1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 static int peer2peer = 1; 103 module_param(peer2peer, int, 0644); 104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 105 106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 107 module_param(p2p_type, int, 0644); 108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 109 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 110 111 static int ep_timeout_secs = 60; 112 module_param(ep_timeout_secs, int, 0644); 113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 114 "in seconds (default=60)"); 115 116 static int mpa_rev = 2; 117 module_param(mpa_rev, int, 0644); 118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 119 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 120 " compliant (default=2)"); 121 122 static int markers_enabled; 123 module_param(markers_enabled, int, 0644); 124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 125 126 static int crc_enabled = 1; 127 module_param(crc_enabled, int, 0644); 128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 129 130 static int rcv_win = 256 * 1024; 131 module_param(rcv_win, int, 0644); 132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 133 134 static int snd_win = 128 * 1024; 135 module_param(snd_win, int, 0644); 136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 137 138 static struct workqueue_struct *workq; 139 140 static struct sk_buff_head rxq; 141 142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 143 static void ep_timeout(struct timer_list *t); 144 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 146 147 static LIST_HEAD(timeout_list); 148 static spinlock_t timeout_lock; 149 150 static void deref_cm_id(struct c4iw_ep_common *epc) 151 { 152 epc->cm_id->rem_ref(epc->cm_id); 153 epc->cm_id = NULL; 154 set_bit(CM_ID_DEREFED, &epc->history); 155 } 156 157 static void ref_cm_id(struct c4iw_ep_common *epc) 158 { 159 set_bit(CM_ID_REFED, &epc->history); 160 epc->cm_id->add_ref(epc->cm_id); 161 } 162 163 static void deref_qp(struct c4iw_ep *ep) 164 { 165 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 166 clear_bit(QP_REFERENCED, &ep->com.flags); 167 set_bit(QP_DEREFED, &ep->com.history); 168 } 169 170 static void ref_qp(struct c4iw_ep *ep) 171 { 172 set_bit(QP_REFERENCED, &ep->com.flags); 173 set_bit(QP_REFED, &ep->com.history); 174 c4iw_qp_add_ref(&ep->com.qp->ibqp); 175 } 176 177 static void start_ep_timer(struct c4iw_ep *ep) 178 { 179 pr_debug("ep %p\n", ep); 180 if (timer_pending(&ep->timer)) { 181 pr_err("%s timer already started! ep %p\n", 182 __func__, ep); 183 return; 184 } 185 clear_bit(TIMEOUT, &ep->com.flags); 186 c4iw_get_ep(&ep->com); 187 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 188 add_timer(&ep->timer); 189 } 190 191 static int stop_ep_timer(struct c4iw_ep *ep) 192 { 193 pr_debug("ep %p stopping\n", ep); 194 del_timer_sync(&ep->timer); 195 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 196 c4iw_put_ep(&ep->com); 197 return 0; 198 } 199 return 1; 200 } 201 202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 203 struct l2t_entry *l2e) 204 { 205 int error = 0; 206 207 if (c4iw_fatal_error(rdev)) { 208 kfree_skb(skb); 209 pr_err("%s - device in error state - dropping\n", __func__); 210 return -EIO; 211 } 212 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 213 if (error < 0) 214 kfree_skb(skb); 215 else if (error == NET_XMIT_DROP) 216 return -ENOMEM; 217 return error < 0 ? error : 0; 218 } 219 220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 221 { 222 int error = 0; 223 224 if (c4iw_fatal_error(rdev)) { 225 kfree_skb(skb); 226 pr_err("%s - device in error state - dropping\n", __func__); 227 return -EIO; 228 } 229 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 230 if (error < 0) 231 kfree_skb(skb); 232 return error < 0 ? error : 0; 233 } 234 235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 236 { 237 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 238 239 skb = get_skb(skb, len, GFP_KERNEL); 240 if (!skb) 241 return; 242 243 cxgb_mk_tid_release(skb, len, hwtid, 0); 244 c4iw_ofld_send(rdev, skb); 245 return; 246 } 247 248 static void set_emss(struct c4iw_ep *ep, u16 opt) 249 { 250 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 251 ((AF_INET == ep->com.remote_addr.ss_family) ? 252 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 253 sizeof(struct tcphdr); 254 ep->mss = ep->emss; 255 if (TCPOPT_TSTAMP_G(opt)) 256 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 257 if (ep->emss < 128) 258 ep->emss = 128; 259 if (ep->emss & 7) 260 pr_warn("Warning: misaligned mtu idx %u mss %u emss=%u\n", 261 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 262 pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss, 263 ep->emss); 264 } 265 266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 267 { 268 enum c4iw_ep_state state; 269 270 mutex_lock(&epc->mutex); 271 state = epc->state; 272 mutex_unlock(&epc->mutex); 273 return state; 274 } 275 276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 277 { 278 epc->state = new; 279 } 280 281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 282 { 283 mutex_lock(&epc->mutex); 284 pr_debug("%s -> %s\n", states[epc->state], states[new]); 285 __state_set(epc, new); 286 mutex_unlock(&epc->mutex); 287 return; 288 } 289 290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 291 { 292 struct sk_buff *skb; 293 unsigned int i; 294 size_t len; 295 296 len = roundup(sizeof(union cpl_wr_size), 16); 297 for (i = 0; i < size; i++) { 298 skb = alloc_skb(len, GFP_KERNEL); 299 if (!skb) 300 goto fail; 301 skb_queue_tail(ep_skb_list, skb); 302 } 303 return 0; 304 fail: 305 skb_queue_purge(ep_skb_list); 306 return -ENOMEM; 307 } 308 309 static void *alloc_ep(int size, gfp_t gfp) 310 { 311 struct c4iw_ep_common *epc; 312 313 epc = kzalloc(size, gfp); 314 if (epc) { 315 epc->wr_waitp = c4iw_alloc_wr_wait(gfp); 316 if (!epc->wr_waitp) { 317 kfree(epc); 318 epc = NULL; 319 goto out; 320 } 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(epc->wr_waitp); 324 } 325 pr_debug("alloc ep %p\n", epc); 326 out: 327 return epc; 328 } 329 330 static void remove_ep_tid(struct c4iw_ep *ep) 331 { 332 unsigned long flags; 333 334 spin_lock_irqsave(&ep->com.dev->lock, flags); 335 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 336 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 337 wake_up(&ep->com.dev->wait); 338 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 339 } 340 341 static void insert_ep_tid(struct c4iw_ep *ep) 342 { 343 unsigned long flags; 344 345 spin_lock_irqsave(&ep->com.dev->lock, flags); 346 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 347 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 348 } 349 350 /* 351 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 352 */ 353 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 354 { 355 struct c4iw_ep *ep; 356 unsigned long flags; 357 358 spin_lock_irqsave(&dev->lock, flags); 359 ep = idr_find(&dev->hwtid_idr, tid); 360 if (ep) 361 c4iw_get_ep(&ep->com); 362 spin_unlock_irqrestore(&dev->lock, flags); 363 return ep; 364 } 365 366 /* 367 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 368 */ 369 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 370 unsigned int stid) 371 { 372 struct c4iw_listen_ep *ep; 373 unsigned long flags; 374 375 spin_lock_irqsave(&dev->lock, flags); 376 ep = idr_find(&dev->stid_idr, stid); 377 if (ep) 378 c4iw_get_ep(&ep->com); 379 spin_unlock_irqrestore(&dev->lock, flags); 380 return ep; 381 } 382 383 void _c4iw_free_ep(struct kref *kref) 384 { 385 struct c4iw_ep *ep; 386 387 ep = container_of(kref, struct c4iw_ep, com.kref); 388 pr_debug("ep %p state %s\n", ep, states[ep->com.state]); 389 if (test_bit(QP_REFERENCED, &ep->com.flags)) 390 deref_qp(ep); 391 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 392 if (ep->com.remote_addr.ss_family == AF_INET6) { 393 struct sockaddr_in6 *sin6 = 394 (struct sockaddr_in6 *) 395 &ep->com.local_addr; 396 397 cxgb4_clip_release( 398 ep->com.dev->rdev.lldi.ports[0], 399 (const u32 *)&sin6->sin6_addr.s6_addr, 400 1); 401 } 402 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 403 ep->com.local_addr.ss_family); 404 dst_release(ep->dst); 405 cxgb4_l2t_release(ep->l2t); 406 if (ep->mpa_skb) 407 kfree_skb(ep->mpa_skb); 408 } 409 if (!skb_queue_empty(&ep->com.ep_skb_list)) 410 skb_queue_purge(&ep->com.ep_skb_list); 411 c4iw_put_wr_wait(ep->com.wr_waitp); 412 kfree(ep); 413 } 414 415 static void release_ep_resources(struct c4iw_ep *ep) 416 { 417 set_bit(RELEASE_RESOURCES, &ep->com.flags); 418 419 /* 420 * If we have a hwtid, then remove it from the idr table 421 * so lookups will no longer find this endpoint. Otherwise 422 * we have a race where one thread finds the ep ptr just 423 * before the other thread is freeing the ep memory. 424 */ 425 if (ep->hwtid != -1) 426 remove_ep_tid(ep); 427 c4iw_put_ep(&ep->com); 428 } 429 430 static int status2errno(int status) 431 { 432 switch (status) { 433 case CPL_ERR_NONE: 434 return 0; 435 case CPL_ERR_CONN_RESET: 436 return -ECONNRESET; 437 case CPL_ERR_ARP_MISS: 438 return -EHOSTUNREACH; 439 case CPL_ERR_CONN_TIMEDOUT: 440 return -ETIMEDOUT; 441 case CPL_ERR_TCAM_FULL: 442 return -ENOMEM; 443 case CPL_ERR_CONN_EXIST: 444 return -EADDRINUSE; 445 default: 446 return -EIO; 447 } 448 } 449 450 /* 451 * Try and reuse skbs already allocated... 452 */ 453 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 454 { 455 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 456 skb_trim(skb, 0); 457 skb_get(skb); 458 skb_reset_transport_header(skb); 459 } else { 460 skb = alloc_skb(len, gfp); 461 } 462 t4_set_arp_err_handler(skb, NULL, NULL); 463 return skb; 464 } 465 466 static struct net_device *get_real_dev(struct net_device *egress_dev) 467 { 468 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 469 } 470 471 static void arp_failure_discard(void *handle, struct sk_buff *skb) 472 { 473 pr_err("ARP failure\n"); 474 kfree_skb(skb); 475 } 476 477 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 478 { 479 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 480 } 481 482 enum { 483 NUM_FAKE_CPLS = 2, 484 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 485 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 486 }; 487 488 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 489 { 490 struct c4iw_ep *ep; 491 492 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 493 release_ep_resources(ep); 494 kfree_skb(skb); 495 return 0; 496 } 497 498 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 499 { 500 struct c4iw_ep *ep; 501 502 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 503 c4iw_put_ep(&ep->parent_ep->com); 504 release_ep_resources(ep); 505 kfree_skb(skb); 506 return 0; 507 } 508 509 /* 510 * Fake up a special CPL opcode and call sched() so process_work() will call 511 * _put_ep_safe() in a safe context to free the ep resources. This is needed 512 * because ARP error handlers are called in an ATOMIC context, and 513 * _c4iw_free_ep() needs to block. 514 */ 515 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 516 int cpl) 517 { 518 struct cpl_act_establish *rpl = cplhdr(skb); 519 520 /* Set our special ARP_FAILURE opcode */ 521 rpl->ot.opcode = cpl; 522 523 /* 524 * Save ep in the skb->cb area, after where sched() will save the dev 525 * ptr. 526 */ 527 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 528 sched(ep->com.dev, skb); 529 } 530 531 /* Handle an ARP failure for an accept */ 532 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 533 { 534 struct c4iw_ep *ep = handle; 535 536 pr_err("ARP failure during accept - tid %u - dropping connection\n", 537 ep->hwtid); 538 539 __state_set(&ep->com, DEAD); 540 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 541 } 542 543 /* 544 * Handle an ARP failure for an active open. 545 */ 546 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 547 { 548 struct c4iw_ep *ep = handle; 549 550 pr_err("ARP failure during connect\n"); 551 connect_reply_upcall(ep, -EHOSTUNREACH); 552 __state_set(&ep->com, DEAD); 553 if (ep->com.remote_addr.ss_family == AF_INET6) { 554 struct sockaddr_in6 *sin6 = 555 (struct sockaddr_in6 *)&ep->com.local_addr; 556 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 557 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 558 } 559 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 560 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 561 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 562 } 563 564 /* 565 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 566 * and send it along. 567 */ 568 static void abort_arp_failure(void *handle, struct sk_buff *skb) 569 { 570 int ret; 571 struct c4iw_ep *ep = handle; 572 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 573 struct cpl_abort_req *req = cplhdr(skb); 574 575 pr_debug("rdev %p\n", rdev); 576 req->cmd = CPL_ABORT_NO_RST; 577 skb_get(skb); 578 ret = c4iw_ofld_send(rdev, skb); 579 if (ret) { 580 __state_set(&ep->com, DEAD); 581 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 582 } else 583 kfree_skb(skb); 584 } 585 586 static int send_flowc(struct c4iw_ep *ep) 587 { 588 struct fw_flowc_wr *flowc; 589 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 590 int i; 591 u16 vlan = ep->l2t->vlan; 592 int nparams; 593 594 if (WARN_ON(!skb)) 595 return -ENOMEM; 596 597 if (vlan == CPL_L2T_VLAN_NONE) 598 nparams = 8; 599 else 600 nparams = 9; 601 602 flowc = __skb_put(skb, FLOWC_LEN); 603 604 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 605 FW_FLOWC_WR_NPARAMS_V(nparams)); 606 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN, 607 16)) | FW_WR_FLOWID_V(ep->hwtid)); 608 609 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 610 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 611 (ep->com.dev->rdev.lldi.pf)); 612 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 613 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 614 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 615 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 616 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 617 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 618 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 619 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 620 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 621 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 622 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 623 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 624 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 625 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 626 if (nparams == 9) { 627 u16 pri; 628 629 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 630 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 631 flowc->mnemval[8].val = cpu_to_be32(pri); 632 } else { 633 /* Pad WR to 16 byte boundary */ 634 flowc->mnemval[8].mnemonic = 0; 635 flowc->mnemval[8].val = 0; 636 } 637 for (i = 0; i < 9; i++) { 638 flowc->mnemval[i].r4[0] = 0; 639 flowc->mnemval[i].r4[1] = 0; 640 flowc->mnemval[i].r4[2] = 0; 641 } 642 643 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 644 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 645 } 646 647 static int send_halfclose(struct c4iw_ep *ep) 648 { 649 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 650 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 651 652 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 653 if (WARN_ON(!skb)) 654 return -ENOMEM; 655 656 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 657 NULL, arp_failure_discard); 658 659 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 660 } 661 662 static int send_abort(struct c4iw_ep *ep) 663 { 664 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 665 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 666 667 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 668 if (WARN_ON(!req_skb)) 669 return -ENOMEM; 670 671 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 672 ep, abort_arp_failure); 673 674 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 675 } 676 677 static int send_connect(struct c4iw_ep *ep) 678 { 679 struct cpl_act_open_req *req = NULL; 680 struct cpl_t5_act_open_req *t5req = NULL; 681 struct cpl_t6_act_open_req *t6req = NULL; 682 struct cpl_act_open_req6 *req6 = NULL; 683 struct cpl_t5_act_open_req6 *t5req6 = NULL; 684 struct cpl_t6_act_open_req6 *t6req6 = NULL; 685 struct sk_buff *skb; 686 u64 opt0; 687 u32 opt2; 688 unsigned int mtu_idx; 689 u32 wscale; 690 int win, sizev4, sizev6, wrlen; 691 struct sockaddr_in *la = (struct sockaddr_in *) 692 &ep->com.local_addr; 693 struct sockaddr_in *ra = (struct sockaddr_in *) 694 &ep->com.remote_addr; 695 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 696 &ep->com.local_addr; 697 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 698 &ep->com.remote_addr; 699 int ret; 700 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 701 u32 isn = (prandom_u32() & ~7UL) - 1; 702 struct net_device *netdev; 703 u64 params; 704 705 netdev = ep->com.dev->rdev.lldi.ports[0]; 706 707 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 708 case CHELSIO_T4: 709 sizev4 = sizeof(struct cpl_act_open_req); 710 sizev6 = sizeof(struct cpl_act_open_req6); 711 break; 712 case CHELSIO_T5: 713 sizev4 = sizeof(struct cpl_t5_act_open_req); 714 sizev6 = sizeof(struct cpl_t5_act_open_req6); 715 break; 716 case CHELSIO_T6: 717 sizev4 = sizeof(struct cpl_t6_act_open_req); 718 sizev6 = sizeof(struct cpl_t6_act_open_req6); 719 break; 720 default: 721 pr_err("T%d Chip is not supported\n", 722 CHELSIO_CHIP_VERSION(adapter_type)); 723 return -EINVAL; 724 } 725 726 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 727 roundup(sizev4, 16) : 728 roundup(sizev6, 16); 729 730 pr_debug("ep %p atid %u\n", ep, ep->atid); 731 732 skb = get_skb(NULL, wrlen, GFP_KERNEL); 733 if (!skb) { 734 pr_err("%s - failed to alloc skb\n", __func__); 735 return -ENOMEM; 736 } 737 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 738 739 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 740 enable_tcp_timestamps, 741 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 742 wscale = cxgb_compute_wscale(rcv_win); 743 744 /* 745 * Specify the largest window that will fit in opt0. The 746 * remainder will be specified in the rx_data_ack. 747 */ 748 win = ep->rcv_win >> 10; 749 if (win > RCV_BUFSIZ_M) 750 win = RCV_BUFSIZ_M; 751 752 opt0 = (nocong ? NO_CONG_F : 0) | 753 KEEP_ALIVE_F | 754 DELACK_F | 755 WND_SCALE_V(wscale) | 756 MSS_IDX_V(mtu_idx) | 757 L2T_IDX_V(ep->l2t->idx) | 758 TX_CHAN_V(ep->tx_chan) | 759 SMAC_SEL_V(ep->smac_idx) | 760 DSCP_V(ep->tos >> 2) | 761 ULP_MODE_V(ULP_MODE_TCPDDP) | 762 RCV_BUFSIZ_V(win); 763 opt2 = RX_CHANNEL_V(0) | 764 CCTRL_ECN_V(enable_ecn) | 765 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 766 if (enable_tcp_timestamps) 767 opt2 |= TSTAMPS_EN_F; 768 if (enable_tcp_sack) 769 opt2 |= SACK_EN_F; 770 if (wscale && enable_tcp_window_scaling) 771 opt2 |= WND_SCALE_EN_F; 772 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 773 if (peer2peer) 774 isn += 4; 775 776 opt2 |= T5_OPT_2_VALID_F; 777 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 778 opt2 |= T5_ISS_F; 779 } 780 781 params = cxgb4_select_ntuple(netdev, ep->l2t); 782 783 if (ep->com.remote_addr.ss_family == AF_INET6) 784 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 785 (const u32 *)&la6->sin6_addr.s6_addr, 1); 786 787 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 788 789 if (ep->com.remote_addr.ss_family == AF_INET) { 790 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 791 case CHELSIO_T4: 792 req = skb_put(skb, wrlen); 793 INIT_TP_WR(req, 0); 794 break; 795 case CHELSIO_T5: 796 t5req = skb_put(skb, wrlen); 797 INIT_TP_WR(t5req, 0); 798 req = (struct cpl_act_open_req *)t5req; 799 break; 800 case CHELSIO_T6: 801 t6req = skb_put(skb, wrlen); 802 INIT_TP_WR(t6req, 0); 803 req = (struct cpl_act_open_req *)t6req; 804 t5req = (struct cpl_t5_act_open_req *)t6req; 805 break; 806 default: 807 pr_err("T%d Chip is not supported\n", 808 CHELSIO_CHIP_VERSION(adapter_type)); 809 ret = -EINVAL; 810 goto clip_release; 811 } 812 813 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 814 ((ep->rss_qid<<14) | ep->atid))); 815 req->local_port = la->sin_port; 816 req->peer_port = ra->sin_port; 817 req->local_ip = la->sin_addr.s_addr; 818 req->peer_ip = ra->sin_addr.s_addr; 819 req->opt0 = cpu_to_be64(opt0); 820 821 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 822 req->params = cpu_to_be32(params); 823 req->opt2 = cpu_to_be32(opt2); 824 } else { 825 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 826 t5req->params = 827 cpu_to_be64(FILTER_TUPLE_V(params)); 828 t5req->rsvd = cpu_to_be32(isn); 829 pr_debug("snd_isn %u\n", t5req->rsvd); 830 t5req->opt2 = cpu_to_be32(opt2); 831 } else { 832 t6req->params = 833 cpu_to_be64(FILTER_TUPLE_V(params)); 834 t6req->rsvd = cpu_to_be32(isn); 835 pr_debug("snd_isn %u\n", t6req->rsvd); 836 t6req->opt2 = cpu_to_be32(opt2); 837 } 838 } 839 } else { 840 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 841 case CHELSIO_T4: 842 req6 = skb_put(skb, wrlen); 843 INIT_TP_WR(req6, 0); 844 break; 845 case CHELSIO_T5: 846 t5req6 = skb_put(skb, wrlen); 847 INIT_TP_WR(t5req6, 0); 848 req6 = (struct cpl_act_open_req6 *)t5req6; 849 break; 850 case CHELSIO_T6: 851 t6req6 = skb_put(skb, wrlen); 852 INIT_TP_WR(t6req6, 0); 853 req6 = (struct cpl_act_open_req6 *)t6req6; 854 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 855 break; 856 default: 857 pr_err("T%d Chip is not supported\n", 858 CHELSIO_CHIP_VERSION(adapter_type)); 859 ret = -EINVAL; 860 goto clip_release; 861 } 862 863 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 864 ((ep->rss_qid<<14)|ep->atid))); 865 req6->local_port = la6->sin6_port; 866 req6->peer_port = ra6->sin6_port; 867 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 868 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 869 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 870 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 871 req6->opt0 = cpu_to_be64(opt0); 872 873 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 874 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 875 ep->l2t)); 876 req6->opt2 = cpu_to_be32(opt2); 877 } else { 878 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 879 t5req6->params = 880 cpu_to_be64(FILTER_TUPLE_V(params)); 881 t5req6->rsvd = cpu_to_be32(isn); 882 pr_debug("snd_isn %u\n", t5req6->rsvd); 883 t5req6->opt2 = cpu_to_be32(opt2); 884 } else { 885 t6req6->params = 886 cpu_to_be64(FILTER_TUPLE_V(params)); 887 t6req6->rsvd = cpu_to_be32(isn); 888 pr_debug("snd_isn %u\n", t6req6->rsvd); 889 t6req6->opt2 = cpu_to_be32(opt2); 890 } 891 892 } 893 } 894 895 set_bit(ACT_OPEN_REQ, &ep->com.history); 896 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 897 clip_release: 898 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 899 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 900 (const u32 *)&la6->sin6_addr.s6_addr, 1); 901 return ret; 902 } 903 904 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 905 u8 mpa_rev_to_use) 906 { 907 int mpalen, wrlen, ret; 908 struct fw_ofld_tx_data_wr *req; 909 struct mpa_message *mpa; 910 struct mpa_v2_conn_params mpa_v2_params; 911 912 pr_debug("ep %p tid %u pd_len %d\n", 913 ep, ep->hwtid, ep->plen); 914 915 mpalen = sizeof(*mpa) + ep->plen; 916 if (mpa_rev_to_use == 2) 917 mpalen += sizeof(struct mpa_v2_conn_params); 918 wrlen = roundup(mpalen + sizeof *req, 16); 919 skb = get_skb(skb, wrlen, GFP_KERNEL); 920 if (!skb) { 921 connect_reply_upcall(ep, -ENOMEM); 922 return -ENOMEM; 923 } 924 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 925 926 req = skb_put_zero(skb, wrlen); 927 req->op_to_immdlen = cpu_to_be32( 928 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 929 FW_WR_COMPL_F | 930 FW_WR_IMMDLEN_V(mpalen)); 931 req->flowid_len16 = cpu_to_be32( 932 FW_WR_FLOWID_V(ep->hwtid) | 933 FW_WR_LEN16_V(wrlen >> 4)); 934 req->plen = cpu_to_be32(mpalen); 935 req->tunnel_to_proxy = cpu_to_be32( 936 FW_OFLD_TX_DATA_WR_FLUSH_F | 937 FW_OFLD_TX_DATA_WR_SHOVE_F); 938 939 mpa = (struct mpa_message *)(req + 1); 940 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 941 942 mpa->flags = 0; 943 if (crc_enabled) 944 mpa->flags |= MPA_CRC; 945 if (markers_enabled) { 946 mpa->flags |= MPA_MARKERS; 947 ep->mpa_attr.recv_marker_enabled = 1; 948 } else { 949 ep->mpa_attr.recv_marker_enabled = 0; 950 } 951 if (mpa_rev_to_use == 2) 952 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 953 954 mpa->private_data_size = htons(ep->plen); 955 mpa->revision = mpa_rev_to_use; 956 if (mpa_rev_to_use == 1) { 957 ep->tried_with_mpa_v1 = 1; 958 ep->retry_with_mpa_v1 = 0; 959 } 960 961 if (mpa_rev_to_use == 2) { 962 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 963 sizeof (struct mpa_v2_conn_params)); 964 pr_debug("initiator ird %u ord %u\n", ep->ird, 965 ep->ord); 966 mpa_v2_params.ird = htons((u16)ep->ird); 967 mpa_v2_params.ord = htons((u16)ep->ord); 968 969 if (peer2peer) { 970 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 971 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 972 mpa_v2_params.ord |= 973 htons(MPA_V2_RDMA_WRITE_RTR); 974 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 975 mpa_v2_params.ord |= 976 htons(MPA_V2_RDMA_READ_RTR); 977 } 978 memcpy(mpa->private_data, &mpa_v2_params, 979 sizeof(struct mpa_v2_conn_params)); 980 981 if (ep->plen) 982 memcpy(mpa->private_data + 983 sizeof(struct mpa_v2_conn_params), 984 ep->mpa_pkt + sizeof(*mpa), ep->plen); 985 } else 986 if (ep->plen) 987 memcpy(mpa->private_data, 988 ep->mpa_pkt + sizeof(*mpa), ep->plen); 989 990 /* 991 * Reference the mpa skb. This ensures the data area 992 * will remain in memory until the hw acks the tx. 993 * Function fw4_ack() will deref it. 994 */ 995 skb_get(skb); 996 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 997 ep->mpa_skb = skb; 998 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 999 if (ret) 1000 return ret; 1001 start_ep_timer(ep); 1002 __state_set(&ep->com, MPA_REQ_SENT); 1003 ep->mpa_attr.initiator = 1; 1004 ep->snd_seq += mpalen; 1005 return ret; 1006 } 1007 1008 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1009 { 1010 int mpalen, wrlen; 1011 struct fw_ofld_tx_data_wr *req; 1012 struct mpa_message *mpa; 1013 struct sk_buff *skb; 1014 struct mpa_v2_conn_params mpa_v2_params; 1015 1016 pr_debug("ep %p tid %u pd_len %d\n", 1017 ep, ep->hwtid, ep->plen); 1018 1019 mpalen = sizeof(*mpa) + plen; 1020 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1021 mpalen += sizeof(struct mpa_v2_conn_params); 1022 wrlen = roundup(mpalen + sizeof *req, 16); 1023 1024 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1025 if (!skb) { 1026 pr_err("%s - cannot alloc skb!\n", __func__); 1027 return -ENOMEM; 1028 } 1029 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1030 1031 req = skb_put_zero(skb, wrlen); 1032 req->op_to_immdlen = cpu_to_be32( 1033 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1034 FW_WR_COMPL_F | 1035 FW_WR_IMMDLEN_V(mpalen)); 1036 req->flowid_len16 = cpu_to_be32( 1037 FW_WR_FLOWID_V(ep->hwtid) | 1038 FW_WR_LEN16_V(wrlen >> 4)); 1039 req->plen = cpu_to_be32(mpalen); 1040 req->tunnel_to_proxy = cpu_to_be32( 1041 FW_OFLD_TX_DATA_WR_FLUSH_F | 1042 FW_OFLD_TX_DATA_WR_SHOVE_F); 1043 1044 mpa = (struct mpa_message *)(req + 1); 1045 memset(mpa, 0, sizeof(*mpa)); 1046 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1047 mpa->flags = MPA_REJECT; 1048 mpa->revision = ep->mpa_attr.version; 1049 mpa->private_data_size = htons(plen); 1050 1051 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1052 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1053 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1054 sizeof (struct mpa_v2_conn_params)); 1055 mpa_v2_params.ird = htons(((u16)ep->ird) | 1056 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1057 0)); 1058 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1059 (p2p_type == 1060 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1061 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1062 FW_RI_INIT_P2PTYPE_READ_REQ ? 1063 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1064 memcpy(mpa->private_data, &mpa_v2_params, 1065 sizeof(struct mpa_v2_conn_params)); 1066 1067 if (ep->plen) 1068 memcpy(mpa->private_data + 1069 sizeof(struct mpa_v2_conn_params), pdata, plen); 1070 } else 1071 if (plen) 1072 memcpy(mpa->private_data, pdata, plen); 1073 1074 /* 1075 * Reference the mpa skb again. This ensures the data area 1076 * will remain in memory until the hw acks the tx. 1077 * Function fw4_ack() will deref it. 1078 */ 1079 skb_get(skb); 1080 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1081 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1082 ep->mpa_skb = skb; 1083 ep->snd_seq += mpalen; 1084 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1085 } 1086 1087 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1088 { 1089 int mpalen, wrlen; 1090 struct fw_ofld_tx_data_wr *req; 1091 struct mpa_message *mpa; 1092 struct sk_buff *skb; 1093 struct mpa_v2_conn_params mpa_v2_params; 1094 1095 pr_debug("ep %p tid %u pd_len %d\n", 1096 ep, ep->hwtid, ep->plen); 1097 1098 mpalen = sizeof(*mpa) + plen; 1099 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1100 mpalen += sizeof(struct mpa_v2_conn_params); 1101 wrlen = roundup(mpalen + sizeof *req, 16); 1102 1103 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1104 if (!skb) { 1105 pr_err("%s - cannot alloc skb!\n", __func__); 1106 return -ENOMEM; 1107 } 1108 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1109 1110 req = skb_put_zero(skb, wrlen); 1111 req->op_to_immdlen = cpu_to_be32( 1112 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1113 FW_WR_COMPL_F | 1114 FW_WR_IMMDLEN_V(mpalen)); 1115 req->flowid_len16 = cpu_to_be32( 1116 FW_WR_FLOWID_V(ep->hwtid) | 1117 FW_WR_LEN16_V(wrlen >> 4)); 1118 req->plen = cpu_to_be32(mpalen); 1119 req->tunnel_to_proxy = cpu_to_be32( 1120 FW_OFLD_TX_DATA_WR_FLUSH_F | 1121 FW_OFLD_TX_DATA_WR_SHOVE_F); 1122 1123 mpa = (struct mpa_message *)(req + 1); 1124 memset(mpa, 0, sizeof(*mpa)); 1125 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1126 mpa->flags = 0; 1127 if (ep->mpa_attr.crc_enabled) 1128 mpa->flags |= MPA_CRC; 1129 if (ep->mpa_attr.recv_marker_enabled) 1130 mpa->flags |= MPA_MARKERS; 1131 mpa->revision = ep->mpa_attr.version; 1132 mpa->private_data_size = htons(plen); 1133 1134 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1135 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1136 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1137 sizeof (struct mpa_v2_conn_params)); 1138 mpa_v2_params.ird = htons((u16)ep->ird); 1139 mpa_v2_params.ord = htons((u16)ep->ord); 1140 if (peer2peer && (ep->mpa_attr.p2p_type != 1141 FW_RI_INIT_P2PTYPE_DISABLED)) { 1142 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1143 1144 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1145 mpa_v2_params.ord |= 1146 htons(MPA_V2_RDMA_WRITE_RTR); 1147 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1148 mpa_v2_params.ord |= 1149 htons(MPA_V2_RDMA_READ_RTR); 1150 } 1151 1152 memcpy(mpa->private_data, &mpa_v2_params, 1153 sizeof(struct mpa_v2_conn_params)); 1154 1155 if (ep->plen) 1156 memcpy(mpa->private_data + 1157 sizeof(struct mpa_v2_conn_params), pdata, plen); 1158 } else 1159 if (plen) 1160 memcpy(mpa->private_data, pdata, plen); 1161 1162 /* 1163 * Reference the mpa skb. This ensures the data area 1164 * will remain in memory until the hw acks the tx. 1165 * Function fw4_ack() will deref it. 1166 */ 1167 skb_get(skb); 1168 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1169 ep->mpa_skb = skb; 1170 __state_set(&ep->com, MPA_REP_SENT); 1171 ep->snd_seq += mpalen; 1172 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1173 } 1174 1175 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1176 { 1177 struct c4iw_ep *ep; 1178 struct cpl_act_establish *req = cplhdr(skb); 1179 unsigned int tid = GET_TID(req); 1180 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1181 struct tid_info *t = dev->rdev.lldi.tids; 1182 int ret; 1183 1184 ep = lookup_atid(t, atid); 1185 1186 pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid, 1187 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1188 1189 mutex_lock(&ep->com.mutex); 1190 dst_confirm(ep->dst); 1191 1192 /* setup the hwtid for this connection */ 1193 ep->hwtid = tid; 1194 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family); 1195 insert_ep_tid(ep); 1196 1197 ep->snd_seq = be32_to_cpu(req->snd_isn); 1198 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1199 1200 set_emss(ep, ntohs(req->tcp_opt)); 1201 1202 /* dealloc the atid */ 1203 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1204 cxgb4_free_atid(t, atid); 1205 set_bit(ACT_ESTAB, &ep->com.history); 1206 1207 /* start MPA negotiation */ 1208 ret = send_flowc(ep); 1209 if (ret) 1210 goto err; 1211 if (ep->retry_with_mpa_v1) 1212 ret = send_mpa_req(ep, skb, 1); 1213 else 1214 ret = send_mpa_req(ep, skb, mpa_rev); 1215 if (ret) 1216 goto err; 1217 mutex_unlock(&ep->com.mutex); 1218 return 0; 1219 err: 1220 mutex_unlock(&ep->com.mutex); 1221 connect_reply_upcall(ep, -ENOMEM); 1222 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1223 return 0; 1224 } 1225 1226 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1227 { 1228 struct iw_cm_event event; 1229 1230 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1231 memset(&event, 0, sizeof(event)); 1232 event.event = IW_CM_EVENT_CLOSE; 1233 event.status = status; 1234 if (ep->com.cm_id) { 1235 pr_debug("close complete delivered ep %p cm_id %p tid %u\n", 1236 ep, ep->com.cm_id, ep->hwtid); 1237 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1238 deref_cm_id(&ep->com); 1239 set_bit(CLOSE_UPCALL, &ep->com.history); 1240 } 1241 } 1242 1243 static void peer_close_upcall(struct c4iw_ep *ep) 1244 { 1245 struct iw_cm_event event; 1246 1247 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1248 memset(&event, 0, sizeof(event)); 1249 event.event = IW_CM_EVENT_DISCONNECT; 1250 if (ep->com.cm_id) { 1251 pr_debug("peer close delivered ep %p cm_id %p tid %u\n", 1252 ep, ep->com.cm_id, ep->hwtid); 1253 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1254 set_bit(DISCONN_UPCALL, &ep->com.history); 1255 } 1256 } 1257 1258 static void peer_abort_upcall(struct c4iw_ep *ep) 1259 { 1260 struct iw_cm_event event; 1261 1262 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1263 memset(&event, 0, sizeof(event)); 1264 event.event = IW_CM_EVENT_CLOSE; 1265 event.status = -ECONNRESET; 1266 if (ep->com.cm_id) { 1267 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, 1268 ep->com.cm_id, ep->hwtid); 1269 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1270 deref_cm_id(&ep->com); 1271 set_bit(ABORT_UPCALL, &ep->com.history); 1272 } 1273 } 1274 1275 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1276 { 1277 struct iw_cm_event event; 1278 1279 pr_debug("ep %p tid %u status %d\n", 1280 ep, ep->hwtid, status); 1281 memset(&event, 0, sizeof(event)); 1282 event.event = IW_CM_EVENT_CONNECT_REPLY; 1283 event.status = status; 1284 memcpy(&event.local_addr, &ep->com.local_addr, 1285 sizeof(ep->com.local_addr)); 1286 memcpy(&event.remote_addr, &ep->com.remote_addr, 1287 sizeof(ep->com.remote_addr)); 1288 1289 if ((status == 0) || (status == -ECONNREFUSED)) { 1290 if (!ep->tried_with_mpa_v1) { 1291 /* this means MPA_v2 is used */ 1292 event.ord = ep->ird; 1293 event.ird = ep->ord; 1294 event.private_data_len = ep->plen - 1295 sizeof(struct mpa_v2_conn_params); 1296 event.private_data = ep->mpa_pkt + 1297 sizeof(struct mpa_message) + 1298 sizeof(struct mpa_v2_conn_params); 1299 } else { 1300 /* this means MPA_v1 is used */ 1301 event.ord = cur_max_read_depth(ep->com.dev); 1302 event.ird = cur_max_read_depth(ep->com.dev); 1303 event.private_data_len = ep->plen; 1304 event.private_data = ep->mpa_pkt + 1305 sizeof(struct mpa_message); 1306 } 1307 } 1308 1309 pr_debug("ep %p tid %u status %d\n", ep, 1310 ep->hwtid, status); 1311 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1312 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1313 1314 if (status < 0) 1315 deref_cm_id(&ep->com); 1316 } 1317 1318 static int connect_request_upcall(struct c4iw_ep *ep) 1319 { 1320 struct iw_cm_event event; 1321 int ret; 1322 1323 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1324 memset(&event, 0, sizeof(event)); 1325 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1326 memcpy(&event.local_addr, &ep->com.local_addr, 1327 sizeof(ep->com.local_addr)); 1328 memcpy(&event.remote_addr, &ep->com.remote_addr, 1329 sizeof(ep->com.remote_addr)); 1330 event.provider_data = ep; 1331 if (!ep->tried_with_mpa_v1) { 1332 /* this means MPA_v2 is used */ 1333 event.ord = ep->ord; 1334 event.ird = ep->ird; 1335 event.private_data_len = ep->plen - 1336 sizeof(struct mpa_v2_conn_params); 1337 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1338 sizeof(struct mpa_v2_conn_params); 1339 } else { 1340 /* this means MPA_v1 is used. Send max supported */ 1341 event.ord = cur_max_read_depth(ep->com.dev); 1342 event.ird = cur_max_read_depth(ep->com.dev); 1343 event.private_data_len = ep->plen; 1344 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1345 } 1346 c4iw_get_ep(&ep->com); 1347 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1348 &event); 1349 if (ret) 1350 c4iw_put_ep(&ep->com); 1351 set_bit(CONNREQ_UPCALL, &ep->com.history); 1352 c4iw_put_ep(&ep->parent_ep->com); 1353 return ret; 1354 } 1355 1356 static void established_upcall(struct c4iw_ep *ep) 1357 { 1358 struct iw_cm_event event; 1359 1360 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1361 memset(&event, 0, sizeof(event)); 1362 event.event = IW_CM_EVENT_ESTABLISHED; 1363 event.ird = ep->ord; 1364 event.ord = ep->ird; 1365 if (ep->com.cm_id) { 1366 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1367 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1368 set_bit(ESTAB_UPCALL, &ep->com.history); 1369 } 1370 } 1371 1372 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1373 { 1374 struct sk_buff *skb; 1375 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1376 u32 credit_dack; 1377 1378 pr_debug("ep %p tid %u credits %u\n", 1379 ep, ep->hwtid, credits); 1380 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1381 if (!skb) { 1382 pr_err("update_rx_credits - cannot alloc skb!\n"); 1383 return 0; 1384 } 1385 1386 /* 1387 * If we couldn't specify the entire rcv window at connection setup 1388 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1389 * then add the overage in to the credits returned. 1390 */ 1391 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1392 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1393 1394 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1395 RX_DACK_MODE_V(dack_mode); 1396 1397 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1398 credit_dack); 1399 1400 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1401 return credits; 1402 } 1403 1404 #define RELAXED_IRD_NEGOTIATION 1 1405 1406 /* 1407 * process_mpa_reply - process streaming mode MPA reply 1408 * 1409 * Returns: 1410 * 1411 * 0 upon success indicating a connect request was delivered to the ULP 1412 * or the mpa request is incomplete but valid so far. 1413 * 1414 * 1 if a failure requires the caller to close the connection. 1415 * 1416 * 2 if a failure requires the caller to abort the connection. 1417 */ 1418 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1419 { 1420 struct mpa_message *mpa; 1421 struct mpa_v2_conn_params *mpa_v2_params; 1422 u16 plen; 1423 u16 resp_ird, resp_ord; 1424 u8 rtr_mismatch = 0, insuff_ird = 0; 1425 struct c4iw_qp_attributes attrs; 1426 enum c4iw_qp_attr_mask mask; 1427 int err; 1428 int disconnect = 0; 1429 1430 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1431 1432 /* 1433 * If we get more than the supported amount of private data 1434 * then we must fail this connection. 1435 */ 1436 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1437 err = -EINVAL; 1438 goto err_stop_timer; 1439 } 1440 1441 /* 1442 * copy the new data into our accumulation buffer. 1443 */ 1444 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1445 skb->len); 1446 ep->mpa_pkt_len += skb->len; 1447 1448 /* 1449 * if we don't even have the mpa message, then bail. 1450 */ 1451 if (ep->mpa_pkt_len < sizeof(*mpa)) 1452 return 0; 1453 mpa = (struct mpa_message *) ep->mpa_pkt; 1454 1455 /* Validate MPA header. */ 1456 if (mpa->revision > mpa_rev) { 1457 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1458 __func__, mpa_rev, mpa->revision); 1459 err = -EPROTO; 1460 goto err_stop_timer; 1461 } 1462 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1463 err = -EPROTO; 1464 goto err_stop_timer; 1465 } 1466 1467 plen = ntohs(mpa->private_data_size); 1468 1469 /* 1470 * Fail if there's too much private data. 1471 */ 1472 if (plen > MPA_MAX_PRIVATE_DATA) { 1473 err = -EPROTO; 1474 goto err_stop_timer; 1475 } 1476 1477 /* 1478 * If plen does not account for pkt size 1479 */ 1480 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1481 err = -EPROTO; 1482 goto err_stop_timer; 1483 } 1484 1485 ep->plen = (u8) plen; 1486 1487 /* 1488 * If we don't have all the pdata yet, then bail. 1489 * We'll continue process when more data arrives. 1490 */ 1491 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1492 return 0; 1493 1494 if (mpa->flags & MPA_REJECT) { 1495 err = -ECONNREFUSED; 1496 goto err_stop_timer; 1497 } 1498 1499 /* 1500 * Stop mpa timer. If it expired, then 1501 * we ignore the MPA reply. process_timeout() 1502 * will abort the connection. 1503 */ 1504 if (stop_ep_timer(ep)) 1505 return 0; 1506 1507 /* 1508 * If we get here we have accumulated the entire mpa 1509 * start reply message including private data. And 1510 * the MPA header is valid. 1511 */ 1512 __state_set(&ep->com, FPDU_MODE); 1513 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1514 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1515 ep->mpa_attr.version = mpa->revision; 1516 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1517 1518 if (mpa->revision == 2) { 1519 ep->mpa_attr.enhanced_rdma_conn = 1520 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1521 if (ep->mpa_attr.enhanced_rdma_conn) { 1522 mpa_v2_params = (struct mpa_v2_conn_params *) 1523 (ep->mpa_pkt + sizeof(*mpa)); 1524 resp_ird = ntohs(mpa_v2_params->ird) & 1525 MPA_V2_IRD_ORD_MASK; 1526 resp_ord = ntohs(mpa_v2_params->ord) & 1527 MPA_V2_IRD_ORD_MASK; 1528 pr_debug("responder ird %u ord %u ep ird %u ord %u\n", 1529 resp_ird, resp_ord, ep->ird, ep->ord); 1530 1531 /* 1532 * This is a double-check. Ideally, below checks are 1533 * not required since ird/ord stuff has been taken 1534 * care of in c4iw_accept_cr 1535 */ 1536 if (ep->ird < resp_ord) { 1537 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1538 ep->com.dev->rdev.lldi.max_ordird_qp) 1539 ep->ird = resp_ord; 1540 else 1541 insuff_ird = 1; 1542 } else if (ep->ird > resp_ord) { 1543 ep->ird = resp_ord; 1544 } 1545 if (ep->ord > resp_ird) { 1546 if (RELAXED_IRD_NEGOTIATION) 1547 ep->ord = resp_ird; 1548 else 1549 insuff_ird = 1; 1550 } 1551 if (insuff_ird) { 1552 err = -ENOMEM; 1553 ep->ird = resp_ord; 1554 ep->ord = resp_ird; 1555 } 1556 1557 if (ntohs(mpa_v2_params->ird) & 1558 MPA_V2_PEER2PEER_MODEL) { 1559 if (ntohs(mpa_v2_params->ord) & 1560 MPA_V2_RDMA_WRITE_RTR) 1561 ep->mpa_attr.p2p_type = 1562 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1563 else if (ntohs(mpa_v2_params->ord) & 1564 MPA_V2_RDMA_READ_RTR) 1565 ep->mpa_attr.p2p_type = 1566 FW_RI_INIT_P2PTYPE_READ_REQ; 1567 } 1568 } 1569 } else if (mpa->revision == 1) 1570 if (peer2peer) 1571 ep->mpa_attr.p2p_type = p2p_type; 1572 1573 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", 1574 ep->mpa_attr.crc_enabled, 1575 ep->mpa_attr.recv_marker_enabled, 1576 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1577 ep->mpa_attr.p2p_type, p2p_type); 1578 1579 /* 1580 * If responder's RTR does not match with that of initiator, assign 1581 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1582 * generated when moving QP to RTS state. 1583 * A TERM message will be sent after QP has moved to RTS state 1584 */ 1585 if ((ep->mpa_attr.version == 2) && peer2peer && 1586 (ep->mpa_attr.p2p_type != p2p_type)) { 1587 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1588 rtr_mismatch = 1; 1589 } 1590 1591 attrs.mpa_attr = ep->mpa_attr; 1592 attrs.max_ird = ep->ird; 1593 attrs.max_ord = ep->ord; 1594 attrs.llp_stream_handle = ep; 1595 attrs.next_state = C4IW_QP_STATE_RTS; 1596 1597 mask = C4IW_QP_ATTR_NEXT_STATE | 1598 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1599 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1600 1601 /* bind QP and TID with INIT_WR */ 1602 err = c4iw_modify_qp(ep->com.qp->rhp, 1603 ep->com.qp, mask, &attrs, 1); 1604 if (err) 1605 goto err; 1606 1607 /* 1608 * If responder's RTR requirement did not match with what initiator 1609 * supports, generate TERM message 1610 */ 1611 if (rtr_mismatch) { 1612 pr_err("%s: RTR mismatch, sending TERM\n", __func__); 1613 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1614 attrs.ecode = MPA_NOMATCH_RTR; 1615 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1616 attrs.send_term = 1; 1617 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1618 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1619 err = -ENOMEM; 1620 disconnect = 1; 1621 goto out; 1622 } 1623 1624 /* 1625 * Generate TERM if initiator IRD is not sufficient for responder 1626 * provided ORD. Currently, we do the same behaviour even when 1627 * responder provided IRD is also not sufficient as regards to 1628 * initiator ORD. 1629 */ 1630 if (insuff_ird) { 1631 pr_err("%s: Insufficient IRD, sending TERM\n", __func__); 1632 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1633 attrs.ecode = MPA_INSUFF_IRD; 1634 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1635 attrs.send_term = 1; 1636 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1637 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1638 err = -ENOMEM; 1639 disconnect = 1; 1640 goto out; 1641 } 1642 goto out; 1643 err_stop_timer: 1644 stop_ep_timer(ep); 1645 err: 1646 disconnect = 2; 1647 out: 1648 connect_reply_upcall(ep, err); 1649 return disconnect; 1650 } 1651 1652 /* 1653 * process_mpa_request - process streaming mode MPA request 1654 * 1655 * Returns: 1656 * 1657 * 0 upon success indicating a connect request was delivered to the ULP 1658 * or the mpa request is incomplete but valid so far. 1659 * 1660 * 1 if a failure requires the caller to close the connection. 1661 * 1662 * 2 if a failure requires the caller to abort the connection. 1663 */ 1664 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1665 { 1666 struct mpa_message *mpa; 1667 struct mpa_v2_conn_params *mpa_v2_params; 1668 u16 plen; 1669 1670 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1671 1672 /* 1673 * If we get more than the supported amount of private data 1674 * then we must fail this connection. 1675 */ 1676 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1677 goto err_stop_timer; 1678 1679 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1680 1681 /* 1682 * Copy the new data into our accumulation buffer. 1683 */ 1684 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1685 skb->len); 1686 ep->mpa_pkt_len += skb->len; 1687 1688 /* 1689 * If we don't even have the mpa message, then bail. 1690 * We'll continue process when more data arrives. 1691 */ 1692 if (ep->mpa_pkt_len < sizeof(*mpa)) 1693 return 0; 1694 1695 pr_debug("enter (%s line %u)\n", __FILE__, __LINE__); 1696 mpa = (struct mpa_message *) ep->mpa_pkt; 1697 1698 /* 1699 * Validate MPA Header. 1700 */ 1701 if (mpa->revision > mpa_rev) { 1702 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1703 __func__, mpa_rev, mpa->revision); 1704 goto err_stop_timer; 1705 } 1706 1707 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1708 goto err_stop_timer; 1709 1710 plen = ntohs(mpa->private_data_size); 1711 1712 /* 1713 * Fail if there's too much private data. 1714 */ 1715 if (plen > MPA_MAX_PRIVATE_DATA) 1716 goto err_stop_timer; 1717 1718 /* 1719 * If plen does not account for pkt size 1720 */ 1721 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1722 goto err_stop_timer; 1723 ep->plen = (u8) plen; 1724 1725 /* 1726 * If we don't have all the pdata yet, then bail. 1727 */ 1728 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1729 return 0; 1730 1731 /* 1732 * If we get here we have accumulated the entire mpa 1733 * start reply message including private data. 1734 */ 1735 ep->mpa_attr.initiator = 0; 1736 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1737 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1738 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1739 ep->mpa_attr.version = mpa->revision; 1740 if (mpa->revision == 1) 1741 ep->tried_with_mpa_v1 = 1; 1742 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1743 1744 if (mpa->revision == 2) { 1745 ep->mpa_attr.enhanced_rdma_conn = 1746 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1747 if (ep->mpa_attr.enhanced_rdma_conn) { 1748 mpa_v2_params = (struct mpa_v2_conn_params *) 1749 (ep->mpa_pkt + sizeof(*mpa)); 1750 ep->ird = ntohs(mpa_v2_params->ird) & 1751 MPA_V2_IRD_ORD_MASK; 1752 ep->ird = min_t(u32, ep->ird, 1753 cur_max_read_depth(ep->com.dev)); 1754 ep->ord = ntohs(mpa_v2_params->ord) & 1755 MPA_V2_IRD_ORD_MASK; 1756 ep->ord = min_t(u32, ep->ord, 1757 cur_max_read_depth(ep->com.dev)); 1758 pr_debug("initiator ird %u ord %u\n", 1759 ep->ird, ep->ord); 1760 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1761 if (peer2peer) { 1762 if (ntohs(mpa_v2_params->ord) & 1763 MPA_V2_RDMA_WRITE_RTR) 1764 ep->mpa_attr.p2p_type = 1765 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1766 else if (ntohs(mpa_v2_params->ord) & 1767 MPA_V2_RDMA_READ_RTR) 1768 ep->mpa_attr.p2p_type = 1769 FW_RI_INIT_P2PTYPE_READ_REQ; 1770 } 1771 } 1772 } else if (mpa->revision == 1) 1773 if (peer2peer) 1774 ep->mpa_attr.p2p_type = p2p_type; 1775 1776 pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", 1777 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1778 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1779 ep->mpa_attr.p2p_type); 1780 1781 __state_set(&ep->com, MPA_REQ_RCVD); 1782 1783 /* drive upcall */ 1784 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1785 if (ep->parent_ep->com.state != DEAD) { 1786 if (connect_request_upcall(ep)) 1787 goto err_unlock_parent; 1788 } else { 1789 goto err_unlock_parent; 1790 } 1791 mutex_unlock(&ep->parent_ep->com.mutex); 1792 return 0; 1793 1794 err_unlock_parent: 1795 mutex_unlock(&ep->parent_ep->com.mutex); 1796 goto err_out; 1797 err_stop_timer: 1798 (void)stop_ep_timer(ep); 1799 err_out: 1800 return 2; 1801 } 1802 1803 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1804 { 1805 struct c4iw_ep *ep; 1806 struct cpl_rx_data *hdr = cplhdr(skb); 1807 unsigned int dlen = ntohs(hdr->len); 1808 unsigned int tid = GET_TID(hdr); 1809 __u8 status = hdr->status; 1810 int disconnect = 0; 1811 1812 ep = get_ep_from_tid(dev, tid); 1813 if (!ep) 1814 return 0; 1815 pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen); 1816 skb_pull(skb, sizeof(*hdr)); 1817 skb_trim(skb, dlen); 1818 mutex_lock(&ep->com.mutex); 1819 1820 switch (ep->com.state) { 1821 case MPA_REQ_SENT: 1822 update_rx_credits(ep, dlen); 1823 ep->rcv_seq += dlen; 1824 disconnect = process_mpa_reply(ep, skb); 1825 break; 1826 case MPA_REQ_WAIT: 1827 update_rx_credits(ep, dlen); 1828 ep->rcv_seq += dlen; 1829 disconnect = process_mpa_request(ep, skb); 1830 break; 1831 case FPDU_MODE: { 1832 struct c4iw_qp_attributes attrs; 1833 1834 update_rx_credits(ep, dlen); 1835 if (status) 1836 pr_err("%s Unexpected streaming data." \ 1837 " qpid %u ep %p state %d tid %u status %d\n", 1838 __func__, ep->com.qp->wq.sq.qid, ep, 1839 ep->com.state, ep->hwtid, status); 1840 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1841 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1842 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1843 disconnect = 1; 1844 break; 1845 } 1846 default: 1847 break; 1848 } 1849 mutex_unlock(&ep->com.mutex); 1850 if (disconnect) 1851 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1852 c4iw_put_ep(&ep->com); 1853 return 0; 1854 } 1855 1856 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1857 { 1858 struct c4iw_ep *ep; 1859 struct cpl_abort_rpl_rss *rpl = cplhdr(skb); 1860 int release = 0; 1861 unsigned int tid = GET_TID(rpl); 1862 1863 ep = get_ep_from_tid(dev, tid); 1864 if (!ep) { 1865 pr_warn("Abort rpl to freed endpoint\n"); 1866 return 0; 1867 } 1868 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 1869 mutex_lock(&ep->com.mutex); 1870 switch (ep->com.state) { 1871 case ABORTING: 1872 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 1873 __state_set(&ep->com, DEAD); 1874 release = 1; 1875 break; 1876 default: 1877 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); 1878 break; 1879 } 1880 mutex_unlock(&ep->com.mutex); 1881 1882 if (release) 1883 release_ep_resources(ep); 1884 c4iw_put_ep(&ep->com); 1885 return 0; 1886 } 1887 1888 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1889 { 1890 struct sk_buff *skb; 1891 struct fw_ofld_connection_wr *req; 1892 unsigned int mtu_idx; 1893 u32 wscale; 1894 struct sockaddr_in *sin; 1895 int win; 1896 1897 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1898 req = __skb_put_zero(skb, sizeof(*req)); 1899 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1900 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1901 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1902 ep->com.dev->rdev.lldi.ports[0], 1903 ep->l2t)); 1904 sin = (struct sockaddr_in *)&ep->com.local_addr; 1905 req->le.lport = sin->sin_port; 1906 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1907 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1908 req->le.pport = sin->sin_port; 1909 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1910 req->tcb.t_state_to_astid = 1911 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1912 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1913 req->tcb.cplrxdataack_cplpassacceptrpl = 1914 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1915 req->tcb.tx_max = (__force __be32) jiffies; 1916 req->tcb.rcv_adv = htons(1); 1917 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1918 enable_tcp_timestamps, 1919 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1920 wscale = cxgb_compute_wscale(rcv_win); 1921 1922 /* 1923 * Specify the largest window that will fit in opt0. The 1924 * remainder will be specified in the rx_data_ack. 1925 */ 1926 win = ep->rcv_win >> 10; 1927 if (win > RCV_BUFSIZ_M) 1928 win = RCV_BUFSIZ_M; 1929 1930 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 1931 (nocong ? NO_CONG_F : 0) | 1932 KEEP_ALIVE_F | 1933 DELACK_F | 1934 WND_SCALE_V(wscale) | 1935 MSS_IDX_V(mtu_idx) | 1936 L2T_IDX_V(ep->l2t->idx) | 1937 TX_CHAN_V(ep->tx_chan) | 1938 SMAC_SEL_V(ep->smac_idx) | 1939 DSCP_V(ep->tos >> 2) | 1940 ULP_MODE_V(ULP_MODE_TCPDDP) | 1941 RCV_BUFSIZ_V(win)); 1942 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 1943 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 1944 RX_CHANNEL_V(0) | 1945 CCTRL_ECN_V(enable_ecn) | 1946 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 1947 if (enable_tcp_timestamps) 1948 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 1949 if (enable_tcp_sack) 1950 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 1951 if (wscale && enable_tcp_window_scaling) 1952 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 1953 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 1954 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 1955 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 1956 set_bit(ACT_OFLD_CONN, &ep->com.history); 1957 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1958 } 1959 1960 /* 1961 * Some of the error codes above implicitly indicate that there is no TID 1962 * allocated with the result of an ACT_OPEN. We use this predicate to make 1963 * that explicit. 1964 */ 1965 static inline int act_open_has_tid(int status) 1966 { 1967 return (status != CPL_ERR_TCAM_PARITY && 1968 status != CPL_ERR_TCAM_MISS && 1969 status != CPL_ERR_TCAM_FULL && 1970 status != CPL_ERR_CONN_EXIST_SYNRECV && 1971 status != CPL_ERR_CONN_EXIST); 1972 } 1973 1974 static char *neg_adv_str(unsigned int status) 1975 { 1976 switch (status) { 1977 case CPL_ERR_RTX_NEG_ADVICE: 1978 return "Retransmit timeout"; 1979 case CPL_ERR_PERSIST_NEG_ADVICE: 1980 return "Persist timeout"; 1981 case CPL_ERR_KEEPALV_NEG_ADVICE: 1982 return "Keepalive timeout"; 1983 default: 1984 return "Unknown"; 1985 } 1986 } 1987 1988 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 1989 { 1990 ep->snd_win = snd_win; 1991 ep->rcv_win = rcv_win; 1992 pr_debug("snd_win %d rcv_win %d\n", 1993 ep->snd_win, ep->rcv_win); 1994 } 1995 1996 #define ACT_OPEN_RETRY_COUNT 2 1997 1998 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 1999 struct dst_entry *dst, struct c4iw_dev *cdev, 2000 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2001 { 2002 struct neighbour *n; 2003 int err, step; 2004 struct net_device *pdev; 2005 2006 n = dst_neigh_lookup(dst, peer_ip); 2007 if (!n) 2008 return -ENODEV; 2009 2010 rcu_read_lock(); 2011 err = -ENOMEM; 2012 if (n->dev->flags & IFF_LOOPBACK) { 2013 if (iptype == 4) 2014 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2015 else if (IS_ENABLED(CONFIG_IPV6)) 2016 for_each_netdev(&init_net, pdev) { 2017 if (ipv6_chk_addr(&init_net, 2018 (struct in6_addr *)peer_ip, 2019 pdev, 1)) 2020 break; 2021 } 2022 else 2023 pdev = NULL; 2024 2025 if (!pdev) { 2026 err = -ENODEV; 2027 goto out; 2028 } 2029 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2030 n, pdev, rt_tos2priority(tos)); 2031 if (!ep->l2t) { 2032 dev_put(pdev); 2033 goto out; 2034 } 2035 ep->mtu = pdev->mtu; 2036 ep->tx_chan = cxgb4_port_chan(pdev); 2037 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2038 cxgb4_port_viid(pdev)); 2039 step = cdev->rdev.lldi.ntxq / 2040 cdev->rdev.lldi.nchan; 2041 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2042 step = cdev->rdev.lldi.nrxq / 2043 cdev->rdev.lldi.nchan; 2044 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2045 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2046 cxgb4_port_idx(pdev) * step]; 2047 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2048 dev_put(pdev); 2049 } else { 2050 pdev = get_real_dev(n->dev); 2051 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2052 n, pdev, 0); 2053 if (!ep->l2t) 2054 goto out; 2055 ep->mtu = dst_mtu(dst); 2056 ep->tx_chan = cxgb4_port_chan(pdev); 2057 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2058 cxgb4_port_viid(pdev)); 2059 step = cdev->rdev.lldi.ntxq / 2060 cdev->rdev.lldi.nchan; 2061 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2062 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2063 step = cdev->rdev.lldi.nrxq / 2064 cdev->rdev.lldi.nchan; 2065 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2066 cxgb4_port_idx(pdev) * step]; 2067 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2068 2069 if (clear_mpa_v1) { 2070 ep->retry_with_mpa_v1 = 0; 2071 ep->tried_with_mpa_v1 = 0; 2072 } 2073 } 2074 err = 0; 2075 out: 2076 rcu_read_unlock(); 2077 2078 neigh_release(n); 2079 2080 return err; 2081 } 2082 2083 static int c4iw_reconnect(struct c4iw_ep *ep) 2084 { 2085 int err = 0; 2086 int size = 0; 2087 struct sockaddr_in *laddr = (struct sockaddr_in *) 2088 &ep->com.cm_id->m_local_addr; 2089 struct sockaddr_in *raddr = (struct sockaddr_in *) 2090 &ep->com.cm_id->m_remote_addr; 2091 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2092 &ep->com.cm_id->m_local_addr; 2093 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2094 &ep->com.cm_id->m_remote_addr; 2095 int iptype; 2096 __u8 *ra; 2097 2098 pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id); 2099 c4iw_init_wr_wait(ep->com.wr_waitp); 2100 2101 /* When MPA revision is different on nodes, the node with MPA_rev=2 2102 * tries to reconnect with MPA_rev 1 for the same EP through 2103 * c4iw_reconnect(), where the same EP is assigned with new tid for 2104 * further connection establishment. As we are using the same EP pointer 2105 * for reconnect, few skbs are used during the previous c4iw_connect(), 2106 * which leaves the EP with inadequate skbs for further 2107 * c4iw_reconnect(), Further causing a crash due to an empty 2108 * skb_list() during peer_abort(). Allocate skbs which is already used. 2109 */ 2110 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2111 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2112 err = -ENOMEM; 2113 goto fail1; 2114 } 2115 2116 /* 2117 * Allocate an active TID to initiate a TCP connection. 2118 */ 2119 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2120 if (ep->atid == -1) { 2121 pr_err("%s - cannot alloc atid\n", __func__); 2122 err = -ENOMEM; 2123 goto fail2; 2124 } 2125 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2126 2127 /* find a route */ 2128 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2129 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2130 laddr->sin_addr.s_addr, 2131 raddr->sin_addr.s_addr, 2132 laddr->sin_port, 2133 raddr->sin_port, ep->com.cm_id->tos); 2134 iptype = 4; 2135 ra = (__u8 *)&raddr->sin_addr; 2136 } else { 2137 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2138 get_real_dev, 2139 laddr6->sin6_addr.s6_addr, 2140 raddr6->sin6_addr.s6_addr, 2141 laddr6->sin6_port, 2142 raddr6->sin6_port, 0, 2143 raddr6->sin6_scope_id); 2144 iptype = 6; 2145 ra = (__u8 *)&raddr6->sin6_addr; 2146 } 2147 if (!ep->dst) { 2148 pr_err("%s - cannot find route\n", __func__); 2149 err = -EHOSTUNREACH; 2150 goto fail3; 2151 } 2152 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2153 ep->com.dev->rdev.lldi.adapter_type, 2154 ep->com.cm_id->tos); 2155 if (err) { 2156 pr_err("%s - cannot alloc l2e\n", __func__); 2157 goto fail4; 2158 } 2159 2160 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2161 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2162 ep->l2t->idx); 2163 2164 state_set(&ep->com, CONNECTING); 2165 ep->tos = ep->com.cm_id->tos; 2166 2167 /* send connect request to rnic */ 2168 err = send_connect(ep); 2169 if (!err) 2170 goto out; 2171 2172 cxgb4_l2t_release(ep->l2t); 2173 fail4: 2174 dst_release(ep->dst); 2175 fail3: 2176 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2177 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2178 fail2: 2179 /* 2180 * remember to send notification to upper layer. 2181 * We are in here so the upper layer is not aware that this is 2182 * re-connect attempt and so, upper layer is still waiting for 2183 * response of 1st connect request. 2184 */ 2185 connect_reply_upcall(ep, -ECONNRESET); 2186 fail1: 2187 c4iw_put_ep(&ep->com); 2188 out: 2189 return err; 2190 } 2191 2192 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2193 { 2194 struct c4iw_ep *ep; 2195 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2196 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2197 ntohl(rpl->atid_status))); 2198 struct tid_info *t = dev->rdev.lldi.tids; 2199 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2200 struct sockaddr_in *la; 2201 struct sockaddr_in *ra; 2202 struct sockaddr_in6 *la6; 2203 struct sockaddr_in6 *ra6; 2204 int ret = 0; 2205 2206 ep = lookup_atid(t, atid); 2207 la = (struct sockaddr_in *)&ep->com.local_addr; 2208 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2209 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2210 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2211 2212 pr_debug("ep %p atid %u status %u errno %d\n", ep, atid, 2213 status, status2errno(status)); 2214 2215 if (cxgb_is_neg_adv(status)) { 2216 pr_debug("Connection problems for atid %u status %u (%s)\n", 2217 atid, status, neg_adv_str(status)); 2218 ep->stats.connect_neg_adv++; 2219 mutex_lock(&dev->rdev.stats.lock); 2220 dev->rdev.stats.neg_adv++; 2221 mutex_unlock(&dev->rdev.stats.lock); 2222 return 0; 2223 } 2224 2225 set_bit(ACT_OPEN_RPL, &ep->com.history); 2226 2227 /* 2228 * Log interesting failures. 2229 */ 2230 switch (status) { 2231 case CPL_ERR_CONN_RESET: 2232 case CPL_ERR_CONN_TIMEDOUT: 2233 break; 2234 case CPL_ERR_TCAM_FULL: 2235 mutex_lock(&dev->rdev.stats.lock); 2236 dev->rdev.stats.tcam_full++; 2237 mutex_unlock(&dev->rdev.stats.lock); 2238 if (ep->com.local_addr.ss_family == AF_INET && 2239 dev->rdev.lldi.enable_fw_ofld_conn) { 2240 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2241 ntohl(rpl->atid_status)))); 2242 if (ret) 2243 goto fail; 2244 return 0; 2245 } 2246 break; 2247 case CPL_ERR_CONN_EXIST: 2248 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2249 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2250 if (ep->com.remote_addr.ss_family == AF_INET6) { 2251 struct sockaddr_in6 *sin6 = 2252 (struct sockaddr_in6 *) 2253 &ep->com.local_addr; 2254 cxgb4_clip_release( 2255 ep->com.dev->rdev.lldi.ports[0], 2256 (const u32 *) 2257 &sin6->sin6_addr.s6_addr, 1); 2258 } 2259 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2260 atid); 2261 cxgb4_free_atid(t, atid); 2262 dst_release(ep->dst); 2263 cxgb4_l2t_release(ep->l2t); 2264 c4iw_reconnect(ep); 2265 return 0; 2266 } 2267 break; 2268 default: 2269 if (ep->com.local_addr.ss_family == AF_INET) { 2270 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2271 atid, status, status2errno(status), 2272 &la->sin_addr.s_addr, ntohs(la->sin_port), 2273 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2274 } else { 2275 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2276 atid, status, status2errno(status), 2277 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2278 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2279 } 2280 break; 2281 } 2282 2283 fail: 2284 connect_reply_upcall(ep, status2errno(status)); 2285 state_set(&ep->com, DEAD); 2286 2287 if (ep->com.remote_addr.ss_family == AF_INET6) { 2288 struct sockaddr_in6 *sin6 = 2289 (struct sockaddr_in6 *)&ep->com.local_addr; 2290 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2291 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2292 } 2293 if (status && act_open_has_tid(status)) 2294 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl), 2295 ep->com.local_addr.ss_family); 2296 2297 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2298 cxgb4_free_atid(t, atid); 2299 dst_release(ep->dst); 2300 cxgb4_l2t_release(ep->l2t); 2301 c4iw_put_ep(&ep->com); 2302 2303 return 0; 2304 } 2305 2306 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2307 { 2308 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2309 unsigned int stid = GET_TID(rpl); 2310 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2311 2312 if (!ep) { 2313 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2314 goto out; 2315 } 2316 pr_debug("ep %p status %d error %d\n", ep, 2317 rpl->status, status2errno(rpl->status)); 2318 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2319 c4iw_put_ep(&ep->com); 2320 out: 2321 return 0; 2322 } 2323 2324 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2325 { 2326 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2327 unsigned int stid = GET_TID(rpl); 2328 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2329 2330 if (!ep) { 2331 pr_warn("%s stid %d lookup failure!\n", __func__, stid); 2332 goto out; 2333 } 2334 pr_debug("ep %p\n", ep); 2335 c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status)); 2336 c4iw_put_ep(&ep->com); 2337 out: 2338 return 0; 2339 } 2340 2341 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2342 struct cpl_pass_accept_req *req) 2343 { 2344 struct cpl_pass_accept_rpl *rpl; 2345 unsigned int mtu_idx; 2346 u64 opt0; 2347 u32 opt2; 2348 u32 wscale; 2349 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2350 int win; 2351 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2352 2353 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2354 2355 skb_get(skb); 2356 rpl = cplhdr(skb); 2357 if (!is_t4(adapter_type)) { 2358 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2359 rpl5 = (void *)rpl; 2360 INIT_TP_WR(rpl5, ep->hwtid); 2361 } else { 2362 skb_trim(skb, sizeof(*rpl)); 2363 INIT_TP_WR(rpl, ep->hwtid); 2364 } 2365 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2366 ep->hwtid)); 2367 2368 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2369 enable_tcp_timestamps && req->tcpopt.tstamp, 2370 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2371 wscale = cxgb_compute_wscale(rcv_win); 2372 2373 /* 2374 * Specify the largest window that will fit in opt0. The 2375 * remainder will be specified in the rx_data_ack. 2376 */ 2377 win = ep->rcv_win >> 10; 2378 if (win > RCV_BUFSIZ_M) 2379 win = RCV_BUFSIZ_M; 2380 opt0 = (nocong ? NO_CONG_F : 0) | 2381 KEEP_ALIVE_F | 2382 DELACK_F | 2383 WND_SCALE_V(wscale) | 2384 MSS_IDX_V(mtu_idx) | 2385 L2T_IDX_V(ep->l2t->idx) | 2386 TX_CHAN_V(ep->tx_chan) | 2387 SMAC_SEL_V(ep->smac_idx) | 2388 DSCP_V(ep->tos >> 2) | 2389 ULP_MODE_V(ULP_MODE_TCPDDP) | 2390 RCV_BUFSIZ_V(win); 2391 opt2 = RX_CHANNEL_V(0) | 2392 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2393 2394 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2395 opt2 |= TSTAMPS_EN_F; 2396 if (enable_tcp_sack && req->tcpopt.sack) 2397 opt2 |= SACK_EN_F; 2398 if (wscale && enable_tcp_window_scaling) 2399 opt2 |= WND_SCALE_EN_F; 2400 if (enable_ecn) { 2401 const struct tcphdr *tcph; 2402 u32 hlen = ntohl(req->hdr_len); 2403 2404 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2405 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2406 IP_HDR_LEN_G(hlen); 2407 else 2408 tcph = (const void *)(req + 1) + 2409 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2410 if (tcph->ece && tcph->cwr) 2411 opt2 |= CCTRL_ECN_V(1); 2412 } 2413 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2414 u32 isn = (prandom_u32() & ~7UL) - 1; 2415 opt2 |= T5_OPT_2_VALID_F; 2416 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2417 opt2 |= T5_ISS_F; 2418 rpl5 = (void *)rpl; 2419 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2420 if (peer2peer) 2421 isn += 4; 2422 rpl5->iss = cpu_to_be32(isn); 2423 pr_debug("iss %u\n", be32_to_cpu(rpl5->iss)); 2424 } 2425 2426 rpl->opt0 = cpu_to_be64(opt0); 2427 rpl->opt2 = cpu_to_be32(opt2); 2428 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2429 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2430 2431 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2432 } 2433 2434 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2435 { 2436 pr_debug("c4iw_dev %p tid %u\n", dev, hwtid); 2437 skb_trim(skb, sizeof(struct cpl_tid_release)); 2438 release_tid(&dev->rdev, hwtid, skb); 2439 return; 2440 } 2441 2442 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2443 { 2444 struct c4iw_ep *child_ep = NULL, *parent_ep; 2445 struct cpl_pass_accept_req *req = cplhdr(skb); 2446 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2447 struct tid_info *t = dev->rdev.lldi.tids; 2448 unsigned int hwtid = GET_TID(req); 2449 struct dst_entry *dst; 2450 __u8 local_ip[16], peer_ip[16]; 2451 __be16 local_port, peer_port; 2452 struct sockaddr_in6 *sin6; 2453 int err; 2454 u16 peer_mss = ntohs(req->tcpopt.mss); 2455 int iptype; 2456 unsigned short hdrs; 2457 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2458 2459 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2460 if (!parent_ep) { 2461 pr_err("%s connect request on invalid stid %d\n", 2462 __func__, stid); 2463 goto reject; 2464 } 2465 2466 if (state_read(&parent_ep->com) != LISTEN) { 2467 pr_err("%s - listening ep not in LISTEN\n", __func__); 2468 goto reject; 2469 } 2470 2471 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2472 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2473 2474 /* Find output route */ 2475 if (iptype == 4) { 2476 pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2477 , parent_ep, hwtid, 2478 local_ip, peer_ip, ntohs(local_port), 2479 ntohs(peer_port), peer_mss); 2480 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2481 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2482 local_port, peer_port, tos); 2483 } else { 2484 pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2485 , parent_ep, hwtid, 2486 local_ip, peer_ip, ntohs(local_port), 2487 ntohs(peer_port), peer_mss); 2488 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2489 local_ip, peer_ip, local_port, peer_port, 2490 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2491 ((struct sockaddr_in6 *) 2492 &parent_ep->com.local_addr)->sin6_scope_id); 2493 } 2494 if (!dst) { 2495 pr_err("%s - failed to find dst entry!\n", __func__); 2496 goto reject; 2497 } 2498 2499 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2500 if (!child_ep) { 2501 pr_err("%s - failed to allocate ep entry!\n", __func__); 2502 dst_release(dst); 2503 goto reject; 2504 } 2505 2506 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2507 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2508 if (err) { 2509 pr_err("%s - failed to allocate l2t entry!\n", __func__); 2510 dst_release(dst); 2511 kfree(child_ep); 2512 goto reject; 2513 } 2514 2515 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + 2516 sizeof(struct tcphdr) + 2517 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2518 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2519 child_ep->mtu = peer_mss + hdrs; 2520 2521 skb_queue_head_init(&child_ep->com.ep_skb_list); 2522 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2523 goto fail; 2524 2525 state_set(&child_ep->com, CONNECTING); 2526 child_ep->com.dev = dev; 2527 child_ep->com.cm_id = NULL; 2528 2529 if (iptype == 4) { 2530 struct sockaddr_in *sin = (struct sockaddr_in *) 2531 &child_ep->com.local_addr; 2532 2533 sin->sin_family = AF_INET; 2534 sin->sin_port = local_port; 2535 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2536 2537 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2538 sin->sin_family = AF_INET; 2539 sin->sin_port = ((struct sockaddr_in *) 2540 &parent_ep->com.local_addr)->sin_port; 2541 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2542 2543 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2544 sin->sin_family = AF_INET; 2545 sin->sin_port = peer_port; 2546 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2547 } else { 2548 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2549 sin6->sin6_family = PF_INET6; 2550 sin6->sin6_port = local_port; 2551 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2552 2553 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2554 sin6->sin6_family = PF_INET6; 2555 sin6->sin6_port = ((struct sockaddr_in6 *) 2556 &parent_ep->com.local_addr)->sin6_port; 2557 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2558 2559 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2560 sin6->sin6_family = PF_INET6; 2561 sin6->sin6_port = peer_port; 2562 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2563 } 2564 2565 c4iw_get_ep(&parent_ep->com); 2566 child_ep->parent_ep = parent_ep; 2567 child_ep->tos = tos; 2568 child_ep->dst = dst; 2569 child_ep->hwtid = hwtid; 2570 2571 pr_debug("tx_chan %u smac_idx %u rss_qid %u\n", 2572 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2573 2574 timer_setup(&child_ep->timer, ep_timeout, 0); 2575 cxgb4_insert_tid(t, child_ep, hwtid, 2576 child_ep->com.local_addr.ss_family); 2577 insert_ep_tid(child_ep); 2578 if (accept_cr(child_ep, skb, req)) { 2579 c4iw_put_ep(&parent_ep->com); 2580 release_ep_resources(child_ep); 2581 } else { 2582 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2583 } 2584 if (iptype == 6) { 2585 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2586 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2587 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2588 } 2589 goto out; 2590 fail: 2591 c4iw_put_ep(&child_ep->com); 2592 reject: 2593 reject_cr(dev, hwtid, skb); 2594 out: 2595 if (parent_ep) 2596 c4iw_put_ep(&parent_ep->com); 2597 return 0; 2598 } 2599 2600 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2601 { 2602 struct c4iw_ep *ep; 2603 struct cpl_pass_establish *req = cplhdr(skb); 2604 unsigned int tid = GET_TID(req); 2605 int ret; 2606 2607 ep = get_ep_from_tid(dev, tid); 2608 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2609 ep->snd_seq = be32_to_cpu(req->snd_isn); 2610 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2611 2612 pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, 2613 ntohs(req->tcp_opt)); 2614 2615 set_emss(ep, ntohs(req->tcp_opt)); 2616 2617 dst_confirm(ep->dst); 2618 mutex_lock(&ep->com.mutex); 2619 ep->com.state = MPA_REQ_WAIT; 2620 start_ep_timer(ep); 2621 set_bit(PASS_ESTAB, &ep->com.history); 2622 ret = send_flowc(ep); 2623 mutex_unlock(&ep->com.mutex); 2624 if (ret) 2625 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2626 c4iw_put_ep(&ep->com); 2627 2628 return 0; 2629 } 2630 2631 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2632 { 2633 struct cpl_peer_close *hdr = cplhdr(skb); 2634 struct c4iw_ep *ep; 2635 struct c4iw_qp_attributes attrs; 2636 int disconnect = 1; 2637 int release = 0; 2638 unsigned int tid = GET_TID(hdr); 2639 int ret; 2640 2641 ep = get_ep_from_tid(dev, tid); 2642 if (!ep) 2643 return 0; 2644 2645 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2646 dst_confirm(ep->dst); 2647 2648 set_bit(PEER_CLOSE, &ep->com.history); 2649 mutex_lock(&ep->com.mutex); 2650 switch (ep->com.state) { 2651 case MPA_REQ_WAIT: 2652 __state_set(&ep->com, CLOSING); 2653 break; 2654 case MPA_REQ_SENT: 2655 __state_set(&ep->com, CLOSING); 2656 connect_reply_upcall(ep, -ECONNRESET); 2657 break; 2658 case MPA_REQ_RCVD: 2659 2660 /* 2661 * We're gonna mark this puppy DEAD, but keep 2662 * the reference on it until the ULP accepts or 2663 * rejects the CR. Also wake up anyone waiting 2664 * in rdma connection migration (see c4iw_accept_cr()). 2665 */ 2666 __state_set(&ep->com, CLOSING); 2667 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2668 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2669 break; 2670 case MPA_REP_SENT: 2671 __state_set(&ep->com, CLOSING); 2672 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2673 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2674 break; 2675 case FPDU_MODE: 2676 start_ep_timer(ep); 2677 __state_set(&ep->com, CLOSING); 2678 attrs.next_state = C4IW_QP_STATE_CLOSING; 2679 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2680 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2681 if (ret != -ECONNRESET) { 2682 peer_close_upcall(ep); 2683 disconnect = 1; 2684 } 2685 break; 2686 case ABORTING: 2687 disconnect = 0; 2688 break; 2689 case CLOSING: 2690 __state_set(&ep->com, MORIBUND); 2691 disconnect = 0; 2692 break; 2693 case MORIBUND: 2694 (void)stop_ep_timer(ep); 2695 if (ep->com.cm_id && ep->com.qp) { 2696 attrs.next_state = C4IW_QP_STATE_IDLE; 2697 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2698 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2699 } 2700 close_complete_upcall(ep, 0); 2701 __state_set(&ep->com, DEAD); 2702 release = 1; 2703 disconnect = 0; 2704 break; 2705 case DEAD: 2706 disconnect = 0; 2707 break; 2708 default: 2709 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2710 } 2711 mutex_unlock(&ep->com.mutex); 2712 if (disconnect) 2713 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2714 if (release) 2715 release_ep_resources(ep); 2716 c4iw_put_ep(&ep->com); 2717 return 0; 2718 } 2719 2720 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2721 { 2722 struct cpl_abort_req_rss *req = cplhdr(skb); 2723 struct c4iw_ep *ep; 2724 struct sk_buff *rpl_skb; 2725 struct c4iw_qp_attributes attrs; 2726 int ret; 2727 int release = 0; 2728 unsigned int tid = GET_TID(req); 2729 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2730 2731 ep = get_ep_from_tid(dev, tid); 2732 if (!ep) 2733 return 0; 2734 2735 if (cxgb_is_neg_adv(req->status)) { 2736 pr_warn("%s Negative advice on abort- tid %u status %d (%s)\n", 2737 __func__, ep->hwtid, req->status, 2738 neg_adv_str(req->status)); 2739 ep->stats.abort_neg_adv++; 2740 mutex_lock(&dev->rdev.stats.lock); 2741 dev->rdev.stats.neg_adv++; 2742 mutex_unlock(&dev->rdev.stats.lock); 2743 goto deref_ep; 2744 } 2745 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, 2746 ep->com.state); 2747 set_bit(PEER_ABORT, &ep->com.history); 2748 2749 /* 2750 * Wake up any threads in rdma_init() or rdma_fini(). 2751 * However, this is not needed if com state is just 2752 * MPA_REQ_SENT 2753 */ 2754 if (ep->com.state != MPA_REQ_SENT) 2755 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 2756 2757 mutex_lock(&ep->com.mutex); 2758 switch (ep->com.state) { 2759 case CONNECTING: 2760 c4iw_put_ep(&ep->parent_ep->com); 2761 break; 2762 case MPA_REQ_WAIT: 2763 (void)stop_ep_timer(ep); 2764 break; 2765 case MPA_REQ_SENT: 2766 (void)stop_ep_timer(ep); 2767 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2768 connect_reply_upcall(ep, -ECONNRESET); 2769 else { 2770 /* 2771 * we just don't send notification upwards because we 2772 * want to retry with mpa_v1 without upper layers even 2773 * knowing it. 2774 * 2775 * do some housekeeping so as to re-initiate the 2776 * connection 2777 */ 2778 pr_info("%s: mpa_rev=%d. Retrying with mpav1\n", 2779 __func__, mpa_rev); 2780 ep->retry_with_mpa_v1 = 1; 2781 } 2782 break; 2783 case MPA_REP_SENT: 2784 break; 2785 case MPA_REQ_RCVD: 2786 break; 2787 case MORIBUND: 2788 case CLOSING: 2789 stop_ep_timer(ep); 2790 /*FALLTHROUGH*/ 2791 case FPDU_MODE: 2792 if (ep->com.cm_id && ep->com.qp) { 2793 attrs.next_state = C4IW_QP_STATE_ERROR; 2794 ret = c4iw_modify_qp(ep->com.qp->rhp, 2795 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2796 &attrs, 1); 2797 if (ret) 2798 pr_err("%s - qp <- error failed!\n", __func__); 2799 } 2800 peer_abort_upcall(ep); 2801 break; 2802 case ABORTING: 2803 break; 2804 case DEAD: 2805 pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2806 mutex_unlock(&ep->com.mutex); 2807 goto deref_ep; 2808 default: 2809 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2810 break; 2811 } 2812 dst_confirm(ep->dst); 2813 if (ep->com.state != ABORTING) { 2814 __state_set(&ep->com, DEAD); 2815 /* we don't release if we want to retry with mpa_v1 */ 2816 if (!ep->retry_with_mpa_v1) 2817 release = 1; 2818 } 2819 mutex_unlock(&ep->com.mutex); 2820 2821 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2822 if (WARN_ON(!rpl_skb)) { 2823 release = 1; 2824 goto out; 2825 } 2826 2827 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2828 2829 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2830 out: 2831 if (release) 2832 release_ep_resources(ep); 2833 else if (ep->retry_with_mpa_v1) { 2834 if (ep->com.remote_addr.ss_family == AF_INET6) { 2835 struct sockaddr_in6 *sin6 = 2836 (struct sockaddr_in6 *) 2837 &ep->com.local_addr; 2838 cxgb4_clip_release( 2839 ep->com.dev->rdev.lldi.ports[0], 2840 (const u32 *)&sin6->sin6_addr.s6_addr, 2841 1); 2842 } 2843 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2844 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 2845 ep->com.local_addr.ss_family); 2846 dst_release(ep->dst); 2847 cxgb4_l2t_release(ep->l2t); 2848 c4iw_reconnect(ep); 2849 } 2850 2851 deref_ep: 2852 c4iw_put_ep(&ep->com); 2853 /* Dereferencing ep, referenced in peer_abort_intr() */ 2854 c4iw_put_ep(&ep->com); 2855 return 0; 2856 } 2857 2858 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2859 { 2860 struct c4iw_ep *ep; 2861 struct c4iw_qp_attributes attrs; 2862 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2863 int release = 0; 2864 unsigned int tid = GET_TID(rpl); 2865 2866 ep = get_ep_from_tid(dev, tid); 2867 if (!ep) 2868 return 0; 2869 2870 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2871 2872 /* The cm_id may be null if we failed to connect */ 2873 mutex_lock(&ep->com.mutex); 2874 set_bit(CLOSE_CON_RPL, &ep->com.history); 2875 switch (ep->com.state) { 2876 case CLOSING: 2877 __state_set(&ep->com, MORIBUND); 2878 break; 2879 case MORIBUND: 2880 (void)stop_ep_timer(ep); 2881 if ((ep->com.cm_id) && (ep->com.qp)) { 2882 attrs.next_state = C4IW_QP_STATE_IDLE; 2883 c4iw_modify_qp(ep->com.qp->rhp, 2884 ep->com.qp, 2885 C4IW_QP_ATTR_NEXT_STATE, 2886 &attrs, 1); 2887 } 2888 close_complete_upcall(ep, 0); 2889 __state_set(&ep->com, DEAD); 2890 release = 1; 2891 break; 2892 case ABORTING: 2893 case DEAD: 2894 break; 2895 default: 2896 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 2897 break; 2898 } 2899 mutex_unlock(&ep->com.mutex); 2900 if (release) 2901 release_ep_resources(ep); 2902 c4iw_put_ep(&ep->com); 2903 return 0; 2904 } 2905 2906 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 2907 { 2908 struct cpl_rdma_terminate *rpl = cplhdr(skb); 2909 unsigned int tid = GET_TID(rpl); 2910 struct c4iw_ep *ep; 2911 struct c4iw_qp_attributes attrs; 2912 2913 ep = get_ep_from_tid(dev, tid); 2914 2915 if (ep && ep->com.qp) { 2916 pr_warn("TERM received tid %u qpid %u\n", 2917 tid, ep->com.qp->wq.sq.qid); 2918 attrs.next_state = C4IW_QP_STATE_TERMINATE; 2919 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2920 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2921 } else 2922 pr_warn("TERM received tid %u no ep/qp\n", tid); 2923 c4iw_put_ep(&ep->com); 2924 2925 return 0; 2926 } 2927 2928 /* 2929 * Upcall from the adapter indicating data has been transmitted. 2930 * For us its just the single MPA request or reply. We can now free 2931 * the skb holding the mpa message. 2932 */ 2933 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 2934 { 2935 struct c4iw_ep *ep; 2936 struct cpl_fw4_ack *hdr = cplhdr(skb); 2937 u8 credits = hdr->credits; 2938 unsigned int tid = GET_TID(hdr); 2939 2940 2941 ep = get_ep_from_tid(dev, tid); 2942 if (!ep) 2943 return 0; 2944 pr_debug("ep %p tid %u credits %u\n", 2945 ep, ep->hwtid, credits); 2946 if (credits == 0) { 2947 pr_debug("0 credit ack ep %p tid %u state %u\n", 2948 ep, ep->hwtid, state_read(&ep->com)); 2949 goto out; 2950 } 2951 2952 dst_confirm(ep->dst); 2953 if (ep->mpa_skb) { 2954 pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", 2955 ep, ep->hwtid, state_read(&ep->com), 2956 ep->mpa_attr.initiator ? 1 : 0); 2957 mutex_lock(&ep->com.mutex); 2958 kfree_skb(ep->mpa_skb); 2959 ep->mpa_skb = NULL; 2960 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 2961 stop_ep_timer(ep); 2962 mutex_unlock(&ep->com.mutex); 2963 } 2964 out: 2965 c4iw_put_ep(&ep->com); 2966 return 0; 2967 } 2968 2969 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 2970 { 2971 int abort; 2972 struct c4iw_ep *ep = to_ep(cm_id); 2973 2974 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 2975 2976 mutex_lock(&ep->com.mutex); 2977 if (ep->com.state != MPA_REQ_RCVD) { 2978 mutex_unlock(&ep->com.mutex); 2979 c4iw_put_ep(&ep->com); 2980 return -ECONNRESET; 2981 } 2982 set_bit(ULP_REJECT, &ep->com.history); 2983 if (mpa_rev == 0) 2984 abort = 1; 2985 else 2986 abort = send_mpa_reject(ep, pdata, pdata_len); 2987 mutex_unlock(&ep->com.mutex); 2988 2989 stop_ep_timer(ep); 2990 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 2991 c4iw_put_ep(&ep->com); 2992 return 0; 2993 } 2994 2995 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 2996 { 2997 int err; 2998 struct c4iw_qp_attributes attrs; 2999 enum c4iw_qp_attr_mask mask; 3000 struct c4iw_ep *ep = to_ep(cm_id); 3001 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3002 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3003 int abort = 0; 3004 3005 pr_debug("ep %p tid %u\n", ep, ep->hwtid); 3006 3007 mutex_lock(&ep->com.mutex); 3008 if (ep->com.state != MPA_REQ_RCVD) { 3009 err = -ECONNRESET; 3010 goto err_out; 3011 } 3012 3013 if (!qp) { 3014 err = -EINVAL; 3015 goto err_out; 3016 } 3017 3018 set_bit(ULP_ACCEPT, &ep->com.history); 3019 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3020 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3021 err = -EINVAL; 3022 goto err_abort; 3023 } 3024 3025 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3026 if (conn_param->ord > ep->ird) { 3027 if (RELAXED_IRD_NEGOTIATION) { 3028 conn_param->ord = ep->ird; 3029 } else { 3030 ep->ird = conn_param->ird; 3031 ep->ord = conn_param->ord; 3032 send_mpa_reject(ep, conn_param->private_data, 3033 conn_param->private_data_len); 3034 err = -ENOMEM; 3035 goto err_abort; 3036 } 3037 } 3038 if (conn_param->ird < ep->ord) { 3039 if (RELAXED_IRD_NEGOTIATION && 3040 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3041 conn_param->ird = ep->ord; 3042 } else { 3043 err = -ENOMEM; 3044 goto err_abort; 3045 } 3046 } 3047 } 3048 ep->ird = conn_param->ird; 3049 ep->ord = conn_param->ord; 3050 3051 if (ep->mpa_attr.version == 1) { 3052 if (peer2peer && ep->ird == 0) 3053 ep->ird = 1; 3054 } else { 3055 if (peer2peer && 3056 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3057 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3058 ep->ird = 1; 3059 } 3060 3061 pr_debug("ird %d ord %d\n", ep->ird, ep->ord); 3062 3063 ep->com.cm_id = cm_id; 3064 ref_cm_id(&ep->com); 3065 ep->com.qp = qp; 3066 ref_qp(ep); 3067 3068 /* bind QP to EP and move to RTS */ 3069 attrs.mpa_attr = ep->mpa_attr; 3070 attrs.max_ird = ep->ird; 3071 attrs.max_ord = ep->ord; 3072 attrs.llp_stream_handle = ep; 3073 attrs.next_state = C4IW_QP_STATE_RTS; 3074 3075 /* bind QP and TID with INIT_WR */ 3076 mask = C4IW_QP_ATTR_NEXT_STATE | 3077 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3078 C4IW_QP_ATTR_MPA_ATTR | 3079 C4IW_QP_ATTR_MAX_IRD | 3080 C4IW_QP_ATTR_MAX_ORD; 3081 3082 err = c4iw_modify_qp(ep->com.qp->rhp, 3083 ep->com.qp, mask, &attrs, 1); 3084 if (err) 3085 goto err_deref_cm_id; 3086 3087 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3088 err = send_mpa_reply(ep, conn_param->private_data, 3089 conn_param->private_data_len); 3090 if (err) 3091 goto err_deref_cm_id; 3092 3093 __state_set(&ep->com, FPDU_MODE); 3094 established_upcall(ep); 3095 mutex_unlock(&ep->com.mutex); 3096 c4iw_put_ep(&ep->com); 3097 return 0; 3098 err_deref_cm_id: 3099 deref_cm_id(&ep->com); 3100 err_abort: 3101 abort = 1; 3102 err_out: 3103 mutex_unlock(&ep->com.mutex); 3104 if (abort) 3105 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3106 c4iw_put_ep(&ep->com); 3107 return err; 3108 } 3109 3110 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3111 { 3112 struct in_device *ind; 3113 int found = 0; 3114 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3115 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3116 3117 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3118 if (!ind) 3119 return -EADDRNOTAVAIL; 3120 for_primary_ifa(ind) { 3121 laddr->sin_addr.s_addr = ifa->ifa_address; 3122 raddr->sin_addr.s_addr = ifa->ifa_address; 3123 found = 1; 3124 break; 3125 } 3126 endfor_ifa(ind); 3127 in_dev_put(ind); 3128 return found ? 0 : -EADDRNOTAVAIL; 3129 } 3130 3131 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3132 unsigned char banned_flags) 3133 { 3134 struct inet6_dev *idev; 3135 int err = -EADDRNOTAVAIL; 3136 3137 rcu_read_lock(); 3138 idev = __in6_dev_get(dev); 3139 if (idev != NULL) { 3140 struct inet6_ifaddr *ifp; 3141 3142 read_lock_bh(&idev->lock); 3143 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3144 if (ifp->scope == IFA_LINK && 3145 !(ifp->flags & banned_flags)) { 3146 memcpy(addr, &ifp->addr, 16); 3147 err = 0; 3148 break; 3149 } 3150 } 3151 read_unlock_bh(&idev->lock); 3152 } 3153 rcu_read_unlock(); 3154 return err; 3155 } 3156 3157 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3158 { 3159 struct in6_addr uninitialized_var(addr); 3160 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3161 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3162 3163 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3164 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3165 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3166 return 0; 3167 } 3168 return -EADDRNOTAVAIL; 3169 } 3170 3171 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3172 { 3173 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3174 struct c4iw_ep *ep; 3175 int err = 0; 3176 struct sockaddr_in *laddr; 3177 struct sockaddr_in *raddr; 3178 struct sockaddr_in6 *laddr6; 3179 struct sockaddr_in6 *raddr6; 3180 __u8 *ra; 3181 int iptype; 3182 3183 if ((conn_param->ord > cur_max_read_depth(dev)) || 3184 (conn_param->ird > cur_max_read_depth(dev))) { 3185 err = -EINVAL; 3186 goto out; 3187 } 3188 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3189 if (!ep) { 3190 pr_err("%s - cannot alloc ep\n", __func__); 3191 err = -ENOMEM; 3192 goto out; 3193 } 3194 3195 skb_queue_head_init(&ep->com.ep_skb_list); 3196 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3197 err = -ENOMEM; 3198 goto fail1; 3199 } 3200 3201 timer_setup(&ep->timer, ep_timeout, 0); 3202 ep->plen = conn_param->private_data_len; 3203 if (ep->plen) 3204 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3205 conn_param->private_data, ep->plen); 3206 ep->ird = conn_param->ird; 3207 ep->ord = conn_param->ord; 3208 3209 if (peer2peer && ep->ord == 0) 3210 ep->ord = 1; 3211 3212 ep->com.cm_id = cm_id; 3213 ref_cm_id(&ep->com); 3214 ep->com.dev = dev; 3215 ep->com.qp = get_qhp(dev, conn_param->qpn); 3216 if (!ep->com.qp) { 3217 pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3218 err = -EINVAL; 3219 goto fail2; 3220 } 3221 ref_qp(ep); 3222 pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn, 3223 ep->com.qp, cm_id); 3224 3225 /* 3226 * Allocate an active TID to initiate a TCP connection. 3227 */ 3228 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3229 if (ep->atid == -1) { 3230 pr_err("%s - cannot alloc atid\n", __func__); 3231 err = -ENOMEM; 3232 goto fail2; 3233 } 3234 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3235 3236 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3237 sizeof(ep->com.local_addr)); 3238 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3239 sizeof(ep->com.remote_addr)); 3240 3241 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3242 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3243 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3244 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3245 3246 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3247 iptype = 4; 3248 ra = (__u8 *)&raddr->sin_addr; 3249 3250 /* 3251 * Handle loopback requests to INADDR_ANY. 3252 */ 3253 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3254 err = pick_local_ipaddrs(dev, cm_id); 3255 if (err) 3256 goto fail2; 3257 } 3258 3259 /* find a route */ 3260 pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3261 &laddr->sin_addr, ntohs(laddr->sin_port), 3262 ra, ntohs(raddr->sin_port)); 3263 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3264 laddr->sin_addr.s_addr, 3265 raddr->sin_addr.s_addr, 3266 laddr->sin_port, 3267 raddr->sin_port, cm_id->tos); 3268 } else { 3269 iptype = 6; 3270 ra = (__u8 *)&raddr6->sin6_addr; 3271 3272 /* 3273 * Handle loopback requests to INADDR_ANY. 3274 */ 3275 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3276 err = pick_local_ip6addrs(dev, cm_id); 3277 if (err) 3278 goto fail2; 3279 } 3280 3281 /* find a route */ 3282 pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3283 laddr6->sin6_addr.s6_addr, 3284 ntohs(laddr6->sin6_port), 3285 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3286 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3287 laddr6->sin6_addr.s6_addr, 3288 raddr6->sin6_addr.s6_addr, 3289 laddr6->sin6_port, 3290 raddr6->sin6_port, 0, 3291 raddr6->sin6_scope_id); 3292 } 3293 if (!ep->dst) { 3294 pr_err("%s - cannot find route\n", __func__); 3295 err = -EHOSTUNREACH; 3296 goto fail3; 3297 } 3298 3299 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3300 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3301 if (err) { 3302 pr_err("%s - cannot alloc l2e\n", __func__); 3303 goto fail4; 3304 } 3305 3306 pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3307 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3308 ep->l2t->idx); 3309 3310 state_set(&ep->com, CONNECTING); 3311 ep->tos = cm_id->tos; 3312 3313 /* send connect request to rnic */ 3314 err = send_connect(ep); 3315 if (!err) 3316 goto out; 3317 3318 cxgb4_l2t_release(ep->l2t); 3319 fail4: 3320 dst_release(ep->dst); 3321 fail3: 3322 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3323 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3324 fail2: 3325 skb_queue_purge(&ep->com.ep_skb_list); 3326 deref_cm_id(&ep->com); 3327 fail1: 3328 c4iw_put_ep(&ep->com); 3329 out: 3330 return err; 3331 } 3332 3333 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3334 { 3335 int err; 3336 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3337 &ep->com.local_addr; 3338 3339 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3340 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3341 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3342 if (err) 3343 return err; 3344 } 3345 c4iw_init_wr_wait(ep->com.wr_waitp); 3346 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3347 ep->stid, &sin6->sin6_addr, 3348 sin6->sin6_port, 3349 ep->com.dev->rdev.lldi.rxq_ids[0]); 3350 if (!err) 3351 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3352 ep->com.wr_waitp, 3353 0, 0, __func__); 3354 else if (err > 0) 3355 err = net_xmit_errno(err); 3356 if (err) { 3357 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3358 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3359 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3360 err, ep->stid, 3361 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3362 } 3363 return err; 3364 } 3365 3366 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3367 { 3368 int err; 3369 struct sockaddr_in *sin = (struct sockaddr_in *) 3370 &ep->com.local_addr; 3371 3372 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3373 do { 3374 err = cxgb4_create_server_filter( 3375 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3376 sin->sin_addr.s_addr, sin->sin_port, 0, 3377 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3378 if (err == -EBUSY) { 3379 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3380 err = -EIO; 3381 break; 3382 } 3383 set_current_state(TASK_UNINTERRUPTIBLE); 3384 schedule_timeout(usecs_to_jiffies(100)); 3385 } 3386 } while (err == -EBUSY); 3387 } else { 3388 c4iw_init_wr_wait(ep->com.wr_waitp); 3389 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3390 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3391 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3392 if (!err) 3393 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3394 ep->com.wr_waitp, 3395 0, 0, __func__); 3396 else if (err > 0) 3397 err = net_xmit_errno(err); 3398 } 3399 if (err) 3400 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3401 , err, ep->stid, 3402 &sin->sin_addr, ntohs(sin->sin_port)); 3403 return err; 3404 } 3405 3406 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3407 { 3408 int err = 0; 3409 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3410 struct c4iw_listen_ep *ep; 3411 3412 might_sleep(); 3413 3414 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3415 if (!ep) { 3416 pr_err("%s - cannot alloc ep\n", __func__); 3417 err = -ENOMEM; 3418 goto fail1; 3419 } 3420 skb_queue_head_init(&ep->com.ep_skb_list); 3421 pr_debug("ep %p\n", ep); 3422 ep->com.cm_id = cm_id; 3423 ref_cm_id(&ep->com); 3424 ep->com.dev = dev; 3425 ep->backlog = backlog; 3426 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3427 sizeof(ep->com.local_addr)); 3428 3429 /* 3430 * Allocate a server TID. 3431 */ 3432 if (dev->rdev.lldi.enable_fw_ofld_conn && 3433 ep->com.local_addr.ss_family == AF_INET) 3434 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3435 cm_id->m_local_addr.ss_family, ep); 3436 else 3437 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3438 cm_id->m_local_addr.ss_family, ep); 3439 3440 if (ep->stid == -1) { 3441 pr_err("%s - cannot alloc stid\n", __func__); 3442 err = -ENOMEM; 3443 goto fail2; 3444 } 3445 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3446 3447 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3448 sizeof(ep->com.local_addr)); 3449 3450 state_set(&ep->com, LISTEN); 3451 if (ep->com.local_addr.ss_family == AF_INET) 3452 err = create_server4(dev, ep); 3453 else 3454 err = create_server6(dev, ep); 3455 if (!err) { 3456 cm_id->provider_data = ep; 3457 goto out; 3458 } 3459 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3460 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3461 ep->com.local_addr.ss_family); 3462 fail2: 3463 deref_cm_id(&ep->com); 3464 c4iw_put_ep(&ep->com); 3465 fail1: 3466 out: 3467 return err; 3468 } 3469 3470 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3471 { 3472 int err; 3473 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3474 3475 pr_debug("ep %p\n", ep); 3476 3477 might_sleep(); 3478 state_set(&ep->com, DEAD); 3479 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3480 ep->com.local_addr.ss_family == AF_INET) { 3481 err = cxgb4_remove_server_filter( 3482 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3483 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3484 } else { 3485 struct sockaddr_in6 *sin6; 3486 c4iw_init_wr_wait(ep->com.wr_waitp); 3487 err = cxgb4_remove_server( 3488 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3489 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3490 if (err) 3491 goto done; 3492 err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp, 3493 0, 0, __func__); 3494 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3495 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3496 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3497 } 3498 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3499 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3500 ep->com.local_addr.ss_family); 3501 done: 3502 deref_cm_id(&ep->com); 3503 c4iw_put_ep(&ep->com); 3504 return err; 3505 } 3506 3507 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3508 { 3509 int ret = 0; 3510 int close = 0; 3511 int fatal = 0; 3512 struct c4iw_rdev *rdev; 3513 3514 mutex_lock(&ep->com.mutex); 3515 3516 pr_debug("ep %p state %s, abrupt %d\n", ep, 3517 states[ep->com.state], abrupt); 3518 3519 /* 3520 * Ref the ep here in case we have fatal errors causing the 3521 * ep to be released and freed. 3522 */ 3523 c4iw_get_ep(&ep->com); 3524 3525 rdev = &ep->com.dev->rdev; 3526 if (c4iw_fatal_error(rdev)) { 3527 fatal = 1; 3528 close_complete_upcall(ep, -EIO); 3529 ep->com.state = DEAD; 3530 } 3531 switch (ep->com.state) { 3532 case MPA_REQ_WAIT: 3533 case MPA_REQ_SENT: 3534 case MPA_REQ_RCVD: 3535 case MPA_REP_SENT: 3536 case FPDU_MODE: 3537 case CONNECTING: 3538 close = 1; 3539 if (abrupt) 3540 ep->com.state = ABORTING; 3541 else { 3542 ep->com.state = CLOSING; 3543 3544 /* 3545 * if we close before we see the fw4_ack() then we fix 3546 * up the timer state since we're reusing it. 3547 */ 3548 if (ep->mpa_skb && 3549 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3550 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3551 stop_ep_timer(ep); 3552 } 3553 start_ep_timer(ep); 3554 } 3555 set_bit(CLOSE_SENT, &ep->com.flags); 3556 break; 3557 case CLOSING: 3558 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3559 close = 1; 3560 if (abrupt) { 3561 (void)stop_ep_timer(ep); 3562 ep->com.state = ABORTING; 3563 } else 3564 ep->com.state = MORIBUND; 3565 } 3566 break; 3567 case MORIBUND: 3568 case ABORTING: 3569 case DEAD: 3570 pr_info("%s ignoring disconnect ep %p state %u\n", 3571 __func__, ep, ep->com.state); 3572 break; 3573 default: 3574 WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state); 3575 break; 3576 } 3577 3578 if (close) { 3579 if (abrupt) { 3580 set_bit(EP_DISC_ABORT, &ep->com.history); 3581 close_complete_upcall(ep, -ECONNRESET); 3582 ret = send_abort(ep); 3583 } else { 3584 set_bit(EP_DISC_CLOSE, &ep->com.history); 3585 ret = send_halfclose(ep); 3586 } 3587 if (ret) { 3588 set_bit(EP_DISC_FAIL, &ep->com.history); 3589 if (!abrupt) { 3590 stop_ep_timer(ep); 3591 close_complete_upcall(ep, -EIO); 3592 } 3593 if (ep->com.qp) { 3594 struct c4iw_qp_attributes attrs; 3595 3596 attrs.next_state = C4IW_QP_STATE_ERROR; 3597 ret = c4iw_modify_qp(ep->com.qp->rhp, 3598 ep->com.qp, 3599 C4IW_QP_ATTR_NEXT_STATE, 3600 &attrs, 1); 3601 if (ret) 3602 pr_err("%s - qp <- error failed!\n", 3603 __func__); 3604 } 3605 fatal = 1; 3606 } 3607 } 3608 mutex_unlock(&ep->com.mutex); 3609 c4iw_put_ep(&ep->com); 3610 if (fatal) 3611 release_ep_resources(ep); 3612 return ret; 3613 } 3614 3615 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3616 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3617 { 3618 struct c4iw_ep *ep; 3619 int atid = be32_to_cpu(req->tid); 3620 3621 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3622 (__force u32) req->tid); 3623 if (!ep) 3624 return; 3625 3626 switch (req->retval) { 3627 case FW_ENOMEM: 3628 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3629 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3630 send_fw_act_open_req(ep, atid); 3631 return; 3632 } 3633 /* fall through */ 3634 case FW_EADDRINUSE: 3635 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3636 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3637 send_fw_act_open_req(ep, atid); 3638 return; 3639 } 3640 break; 3641 default: 3642 pr_info("%s unexpected ofld conn wr retval %d\n", 3643 __func__, req->retval); 3644 break; 3645 } 3646 pr_err("active ofld_connect_wr failure %d atid %d\n", 3647 req->retval, atid); 3648 mutex_lock(&dev->rdev.stats.lock); 3649 dev->rdev.stats.act_ofld_conn_fails++; 3650 mutex_unlock(&dev->rdev.stats.lock); 3651 connect_reply_upcall(ep, status2errno(req->retval)); 3652 state_set(&ep->com, DEAD); 3653 if (ep->com.remote_addr.ss_family == AF_INET6) { 3654 struct sockaddr_in6 *sin6 = 3655 (struct sockaddr_in6 *)&ep->com.local_addr; 3656 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3657 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3658 } 3659 remove_handle(dev, &dev->atid_idr, atid); 3660 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3661 dst_release(ep->dst); 3662 cxgb4_l2t_release(ep->l2t); 3663 c4iw_put_ep(&ep->com); 3664 } 3665 3666 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3667 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3668 { 3669 struct sk_buff *rpl_skb; 3670 struct cpl_pass_accept_req *cpl; 3671 int ret; 3672 3673 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3674 if (req->retval) { 3675 pr_err("%s passive open failure %d\n", __func__, req->retval); 3676 mutex_lock(&dev->rdev.stats.lock); 3677 dev->rdev.stats.pas_ofld_conn_fails++; 3678 mutex_unlock(&dev->rdev.stats.lock); 3679 kfree_skb(rpl_skb); 3680 } else { 3681 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3682 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3683 (__force u32) htonl( 3684 (__force u32) req->tid))); 3685 ret = pass_accept_req(dev, rpl_skb); 3686 if (!ret) 3687 kfree_skb(rpl_skb); 3688 } 3689 return; 3690 } 3691 3692 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3693 { 3694 struct cpl_fw6_msg *rpl = cplhdr(skb); 3695 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3696 3697 switch (rpl->type) { 3698 case FW6_TYPE_CQE: 3699 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3700 break; 3701 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3702 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3703 switch (req->t_state) { 3704 case TCP_SYN_SENT: 3705 active_ofld_conn_reply(dev, skb, req); 3706 break; 3707 case TCP_SYN_RECV: 3708 passive_ofld_conn_reply(dev, skb, req); 3709 break; 3710 default: 3711 pr_err("%s unexpected ofld conn wr state %d\n", 3712 __func__, req->t_state); 3713 break; 3714 } 3715 break; 3716 } 3717 return 0; 3718 } 3719 3720 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3721 { 3722 __be32 l2info; 3723 __be16 hdr_len, vlantag, len; 3724 u16 eth_hdr_len; 3725 int tcp_hdr_len, ip_hdr_len; 3726 u8 intf; 3727 struct cpl_rx_pkt *cpl = cplhdr(skb); 3728 struct cpl_pass_accept_req *req; 3729 struct tcp_options_received tmp_opt; 3730 struct c4iw_dev *dev; 3731 enum chip_type type; 3732 3733 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3734 /* Store values from cpl_rx_pkt in temporary location. */ 3735 vlantag = cpl->vlan; 3736 len = cpl->len; 3737 l2info = cpl->l2info; 3738 hdr_len = cpl->hdr_len; 3739 intf = cpl->iff; 3740 3741 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3742 3743 /* 3744 * We need to parse the TCP options from SYN packet. 3745 * to generate cpl_pass_accept_req. 3746 */ 3747 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3748 tcp_clear_options(&tmp_opt); 3749 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL); 3750 3751 req = __skb_push(skb, sizeof(*req)); 3752 memset(req, 0, sizeof(*req)); 3753 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3754 SYN_MAC_IDX_V(RX_MACIDX_G( 3755 be32_to_cpu(l2info))) | 3756 SYN_XACT_MATCH_F); 3757 type = dev->rdev.lldi.adapter_type; 3758 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3759 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3760 req->hdr_len = 3761 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3762 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3763 eth_hdr_len = is_t4(type) ? 3764 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3765 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3766 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3767 IP_HDR_LEN_V(ip_hdr_len) | 3768 ETH_HDR_LEN_V(eth_hdr_len)); 3769 } else { /* T6 and later */ 3770 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3771 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3772 T6_IP_HDR_LEN_V(ip_hdr_len) | 3773 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3774 } 3775 req->vlan = vlantag; 3776 req->len = len; 3777 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3778 PASS_OPEN_TOS_V(tos)); 3779 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3780 if (tmp_opt.wscale_ok) 3781 req->tcpopt.wsf = tmp_opt.snd_wscale; 3782 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3783 if (tmp_opt.sack_ok) 3784 req->tcpopt.sack = 1; 3785 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3786 return; 3787 } 3788 3789 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3790 __be32 laddr, __be16 lport, 3791 __be32 raddr, __be16 rport, 3792 u32 rcv_isn, u32 filter, u16 window, 3793 u32 rss_qid, u8 port_id) 3794 { 3795 struct sk_buff *req_skb; 3796 struct fw_ofld_connection_wr *req; 3797 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3798 int ret; 3799 3800 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3801 if (!req_skb) 3802 return; 3803 req = __skb_put_zero(req_skb, sizeof(*req)); 3804 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3805 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3806 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3807 req->le.filter = (__force __be32) filter; 3808 req->le.lport = lport; 3809 req->le.pport = rport; 3810 req->le.u.ipv4.lip = laddr; 3811 req->le.u.ipv4.pip = raddr; 3812 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3813 req->tcb.rcv_adv = htons(window); 3814 req->tcb.t_state_to_astid = 3815 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3816 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3817 FW_OFLD_CONNECTION_WR_ASTID_V( 3818 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3819 3820 /* 3821 * We store the qid in opt2 which will be used by the firmware 3822 * to send us the wr response. 3823 */ 3824 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3825 3826 /* 3827 * We initialize the MSS index in TCB to 0xF. 3828 * So that when driver sends cpl_pass_accept_rpl 3829 * TCB picks up the correct value. If this was 0 3830 * TP will ignore any value > 0 for MSS index. 3831 */ 3832 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3833 req->cookie = (uintptr_t)skb; 3834 3835 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3836 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3837 if (ret < 0) { 3838 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3839 ret); 3840 kfree_skb(skb); 3841 kfree_skb(req_skb); 3842 } 3843 } 3844 3845 /* 3846 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3847 * messages when a filter is being used instead of server to 3848 * redirect a syn packet. When packets hit filter they are redirected 3849 * to the offload queue and driver tries to establish the connection 3850 * using firmware work request. 3851 */ 3852 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3853 { 3854 int stid; 3855 unsigned int filter; 3856 struct ethhdr *eh = NULL; 3857 struct vlan_ethhdr *vlan_eh = NULL; 3858 struct iphdr *iph; 3859 struct tcphdr *tcph; 3860 struct rss_header *rss = (void *)skb->data; 3861 struct cpl_rx_pkt *cpl = (void *)skb->data; 3862 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3863 struct l2t_entry *e; 3864 struct dst_entry *dst; 3865 struct c4iw_ep *lep = NULL; 3866 u16 window; 3867 struct port_info *pi; 3868 struct net_device *pdev; 3869 u16 rss_qid, eth_hdr_len; 3870 int step; 3871 struct neighbour *neigh; 3872 3873 /* Drop all non-SYN packets */ 3874 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3875 goto reject; 3876 3877 /* 3878 * Drop all packets which did not hit the filter. 3879 * Unlikely to happen. 3880 */ 3881 if (!(rss->filter_hit && rss->filter_tid)) 3882 goto reject; 3883 3884 /* 3885 * Calculate the server tid from filter hit index from cpl_rx_pkt. 3886 */ 3887 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 3888 3889 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 3890 if (!lep) { 3891 pr_warn("%s connect request on invalid stid %d\n", 3892 __func__, stid); 3893 goto reject; 3894 } 3895 3896 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 3897 case CHELSIO_T4: 3898 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3899 break; 3900 case CHELSIO_T5: 3901 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3902 break; 3903 case CHELSIO_T6: 3904 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3905 break; 3906 default: 3907 pr_err("T%d Chip is not supported\n", 3908 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 3909 goto reject; 3910 } 3911 3912 if (eth_hdr_len == ETH_HLEN) { 3913 eh = (struct ethhdr *)(req + 1); 3914 iph = (struct iphdr *)(eh + 1); 3915 } else { 3916 vlan_eh = (struct vlan_ethhdr *)(req + 1); 3917 iph = (struct iphdr *)(vlan_eh + 1); 3918 skb->vlan_tci = ntohs(cpl->vlan); 3919 } 3920 3921 if (iph->version != 0x4) 3922 goto reject; 3923 3924 tcph = (struct tcphdr *)(iph + 1); 3925 skb_set_network_header(skb, (void *)iph - (void *)rss); 3926 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 3927 skb_get(skb); 3928 3929 pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n", 3930 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 3931 ntohs(tcph->source), iph->tos); 3932 3933 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3934 iph->daddr, iph->saddr, tcph->dest, 3935 tcph->source, iph->tos); 3936 if (!dst) { 3937 pr_err("%s - failed to find dst entry!\n", __func__); 3938 goto reject; 3939 } 3940 neigh = dst_neigh_lookup_skb(dst, skb); 3941 3942 if (!neigh) { 3943 pr_err("%s - failed to allocate neigh!\n", __func__); 3944 goto free_dst; 3945 } 3946 3947 if (neigh->dev->flags & IFF_LOOPBACK) { 3948 pdev = ip_dev_find(&init_net, iph->daddr); 3949 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3950 pdev, 0); 3951 pi = (struct port_info *)netdev_priv(pdev); 3952 dev_put(pdev); 3953 } else { 3954 pdev = get_real_dev(neigh->dev); 3955 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3956 pdev, 0); 3957 pi = (struct port_info *)netdev_priv(pdev); 3958 } 3959 neigh_release(neigh); 3960 if (!e) { 3961 pr_err("%s - failed to allocate l2t entry!\n", 3962 __func__); 3963 goto free_dst; 3964 } 3965 3966 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 3967 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 3968 window = (__force u16) htons((__force u16)tcph->window); 3969 3970 /* Calcuate filter portion for LE region. */ 3971 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 3972 dev->rdev.lldi.ports[0], 3973 e)); 3974 3975 /* 3976 * Synthesize the cpl_pass_accept_req. We have everything except the 3977 * TID. Once firmware sends a reply with TID we update the TID field 3978 * in cpl and pass it through the regular cpl_pass_accept_req path. 3979 */ 3980 build_cpl_pass_accept_req(skb, stid, iph->tos); 3981 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 3982 tcph->source, ntohl(tcph->seq), filter, window, 3983 rss_qid, pi->port_id); 3984 cxgb4_l2t_release(e); 3985 free_dst: 3986 dst_release(dst); 3987 reject: 3988 if (lep) 3989 c4iw_put_ep(&lep->com); 3990 return 0; 3991 } 3992 3993 /* 3994 * These are the real handlers that are called from a 3995 * work queue. 3996 */ 3997 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 3998 [CPL_ACT_ESTABLISH] = act_establish, 3999 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4000 [CPL_RX_DATA] = rx_data, 4001 [CPL_ABORT_RPL_RSS] = abort_rpl, 4002 [CPL_ABORT_RPL] = abort_rpl, 4003 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4004 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4005 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4006 [CPL_PASS_ESTABLISH] = pass_establish, 4007 [CPL_PEER_CLOSE] = peer_close, 4008 [CPL_ABORT_REQ_RSS] = peer_abort, 4009 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4010 [CPL_RDMA_TERMINATE] = terminate, 4011 [CPL_FW4_ACK] = fw4_ack, 4012 [CPL_FW6_MSG] = deferred_fw6_msg, 4013 [CPL_RX_PKT] = rx_pkt, 4014 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4015 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4016 }; 4017 4018 static void process_timeout(struct c4iw_ep *ep) 4019 { 4020 struct c4iw_qp_attributes attrs; 4021 int abort = 1; 4022 4023 mutex_lock(&ep->com.mutex); 4024 pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state); 4025 set_bit(TIMEDOUT, &ep->com.history); 4026 switch (ep->com.state) { 4027 case MPA_REQ_SENT: 4028 connect_reply_upcall(ep, -ETIMEDOUT); 4029 break; 4030 case MPA_REQ_WAIT: 4031 case MPA_REQ_RCVD: 4032 case MPA_REP_SENT: 4033 case FPDU_MODE: 4034 break; 4035 case CLOSING: 4036 case MORIBUND: 4037 if (ep->com.cm_id && ep->com.qp) { 4038 attrs.next_state = C4IW_QP_STATE_ERROR; 4039 c4iw_modify_qp(ep->com.qp->rhp, 4040 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4041 &attrs, 1); 4042 } 4043 close_complete_upcall(ep, -ETIMEDOUT); 4044 break; 4045 case ABORTING: 4046 case DEAD: 4047 4048 /* 4049 * These states are expected if the ep timed out at the same 4050 * time as another thread was calling stop_ep_timer(). 4051 * So we silently do nothing for these states. 4052 */ 4053 abort = 0; 4054 break; 4055 default: 4056 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4057 __func__, ep, ep->hwtid, ep->com.state); 4058 abort = 0; 4059 } 4060 mutex_unlock(&ep->com.mutex); 4061 if (abort) 4062 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4063 c4iw_put_ep(&ep->com); 4064 } 4065 4066 static void process_timedout_eps(void) 4067 { 4068 struct c4iw_ep *ep; 4069 4070 spin_lock_irq(&timeout_lock); 4071 while (!list_empty(&timeout_list)) { 4072 struct list_head *tmp; 4073 4074 tmp = timeout_list.next; 4075 list_del(tmp); 4076 tmp->next = NULL; 4077 tmp->prev = NULL; 4078 spin_unlock_irq(&timeout_lock); 4079 ep = list_entry(tmp, struct c4iw_ep, entry); 4080 process_timeout(ep); 4081 spin_lock_irq(&timeout_lock); 4082 } 4083 spin_unlock_irq(&timeout_lock); 4084 } 4085 4086 static void process_work(struct work_struct *work) 4087 { 4088 struct sk_buff *skb = NULL; 4089 struct c4iw_dev *dev; 4090 struct cpl_act_establish *rpl; 4091 unsigned int opcode; 4092 int ret; 4093 4094 process_timedout_eps(); 4095 while ((skb = skb_dequeue(&rxq))) { 4096 rpl = cplhdr(skb); 4097 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4098 opcode = rpl->ot.opcode; 4099 4100 ret = work_handlers[opcode](dev, skb); 4101 if (!ret) 4102 kfree_skb(skb); 4103 process_timedout_eps(); 4104 } 4105 } 4106 4107 static DECLARE_WORK(skb_work, process_work); 4108 4109 static void ep_timeout(struct timer_list *t) 4110 { 4111 struct c4iw_ep *ep = from_timer(ep, t, timer); 4112 int kickit = 0; 4113 4114 spin_lock(&timeout_lock); 4115 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4116 /* 4117 * Only insert if it is not already on the list. 4118 */ 4119 if (!ep->entry.next) { 4120 list_add_tail(&ep->entry, &timeout_list); 4121 kickit = 1; 4122 } 4123 } 4124 spin_unlock(&timeout_lock); 4125 if (kickit) 4126 queue_work(workq, &skb_work); 4127 } 4128 4129 /* 4130 * All the CM events are handled on a work queue to have a safe context. 4131 */ 4132 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4133 { 4134 4135 /* 4136 * Save dev in the skb->cb area. 4137 */ 4138 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4139 4140 /* 4141 * Queue the skb and schedule the worker thread. 4142 */ 4143 skb_queue_tail(&rxq, skb); 4144 queue_work(workq, &skb_work); 4145 return 0; 4146 } 4147 4148 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4149 { 4150 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4151 4152 if (rpl->status != CPL_ERR_NONE) { 4153 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", 4154 rpl->status, GET_TID(rpl)); 4155 } 4156 kfree_skb(skb); 4157 return 0; 4158 } 4159 4160 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4161 { 4162 struct cpl_fw6_msg *rpl = cplhdr(skb); 4163 struct c4iw_wr_wait *wr_waitp; 4164 int ret; 4165 4166 pr_debug("type %u\n", rpl->type); 4167 4168 switch (rpl->type) { 4169 case FW6_TYPE_WR_RPL: 4170 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4171 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4172 pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret); 4173 if (wr_waitp) 4174 c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0); 4175 kfree_skb(skb); 4176 break; 4177 case FW6_TYPE_CQE: 4178 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4179 sched(dev, skb); 4180 break; 4181 default: 4182 pr_err("%s unexpected fw6 msg type %u\n", 4183 __func__, rpl->type); 4184 kfree_skb(skb); 4185 break; 4186 } 4187 return 0; 4188 } 4189 4190 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4191 { 4192 struct cpl_abort_req_rss *req = cplhdr(skb); 4193 struct c4iw_ep *ep; 4194 unsigned int tid = GET_TID(req); 4195 4196 ep = get_ep_from_tid(dev, tid); 4197 /* This EP will be dereferenced in peer_abort() */ 4198 if (!ep) { 4199 pr_warn("Abort on non-existent endpoint, tid %d\n", tid); 4200 kfree_skb(skb); 4201 return 0; 4202 } 4203 if (cxgb_is_neg_adv(req->status)) { 4204 pr_warn("%s Negative advice on abort- tid %u status %d (%s)\n", 4205 __func__, ep->hwtid, req->status, 4206 neg_adv_str(req->status)); 4207 goto out; 4208 } 4209 pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state); 4210 4211 c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET); 4212 out: 4213 sched(dev, skb); 4214 return 0; 4215 } 4216 4217 /* 4218 * Most upcalls from the T4 Core go to sched() to 4219 * schedule the processing on a work queue. 4220 */ 4221 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4222 [CPL_ACT_ESTABLISH] = sched, 4223 [CPL_ACT_OPEN_RPL] = sched, 4224 [CPL_RX_DATA] = sched, 4225 [CPL_ABORT_RPL_RSS] = sched, 4226 [CPL_ABORT_RPL] = sched, 4227 [CPL_PASS_OPEN_RPL] = sched, 4228 [CPL_CLOSE_LISTSRV_RPL] = sched, 4229 [CPL_PASS_ACCEPT_REQ] = sched, 4230 [CPL_PASS_ESTABLISH] = sched, 4231 [CPL_PEER_CLOSE] = sched, 4232 [CPL_CLOSE_CON_RPL] = sched, 4233 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4234 [CPL_RDMA_TERMINATE] = sched, 4235 [CPL_FW4_ACK] = sched, 4236 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4237 [CPL_FW6_MSG] = fw6_msg, 4238 [CPL_RX_PKT] = sched 4239 }; 4240 4241 int __init c4iw_cm_init(void) 4242 { 4243 spin_lock_init(&timeout_lock); 4244 skb_queue_head_init(&rxq); 4245 4246 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4247 if (!workq) 4248 return -ENOMEM; 4249 4250 return 0; 4251 } 4252 4253 void c4iw_cm_term(void) 4254 { 4255 WARN_ON(!list_empty(&timeout_list)); 4256 flush_workqueue(workq); 4257 destroy_workqueue(workq); 4258 } 4259