1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 int c4iw_debug; 103 module_param(c4iw_debug, int, 0644); 104 MODULE_PARM_DESC(c4iw_debug, "obsolete"); 105 106 static int peer2peer = 1; 107 module_param(peer2peer, int, 0644); 108 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 109 110 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 111 module_param(p2p_type, int, 0644); 112 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 113 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 114 115 static int ep_timeout_secs = 60; 116 module_param(ep_timeout_secs, int, 0644); 117 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 118 "in seconds (default=60)"); 119 120 static int mpa_rev = 2; 121 module_param(mpa_rev, int, 0644); 122 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 123 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 124 " compliant (default=2)"); 125 126 static int markers_enabled; 127 module_param(markers_enabled, int, 0644); 128 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 129 130 static int crc_enabled = 1; 131 module_param(crc_enabled, int, 0644); 132 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 133 134 static int rcv_win = 256 * 1024; 135 module_param(rcv_win, int, 0644); 136 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 137 138 static int snd_win = 128 * 1024; 139 module_param(snd_win, int, 0644); 140 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 141 142 static struct workqueue_struct *workq; 143 144 static struct sk_buff_head rxq; 145 146 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 147 static void ep_timeout(unsigned long arg); 148 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 149 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 150 151 static LIST_HEAD(timeout_list); 152 static spinlock_t timeout_lock; 153 154 static void deref_cm_id(struct c4iw_ep_common *epc) 155 { 156 epc->cm_id->rem_ref(epc->cm_id); 157 epc->cm_id = NULL; 158 set_bit(CM_ID_DEREFED, &epc->history); 159 } 160 161 static void ref_cm_id(struct c4iw_ep_common *epc) 162 { 163 set_bit(CM_ID_REFED, &epc->history); 164 epc->cm_id->add_ref(epc->cm_id); 165 } 166 167 static void deref_qp(struct c4iw_ep *ep) 168 { 169 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 170 clear_bit(QP_REFERENCED, &ep->com.flags); 171 set_bit(QP_DEREFED, &ep->com.history); 172 } 173 174 static void ref_qp(struct c4iw_ep *ep) 175 { 176 set_bit(QP_REFERENCED, &ep->com.flags); 177 set_bit(QP_REFED, &ep->com.history); 178 c4iw_qp_add_ref(&ep->com.qp->ibqp); 179 } 180 181 static void start_ep_timer(struct c4iw_ep *ep) 182 { 183 pr_debug("%s ep %p\n", __func__, ep); 184 if (timer_pending(&ep->timer)) { 185 pr_err("%s timer already started! ep %p\n", 186 __func__, ep); 187 return; 188 } 189 clear_bit(TIMEOUT, &ep->com.flags); 190 c4iw_get_ep(&ep->com); 191 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 192 ep->timer.data = (unsigned long)ep; 193 ep->timer.function = ep_timeout; 194 add_timer(&ep->timer); 195 } 196 197 static int stop_ep_timer(struct c4iw_ep *ep) 198 { 199 pr_debug("%s ep %p stopping\n", __func__, ep); 200 del_timer_sync(&ep->timer); 201 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 202 c4iw_put_ep(&ep->com); 203 return 0; 204 } 205 return 1; 206 } 207 208 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 209 struct l2t_entry *l2e) 210 { 211 int error = 0; 212 213 if (c4iw_fatal_error(rdev)) { 214 kfree_skb(skb); 215 pr_debug("%s - device in error state - dropping\n", __func__); 216 return -EIO; 217 } 218 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 219 if (error < 0) 220 kfree_skb(skb); 221 else if (error == NET_XMIT_DROP) 222 return -ENOMEM; 223 return error < 0 ? error : 0; 224 } 225 226 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 227 { 228 int error = 0; 229 230 if (c4iw_fatal_error(rdev)) { 231 kfree_skb(skb); 232 pr_debug("%s - device in error state - dropping\n", __func__); 233 return -EIO; 234 } 235 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 236 if (error < 0) 237 kfree_skb(skb); 238 return error < 0 ? error : 0; 239 } 240 241 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 242 { 243 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 244 245 skb = get_skb(skb, len, GFP_KERNEL); 246 if (!skb) 247 return; 248 249 cxgb_mk_tid_release(skb, len, hwtid, 0); 250 c4iw_ofld_send(rdev, skb); 251 return; 252 } 253 254 static void set_emss(struct c4iw_ep *ep, u16 opt) 255 { 256 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 257 ((AF_INET == ep->com.remote_addr.ss_family) ? 258 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 259 sizeof(struct tcphdr); 260 ep->mss = ep->emss; 261 if (TCPOPT_TSTAMP_G(opt)) 262 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 263 if (ep->emss < 128) 264 ep->emss = 128; 265 if (ep->emss & 7) 266 pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n", 267 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 268 pr_debug("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt), 269 ep->mss, ep->emss); 270 } 271 272 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 273 { 274 enum c4iw_ep_state state; 275 276 mutex_lock(&epc->mutex); 277 state = epc->state; 278 mutex_unlock(&epc->mutex); 279 return state; 280 } 281 282 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 283 { 284 epc->state = new; 285 } 286 287 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 288 { 289 mutex_lock(&epc->mutex); 290 pr_debug("%s - %s -> %s\n", __func__, states[epc->state], states[new]); 291 __state_set(epc, new); 292 mutex_unlock(&epc->mutex); 293 return; 294 } 295 296 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 297 { 298 struct sk_buff *skb; 299 unsigned int i; 300 size_t len; 301 302 len = roundup(sizeof(union cpl_wr_size), 16); 303 for (i = 0; i < size; i++) { 304 skb = alloc_skb(len, GFP_KERNEL); 305 if (!skb) 306 goto fail; 307 skb_queue_tail(ep_skb_list, skb); 308 } 309 return 0; 310 fail: 311 skb_queue_purge(ep_skb_list); 312 return -ENOMEM; 313 } 314 315 static void *alloc_ep(int size, gfp_t gfp) 316 { 317 struct c4iw_ep_common *epc; 318 319 epc = kzalloc(size, gfp); 320 if (epc) { 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(&epc->wr_wait); 324 } 325 pr_debug("%s alloc ep %p\n", __func__, epc); 326 return epc; 327 } 328 329 static void remove_ep_tid(struct c4iw_ep *ep) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(&ep->com.dev->lock, flags); 334 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 335 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 336 wake_up(&ep->com.dev->wait); 337 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 338 } 339 340 static void insert_ep_tid(struct c4iw_ep *ep) 341 { 342 unsigned long flags; 343 344 spin_lock_irqsave(&ep->com.dev->lock, flags); 345 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 346 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 347 } 348 349 /* 350 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 351 */ 352 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 353 { 354 struct c4iw_ep *ep; 355 unsigned long flags; 356 357 spin_lock_irqsave(&dev->lock, flags); 358 ep = idr_find(&dev->hwtid_idr, tid); 359 if (ep) 360 c4iw_get_ep(&ep->com); 361 spin_unlock_irqrestore(&dev->lock, flags); 362 return ep; 363 } 364 365 /* 366 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 367 */ 368 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 369 unsigned int stid) 370 { 371 struct c4iw_listen_ep *ep; 372 unsigned long flags; 373 374 spin_lock_irqsave(&dev->lock, flags); 375 ep = idr_find(&dev->stid_idr, stid); 376 if (ep) 377 c4iw_get_ep(&ep->com); 378 spin_unlock_irqrestore(&dev->lock, flags); 379 return ep; 380 } 381 382 void _c4iw_free_ep(struct kref *kref) 383 { 384 struct c4iw_ep *ep; 385 386 ep = container_of(kref, struct c4iw_ep, com.kref); 387 pr_debug("%s ep %p state %s\n", __func__, ep, states[ep->com.state]); 388 if (test_bit(QP_REFERENCED, &ep->com.flags)) 389 deref_qp(ep); 390 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 391 if (ep->com.remote_addr.ss_family == AF_INET6) { 392 struct sockaddr_in6 *sin6 = 393 (struct sockaddr_in6 *) 394 &ep->com.local_addr; 395 396 cxgb4_clip_release( 397 ep->com.dev->rdev.lldi.ports[0], 398 (const u32 *)&sin6->sin6_addr.s6_addr, 399 1); 400 } 401 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 402 ep->com.local_addr.ss_family); 403 dst_release(ep->dst); 404 cxgb4_l2t_release(ep->l2t); 405 if (ep->mpa_skb) 406 kfree_skb(ep->mpa_skb); 407 } 408 if (!skb_queue_empty(&ep->com.ep_skb_list)) 409 skb_queue_purge(&ep->com.ep_skb_list); 410 kfree(ep); 411 } 412 413 static void release_ep_resources(struct c4iw_ep *ep) 414 { 415 set_bit(RELEASE_RESOURCES, &ep->com.flags); 416 417 /* 418 * If we have a hwtid, then remove it from the idr table 419 * so lookups will no longer find this endpoint. Otherwise 420 * we have a race where one thread finds the ep ptr just 421 * before the other thread is freeing the ep memory. 422 */ 423 if (ep->hwtid != -1) 424 remove_ep_tid(ep); 425 c4iw_put_ep(&ep->com); 426 } 427 428 static int status2errno(int status) 429 { 430 switch (status) { 431 case CPL_ERR_NONE: 432 return 0; 433 case CPL_ERR_CONN_RESET: 434 return -ECONNRESET; 435 case CPL_ERR_ARP_MISS: 436 return -EHOSTUNREACH; 437 case CPL_ERR_CONN_TIMEDOUT: 438 return -ETIMEDOUT; 439 case CPL_ERR_TCAM_FULL: 440 return -ENOMEM; 441 case CPL_ERR_CONN_EXIST: 442 return -EADDRINUSE; 443 default: 444 return -EIO; 445 } 446 } 447 448 /* 449 * Try and reuse skbs already allocated... 450 */ 451 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 452 { 453 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 454 skb_trim(skb, 0); 455 skb_get(skb); 456 skb_reset_transport_header(skb); 457 } else { 458 skb = alloc_skb(len, gfp); 459 } 460 t4_set_arp_err_handler(skb, NULL, NULL); 461 return skb; 462 } 463 464 static struct net_device *get_real_dev(struct net_device *egress_dev) 465 { 466 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 467 } 468 469 static void arp_failure_discard(void *handle, struct sk_buff *skb) 470 { 471 pr_err("ARP failure\n"); 472 kfree_skb(skb); 473 } 474 475 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 476 { 477 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 478 } 479 480 enum { 481 NUM_FAKE_CPLS = 2, 482 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 483 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 484 }; 485 486 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 487 { 488 struct c4iw_ep *ep; 489 490 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 491 release_ep_resources(ep); 492 kfree_skb(skb); 493 return 0; 494 } 495 496 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 497 { 498 struct c4iw_ep *ep; 499 500 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 501 c4iw_put_ep(&ep->parent_ep->com); 502 release_ep_resources(ep); 503 kfree_skb(skb); 504 return 0; 505 } 506 507 /* 508 * Fake up a special CPL opcode and call sched() so process_work() will call 509 * _put_ep_safe() in a safe context to free the ep resources. This is needed 510 * because ARP error handlers are called in an ATOMIC context, and 511 * _c4iw_free_ep() needs to block. 512 */ 513 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 514 int cpl) 515 { 516 struct cpl_act_establish *rpl = cplhdr(skb); 517 518 /* Set our special ARP_FAILURE opcode */ 519 rpl->ot.opcode = cpl; 520 521 /* 522 * Save ep in the skb->cb area, after where sched() will save the dev 523 * ptr. 524 */ 525 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 526 sched(ep->com.dev, skb); 527 } 528 529 /* Handle an ARP failure for an accept */ 530 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 531 { 532 struct c4iw_ep *ep = handle; 533 534 pr_err("ARP failure during accept - tid %u - dropping connection\n", 535 ep->hwtid); 536 537 __state_set(&ep->com, DEAD); 538 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 539 } 540 541 /* 542 * Handle an ARP failure for an active open. 543 */ 544 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 545 { 546 struct c4iw_ep *ep = handle; 547 548 pr_err("ARP failure during connect\n"); 549 connect_reply_upcall(ep, -EHOSTUNREACH); 550 __state_set(&ep->com, DEAD); 551 if (ep->com.remote_addr.ss_family == AF_INET6) { 552 struct sockaddr_in6 *sin6 = 553 (struct sockaddr_in6 *)&ep->com.local_addr; 554 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 555 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 556 } 557 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 558 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 559 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 560 } 561 562 /* 563 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 564 * and send it along. 565 */ 566 static void abort_arp_failure(void *handle, struct sk_buff *skb) 567 { 568 int ret; 569 struct c4iw_ep *ep = handle; 570 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 571 struct cpl_abort_req *req = cplhdr(skb); 572 573 pr_debug("%s rdev %p\n", __func__, rdev); 574 req->cmd = CPL_ABORT_NO_RST; 575 skb_get(skb); 576 ret = c4iw_ofld_send(rdev, skb); 577 if (ret) { 578 __state_set(&ep->com, DEAD); 579 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 580 } else 581 kfree_skb(skb); 582 } 583 584 static int send_flowc(struct c4iw_ep *ep) 585 { 586 struct fw_flowc_wr *flowc; 587 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 588 int i; 589 u16 vlan = ep->l2t->vlan; 590 int nparams; 591 592 if (WARN_ON(!skb)) 593 return -ENOMEM; 594 595 if (vlan == CPL_L2T_VLAN_NONE) 596 nparams = 8; 597 else 598 nparams = 9; 599 600 flowc = __skb_put(skb, FLOWC_LEN); 601 602 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 603 FW_FLOWC_WR_NPARAMS_V(nparams)); 604 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN, 605 16)) | FW_WR_FLOWID_V(ep->hwtid)); 606 607 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 608 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 609 (ep->com.dev->rdev.lldi.pf)); 610 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 611 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 612 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 613 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 614 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 615 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 616 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 617 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 618 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 619 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 620 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 621 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 622 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 623 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 624 if (nparams == 9) { 625 u16 pri; 626 627 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 628 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 629 flowc->mnemval[8].val = cpu_to_be32(pri); 630 } else { 631 /* Pad WR to 16 byte boundary */ 632 flowc->mnemval[8].mnemonic = 0; 633 flowc->mnemval[8].val = 0; 634 } 635 for (i = 0; i < 9; i++) { 636 flowc->mnemval[i].r4[0] = 0; 637 flowc->mnemval[i].r4[1] = 0; 638 flowc->mnemval[i].r4[2] = 0; 639 } 640 641 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 642 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 643 } 644 645 static int send_halfclose(struct c4iw_ep *ep) 646 { 647 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 648 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 649 650 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 651 if (WARN_ON(!skb)) 652 return -ENOMEM; 653 654 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 655 NULL, arp_failure_discard); 656 657 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 658 } 659 660 static int send_abort(struct c4iw_ep *ep) 661 { 662 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 663 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 664 665 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 666 if (WARN_ON(!req_skb)) 667 return -ENOMEM; 668 669 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 670 ep, abort_arp_failure); 671 672 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 673 } 674 675 static int send_connect(struct c4iw_ep *ep) 676 { 677 struct cpl_act_open_req *req = NULL; 678 struct cpl_t5_act_open_req *t5req = NULL; 679 struct cpl_t6_act_open_req *t6req = NULL; 680 struct cpl_act_open_req6 *req6 = NULL; 681 struct cpl_t5_act_open_req6 *t5req6 = NULL; 682 struct cpl_t6_act_open_req6 *t6req6 = NULL; 683 struct sk_buff *skb; 684 u64 opt0; 685 u32 opt2; 686 unsigned int mtu_idx; 687 u32 wscale; 688 int win, sizev4, sizev6, wrlen; 689 struct sockaddr_in *la = (struct sockaddr_in *) 690 &ep->com.local_addr; 691 struct sockaddr_in *ra = (struct sockaddr_in *) 692 &ep->com.remote_addr; 693 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 694 &ep->com.local_addr; 695 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 696 &ep->com.remote_addr; 697 int ret; 698 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 699 u32 isn = (prandom_u32() & ~7UL) - 1; 700 struct net_device *netdev; 701 u64 params; 702 703 netdev = ep->com.dev->rdev.lldi.ports[0]; 704 705 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 706 case CHELSIO_T4: 707 sizev4 = sizeof(struct cpl_act_open_req); 708 sizev6 = sizeof(struct cpl_act_open_req6); 709 break; 710 case CHELSIO_T5: 711 sizev4 = sizeof(struct cpl_t5_act_open_req); 712 sizev6 = sizeof(struct cpl_t5_act_open_req6); 713 break; 714 case CHELSIO_T6: 715 sizev4 = sizeof(struct cpl_t6_act_open_req); 716 sizev6 = sizeof(struct cpl_t6_act_open_req6); 717 break; 718 default: 719 pr_err("T%d Chip is not supported\n", 720 CHELSIO_CHIP_VERSION(adapter_type)); 721 return -EINVAL; 722 } 723 724 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 725 roundup(sizev4, 16) : 726 roundup(sizev6, 16); 727 728 pr_debug("%s ep %p atid %u\n", __func__, ep, ep->atid); 729 730 skb = get_skb(NULL, wrlen, GFP_KERNEL); 731 if (!skb) { 732 pr_err("%s - failed to alloc skb\n", __func__); 733 return -ENOMEM; 734 } 735 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 736 737 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 738 enable_tcp_timestamps, 739 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 740 wscale = cxgb_compute_wscale(rcv_win); 741 742 /* 743 * Specify the largest window that will fit in opt0. The 744 * remainder will be specified in the rx_data_ack. 745 */ 746 win = ep->rcv_win >> 10; 747 if (win > RCV_BUFSIZ_M) 748 win = RCV_BUFSIZ_M; 749 750 opt0 = (nocong ? NO_CONG_F : 0) | 751 KEEP_ALIVE_F | 752 DELACK_F | 753 WND_SCALE_V(wscale) | 754 MSS_IDX_V(mtu_idx) | 755 L2T_IDX_V(ep->l2t->idx) | 756 TX_CHAN_V(ep->tx_chan) | 757 SMAC_SEL_V(ep->smac_idx) | 758 DSCP_V(ep->tos >> 2) | 759 ULP_MODE_V(ULP_MODE_TCPDDP) | 760 RCV_BUFSIZ_V(win); 761 opt2 = RX_CHANNEL_V(0) | 762 CCTRL_ECN_V(enable_ecn) | 763 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 764 if (enable_tcp_timestamps) 765 opt2 |= TSTAMPS_EN_F; 766 if (enable_tcp_sack) 767 opt2 |= SACK_EN_F; 768 if (wscale && enable_tcp_window_scaling) 769 opt2 |= WND_SCALE_EN_F; 770 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 771 if (peer2peer) 772 isn += 4; 773 774 opt2 |= T5_OPT_2_VALID_F; 775 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 776 opt2 |= T5_ISS_F; 777 } 778 779 params = cxgb4_select_ntuple(netdev, ep->l2t); 780 781 if (ep->com.remote_addr.ss_family == AF_INET6) 782 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 783 (const u32 *)&la6->sin6_addr.s6_addr, 1); 784 785 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 786 787 if (ep->com.remote_addr.ss_family == AF_INET) { 788 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 789 case CHELSIO_T4: 790 req = skb_put(skb, wrlen); 791 INIT_TP_WR(req, 0); 792 break; 793 case CHELSIO_T5: 794 t5req = skb_put(skb, wrlen); 795 INIT_TP_WR(t5req, 0); 796 req = (struct cpl_act_open_req *)t5req; 797 break; 798 case CHELSIO_T6: 799 t6req = skb_put(skb, wrlen); 800 INIT_TP_WR(t6req, 0); 801 req = (struct cpl_act_open_req *)t6req; 802 t5req = (struct cpl_t5_act_open_req *)t6req; 803 break; 804 default: 805 pr_err("T%d Chip is not supported\n", 806 CHELSIO_CHIP_VERSION(adapter_type)); 807 ret = -EINVAL; 808 goto clip_release; 809 } 810 811 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 812 ((ep->rss_qid<<14) | ep->atid))); 813 req->local_port = la->sin_port; 814 req->peer_port = ra->sin_port; 815 req->local_ip = la->sin_addr.s_addr; 816 req->peer_ip = ra->sin_addr.s_addr; 817 req->opt0 = cpu_to_be64(opt0); 818 819 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 820 req->params = cpu_to_be32(params); 821 req->opt2 = cpu_to_be32(opt2); 822 } else { 823 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 824 t5req->params = 825 cpu_to_be64(FILTER_TUPLE_V(params)); 826 t5req->rsvd = cpu_to_be32(isn); 827 pr_debug("%s snd_isn %u\n", __func__, t5req->rsvd); 828 t5req->opt2 = cpu_to_be32(opt2); 829 } else { 830 t6req->params = 831 cpu_to_be64(FILTER_TUPLE_V(params)); 832 t6req->rsvd = cpu_to_be32(isn); 833 pr_debug("%s snd_isn %u\n", __func__, t6req->rsvd); 834 t6req->opt2 = cpu_to_be32(opt2); 835 } 836 } 837 } else { 838 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 839 case CHELSIO_T4: 840 req6 = skb_put(skb, wrlen); 841 INIT_TP_WR(req6, 0); 842 break; 843 case CHELSIO_T5: 844 t5req6 = skb_put(skb, wrlen); 845 INIT_TP_WR(t5req6, 0); 846 req6 = (struct cpl_act_open_req6 *)t5req6; 847 break; 848 case CHELSIO_T6: 849 t6req6 = skb_put(skb, wrlen); 850 INIT_TP_WR(t6req6, 0); 851 req6 = (struct cpl_act_open_req6 *)t6req6; 852 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 853 break; 854 default: 855 pr_err("T%d Chip is not supported\n", 856 CHELSIO_CHIP_VERSION(adapter_type)); 857 ret = -EINVAL; 858 goto clip_release; 859 } 860 861 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 862 ((ep->rss_qid<<14)|ep->atid))); 863 req6->local_port = la6->sin6_port; 864 req6->peer_port = ra6->sin6_port; 865 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 866 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 867 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 868 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 869 req6->opt0 = cpu_to_be64(opt0); 870 871 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 872 req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev, 873 ep->l2t)); 874 req6->opt2 = cpu_to_be32(opt2); 875 } else { 876 if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) { 877 t5req6->params = 878 cpu_to_be64(FILTER_TUPLE_V(params)); 879 t5req6->rsvd = cpu_to_be32(isn); 880 pr_debug("%s snd_isn %u\n", __func__, t5req6->rsvd); 881 t5req6->opt2 = cpu_to_be32(opt2); 882 } else { 883 t6req6->params = 884 cpu_to_be64(FILTER_TUPLE_V(params)); 885 t6req6->rsvd = cpu_to_be32(isn); 886 pr_debug("%s snd_isn %u\n", __func__, t6req6->rsvd); 887 t6req6->opt2 = cpu_to_be32(opt2); 888 } 889 890 } 891 } 892 893 set_bit(ACT_OPEN_REQ, &ep->com.history); 894 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 895 clip_release: 896 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 897 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 898 (const u32 *)&la6->sin6_addr.s6_addr, 1); 899 return ret; 900 } 901 902 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 903 u8 mpa_rev_to_use) 904 { 905 int mpalen, wrlen, ret; 906 struct fw_ofld_tx_data_wr *req; 907 struct mpa_message *mpa; 908 struct mpa_v2_conn_params mpa_v2_params; 909 910 pr_debug("%s ep %p tid %u pd_len %d\n", 911 __func__, ep, ep->hwtid, ep->plen); 912 913 BUG_ON(skb_cloned(skb)); 914 915 mpalen = sizeof(*mpa) + ep->plen; 916 if (mpa_rev_to_use == 2) 917 mpalen += sizeof(struct mpa_v2_conn_params); 918 wrlen = roundup(mpalen + sizeof *req, 16); 919 skb = get_skb(skb, wrlen, GFP_KERNEL); 920 if (!skb) { 921 connect_reply_upcall(ep, -ENOMEM); 922 return -ENOMEM; 923 } 924 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 925 926 req = skb_put_zero(skb, wrlen); 927 req->op_to_immdlen = cpu_to_be32( 928 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 929 FW_WR_COMPL_F | 930 FW_WR_IMMDLEN_V(mpalen)); 931 req->flowid_len16 = cpu_to_be32( 932 FW_WR_FLOWID_V(ep->hwtid) | 933 FW_WR_LEN16_V(wrlen >> 4)); 934 req->plen = cpu_to_be32(mpalen); 935 req->tunnel_to_proxy = cpu_to_be32( 936 FW_OFLD_TX_DATA_WR_FLUSH_F | 937 FW_OFLD_TX_DATA_WR_SHOVE_F); 938 939 mpa = (struct mpa_message *)(req + 1); 940 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 941 942 mpa->flags = 0; 943 if (crc_enabled) 944 mpa->flags |= MPA_CRC; 945 if (markers_enabled) { 946 mpa->flags |= MPA_MARKERS; 947 ep->mpa_attr.recv_marker_enabled = 1; 948 } else { 949 ep->mpa_attr.recv_marker_enabled = 0; 950 } 951 if (mpa_rev_to_use == 2) 952 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 953 954 mpa->private_data_size = htons(ep->plen); 955 mpa->revision = mpa_rev_to_use; 956 if (mpa_rev_to_use == 1) { 957 ep->tried_with_mpa_v1 = 1; 958 ep->retry_with_mpa_v1 = 0; 959 } 960 961 if (mpa_rev_to_use == 2) { 962 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 963 sizeof (struct mpa_v2_conn_params)); 964 pr_debug("%s initiator ird %u ord %u\n", __func__, ep->ird, 965 ep->ord); 966 mpa_v2_params.ird = htons((u16)ep->ird); 967 mpa_v2_params.ord = htons((u16)ep->ord); 968 969 if (peer2peer) { 970 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 971 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 972 mpa_v2_params.ord |= 973 htons(MPA_V2_RDMA_WRITE_RTR); 974 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 975 mpa_v2_params.ord |= 976 htons(MPA_V2_RDMA_READ_RTR); 977 } 978 memcpy(mpa->private_data, &mpa_v2_params, 979 sizeof(struct mpa_v2_conn_params)); 980 981 if (ep->plen) 982 memcpy(mpa->private_data + 983 sizeof(struct mpa_v2_conn_params), 984 ep->mpa_pkt + sizeof(*mpa), ep->plen); 985 } else 986 if (ep->plen) 987 memcpy(mpa->private_data, 988 ep->mpa_pkt + sizeof(*mpa), ep->plen); 989 990 /* 991 * Reference the mpa skb. This ensures the data area 992 * will remain in memory until the hw acks the tx. 993 * Function fw4_ack() will deref it. 994 */ 995 skb_get(skb); 996 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 997 BUG_ON(ep->mpa_skb); 998 ep->mpa_skb = skb; 999 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1000 if (ret) 1001 return ret; 1002 start_ep_timer(ep); 1003 __state_set(&ep->com, MPA_REQ_SENT); 1004 ep->mpa_attr.initiator = 1; 1005 ep->snd_seq += mpalen; 1006 return ret; 1007 } 1008 1009 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 1010 { 1011 int mpalen, wrlen; 1012 struct fw_ofld_tx_data_wr *req; 1013 struct mpa_message *mpa; 1014 struct sk_buff *skb; 1015 struct mpa_v2_conn_params mpa_v2_params; 1016 1017 pr_debug("%s ep %p tid %u pd_len %d\n", 1018 __func__, ep, ep->hwtid, ep->plen); 1019 1020 mpalen = sizeof(*mpa) + plen; 1021 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1022 mpalen += sizeof(struct mpa_v2_conn_params); 1023 wrlen = roundup(mpalen + sizeof *req, 16); 1024 1025 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1026 if (!skb) { 1027 pr_err("%s - cannot alloc skb!\n", __func__); 1028 return -ENOMEM; 1029 } 1030 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1031 1032 req = skb_put_zero(skb, wrlen); 1033 req->op_to_immdlen = cpu_to_be32( 1034 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1035 FW_WR_COMPL_F | 1036 FW_WR_IMMDLEN_V(mpalen)); 1037 req->flowid_len16 = cpu_to_be32( 1038 FW_WR_FLOWID_V(ep->hwtid) | 1039 FW_WR_LEN16_V(wrlen >> 4)); 1040 req->plen = cpu_to_be32(mpalen); 1041 req->tunnel_to_proxy = cpu_to_be32( 1042 FW_OFLD_TX_DATA_WR_FLUSH_F | 1043 FW_OFLD_TX_DATA_WR_SHOVE_F); 1044 1045 mpa = (struct mpa_message *)(req + 1); 1046 memset(mpa, 0, sizeof(*mpa)); 1047 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1048 mpa->flags = MPA_REJECT; 1049 mpa->revision = ep->mpa_attr.version; 1050 mpa->private_data_size = htons(plen); 1051 1052 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1053 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1054 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1055 sizeof (struct mpa_v2_conn_params)); 1056 mpa_v2_params.ird = htons(((u16)ep->ird) | 1057 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1058 0)); 1059 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1060 (p2p_type == 1061 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1062 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1063 FW_RI_INIT_P2PTYPE_READ_REQ ? 1064 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1065 memcpy(mpa->private_data, &mpa_v2_params, 1066 sizeof(struct mpa_v2_conn_params)); 1067 1068 if (ep->plen) 1069 memcpy(mpa->private_data + 1070 sizeof(struct mpa_v2_conn_params), pdata, plen); 1071 } else 1072 if (plen) 1073 memcpy(mpa->private_data, pdata, plen); 1074 1075 /* 1076 * Reference the mpa skb again. This ensures the data area 1077 * will remain in memory until the hw acks the tx. 1078 * Function fw4_ack() will deref it. 1079 */ 1080 skb_get(skb); 1081 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1082 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1083 BUG_ON(ep->mpa_skb); 1084 ep->mpa_skb = skb; 1085 ep->snd_seq += mpalen; 1086 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1087 } 1088 1089 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1090 { 1091 int mpalen, wrlen; 1092 struct fw_ofld_tx_data_wr *req; 1093 struct mpa_message *mpa; 1094 struct sk_buff *skb; 1095 struct mpa_v2_conn_params mpa_v2_params; 1096 1097 pr_debug("%s ep %p tid %u pd_len %d\n", 1098 __func__, ep, ep->hwtid, ep->plen); 1099 1100 mpalen = sizeof(*mpa) + plen; 1101 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1102 mpalen += sizeof(struct mpa_v2_conn_params); 1103 wrlen = roundup(mpalen + sizeof *req, 16); 1104 1105 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1106 if (!skb) { 1107 pr_err("%s - cannot alloc skb!\n", __func__); 1108 return -ENOMEM; 1109 } 1110 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1111 1112 req = skb_put_zero(skb, wrlen); 1113 req->op_to_immdlen = cpu_to_be32( 1114 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1115 FW_WR_COMPL_F | 1116 FW_WR_IMMDLEN_V(mpalen)); 1117 req->flowid_len16 = cpu_to_be32( 1118 FW_WR_FLOWID_V(ep->hwtid) | 1119 FW_WR_LEN16_V(wrlen >> 4)); 1120 req->plen = cpu_to_be32(mpalen); 1121 req->tunnel_to_proxy = cpu_to_be32( 1122 FW_OFLD_TX_DATA_WR_FLUSH_F | 1123 FW_OFLD_TX_DATA_WR_SHOVE_F); 1124 1125 mpa = (struct mpa_message *)(req + 1); 1126 memset(mpa, 0, sizeof(*mpa)); 1127 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1128 mpa->flags = 0; 1129 if (ep->mpa_attr.crc_enabled) 1130 mpa->flags |= MPA_CRC; 1131 if (ep->mpa_attr.recv_marker_enabled) 1132 mpa->flags |= MPA_MARKERS; 1133 mpa->revision = ep->mpa_attr.version; 1134 mpa->private_data_size = htons(plen); 1135 1136 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1137 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1138 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1139 sizeof (struct mpa_v2_conn_params)); 1140 mpa_v2_params.ird = htons((u16)ep->ird); 1141 mpa_v2_params.ord = htons((u16)ep->ord); 1142 if (peer2peer && (ep->mpa_attr.p2p_type != 1143 FW_RI_INIT_P2PTYPE_DISABLED)) { 1144 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1145 1146 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1147 mpa_v2_params.ord |= 1148 htons(MPA_V2_RDMA_WRITE_RTR); 1149 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1150 mpa_v2_params.ord |= 1151 htons(MPA_V2_RDMA_READ_RTR); 1152 } 1153 1154 memcpy(mpa->private_data, &mpa_v2_params, 1155 sizeof(struct mpa_v2_conn_params)); 1156 1157 if (ep->plen) 1158 memcpy(mpa->private_data + 1159 sizeof(struct mpa_v2_conn_params), pdata, plen); 1160 } else 1161 if (plen) 1162 memcpy(mpa->private_data, pdata, plen); 1163 1164 /* 1165 * Reference the mpa skb. This ensures the data area 1166 * will remain in memory until the hw acks the tx. 1167 * Function fw4_ack() will deref it. 1168 */ 1169 skb_get(skb); 1170 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1171 ep->mpa_skb = skb; 1172 __state_set(&ep->com, MPA_REP_SENT); 1173 ep->snd_seq += mpalen; 1174 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1175 } 1176 1177 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1178 { 1179 struct c4iw_ep *ep; 1180 struct cpl_act_establish *req = cplhdr(skb); 1181 unsigned int tid = GET_TID(req); 1182 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1183 struct tid_info *t = dev->rdev.lldi.tids; 1184 int ret; 1185 1186 ep = lookup_atid(t, atid); 1187 1188 pr_debug("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid, 1189 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1190 1191 mutex_lock(&ep->com.mutex); 1192 dst_confirm(ep->dst); 1193 1194 /* setup the hwtid for this connection */ 1195 ep->hwtid = tid; 1196 cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family); 1197 insert_ep_tid(ep); 1198 1199 ep->snd_seq = be32_to_cpu(req->snd_isn); 1200 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1201 1202 set_emss(ep, ntohs(req->tcp_opt)); 1203 1204 /* dealloc the atid */ 1205 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1206 cxgb4_free_atid(t, atid); 1207 set_bit(ACT_ESTAB, &ep->com.history); 1208 1209 /* start MPA negotiation */ 1210 ret = send_flowc(ep); 1211 if (ret) 1212 goto err; 1213 if (ep->retry_with_mpa_v1) 1214 ret = send_mpa_req(ep, skb, 1); 1215 else 1216 ret = send_mpa_req(ep, skb, mpa_rev); 1217 if (ret) 1218 goto err; 1219 mutex_unlock(&ep->com.mutex); 1220 return 0; 1221 err: 1222 mutex_unlock(&ep->com.mutex); 1223 connect_reply_upcall(ep, -ENOMEM); 1224 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1225 return 0; 1226 } 1227 1228 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1229 { 1230 struct iw_cm_event event; 1231 1232 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1233 memset(&event, 0, sizeof(event)); 1234 event.event = IW_CM_EVENT_CLOSE; 1235 event.status = status; 1236 if (ep->com.cm_id) { 1237 pr_debug("close complete delivered ep %p cm_id %p tid %u\n", 1238 ep, ep->com.cm_id, ep->hwtid); 1239 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1240 deref_cm_id(&ep->com); 1241 set_bit(CLOSE_UPCALL, &ep->com.history); 1242 } 1243 } 1244 1245 static void peer_close_upcall(struct c4iw_ep *ep) 1246 { 1247 struct iw_cm_event event; 1248 1249 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1250 memset(&event, 0, sizeof(event)); 1251 event.event = IW_CM_EVENT_DISCONNECT; 1252 if (ep->com.cm_id) { 1253 pr_debug("peer close delivered ep %p cm_id %p tid %u\n", 1254 ep, ep->com.cm_id, ep->hwtid); 1255 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1256 set_bit(DISCONN_UPCALL, &ep->com.history); 1257 } 1258 } 1259 1260 static void peer_abort_upcall(struct c4iw_ep *ep) 1261 { 1262 struct iw_cm_event event; 1263 1264 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1265 memset(&event, 0, sizeof(event)); 1266 event.event = IW_CM_EVENT_CLOSE; 1267 event.status = -ECONNRESET; 1268 if (ep->com.cm_id) { 1269 pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep, 1270 ep->com.cm_id, ep->hwtid); 1271 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1272 deref_cm_id(&ep->com); 1273 set_bit(ABORT_UPCALL, &ep->com.history); 1274 } 1275 } 1276 1277 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1278 { 1279 struct iw_cm_event event; 1280 1281 pr_debug("%s ep %p tid %u status %d\n", 1282 __func__, ep, ep->hwtid, status); 1283 memset(&event, 0, sizeof(event)); 1284 event.event = IW_CM_EVENT_CONNECT_REPLY; 1285 event.status = status; 1286 memcpy(&event.local_addr, &ep->com.local_addr, 1287 sizeof(ep->com.local_addr)); 1288 memcpy(&event.remote_addr, &ep->com.remote_addr, 1289 sizeof(ep->com.remote_addr)); 1290 1291 if ((status == 0) || (status == -ECONNREFUSED)) { 1292 if (!ep->tried_with_mpa_v1) { 1293 /* this means MPA_v2 is used */ 1294 event.ord = ep->ird; 1295 event.ird = ep->ord; 1296 event.private_data_len = ep->plen - 1297 sizeof(struct mpa_v2_conn_params); 1298 event.private_data = ep->mpa_pkt + 1299 sizeof(struct mpa_message) + 1300 sizeof(struct mpa_v2_conn_params); 1301 } else { 1302 /* this means MPA_v1 is used */ 1303 event.ord = cur_max_read_depth(ep->com.dev); 1304 event.ird = cur_max_read_depth(ep->com.dev); 1305 event.private_data_len = ep->plen; 1306 event.private_data = ep->mpa_pkt + 1307 sizeof(struct mpa_message); 1308 } 1309 } 1310 1311 pr_debug("%s ep %p tid %u status %d\n", __func__, ep, 1312 ep->hwtid, status); 1313 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1314 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1315 1316 if (status < 0) 1317 deref_cm_id(&ep->com); 1318 } 1319 1320 static int connect_request_upcall(struct c4iw_ep *ep) 1321 { 1322 struct iw_cm_event event; 1323 int ret; 1324 1325 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1326 memset(&event, 0, sizeof(event)); 1327 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1328 memcpy(&event.local_addr, &ep->com.local_addr, 1329 sizeof(ep->com.local_addr)); 1330 memcpy(&event.remote_addr, &ep->com.remote_addr, 1331 sizeof(ep->com.remote_addr)); 1332 event.provider_data = ep; 1333 if (!ep->tried_with_mpa_v1) { 1334 /* this means MPA_v2 is used */ 1335 event.ord = ep->ord; 1336 event.ird = ep->ird; 1337 event.private_data_len = ep->plen - 1338 sizeof(struct mpa_v2_conn_params); 1339 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1340 sizeof(struct mpa_v2_conn_params); 1341 } else { 1342 /* this means MPA_v1 is used. Send max supported */ 1343 event.ord = cur_max_read_depth(ep->com.dev); 1344 event.ird = cur_max_read_depth(ep->com.dev); 1345 event.private_data_len = ep->plen; 1346 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1347 } 1348 c4iw_get_ep(&ep->com); 1349 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1350 &event); 1351 if (ret) 1352 c4iw_put_ep(&ep->com); 1353 set_bit(CONNREQ_UPCALL, &ep->com.history); 1354 c4iw_put_ep(&ep->parent_ep->com); 1355 return ret; 1356 } 1357 1358 static void established_upcall(struct c4iw_ep *ep) 1359 { 1360 struct iw_cm_event event; 1361 1362 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1363 memset(&event, 0, sizeof(event)); 1364 event.event = IW_CM_EVENT_ESTABLISHED; 1365 event.ird = ep->ord; 1366 event.ord = ep->ird; 1367 if (ep->com.cm_id) { 1368 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1369 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1370 set_bit(ESTAB_UPCALL, &ep->com.history); 1371 } 1372 } 1373 1374 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1375 { 1376 struct sk_buff *skb; 1377 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1378 u32 credit_dack; 1379 1380 pr_debug("%s ep %p tid %u credits %u\n", 1381 __func__, ep, ep->hwtid, credits); 1382 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1383 if (!skb) { 1384 pr_err("update_rx_credits - cannot alloc skb!\n"); 1385 return 0; 1386 } 1387 1388 /* 1389 * If we couldn't specify the entire rcv window at connection setup 1390 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1391 * then add the overage in to the credits returned. 1392 */ 1393 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1394 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1395 1396 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1397 RX_DACK_MODE_V(dack_mode); 1398 1399 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1400 credit_dack); 1401 1402 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1403 return credits; 1404 } 1405 1406 #define RELAXED_IRD_NEGOTIATION 1 1407 1408 /* 1409 * process_mpa_reply - process streaming mode MPA reply 1410 * 1411 * Returns: 1412 * 1413 * 0 upon success indicating a connect request was delivered to the ULP 1414 * or the mpa request is incomplete but valid so far. 1415 * 1416 * 1 if a failure requires the caller to close the connection. 1417 * 1418 * 2 if a failure requires the caller to abort the connection. 1419 */ 1420 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1421 { 1422 struct mpa_message *mpa; 1423 struct mpa_v2_conn_params *mpa_v2_params; 1424 u16 plen; 1425 u16 resp_ird, resp_ord; 1426 u8 rtr_mismatch = 0, insuff_ird = 0; 1427 struct c4iw_qp_attributes attrs; 1428 enum c4iw_qp_attr_mask mask; 1429 int err; 1430 int disconnect = 0; 1431 1432 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1433 1434 /* 1435 * If we get more than the supported amount of private data 1436 * then we must fail this connection. 1437 */ 1438 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1439 err = -EINVAL; 1440 goto err_stop_timer; 1441 } 1442 1443 /* 1444 * copy the new data into our accumulation buffer. 1445 */ 1446 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1447 skb->len); 1448 ep->mpa_pkt_len += skb->len; 1449 1450 /* 1451 * if we don't even have the mpa message, then bail. 1452 */ 1453 if (ep->mpa_pkt_len < sizeof(*mpa)) 1454 return 0; 1455 mpa = (struct mpa_message *) ep->mpa_pkt; 1456 1457 /* Validate MPA header. */ 1458 if (mpa->revision > mpa_rev) { 1459 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1460 __func__, mpa_rev, mpa->revision); 1461 err = -EPROTO; 1462 goto err_stop_timer; 1463 } 1464 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1465 err = -EPROTO; 1466 goto err_stop_timer; 1467 } 1468 1469 plen = ntohs(mpa->private_data_size); 1470 1471 /* 1472 * Fail if there's too much private data. 1473 */ 1474 if (plen > MPA_MAX_PRIVATE_DATA) { 1475 err = -EPROTO; 1476 goto err_stop_timer; 1477 } 1478 1479 /* 1480 * If plen does not account for pkt size 1481 */ 1482 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1483 err = -EPROTO; 1484 goto err_stop_timer; 1485 } 1486 1487 ep->plen = (u8) plen; 1488 1489 /* 1490 * If we don't have all the pdata yet, then bail. 1491 * We'll continue process when more data arrives. 1492 */ 1493 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1494 return 0; 1495 1496 if (mpa->flags & MPA_REJECT) { 1497 err = -ECONNREFUSED; 1498 goto err_stop_timer; 1499 } 1500 1501 /* 1502 * Stop mpa timer. If it expired, then 1503 * we ignore the MPA reply. process_timeout() 1504 * will abort the connection. 1505 */ 1506 if (stop_ep_timer(ep)) 1507 return 0; 1508 1509 /* 1510 * If we get here we have accumulated the entire mpa 1511 * start reply message including private data. And 1512 * the MPA header is valid. 1513 */ 1514 __state_set(&ep->com, FPDU_MODE); 1515 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1516 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1517 ep->mpa_attr.version = mpa->revision; 1518 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1519 1520 if (mpa->revision == 2) { 1521 ep->mpa_attr.enhanced_rdma_conn = 1522 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1523 if (ep->mpa_attr.enhanced_rdma_conn) { 1524 mpa_v2_params = (struct mpa_v2_conn_params *) 1525 (ep->mpa_pkt + sizeof(*mpa)); 1526 resp_ird = ntohs(mpa_v2_params->ird) & 1527 MPA_V2_IRD_ORD_MASK; 1528 resp_ord = ntohs(mpa_v2_params->ord) & 1529 MPA_V2_IRD_ORD_MASK; 1530 pr_debug("%s responder ird %u ord %u ep ird %u ord %u\n", 1531 __func__, 1532 resp_ird, resp_ord, ep->ird, ep->ord); 1533 1534 /* 1535 * This is a double-check. Ideally, below checks are 1536 * not required since ird/ord stuff has been taken 1537 * care of in c4iw_accept_cr 1538 */ 1539 if (ep->ird < resp_ord) { 1540 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1541 ep->com.dev->rdev.lldi.max_ordird_qp) 1542 ep->ird = resp_ord; 1543 else 1544 insuff_ird = 1; 1545 } else if (ep->ird > resp_ord) { 1546 ep->ird = resp_ord; 1547 } 1548 if (ep->ord > resp_ird) { 1549 if (RELAXED_IRD_NEGOTIATION) 1550 ep->ord = resp_ird; 1551 else 1552 insuff_ird = 1; 1553 } 1554 if (insuff_ird) { 1555 err = -ENOMEM; 1556 ep->ird = resp_ord; 1557 ep->ord = resp_ird; 1558 } 1559 1560 if (ntohs(mpa_v2_params->ird) & 1561 MPA_V2_PEER2PEER_MODEL) { 1562 if (ntohs(mpa_v2_params->ord) & 1563 MPA_V2_RDMA_WRITE_RTR) 1564 ep->mpa_attr.p2p_type = 1565 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1566 else if (ntohs(mpa_v2_params->ord) & 1567 MPA_V2_RDMA_READ_RTR) 1568 ep->mpa_attr.p2p_type = 1569 FW_RI_INIT_P2PTYPE_READ_REQ; 1570 } 1571 } 1572 } else if (mpa->revision == 1) 1573 if (peer2peer) 1574 ep->mpa_attr.p2p_type = p2p_type; 1575 1576 pr_debug("%s - crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n", 1577 __func__, ep->mpa_attr.crc_enabled, 1578 ep->mpa_attr.recv_marker_enabled, 1579 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1580 ep->mpa_attr.p2p_type, p2p_type); 1581 1582 /* 1583 * If responder's RTR does not match with that of initiator, assign 1584 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1585 * generated when moving QP to RTS state. 1586 * A TERM message will be sent after QP has moved to RTS state 1587 */ 1588 if ((ep->mpa_attr.version == 2) && peer2peer && 1589 (ep->mpa_attr.p2p_type != p2p_type)) { 1590 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1591 rtr_mismatch = 1; 1592 } 1593 1594 attrs.mpa_attr = ep->mpa_attr; 1595 attrs.max_ird = ep->ird; 1596 attrs.max_ord = ep->ord; 1597 attrs.llp_stream_handle = ep; 1598 attrs.next_state = C4IW_QP_STATE_RTS; 1599 1600 mask = C4IW_QP_ATTR_NEXT_STATE | 1601 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1602 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1603 1604 /* bind QP and TID with INIT_WR */ 1605 err = c4iw_modify_qp(ep->com.qp->rhp, 1606 ep->com.qp, mask, &attrs, 1); 1607 if (err) 1608 goto err; 1609 1610 /* 1611 * If responder's RTR requirement did not match with what initiator 1612 * supports, generate TERM message 1613 */ 1614 if (rtr_mismatch) { 1615 pr_err("%s: RTR mismatch, sending TERM\n", __func__); 1616 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1617 attrs.ecode = MPA_NOMATCH_RTR; 1618 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1619 attrs.send_term = 1; 1620 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1621 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1622 err = -ENOMEM; 1623 disconnect = 1; 1624 goto out; 1625 } 1626 1627 /* 1628 * Generate TERM if initiator IRD is not sufficient for responder 1629 * provided ORD. Currently, we do the same behaviour even when 1630 * responder provided IRD is also not sufficient as regards to 1631 * initiator ORD. 1632 */ 1633 if (insuff_ird) { 1634 pr_err("%s: Insufficient IRD, sending TERM\n", __func__); 1635 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1636 attrs.ecode = MPA_INSUFF_IRD; 1637 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1638 attrs.send_term = 1; 1639 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1640 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1641 err = -ENOMEM; 1642 disconnect = 1; 1643 goto out; 1644 } 1645 goto out; 1646 err_stop_timer: 1647 stop_ep_timer(ep); 1648 err: 1649 disconnect = 2; 1650 out: 1651 connect_reply_upcall(ep, err); 1652 return disconnect; 1653 } 1654 1655 /* 1656 * process_mpa_request - process streaming mode MPA request 1657 * 1658 * Returns: 1659 * 1660 * 0 upon success indicating a connect request was delivered to the ULP 1661 * or the mpa request is incomplete but valid so far. 1662 * 1663 * 1 if a failure requires the caller to close the connection. 1664 * 1665 * 2 if a failure requires the caller to abort the connection. 1666 */ 1667 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1668 { 1669 struct mpa_message *mpa; 1670 struct mpa_v2_conn_params *mpa_v2_params; 1671 u16 plen; 1672 1673 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1674 1675 /* 1676 * If we get more than the supported amount of private data 1677 * then we must fail this connection. 1678 */ 1679 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1680 goto err_stop_timer; 1681 1682 pr_debug("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1683 1684 /* 1685 * Copy the new data into our accumulation buffer. 1686 */ 1687 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1688 skb->len); 1689 ep->mpa_pkt_len += skb->len; 1690 1691 /* 1692 * If we don't even have the mpa message, then bail. 1693 * We'll continue process when more data arrives. 1694 */ 1695 if (ep->mpa_pkt_len < sizeof(*mpa)) 1696 return 0; 1697 1698 pr_debug("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1699 mpa = (struct mpa_message *) ep->mpa_pkt; 1700 1701 /* 1702 * Validate MPA Header. 1703 */ 1704 if (mpa->revision > mpa_rev) { 1705 pr_err("%s MPA version mismatch. Local = %d, Received = %d\n", 1706 __func__, mpa_rev, mpa->revision); 1707 goto err_stop_timer; 1708 } 1709 1710 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1711 goto err_stop_timer; 1712 1713 plen = ntohs(mpa->private_data_size); 1714 1715 /* 1716 * Fail if there's too much private data. 1717 */ 1718 if (plen > MPA_MAX_PRIVATE_DATA) 1719 goto err_stop_timer; 1720 1721 /* 1722 * If plen does not account for pkt size 1723 */ 1724 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1725 goto err_stop_timer; 1726 ep->plen = (u8) plen; 1727 1728 /* 1729 * If we don't have all the pdata yet, then bail. 1730 */ 1731 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1732 return 0; 1733 1734 /* 1735 * If we get here we have accumulated the entire mpa 1736 * start reply message including private data. 1737 */ 1738 ep->mpa_attr.initiator = 0; 1739 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1740 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1741 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1742 ep->mpa_attr.version = mpa->revision; 1743 if (mpa->revision == 1) 1744 ep->tried_with_mpa_v1 = 1; 1745 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1746 1747 if (mpa->revision == 2) { 1748 ep->mpa_attr.enhanced_rdma_conn = 1749 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1750 if (ep->mpa_attr.enhanced_rdma_conn) { 1751 mpa_v2_params = (struct mpa_v2_conn_params *) 1752 (ep->mpa_pkt + sizeof(*mpa)); 1753 ep->ird = ntohs(mpa_v2_params->ird) & 1754 MPA_V2_IRD_ORD_MASK; 1755 ep->ird = min_t(u32, ep->ird, 1756 cur_max_read_depth(ep->com.dev)); 1757 ep->ord = ntohs(mpa_v2_params->ord) & 1758 MPA_V2_IRD_ORD_MASK; 1759 ep->ord = min_t(u32, ep->ord, 1760 cur_max_read_depth(ep->com.dev)); 1761 pr_debug("%s initiator ird %u ord %u\n", 1762 __func__, ep->ird, ep->ord); 1763 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1764 if (peer2peer) { 1765 if (ntohs(mpa_v2_params->ord) & 1766 MPA_V2_RDMA_WRITE_RTR) 1767 ep->mpa_attr.p2p_type = 1768 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1769 else if (ntohs(mpa_v2_params->ord) & 1770 MPA_V2_RDMA_READ_RTR) 1771 ep->mpa_attr.p2p_type = 1772 FW_RI_INIT_P2PTYPE_READ_REQ; 1773 } 1774 } 1775 } else if (mpa->revision == 1) 1776 if (peer2peer) 1777 ep->mpa_attr.p2p_type = p2p_type; 1778 1779 pr_debug("%s - crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n", 1780 __func__, 1781 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1782 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1783 ep->mpa_attr.p2p_type); 1784 1785 __state_set(&ep->com, MPA_REQ_RCVD); 1786 1787 /* drive upcall */ 1788 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1789 if (ep->parent_ep->com.state != DEAD) { 1790 if (connect_request_upcall(ep)) 1791 goto err_unlock_parent; 1792 } else { 1793 goto err_unlock_parent; 1794 } 1795 mutex_unlock(&ep->parent_ep->com.mutex); 1796 return 0; 1797 1798 err_unlock_parent: 1799 mutex_unlock(&ep->parent_ep->com.mutex); 1800 goto err_out; 1801 err_stop_timer: 1802 (void)stop_ep_timer(ep); 1803 err_out: 1804 return 2; 1805 } 1806 1807 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1808 { 1809 struct c4iw_ep *ep; 1810 struct cpl_rx_data *hdr = cplhdr(skb); 1811 unsigned int dlen = ntohs(hdr->len); 1812 unsigned int tid = GET_TID(hdr); 1813 __u8 status = hdr->status; 1814 int disconnect = 0; 1815 1816 ep = get_ep_from_tid(dev, tid); 1817 if (!ep) 1818 return 0; 1819 pr_debug("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen); 1820 skb_pull(skb, sizeof(*hdr)); 1821 skb_trim(skb, dlen); 1822 mutex_lock(&ep->com.mutex); 1823 1824 switch (ep->com.state) { 1825 case MPA_REQ_SENT: 1826 update_rx_credits(ep, dlen); 1827 ep->rcv_seq += dlen; 1828 disconnect = process_mpa_reply(ep, skb); 1829 break; 1830 case MPA_REQ_WAIT: 1831 update_rx_credits(ep, dlen); 1832 ep->rcv_seq += dlen; 1833 disconnect = process_mpa_request(ep, skb); 1834 break; 1835 case FPDU_MODE: { 1836 struct c4iw_qp_attributes attrs; 1837 1838 update_rx_credits(ep, dlen); 1839 BUG_ON(!ep->com.qp); 1840 if (status) 1841 pr_err("%s Unexpected streaming data." \ 1842 " qpid %u ep %p state %d tid %u status %d\n", 1843 __func__, ep->com.qp->wq.sq.qid, ep, 1844 ep->com.state, ep->hwtid, status); 1845 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1846 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1847 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1848 disconnect = 1; 1849 break; 1850 } 1851 default: 1852 break; 1853 } 1854 mutex_unlock(&ep->com.mutex); 1855 if (disconnect) 1856 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1857 c4iw_put_ep(&ep->com); 1858 return 0; 1859 } 1860 1861 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1862 { 1863 struct c4iw_ep *ep; 1864 struct cpl_abort_rpl_rss *rpl = cplhdr(skb); 1865 int release = 0; 1866 unsigned int tid = GET_TID(rpl); 1867 1868 ep = get_ep_from_tid(dev, tid); 1869 if (!ep) { 1870 pr_warn("Abort rpl to freed endpoint\n"); 1871 return 0; 1872 } 1873 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1874 mutex_lock(&ep->com.mutex); 1875 switch (ep->com.state) { 1876 case ABORTING: 1877 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 1878 __state_set(&ep->com, DEAD); 1879 release = 1; 1880 break; 1881 default: 1882 pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state); 1883 break; 1884 } 1885 mutex_unlock(&ep->com.mutex); 1886 1887 if (release) 1888 release_ep_resources(ep); 1889 c4iw_put_ep(&ep->com); 1890 return 0; 1891 } 1892 1893 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1894 { 1895 struct sk_buff *skb; 1896 struct fw_ofld_connection_wr *req; 1897 unsigned int mtu_idx; 1898 u32 wscale; 1899 struct sockaddr_in *sin; 1900 int win; 1901 1902 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1903 req = __skb_put_zero(skb, sizeof(*req)); 1904 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1905 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1906 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1907 ep->com.dev->rdev.lldi.ports[0], 1908 ep->l2t)); 1909 sin = (struct sockaddr_in *)&ep->com.local_addr; 1910 req->le.lport = sin->sin_port; 1911 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1912 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1913 req->le.pport = sin->sin_port; 1914 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1915 req->tcb.t_state_to_astid = 1916 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1917 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1918 req->tcb.cplrxdataack_cplpassacceptrpl = 1919 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1920 req->tcb.tx_max = (__force __be32) jiffies; 1921 req->tcb.rcv_adv = htons(1); 1922 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1923 enable_tcp_timestamps, 1924 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1925 wscale = cxgb_compute_wscale(rcv_win); 1926 1927 /* 1928 * Specify the largest window that will fit in opt0. The 1929 * remainder will be specified in the rx_data_ack. 1930 */ 1931 win = ep->rcv_win >> 10; 1932 if (win > RCV_BUFSIZ_M) 1933 win = RCV_BUFSIZ_M; 1934 1935 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 1936 (nocong ? NO_CONG_F : 0) | 1937 KEEP_ALIVE_F | 1938 DELACK_F | 1939 WND_SCALE_V(wscale) | 1940 MSS_IDX_V(mtu_idx) | 1941 L2T_IDX_V(ep->l2t->idx) | 1942 TX_CHAN_V(ep->tx_chan) | 1943 SMAC_SEL_V(ep->smac_idx) | 1944 DSCP_V(ep->tos >> 2) | 1945 ULP_MODE_V(ULP_MODE_TCPDDP) | 1946 RCV_BUFSIZ_V(win)); 1947 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 1948 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 1949 RX_CHANNEL_V(0) | 1950 CCTRL_ECN_V(enable_ecn) | 1951 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 1952 if (enable_tcp_timestamps) 1953 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 1954 if (enable_tcp_sack) 1955 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 1956 if (wscale && enable_tcp_window_scaling) 1957 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 1958 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 1959 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 1960 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 1961 set_bit(ACT_OFLD_CONN, &ep->com.history); 1962 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1963 } 1964 1965 /* 1966 * Some of the error codes above implicitly indicate that there is no TID 1967 * allocated with the result of an ACT_OPEN. We use this predicate to make 1968 * that explicit. 1969 */ 1970 static inline int act_open_has_tid(int status) 1971 { 1972 return (status != CPL_ERR_TCAM_PARITY && 1973 status != CPL_ERR_TCAM_MISS && 1974 status != CPL_ERR_TCAM_FULL && 1975 status != CPL_ERR_CONN_EXIST_SYNRECV && 1976 status != CPL_ERR_CONN_EXIST); 1977 } 1978 1979 static char *neg_adv_str(unsigned int status) 1980 { 1981 switch (status) { 1982 case CPL_ERR_RTX_NEG_ADVICE: 1983 return "Retransmit timeout"; 1984 case CPL_ERR_PERSIST_NEG_ADVICE: 1985 return "Persist timeout"; 1986 case CPL_ERR_KEEPALV_NEG_ADVICE: 1987 return "Keepalive timeout"; 1988 default: 1989 return "Unknown"; 1990 } 1991 } 1992 1993 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 1994 { 1995 ep->snd_win = snd_win; 1996 ep->rcv_win = rcv_win; 1997 pr_debug("%s snd_win %d rcv_win %d\n", 1998 __func__, ep->snd_win, ep->rcv_win); 1999 } 2000 2001 #define ACT_OPEN_RETRY_COUNT 2 2002 2003 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 2004 struct dst_entry *dst, struct c4iw_dev *cdev, 2005 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 2006 { 2007 struct neighbour *n; 2008 int err, step; 2009 struct net_device *pdev; 2010 2011 n = dst_neigh_lookup(dst, peer_ip); 2012 if (!n) 2013 return -ENODEV; 2014 2015 rcu_read_lock(); 2016 err = -ENOMEM; 2017 if (n->dev->flags & IFF_LOOPBACK) { 2018 if (iptype == 4) 2019 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2020 else if (IS_ENABLED(CONFIG_IPV6)) 2021 for_each_netdev(&init_net, pdev) { 2022 if (ipv6_chk_addr(&init_net, 2023 (struct in6_addr *)peer_ip, 2024 pdev, 1)) 2025 break; 2026 } 2027 else 2028 pdev = NULL; 2029 2030 if (!pdev) { 2031 err = -ENODEV; 2032 goto out; 2033 } 2034 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2035 n, pdev, rt_tos2priority(tos)); 2036 if (!ep->l2t) { 2037 dev_put(pdev); 2038 goto out; 2039 } 2040 ep->mtu = pdev->mtu; 2041 ep->tx_chan = cxgb4_port_chan(pdev); 2042 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2043 cxgb4_port_viid(pdev)); 2044 step = cdev->rdev.lldi.ntxq / 2045 cdev->rdev.lldi.nchan; 2046 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2047 step = cdev->rdev.lldi.nrxq / 2048 cdev->rdev.lldi.nchan; 2049 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2050 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2051 cxgb4_port_idx(pdev) * step]; 2052 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2053 dev_put(pdev); 2054 } else { 2055 pdev = get_real_dev(n->dev); 2056 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2057 n, pdev, 0); 2058 if (!ep->l2t) 2059 goto out; 2060 ep->mtu = dst_mtu(dst); 2061 ep->tx_chan = cxgb4_port_chan(pdev); 2062 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2063 cxgb4_port_viid(pdev)); 2064 step = cdev->rdev.lldi.ntxq / 2065 cdev->rdev.lldi.nchan; 2066 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2067 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2068 step = cdev->rdev.lldi.nrxq / 2069 cdev->rdev.lldi.nchan; 2070 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2071 cxgb4_port_idx(pdev) * step]; 2072 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2073 2074 if (clear_mpa_v1) { 2075 ep->retry_with_mpa_v1 = 0; 2076 ep->tried_with_mpa_v1 = 0; 2077 } 2078 } 2079 err = 0; 2080 out: 2081 rcu_read_unlock(); 2082 2083 neigh_release(n); 2084 2085 return err; 2086 } 2087 2088 static int c4iw_reconnect(struct c4iw_ep *ep) 2089 { 2090 int err = 0; 2091 int size = 0; 2092 struct sockaddr_in *laddr = (struct sockaddr_in *) 2093 &ep->com.cm_id->m_local_addr; 2094 struct sockaddr_in *raddr = (struct sockaddr_in *) 2095 &ep->com.cm_id->m_remote_addr; 2096 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2097 &ep->com.cm_id->m_local_addr; 2098 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2099 &ep->com.cm_id->m_remote_addr; 2100 int iptype; 2101 __u8 *ra; 2102 2103 pr_debug("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id); 2104 init_timer(&ep->timer); 2105 c4iw_init_wr_wait(&ep->com.wr_wait); 2106 2107 /* When MPA revision is different on nodes, the node with MPA_rev=2 2108 * tries to reconnect with MPA_rev 1 for the same EP through 2109 * c4iw_reconnect(), where the same EP is assigned with new tid for 2110 * further connection establishment. As we are using the same EP pointer 2111 * for reconnect, few skbs are used during the previous c4iw_connect(), 2112 * which leaves the EP with inadequate skbs for further 2113 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty 2114 * skb_list() during peer_abort(). Allocate skbs which is already used. 2115 */ 2116 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2117 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2118 err = -ENOMEM; 2119 goto fail1; 2120 } 2121 2122 /* 2123 * Allocate an active TID to initiate a TCP connection. 2124 */ 2125 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2126 if (ep->atid == -1) { 2127 pr_err("%s - cannot alloc atid\n", __func__); 2128 err = -ENOMEM; 2129 goto fail2; 2130 } 2131 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2132 2133 /* find a route */ 2134 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2135 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2136 laddr->sin_addr.s_addr, 2137 raddr->sin_addr.s_addr, 2138 laddr->sin_port, 2139 raddr->sin_port, ep->com.cm_id->tos); 2140 iptype = 4; 2141 ra = (__u8 *)&raddr->sin_addr; 2142 } else { 2143 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2144 get_real_dev, 2145 laddr6->sin6_addr.s6_addr, 2146 raddr6->sin6_addr.s6_addr, 2147 laddr6->sin6_port, 2148 raddr6->sin6_port, 0, 2149 raddr6->sin6_scope_id); 2150 iptype = 6; 2151 ra = (__u8 *)&raddr6->sin6_addr; 2152 } 2153 if (!ep->dst) { 2154 pr_err("%s - cannot find route\n", __func__); 2155 err = -EHOSTUNREACH; 2156 goto fail3; 2157 } 2158 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2159 ep->com.dev->rdev.lldi.adapter_type, 2160 ep->com.cm_id->tos); 2161 if (err) { 2162 pr_err("%s - cannot alloc l2e\n", __func__); 2163 goto fail4; 2164 } 2165 2166 pr_debug("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2167 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2168 ep->l2t->idx); 2169 2170 state_set(&ep->com, CONNECTING); 2171 ep->tos = ep->com.cm_id->tos; 2172 2173 /* send connect request to rnic */ 2174 err = send_connect(ep); 2175 if (!err) 2176 goto out; 2177 2178 cxgb4_l2t_release(ep->l2t); 2179 fail4: 2180 dst_release(ep->dst); 2181 fail3: 2182 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2183 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2184 fail2: 2185 /* 2186 * remember to send notification to upper layer. 2187 * We are in here so the upper layer is not aware that this is 2188 * re-connect attempt and so, upper layer is still waiting for 2189 * response of 1st connect request. 2190 */ 2191 connect_reply_upcall(ep, -ECONNRESET); 2192 fail1: 2193 c4iw_put_ep(&ep->com); 2194 out: 2195 return err; 2196 } 2197 2198 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2199 { 2200 struct c4iw_ep *ep; 2201 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2202 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2203 ntohl(rpl->atid_status))); 2204 struct tid_info *t = dev->rdev.lldi.tids; 2205 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2206 struct sockaddr_in *la; 2207 struct sockaddr_in *ra; 2208 struct sockaddr_in6 *la6; 2209 struct sockaddr_in6 *ra6; 2210 int ret = 0; 2211 2212 ep = lookup_atid(t, atid); 2213 la = (struct sockaddr_in *)&ep->com.local_addr; 2214 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2215 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2216 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2217 2218 pr_debug("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid, 2219 status, status2errno(status)); 2220 2221 if (cxgb_is_neg_adv(status)) { 2222 pr_debug("%s Connection problems for atid %u status %u (%s)\n", 2223 __func__, atid, status, neg_adv_str(status)); 2224 ep->stats.connect_neg_adv++; 2225 mutex_lock(&dev->rdev.stats.lock); 2226 dev->rdev.stats.neg_adv++; 2227 mutex_unlock(&dev->rdev.stats.lock); 2228 return 0; 2229 } 2230 2231 set_bit(ACT_OPEN_RPL, &ep->com.history); 2232 2233 /* 2234 * Log interesting failures. 2235 */ 2236 switch (status) { 2237 case CPL_ERR_CONN_RESET: 2238 case CPL_ERR_CONN_TIMEDOUT: 2239 break; 2240 case CPL_ERR_TCAM_FULL: 2241 mutex_lock(&dev->rdev.stats.lock); 2242 dev->rdev.stats.tcam_full++; 2243 mutex_unlock(&dev->rdev.stats.lock); 2244 if (ep->com.local_addr.ss_family == AF_INET && 2245 dev->rdev.lldi.enable_fw_ofld_conn) { 2246 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2247 ntohl(rpl->atid_status)))); 2248 if (ret) 2249 goto fail; 2250 return 0; 2251 } 2252 break; 2253 case CPL_ERR_CONN_EXIST: 2254 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2255 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2256 if (ep->com.remote_addr.ss_family == AF_INET6) { 2257 struct sockaddr_in6 *sin6 = 2258 (struct sockaddr_in6 *) 2259 &ep->com.local_addr; 2260 cxgb4_clip_release( 2261 ep->com.dev->rdev.lldi.ports[0], 2262 (const u32 *) 2263 &sin6->sin6_addr.s6_addr, 1); 2264 } 2265 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2266 atid); 2267 cxgb4_free_atid(t, atid); 2268 dst_release(ep->dst); 2269 cxgb4_l2t_release(ep->l2t); 2270 c4iw_reconnect(ep); 2271 return 0; 2272 } 2273 break; 2274 default: 2275 if (ep->com.local_addr.ss_family == AF_INET) { 2276 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2277 atid, status, status2errno(status), 2278 &la->sin_addr.s_addr, ntohs(la->sin_port), 2279 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2280 } else { 2281 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2282 atid, status, status2errno(status), 2283 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2284 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2285 } 2286 break; 2287 } 2288 2289 fail: 2290 connect_reply_upcall(ep, status2errno(status)); 2291 state_set(&ep->com, DEAD); 2292 2293 if (ep->com.remote_addr.ss_family == AF_INET6) { 2294 struct sockaddr_in6 *sin6 = 2295 (struct sockaddr_in6 *)&ep->com.local_addr; 2296 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2297 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2298 } 2299 if (status && act_open_has_tid(status)) 2300 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl), 2301 ep->com.local_addr.ss_family); 2302 2303 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2304 cxgb4_free_atid(t, atid); 2305 dst_release(ep->dst); 2306 cxgb4_l2t_release(ep->l2t); 2307 c4iw_put_ep(&ep->com); 2308 2309 return 0; 2310 } 2311 2312 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2313 { 2314 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2315 unsigned int stid = GET_TID(rpl); 2316 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2317 2318 if (!ep) { 2319 pr_debug("%s stid %d lookup failure!\n", __func__, stid); 2320 goto out; 2321 } 2322 pr_debug("%s ep %p status %d error %d\n", __func__, ep, 2323 rpl->status, status2errno(rpl->status)); 2324 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2325 c4iw_put_ep(&ep->com); 2326 out: 2327 return 0; 2328 } 2329 2330 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2331 { 2332 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2333 unsigned int stid = GET_TID(rpl); 2334 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2335 2336 if (!ep) { 2337 pr_debug("%s stid %d lookup failure!\n", __func__, stid); 2338 goto out; 2339 } 2340 pr_debug("%s ep %p\n", __func__, ep); 2341 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2342 c4iw_put_ep(&ep->com); 2343 out: 2344 return 0; 2345 } 2346 2347 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2348 struct cpl_pass_accept_req *req) 2349 { 2350 struct cpl_pass_accept_rpl *rpl; 2351 unsigned int mtu_idx; 2352 u64 opt0; 2353 u32 opt2; 2354 u32 wscale; 2355 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2356 int win; 2357 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2358 2359 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2360 BUG_ON(skb_cloned(skb)); 2361 2362 skb_get(skb); 2363 rpl = cplhdr(skb); 2364 if (!is_t4(adapter_type)) { 2365 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2366 rpl5 = (void *)rpl; 2367 INIT_TP_WR(rpl5, ep->hwtid); 2368 } else { 2369 skb_trim(skb, sizeof(*rpl)); 2370 INIT_TP_WR(rpl, ep->hwtid); 2371 } 2372 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2373 ep->hwtid)); 2374 2375 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2376 enable_tcp_timestamps && req->tcpopt.tstamp, 2377 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2378 wscale = cxgb_compute_wscale(rcv_win); 2379 2380 /* 2381 * Specify the largest window that will fit in opt0. The 2382 * remainder will be specified in the rx_data_ack. 2383 */ 2384 win = ep->rcv_win >> 10; 2385 if (win > RCV_BUFSIZ_M) 2386 win = RCV_BUFSIZ_M; 2387 opt0 = (nocong ? NO_CONG_F : 0) | 2388 KEEP_ALIVE_F | 2389 DELACK_F | 2390 WND_SCALE_V(wscale) | 2391 MSS_IDX_V(mtu_idx) | 2392 L2T_IDX_V(ep->l2t->idx) | 2393 TX_CHAN_V(ep->tx_chan) | 2394 SMAC_SEL_V(ep->smac_idx) | 2395 DSCP_V(ep->tos >> 2) | 2396 ULP_MODE_V(ULP_MODE_TCPDDP) | 2397 RCV_BUFSIZ_V(win); 2398 opt2 = RX_CHANNEL_V(0) | 2399 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2400 2401 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2402 opt2 |= TSTAMPS_EN_F; 2403 if (enable_tcp_sack && req->tcpopt.sack) 2404 opt2 |= SACK_EN_F; 2405 if (wscale && enable_tcp_window_scaling) 2406 opt2 |= WND_SCALE_EN_F; 2407 if (enable_ecn) { 2408 const struct tcphdr *tcph; 2409 u32 hlen = ntohl(req->hdr_len); 2410 2411 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2412 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2413 IP_HDR_LEN_G(hlen); 2414 else 2415 tcph = (const void *)(req + 1) + 2416 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2417 if (tcph->ece && tcph->cwr) 2418 opt2 |= CCTRL_ECN_V(1); 2419 } 2420 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2421 u32 isn = (prandom_u32() & ~7UL) - 1; 2422 opt2 |= T5_OPT_2_VALID_F; 2423 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2424 opt2 |= T5_ISS_F; 2425 rpl5 = (void *)rpl; 2426 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2427 if (peer2peer) 2428 isn += 4; 2429 rpl5->iss = cpu_to_be32(isn); 2430 pr_debug("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss)); 2431 } 2432 2433 rpl->opt0 = cpu_to_be64(opt0); 2434 rpl->opt2 = cpu_to_be32(opt2); 2435 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2436 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2437 2438 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2439 } 2440 2441 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2442 { 2443 pr_debug("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid); 2444 BUG_ON(skb_cloned(skb)); 2445 skb_trim(skb, sizeof(struct cpl_tid_release)); 2446 release_tid(&dev->rdev, hwtid, skb); 2447 return; 2448 } 2449 2450 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2451 { 2452 struct c4iw_ep *child_ep = NULL, *parent_ep; 2453 struct cpl_pass_accept_req *req = cplhdr(skb); 2454 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2455 struct tid_info *t = dev->rdev.lldi.tids; 2456 unsigned int hwtid = GET_TID(req); 2457 struct dst_entry *dst; 2458 __u8 local_ip[16], peer_ip[16]; 2459 __be16 local_port, peer_port; 2460 struct sockaddr_in6 *sin6; 2461 int err; 2462 u16 peer_mss = ntohs(req->tcpopt.mss); 2463 int iptype; 2464 unsigned short hdrs; 2465 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2466 2467 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2468 if (!parent_ep) { 2469 pr_debug("%s connect request on invalid stid %d\n", 2470 __func__, stid); 2471 goto reject; 2472 } 2473 2474 if (state_read(&parent_ep->com) != LISTEN) { 2475 pr_debug("%s - listening ep not in LISTEN\n", __func__); 2476 goto reject; 2477 } 2478 2479 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2480 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2481 2482 /* Find output route */ 2483 if (iptype == 4) { 2484 pr_debug("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2485 , __func__, parent_ep, hwtid, 2486 local_ip, peer_ip, ntohs(local_port), 2487 ntohs(peer_port), peer_mss); 2488 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2489 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2490 local_port, peer_port, tos); 2491 } else { 2492 pr_debug("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2493 , __func__, parent_ep, hwtid, 2494 local_ip, peer_ip, ntohs(local_port), 2495 ntohs(peer_port), peer_mss); 2496 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2497 local_ip, peer_ip, local_port, peer_port, 2498 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2499 ((struct sockaddr_in6 *) 2500 &parent_ep->com.local_addr)->sin6_scope_id); 2501 } 2502 if (!dst) { 2503 pr_err("%s - failed to find dst entry!\n", __func__); 2504 goto reject; 2505 } 2506 2507 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2508 if (!child_ep) { 2509 pr_err("%s - failed to allocate ep entry!\n", __func__); 2510 dst_release(dst); 2511 goto reject; 2512 } 2513 2514 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2515 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2516 if (err) { 2517 pr_err("%s - failed to allocate l2t entry!\n", __func__); 2518 dst_release(dst); 2519 kfree(child_ep); 2520 goto reject; 2521 } 2522 2523 hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) + 2524 sizeof(struct tcphdr) + 2525 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2526 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2527 child_ep->mtu = peer_mss + hdrs; 2528 2529 skb_queue_head_init(&child_ep->com.ep_skb_list); 2530 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2531 goto fail; 2532 2533 state_set(&child_ep->com, CONNECTING); 2534 child_ep->com.dev = dev; 2535 child_ep->com.cm_id = NULL; 2536 2537 if (iptype == 4) { 2538 struct sockaddr_in *sin = (struct sockaddr_in *) 2539 &child_ep->com.local_addr; 2540 2541 sin->sin_family = AF_INET; 2542 sin->sin_port = local_port; 2543 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2544 2545 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2546 sin->sin_family = AF_INET; 2547 sin->sin_port = ((struct sockaddr_in *) 2548 &parent_ep->com.local_addr)->sin_port; 2549 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2550 2551 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2552 sin->sin_family = AF_INET; 2553 sin->sin_port = peer_port; 2554 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2555 } else { 2556 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2557 sin6->sin6_family = PF_INET6; 2558 sin6->sin6_port = local_port; 2559 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2560 2561 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2562 sin6->sin6_family = PF_INET6; 2563 sin6->sin6_port = ((struct sockaddr_in6 *) 2564 &parent_ep->com.local_addr)->sin6_port; 2565 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2566 2567 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2568 sin6->sin6_family = PF_INET6; 2569 sin6->sin6_port = peer_port; 2570 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2571 } 2572 2573 c4iw_get_ep(&parent_ep->com); 2574 child_ep->parent_ep = parent_ep; 2575 child_ep->tos = tos; 2576 child_ep->dst = dst; 2577 child_ep->hwtid = hwtid; 2578 2579 pr_debug("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__, 2580 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2581 2582 init_timer(&child_ep->timer); 2583 cxgb4_insert_tid(t, child_ep, hwtid, 2584 child_ep->com.local_addr.ss_family); 2585 insert_ep_tid(child_ep); 2586 if (accept_cr(child_ep, skb, req)) { 2587 c4iw_put_ep(&parent_ep->com); 2588 release_ep_resources(child_ep); 2589 } else { 2590 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2591 } 2592 if (iptype == 6) { 2593 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2594 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2595 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2596 } 2597 goto out; 2598 fail: 2599 c4iw_put_ep(&child_ep->com); 2600 reject: 2601 reject_cr(dev, hwtid, skb); 2602 out: 2603 if (parent_ep) 2604 c4iw_put_ep(&parent_ep->com); 2605 return 0; 2606 } 2607 2608 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2609 { 2610 struct c4iw_ep *ep; 2611 struct cpl_pass_establish *req = cplhdr(skb); 2612 unsigned int tid = GET_TID(req); 2613 int ret; 2614 2615 ep = get_ep_from_tid(dev, tid); 2616 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2617 ep->snd_seq = be32_to_cpu(req->snd_isn); 2618 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2619 2620 pr_debug("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid, 2621 ntohs(req->tcp_opt)); 2622 2623 set_emss(ep, ntohs(req->tcp_opt)); 2624 2625 dst_confirm(ep->dst); 2626 mutex_lock(&ep->com.mutex); 2627 ep->com.state = MPA_REQ_WAIT; 2628 start_ep_timer(ep); 2629 set_bit(PASS_ESTAB, &ep->com.history); 2630 ret = send_flowc(ep); 2631 mutex_unlock(&ep->com.mutex); 2632 if (ret) 2633 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2634 c4iw_put_ep(&ep->com); 2635 2636 return 0; 2637 } 2638 2639 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2640 { 2641 struct cpl_peer_close *hdr = cplhdr(skb); 2642 struct c4iw_ep *ep; 2643 struct c4iw_qp_attributes attrs; 2644 int disconnect = 1; 2645 int release = 0; 2646 unsigned int tid = GET_TID(hdr); 2647 int ret; 2648 2649 ep = get_ep_from_tid(dev, tid); 2650 if (!ep) 2651 return 0; 2652 2653 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2654 dst_confirm(ep->dst); 2655 2656 set_bit(PEER_CLOSE, &ep->com.history); 2657 mutex_lock(&ep->com.mutex); 2658 switch (ep->com.state) { 2659 case MPA_REQ_WAIT: 2660 __state_set(&ep->com, CLOSING); 2661 break; 2662 case MPA_REQ_SENT: 2663 __state_set(&ep->com, CLOSING); 2664 connect_reply_upcall(ep, -ECONNRESET); 2665 break; 2666 case MPA_REQ_RCVD: 2667 2668 /* 2669 * We're gonna mark this puppy DEAD, but keep 2670 * the reference on it until the ULP accepts or 2671 * rejects the CR. Also wake up anyone waiting 2672 * in rdma connection migration (see c4iw_accept_cr()). 2673 */ 2674 __state_set(&ep->com, CLOSING); 2675 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2676 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2677 break; 2678 case MPA_REP_SENT: 2679 __state_set(&ep->com, CLOSING); 2680 pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid); 2681 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2682 break; 2683 case FPDU_MODE: 2684 start_ep_timer(ep); 2685 __state_set(&ep->com, CLOSING); 2686 attrs.next_state = C4IW_QP_STATE_CLOSING; 2687 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2688 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2689 if (ret != -ECONNRESET) { 2690 peer_close_upcall(ep); 2691 disconnect = 1; 2692 } 2693 break; 2694 case ABORTING: 2695 disconnect = 0; 2696 break; 2697 case CLOSING: 2698 __state_set(&ep->com, MORIBUND); 2699 disconnect = 0; 2700 break; 2701 case MORIBUND: 2702 (void)stop_ep_timer(ep); 2703 if (ep->com.cm_id && ep->com.qp) { 2704 attrs.next_state = C4IW_QP_STATE_IDLE; 2705 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2706 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2707 } 2708 close_complete_upcall(ep, 0); 2709 __state_set(&ep->com, DEAD); 2710 release = 1; 2711 disconnect = 0; 2712 break; 2713 case DEAD: 2714 disconnect = 0; 2715 break; 2716 default: 2717 BUG_ON(1); 2718 } 2719 mutex_unlock(&ep->com.mutex); 2720 if (disconnect) 2721 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2722 if (release) 2723 release_ep_resources(ep); 2724 c4iw_put_ep(&ep->com); 2725 return 0; 2726 } 2727 2728 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2729 { 2730 struct cpl_abort_req_rss *req = cplhdr(skb); 2731 struct c4iw_ep *ep; 2732 struct sk_buff *rpl_skb; 2733 struct c4iw_qp_attributes attrs; 2734 int ret; 2735 int release = 0; 2736 unsigned int tid = GET_TID(req); 2737 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2738 2739 ep = get_ep_from_tid(dev, tid); 2740 if (!ep) 2741 return 0; 2742 2743 if (cxgb_is_neg_adv(req->status)) { 2744 pr_debug("%s Negative advice on abort- tid %u status %d (%s)\n", 2745 __func__, ep->hwtid, req->status, 2746 neg_adv_str(req->status)); 2747 ep->stats.abort_neg_adv++; 2748 mutex_lock(&dev->rdev.stats.lock); 2749 dev->rdev.stats.neg_adv++; 2750 mutex_unlock(&dev->rdev.stats.lock); 2751 goto deref_ep; 2752 } 2753 pr_debug("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 2754 ep->com.state); 2755 set_bit(PEER_ABORT, &ep->com.history); 2756 2757 /* 2758 * Wake up any threads in rdma_init() or rdma_fini(). 2759 * However, this is not needed if com state is just 2760 * MPA_REQ_SENT 2761 */ 2762 if (ep->com.state != MPA_REQ_SENT) 2763 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2764 2765 mutex_lock(&ep->com.mutex); 2766 switch (ep->com.state) { 2767 case CONNECTING: 2768 c4iw_put_ep(&ep->parent_ep->com); 2769 break; 2770 case MPA_REQ_WAIT: 2771 (void)stop_ep_timer(ep); 2772 break; 2773 case MPA_REQ_SENT: 2774 (void)stop_ep_timer(ep); 2775 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2776 connect_reply_upcall(ep, -ECONNRESET); 2777 else { 2778 /* 2779 * we just don't send notification upwards because we 2780 * want to retry with mpa_v1 without upper layers even 2781 * knowing it. 2782 * 2783 * do some housekeeping so as to re-initiate the 2784 * connection 2785 */ 2786 pr_debug("%s: mpa_rev=%d. Retrying with mpav1\n", 2787 __func__, mpa_rev); 2788 ep->retry_with_mpa_v1 = 1; 2789 } 2790 break; 2791 case MPA_REP_SENT: 2792 break; 2793 case MPA_REQ_RCVD: 2794 break; 2795 case MORIBUND: 2796 case CLOSING: 2797 stop_ep_timer(ep); 2798 /*FALLTHROUGH*/ 2799 case FPDU_MODE: 2800 if (ep->com.cm_id && ep->com.qp) { 2801 attrs.next_state = C4IW_QP_STATE_ERROR; 2802 ret = c4iw_modify_qp(ep->com.qp->rhp, 2803 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2804 &attrs, 1); 2805 if (ret) 2806 pr_err("%s - qp <- error failed!\n", __func__); 2807 } 2808 peer_abort_upcall(ep); 2809 break; 2810 case ABORTING: 2811 break; 2812 case DEAD: 2813 pr_debug("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2814 mutex_unlock(&ep->com.mutex); 2815 goto deref_ep; 2816 default: 2817 BUG_ON(1); 2818 break; 2819 } 2820 dst_confirm(ep->dst); 2821 if (ep->com.state != ABORTING) { 2822 __state_set(&ep->com, DEAD); 2823 /* we don't release if we want to retry with mpa_v1 */ 2824 if (!ep->retry_with_mpa_v1) 2825 release = 1; 2826 } 2827 mutex_unlock(&ep->com.mutex); 2828 2829 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2830 if (WARN_ON(!rpl_skb)) { 2831 release = 1; 2832 goto out; 2833 } 2834 2835 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2836 2837 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2838 out: 2839 if (release) 2840 release_ep_resources(ep); 2841 else if (ep->retry_with_mpa_v1) { 2842 if (ep->com.remote_addr.ss_family == AF_INET6) { 2843 struct sockaddr_in6 *sin6 = 2844 (struct sockaddr_in6 *) 2845 &ep->com.local_addr; 2846 cxgb4_clip_release( 2847 ep->com.dev->rdev.lldi.ports[0], 2848 (const u32 *)&sin6->sin6_addr.s6_addr, 2849 1); 2850 } 2851 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2852 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid, 2853 ep->com.local_addr.ss_family); 2854 dst_release(ep->dst); 2855 cxgb4_l2t_release(ep->l2t); 2856 c4iw_reconnect(ep); 2857 } 2858 2859 deref_ep: 2860 c4iw_put_ep(&ep->com); 2861 /* Dereferencing ep, referenced in peer_abort_intr() */ 2862 c4iw_put_ep(&ep->com); 2863 return 0; 2864 } 2865 2866 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2867 { 2868 struct c4iw_ep *ep; 2869 struct c4iw_qp_attributes attrs; 2870 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2871 int release = 0; 2872 unsigned int tid = GET_TID(rpl); 2873 2874 ep = get_ep_from_tid(dev, tid); 2875 if (!ep) 2876 return 0; 2877 2878 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2879 2880 /* The cm_id may be null if we failed to connect */ 2881 mutex_lock(&ep->com.mutex); 2882 set_bit(CLOSE_CON_RPL, &ep->com.history); 2883 switch (ep->com.state) { 2884 case CLOSING: 2885 __state_set(&ep->com, MORIBUND); 2886 break; 2887 case MORIBUND: 2888 (void)stop_ep_timer(ep); 2889 if ((ep->com.cm_id) && (ep->com.qp)) { 2890 attrs.next_state = C4IW_QP_STATE_IDLE; 2891 c4iw_modify_qp(ep->com.qp->rhp, 2892 ep->com.qp, 2893 C4IW_QP_ATTR_NEXT_STATE, 2894 &attrs, 1); 2895 } 2896 close_complete_upcall(ep, 0); 2897 __state_set(&ep->com, DEAD); 2898 release = 1; 2899 break; 2900 case ABORTING: 2901 case DEAD: 2902 break; 2903 default: 2904 BUG_ON(1); 2905 break; 2906 } 2907 mutex_unlock(&ep->com.mutex); 2908 if (release) 2909 release_ep_resources(ep); 2910 c4iw_put_ep(&ep->com); 2911 return 0; 2912 } 2913 2914 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 2915 { 2916 struct cpl_rdma_terminate *rpl = cplhdr(skb); 2917 unsigned int tid = GET_TID(rpl); 2918 struct c4iw_ep *ep; 2919 struct c4iw_qp_attributes attrs; 2920 2921 ep = get_ep_from_tid(dev, tid); 2922 BUG_ON(!ep); 2923 2924 if (ep && ep->com.qp) { 2925 pr_warn("TERM received tid %u qpid %u\n", 2926 tid, ep->com.qp->wq.sq.qid); 2927 attrs.next_state = C4IW_QP_STATE_TERMINATE; 2928 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2929 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2930 } else 2931 pr_warn("TERM received tid %u no ep/qp\n", tid); 2932 c4iw_put_ep(&ep->com); 2933 2934 return 0; 2935 } 2936 2937 /* 2938 * Upcall from the adapter indicating data has been transmitted. 2939 * For us its just the single MPA request or reply. We can now free 2940 * the skb holding the mpa message. 2941 */ 2942 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 2943 { 2944 struct c4iw_ep *ep; 2945 struct cpl_fw4_ack *hdr = cplhdr(skb); 2946 u8 credits = hdr->credits; 2947 unsigned int tid = GET_TID(hdr); 2948 2949 2950 ep = get_ep_from_tid(dev, tid); 2951 if (!ep) 2952 return 0; 2953 pr_debug("%s ep %p tid %u credits %u\n", 2954 __func__, ep, ep->hwtid, credits); 2955 if (credits == 0) { 2956 pr_debug("%s 0 credit ack ep %p tid %u state %u\n", 2957 __func__, ep, ep->hwtid, state_read(&ep->com)); 2958 goto out; 2959 } 2960 2961 dst_confirm(ep->dst); 2962 if (ep->mpa_skb) { 2963 pr_debug("%s last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n", 2964 __func__, ep, ep->hwtid, 2965 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); 2966 mutex_lock(&ep->com.mutex); 2967 kfree_skb(ep->mpa_skb); 2968 ep->mpa_skb = NULL; 2969 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 2970 stop_ep_timer(ep); 2971 mutex_unlock(&ep->com.mutex); 2972 } 2973 out: 2974 c4iw_put_ep(&ep->com); 2975 return 0; 2976 } 2977 2978 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 2979 { 2980 int abort; 2981 struct c4iw_ep *ep = to_ep(cm_id); 2982 2983 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2984 2985 mutex_lock(&ep->com.mutex); 2986 if (ep->com.state != MPA_REQ_RCVD) { 2987 mutex_unlock(&ep->com.mutex); 2988 c4iw_put_ep(&ep->com); 2989 return -ECONNRESET; 2990 } 2991 set_bit(ULP_REJECT, &ep->com.history); 2992 if (mpa_rev == 0) 2993 abort = 1; 2994 else 2995 abort = send_mpa_reject(ep, pdata, pdata_len); 2996 mutex_unlock(&ep->com.mutex); 2997 2998 stop_ep_timer(ep); 2999 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 3000 c4iw_put_ep(&ep->com); 3001 return 0; 3002 } 3003 3004 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3005 { 3006 int err; 3007 struct c4iw_qp_attributes attrs; 3008 enum c4iw_qp_attr_mask mask; 3009 struct c4iw_ep *ep = to_ep(cm_id); 3010 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 3011 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 3012 int abort = 0; 3013 3014 pr_debug("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 3015 3016 mutex_lock(&ep->com.mutex); 3017 if (ep->com.state != MPA_REQ_RCVD) { 3018 err = -ECONNRESET; 3019 goto err_out; 3020 } 3021 3022 BUG_ON(!qp); 3023 3024 set_bit(ULP_ACCEPT, &ep->com.history); 3025 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3026 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3027 err = -EINVAL; 3028 goto err_abort; 3029 } 3030 3031 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3032 if (conn_param->ord > ep->ird) { 3033 if (RELAXED_IRD_NEGOTIATION) { 3034 conn_param->ord = ep->ird; 3035 } else { 3036 ep->ird = conn_param->ird; 3037 ep->ord = conn_param->ord; 3038 send_mpa_reject(ep, conn_param->private_data, 3039 conn_param->private_data_len); 3040 err = -ENOMEM; 3041 goto err_abort; 3042 } 3043 } 3044 if (conn_param->ird < ep->ord) { 3045 if (RELAXED_IRD_NEGOTIATION && 3046 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3047 conn_param->ird = ep->ord; 3048 } else { 3049 err = -ENOMEM; 3050 goto err_abort; 3051 } 3052 } 3053 } 3054 ep->ird = conn_param->ird; 3055 ep->ord = conn_param->ord; 3056 3057 if (ep->mpa_attr.version == 1) { 3058 if (peer2peer && ep->ird == 0) 3059 ep->ird = 1; 3060 } else { 3061 if (peer2peer && 3062 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3063 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3064 ep->ird = 1; 3065 } 3066 3067 pr_debug("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); 3068 3069 ep->com.cm_id = cm_id; 3070 ref_cm_id(&ep->com); 3071 ep->com.qp = qp; 3072 ref_qp(ep); 3073 3074 /* bind QP to EP and move to RTS */ 3075 attrs.mpa_attr = ep->mpa_attr; 3076 attrs.max_ird = ep->ird; 3077 attrs.max_ord = ep->ord; 3078 attrs.llp_stream_handle = ep; 3079 attrs.next_state = C4IW_QP_STATE_RTS; 3080 3081 /* bind QP and TID with INIT_WR */ 3082 mask = C4IW_QP_ATTR_NEXT_STATE | 3083 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3084 C4IW_QP_ATTR_MPA_ATTR | 3085 C4IW_QP_ATTR_MAX_IRD | 3086 C4IW_QP_ATTR_MAX_ORD; 3087 3088 err = c4iw_modify_qp(ep->com.qp->rhp, 3089 ep->com.qp, mask, &attrs, 1); 3090 if (err) 3091 goto err_deref_cm_id; 3092 3093 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3094 err = send_mpa_reply(ep, conn_param->private_data, 3095 conn_param->private_data_len); 3096 if (err) 3097 goto err_deref_cm_id; 3098 3099 __state_set(&ep->com, FPDU_MODE); 3100 established_upcall(ep); 3101 mutex_unlock(&ep->com.mutex); 3102 c4iw_put_ep(&ep->com); 3103 return 0; 3104 err_deref_cm_id: 3105 deref_cm_id(&ep->com); 3106 err_abort: 3107 abort = 1; 3108 err_out: 3109 mutex_unlock(&ep->com.mutex); 3110 if (abort) 3111 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3112 c4iw_put_ep(&ep->com); 3113 return err; 3114 } 3115 3116 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3117 { 3118 struct in_device *ind; 3119 int found = 0; 3120 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3121 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3122 3123 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3124 if (!ind) 3125 return -EADDRNOTAVAIL; 3126 for_primary_ifa(ind) { 3127 laddr->sin_addr.s_addr = ifa->ifa_address; 3128 raddr->sin_addr.s_addr = ifa->ifa_address; 3129 found = 1; 3130 break; 3131 } 3132 endfor_ifa(ind); 3133 in_dev_put(ind); 3134 return found ? 0 : -EADDRNOTAVAIL; 3135 } 3136 3137 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3138 unsigned char banned_flags) 3139 { 3140 struct inet6_dev *idev; 3141 int err = -EADDRNOTAVAIL; 3142 3143 rcu_read_lock(); 3144 idev = __in6_dev_get(dev); 3145 if (idev != NULL) { 3146 struct inet6_ifaddr *ifp; 3147 3148 read_lock_bh(&idev->lock); 3149 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3150 if (ifp->scope == IFA_LINK && 3151 !(ifp->flags & banned_flags)) { 3152 memcpy(addr, &ifp->addr, 16); 3153 err = 0; 3154 break; 3155 } 3156 } 3157 read_unlock_bh(&idev->lock); 3158 } 3159 rcu_read_unlock(); 3160 return err; 3161 } 3162 3163 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3164 { 3165 struct in6_addr uninitialized_var(addr); 3166 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3167 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3168 3169 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3170 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3171 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3172 return 0; 3173 } 3174 return -EADDRNOTAVAIL; 3175 } 3176 3177 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3178 { 3179 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3180 struct c4iw_ep *ep; 3181 int err = 0; 3182 struct sockaddr_in *laddr; 3183 struct sockaddr_in *raddr; 3184 struct sockaddr_in6 *laddr6; 3185 struct sockaddr_in6 *raddr6; 3186 __u8 *ra; 3187 int iptype; 3188 3189 if ((conn_param->ord > cur_max_read_depth(dev)) || 3190 (conn_param->ird > cur_max_read_depth(dev))) { 3191 err = -EINVAL; 3192 goto out; 3193 } 3194 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3195 if (!ep) { 3196 pr_err("%s - cannot alloc ep\n", __func__); 3197 err = -ENOMEM; 3198 goto out; 3199 } 3200 3201 skb_queue_head_init(&ep->com.ep_skb_list); 3202 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3203 err = -ENOMEM; 3204 goto fail1; 3205 } 3206 3207 init_timer(&ep->timer); 3208 ep->plen = conn_param->private_data_len; 3209 if (ep->plen) 3210 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3211 conn_param->private_data, ep->plen); 3212 ep->ird = conn_param->ird; 3213 ep->ord = conn_param->ord; 3214 3215 if (peer2peer && ep->ord == 0) 3216 ep->ord = 1; 3217 3218 ep->com.cm_id = cm_id; 3219 ref_cm_id(&ep->com); 3220 ep->com.dev = dev; 3221 ep->com.qp = get_qhp(dev, conn_param->qpn); 3222 if (!ep->com.qp) { 3223 pr_debug("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3224 err = -EINVAL; 3225 goto fail2; 3226 } 3227 ref_qp(ep); 3228 pr_debug("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, 3229 ep->com.qp, cm_id); 3230 3231 /* 3232 * Allocate an active TID to initiate a TCP connection. 3233 */ 3234 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3235 if (ep->atid == -1) { 3236 pr_err("%s - cannot alloc atid\n", __func__); 3237 err = -ENOMEM; 3238 goto fail2; 3239 } 3240 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3241 3242 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3243 sizeof(ep->com.local_addr)); 3244 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3245 sizeof(ep->com.remote_addr)); 3246 3247 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3248 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3249 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3250 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3251 3252 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3253 iptype = 4; 3254 ra = (__u8 *)&raddr->sin_addr; 3255 3256 /* 3257 * Handle loopback requests to INADDR_ANY. 3258 */ 3259 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3260 err = pick_local_ipaddrs(dev, cm_id); 3261 if (err) 3262 goto fail2; 3263 } 3264 3265 /* find a route */ 3266 pr_debug("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3267 __func__, &laddr->sin_addr, ntohs(laddr->sin_port), 3268 ra, ntohs(raddr->sin_port)); 3269 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3270 laddr->sin_addr.s_addr, 3271 raddr->sin_addr.s_addr, 3272 laddr->sin_port, 3273 raddr->sin_port, cm_id->tos); 3274 } else { 3275 iptype = 6; 3276 ra = (__u8 *)&raddr6->sin6_addr; 3277 3278 /* 3279 * Handle loopback requests to INADDR_ANY. 3280 */ 3281 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3282 err = pick_local_ip6addrs(dev, cm_id); 3283 if (err) 3284 goto fail2; 3285 } 3286 3287 /* find a route */ 3288 pr_debug("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3289 __func__, laddr6->sin6_addr.s6_addr, 3290 ntohs(laddr6->sin6_port), 3291 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3292 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3293 laddr6->sin6_addr.s6_addr, 3294 raddr6->sin6_addr.s6_addr, 3295 laddr6->sin6_port, 3296 raddr6->sin6_port, 0, 3297 raddr6->sin6_scope_id); 3298 } 3299 if (!ep->dst) { 3300 pr_err("%s - cannot find route\n", __func__); 3301 err = -EHOSTUNREACH; 3302 goto fail3; 3303 } 3304 3305 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3306 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3307 if (err) { 3308 pr_err("%s - cannot alloc l2e\n", __func__); 3309 goto fail4; 3310 } 3311 3312 pr_debug("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3313 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3314 ep->l2t->idx); 3315 3316 state_set(&ep->com, CONNECTING); 3317 ep->tos = cm_id->tos; 3318 3319 /* send connect request to rnic */ 3320 err = send_connect(ep); 3321 if (!err) 3322 goto out; 3323 3324 cxgb4_l2t_release(ep->l2t); 3325 fail4: 3326 dst_release(ep->dst); 3327 fail3: 3328 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3329 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3330 fail2: 3331 skb_queue_purge(&ep->com.ep_skb_list); 3332 deref_cm_id(&ep->com); 3333 fail1: 3334 c4iw_put_ep(&ep->com); 3335 out: 3336 return err; 3337 } 3338 3339 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3340 { 3341 int err; 3342 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3343 &ep->com.local_addr; 3344 3345 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3346 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3347 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3348 if (err) 3349 return err; 3350 } 3351 c4iw_init_wr_wait(&ep->com.wr_wait); 3352 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3353 ep->stid, &sin6->sin6_addr, 3354 sin6->sin6_port, 3355 ep->com.dev->rdev.lldi.rxq_ids[0]); 3356 if (!err) 3357 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3358 &ep->com.wr_wait, 3359 0, 0, __func__); 3360 else if (err > 0) 3361 err = net_xmit_errno(err); 3362 if (err) { 3363 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3364 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3365 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3366 err, ep->stid, 3367 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3368 } 3369 return err; 3370 } 3371 3372 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3373 { 3374 int err; 3375 struct sockaddr_in *sin = (struct sockaddr_in *) 3376 &ep->com.local_addr; 3377 3378 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3379 do { 3380 err = cxgb4_create_server_filter( 3381 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3382 sin->sin_addr.s_addr, sin->sin_port, 0, 3383 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3384 if (err == -EBUSY) { 3385 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3386 err = -EIO; 3387 break; 3388 } 3389 set_current_state(TASK_UNINTERRUPTIBLE); 3390 schedule_timeout(usecs_to_jiffies(100)); 3391 } 3392 } while (err == -EBUSY); 3393 } else { 3394 c4iw_init_wr_wait(&ep->com.wr_wait); 3395 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3396 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3397 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3398 if (!err) 3399 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3400 &ep->com.wr_wait, 3401 0, 0, __func__); 3402 else if (err > 0) 3403 err = net_xmit_errno(err); 3404 } 3405 if (err) 3406 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3407 , err, ep->stid, 3408 &sin->sin_addr, ntohs(sin->sin_port)); 3409 return err; 3410 } 3411 3412 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3413 { 3414 int err = 0; 3415 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3416 struct c4iw_listen_ep *ep; 3417 3418 might_sleep(); 3419 3420 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3421 if (!ep) { 3422 pr_err("%s - cannot alloc ep\n", __func__); 3423 err = -ENOMEM; 3424 goto fail1; 3425 } 3426 skb_queue_head_init(&ep->com.ep_skb_list); 3427 pr_debug("%s ep %p\n", __func__, ep); 3428 ep->com.cm_id = cm_id; 3429 ref_cm_id(&ep->com); 3430 ep->com.dev = dev; 3431 ep->backlog = backlog; 3432 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3433 sizeof(ep->com.local_addr)); 3434 3435 /* 3436 * Allocate a server TID. 3437 */ 3438 if (dev->rdev.lldi.enable_fw_ofld_conn && 3439 ep->com.local_addr.ss_family == AF_INET) 3440 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3441 cm_id->m_local_addr.ss_family, ep); 3442 else 3443 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3444 cm_id->m_local_addr.ss_family, ep); 3445 3446 if (ep->stid == -1) { 3447 pr_err("%s - cannot alloc stid\n", __func__); 3448 err = -ENOMEM; 3449 goto fail2; 3450 } 3451 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3452 3453 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3454 sizeof(ep->com.local_addr)); 3455 3456 state_set(&ep->com, LISTEN); 3457 if (ep->com.local_addr.ss_family == AF_INET) 3458 err = create_server4(dev, ep); 3459 else 3460 err = create_server6(dev, ep); 3461 if (!err) { 3462 cm_id->provider_data = ep; 3463 goto out; 3464 } 3465 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3466 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3467 ep->com.local_addr.ss_family); 3468 fail2: 3469 deref_cm_id(&ep->com); 3470 c4iw_put_ep(&ep->com); 3471 fail1: 3472 out: 3473 return err; 3474 } 3475 3476 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3477 { 3478 int err; 3479 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3480 3481 pr_debug("%s ep %p\n", __func__, ep); 3482 3483 might_sleep(); 3484 state_set(&ep->com, DEAD); 3485 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3486 ep->com.local_addr.ss_family == AF_INET) { 3487 err = cxgb4_remove_server_filter( 3488 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3489 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3490 } else { 3491 struct sockaddr_in6 *sin6; 3492 c4iw_init_wr_wait(&ep->com.wr_wait); 3493 err = cxgb4_remove_server( 3494 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3495 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3496 if (err) 3497 goto done; 3498 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 3499 0, 0, __func__); 3500 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3501 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3502 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3503 } 3504 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3505 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3506 ep->com.local_addr.ss_family); 3507 done: 3508 deref_cm_id(&ep->com); 3509 c4iw_put_ep(&ep->com); 3510 return err; 3511 } 3512 3513 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3514 { 3515 int ret = 0; 3516 int close = 0; 3517 int fatal = 0; 3518 struct c4iw_rdev *rdev; 3519 3520 mutex_lock(&ep->com.mutex); 3521 3522 pr_debug("%s ep %p state %s, abrupt %d\n", __func__, ep, 3523 states[ep->com.state], abrupt); 3524 3525 /* 3526 * Ref the ep here in case we have fatal errors causing the 3527 * ep to be released and freed. 3528 */ 3529 c4iw_get_ep(&ep->com); 3530 3531 rdev = &ep->com.dev->rdev; 3532 if (c4iw_fatal_error(rdev)) { 3533 fatal = 1; 3534 close_complete_upcall(ep, -EIO); 3535 ep->com.state = DEAD; 3536 } 3537 switch (ep->com.state) { 3538 case MPA_REQ_WAIT: 3539 case MPA_REQ_SENT: 3540 case MPA_REQ_RCVD: 3541 case MPA_REP_SENT: 3542 case FPDU_MODE: 3543 case CONNECTING: 3544 close = 1; 3545 if (abrupt) 3546 ep->com.state = ABORTING; 3547 else { 3548 ep->com.state = CLOSING; 3549 3550 /* 3551 * if we close before we see the fw4_ack() then we fix 3552 * up the timer state since we're reusing it. 3553 */ 3554 if (ep->mpa_skb && 3555 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3556 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3557 stop_ep_timer(ep); 3558 } 3559 start_ep_timer(ep); 3560 } 3561 set_bit(CLOSE_SENT, &ep->com.flags); 3562 break; 3563 case CLOSING: 3564 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3565 close = 1; 3566 if (abrupt) { 3567 (void)stop_ep_timer(ep); 3568 ep->com.state = ABORTING; 3569 } else 3570 ep->com.state = MORIBUND; 3571 } 3572 break; 3573 case MORIBUND: 3574 case ABORTING: 3575 case DEAD: 3576 pr_debug("%s ignoring disconnect ep %p state %u\n", 3577 __func__, ep, ep->com.state); 3578 break; 3579 default: 3580 BUG(); 3581 break; 3582 } 3583 3584 if (close) { 3585 if (abrupt) { 3586 set_bit(EP_DISC_ABORT, &ep->com.history); 3587 close_complete_upcall(ep, -ECONNRESET); 3588 ret = send_abort(ep); 3589 } else { 3590 set_bit(EP_DISC_CLOSE, &ep->com.history); 3591 ret = send_halfclose(ep); 3592 } 3593 if (ret) { 3594 set_bit(EP_DISC_FAIL, &ep->com.history); 3595 if (!abrupt) { 3596 stop_ep_timer(ep); 3597 close_complete_upcall(ep, -EIO); 3598 } 3599 if (ep->com.qp) { 3600 struct c4iw_qp_attributes attrs; 3601 3602 attrs.next_state = C4IW_QP_STATE_ERROR; 3603 ret = c4iw_modify_qp(ep->com.qp->rhp, 3604 ep->com.qp, 3605 C4IW_QP_ATTR_NEXT_STATE, 3606 &attrs, 1); 3607 if (ret) 3608 pr_err("%s - qp <- error failed!\n", 3609 __func__); 3610 } 3611 fatal = 1; 3612 } 3613 } 3614 mutex_unlock(&ep->com.mutex); 3615 c4iw_put_ep(&ep->com); 3616 if (fatal) 3617 release_ep_resources(ep); 3618 return ret; 3619 } 3620 3621 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3622 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3623 { 3624 struct c4iw_ep *ep; 3625 int atid = be32_to_cpu(req->tid); 3626 3627 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3628 (__force u32) req->tid); 3629 if (!ep) 3630 return; 3631 3632 switch (req->retval) { 3633 case FW_ENOMEM: 3634 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3635 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3636 send_fw_act_open_req(ep, atid); 3637 return; 3638 } 3639 case FW_EADDRINUSE: 3640 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3641 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3642 send_fw_act_open_req(ep, atid); 3643 return; 3644 } 3645 break; 3646 default: 3647 pr_info("%s unexpected ofld conn wr retval %d\n", 3648 __func__, req->retval); 3649 break; 3650 } 3651 pr_err("active ofld_connect_wr failure %d atid %d\n", 3652 req->retval, atid); 3653 mutex_lock(&dev->rdev.stats.lock); 3654 dev->rdev.stats.act_ofld_conn_fails++; 3655 mutex_unlock(&dev->rdev.stats.lock); 3656 connect_reply_upcall(ep, status2errno(req->retval)); 3657 state_set(&ep->com, DEAD); 3658 if (ep->com.remote_addr.ss_family == AF_INET6) { 3659 struct sockaddr_in6 *sin6 = 3660 (struct sockaddr_in6 *)&ep->com.local_addr; 3661 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3662 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3663 } 3664 remove_handle(dev, &dev->atid_idr, atid); 3665 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3666 dst_release(ep->dst); 3667 cxgb4_l2t_release(ep->l2t); 3668 c4iw_put_ep(&ep->com); 3669 } 3670 3671 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3672 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3673 { 3674 struct sk_buff *rpl_skb; 3675 struct cpl_pass_accept_req *cpl; 3676 int ret; 3677 3678 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3679 BUG_ON(!rpl_skb); 3680 if (req->retval) { 3681 pr_debug("%s passive open failure %d\n", __func__, req->retval); 3682 mutex_lock(&dev->rdev.stats.lock); 3683 dev->rdev.stats.pas_ofld_conn_fails++; 3684 mutex_unlock(&dev->rdev.stats.lock); 3685 kfree_skb(rpl_skb); 3686 } else { 3687 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3688 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3689 (__force u32) htonl( 3690 (__force u32) req->tid))); 3691 ret = pass_accept_req(dev, rpl_skb); 3692 if (!ret) 3693 kfree_skb(rpl_skb); 3694 } 3695 return; 3696 } 3697 3698 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3699 { 3700 struct cpl_fw6_msg *rpl = cplhdr(skb); 3701 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3702 3703 switch (rpl->type) { 3704 case FW6_TYPE_CQE: 3705 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3706 break; 3707 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3708 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3709 switch (req->t_state) { 3710 case TCP_SYN_SENT: 3711 active_ofld_conn_reply(dev, skb, req); 3712 break; 3713 case TCP_SYN_RECV: 3714 passive_ofld_conn_reply(dev, skb, req); 3715 break; 3716 default: 3717 pr_err("%s unexpected ofld conn wr state %d\n", 3718 __func__, req->t_state); 3719 break; 3720 } 3721 break; 3722 } 3723 return 0; 3724 } 3725 3726 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3727 { 3728 __be32 l2info; 3729 __be16 hdr_len, vlantag, len; 3730 u16 eth_hdr_len; 3731 int tcp_hdr_len, ip_hdr_len; 3732 u8 intf; 3733 struct cpl_rx_pkt *cpl = cplhdr(skb); 3734 struct cpl_pass_accept_req *req; 3735 struct tcp_options_received tmp_opt; 3736 struct c4iw_dev *dev; 3737 enum chip_type type; 3738 3739 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3740 /* Store values from cpl_rx_pkt in temporary location. */ 3741 vlantag = cpl->vlan; 3742 len = cpl->len; 3743 l2info = cpl->l2info; 3744 hdr_len = cpl->hdr_len; 3745 intf = cpl->iff; 3746 3747 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3748 3749 /* 3750 * We need to parse the TCP options from SYN packet. 3751 * to generate cpl_pass_accept_req. 3752 */ 3753 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3754 tcp_clear_options(&tmp_opt); 3755 tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL); 3756 3757 req = __skb_push(skb, sizeof(*req)); 3758 memset(req, 0, sizeof(*req)); 3759 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3760 SYN_MAC_IDX_V(RX_MACIDX_G( 3761 be32_to_cpu(l2info))) | 3762 SYN_XACT_MATCH_F); 3763 type = dev->rdev.lldi.adapter_type; 3764 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3765 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3766 req->hdr_len = 3767 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3768 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3769 eth_hdr_len = is_t4(type) ? 3770 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3771 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3772 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3773 IP_HDR_LEN_V(ip_hdr_len) | 3774 ETH_HDR_LEN_V(eth_hdr_len)); 3775 } else { /* T6 and later */ 3776 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3777 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3778 T6_IP_HDR_LEN_V(ip_hdr_len) | 3779 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3780 } 3781 req->vlan = vlantag; 3782 req->len = len; 3783 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3784 PASS_OPEN_TOS_V(tos)); 3785 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3786 if (tmp_opt.wscale_ok) 3787 req->tcpopt.wsf = tmp_opt.snd_wscale; 3788 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3789 if (tmp_opt.sack_ok) 3790 req->tcpopt.sack = 1; 3791 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3792 return; 3793 } 3794 3795 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3796 __be32 laddr, __be16 lport, 3797 __be32 raddr, __be16 rport, 3798 u32 rcv_isn, u32 filter, u16 window, 3799 u32 rss_qid, u8 port_id) 3800 { 3801 struct sk_buff *req_skb; 3802 struct fw_ofld_connection_wr *req; 3803 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3804 int ret; 3805 3806 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3807 if (!req_skb) 3808 return; 3809 req = __skb_put_zero(req_skb, sizeof(*req)); 3810 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3811 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3812 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3813 req->le.filter = (__force __be32) filter; 3814 req->le.lport = lport; 3815 req->le.pport = rport; 3816 req->le.u.ipv4.lip = laddr; 3817 req->le.u.ipv4.pip = raddr; 3818 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3819 req->tcb.rcv_adv = htons(window); 3820 req->tcb.t_state_to_astid = 3821 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3822 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3823 FW_OFLD_CONNECTION_WR_ASTID_V( 3824 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3825 3826 /* 3827 * We store the qid in opt2 which will be used by the firmware 3828 * to send us the wr response. 3829 */ 3830 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3831 3832 /* 3833 * We initialize the MSS index in TCB to 0xF. 3834 * So that when driver sends cpl_pass_accept_rpl 3835 * TCB picks up the correct value. If this was 0 3836 * TP will ignore any value > 0 for MSS index. 3837 */ 3838 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3839 req->cookie = (uintptr_t)skb; 3840 3841 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3842 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3843 if (ret < 0) { 3844 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3845 ret); 3846 kfree_skb(skb); 3847 kfree_skb(req_skb); 3848 } 3849 } 3850 3851 /* 3852 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3853 * messages when a filter is being used instead of server to 3854 * redirect a syn packet. When packets hit filter they are redirected 3855 * to the offload queue and driver tries to establish the connection 3856 * using firmware work request. 3857 */ 3858 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3859 { 3860 int stid; 3861 unsigned int filter; 3862 struct ethhdr *eh = NULL; 3863 struct vlan_ethhdr *vlan_eh = NULL; 3864 struct iphdr *iph; 3865 struct tcphdr *tcph; 3866 struct rss_header *rss = (void *)skb->data; 3867 struct cpl_rx_pkt *cpl = (void *)skb->data; 3868 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3869 struct l2t_entry *e; 3870 struct dst_entry *dst; 3871 struct c4iw_ep *lep = NULL; 3872 u16 window; 3873 struct port_info *pi; 3874 struct net_device *pdev; 3875 u16 rss_qid, eth_hdr_len; 3876 int step; 3877 u32 tx_chan; 3878 struct neighbour *neigh; 3879 3880 /* Drop all non-SYN packets */ 3881 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3882 goto reject; 3883 3884 /* 3885 * Drop all packets which did not hit the filter. 3886 * Unlikely to happen. 3887 */ 3888 if (!(rss->filter_hit && rss->filter_tid)) 3889 goto reject; 3890 3891 /* 3892 * Calculate the server tid from filter hit index from cpl_rx_pkt. 3893 */ 3894 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 3895 3896 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 3897 if (!lep) { 3898 pr_debug("%s connect request on invalid stid %d\n", 3899 __func__, stid); 3900 goto reject; 3901 } 3902 3903 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 3904 case CHELSIO_T4: 3905 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3906 break; 3907 case CHELSIO_T5: 3908 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3909 break; 3910 case CHELSIO_T6: 3911 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3912 break; 3913 default: 3914 pr_err("T%d Chip is not supported\n", 3915 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 3916 goto reject; 3917 } 3918 3919 if (eth_hdr_len == ETH_HLEN) { 3920 eh = (struct ethhdr *)(req + 1); 3921 iph = (struct iphdr *)(eh + 1); 3922 } else { 3923 vlan_eh = (struct vlan_ethhdr *)(req + 1); 3924 iph = (struct iphdr *)(vlan_eh + 1); 3925 skb->vlan_tci = ntohs(cpl->vlan); 3926 } 3927 3928 if (iph->version != 0x4) 3929 goto reject; 3930 3931 tcph = (struct tcphdr *)(iph + 1); 3932 skb_set_network_header(skb, (void *)iph - (void *)rss); 3933 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 3934 skb_get(skb); 3935 3936 pr_debug("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__, 3937 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 3938 ntohs(tcph->source), iph->tos); 3939 3940 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3941 iph->daddr, iph->saddr, tcph->dest, 3942 tcph->source, iph->tos); 3943 if (!dst) { 3944 pr_err("%s - failed to find dst entry!\n", 3945 __func__); 3946 goto reject; 3947 } 3948 neigh = dst_neigh_lookup_skb(dst, skb); 3949 3950 if (!neigh) { 3951 pr_err("%s - failed to allocate neigh!\n", 3952 __func__); 3953 goto free_dst; 3954 } 3955 3956 if (neigh->dev->flags & IFF_LOOPBACK) { 3957 pdev = ip_dev_find(&init_net, iph->daddr); 3958 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3959 pdev, 0); 3960 pi = (struct port_info *)netdev_priv(pdev); 3961 tx_chan = cxgb4_port_chan(pdev); 3962 dev_put(pdev); 3963 } else { 3964 pdev = get_real_dev(neigh->dev); 3965 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3966 pdev, 0); 3967 pi = (struct port_info *)netdev_priv(pdev); 3968 tx_chan = cxgb4_port_chan(pdev); 3969 } 3970 neigh_release(neigh); 3971 if (!e) { 3972 pr_err("%s - failed to allocate l2t entry!\n", 3973 __func__); 3974 goto free_dst; 3975 } 3976 3977 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 3978 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 3979 window = (__force u16) htons((__force u16)tcph->window); 3980 3981 /* Calcuate filter portion for LE region. */ 3982 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 3983 dev->rdev.lldi.ports[0], 3984 e)); 3985 3986 /* 3987 * Synthesize the cpl_pass_accept_req. We have everything except the 3988 * TID. Once firmware sends a reply with TID we update the TID field 3989 * in cpl and pass it through the regular cpl_pass_accept_req path. 3990 */ 3991 build_cpl_pass_accept_req(skb, stid, iph->tos); 3992 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 3993 tcph->source, ntohl(tcph->seq), filter, window, 3994 rss_qid, pi->port_id); 3995 cxgb4_l2t_release(e); 3996 free_dst: 3997 dst_release(dst); 3998 reject: 3999 if (lep) 4000 c4iw_put_ep(&lep->com); 4001 return 0; 4002 } 4003 4004 /* 4005 * These are the real handlers that are called from a 4006 * work queue. 4007 */ 4008 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 4009 [CPL_ACT_ESTABLISH] = act_establish, 4010 [CPL_ACT_OPEN_RPL] = act_open_rpl, 4011 [CPL_RX_DATA] = rx_data, 4012 [CPL_ABORT_RPL_RSS] = abort_rpl, 4013 [CPL_ABORT_RPL] = abort_rpl, 4014 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 4015 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 4016 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 4017 [CPL_PASS_ESTABLISH] = pass_establish, 4018 [CPL_PEER_CLOSE] = peer_close, 4019 [CPL_ABORT_REQ_RSS] = peer_abort, 4020 [CPL_CLOSE_CON_RPL] = close_con_rpl, 4021 [CPL_RDMA_TERMINATE] = terminate, 4022 [CPL_FW4_ACK] = fw4_ack, 4023 [CPL_FW6_MSG] = deferred_fw6_msg, 4024 [CPL_RX_PKT] = rx_pkt, 4025 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4026 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4027 }; 4028 4029 static void process_timeout(struct c4iw_ep *ep) 4030 { 4031 struct c4iw_qp_attributes attrs; 4032 int abort = 1; 4033 4034 mutex_lock(&ep->com.mutex); 4035 pr_debug("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, 4036 ep->com.state); 4037 set_bit(TIMEDOUT, &ep->com.history); 4038 switch (ep->com.state) { 4039 case MPA_REQ_SENT: 4040 connect_reply_upcall(ep, -ETIMEDOUT); 4041 break; 4042 case MPA_REQ_WAIT: 4043 case MPA_REQ_RCVD: 4044 case MPA_REP_SENT: 4045 case FPDU_MODE: 4046 break; 4047 case CLOSING: 4048 case MORIBUND: 4049 if (ep->com.cm_id && ep->com.qp) { 4050 attrs.next_state = C4IW_QP_STATE_ERROR; 4051 c4iw_modify_qp(ep->com.qp->rhp, 4052 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4053 &attrs, 1); 4054 } 4055 close_complete_upcall(ep, -ETIMEDOUT); 4056 break; 4057 case ABORTING: 4058 case DEAD: 4059 4060 /* 4061 * These states are expected if the ep timed out at the same 4062 * time as another thread was calling stop_ep_timer(). 4063 * So we silently do nothing for these states. 4064 */ 4065 abort = 0; 4066 break; 4067 default: 4068 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4069 __func__, ep, ep->hwtid, ep->com.state); 4070 abort = 0; 4071 } 4072 mutex_unlock(&ep->com.mutex); 4073 if (abort) 4074 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4075 c4iw_put_ep(&ep->com); 4076 } 4077 4078 static void process_timedout_eps(void) 4079 { 4080 struct c4iw_ep *ep; 4081 4082 spin_lock_irq(&timeout_lock); 4083 while (!list_empty(&timeout_list)) { 4084 struct list_head *tmp; 4085 4086 tmp = timeout_list.next; 4087 list_del(tmp); 4088 tmp->next = NULL; 4089 tmp->prev = NULL; 4090 spin_unlock_irq(&timeout_lock); 4091 ep = list_entry(tmp, struct c4iw_ep, entry); 4092 process_timeout(ep); 4093 spin_lock_irq(&timeout_lock); 4094 } 4095 spin_unlock_irq(&timeout_lock); 4096 } 4097 4098 static void process_work(struct work_struct *work) 4099 { 4100 struct sk_buff *skb = NULL; 4101 struct c4iw_dev *dev; 4102 struct cpl_act_establish *rpl; 4103 unsigned int opcode; 4104 int ret; 4105 4106 process_timedout_eps(); 4107 while ((skb = skb_dequeue(&rxq))) { 4108 rpl = cplhdr(skb); 4109 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4110 opcode = rpl->ot.opcode; 4111 4112 BUG_ON(!work_handlers[opcode]); 4113 ret = work_handlers[opcode](dev, skb); 4114 if (!ret) 4115 kfree_skb(skb); 4116 process_timedout_eps(); 4117 } 4118 } 4119 4120 static DECLARE_WORK(skb_work, process_work); 4121 4122 static void ep_timeout(unsigned long arg) 4123 { 4124 struct c4iw_ep *ep = (struct c4iw_ep *)arg; 4125 int kickit = 0; 4126 4127 spin_lock(&timeout_lock); 4128 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4129 /* 4130 * Only insert if it is not already on the list. 4131 */ 4132 if (!ep->entry.next) { 4133 list_add_tail(&ep->entry, &timeout_list); 4134 kickit = 1; 4135 } 4136 } 4137 spin_unlock(&timeout_lock); 4138 if (kickit) 4139 queue_work(workq, &skb_work); 4140 } 4141 4142 /* 4143 * All the CM events are handled on a work queue to have a safe context. 4144 */ 4145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4146 { 4147 4148 /* 4149 * Save dev in the skb->cb area. 4150 */ 4151 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4152 4153 /* 4154 * Queue the skb and schedule the worker thread. 4155 */ 4156 skb_queue_tail(&rxq, skb); 4157 queue_work(workq, &skb_work); 4158 return 0; 4159 } 4160 4161 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4162 { 4163 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4164 4165 if (rpl->status != CPL_ERR_NONE) { 4166 pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n", 4167 rpl->status, GET_TID(rpl)); 4168 } 4169 kfree_skb(skb); 4170 return 0; 4171 } 4172 4173 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4174 { 4175 struct cpl_fw6_msg *rpl = cplhdr(skb); 4176 struct c4iw_wr_wait *wr_waitp; 4177 int ret; 4178 4179 pr_debug("%s type %u\n", __func__, rpl->type); 4180 4181 switch (rpl->type) { 4182 case FW6_TYPE_WR_RPL: 4183 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4184 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4185 pr_debug("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret); 4186 if (wr_waitp) 4187 c4iw_wake_up(wr_waitp, ret ? -ret : 0); 4188 kfree_skb(skb); 4189 break; 4190 case FW6_TYPE_CQE: 4191 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4192 sched(dev, skb); 4193 break; 4194 default: 4195 pr_err("%s unexpected fw6 msg type %u\n", 4196 __func__, rpl->type); 4197 kfree_skb(skb); 4198 break; 4199 } 4200 return 0; 4201 } 4202 4203 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4204 { 4205 struct cpl_abort_req_rss *req = cplhdr(skb); 4206 struct c4iw_ep *ep; 4207 unsigned int tid = GET_TID(req); 4208 4209 ep = get_ep_from_tid(dev, tid); 4210 /* This EP will be dereferenced in peer_abort() */ 4211 if (!ep) { 4212 pr_warn("Abort on non-existent endpoint, tid %d\n", tid); 4213 kfree_skb(skb); 4214 return 0; 4215 } 4216 if (cxgb_is_neg_adv(req->status)) { 4217 pr_debug("%s Negative advice on abort- tid %u status %d (%s)\n", 4218 __func__, ep->hwtid, req->status, 4219 neg_adv_str(req->status)); 4220 goto out; 4221 } 4222 pr_debug("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 4223 ep->com.state); 4224 4225 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 4226 out: 4227 sched(dev, skb); 4228 return 0; 4229 } 4230 4231 /* 4232 * Most upcalls from the T4 Core go to sched() to 4233 * schedule the processing on a work queue. 4234 */ 4235 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4236 [CPL_ACT_ESTABLISH] = sched, 4237 [CPL_ACT_OPEN_RPL] = sched, 4238 [CPL_RX_DATA] = sched, 4239 [CPL_ABORT_RPL_RSS] = sched, 4240 [CPL_ABORT_RPL] = sched, 4241 [CPL_PASS_OPEN_RPL] = sched, 4242 [CPL_CLOSE_LISTSRV_RPL] = sched, 4243 [CPL_PASS_ACCEPT_REQ] = sched, 4244 [CPL_PASS_ESTABLISH] = sched, 4245 [CPL_PEER_CLOSE] = sched, 4246 [CPL_CLOSE_CON_RPL] = sched, 4247 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4248 [CPL_RDMA_TERMINATE] = sched, 4249 [CPL_FW4_ACK] = sched, 4250 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4251 [CPL_FW6_MSG] = fw6_msg, 4252 [CPL_RX_PKT] = sched 4253 }; 4254 4255 int __init c4iw_cm_init(void) 4256 { 4257 spin_lock_init(&timeout_lock); 4258 skb_queue_head_init(&rxq); 4259 4260 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4261 if (!workq) 4262 return -ENOMEM; 4263 4264 return 0; 4265 } 4266 4267 void c4iw_cm_term(void) 4268 { 4269 WARN_ON(!list_empty(&timeout_list)); 4270 flush_workqueue(workq); 4271 destroy_workqueue(workq); 4272 } 4273