data = ep; 3342 ep->com.dev = dev; 3343 ep->com.qp = get_qhp(dev, conn_param->qpn); 3344 if (!ep->com.qp) { 3345 pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3346 err = -EINVAL; 3347 goto fail2; 3348 } 3349 ref_qp(ep); 3350 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn, 3351 ep->com.qp, cm_id); 3352 3353 /* 3354 * Allocate an active TID to initiate a TCP connection. 3355 */ 3356 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3357 if (ep->atid == -1) { 3358 pr_err("%s - cannot alloc atid\n", __func__); 3359 err = -ENOMEM; 3360 goto fail2; 3361 } 3362 err = xa_insert_irq(&dev->atids, ep->atid, ep, GFP_KERNEL); 3363 if (err) 3364 goto fail5; 3365 3366 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3367 sizeof(ep->com.local_addr)); 3368 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3369 sizeof(ep->com.remote_addr)); 3370 3371 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3372 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3373 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3374 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3375 3376 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3377 iptype = 4; 3378 ra = (__u8 *)&raddr->sin_addr; 3379 3380 /* 3381 * Handle loopback requests to INADDR_ANY. 3382 */ 3383 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3384 err = pick_local_ipaddrs(dev, cm_id); 3385 if (err) 3386 goto fail3; 3387 } 3388 3389 /* find a route */ 3390 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3391 &laddr->sin_addr, ntohs(laddr->sin_port), 3392 ra, ntohs(raddr->sin_port)); 3393 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3394 laddr->sin_addr.s_addr, 3395 raddr->sin_addr.s_addr, 3396 laddr->sin_port, 3397 raddr->sin_port, cm_id->tos); 3398 } else { 3399 iptype = 6; 3400 ra = (__u8 *)&raddr6->sin6_addr; 3401 3402 /* 3403 * Handle loopback requests to INADDR_ANY. 3404 */ 3405 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3406 err = pick_local_ip6addrs(dev, cm_id); 3407 if (err) 3408 goto fail3; 3409 } 3410 3411 /* find a route */ 3412 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3413 laddr6->sin6_addr.s6_addr, 3414 ntohs(laddr6->sin6_port), 3415 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3416 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3417 laddr6->sin6_addr.s6_addr, 3418 raddr6->sin6_addr.s6_addr, 3419 laddr6->sin6_port, 3420 raddr6->sin6_port, cm_id->tos, 3421 raddr6->sin6_scope_id); 3422 } 3423 if (!ep->dst) { 3424 pr_err("%s - cannot find route\n", __func__); 3425 err = -EHOSTUNREACH; 3426 goto fail3; 3427 } 3428 3429 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3430 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3431 if (err) { 3432 pr_err("%s - cannot alloc l2e\n", __func__); 3433 goto fail4; 3434 } 3435 3436 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3437 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3438 ep->l2t->idx); 3439 3440 state_set(&ep->com, CONNECTING); 3441 ep->tos = cm_id->tos; 3442 3443 /* send connect request to rnic */ 3444 err = send_connect(ep); 3445 if (!err) 3446 goto out; 3447 3448 cxgb4_l2t_release(ep->l2t); 3449 fail4: 3450 dst_release(ep->dst); 3451 fail3: 3452 xa_erase_irq(&ep->com.dev->atids, ep->atid); 3453 fail5: 3454 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3455 fail2: 3456 skb_queue_purge(&ep->com.ep_skb_list); 3457 deref_cm_id(&ep->com); 3458 fail1: 3459 c4iw_put_ep(&ep->com); 3460 out: 3461 return err; 3462 } 3463 3464 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3465 { 3466 int err; 3467 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3468 &ep->com.local_addr; 3469 3470 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3471 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3472 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3473 if (err) 3474 return err; 3475 } 3476 c4iw_init_wr_wait(ep->com.wr_waitp); 3477 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3478 ep->stid, &sin6->sin6_addr, 3479 sin6->sin6_port, 3480 ep->com.dev->rdev.lldi.rxq_ids[0]); 3481 if (!err) 3482 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3483 ep->com.wr_waitp, 3484 0, 0, __func__); 3485 else if (err > 0) 3486 err = net_xmit_errno(err); 3487 if (err) { 3488 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3489 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3490 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3491 err, ep->stid, 3492 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3493 } 3494 return err; 3495 } 3496 3497 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3498 { 3499 int err; 3500 struct sockaddr_in *sin = (struct sockaddr_in *) 3501 &ep->com.local_addr; 3502 3503 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3504 do { 3505 err = cxgb4_create_server_filter( 3506 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3507 sin->sin_addr.s_addr, sin->sin_port, 0, 3508 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3509 if (err == -EBUSY) { 3510 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3511 err = -EIO; 3512 break; 3513 } 3514 set_current_state(TASK_UNINTERRUPTIBLE); 3515 schedule_timeout(usecs_to_jiffies(100)); 3516 } 3517 } while (err == -EBUSY); 3518 } else { 3519 c4iw_init_wr_wait(ep->com.wr_waitp); 3520 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3521 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3522 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3523 if (!err) 3524 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3525 ep->com.wr_waitp, 3526 0, 0, __func__); 3527 else if (err > 0) 3528 err = net_xmit_errno(err); 3529 } 3530 if (err) 3531 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3532 , err, ep->stid, 3533 &sin->sin_addr, ntohs(sin->sin_port)); 3534 return err; 3535 } 3536 3537 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3538 { 3539 int err = 0; 3540 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3541 struct c4iw_listen_ep *ep; 3542 3543 might_sleep(); 3544 3545 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3546 if (!ep) { 3547 pr_err("%s - cannot alloc ep\n", __func__); 3548 err = -ENOMEM; 3549 goto fail1; 3550 } 3551 skb_queue_head_init(&ep->com.ep_skb_list); 3552 pr_debug("ep %p\n", ep); 3553 ep->com.cm_id = cm_id; 3554 ref_cm_id(&ep->com); 3555 ep->com.dev = dev; 3556 ep->backlog = backlog; 3557 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3558 sizeof(ep->com.local_addr)); 3559 3560 /* 3561 * Allocate a server TID. 3562 */ 3563 if (dev->rdev.lldi.enable_fw_ofld_conn && 3564 ep->com.local_addr.ss_family == AF_INET) 3565 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3566 cm_id->m_local_addr.ss_family, ep); 3567 else 3568 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3569 cm_id->m_local_addr.ss_family, ep); 3570 3571 if (ep->stid == -1) { 3572 pr_err("%s - cannot alloc stid\n", __func__); 3573 err = -ENOMEM; 3574 goto fail2; 3575 } 3576 err = xa_insert_irq(&dev->stids, ep->stid, ep, GFP_KERNEL); 3577 if (err) 3578 goto fail3; 3579 3580 state_set(&ep->com, LISTEN); 3581 if (ep->com.local_addr.ss_family == AF_INET) 3582 err = create_server4(dev, ep); 3583 else 3584 err = create_server6(dev, ep); 3585 if (!err) { 3586 cm_id->provider_data = ep; 3587 goto out; 3588 } 3589 xa_erase_irq(&ep->com.dev->stids, ep->stid); 3590 fail3: 3591 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3592 ep->com.local_addr.ss_family); 3593 fail2: 3594 deref_cm_id(&ep->com); 3595 c4iw_put_ep(&ep->com); 3596 fail1: 3597 out: 3598 return err; 3599 } 3600 3601 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3602 { 3603 int err; 3604 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3605 3606 pr_debug("ep %p\n", ep); 3607 3608 might_sleep(); 3609 state_set(&ep->com, DEAD); 3610 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3611 ep->com.local_addr.ss_family == AF_INET) { 3612 err = cxgb4_remove_server_filter( 3613 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3614 ep->com.dev->rdev.lldi.rxq_ids[0], false); 3615 } else { 3616 struct sockaddr_in6 *sin6; 3617 c4iw_init_wr_wait(ep->com.wr_waitp); 3618 err = cxgb4_remove_server( 3619 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3620 ep->com.dev->rdev.lldi.rxq_ids[0], 3621 ep->com.local_addr.ss_family == AF_INET6); 3622 if (err) 3623 goto done; 3624 err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 3625 0, 0, __func__); 3626 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3627 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3628 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3629 } 3630 xa_erase_irq(&ep->com.dev->stids, ep->stid); 3631 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3632 ep->com.local_addr.ss_family); 3633 done: 3634 deref_cm_id(&ep->com); 3635 c4iw_put_ep(&ep->com); 3636 return err; 3637 } 3638 3639 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3640 { 3641 int ret = 0; 3642 int close = 0; 3643 int fatal = 0; 3644 struct c4iw_rdev *rdev; 3645 3646 mutex_lock(&ep->com.mutex); 3647 3648 pr_debug("ep %p state %s, abrupt %d\n", ep, 3649 states[ep->com.state], abrupt); 3650 3651 /* 3652 * Ref the ep here in case we have fatal errors causing the 3653 * ep to be released and freed. 3654 */ 3655 c4iw_get_ep(&ep->com); 3656 3657 rdev = &ep->com.dev->rdev; 3658 if (c4iw_fatal_error(rdev)) { 3659 fatal = 1; 3660 close_complete_upcall(ep, -EIO); 3661 ep->com.state = DEAD; 3662 } 3663 switch (ep->com.state) { 3664 case MPA_REQ_WAIT: 3665 case MPA_REQ_SENT: 3666 case MPA_REQ_RCVD: 3667 case MPA_REP_SENT: 3668 case FPDU_MODE: 3669 case CONNECTING: 3670 close = 1; 3671 if (abrupt) 3672 ep->com.state = ABORTING; 3673 else { 3674 ep->com.state = CLOSING; 3675 3676 /* 3677 * if we close before we see the fw4_ack() then we fix 3678 * up the timer state since we're reusing it. 3679 */ 3680 if (ep->mpa_skb && 3681 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3682 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3683 stop_ep_timer(ep); 3684 } 3685 start_ep_timer(ep); 3686 } 3687 set_bit(CLOSE_SENT, &ep->com.flags); 3688 break; 3689 case CLOSING: 3690 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3691 close = 1; 3692 if (abrupt) { 3693 (void)stop_ep_timer(ep); 3694 ep->com.state = ABORTING; 3695 } else 3696 ep->com.state = MORIBUND; 3697 } 3698 break; 3699 case MORIBUND: 3700 case ABORTING: 3701 case DEAD: 3702 pr_debug("ignoring disconnect ep %p state %u\n", 3703 ep, ep->com.state); 3704 break; 3705 default: 3706 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 3707 break; 3708 } 3709 3710 if (close) { 3711 if (abrupt) { 3712 set_bit(EP_DISC_ABORT, &ep->com.history); 3713 ret = send_abort(ep); 3714 } else { 3715 set_bit(EP_DISC_CLOSE, &ep->com.history); 3716 ret = send_halfclose(ep); 3717 } 3718 if (ret) { 3719 set_bit(EP_DISC_FAIL, &ep->com.history); 3720 if (!abrupt) { 3721 stop_ep_timer(ep); 3722 close_complete_upcall(ep, -EIO); 3723 } 3724 if (ep->com.qp) { 3725 struct c4iw_qp_attributes attrs; 3726 3727 attrs.next_state = C4IW_QP_STATE_ERROR; 3728 ret = c4iw_modify_qp(ep->com.qp->rhp, 3729 ep->com.qp, 3730 C4IW_QP_ATTR_NEXT_STATE, 3731 &attrs, 1); 3732 if (ret) 3733 pr_err("%s - qp <- error failed!\n", 3734 __func__); 3735 } 3736 fatal = 1; 3737 } 3738 } 3739 mutex_unlock(&ep->com.mutex); 3740 c4iw_put_ep(&ep->com); 3741 if (fatal) 3742 release_ep_resources(ep); 3743 return ret; 3744 } 3745 3746 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3747 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3748 { 3749 struct c4iw_ep *ep; 3750 int atid = be32_to_cpu(req->tid); 3751 3752 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3753 (__force u32) req->tid); 3754 if (!ep) 3755 return; 3756 3757 switch (req->retval) { 3758 case FW_ENOMEM: 3759 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3760 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3761 send_fw_act_open_req(ep, atid); 3762 return; 3763 } 3764 fallthrough; 3765 case FW_EADDRINUSE: 3766 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3767 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3768 send_fw_act_open_req(ep, atid); 3769 return; 3770 } 3771 break; 3772 default: 3773 pr_info("%s unexpected ofld conn wr retval %d\n", 3774 __func__, req->retval); 3775 break; 3776 } 3777 pr_err("active ofld_connect_wr failure %d atid %d\n", 3778 req->retval, atid); 3779 mutex_lock(&dev->rdev.stats.lock); 3780 dev->rdev.stats.act_ofld_conn_fails++; 3781 mutex_unlock(&dev->rdev.stats.lock); 3782 connect_reply_upcall(ep, status2errno(req->retval)); 3783 state_set(&ep->com, DEAD); 3784 if (ep->com.remote_addr.ss_family == AF_INET6) { 3785 struct sockaddr_in6 *sin6 = 3786 (struct sockaddr_in6 *)&ep->com.local_addr; 3787 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3788 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3789 } 3790 xa_erase_irq(&dev->atids, atid); 3791 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3792 dst_release(ep->dst); 3793 cxgb4_l2t_release(ep->l2t); 3794 c4iw_put_ep(&ep->com); 3795 } 3796 3797 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3798 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3799 { 3800 struct sk_buff *rpl_skb; 3801 struct cpl_pass_accept_req *cpl; 3802 int ret; 3803 3804 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3805 if (req->retval) { 3806 pr_err("%s passive open failure %d\n", __func__, req->retval); 3807 mutex_lock(&dev->rdev.stats.lock); 3808 dev->rdev.stats.pas_ofld_conn_fails++; 3809 mutex_unlock(&dev->rdev.stats.lock); 3810 kfree_skb(rpl_skb); 3811 } else { 3812 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3813 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3814 (__force u32) htonl( 3815 (__force u32) req->tid))); 3816 ret = pass_accept_req(dev, rpl_skb); 3817 if (!ret) 3818 kfree_skb(rpl_skb); 3819 } 3820 return; 3821 } 3822 3823 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word) 3824 { 3825 u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]); 3826 u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]); 3827 u64 t; 3828 u32 shift = 32; 3829 3830 t = (thi << shift) | (tlo >> shift); 3831 3832 return t; 3833 } 3834 3835 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift) 3836 { 3837 u32 v; 3838 u64 t = be64_to_cpu(tcb[(31 - word) / 2]); 3839 3840 if (word & 0x1) 3841 shift += 32; 3842 v = (t >> shift) & mask; 3843 return v; 3844 } 3845 3846 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 3847 { 3848 struct cpl_get_tcb_rpl *rpl = cplhdr(skb); 3849 __be64 *tcb = (__be64 *)(rpl + 1); 3850 unsigned int tid = GET_TID(rpl); 3851 struct c4iw_ep *ep; 3852 u64 t_flags_64; 3853 u32 rx_pdu_out; 3854 3855 ep = get_ep_from_tid(dev, tid); 3856 if (!ep) 3857 return 0; 3858 /* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to 3859 * determine if there's a rx PDU feedback event pending. 3860 * 3861 * If that bit is set, it means we'll need to re-read the TCB's 3862 * rq_start value. The final value is the one present in a TCB 3863 * with the TF_RX_PDU_OUT bit cleared. 3864 */ 3865 3866 t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W); 3867 rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S; 3868 3869 c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */ 3870 c4iw_put_ep(&ep->com); /* from read_tcb() */ 3871 3872 /* If TF_RX_PDU_OUT bit is set, re-read the TCB */ 3873 if (rx_pdu_out) { 3874 if (++ep->rx_pdu_out_cnt >= 2) { 3875 WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n"); 3876 goto cleanup; 3877 } 3878 read_tcb(ep); 3879 return 0; 3880 } 3881 3882 ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_M, 3883 TCB_RQ_START_S); 3884 cleanup: 3885 pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx); 3886 3887 if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) 3888 finish_peer_abort(dev, ep); 3889 else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) 3890 send_abort_req(ep); 3891 else 3892 WARN_ONCE(1, "unexpected state!"); 3893 3894 return 0; 3895 } 3896 3897 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3898 { 3899 struct cpl_fw6_msg *rpl = cplhdr(skb); 3900 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3901 3902 switch (rpl->type) { 3903 case FW6_TYPE_CQE: 3904 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3905 break; 3906 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3907 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3908 switch (req->t_state) { 3909 case TCP_SYN_SENT: 3910 active_ofld_conn_reply(dev, skb, req); 3911 break; 3912 case TCP_SYN_RECV: 3913 passive_ofld_conn_reply(dev, skb, req); 3914 break; 3915 default: 3916 pr_err("%s unexpected ofld conn wr state %d\n", 3917 __func__, req->t_state); 3918 break; 3919 } 3920 break; 3921 } 3922 return 0; 3923 } 3924 3925 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3926 { 3927 __be32 l2info; 3928 __be16 hdr_len, vlantag, len; 3929 u16 eth_hdr_len; 3930 int tcp_hdr_len, ip_hdr_len; 3931 u8 intf; 3932 struct cpl_rx_pkt *cpl = cplhdr(skb); 3933 struct cpl_pass_accept_req *req; 3934 struct tcp_options_received tmp_opt; 3935 struct c4iw_dev *dev; 3936 enum chip_type type; 3937 3938 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3939 /* Store values from cpl_rx_pkt in temporary location. */ 3940 vlantag = cpl->vlan; 3941 len = cpl->len; 3942 l2info = cpl->l2info; 3943 hdr_len = cpl->hdr_len; 3944 intf = cpl->iff; 3945 3946 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3947 3948 /* 3949 * We need to parse the TCP options from SYN packet. 3950 * to generate cpl_pass_accept_req. 3951 */ 3952 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3953 tcp_clear_options(&tmp_opt); 3954 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL); 3955 3956 req = __skb_push(skb, sizeof(*req)); 3957 memset(req, 0, sizeof(*req)); 3958 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3959 SYN_MAC_IDX_V(RX_MACIDX_G( 3960 be32_to_cpu(l2info))) | 3961 SYN_XACT_MATCH_F); 3962 type = dev->rdev.lldi.adapter_type; 3963 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3964 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3965 req->hdr_len = 3966 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3967 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3968 eth_hdr_len = is_t4(type) ? 3969 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3970 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3971 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3972 IP_HDR_LEN_V(ip_hdr_len) | 3973 ETH_HDR_LEN_V(eth_hdr_len)); 3974 } else { /* T6 and later */ 3975 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3976 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3977 T6_IP_HDR_LEN_V(ip_hdr_len) | 3978 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3979 } 3980 req->vlan = vlantag; 3981 req->len = len; 3982 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3983 PASS_OPEN_TOS_V(tos)); 3984 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3985 if (tmp_opt.wscale_ok) 3986 req->tcpopt.wsf = tmp_opt.snd_wscale; 3987 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3988 if (tmp_opt.sack_ok) 3989 req->tcpopt.sack = 1; 3990 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3991 return; 3992 } 3993 3994 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3995 __be32 laddr, __be16 lport, 3996 __be32 raddr, __be16 rport, 3997 u32 rcv_isn, u32 filter, u16 window, 3998 u32 rss_qid, u8 port_id) 3999 { 4000 struct sk_buff *req_skb; 4001 struct fw_ofld_connection_wr *req; 4002 struct cpl_pass_accept_req *cpl = cplhdr(skb); 4003 int ret; 4004 4005 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 4006 if (!req_skb) 4007 return; 4008 req = __skb_put_zero(req_skb, sizeof(*req)); 4009 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 4010 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 4011 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 4012 req->le.filter = (__force __be32) filter; 4013 req->le.lport = lport; 4014 req->le.pport = rport; 4015 req->le.u.ipv4.lip = laddr; 4016 req->le.u.ipv4.pip = raddr; 4017 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 4018 req->tcb.rcv_adv = htons(window); 4019 req->tcb.t_state_to_astid = 4020 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 4021 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 4022 FW_OFLD_CONNECTION_WR_ASTID_V( 4023 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 4024 4025 /* 4026 * We store the qid in opt2 which will be used by the firmware 4027 * to send us the wr response. 4028 */ 4029 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 4030 4031 /* 4032 * We initialize the MSS index in TCB to 0xF. 4033 * So that when driver sends cpl_pass_accept_rpl 4034 * TCB picks up the correct value. If this was 0 4035 * TP will ignore any value > 0 for MSS index. 4036 */ 4037 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 4038 req->cookie = (uintptr_t)skb; 4039 4040 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 4041 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 4042 if (ret < 0) { 4043 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 4044 ret); 4045 kfree_skb(skb); 4046 kfree_skb(req_skb); 4047 } 4048 } 4049 4050 /* 4051 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 4052 * messages when a filter is being used instead of server to 4053 * redirect a syn packet. When packets hit filter they are redirected 4054 * to the offload queue and driver tries to establish the connection 4055 * using firmware work request. 4056 */ 4057 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 4058 { 4059 int stid; 4060 unsigned int filter; 4061 struct ethhdr *eh = NULL; 4062 struct vlan_ethhdr *vlan_eh = NULL; 4063 struct iphdr *iph; 4064 struct tcphdr *tcph; 4065 struct rss_header *rss = (void *)skb->data; 4066 struct cpl_rx_pkt *cpl = (void *)skb->data; 4067 struct cpl_pass_accept_req *req = (void *)(rss + 1); 4068 struct l2t_entry *e; 4069 struct dst_entry *dst; 4070 struct c4iw_ep *lep = NULL; 4071 u16 window; 4072 struct port_info *pi; 4073 struct net_device *pdev; 4074 u16 rss_qid, eth_hdr_len; 4075 int step; 4076 struct neighbour *neigh; 4077 4078 /* Drop all non-SYN packets */ 4079 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 4080 goto reject; 4081 4082 /* 4083 * Drop all packets which did not hit the filter. 4084 * Unlikely to happen. 4085 */ 4086 if (!(rss->filter_hit && rss->filter_tid)) 4087 goto reject; 4088 4089 /* 4090 * Calculate the server tid from filter hit index from cpl_rx_pkt. 4091 */ 4092 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 4093 4094 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 4095 if (!lep) { 4096 pr_warn("%s connect request on invalid stid %d\n", 4097 __func__, stid); 4098 goto reject; 4099 } 4100 4101 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 4102 case CHELSIO_T4: 4103 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4104 break; 4105 case CHELSIO_T5: 4106 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4107 break; 4108 case CHELSIO_T6: 4109 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 4110 break; 4111 default: 4112 pr_err("T%d Chip is not supported\n", 4113 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 4114 goto reject; 4115 } 4116 4117 if (eth_hdr_len == ETH_HLEN) { 4118 eh = (struct ethhdr *)(req + 1); 4119 iph = (struct iphdr *)(eh + 1); 4120 } else { 4121 vlan_eh = (struct vlan_ethhdr *)(req + 1); 4122 iph = (struct iphdr *)(vlan_eh + 1); 4123 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan)); 4124 } 4125 4126 if (iph->version != 0x4) 4127 goto reject; 4128 4129 tcph = (struct tcphdr *)(iph + 1); 4130 skb_set_network_header(skb, (void *)iph - (void *)rss); 4131 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 4132 skb_get(skb); 4133 4134 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n", 4135 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 4136 ntohs(tcph->source), iph->tos); 4137 4138 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 4139 iph->daddr, iph->saddr, tcph->dest, 4140 tcph->source, iph->tos); 4141 if (!dst) { 4142 pr_err("%s - failed to find dst entry!\n", __func__); 4143 goto reject; 4144 } 4145 neigh = dst_neigh_lookup_skb(dst, skb); 4146 4147 if (!neigh) { 4148 pr_err("%s - failed to allocate neigh!\n", __func__); 4149 goto free_dst; 4150 } 4151 4152 if (neigh->dev->flags & IFF_LOOPBACK) { 4153 pdev = ip_dev_find(&init_net, iph->daddr); 4154 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 4155 pdev, 0); 4156 pi = (struct port_info *)netdev_priv(pdev); 4157 dev_put(pdev); 4158 } else { 4159 pdev = get_real_dev(neigh->dev); 4160 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 4161 pdev, 0); 4162 pi = (struct port_info *)netdev_priv(pdev); 4163 } 4164 neigh_release(neigh); 4165 if (!e) { 4166 pr_err("%s - failed to allocate l2t entry!\n", 4167 __func__); 4168 goto free_dst; 4169 } 4170 4171 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 4172 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 4173 window = (__force u16) htons((__force u16)tcph->window); 4174 4175 /* Calcuate filter portion for LE region. */ 4176 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 4177 dev->rdev.lldi.ports[0], 4178 e)); 4179 4180 /* 4181 * Synthesize the cpl_pass_accept_req. We have everything except the 4182 * TID. Once firmware sends a reply with TID we update the TID field 4183 * in cpl and pass it through the regular cpl_pass_accept_req path. 4184 */ 4185 build_cpl_pass_accept_req(skb, stid, iph->tos); 4186 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 4187 tcph->source, ntohl(tcph->seq), filter, window, 4188 rss_qid, pi->port_id); 4189 cxgb4_l2t_release(e); 4190 free_dst: 4191 dst_release(dst); 4192 reject: 4193 if (lep) 4194 c4iw_put_ep(&lep->com); 4195 return 0; 4196 } 4197 4198 /* 4199 * These are the real handlers that are called from a 4200 * work queue. 4201 */ 4202 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4203 [CPL_ACT_ESTABLISH] = act_establish, 4204 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4205 [CPL_RX_DATA] = rx_data, 4206 [CPL_ABORT_RPL_RSS] = abort_rpl, 4207 [CPL_ABORT_RPL] = abort_rpl, 4208 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4209 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4210 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4211 [CPL_PASS_ESTABLISH] = pass_establish, 4212 [CPL_PEER_CLOSE] = peer_close, 4213 [CPL_ABORT_REQ_RSS] = peer_abort, 4214 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4215 [CPL_RDMA_TERMINATE] = terminate, 4216 [CPL_FW4_ACK] = fw4_ack, 4217 [CPL_GET_TCB_RPL] = read_tcb_rpl, 4218 [CPL_FW6_MSG] = deferred_fw6_msg, 4219 [CPL_RX_PKT] = rx_pkt, 4220 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4221 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4222 }; 4223 4224 static void process_timeout(struct c4iw_ep *ep) 4225 { 4226 struct c4iw_qp_attributes attrs; 4227 int abort = 1; 4228 4229 mutex_lock(&ep->com.mutex); 4230 pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state); 4231 set_bit(TIMEDOUT, &ep->com.history); 4232 switch (ep->com.state) { 4233 case MPA_REQ_SENT: 4234 connect_reply_upcall(ep, -ETIMEDOUT); 4235 break; 4236 case MPA_REQ_WAIT: 4237 case MPA_REQ_RCVD: 4238 case MPA_REP_SENT: 4239 case FPDU_MODE: 4240 break; 4241 case CLOSING: 4242 case MORIBUND: 4243 if (ep->com.cm_id && ep->com.qp) { 4244 attrs.next_state = C4IW_QP_STATE_ERROR; 4245 c4iw_modify_qp(ep->com.qp->rhp, 4246 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4247 &attrs, 1); 4248 } 4249 close_complete_upcall(ep, -ETIMEDOUT); 4250 break; 4251 case ABORTING: 4252 case DEAD: 4253 4254 /* 4255 * These states are expected if the ep timed out at the same 4256 * time as another thread was calling stop_ep_timer(). 4257 * So we silently do nothing for these states. 4258 */ 4259 abort = 0; 4260 break; 4261 default: 4262 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4263 __func__, ep, ep->hwtid, ep->com.state); 4264 abort = 0; 4265 } 4266 mutex_unlock(&ep->com.mutex); 4267 if (abort) 4268 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4269 c4iw_put_ep(&ep->com); 4270 } 4271 4272 static void process_timedout_eps(void) 4273 { 4274 struct c4iw_ep *ep; 4275 4276 spin_lock_irq(&timeout_lock); 4277 while (!list_empty(&timeout_list)) { 4278 struct list_head *tmp; 4279 4280 tmp = timeout_list.next; 4281 list_del(tmp); 4282 tmp->next = NULL; 4283 tmp->prev = NULL; 4284 spin_unlock_irq(&timeout_lock); 4285 ep = list_entry(tmp, struct c4iw_ep, entry); 4286 process_timeout(ep); 4287 spin_lock_irq(&timeout_lock); 4288 } 4289 spin_unlock_irq(&timeout_lock); 4290 } 4291 4292 static void process_work(struct work_struct *work) 4293 { 4294 struct sk_buff *skb = NULL; 4295 struct c4iw_dev *dev; 4296 struct cpl_act_establish *rpl; 4297 unsigned int opcode; 4298 int ret; 4299 4300 process_timedout_eps(); 4301 while ((skb = skb_dequeue(&rxq))) { 4302 rpl = cplhdr(skb); 4303 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4304 opcode = rpl->ot.opcode; 4305 4306 if (opcode >= ARRAY_SIZE(work_handlers) || 4307 !work_handlers[opcode]) { 4308 pr_err("No handler for opcode 0x%x.\n", opcode); 4309 kfree_skb(skb); 4310 } else { 4311 ret = work_handlers[opcode](dev, skb); 4312 if (!ret) 4313 kfree_skb(skb); 4314 } 4315 process_timedout_eps(); 4316 } 4317 } 4318 4319 static DECLARE_WORK(skb_work, process_work); 4320 4321 static void ep_timeout(struct timer_list *t) 4322 { 4323 struct c4iw_ep *ep = from_timer(ep, t, timer); 4324 int kickit = 0; 4325 4326 spin_lock(&timeout_lock); 4327 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4328 /* 4329 * Only insert if it is not already on the list. 4330 */ 4331 if (!ep->entry.next) { 4332 list_add_tail(&ep->entry, &timeout_list); 4333 kickit = 1; 4334 } 4335 } 4336 spin_unlock(&timeout_lock); 4337 if (kickit) 4338 queue_work(workq, &skb_work); 4339 } 4340 4341 /* 4342 * All the CM events are handled on a work queue to have a safe context. 4343 */ 4344 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4345 { 4346 4347 /* 4348 * Save dev in the skb->cb area. 4349 */ 4350 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4351 4352 /* 4353 * Queue the skb and schedule the worker thread. 4354 */ 4355 skb_queue_tail(&rxq, skb); 4356 queue_work(workq, &skb_work); 4357 return 0; 4358 } 4359 4360 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4361 { 4362 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4363 4364 if (rpl->status != CPL_ERR_NONE) { 4365 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", 4366 rpl->status, GET_TID(rpl)); 4367 } 4368 kfree_skb(skb); 4369 return 0; 4370 } 4371 4372 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4373 { 4374 struct cpl_fw6_msg *rpl = cplhdr(skb); 4375 struct c4iw_wr_wait *wr_waitp; 4376 int ret; 4377 4378 pr_debug("type %u\n", rpl->type); 4379 4380 switch (rpl->type) { 4381 case FW6_TYPE_WR_RPL: 4382 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4383 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4384 pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret); 4385 if (wr_waitp) 4386 c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0); 4387 kfree_skb(skb); 4388 break; 4389 case FW6_TYPE_CQE: 4390 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4391 sched(dev, skb); 4392 break; 4393 default: 4394 pr_err("%s unexpected fw6 msg type %u\n", 4395 __func__, rpl->type); 4396 kfree_skb(skb); 4397 break; 4398 } 4399 return 0; 4400 } 4401 4402 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4403 { 4404 struct cpl_abort_req_rss *req = cplhdr(skb); 4405 struct c4iw_ep *ep; 4406 unsigned int tid = GET_TID(req); 4407 4408 ep = get_ep_from_tid(dev, tid); 4409 /* This EP will be dereferenced in peer_abort() */ 4410 if (!ep) { 4411 pr_warn("Abort on non-existent endpoint, tid %d\n", tid); 4412 kfree_skb(skb); 4413 return 0; 4414 } 4415 if (cxgb_is_neg_adv(req->status)) { 4416 pr_debug("Negative advice on abort- tid %u status %d (%s)\n", 4417 ep->hwtid, req->status, 4418 neg_adv_str(req->status)); 4419 goto out; 4420 } 4421 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state); 4422 4423 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 4424 out: 4425 sched(dev, skb); 4426 return 0; 4427 } 4428 4429 /* 4430 * Most upcalls from the T4 Core go to sched() to 4431 * schedule the processing on a work queue. 4432 */ 4433 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4434 [CPL_ACT_ESTABLISH] = sched, 4435 [CPL_ACT_OPEN_RPL] = sched, 4436 [CPL_RX_DATA] = sched, 4437 [CPL_ABORT_RPL_RSS] = sched, 4438 [CPL_ABORT_RPL] = sched, 4439 [CPL_PASS_OPEN_RPL] = sched, 4440 [CPL_CLOSE_LISTSRV_RPL] = sched, 4441 [CPL_PASS_ACCEPT_REQ] = sched, 4442 [CPL_PASS_ESTABLISH] = sched, 4443 [CPL_PEER_CLOSE] = sched, 4444 [CPL_CLOSE_CON_RPL] = sched, 4445 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4446 [CPL_RDMA_TERMINATE] = sched, 4447 [CPL_FW4_ACK] = sched, 4448 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4449 [CPL_GET_TCB_RPL] = sched, 4450 [CPL_FW6_MSG] = fw6_msg, 4451 [CPL_RX_PKT] = sched 4452 }; 4453 4454 int __init c4iw_cm_init(void) 4455 { 4456 skb_queue_head_init(&rxq); 4457 4458 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4459 if (!workq) 4460 return -ENOMEM; 4461 4462 return 0; 4463 } 4464 4465 void c4iw_cm_term(void) 4466 { 4467 WARN_ON(!list_empty(&timeout_list)); 4468 destroy_workqueue(workq); 4469 } 4470