1 /* 2 * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved. 3 * 4 * This software is available to you under a choice of one of two 5 * licenses. You may choose to be licensed under the terms of the GNU 6 * General Public License (GPL) Version 2, available from the file 7 * COPYING in the main directory of this source tree, or the 8 * OpenIB.org BSD license below: 9 * 10 * Redistribution and use in source and binary forms, with or 11 * without modification, are permitted provided that the following 12 * conditions are met: 13 * 14 * - Redistributions of source code must retain the above 15 * copyright notice, this list of conditions and the following 16 * disclaimer. 17 * 18 * - Redistributions in binary form must reproduce the above 19 * copyright notice, this list of conditions and the following 20 * disclaimer in the documentation and/or other materials 21 * provided with the distribution. 22 * 23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 30 * SOFTWARE. 31 */ 32 #include <linux/module.h> 33 #include <linux/list.h> 34 #include <linux/workqueue.h> 35 #include <linux/skbuff.h> 36 #include <linux/timer.h> 37 #include <linux/notifier.h> 38 #include <linux/inetdevice.h> 39 #include <linux/ip.h> 40 #include <linux/tcp.h> 41 #include <linux/if_vlan.h> 42 43 #include <net/neighbour.h> 44 #include <net/netevent.h> 45 #include <net/route.h> 46 #include <net/tcp.h> 47 #include <net/ip6_route.h> 48 #include <net/addrconf.h> 49 50 #include <rdma/ib_addr.h> 51 52 #include <libcxgb_cm.h> 53 #include "iw_cxgb4.h" 54 #include "clip_tbl.h" 55 56 static char *states[] = { 57 "idle", 58 "listen", 59 "connecting", 60 "mpa_wait_req", 61 "mpa_req_sent", 62 "mpa_req_rcvd", 63 "mpa_rep_sent", 64 "fpdu_mode", 65 "aborting", 66 "closing", 67 "moribund", 68 "dead", 69 NULL, 70 }; 71 72 static int nocong; 73 module_param(nocong, int, 0644); 74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)"); 75 76 static int enable_ecn; 77 module_param(enable_ecn, int, 0644); 78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)"); 79 80 static int dack_mode = 1; 81 module_param(dack_mode, int, 0644); 82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)"); 83 84 uint c4iw_max_read_depth = 32; 85 module_param(c4iw_max_read_depth, int, 0644); 86 MODULE_PARM_DESC(c4iw_max_read_depth, 87 "Per-connection max ORD/IRD (default=32)"); 88 89 static int enable_tcp_timestamps; 90 module_param(enable_tcp_timestamps, int, 0644); 91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)"); 92 93 static int enable_tcp_sack; 94 module_param(enable_tcp_sack, int, 0644); 95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)"); 96 97 static int enable_tcp_window_scaling = 1; 98 module_param(enable_tcp_window_scaling, int, 0644); 99 MODULE_PARM_DESC(enable_tcp_window_scaling, 100 "Enable tcp window scaling (default=1)"); 101 102 int c4iw_debug; 103 module_param(c4iw_debug, int, 0644); 104 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)"); 105 106 static int peer2peer = 1; 107 module_param(peer2peer, int, 0644); 108 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)"); 109 110 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ; 111 module_param(p2p_type, int, 0644); 112 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: " 113 "1=RDMA_READ 0=RDMA_WRITE (default 1)"); 114 115 static int ep_timeout_secs = 60; 116 module_param(ep_timeout_secs, int, 0644); 117 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout " 118 "in seconds (default=60)"); 119 120 static int mpa_rev = 2; 121 module_param(mpa_rev, int, 0644); 122 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, " 123 "1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft" 124 " compliant (default=2)"); 125 126 static int markers_enabled; 127 module_param(markers_enabled, int, 0644); 128 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)"); 129 130 static int crc_enabled = 1; 131 module_param(crc_enabled, int, 0644); 132 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)"); 133 134 static int rcv_win = 256 * 1024; 135 module_param(rcv_win, int, 0644); 136 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)"); 137 138 static int snd_win = 128 * 1024; 139 module_param(snd_win, int, 0644); 140 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)"); 141 142 static struct workqueue_struct *workq; 143 144 static struct sk_buff_head rxq; 145 146 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp); 147 static void ep_timeout(unsigned long arg); 148 static void connect_reply_upcall(struct c4iw_ep *ep, int status); 149 static int sched(struct c4iw_dev *dev, struct sk_buff *skb); 150 151 static LIST_HEAD(timeout_list); 152 static spinlock_t timeout_lock; 153 154 static void deref_cm_id(struct c4iw_ep_common *epc) 155 { 156 epc->cm_id->rem_ref(epc->cm_id); 157 epc->cm_id = NULL; 158 set_bit(CM_ID_DEREFED, &epc->history); 159 } 160 161 static void ref_cm_id(struct c4iw_ep_common *epc) 162 { 163 set_bit(CM_ID_REFED, &epc->history); 164 epc->cm_id->add_ref(epc->cm_id); 165 } 166 167 static void deref_qp(struct c4iw_ep *ep) 168 { 169 c4iw_qp_rem_ref(&ep->com.qp->ibqp); 170 clear_bit(QP_REFERENCED, &ep->com.flags); 171 set_bit(QP_DEREFED, &ep->com.history); 172 } 173 174 static void ref_qp(struct c4iw_ep *ep) 175 { 176 set_bit(QP_REFERENCED, &ep->com.flags); 177 set_bit(QP_REFED, &ep->com.history); 178 c4iw_qp_add_ref(&ep->com.qp->ibqp); 179 } 180 181 static void start_ep_timer(struct c4iw_ep *ep) 182 { 183 PDBG("%s ep %p\n", __func__, ep); 184 if (timer_pending(&ep->timer)) { 185 pr_err("%s timer already started! ep %p\n", 186 __func__, ep); 187 return; 188 } 189 clear_bit(TIMEOUT, &ep->com.flags); 190 c4iw_get_ep(&ep->com); 191 ep->timer.expires = jiffies + ep_timeout_secs * HZ; 192 ep->timer.data = (unsigned long)ep; 193 ep->timer.function = ep_timeout; 194 add_timer(&ep->timer); 195 } 196 197 static int stop_ep_timer(struct c4iw_ep *ep) 198 { 199 PDBG("%s ep %p stopping\n", __func__, ep); 200 del_timer_sync(&ep->timer); 201 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 202 c4iw_put_ep(&ep->com); 203 return 0; 204 } 205 return 1; 206 } 207 208 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb, 209 struct l2t_entry *l2e) 210 { 211 int error = 0; 212 213 if (c4iw_fatal_error(rdev)) { 214 kfree_skb(skb); 215 PDBG("%s - device in error state - dropping\n", __func__); 216 return -EIO; 217 } 218 error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e); 219 if (error < 0) 220 kfree_skb(skb); 221 else if (error == NET_XMIT_DROP) 222 return -ENOMEM; 223 return error < 0 ? error : 0; 224 } 225 226 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb) 227 { 228 int error = 0; 229 230 if (c4iw_fatal_error(rdev)) { 231 kfree_skb(skb); 232 PDBG("%s - device in error state - dropping\n", __func__); 233 return -EIO; 234 } 235 error = cxgb4_ofld_send(rdev->lldi.ports[0], skb); 236 if (error < 0) 237 kfree_skb(skb); 238 return error < 0 ? error : 0; 239 } 240 241 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb) 242 { 243 u32 len = roundup(sizeof(struct cpl_tid_release), 16); 244 245 skb = get_skb(skb, len, GFP_KERNEL); 246 if (!skb) 247 return; 248 249 cxgb_mk_tid_release(skb, len, hwtid, 0); 250 c4iw_ofld_send(rdev, skb); 251 return; 252 } 253 254 static void set_emss(struct c4iw_ep *ep, u16 opt) 255 { 256 ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] - 257 ((AF_INET == ep->com.remote_addr.ss_family) ? 258 sizeof(struct iphdr) : sizeof(struct ipv6hdr)) - 259 sizeof(struct tcphdr); 260 ep->mss = ep->emss; 261 if (TCPOPT_TSTAMP_G(opt)) 262 ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4); 263 if (ep->emss < 128) 264 ep->emss = 128; 265 if (ep->emss & 7) 266 PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n", 267 TCPOPT_MSS_G(opt), ep->mss, ep->emss); 268 PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt), 269 ep->mss, ep->emss); 270 } 271 272 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc) 273 { 274 enum c4iw_ep_state state; 275 276 mutex_lock(&epc->mutex); 277 state = epc->state; 278 mutex_unlock(&epc->mutex); 279 return state; 280 } 281 282 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 283 { 284 epc->state = new; 285 } 286 287 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new) 288 { 289 mutex_lock(&epc->mutex); 290 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]); 291 __state_set(epc, new); 292 mutex_unlock(&epc->mutex); 293 return; 294 } 295 296 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size) 297 { 298 struct sk_buff *skb; 299 unsigned int i; 300 size_t len; 301 302 len = roundup(sizeof(union cpl_wr_size), 16); 303 for (i = 0; i < size; i++) { 304 skb = alloc_skb(len, GFP_KERNEL); 305 if (!skb) 306 goto fail; 307 skb_queue_tail(ep_skb_list, skb); 308 } 309 return 0; 310 fail: 311 skb_queue_purge(ep_skb_list); 312 return -ENOMEM; 313 } 314 315 static void *alloc_ep(int size, gfp_t gfp) 316 { 317 struct c4iw_ep_common *epc; 318 319 epc = kzalloc(size, gfp); 320 if (epc) { 321 kref_init(&epc->kref); 322 mutex_init(&epc->mutex); 323 c4iw_init_wr_wait(&epc->wr_wait); 324 } 325 PDBG("%s alloc ep %p\n", __func__, epc); 326 return epc; 327 } 328 329 static void remove_ep_tid(struct c4iw_ep *ep) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(&ep->com.dev->lock, flags); 334 _remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0); 335 if (idr_is_empty(&ep->com.dev->hwtid_idr)) 336 wake_up(&ep->com.dev->wait); 337 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 338 } 339 340 static void insert_ep_tid(struct c4iw_ep *ep) 341 { 342 unsigned long flags; 343 344 spin_lock_irqsave(&ep->com.dev->lock, flags); 345 _insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0); 346 spin_unlock_irqrestore(&ep->com.dev->lock, flags); 347 } 348 349 /* 350 * Atomically lookup the ep ptr given the tid and grab a reference on the ep. 351 */ 352 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid) 353 { 354 struct c4iw_ep *ep; 355 unsigned long flags; 356 357 spin_lock_irqsave(&dev->lock, flags); 358 ep = idr_find(&dev->hwtid_idr, tid); 359 if (ep) 360 c4iw_get_ep(&ep->com); 361 spin_unlock_irqrestore(&dev->lock, flags); 362 return ep; 363 } 364 365 /* 366 * Atomically lookup the ep ptr given the stid and grab a reference on the ep. 367 */ 368 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev, 369 unsigned int stid) 370 { 371 struct c4iw_listen_ep *ep; 372 unsigned long flags; 373 374 spin_lock_irqsave(&dev->lock, flags); 375 ep = idr_find(&dev->stid_idr, stid); 376 if (ep) 377 c4iw_get_ep(&ep->com); 378 spin_unlock_irqrestore(&dev->lock, flags); 379 return ep; 380 } 381 382 void _c4iw_free_ep(struct kref *kref) 383 { 384 struct c4iw_ep *ep; 385 386 ep = container_of(kref, struct c4iw_ep, com.kref); 387 PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]); 388 if (test_bit(QP_REFERENCED, &ep->com.flags)) 389 deref_qp(ep); 390 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) { 391 if (ep->com.remote_addr.ss_family == AF_INET6) { 392 struct sockaddr_in6 *sin6 = 393 (struct sockaddr_in6 *) 394 &ep->com.local_addr; 395 396 cxgb4_clip_release( 397 ep->com.dev->rdev.lldi.ports[0], 398 (const u32 *)&sin6->sin6_addr.s6_addr, 399 1); 400 } 401 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 402 dst_release(ep->dst); 403 cxgb4_l2t_release(ep->l2t); 404 if (ep->mpa_skb) 405 kfree_skb(ep->mpa_skb); 406 } 407 if (!skb_queue_empty(&ep->com.ep_skb_list)) 408 skb_queue_purge(&ep->com.ep_skb_list); 409 kfree(ep); 410 } 411 412 static void release_ep_resources(struct c4iw_ep *ep) 413 { 414 set_bit(RELEASE_RESOURCES, &ep->com.flags); 415 416 /* 417 * If we have a hwtid, then remove it from the idr table 418 * so lookups will no longer find this endpoint. Otherwise 419 * we have a race where one thread finds the ep ptr just 420 * before the other thread is freeing the ep memory. 421 */ 422 if (ep->hwtid != -1) 423 remove_ep_tid(ep); 424 c4iw_put_ep(&ep->com); 425 } 426 427 static int status2errno(int status) 428 { 429 switch (status) { 430 case CPL_ERR_NONE: 431 return 0; 432 case CPL_ERR_CONN_RESET: 433 return -ECONNRESET; 434 case CPL_ERR_ARP_MISS: 435 return -EHOSTUNREACH; 436 case CPL_ERR_CONN_TIMEDOUT: 437 return -ETIMEDOUT; 438 case CPL_ERR_TCAM_FULL: 439 return -ENOMEM; 440 case CPL_ERR_CONN_EXIST: 441 return -EADDRINUSE; 442 default: 443 return -EIO; 444 } 445 } 446 447 /* 448 * Try and reuse skbs already allocated... 449 */ 450 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp) 451 { 452 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) { 453 skb_trim(skb, 0); 454 skb_get(skb); 455 skb_reset_transport_header(skb); 456 } else { 457 skb = alloc_skb(len, gfp); 458 } 459 t4_set_arp_err_handler(skb, NULL, NULL); 460 return skb; 461 } 462 463 static struct net_device *get_real_dev(struct net_device *egress_dev) 464 { 465 return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev; 466 } 467 468 static void arp_failure_discard(void *handle, struct sk_buff *skb) 469 { 470 pr_err(MOD "ARP failure\n"); 471 kfree_skb(skb); 472 } 473 474 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb) 475 { 476 pr_err("ARP failure during MPA Negotiation - Closing Connection\n"); 477 } 478 479 enum { 480 NUM_FAKE_CPLS = 2, 481 FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0, 482 FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1, 483 }; 484 485 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 486 { 487 struct c4iw_ep *ep; 488 489 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 490 release_ep_resources(ep); 491 return 0; 492 } 493 494 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb) 495 { 496 struct c4iw_ep *ep; 497 498 ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))); 499 c4iw_put_ep(&ep->parent_ep->com); 500 release_ep_resources(ep); 501 return 0; 502 } 503 504 /* 505 * Fake up a special CPL opcode and call sched() so process_work() will call 506 * _put_ep_safe() in a safe context to free the ep resources. This is needed 507 * because ARP error handlers are called in an ATOMIC context, and 508 * _c4iw_free_ep() needs to block. 509 */ 510 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb, 511 int cpl) 512 { 513 struct cpl_act_establish *rpl = cplhdr(skb); 514 515 /* Set our special ARP_FAILURE opcode */ 516 rpl->ot.opcode = cpl; 517 518 /* 519 * Save ep in the skb->cb area, after where sched() will save the dev 520 * ptr. 521 */ 522 *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep; 523 sched(ep->com.dev, skb); 524 } 525 526 /* Handle an ARP failure for an accept */ 527 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb) 528 { 529 struct c4iw_ep *ep = handle; 530 531 pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n", 532 ep->hwtid); 533 534 __state_set(&ep->com, DEAD); 535 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE); 536 } 537 538 /* 539 * Handle an ARP failure for an active open. 540 */ 541 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb) 542 { 543 struct c4iw_ep *ep = handle; 544 545 printk(KERN_ERR MOD "ARP failure during connect\n"); 546 connect_reply_upcall(ep, -EHOSTUNREACH); 547 __state_set(&ep->com, DEAD); 548 if (ep->com.remote_addr.ss_family == AF_INET6) { 549 struct sockaddr_in6 *sin6 = 550 (struct sockaddr_in6 *)&ep->com.local_addr; 551 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 552 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 553 } 554 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 555 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 556 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 557 } 558 559 /* 560 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant 561 * and send it along. 562 */ 563 static void abort_arp_failure(void *handle, struct sk_buff *skb) 564 { 565 int ret; 566 struct c4iw_ep *ep = handle; 567 struct c4iw_rdev *rdev = &ep->com.dev->rdev; 568 struct cpl_abort_req *req = cplhdr(skb); 569 570 PDBG("%s rdev %p\n", __func__, rdev); 571 req->cmd = CPL_ABORT_NO_RST; 572 ret = c4iw_ofld_send(rdev, skb); 573 if (ret) { 574 __state_set(&ep->com, DEAD); 575 queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE); 576 } 577 } 578 579 static int send_flowc(struct c4iw_ep *ep) 580 { 581 struct fw_flowc_wr *flowc; 582 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 583 int i; 584 u16 vlan = ep->l2t->vlan; 585 int nparams; 586 587 if (WARN_ON(!skb)) 588 return -ENOMEM; 589 590 if (vlan == CPL_L2T_VLAN_NONE) 591 nparams = 8; 592 else 593 nparams = 9; 594 595 flowc = (struct fw_flowc_wr *)__skb_put(skb, FLOWC_LEN); 596 597 flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) | 598 FW_FLOWC_WR_NPARAMS_V(nparams)); 599 flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(FLOWC_LEN, 600 16)) | FW_WR_FLOWID_V(ep->hwtid)); 601 602 flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN; 603 flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V 604 (ep->com.dev->rdev.lldi.pf)); 605 flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH; 606 flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan); 607 flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT; 608 flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan); 609 flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID; 610 flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid); 611 flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT; 612 flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq); 613 flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT; 614 flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq); 615 flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF; 616 flowc->mnemval[6].val = cpu_to_be32(ep->snd_win); 617 flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS; 618 flowc->mnemval[7].val = cpu_to_be32(ep->emss); 619 if (nparams == 9) { 620 u16 pri; 621 622 pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT; 623 flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS; 624 flowc->mnemval[8].val = cpu_to_be32(pri); 625 } else { 626 /* Pad WR to 16 byte boundary */ 627 flowc->mnemval[8].mnemonic = 0; 628 flowc->mnemval[8].val = 0; 629 } 630 for (i = 0; i < 9; i++) { 631 flowc->mnemval[i].r4[0] = 0; 632 flowc->mnemval[i].r4[1] = 0; 633 flowc->mnemval[i].r4[2] = 0; 634 } 635 636 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 637 return c4iw_ofld_send(&ep->com.dev->rdev, skb); 638 } 639 640 static int send_halfclose(struct c4iw_ep *ep) 641 { 642 struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list); 643 u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16); 644 645 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 646 if (WARN_ON(!skb)) 647 return -ENOMEM; 648 649 cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx, 650 NULL, arp_failure_discard); 651 652 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 653 } 654 655 static int send_abort(struct c4iw_ep *ep) 656 { 657 u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16); 658 struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list); 659 660 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 661 if (WARN_ON(!req_skb)) 662 return -ENOMEM; 663 664 cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx, 665 ep, abort_arp_failure); 666 667 return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t); 668 } 669 670 static int send_connect(struct c4iw_ep *ep) 671 { 672 struct cpl_act_open_req *req = NULL; 673 struct cpl_t5_act_open_req *t5req = NULL; 674 struct cpl_t6_act_open_req *t6req = NULL; 675 struct cpl_act_open_req6 *req6 = NULL; 676 struct cpl_t5_act_open_req6 *t5req6 = NULL; 677 struct cpl_t6_act_open_req6 *t6req6 = NULL; 678 struct sk_buff *skb; 679 u64 opt0; 680 u32 opt2; 681 unsigned int mtu_idx; 682 u32 wscale; 683 int win, sizev4, sizev6, wrlen; 684 struct sockaddr_in *la = (struct sockaddr_in *) 685 &ep->com.local_addr; 686 struct sockaddr_in *ra = (struct sockaddr_in *) 687 &ep->com.remote_addr; 688 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *) 689 &ep->com.local_addr; 690 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *) 691 &ep->com.remote_addr; 692 int ret; 693 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 694 u32 isn = (prandom_u32() & ~7UL) - 1; 695 696 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 697 case CHELSIO_T4: 698 sizev4 = sizeof(struct cpl_act_open_req); 699 sizev6 = sizeof(struct cpl_act_open_req6); 700 break; 701 case CHELSIO_T5: 702 sizev4 = sizeof(struct cpl_t5_act_open_req); 703 sizev6 = sizeof(struct cpl_t5_act_open_req6); 704 break; 705 case CHELSIO_T6: 706 sizev4 = sizeof(struct cpl_t6_act_open_req); 707 sizev6 = sizeof(struct cpl_t6_act_open_req6); 708 break; 709 default: 710 pr_err("T%d Chip is not supported\n", 711 CHELSIO_CHIP_VERSION(adapter_type)); 712 return -EINVAL; 713 } 714 715 wrlen = (ep->com.remote_addr.ss_family == AF_INET) ? 716 roundup(sizev4, 16) : 717 roundup(sizev6, 16); 718 719 PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid); 720 721 skb = get_skb(NULL, wrlen, GFP_KERNEL); 722 if (!skb) { 723 printk(KERN_ERR MOD "%s - failed to alloc skb.\n", 724 __func__); 725 return -ENOMEM; 726 } 727 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 728 729 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 730 enable_tcp_timestamps, 731 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 732 wscale = cxgb_compute_wscale(rcv_win); 733 734 /* 735 * Specify the largest window that will fit in opt0. The 736 * remainder will be specified in the rx_data_ack. 737 */ 738 win = ep->rcv_win >> 10; 739 if (win > RCV_BUFSIZ_M) 740 win = RCV_BUFSIZ_M; 741 742 opt0 = (nocong ? NO_CONG_F : 0) | 743 KEEP_ALIVE_F | 744 DELACK_F | 745 WND_SCALE_V(wscale) | 746 MSS_IDX_V(mtu_idx) | 747 L2T_IDX_V(ep->l2t->idx) | 748 TX_CHAN_V(ep->tx_chan) | 749 SMAC_SEL_V(ep->smac_idx) | 750 DSCP_V(ep->tos >> 2) | 751 ULP_MODE_V(ULP_MODE_TCPDDP) | 752 RCV_BUFSIZ_V(win); 753 opt2 = RX_CHANNEL_V(0) | 754 CCTRL_ECN_V(enable_ecn) | 755 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 756 if (enable_tcp_timestamps) 757 opt2 |= TSTAMPS_EN_F; 758 if (enable_tcp_sack) 759 opt2 |= SACK_EN_F; 760 if (wscale && enable_tcp_window_scaling) 761 opt2 |= WND_SCALE_EN_F; 762 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 763 if (peer2peer) 764 isn += 4; 765 766 opt2 |= T5_OPT_2_VALID_F; 767 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 768 opt2 |= T5_ISS_F; 769 } 770 771 if (ep->com.remote_addr.ss_family == AF_INET6) 772 cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 773 (const u32 *)&la6->sin6_addr.s6_addr, 1); 774 775 t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure); 776 777 if (ep->com.remote_addr.ss_family == AF_INET) { 778 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 779 case CHELSIO_T4: 780 req = (struct cpl_act_open_req *)skb_put(skb, wrlen); 781 INIT_TP_WR(req, 0); 782 break; 783 case CHELSIO_T5: 784 t5req = (struct cpl_t5_act_open_req *)skb_put(skb, 785 wrlen); 786 INIT_TP_WR(t5req, 0); 787 req = (struct cpl_act_open_req *)t5req; 788 break; 789 case CHELSIO_T6: 790 t6req = (struct cpl_t6_act_open_req *)skb_put(skb, 791 wrlen); 792 INIT_TP_WR(t6req, 0); 793 req = (struct cpl_act_open_req *)t6req; 794 t5req = (struct cpl_t5_act_open_req *)t6req; 795 break; 796 default: 797 pr_err("T%d Chip is not supported\n", 798 CHELSIO_CHIP_VERSION(adapter_type)); 799 ret = -EINVAL; 800 goto clip_release; 801 } 802 803 OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, 804 ((ep->rss_qid<<14) | ep->atid))); 805 req->local_port = la->sin_port; 806 req->peer_port = ra->sin_port; 807 req->local_ip = la->sin_addr.s_addr; 808 req->peer_ip = ra->sin_addr.s_addr; 809 req->opt0 = cpu_to_be64(opt0); 810 811 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 812 req->params = cpu_to_be32(cxgb4_select_ntuple( 813 ep->com.dev->rdev.lldi.ports[0], 814 ep->l2t)); 815 req->opt2 = cpu_to_be32(opt2); 816 } else { 817 t5req->params = cpu_to_be64(FILTER_TUPLE_V( 818 cxgb4_select_ntuple( 819 ep->com.dev->rdev.lldi.ports[0], 820 ep->l2t))); 821 t5req->rsvd = cpu_to_be32(isn); 822 PDBG("%s snd_isn %u\n", __func__, t5req->rsvd); 823 t5req->opt2 = cpu_to_be32(opt2); 824 } 825 } else { 826 switch (CHELSIO_CHIP_VERSION(adapter_type)) { 827 case CHELSIO_T4: 828 req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen); 829 INIT_TP_WR(req6, 0); 830 break; 831 case CHELSIO_T5: 832 t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb, 833 wrlen); 834 INIT_TP_WR(t5req6, 0); 835 req6 = (struct cpl_act_open_req6 *)t5req6; 836 break; 837 case CHELSIO_T6: 838 t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb, 839 wrlen); 840 INIT_TP_WR(t6req6, 0); 841 req6 = (struct cpl_act_open_req6 *)t6req6; 842 t5req6 = (struct cpl_t5_act_open_req6 *)t6req6; 843 break; 844 default: 845 pr_err("T%d Chip is not supported\n", 846 CHELSIO_CHIP_VERSION(adapter_type)); 847 ret = -EINVAL; 848 goto clip_release; 849 } 850 851 OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6, 852 ((ep->rss_qid<<14)|ep->atid))); 853 req6->local_port = la6->sin6_port; 854 req6->peer_port = ra6->sin6_port; 855 req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr)); 856 req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8)); 857 req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr)); 858 req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8)); 859 req6->opt0 = cpu_to_be64(opt0); 860 861 if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) { 862 req6->params = cpu_to_be32(cxgb4_select_ntuple( 863 ep->com.dev->rdev.lldi.ports[0], 864 ep->l2t)); 865 req6->opt2 = cpu_to_be32(opt2); 866 } else { 867 t5req6->params = cpu_to_be64(FILTER_TUPLE_V( 868 cxgb4_select_ntuple( 869 ep->com.dev->rdev.lldi.ports[0], 870 ep->l2t))); 871 t5req6->rsvd = cpu_to_be32(isn); 872 PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd); 873 t5req6->opt2 = cpu_to_be32(opt2); 874 } 875 } 876 877 set_bit(ACT_OPEN_REQ, &ep->com.history); 878 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 879 clip_release: 880 if (ret && ep->com.remote_addr.ss_family == AF_INET6) 881 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 882 (const u32 *)&la6->sin6_addr.s6_addr, 1); 883 return ret; 884 } 885 886 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb, 887 u8 mpa_rev_to_use) 888 { 889 int mpalen, wrlen, ret; 890 struct fw_ofld_tx_data_wr *req; 891 struct mpa_message *mpa; 892 struct mpa_v2_conn_params mpa_v2_params; 893 894 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 895 896 BUG_ON(skb_cloned(skb)); 897 898 mpalen = sizeof(*mpa) + ep->plen; 899 if (mpa_rev_to_use == 2) 900 mpalen += sizeof(struct mpa_v2_conn_params); 901 wrlen = roundup(mpalen + sizeof *req, 16); 902 skb = get_skb(skb, wrlen, GFP_KERNEL); 903 if (!skb) { 904 connect_reply_upcall(ep, -ENOMEM); 905 return -ENOMEM; 906 } 907 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 908 909 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 910 memset(req, 0, wrlen); 911 req->op_to_immdlen = cpu_to_be32( 912 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 913 FW_WR_COMPL_F | 914 FW_WR_IMMDLEN_V(mpalen)); 915 req->flowid_len16 = cpu_to_be32( 916 FW_WR_FLOWID_V(ep->hwtid) | 917 FW_WR_LEN16_V(wrlen >> 4)); 918 req->plen = cpu_to_be32(mpalen); 919 req->tunnel_to_proxy = cpu_to_be32( 920 FW_OFLD_TX_DATA_WR_FLUSH_F | 921 FW_OFLD_TX_DATA_WR_SHOVE_F); 922 923 mpa = (struct mpa_message *)(req + 1); 924 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)); 925 926 mpa->flags = 0; 927 if (crc_enabled) 928 mpa->flags |= MPA_CRC; 929 if (markers_enabled) { 930 mpa->flags |= MPA_MARKERS; 931 ep->mpa_attr.recv_marker_enabled = 1; 932 } else { 933 ep->mpa_attr.recv_marker_enabled = 0; 934 } 935 if (mpa_rev_to_use == 2) 936 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 937 938 mpa->private_data_size = htons(ep->plen); 939 mpa->revision = mpa_rev_to_use; 940 if (mpa_rev_to_use == 1) { 941 ep->tried_with_mpa_v1 = 1; 942 ep->retry_with_mpa_v1 = 0; 943 } 944 945 if (mpa_rev_to_use == 2) { 946 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 947 sizeof (struct mpa_v2_conn_params)); 948 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird, 949 ep->ord); 950 mpa_v2_params.ird = htons((u16)ep->ird); 951 mpa_v2_params.ord = htons((u16)ep->ord); 952 953 if (peer2peer) { 954 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 955 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 956 mpa_v2_params.ord |= 957 htons(MPA_V2_RDMA_WRITE_RTR); 958 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 959 mpa_v2_params.ord |= 960 htons(MPA_V2_RDMA_READ_RTR); 961 } 962 memcpy(mpa->private_data, &mpa_v2_params, 963 sizeof(struct mpa_v2_conn_params)); 964 965 if (ep->plen) 966 memcpy(mpa->private_data + 967 sizeof(struct mpa_v2_conn_params), 968 ep->mpa_pkt + sizeof(*mpa), ep->plen); 969 } else 970 if (ep->plen) 971 memcpy(mpa->private_data, 972 ep->mpa_pkt + sizeof(*mpa), ep->plen); 973 974 /* 975 * Reference the mpa skb. This ensures the data area 976 * will remain in memory until the hw acks the tx. 977 * Function fw4_ack() will deref it. 978 */ 979 skb_get(skb); 980 t4_set_arp_err_handler(skb, NULL, arp_failure_discard); 981 BUG_ON(ep->mpa_skb); 982 ep->mpa_skb = skb; 983 ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 984 if (ret) 985 return ret; 986 start_ep_timer(ep); 987 __state_set(&ep->com, MPA_REQ_SENT); 988 ep->mpa_attr.initiator = 1; 989 ep->snd_seq += mpalen; 990 return ret; 991 } 992 993 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen) 994 { 995 int mpalen, wrlen; 996 struct fw_ofld_tx_data_wr *req; 997 struct mpa_message *mpa; 998 struct sk_buff *skb; 999 struct mpa_v2_conn_params mpa_v2_params; 1000 1001 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 1002 1003 mpalen = sizeof(*mpa) + plen; 1004 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1005 mpalen += sizeof(struct mpa_v2_conn_params); 1006 wrlen = roundup(mpalen + sizeof *req, 16); 1007 1008 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1009 if (!skb) { 1010 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); 1011 return -ENOMEM; 1012 } 1013 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1014 1015 req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen); 1016 memset(req, 0, wrlen); 1017 req->op_to_immdlen = cpu_to_be32( 1018 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1019 FW_WR_COMPL_F | 1020 FW_WR_IMMDLEN_V(mpalen)); 1021 req->flowid_len16 = cpu_to_be32( 1022 FW_WR_FLOWID_V(ep->hwtid) | 1023 FW_WR_LEN16_V(wrlen >> 4)); 1024 req->plen = cpu_to_be32(mpalen); 1025 req->tunnel_to_proxy = cpu_to_be32( 1026 FW_OFLD_TX_DATA_WR_FLUSH_F | 1027 FW_OFLD_TX_DATA_WR_SHOVE_F); 1028 1029 mpa = (struct mpa_message *)(req + 1); 1030 memset(mpa, 0, sizeof(*mpa)); 1031 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1032 mpa->flags = MPA_REJECT; 1033 mpa->revision = ep->mpa_attr.version; 1034 mpa->private_data_size = htons(plen); 1035 1036 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1037 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1038 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1039 sizeof (struct mpa_v2_conn_params)); 1040 mpa_v2_params.ird = htons(((u16)ep->ird) | 1041 (peer2peer ? MPA_V2_PEER2PEER_MODEL : 1042 0)); 1043 mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ? 1044 (p2p_type == 1045 FW_RI_INIT_P2PTYPE_RDMA_WRITE ? 1046 MPA_V2_RDMA_WRITE_RTR : p2p_type == 1047 FW_RI_INIT_P2PTYPE_READ_REQ ? 1048 MPA_V2_RDMA_READ_RTR : 0) : 0)); 1049 memcpy(mpa->private_data, &mpa_v2_params, 1050 sizeof(struct mpa_v2_conn_params)); 1051 1052 if (ep->plen) 1053 memcpy(mpa->private_data + 1054 sizeof(struct mpa_v2_conn_params), pdata, plen); 1055 } else 1056 if (plen) 1057 memcpy(mpa->private_data, pdata, plen); 1058 1059 /* 1060 * Reference the mpa skb again. This ensures the data area 1061 * will remain in memory until the hw acks the tx. 1062 * Function fw4_ack() will deref it. 1063 */ 1064 skb_get(skb); 1065 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1066 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1067 BUG_ON(ep->mpa_skb); 1068 ep->mpa_skb = skb; 1069 ep->snd_seq += mpalen; 1070 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1071 } 1072 1073 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen) 1074 { 1075 int mpalen, wrlen; 1076 struct fw_ofld_tx_data_wr *req; 1077 struct mpa_message *mpa; 1078 struct sk_buff *skb; 1079 struct mpa_v2_conn_params mpa_v2_params; 1080 1081 PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen); 1082 1083 mpalen = sizeof(*mpa) + plen; 1084 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) 1085 mpalen += sizeof(struct mpa_v2_conn_params); 1086 wrlen = roundup(mpalen + sizeof *req, 16); 1087 1088 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1089 if (!skb) { 1090 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__); 1091 return -ENOMEM; 1092 } 1093 set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx); 1094 1095 req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen); 1096 memset(req, 0, wrlen); 1097 req->op_to_immdlen = cpu_to_be32( 1098 FW_WR_OP_V(FW_OFLD_TX_DATA_WR) | 1099 FW_WR_COMPL_F | 1100 FW_WR_IMMDLEN_V(mpalen)); 1101 req->flowid_len16 = cpu_to_be32( 1102 FW_WR_FLOWID_V(ep->hwtid) | 1103 FW_WR_LEN16_V(wrlen >> 4)); 1104 req->plen = cpu_to_be32(mpalen); 1105 req->tunnel_to_proxy = cpu_to_be32( 1106 FW_OFLD_TX_DATA_WR_FLUSH_F | 1107 FW_OFLD_TX_DATA_WR_SHOVE_F); 1108 1109 mpa = (struct mpa_message *)(req + 1); 1110 memset(mpa, 0, sizeof(*mpa)); 1111 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key)); 1112 mpa->flags = 0; 1113 if (ep->mpa_attr.crc_enabled) 1114 mpa->flags |= MPA_CRC; 1115 if (ep->mpa_attr.recv_marker_enabled) 1116 mpa->flags |= MPA_MARKERS; 1117 mpa->revision = ep->mpa_attr.version; 1118 mpa->private_data_size = htons(plen); 1119 1120 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 1121 mpa->flags |= MPA_ENHANCED_RDMA_CONN; 1122 mpa->private_data_size = htons(ntohs(mpa->private_data_size) + 1123 sizeof (struct mpa_v2_conn_params)); 1124 mpa_v2_params.ird = htons((u16)ep->ird); 1125 mpa_v2_params.ord = htons((u16)ep->ord); 1126 if (peer2peer && (ep->mpa_attr.p2p_type != 1127 FW_RI_INIT_P2PTYPE_DISABLED)) { 1128 mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL); 1129 1130 if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE) 1131 mpa_v2_params.ord |= 1132 htons(MPA_V2_RDMA_WRITE_RTR); 1133 else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) 1134 mpa_v2_params.ord |= 1135 htons(MPA_V2_RDMA_READ_RTR); 1136 } 1137 1138 memcpy(mpa->private_data, &mpa_v2_params, 1139 sizeof(struct mpa_v2_conn_params)); 1140 1141 if (ep->plen) 1142 memcpy(mpa->private_data + 1143 sizeof(struct mpa_v2_conn_params), pdata, plen); 1144 } else 1145 if (plen) 1146 memcpy(mpa->private_data, pdata, plen); 1147 1148 /* 1149 * Reference the mpa skb. This ensures the data area 1150 * will remain in memory until the hw acks the tx. 1151 * Function fw4_ack() will deref it. 1152 */ 1153 skb_get(skb); 1154 t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure); 1155 ep->mpa_skb = skb; 1156 __state_set(&ep->com, MPA_REP_SENT); 1157 ep->snd_seq += mpalen; 1158 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1159 } 1160 1161 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb) 1162 { 1163 struct c4iw_ep *ep; 1164 struct cpl_act_establish *req = cplhdr(skb); 1165 unsigned int tid = GET_TID(req); 1166 unsigned int atid = TID_TID_G(ntohl(req->tos_atid)); 1167 struct tid_info *t = dev->rdev.lldi.tids; 1168 int ret; 1169 1170 ep = lookup_atid(t, atid); 1171 1172 PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid, 1173 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn)); 1174 1175 mutex_lock(&ep->com.mutex); 1176 dst_confirm(ep->dst); 1177 1178 /* setup the hwtid for this connection */ 1179 ep->hwtid = tid; 1180 cxgb4_insert_tid(t, ep, tid); 1181 insert_ep_tid(ep); 1182 1183 ep->snd_seq = be32_to_cpu(req->snd_isn); 1184 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 1185 1186 set_emss(ep, ntohs(req->tcp_opt)); 1187 1188 /* dealloc the atid */ 1189 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 1190 cxgb4_free_atid(t, atid); 1191 set_bit(ACT_ESTAB, &ep->com.history); 1192 1193 /* start MPA negotiation */ 1194 ret = send_flowc(ep); 1195 if (ret) 1196 goto err; 1197 if (ep->retry_with_mpa_v1) 1198 ret = send_mpa_req(ep, skb, 1); 1199 else 1200 ret = send_mpa_req(ep, skb, mpa_rev); 1201 if (ret) 1202 goto err; 1203 mutex_unlock(&ep->com.mutex); 1204 return 0; 1205 err: 1206 mutex_unlock(&ep->com.mutex); 1207 connect_reply_upcall(ep, -ENOMEM); 1208 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 1209 return 0; 1210 } 1211 1212 static void close_complete_upcall(struct c4iw_ep *ep, int status) 1213 { 1214 struct iw_cm_event event; 1215 1216 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1217 memset(&event, 0, sizeof(event)); 1218 event.event = IW_CM_EVENT_CLOSE; 1219 event.status = status; 1220 if (ep->com.cm_id) { 1221 PDBG("close complete delivered ep %p cm_id %p tid %u\n", 1222 ep, ep->com.cm_id, ep->hwtid); 1223 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1224 deref_cm_id(&ep->com); 1225 set_bit(CLOSE_UPCALL, &ep->com.history); 1226 } 1227 } 1228 1229 static void peer_close_upcall(struct c4iw_ep *ep) 1230 { 1231 struct iw_cm_event event; 1232 1233 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1234 memset(&event, 0, sizeof(event)); 1235 event.event = IW_CM_EVENT_DISCONNECT; 1236 if (ep->com.cm_id) { 1237 PDBG("peer close delivered ep %p cm_id %p tid %u\n", 1238 ep, ep->com.cm_id, ep->hwtid); 1239 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1240 set_bit(DISCONN_UPCALL, &ep->com.history); 1241 } 1242 } 1243 1244 static void peer_abort_upcall(struct c4iw_ep *ep) 1245 { 1246 struct iw_cm_event event; 1247 1248 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1249 memset(&event, 0, sizeof(event)); 1250 event.event = IW_CM_EVENT_CLOSE; 1251 event.status = -ECONNRESET; 1252 if (ep->com.cm_id) { 1253 PDBG("abort delivered ep %p cm_id %p tid %u\n", ep, 1254 ep->com.cm_id, ep->hwtid); 1255 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1256 deref_cm_id(&ep->com); 1257 set_bit(ABORT_UPCALL, &ep->com.history); 1258 } 1259 } 1260 1261 static void connect_reply_upcall(struct c4iw_ep *ep, int status) 1262 { 1263 struct iw_cm_event event; 1264 1265 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status); 1266 memset(&event, 0, sizeof(event)); 1267 event.event = IW_CM_EVENT_CONNECT_REPLY; 1268 event.status = status; 1269 memcpy(&event.local_addr, &ep->com.local_addr, 1270 sizeof(ep->com.local_addr)); 1271 memcpy(&event.remote_addr, &ep->com.remote_addr, 1272 sizeof(ep->com.remote_addr)); 1273 1274 if ((status == 0) || (status == -ECONNREFUSED)) { 1275 if (!ep->tried_with_mpa_v1) { 1276 /* this means MPA_v2 is used */ 1277 event.ord = ep->ird; 1278 event.ird = ep->ord; 1279 event.private_data_len = ep->plen - 1280 sizeof(struct mpa_v2_conn_params); 1281 event.private_data = ep->mpa_pkt + 1282 sizeof(struct mpa_message) + 1283 sizeof(struct mpa_v2_conn_params); 1284 } else { 1285 /* this means MPA_v1 is used */ 1286 event.ord = cur_max_read_depth(ep->com.dev); 1287 event.ird = cur_max_read_depth(ep->com.dev); 1288 event.private_data_len = ep->plen; 1289 event.private_data = ep->mpa_pkt + 1290 sizeof(struct mpa_message); 1291 } 1292 } 1293 1294 PDBG("%s ep %p tid %u status %d\n", __func__, ep, 1295 ep->hwtid, status); 1296 set_bit(CONN_RPL_UPCALL, &ep->com.history); 1297 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1298 1299 if (status < 0) 1300 deref_cm_id(&ep->com); 1301 } 1302 1303 static int connect_request_upcall(struct c4iw_ep *ep) 1304 { 1305 struct iw_cm_event event; 1306 int ret; 1307 1308 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1309 memset(&event, 0, sizeof(event)); 1310 event.event = IW_CM_EVENT_CONNECT_REQUEST; 1311 memcpy(&event.local_addr, &ep->com.local_addr, 1312 sizeof(ep->com.local_addr)); 1313 memcpy(&event.remote_addr, &ep->com.remote_addr, 1314 sizeof(ep->com.remote_addr)); 1315 event.provider_data = ep; 1316 if (!ep->tried_with_mpa_v1) { 1317 /* this means MPA_v2 is used */ 1318 event.ord = ep->ord; 1319 event.ird = ep->ird; 1320 event.private_data_len = ep->plen - 1321 sizeof(struct mpa_v2_conn_params); 1322 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) + 1323 sizeof(struct mpa_v2_conn_params); 1324 } else { 1325 /* this means MPA_v1 is used. Send max supported */ 1326 event.ord = cur_max_read_depth(ep->com.dev); 1327 event.ird = cur_max_read_depth(ep->com.dev); 1328 event.private_data_len = ep->plen; 1329 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message); 1330 } 1331 c4iw_get_ep(&ep->com); 1332 ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id, 1333 &event); 1334 if (ret) 1335 c4iw_put_ep(&ep->com); 1336 set_bit(CONNREQ_UPCALL, &ep->com.history); 1337 c4iw_put_ep(&ep->parent_ep->com); 1338 return ret; 1339 } 1340 1341 static void established_upcall(struct c4iw_ep *ep) 1342 { 1343 struct iw_cm_event event; 1344 1345 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1346 memset(&event, 0, sizeof(event)); 1347 event.event = IW_CM_EVENT_ESTABLISHED; 1348 event.ird = ep->ord; 1349 event.ord = ep->ird; 1350 if (ep->com.cm_id) { 1351 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1352 ep->com.cm_id->event_handler(ep->com.cm_id, &event); 1353 set_bit(ESTAB_UPCALL, &ep->com.history); 1354 } 1355 } 1356 1357 static int update_rx_credits(struct c4iw_ep *ep, u32 credits) 1358 { 1359 struct sk_buff *skb; 1360 u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16); 1361 u32 credit_dack; 1362 1363 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); 1364 skb = get_skb(NULL, wrlen, GFP_KERNEL); 1365 if (!skb) { 1366 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n"); 1367 return 0; 1368 } 1369 1370 /* 1371 * If we couldn't specify the entire rcv window at connection setup 1372 * due to the limit in the number of bits in the RCV_BUFSIZ field, 1373 * then add the overage in to the credits returned. 1374 */ 1375 if (ep->rcv_win > RCV_BUFSIZ_M * 1024) 1376 credits += ep->rcv_win - RCV_BUFSIZ_M * 1024; 1377 1378 credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F | 1379 RX_DACK_MODE_V(dack_mode); 1380 1381 cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx, 1382 credit_dack); 1383 1384 c4iw_ofld_send(&ep->com.dev->rdev, skb); 1385 return credits; 1386 } 1387 1388 #define RELAXED_IRD_NEGOTIATION 1 1389 1390 /* 1391 * process_mpa_reply - process streaming mode MPA reply 1392 * 1393 * Returns: 1394 * 1395 * 0 upon success indicating a connect request was delivered to the ULP 1396 * or the mpa request is incomplete but valid so far. 1397 * 1398 * 1 if a failure requires the caller to close the connection. 1399 * 1400 * 2 if a failure requires the caller to abort the connection. 1401 */ 1402 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb) 1403 { 1404 struct mpa_message *mpa; 1405 struct mpa_v2_conn_params *mpa_v2_params; 1406 u16 plen; 1407 u16 resp_ird, resp_ord; 1408 u8 rtr_mismatch = 0, insuff_ird = 0; 1409 struct c4iw_qp_attributes attrs; 1410 enum c4iw_qp_attr_mask mask; 1411 int err; 1412 int disconnect = 0; 1413 1414 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1415 1416 /* 1417 * If we get more than the supported amount of private data 1418 * then we must fail this connection. 1419 */ 1420 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) { 1421 err = -EINVAL; 1422 goto err_stop_timer; 1423 } 1424 1425 /* 1426 * copy the new data into our accumulation buffer. 1427 */ 1428 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1429 skb->len); 1430 ep->mpa_pkt_len += skb->len; 1431 1432 /* 1433 * if we don't even have the mpa message, then bail. 1434 */ 1435 if (ep->mpa_pkt_len < sizeof(*mpa)) 1436 return 0; 1437 mpa = (struct mpa_message *) ep->mpa_pkt; 1438 1439 /* Validate MPA header. */ 1440 if (mpa->revision > mpa_rev) { 1441 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," 1442 " Received = %d\n", __func__, mpa_rev, mpa->revision); 1443 err = -EPROTO; 1444 goto err_stop_timer; 1445 } 1446 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) { 1447 err = -EPROTO; 1448 goto err_stop_timer; 1449 } 1450 1451 plen = ntohs(mpa->private_data_size); 1452 1453 /* 1454 * Fail if there's too much private data. 1455 */ 1456 if (plen > MPA_MAX_PRIVATE_DATA) { 1457 err = -EPROTO; 1458 goto err_stop_timer; 1459 } 1460 1461 /* 1462 * If plen does not account for pkt size 1463 */ 1464 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) { 1465 err = -EPROTO; 1466 goto err_stop_timer; 1467 } 1468 1469 ep->plen = (u8) plen; 1470 1471 /* 1472 * If we don't have all the pdata yet, then bail. 1473 * We'll continue process when more data arrives. 1474 */ 1475 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1476 return 0; 1477 1478 if (mpa->flags & MPA_REJECT) { 1479 err = -ECONNREFUSED; 1480 goto err_stop_timer; 1481 } 1482 1483 /* 1484 * Stop mpa timer. If it expired, then 1485 * we ignore the MPA reply. process_timeout() 1486 * will abort the connection. 1487 */ 1488 if (stop_ep_timer(ep)) 1489 return 0; 1490 1491 /* 1492 * If we get here we have accumulated the entire mpa 1493 * start reply message including private data. And 1494 * the MPA header is valid. 1495 */ 1496 __state_set(&ep->com, FPDU_MODE); 1497 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1498 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1499 ep->mpa_attr.version = mpa->revision; 1500 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1501 1502 if (mpa->revision == 2) { 1503 ep->mpa_attr.enhanced_rdma_conn = 1504 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1505 if (ep->mpa_attr.enhanced_rdma_conn) { 1506 mpa_v2_params = (struct mpa_v2_conn_params *) 1507 (ep->mpa_pkt + sizeof(*mpa)); 1508 resp_ird = ntohs(mpa_v2_params->ird) & 1509 MPA_V2_IRD_ORD_MASK; 1510 resp_ord = ntohs(mpa_v2_params->ord) & 1511 MPA_V2_IRD_ORD_MASK; 1512 PDBG("%s responder ird %u ord %u ep ird %u ord %u\n", 1513 __func__, resp_ird, resp_ord, ep->ird, ep->ord); 1514 1515 /* 1516 * This is a double-check. Ideally, below checks are 1517 * not required since ird/ord stuff has been taken 1518 * care of in c4iw_accept_cr 1519 */ 1520 if (ep->ird < resp_ord) { 1521 if (RELAXED_IRD_NEGOTIATION && resp_ord <= 1522 ep->com.dev->rdev.lldi.max_ordird_qp) 1523 ep->ird = resp_ord; 1524 else 1525 insuff_ird = 1; 1526 } else if (ep->ird > resp_ord) { 1527 ep->ird = resp_ord; 1528 } 1529 if (ep->ord > resp_ird) { 1530 if (RELAXED_IRD_NEGOTIATION) 1531 ep->ord = resp_ird; 1532 else 1533 insuff_ird = 1; 1534 } 1535 if (insuff_ird) { 1536 err = -ENOMEM; 1537 ep->ird = resp_ord; 1538 ep->ord = resp_ird; 1539 } 1540 1541 if (ntohs(mpa_v2_params->ird) & 1542 MPA_V2_PEER2PEER_MODEL) { 1543 if (ntohs(mpa_v2_params->ord) & 1544 MPA_V2_RDMA_WRITE_RTR) 1545 ep->mpa_attr.p2p_type = 1546 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1547 else if (ntohs(mpa_v2_params->ord) & 1548 MPA_V2_RDMA_READ_RTR) 1549 ep->mpa_attr.p2p_type = 1550 FW_RI_INIT_P2PTYPE_READ_REQ; 1551 } 1552 } 1553 } else if (mpa->revision == 1) 1554 if (peer2peer) 1555 ep->mpa_attr.p2p_type = p2p_type; 1556 1557 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " 1558 "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = " 1559 "%d\n", __func__, ep->mpa_attr.crc_enabled, 1560 ep->mpa_attr.recv_marker_enabled, 1561 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1562 ep->mpa_attr.p2p_type, p2p_type); 1563 1564 /* 1565 * If responder's RTR does not match with that of initiator, assign 1566 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not 1567 * generated when moving QP to RTS state. 1568 * A TERM message will be sent after QP has moved to RTS state 1569 */ 1570 if ((ep->mpa_attr.version == 2) && peer2peer && 1571 (ep->mpa_attr.p2p_type != p2p_type)) { 1572 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1573 rtr_mismatch = 1; 1574 } 1575 1576 attrs.mpa_attr = ep->mpa_attr; 1577 attrs.max_ird = ep->ird; 1578 attrs.max_ord = ep->ord; 1579 attrs.llp_stream_handle = ep; 1580 attrs.next_state = C4IW_QP_STATE_RTS; 1581 1582 mask = C4IW_QP_ATTR_NEXT_STATE | 1583 C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR | 1584 C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD; 1585 1586 /* bind QP and TID with INIT_WR */ 1587 err = c4iw_modify_qp(ep->com.qp->rhp, 1588 ep->com.qp, mask, &attrs, 1); 1589 if (err) 1590 goto err; 1591 1592 /* 1593 * If responder's RTR requirement did not match with what initiator 1594 * supports, generate TERM message 1595 */ 1596 if (rtr_mismatch) { 1597 printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__); 1598 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1599 attrs.ecode = MPA_NOMATCH_RTR; 1600 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1601 attrs.send_term = 1; 1602 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1603 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1604 err = -ENOMEM; 1605 disconnect = 1; 1606 goto out; 1607 } 1608 1609 /* 1610 * Generate TERM if initiator IRD is not sufficient for responder 1611 * provided ORD. Currently, we do the same behaviour even when 1612 * responder provided IRD is also not sufficient as regards to 1613 * initiator ORD. 1614 */ 1615 if (insuff_ird) { 1616 printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n", 1617 __func__); 1618 attrs.layer_etype = LAYER_MPA | DDP_LLP; 1619 attrs.ecode = MPA_INSUFF_IRD; 1620 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1621 attrs.send_term = 1; 1622 err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1623 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1624 err = -ENOMEM; 1625 disconnect = 1; 1626 goto out; 1627 } 1628 goto out; 1629 err_stop_timer: 1630 stop_ep_timer(ep); 1631 err: 1632 disconnect = 2; 1633 out: 1634 connect_reply_upcall(ep, err); 1635 return disconnect; 1636 } 1637 1638 /* 1639 * process_mpa_request - process streaming mode MPA request 1640 * 1641 * Returns: 1642 * 1643 * 0 upon success indicating a connect request was delivered to the ULP 1644 * or the mpa request is incomplete but valid so far. 1645 * 1646 * 1 if a failure requires the caller to close the connection. 1647 * 1648 * 2 if a failure requires the caller to abort the connection. 1649 */ 1650 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb) 1651 { 1652 struct mpa_message *mpa; 1653 struct mpa_v2_conn_params *mpa_v2_params; 1654 u16 plen; 1655 1656 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1657 1658 /* 1659 * If we get more than the supported amount of private data 1660 * then we must fail this connection. 1661 */ 1662 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) 1663 goto err_stop_timer; 1664 1665 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1666 1667 /* 1668 * Copy the new data into our accumulation buffer. 1669 */ 1670 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]), 1671 skb->len); 1672 ep->mpa_pkt_len += skb->len; 1673 1674 /* 1675 * If we don't even have the mpa message, then bail. 1676 * We'll continue process when more data arrives. 1677 */ 1678 if (ep->mpa_pkt_len < sizeof(*mpa)) 1679 return 0; 1680 1681 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__); 1682 mpa = (struct mpa_message *) ep->mpa_pkt; 1683 1684 /* 1685 * Validate MPA Header. 1686 */ 1687 if (mpa->revision > mpa_rev) { 1688 printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d," 1689 " Received = %d\n", __func__, mpa_rev, mpa->revision); 1690 goto err_stop_timer; 1691 } 1692 1693 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) 1694 goto err_stop_timer; 1695 1696 plen = ntohs(mpa->private_data_size); 1697 1698 /* 1699 * Fail if there's too much private data. 1700 */ 1701 if (plen > MPA_MAX_PRIVATE_DATA) 1702 goto err_stop_timer; 1703 1704 /* 1705 * If plen does not account for pkt size 1706 */ 1707 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) 1708 goto err_stop_timer; 1709 ep->plen = (u8) plen; 1710 1711 /* 1712 * If we don't have all the pdata yet, then bail. 1713 */ 1714 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen)) 1715 return 0; 1716 1717 /* 1718 * If we get here we have accumulated the entire mpa 1719 * start reply message including private data. 1720 */ 1721 ep->mpa_attr.initiator = 0; 1722 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0; 1723 ep->mpa_attr.recv_marker_enabled = markers_enabled; 1724 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0; 1725 ep->mpa_attr.version = mpa->revision; 1726 if (mpa->revision == 1) 1727 ep->tried_with_mpa_v1 = 1; 1728 ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED; 1729 1730 if (mpa->revision == 2) { 1731 ep->mpa_attr.enhanced_rdma_conn = 1732 mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0; 1733 if (ep->mpa_attr.enhanced_rdma_conn) { 1734 mpa_v2_params = (struct mpa_v2_conn_params *) 1735 (ep->mpa_pkt + sizeof(*mpa)); 1736 ep->ird = ntohs(mpa_v2_params->ird) & 1737 MPA_V2_IRD_ORD_MASK; 1738 ep->ird = min_t(u32, ep->ird, 1739 cur_max_read_depth(ep->com.dev)); 1740 ep->ord = ntohs(mpa_v2_params->ord) & 1741 MPA_V2_IRD_ORD_MASK; 1742 ep->ord = min_t(u32, ep->ord, 1743 cur_max_read_depth(ep->com.dev)); 1744 PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird, 1745 ep->ord); 1746 if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL) 1747 if (peer2peer) { 1748 if (ntohs(mpa_v2_params->ord) & 1749 MPA_V2_RDMA_WRITE_RTR) 1750 ep->mpa_attr.p2p_type = 1751 FW_RI_INIT_P2PTYPE_RDMA_WRITE; 1752 else if (ntohs(mpa_v2_params->ord) & 1753 MPA_V2_RDMA_READ_RTR) 1754 ep->mpa_attr.p2p_type = 1755 FW_RI_INIT_P2PTYPE_READ_REQ; 1756 } 1757 } 1758 } else if (mpa->revision == 1) 1759 if (peer2peer) 1760 ep->mpa_attr.p2p_type = p2p_type; 1761 1762 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, " 1763 "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__, 1764 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled, 1765 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version, 1766 ep->mpa_attr.p2p_type); 1767 1768 __state_set(&ep->com, MPA_REQ_RCVD); 1769 1770 /* drive upcall */ 1771 mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING); 1772 if (ep->parent_ep->com.state != DEAD) { 1773 if (connect_request_upcall(ep)) 1774 goto err_unlock_parent; 1775 } else { 1776 goto err_unlock_parent; 1777 } 1778 mutex_unlock(&ep->parent_ep->com.mutex); 1779 return 0; 1780 1781 err_unlock_parent: 1782 mutex_unlock(&ep->parent_ep->com.mutex); 1783 goto err_out; 1784 err_stop_timer: 1785 (void)stop_ep_timer(ep); 1786 err_out: 1787 return 2; 1788 } 1789 1790 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb) 1791 { 1792 struct c4iw_ep *ep; 1793 struct cpl_rx_data *hdr = cplhdr(skb); 1794 unsigned int dlen = ntohs(hdr->len); 1795 unsigned int tid = GET_TID(hdr); 1796 __u8 status = hdr->status; 1797 int disconnect = 0; 1798 1799 ep = get_ep_from_tid(dev, tid); 1800 if (!ep) 1801 return 0; 1802 PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen); 1803 skb_pull(skb, sizeof(*hdr)); 1804 skb_trim(skb, dlen); 1805 mutex_lock(&ep->com.mutex); 1806 1807 /* update RX credits */ 1808 update_rx_credits(ep, dlen); 1809 1810 switch (ep->com.state) { 1811 case MPA_REQ_SENT: 1812 ep->rcv_seq += dlen; 1813 disconnect = process_mpa_reply(ep, skb); 1814 break; 1815 case MPA_REQ_WAIT: 1816 ep->rcv_seq += dlen; 1817 disconnect = process_mpa_request(ep, skb); 1818 break; 1819 case FPDU_MODE: { 1820 struct c4iw_qp_attributes attrs; 1821 BUG_ON(!ep->com.qp); 1822 if (status) 1823 pr_err("%s Unexpected streaming data." \ 1824 " qpid %u ep %p state %d tid %u status %d\n", 1825 __func__, ep->com.qp->wq.sq.qid, ep, 1826 ep->com.state, ep->hwtid, status); 1827 attrs.next_state = C4IW_QP_STATE_TERMINATE; 1828 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 1829 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 1830 disconnect = 1; 1831 break; 1832 } 1833 default: 1834 break; 1835 } 1836 mutex_unlock(&ep->com.mutex); 1837 if (disconnect) 1838 c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL); 1839 c4iw_put_ep(&ep->com); 1840 return 0; 1841 } 1842 1843 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 1844 { 1845 struct c4iw_ep *ep; 1846 struct cpl_abort_rpl_rss *rpl = cplhdr(skb); 1847 int release = 0; 1848 unsigned int tid = GET_TID(rpl); 1849 1850 ep = get_ep_from_tid(dev, tid); 1851 if (!ep) { 1852 printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n"); 1853 return 0; 1854 } 1855 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 1856 mutex_lock(&ep->com.mutex); 1857 switch (ep->com.state) { 1858 case ABORTING: 1859 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 1860 __state_set(&ep->com, DEAD); 1861 release = 1; 1862 break; 1863 default: 1864 printk(KERN_ERR "%s ep %p state %d\n", 1865 __func__, ep, ep->com.state); 1866 break; 1867 } 1868 mutex_unlock(&ep->com.mutex); 1869 1870 if (release) 1871 release_ep_resources(ep); 1872 c4iw_put_ep(&ep->com); 1873 return 0; 1874 } 1875 1876 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid) 1877 { 1878 struct sk_buff *skb; 1879 struct fw_ofld_connection_wr *req; 1880 unsigned int mtu_idx; 1881 u32 wscale; 1882 struct sockaddr_in *sin; 1883 int win; 1884 1885 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL); 1886 req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req)); 1887 memset(req, 0, sizeof(*req)); 1888 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR)); 1889 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 1890 req->le.filter = cpu_to_be32(cxgb4_select_ntuple( 1891 ep->com.dev->rdev.lldi.ports[0], 1892 ep->l2t)); 1893 sin = (struct sockaddr_in *)&ep->com.local_addr; 1894 req->le.lport = sin->sin_port; 1895 req->le.u.ipv4.lip = sin->sin_addr.s_addr; 1896 sin = (struct sockaddr_in *)&ep->com.remote_addr; 1897 req->le.pport = sin->sin_port; 1898 req->le.u.ipv4.pip = sin->sin_addr.s_addr; 1899 req->tcb.t_state_to_astid = 1900 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) | 1901 FW_OFLD_CONNECTION_WR_ASTID_V(atid)); 1902 req->tcb.cplrxdataack_cplpassacceptrpl = 1903 htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F); 1904 req->tcb.tx_max = (__force __be32) jiffies; 1905 req->tcb.rcv_adv = htons(1); 1906 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 1907 enable_tcp_timestamps, 1908 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 1909 wscale = cxgb_compute_wscale(rcv_win); 1910 1911 /* 1912 * Specify the largest window that will fit in opt0. The 1913 * remainder will be specified in the rx_data_ack. 1914 */ 1915 win = ep->rcv_win >> 10; 1916 if (win > RCV_BUFSIZ_M) 1917 win = RCV_BUFSIZ_M; 1918 1919 req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F | 1920 (nocong ? NO_CONG_F : 0) | 1921 KEEP_ALIVE_F | 1922 DELACK_F | 1923 WND_SCALE_V(wscale) | 1924 MSS_IDX_V(mtu_idx) | 1925 L2T_IDX_V(ep->l2t->idx) | 1926 TX_CHAN_V(ep->tx_chan) | 1927 SMAC_SEL_V(ep->smac_idx) | 1928 DSCP_V(ep->tos >> 2) | 1929 ULP_MODE_V(ULP_MODE_TCPDDP) | 1930 RCV_BUFSIZ_V(win)); 1931 req->tcb.opt2 = (__force __be32) (PACE_V(1) | 1932 TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) | 1933 RX_CHANNEL_V(0) | 1934 CCTRL_ECN_V(enable_ecn) | 1935 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid)); 1936 if (enable_tcp_timestamps) 1937 req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F; 1938 if (enable_tcp_sack) 1939 req->tcb.opt2 |= (__force __be32)SACK_EN_F; 1940 if (wscale && enable_tcp_window_scaling) 1941 req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F; 1942 req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0); 1943 req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2); 1944 set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx); 1945 set_bit(ACT_OFLD_CONN, &ep->com.history); 1946 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 1947 } 1948 1949 /* 1950 * Some of the error codes above implicitly indicate that there is no TID 1951 * allocated with the result of an ACT_OPEN. We use this predicate to make 1952 * that explicit. 1953 */ 1954 static inline int act_open_has_tid(int status) 1955 { 1956 return (status != CPL_ERR_TCAM_PARITY && 1957 status != CPL_ERR_TCAM_MISS && 1958 status != CPL_ERR_TCAM_FULL && 1959 status != CPL_ERR_CONN_EXIST_SYNRECV && 1960 status != CPL_ERR_CONN_EXIST); 1961 } 1962 1963 static char *neg_adv_str(unsigned int status) 1964 { 1965 switch (status) { 1966 case CPL_ERR_RTX_NEG_ADVICE: 1967 return "Retransmit timeout"; 1968 case CPL_ERR_PERSIST_NEG_ADVICE: 1969 return "Persist timeout"; 1970 case CPL_ERR_KEEPALV_NEG_ADVICE: 1971 return "Keepalive timeout"; 1972 default: 1973 return "Unknown"; 1974 } 1975 } 1976 1977 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi) 1978 { 1979 ep->snd_win = snd_win; 1980 ep->rcv_win = rcv_win; 1981 PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win); 1982 } 1983 1984 #define ACT_OPEN_RETRY_COUNT 2 1985 1986 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip, 1987 struct dst_entry *dst, struct c4iw_dev *cdev, 1988 bool clear_mpa_v1, enum chip_type adapter_type, u8 tos) 1989 { 1990 struct neighbour *n; 1991 int err, step; 1992 struct net_device *pdev; 1993 1994 n = dst_neigh_lookup(dst, peer_ip); 1995 if (!n) 1996 return -ENODEV; 1997 1998 rcu_read_lock(); 1999 err = -ENOMEM; 2000 if (n->dev->flags & IFF_LOOPBACK) { 2001 if (iptype == 4) 2002 pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip); 2003 else if (IS_ENABLED(CONFIG_IPV6)) 2004 for_each_netdev(&init_net, pdev) { 2005 if (ipv6_chk_addr(&init_net, 2006 (struct in6_addr *)peer_ip, 2007 pdev, 1)) 2008 break; 2009 } 2010 else 2011 pdev = NULL; 2012 2013 if (!pdev) { 2014 err = -ENODEV; 2015 goto out; 2016 } 2017 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2018 n, pdev, rt_tos2priority(tos)); 2019 if (!ep->l2t) { 2020 dev_put(pdev); 2021 goto out; 2022 } 2023 ep->mtu = pdev->mtu; 2024 ep->tx_chan = cxgb4_port_chan(pdev); 2025 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2026 cxgb4_port_viid(pdev)); 2027 step = cdev->rdev.lldi.ntxq / 2028 cdev->rdev.lldi.nchan; 2029 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2030 step = cdev->rdev.lldi.nrxq / 2031 cdev->rdev.lldi.nchan; 2032 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2033 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2034 cxgb4_port_idx(pdev) * step]; 2035 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2036 dev_put(pdev); 2037 } else { 2038 pdev = get_real_dev(n->dev); 2039 ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t, 2040 n, pdev, 0); 2041 if (!ep->l2t) 2042 goto out; 2043 ep->mtu = dst_mtu(dst); 2044 ep->tx_chan = cxgb4_port_chan(pdev); 2045 ep->smac_idx = cxgb4_tp_smt_idx(adapter_type, 2046 cxgb4_port_viid(pdev)); 2047 step = cdev->rdev.lldi.ntxq / 2048 cdev->rdev.lldi.nchan; 2049 ep->txq_idx = cxgb4_port_idx(pdev) * step; 2050 ep->ctrlq_idx = cxgb4_port_idx(pdev); 2051 step = cdev->rdev.lldi.nrxq / 2052 cdev->rdev.lldi.nchan; 2053 ep->rss_qid = cdev->rdev.lldi.rxq_ids[ 2054 cxgb4_port_idx(pdev) * step]; 2055 set_tcp_window(ep, (struct port_info *)netdev_priv(pdev)); 2056 2057 if (clear_mpa_v1) { 2058 ep->retry_with_mpa_v1 = 0; 2059 ep->tried_with_mpa_v1 = 0; 2060 } 2061 } 2062 err = 0; 2063 out: 2064 rcu_read_unlock(); 2065 2066 neigh_release(n); 2067 2068 return err; 2069 } 2070 2071 static int c4iw_reconnect(struct c4iw_ep *ep) 2072 { 2073 int err = 0; 2074 int size = 0; 2075 struct sockaddr_in *laddr = (struct sockaddr_in *) 2076 &ep->com.cm_id->m_local_addr; 2077 struct sockaddr_in *raddr = (struct sockaddr_in *) 2078 &ep->com.cm_id->m_remote_addr; 2079 struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *) 2080 &ep->com.cm_id->m_local_addr; 2081 struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *) 2082 &ep->com.cm_id->m_remote_addr; 2083 int iptype; 2084 __u8 *ra; 2085 2086 PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id); 2087 init_timer(&ep->timer); 2088 c4iw_init_wr_wait(&ep->com.wr_wait); 2089 2090 /* When MPA revision is different on nodes, the node with MPA_rev=2 2091 * tries to reconnect with MPA_rev 1 for the same EP through 2092 * c4iw_reconnect(), where the same EP is assigned with new tid for 2093 * further connection establishment. As we are using the same EP pointer 2094 * for reconnect, few skbs are used during the previous c4iw_connect(), 2095 * which leaves the EP with inadequate skbs for further 2096 * c4iw_reconnect(), Further causing an assert BUG_ON() due to empty 2097 * skb_list() during peer_abort(). Allocate skbs which is already used. 2098 */ 2099 size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list)); 2100 if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) { 2101 err = -ENOMEM; 2102 goto fail1; 2103 } 2104 2105 /* 2106 * Allocate an active TID to initiate a TCP connection. 2107 */ 2108 ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep); 2109 if (ep->atid == -1) { 2110 pr_err("%s - cannot alloc atid.\n", __func__); 2111 err = -ENOMEM; 2112 goto fail2; 2113 } 2114 insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid); 2115 2116 /* find a route */ 2117 if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) { 2118 ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev, 2119 laddr->sin_addr.s_addr, 2120 raddr->sin_addr.s_addr, 2121 laddr->sin_port, 2122 raddr->sin_port, ep->com.cm_id->tos); 2123 iptype = 4; 2124 ra = (__u8 *)&raddr->sin_addr; 2125 } else { 2126 ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi, 2127 get_real_dev, 2128 laddr6->sin6_addr.s6_addr, 2129 raddr6->sin6_addr.s6_addr, 2130 laddr6->sin6_port, 2131 raddr6->sin6_port, 0, 2132 raddr6->sin6_scope_id); 2133 iptype = 6; 2134 ra = (__u8 *)&raddr6->sin6_addr; 2135 } 2136 if (!ep->dst) { 2137 pr_err("%s - cannot find route.\n", __func__); 2138 err = -EHOSTUNREACH; 2139 goto fail3; 2140 } 2141 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false, 2142 ep->com.dev->rdev.lldi.adapter_type, 2143 ep->com.cm_id->tos); 2144 if (err) { 2145 pr_err("%s - cannot alloc l2e.\n", __func__); 2146 goto fail4; 2147 } 2148 2149 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 2150 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 2151 ep->l2t->idx); 2152 2153 state_set(&ep->com, CONNECTING); 2154 ep->tos = ep->com.cm_id->tos; 2155 2156 /* send connect request to rnic */ 2157 err = send_connect(ep); 2158 if (!err) 2159 goto out; 2160 2161 cxgb4_l2t_release(ep->l2t); 2162 fail4: 2163 dst_release(ep->dst); 2164 fail3: 2165 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 2166 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 2167 fail2: 2168 /* 2169 * remember to send notification to upper layer. 2170 * We are in here so the upper layer is not aware that this is 2171 * re-connect attempt and so, upper layer is still waiting for 2172 * response of 1st connect request. 2173 */ 2174 connect_reply_upcall(ep, -ECONNRESET); 2175 fail1: 2176 c4iw_put_ep(&ep->com); 2177 out: 2178 return err; 2179 } 2180 2181 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2182 { 2183 struct c4iw_ep *ep; 2184 struct cpl_act_open_rpl *rpl = cplhdr(skb); 2185 unsigned int atid = TID_TID_G(AOPEN_ATID_G( 2186 ntohl(rpl->atid_status))); 2187 struct tid_info *t = dev->rdev.lldi.tids; 2188 int status = AOPEN_STATUS_G(ntohl(rpl->atid_status)); 2189 struct sockaddr_in *la; 2190 struct sockaddr_in *ra; 2191 struct sockaddr_in6 *la6; 2192 struct sockaddr_in6 *ra6; 2193 int ret = 0; 2194 2195 ep = lookup_atid(t, atid); 2196 la = (struct sockaddr_in *)&ep->com.local_addr; 2197 ra = (struct sockaddr_in *)&ep->com.remote_addr; 2198 la6 = (struct sockaddr_in6 *)&ep->com.local_addr; 2199 ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr; 2200 2201 PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid, 2202 status, status2errno(status)); 2203 2204 if (cxgb_is_neg_adv(status)) { 2205 PDBG("%s Connection problems for atid %u status %u (%s)\n", 2206 __func__, atid, status, neg_adv_str(status)); 2207 ep->stats.connect_neg_adv++; 2208 mutex_lock(&dev->rdev.stats.lock); 2209 dev->rdev.stats.neg_adv++; 2210 mutex_unlock(&dev->rdev.stats.lock); 2211 return 0; 2212 } 2213 2214 set_bit(ACT_OPEN_RPL, &ep->com.history); 2215 2216 /* 2217 * Log interesting failures. 2218 */ 2219 switch (status) { 2220 case CPL_ERR_CONN_RESET: 2221 case CPL_ERR_CONN_TIMEDOUT: 2222 break; 2223 case CPL_ERR_TCAM_FULL: 2224 mutex_lock(&dev->rdev.stats.lock); 2225 dev->rdev.stats.tcam_full++; 2226 mutex_unlock(&dev->rdev.stats.lock); 2227 if (ep->com.local_addr.ss_family == AF_INET && 2228 dev->rdev.lldi.enable_fw_ofld_conn) { 2229 ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G( 2230 ntohl(rpl->atid_status)))); 2231 if (ret) 2232 goto fail; 2233 return 0; 2234 } 2235 break; 2236 case CPL_ERR_CONN_EXIST: 2237 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 2238 set_bit(ACT_RETRY_INUSE, &ep->com.history); 2239 if (ep->com.remote_addr.ss_family == AF_INET6) { 2240 struct sockaddr_in6 *sin6 = 2241 (struct sockaddr_in6 *) 2242 &ep->com.local_addr; 2243 cxgb4_clip_release( 2244 ep->com.dev->rdev.lldi.ports[0], 2245 (const u32 *) 2246 &sin6->sin6_addr.s6_addr, 1); 2247 } 2248 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, 2249 atid); 2250 cxgb4_free_atid(t, atid); 2251 dst_release(ep->dst); 2252 cxgb4_l2t_release(ep->l2t); 2253 c4iw_reconnect(ep); 2254 return 0; 2255 } 2256 break; 2257 default: 2258 if (ep->com.local_addr.ss_family == AF_INET) { 2259 pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n", 2260 atid, status, status2errno(status), 2261 &la->sin_addr.s_addr, ntohs(la->sin_port), 2262 &ra->sin_addr.s_addr, ntohs(ra->sin_port)); 2263 } else { 2264 pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n", 2265 atid, status, status2errno(status), 2266 la6->sin6_addr.s6_addr, ntohs(la6->sin6_port), 2267 ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port)); 2268 } 2269 break; 2270 } 2271 2272 fail: 2273 connect_reply_upcall(ep, status2errno(status)); 2274 state_set(&ep->com, DEAD); 2275 2276 if (ep->com.remote_addr.ss_family == AF_INET6) { 2277 struct sockaddr_in6 *sin6 = 2278 (struct sockaddr_in6 *)&ep->com.local_addr; 2279 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 2280 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2281 } 2282 if (status && act_open_has_tid(status)) 2283 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl)); 2284 2285 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid); 2286 cxgb4_free_atid(t, atid); 2287 dst_release(ep->dst); 2288 cxgb4_l2t_release(ep->l2t); 2289 c4iw_put_ep(&ep->com); 2290 2291 return 0; 2292 } 2293 2294 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2295 { 2296 struct cpl_pass_open_rpl *rpl = cplhdr(skb); 2297 unsigned int stid = GET_TID(rpl); 2298 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2299 2300 if (!ep) { 2301 PDBG("%s stid %d lookup failure!\n", __func__, stid); 2302 goto out; 2303 } 2304 PDBG("%s ep %p status %d error %d\n", __func__, ep, 2305 rpl->status, status2errno(rpl->status)); 2306 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2307 c4iw_put_ep(&ep->com); 2308 out: 2309 return 0; 2310 } 2311 2312 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2313 { 2314 struct cpl_close_listsvr_rpl *rpl = cplhdr(skb); 2315 unsigned int stid = GET_TID(rpl); 2316 struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid); 2317 2318 PDBG("%s ep %p\n", __func__, ep); 2319 c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status)); 2320 c4iw_put_ep(&ep->com); 2321 return 0; 2322 } 2323 2324 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb, 2325 struct cpl_pass_accept_req *req) 2326 { 2327 struct cpl_pass_accept_rpl *rpl; 2328 unsigned int mtu_idx; 2329 u64 opt0; 2330 u32 opt2; 2331 u32 wscale; 2332 struct cpl_t5_pass_accept_rpl *rpl5 = NULL; 2333 int win; 2334 enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type; 2335 2336 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2337 BUG_ON(skb_cloned(skb)); 2338 2339 skb_get(skb); 2340 rpl = cplhdr(skb); 2341 if (!is_t4(adapter_type)) { 2342 skb_trim(skb, roundup(sizeof(*rpl5), 16)); 2343 rpl5 = (void *)rpl; 2344 INIT_TP_WR(rpl5, ep->hwtid); 2345 } else { 2346 skb_trim(skb, sizeof(*rpl)); 2347 INIT_TP_WR(rpl, ep->hwtid); 2348 } 2349 OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, 2350 ep->hwtid)); 2351 2352 cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx, 2353 enable_tcp_timestamps && req->tcpopt.tstamp, 2354 (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1); 2355 wscale = cxgb_compute_wscale(rcv_win); 2356 2357 /* 2358 * Specify the largest window that will fit in opt0. The 2359 * remainder will be specified in the rx_data_ack. 2360 */ 2361 win = ep->rcv_win >> 10; 2362 if (win > RCV_BUFSIZ_M) 2363 win = RCV_BUFSIZ_M; 2364 opt0 = (nocong ? NO_CONG_F : 0) | 2365 KEEP_ALIVE_F | 2366 DELACK_F | 2367 WND_SCALE_V(wscale) | 2368 MSS_IDX_V(mtu_idx) | 2369 L2T_IDX_V(ep->l2t->idx) | 2370 TX_CHAN_V(ep->tx_chan) | 2371 SMAC_SEL_V(ep->smac_idx) | 2372 DSCP_V(ep->tos >> 2) | 2373 ULP_MODE_V(ULP_MODE_TCPDDP) | 2374 RCV_BUFSIZ_V(win); 2375 opt2 = RX_CHANNEL_V(0) | 2376 RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid); 2377 2378 if (enable_tcp_timestamps && req->tcpopt.tstamp) 2379 opt2 |= TSTAMPS_EN_F; 2380 if (enable_tcp_sack && req->tcpopt.sack) 2381 opt2 |= SACK_EN_F; 2382 if (wscale && enable_tcp_window_scaling) 2383 opt2 |= WND_SCALE_EN_F; 2384 if (enable_ecn) { 2385 const struct tcphdr *tcph; 2386 u32 hlen = ntohl(req->hdr_len); 2387 2388 if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5) 2389 tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) + 2390 IP_HDR_LEN_G(hlen); 2391 else 2392 tcph = (const void *)(req + 1) + 2393 T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen); 2394 if (tcph->ece && tcph->cwr) 2395 opt2 |= CCTRL_ECN_V(1); 2396 } 2397 if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) { 2398 u32 isn = (prandom_u32() & ~7UL) - 1; 2399 opt2 |= T5_OPT_2_VALID_F; 2400 opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE); 2401 opt2 |= T5_ISS_F; 2402 rpl5 = (void *)rpl; 2403 memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16)); 2404 if (peer2peer) 2405 isn += 4; 2406 rpl5->iss = cpu_to_be32(isn); 2407 PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss)); 2408 } 2409 2410 rpl->opt0 = cpu_to_be64(opt0); 2411 rpl->opt2 = cpu_to_be32(opt2); 2412 set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx); 2413 t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure); 2414 2415 return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t); 2416 } 2417 2418 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb) 2419 { 2420 PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid); 2421 BUG_ON(skb_cloned(skb)); 2422 skb_trim(skb, sizeof(struct cpl_tid_release)); 2423 release_tid(&dev->rdev, hwtid, skb); 2424 return; 2425 } 2426 2427 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb) 2428 { 2429 struct c4iw_ep *child_ep = NULL, *parent_ep; 2430 struct cpl_pass_accept_req *req = cplhdr(skb); 2431 unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid)); 2432 struct tid_info *t = dev->rdev.lldi.tids; 2433 unsigned int hwtid = GET_TID(req); 2434 struct dst_entry *dst; 2435 __u8 local_ip[16], peer_ip[16]; 2436 __be16 local_port, peer_port; 2437 struct sockaddr_in6 *sin6; 2438 int err; 2439 u16 peer_mss = ntohs(req->tcpopt.mss); 2440 int iptype; 2441 unsigned short hdrs; 2442 u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid)); 2443 2444 parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 2445 if (!parent_ep) { 2446 PDBG("%s connect request on invalid stid %d\n", __func__, stid); 2447 goto reject; 2448 } 2449 2450 if (state_read(&parent_ep->com) != LISTEN) { 2451 PDBG("%s - listening ep not in LISTEN\n", __func__); 2452 goto reject; 2453 } 2454 2455 cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, 2456 &iptype, local_ip, peer_ip, &local_port, &peer_port); 2457 2458 /* Find output route */ 2459 if (iptype == 4) { 2460 PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n" 2461 , __func__, parent_ep, hwtid, 2462 local_ip, peer_ip, ntohs(local_port), 2463 ntohs(peer_port), peer_mss); 2464 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 2465 *(__be32 *)local_ip, *(__be32 *)peer_ip, 2466 local_port, peer_port, tos); 2467 } else { 2468 PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n" 2469 , __func__, parent_ep, hwtid, 2470 local_ip, peer_ip, ntohs(local_port), 2471 ntohs(peer_port), peer_mss); 2472 dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 2473 local_ip, peer_ip, local_port, peer_port, 2474 PASS_OPEN_TOS_G(ntohl(req->tos_stid)), 2475 ((struct sockaddr_in6 *) 2476 &parent_ep->com.local_addr)->sin6_scope_id); 2477 } 2478 if (!dst) { 2479 printk(KERN_ERR MOD "%s - failed to find dst entry!\n", 2480 __func__); 2481 goto reject; 2482 } 2483 2484 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL); 2485 if (!child_ep) { 2486 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n", 2487 __func__); 2488 dst_release(dst); 2489 goto reject; 2490 } 2491 2492 err = import_ep(child_ep, iptype, peer_ip, dst, dev, false, 2493 parent_ep->com.dev->rdev.lldi.adapter_type, tos); 2494 if (err) { 2495 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n", 2496 __func__); 2497 dst_release(dst); 2498 kfree(child_ep); 2499 goto reject; 2500 } 2501 2502 hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) + 2503 ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0); 2504 if (peer_mss && child_ep->mtu > (peer_mss + hdrs)) 2505 child_ep->mtu = peer_mss + hdrs; 2506 2507 skb_queue_head_init(&child_ep->com.ep_skb_list); 2508 if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF)) 2509 goto fail; 2510 2511 state_set(&child_ep->com, CONNECTING); 2512 child_ep->com.dev = dev; 2513 child_ep->com.cm_id = NULL; 2514 2515 if (iptype == 4) { 2516 struct sockaddr_in *sin = (struct sockaddr_in *) 2517 &child_ep->com.local_addr; 2518 2519 sin->sin_family = PF_INET; 2520 sin->sin_port = local_port; 2521 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2522 2523 sin = (struct sockaddr_in *)&child_ep->com.local_addr; 2524 sin->sin_family = PF_INET; 2525 sin->sin_port = ((struct sockaddr_in *) 2526 &parent_ep->com.local_addr)->sin_port; 2527 sin->sin_addr.s_addr = *(__be32 *)local_ip; 2528 2529 sin = (struct sockaddr_in *)&child_ep->com.remote_addr; 2530 sin->sin_family = PF_INET; 2531 sin->sin_port = peer_port; 2532 sin->sin_addr.s_addr = *(__be32 *)peer_ip; 2533 } else { 2534 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2535 sin6->sin6_family = PF_INET6; 2536 sin6->sin6_port = local_port; 2537 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2538 2539 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2540 sin6->sin6_family = PF_INET6; 2541 sin6->sin6_port = ((struct sockaddr_in6 *) 2542 &parent_ep->com.local_addr)->sin6_port; 2543 memcpy(sin6->sin6_addr.s6_addr, local_ip, 16); 2544 2545 sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr; 2546 sin6->sin6_family = PF_INET6; 2547 sin6->sin6_port = peer_port; 2548 memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16); 2549 } 2550 2551 c4iw_get_ep(&parent_ep->com); 2552 child_ep->parent_ep = parent_ep; 2553 child_ep->tos = tos; 2554 child_ep->dst = dst; 2555 child_ep->hwtid = hwtid; 2556 2557 PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__, 2558 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid); 2559 2560 init_timer(&child_ep->timer); 2561 cxgb4_insert_tid(t, child_ep, hwtid); 2562 insert_ep_tid(child_ep); 2563 if (accept_cr(child_ep, skb, req)) { 2564 c4iw_put_ep(&parent_ep->com); 2565 release_ep_resources(child_ep); 2566 } else { 2567 set_bit(PASS_ACCEPT_REQ, &child_ep->com.history); 2568 } 2569 if (iptype == 6) { 2570 sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr; 2571 cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0], 2572 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 2573 } 2574 goto out; 2575 fail: 2576 c4iw_put_ep(&child_ep->com); 2577 reject: 2578 reject_cr(dev, hwtid, skb); 2579 if (parent_ep) 2580 c4iw_put_ep(&parent_ep->com); 2581 out: 2582 return 0; 2583 } 2584 2585 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb) 2586 { 2587 struct c4iw_ep *ep; 2588 struct cpl_pass_establish *req = cplhdr(skb); 2589 unsigned int tid = GET_TID(req); 2590 int ret; 2591 2592 ep = get_ep_from_tid(dev, tid); 2593 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2594 ep->snd_seq = be32_to_cpu(req->snd_isn); 2595 ep->rcv_seq = be32_to_cpu(req->rcv_isn); 2596 2597 PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid, 2598 ntohs(req->tcp_opt)); 2599 2600 set_emss(ep, ntohs(req->tcp_opt)); 2601 2602 dst_confirm(ep->dst); 2603 mutex_lock(&ep->com.mutex); 2604 ep->com.state = MPA_REQ_WAIT; 2605 start_ep_timer(ep); 2606 set_bit(PASS_ESTAB, &ep->com.history); 2607 ret = send_flowc(ep); 2608 mutex_unlock(&ep->com.mutex); 2609 if (ret) 2610 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 2611 c4iw_put_ep(&ep->com); 2612 2613 return 0; 2614 } 2615 2616 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb) 2617 { 2618 struct cpl_peer_close *hdr = cplhdr(skb); 2619 struct c4iw_ep *ep; 2620 struct c4iw_qp_attributes attrs; 2621 int disconnect = 1; 2622 int release = 0; 2623 unsigned int tid = GET_TID(hdr); 2624 int ret; 2625 2626 ep = get_ep_from_tid(dev, tid); 2627 if (!ep) 2628 return 0; 2629 2630 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2631 dst_confirm(ep->dst); 2632 2633 set_bit(PEER_CLOSE, &ep->com.history); 2634 mutex_lock(&ep->com.mutex); 2635 switch (ep->com.state) { 2636 case MPA_REQ_WAIT: 2637 __state_set(&ep->com, CLOSING); 2638 break; 2639 case MPA_REQ_SENT: 2640 __state_set(&ep->com, CLOSING); 2641 connect_reply_upcall(ep, -ECONNRESET); 2642 break; 2643 case MPA_REQ_RCVD: 2644 2645 /* 2646 * We're gonna mark this puppy DEAD, but keep 2647 * the reference on it until the ULP accepts or 2648 * rejects the CR. Also wake up anyone waiting 2649 * in rdma connection migration (see c4iw_accept_cr()). 2650 */ 2651 __state_set(&ep->com, CLOSING); 2652 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); 2653 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2654 break; 2655 case MPA_REP_SENT: 2656 __state_set(&ep->com, CLOSING); 2657 PDBG("waking up ep %p tid %u\n", ep, ep->hwtid); 2658 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2659 break; 2660 case FPDU_MODE: 2661 start_ep_timer(ep); 2662 __state_set(&ep->com, CLOSING); 2663 attrs.next_state = C4IW_QP_STATE_CLOSING; 2664 ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2665 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2666 if (ret != -ECONNRESET) { 2667 peer_close_upcall(ep); 2668 disconnect = 1; 2669 } 2670 break; 2671 case ABORTING: 2672 disconnect = 0; 2673 break; 2674 case CLOSING: 2675 __state_set(&ep->com, MORIBUND); 2676 disconnect = 0; 2677 break; 2678 case MORIBUND: 2679 (void)stop_ep_timer(ep); 2680 if (ep->com.cm_id && ep->com.qp) { 2681 attrs.next_state = C4IW_QP_STATE_IDLE; 2682 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2683 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2684 } 2685 close_complete_upcall(ep, 0); 2686 __state_set(&ep->com, DEAD); 2687 release = 1; 2688 disconnect = 0; 2689 break; 2690 case DEAD: 2691 disconnect = 0; 2692 break; 2693 default: 2694 BUG_ON(1); 2695 } 2696 mutex_unlock(&ep->com.mutex); 2697 if (disconnect) 2698 c4iw_ep_disconnect(ep, 0, GFP_KERNEL); 2699 if (release) 2700 release_ep_resources(ep); 2701 c4iw_put_ep(&ep->com); 2702 return 0; 2703 } 2704 2705 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb) 2706 { 2707 struct cpl_abort_req_rss *req = cplhdr(skb); 2708 struct c4iw_ep *ep; 2709 struct sk_buff *rpl_skb; 2710 struct c4iw_qp_attributes attrs; 2711 int ret; 2712 int release = 0; 2713 unsigned int tid = GET_TID(req); 2714 u32 len = roundup(sizeof(struct cpl_abort_rpl), 16); 2715 2716 ep = get_ep_from_tid(dev, tid); 2717 if (!ep) 2718 return 0; 2719 2720 if (cxgb_is_neg_adv(req->status)) { 2721 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n", 2722 __func__, ep->hwtid, req->status, 2723 neg_adv_str(req->status)); 2724 ep->stats.abort_neg_adv++; 2725 mutex_lock(&dev->rdev.stats.lock); 2726 dev->rdev.stats.neg_adv++; 2727 mutex_unlock(&dev->rdev.stats.lock); 2728 goto deref_ep; 2729 } 2730 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 2731 ep->com.state); 2732 set_bit(PEER_ABORT, &ep->com.history); 2733 2734 /* 2735 * Wake up any threads in rdma_init() or rdma_fini(). 2736 * However, this is not needed if com state is just 2737 * MPA_REQ_SENT 2738 */ 2739 if (ep->com.state != MPA_REQ_SENT) 2740 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 2741 2742 mutex_lock(&ep->com.mutex); 2743 switch (ep->com.state) { 2744 case CONNECTING: 2745 c4iw_put_ep(&ep->parent_ep->com); 2746 break; 2747 case MPA_REQ_WAIT: 2748 (void)stop_ep_timer(ep); 2749 break; 2750 case MPA_REQ_SENT: 2751 (void)stop_ep_timer(ep); 2752 if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1)) 2753 connect_reply_upcall(ep, -ECONNRESET); 2754 else { 2755 /* 2756 * we just don't send notification upwards because we 2757 * want to retry with mpa_v1 without upper layers even 2758 * knowing it. 2759 * 2760 * do some housekeeping so as to re-initiate the 2761 * connection 2762 */ 2763 PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__, 2764 mpa_rev); 2765 ep->retry_with_mpa_v1 = 1; 2766 } 2767 break; 2768 case MPA_REP_SENT: 2769 break; 2770 case MPA_REQ_RCVD: 2771 break; 2772 case MORIBUND: 2773 case CLOSING: 2774 stop_ep_timer(ep); 2775 /*FALLTHROUGH*/ 2776 case FPDU_MODE: 2777 if (ep->com.cm_id && ep->com.qp) { 2778 attrs.next_state = C4IW_QP_STATE_ERROR; 2779 ret = c4iw_modify_qp(ep->com.qp->rhp, 2780 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 2781 &attrs, 1); 2782 if (ret) 2783 printk(KERN_ERR MOD 2784 "%s - qp <- error failed!\n", 2785 __func__); 2786 } 2787 peer_abort_upcall(ep); 2788 break; 2789 case ABORTING: 2790 break; 2791 case DEAD: 2792 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__); 2793 mutex_unlock(&ep->com.mutex); 2794 goto deref_ep; 2795 default: 2796 BUG_ON(1); 2797 break; 2798 } 2799 dst_confirm(ep->dst); 2800 if (ep->com.state != ABORTING) { 2801 __state_set(&ep->com, DEAD); 2802 /* we don't release if we want to retry with mpa_v1 */ 2803 if (!ep->retry_with_mpa_v1) 2804 release = 1; 2805 } 2806 mutex_unlock(&ep->com.mutex); 2807 2808 rpl_skb = skb_dequeue(&ep->com.ep_skb_list); 2809 if (WARN_ON(!rpl_skb)) { 2810 release = 1; 2811 goto out; 2812 } 2813 2814 cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx); 2815 2816 c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb); 2817 out: 2818 if (release) 2819 release_ep_resources(ep); 2820 else if (ep->retry_with_mpa_v1) { 2821 if (ep->com.remote_addr.ss_family == AF_INET6) { 2822 struct sockaddr_in6 *sin6 = 2823 (struct sockaddr_in6 *) 2824 &ep->com.local_addr; 2825 cxgb4_clip_release( 2826 ep->com.dev->rdev.lldi.ports[0], 2827 (const u32 *)&sin6->sin6_addr.s6_addr, 2828 1); 2829 } 2830 remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid); 2831 cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid); 2832 dst_release(ep->dst); 2833 cxgb4_l2t_release(ep->l2t); 2834 c4iw_reconnect(ep); 2835 } 2836 2837 deref_ep: 2838 c4iw_put_ep(&ep->com); 2839 /* Dereferencing ep, referenced in peer_abort_intr() */ 2840 c4iw_put_ep(&ep->com); 2841 return 0; 2842 } 2843 2844 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 2845 { 2846 struct c4iw_ep *ep; 2847 struct c4iw_qp_attributes attrs; 2848 struct cpl_close_con_rpl *rpl = cplhdr(skb); 2849 int release = 0; 2850 unsigned int tid = GET_TID(rpl); 2851 2852 ep = get_ep_from_tid(dev, tid); 2853 if (!ep) 2854 return 0; 2855 2856 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2857 BUG_ON(!ep); 2858 2859 /* The cm_id may be null if we failed to connect */ 2860 mutex_lock(&ep->com.mutex); 2861 set_bit(CLOSE_CON_RPL, &ep->com.history); 2862 switch (ep->com.state) { 2863 case CLOSING: 2864 __state_set(&ep->com, MORIBUND); 2865 break; 2866 case MORIBUND: 2867 (void)stop_ep_timer(ep); 2868 if ((ep->com.cm_id) && (ep->com.qp)) { 2869 attrs.next_state = C4IW_QP_STATE_IDLE; 2870 c4iw_modify_qp(ep->com.qp->rhp, 2871 ep->com.qp, 2872 C4IW_QP_ATTR_NEXT_STATE, 2873 &attrs, 1); 2874 } 2875 close_complete_upcall(ep, 0); 2876 __state_set(&ep->com, DEAD); 2877 release = 1; 2878 break; 2879 case ABORTING: 2880 case DEAD: 2881 break; 2882 default: 2883 BUG_ON(1); 2884 break; 2885 } 2886 mutex_unlock(&ep->com.mutex); 2887 if (release) 2888 release_ep_resources(ep); 2889 c4iw_put_ep(&ep->com); 2890 return 0; 2891 } 2892 2893 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb) 2894 { 2895 struct cpl_rdma_terminate *rpl = cplhdr(skb); 2896 unsigned int tid = GET_TID(rpl); 2897 struct c4iw_ep *ep; 2898 struct c4iw_qp_attributes attrs; 2899 2900 ep = get_ep_from_tid(dev, tid); 2901 BUG_ON(!ep); 2902 2903 if (ep && ep->com.qp) { 2904 printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid, 2905 ep->com.qp->wq.sq.qid); 2906 attrs.next_state = C4IW_QP_STATE_TERMINATE; 2907 c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp, 2908 C4IW_QP_ATTR_NEXT_STATE, &attrs, 1); 2909 } else 2910 printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid); 2911 c4iw_put_ep(&ep->com); 2912 2913 return 0; 2914 } 2915 2916 /* 2917 * Upcall from the adapter indicating data has been transmitted. 2918 * For us its just the single MPA request or reply. We can now free 2919 * the skb holding the mpa message. 2920 */ 2921 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb) 2922 { 2923 struct c4iw_ep *ep; 2924 struct cpl_fw4_ack *hdr = cplhdr(skb); 2925 u8 credits = hdr->credits; 2926 unsigned int tid = GET_TID(hdr); 2927 2928 2929 ep = get_ep_from_tid(dev, tid); 2930 if (!ep) 2931 return 0; 2932 PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits); 2933 if (credits == 0) { 2934 PDBG("%s 0 credit ack ep %p tid %u state %u\n", 2935 __func__, ep, ep->hwtid, state_read(&ep->com)); 2936 goto out; 2937 } 2938 2939 dst_confirm(ep->dst); 2940 if (ep->mpa_skb) { 2941 PDBG("%s last streaming msg ack ep %p tid %u state %u " 2942 "initiator %u freeing skb\n", __func__, ep, ep->hwtid, 2943 state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0); 2944 mutex_lock(&ep->com.mutex); 2945 kfree_skb(ep->mpa_skb); 2946 ep->mpa_skb = NULL; 2947 if (test_bit(STOP_MPA_TIMER, &ep->com.flags)) 2948 stop_ep_timer(ep); 2949 mutex_unlock(&ep->com.mutex); 2950 } 2951 out: 2952 c4iw_put_ep(&ep->com); 2953 return 0; 2954 } 2955 2956 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len) 2957 { 2958 int abort; 2959 struct c4iw_ep *ep = to_ep(cm_id); 2960 2961 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2962 2963 mutex_lock(&ep->com.mutex); 2964 if (ep->com.state != MPA_REQ_RCVD) { 2965 mutex_unlock(&ep->com.mutex); 2966 c4iw_put_ep(&ep->com); 2967 return -ECONNRESET; 2968 } 2969 set_bit(ULP_REJECT, &ep->com.history); 2970 if (mpa_rev == 0) 2971 abort = 1; 2972 else 2973 abort = send_mpa_reject(ep, pdata, pdata_len); 2974 mutex_unlock(&ep->com.mutex); 2975 2976 stop_ep_timer(ep); 2977 c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL); 2978 c4iw_put_ep(&ep->com); 2979 return 0; 2980 } 2981 2982 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 2983 { 2984 int err; 2985 struct c4iw_qp_attributes attrs; 2986 enum c4iw_qp_attr_mask mask; 2987 struct c4iw_ep *ep = to_ep(cm_id); 2988 struct c4iw_dev *h = to_c4iw_dev(cm_id->device); 2989 struct c4iw_qp *qp = get_qhp(h, conn_param->qpn); 2990 int abort = 0; 2991 2992 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid); 2993 2994 mutex_lock(&ep->com.mutex); 2995 if (ep->com.state != MPA_REQ_RCVD) { 2996 err = -ECONNRESET; 2997 goto err_out; 2998 } 2999 3000 BUG_ON(!qp); 3001 3002 set_bit(ULP_ACCEPT, &ep->com.history); 3003 if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) || 3004 (conn_param->ird > cur_max_read_depth(ep->com.dev))) { 3005 err = -EINVAL; 3006 goto err_abort; 3007 } 3008 3009 if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) { 3010 if (conn_param->ord > ep->ird) { 3011 if (RELAXED_IRD_NEGOTIATION) { 3012 conn_param->ord = ep->ird; 3013 } else { 3014 ep->ird = conn_param->ird; 3015 ep->ord = conn_param->ord; 3016 send_mpa_reject(ep, conn_param->private_data, 3017 conn_param->private_data_len); 3018 err = -ENOMEM; 3019 goto err_abort; 3020 } 3021 } 3022 if (conn_param->ird < ep->ord) { 3023 if (RELAXED_IRD_NEGOTIATION && 3024 ep->ord <= h->rdev.lldi.max_ordird_qp) { 3025 conn_param->ird = ep->ord; 3026 } else { 3027 err = -ENOMEM; 3028 goto err_abort; 3029 } 3030 } 3031 } 3032 ep->ird = conn_param->ird; 3033 ep->ord = conn_param->ord; 3034 3035 if (ep->mpa_attr.version == 1) { 3036 if (peer2peer && ep->ird == 0) 3037 ep->ird = 1; 3038 } else { 3039 if (peer2peer && 3040 (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) && 3041 (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0) 3042 ep->ird = 1; 3043 } 3044 3045 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord); 3046 3047 ep->com.cm_id = cm_id; 3048 ref_cm_id(&ep->com); 3049 ep->com.qp = qp; 3050 ref_qp(ep); 3051 3052 /* bind QP to EP and move to RTS */ 3053 attrs.mpa_attr = ep->mpa_attr; 3054 attrs.max_ird = ep->ird; 3055 attrs.max_ord = ep->ord; 3056 attrs.llp_stream_handle = ep; 3057 attrs.next_state = C4IW_QP_STATE_RTS; 3058 3059 /* bind QP and TID with INIT_WR */ 3060 mask = C4IW_QP_ATTR_NEXT_STATE | 3061 C4IW_QP_ATTR_LLP_STREAM_HANDLE | 3062 C4IW_QP_ATTR_MPA_ATTR | 3063 C4IW_QP_ATTR_MAX_IRD | 3064 C4IW_QP_ATTR_MAX_ORD; 3065 3066 err = c4iw_modify_qp(ep->com.qp->rhp, 3067 ep->com.qp, mask, &attrs, 1); 3068 if (err) 3069 goto err_deref_cm_id; 3070 3071 set_bit(STOP_MPA_TIMER, &ep->com.flags); 3072 err = send_mpa_reply(ep, conn_param->private_data, 3073 conn_param->private_data_len); 3074 if (err) 3075 goto err_deref_cm_id; 3076 3077 __state_set(&ep->com, FPDU_MODE); 3078 established_upcall(ep); 3079 mutex_unlock(&ep->com.mutex); 3080 c4iw_put_ep(&ep->com); 3081 return 0; 3082 err_deref_cm_id: 3083 deref_cm_id(&ep->com); 3084 err_abort: 3085 abort = 1; 3086 err_out: 3087 mutex_unlock(&ep->com.mutex); 3088 if (abort) 3089 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 3090 c4iw_put_ep(&ep->com); 3091 return err; 3092 } 3093 3094 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3095 { 3096 struct in_device *ind; 3097 int found = 0; 3098 struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr; 3099 struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr; 3100 3101 ind = in_dev_get(dev->rdev.lldi.ports[0]); 3102 if (!ind) 3103 return -EADDRNOTAVAIL; 3104 for_primary_ifa(ind) { 3105 laddr->sin_addr.s_addr = ifa->ifa_address; 3106 raddr->sin_addr.s_addr = ifa->ifa_address; 3107 found = 1; 3108 break; 3109 } 3110 endfor_ifa(ind); 3111 in_dev_put(ind); 3112 return found ? 0 : -EADDRNOTAVAIL; 3113 } 3114 3115 static int get_lladdr(struct net_device *dev, struct in6_addr *addr, 3116 unsigned char banned_flags) 3117 { 3118 struct inet6_dev *idev; 3119 int err = -EADDRNOTAVAIL; 3120 3121 rcu_read_lock(); 3122 idev = __in6_dev_get(dev); 3123 if (idev != NULL) { 3124 struct inet6_ifaddr *ifp; 3125 3126 read_lock_bh(&idev->lock); 3127 list_for_each_entry(ifp, &idev->addr_list, if_list) { 3128 if (ifp->scope == IFA_LINK && 3129 !(ifp->flags & banned_flags)) { 3130 memcpy(addr, &ifp->addr, 16); 3131 err = 0; 3132 break; 3133 } 3134 } 3135 read_unlock_bh(&idev->lock); 3136 } 3137 rcu_read_unlock(); 3138 return err; 3139 } 3140 3141 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id) 3142 { 3143 struct in6_addr uninitialized_var(addr); 3144 struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr; 3145 struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr; 3146 3147 if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) { 3148 memcpy(la6->sin6_addr.s6_addr, &addr, 16); 3149 memcpy(ra6->sin6_addr.s6_addr, &addr, 16); 3150 return 0; 3151 } 3152 return -EADDRNOTAVAIL; 3153 } 3154 3155 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param) 3156 { 3157 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3158 struct c4iw_ep *ep; 3159 int err = 0; 3160 struct sockaddr_in *laddr; 3161 struct sockaddr_in *raddr; 3162 struct sockaddr_in6 *laddr6; 3163 struct sockaddr_in6 *raddr6; 3164 __u8 *ra; 3165 int iptype; 3166 3167 if ((conn_param->ord > cur_max_read_depth(dev)) || 3168 (conn_param->ird > cur_max_read_depth(dev))) { 3169 err = -EINVAL; 3170 goto out; 3171 } 3172 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3173 if (!ep) { 3174 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); 3175 err = -ENOMEM; 3176 goto out; 3177 } 3178 3179 skb_queue_head_init(&ep->com.ep_skb_list); 3180 if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) { 3181 err = -ENOMEM; 3182 goto fail1; 3183 } 3184 3185 init_timer(&ep->timer); 3186 ep->plen = conn_param->private_data_len; 3187 if (ep->plen) 3188 memcpy(ep->mpa_pkt + sizeof(struct mpa_message), 3189 conn_param->private_data, ep->plen); 3190 ep->ird = conn_param->ird; 3191 ep->ord = conn_param->ord; 3192 3193 if (peer2peer && ep->ord == 0) 3194 ep->ord = 1; 3195 3196 ep->com.cm_id = cm_id; 3197 ref_cm_id(&ep->com); 3198 ep->com.dev = dev; 3199 ep->com.qp = get_qhp(dev, conn_param->qpn); 3200 if (!ep->com.qp) { 3201 PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn); 3202 err = -EINVAL; 3203 goto fail2; 3204 } 3205 ref_qp(ep); 3206 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn, 3207 ep->com.qp, cm_id); 3208 3209 /* 3210 * Allocate an active TID to initiate a TCP connection. 3211 */ 3212 ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep); 3213 if (ep->atid == -1) { 3214 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__); 3215 err = -ENOMEM; 3216 goto fail2; 3217 } 3218 insert_handle(dev, &dev->atid_idr, ep, ep->atid); 3219 3220 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3221 sizeof(ep->com.local_addr)); 3222 memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr, 3223 sizeof(ep->com.remote_addr)); 3224 3225 laddr = (struct sockaddr_in *)&ep->com.local_addr; 3226 raddr = (struct sockaddr_in *)&ep->com.remote_addr; 3227 laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3228 raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr; 3229 3230 if (cm_id->m_remote_addr.ss_family == AF_INET) { 3231 iptype = 4; 3232 ra = (__u8 *)&raddr->sin_addr; 3233 3234 /* 3235 * Handle loopback requests to INADDR_ANY. 3236 */ 3237 if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) { 3238 err = pick_local_ipaddrs(dev, cm_id); 3239 if (err) 3240 goto fail2; 3241 } 3242 3243 /* find a route */ 3244 PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n", 3245 __func__, &laddr->sin_addr, ntohs(laddr->sin_port), 3246 ra, ntohs(raddr->sin_port)); 3247 ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3248 laddr->sin_addr.s_addr, 3249 raddr->sin_addr.s_addr, 3250 laddr->sin_port, 3251 raddr->sin_port, cm_id->tos); 3252 } else { 3253 iptype = 6; 3254 ra = (__u8 *)&raddr6->sin6_addr; 3255 3256 /* 3257 * Handle loopback requests to INADDR_ANY. 3258 */ 3259 if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) { 3260 err = pick_local_ip6addrs(dev, cm_id); 3261 if (err) 3262 goto fail2; 3263 } 3264 3265 /* find a route */ 3266 PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n", 3267 __func__, laddr6->sin6_addr.s6_addr, 3268 ntohs(laddr6->sin6_port), 3269 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port)); 3270 ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev, 3271 laddr6->sin6_addr.s6_addr, 3272 raddr6->sin6_addr.s6_addr, 3273 laddr6->sin6_port, 3274 raddr6->sin6_port, 0, 3275 raddr6->sin6_scope_id); 3276 } 3277 if (!ep->dst) { 3278 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__); 3279 err = -EHOSTUNREACH; 3280 goto fail3; 3281 } 3282 3283 err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true, 3284 ep->com.dev->rdev.lldi.adapter_type, cm_id->tos); 3285 if (err) { 3286 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__); 3287 goto fail4; 3288 } 3289 3290 PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n", 3291 __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid, 3292 ep->l2t->idx); 3293 3294 state_set(&ep->com, CONNECTING); 3295 ep->tos = cm_id->tos; 3296 3297 /* send connect request to rnic */ 3298 err = send_connect(ep); 3299 if (!err) 3300 goto out; 3301 3302 cxgb4_l2t_release(ep->l2t); 3303 fail4: 3304 dst_release(ep->dst); 3305 fail3: 3306 remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid); 3307 cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid); 3308 fail2: 3309 skb_queue_purge(&ep->com.ep_skb_list); 3310 deref_cm_id(&ep->com); 3311 fail1: 3312 c4iw_put_ep(&ep->com); 3313 out: 3314 return err; 3315 } 3316 3317 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3318 { 3319 int err; 3320 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) 3321 &ep->com.local_addr; 3322 3323 if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) { 3324 err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0], 3325 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3326 if (err) 3327 return err; 3328 } 3329 c4iw_init_wr_wait(&ep->com.wr_wait); 3330 err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0], 3331 ep->stid, &sin6->sin6_addr, 3332 sin6->sin6_port, 3333 ep->com.dev->rdev.lldi.rxq_ids[0]); 3334 if (!err) 3335 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3336 &ep->com.wr_wait, 3337 0, 0, __func__); 3338 else if (err > 0) 3339 err = net_xmit_errno(err); 3340 if (err) { 3341 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3342 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3343 pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n", 3344 err, ep->stid, 3345 sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port)); 3346 } 3347 return err; 3348 } 3349 3350 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep) 3351 { 3352 int err; 3353 struct sockaddr_in *sin = (struct sockaddr_in *) 3354 &ep->com.local_addr; 3355 3356 if (dev->rdev.lldi.enable_fw_ofld_conn) { 3357 do { 3358 err = cxgb4_create_server_filter( 3359 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3360 sin->sin_addr.s_addr, sin->sin_port, 0, 3361 ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0); 3362 if (err == -EBUSY) { 3363 if (c4iw_fatal_error(&ep->com.dev->rdev)) { 3364 err = -EIO; 3365 break; 3366 } 3367 set_current_state(TASK_UNINTERRUPTIBLE); 3368 schedule_timeout(usecs_to_jiffies(100)); 3369 } 3370 } while (err == -EBUSY); 3371 } else { 3372 c4iw_init_wr_wait(&ep->com.wr_wait); 3373 err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0], 3374 ep->stid, sin->sin_addr.s_addr, sin->sin_port, 3375 0, ep->com.dev->rdev.lldi.rxq_ids[0]); 3376 if (!err) 3377 err = c4iw_wait_for_reply(&ep->com.dev->rdev, 3378 &ep->com.wr_wait, 3379 0, 0, __func__); 3380 else if (err > 0) 3381 err = net_xmit_errno(err); 3382 } 3383 if (err) 3384 pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n" 3385 , err, ep->stid, 3386 &sin->sin_addr, ntohs(sin->sin_port)); 3387 return err; 3388 } 3389 3390 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog) 3391 { 3392 int err = 0; 3393 struct c4iw_dev *dev = to_c4iw_dev(cm_id->device); 3394 struct c4iw_listen_ep *ep; 3395 3396 might_sleep(); 3397 3398 ep = alloc_ep(sizeof(*ep), GFP_KERNEL); 3399 if (!ep) { 3400 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__); 3401 err = -ENOMEM; 3402 goto fail1; 3403 } 3404 skb_queue_head_init(&ep->com.ep_skb_list); 3405 PDBG("%s ep %p\n", __func__, ep); 3406 ep->com.cm_id = cm_id; 3407 ref_cm_id(&ep->com); 3408 ep->com.dev = dev; 3409 ep->backlog = backlog; 3410 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3411 sizeof(ep->com.local_addr)); 3412 3413 /* 3414 * Allocate a server TID. 3415 */ 3416 if (dev->rdev.lldi.enable_fw_ofld_conn && 3417 ep->com.local_addr.ss_family == AF_INET) 3418 ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids, 3419 cm_id->m_local_addr.ss_family, ep); 3420 else 3421 ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids, 3422 cm_id->m_local_addr.ss_family, ep); 3423 3424 if (ep->stid == -1) { 3425 printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__); 3426 err = -ENOMEM; 3427 goto fail2; 3428 } 3429 insert_handle(dev, &dev->stid_idr, ep, ep->stid); 3430 3431 memcpy(&ep->com.local_addr, &cm_id->m_local_addr, 3432 sizeof(ep->com.local_addr)); 3433 3434 state_set(&ep->com, LISTEN); 3435 if (ep->com.local_addr.ss_family == AF_INET) 3436 err = create_server4(dev, ep); 3437 else 3438 err = create_server6(dev, ep); 3439 if (!err) { 3440 cm_id->provider_data = ep; 3441 goto out; 3442 } 3443 3444 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3445 ep->com.local_addr.ss_family); 3446 fail2: 3447 deref_cm_id(&ep->com); 3448 c4iw_put_ep(&ep->com); 3449 fail1: 3450 out: 3451 return err; 3452 } 3453 3454 int c4iw_destroy_listen(struct iw_cm_id *cm_id) 3455 { 3456 int err; 3457 struct c4iw_listen_ep *ep = to_listen_ep(cm_id); 3458 3459 PDBG("%s ep %p\n", __func__, ep); 3460 3461 might_sleep(); 3462 state_set(&ep->com, DEAD); 3463 if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn && 3464 ep->com.local_addr.ss_family == AF_INET) { 3465 err = cxgb4_remove_server_filter( 3466 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3467 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3468 } else { 3469 struct sockaddr_in6 *sin6; 3470 c4iw_init_wr_wait(&ep->com.wr_wait); 3471 err = cxgb4_remove_server( 3472 ep->com.dev->rdev.lldi.ports[0], ep->stid, 3473 ep->com.dev->rdev.lldi.rxq_ids[0], 0); 3474 if (err) 3475 goto done; 3476 err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait, 3477 0, 0, __func__); 3478 sin6 = (struct sockaddr_in6 *)&ep->com.local_addr; 3479 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3480 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3481 } 3482 remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid); 3483 cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid, 3484 ep->com.local_addr.ss_family); 3485 done: 3486 deref_cm_id(&ep->com); 3487 c4iw_put_ep(&ep->com); 3488 return err; 3489 } 3490 3491 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp) 3492 { 3493 int ret = 0; 3494 int close = 0; 3495 int fatal = 0; 3496 struct c4iw_rdev *rdev; 3497 3498 mutex_lock(&ep->com.mutex); 3499 3500 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep, 3501 states[ep->com.state], abrupt); 3502 3503 /* 3504 * Ref the ep here in case we have fatal errors causing the 3505 * ep to be released and freed. 3506 */ 3507 c4iw_get_ep(&ep->com); 3508 3509 rdev = &ep->com.dev->rdev; 3510 if (c4iw_fatal_error(rdev)) { 3511 fatal = 1; 3512 close_complete_upcall(ep, -EIO); 3513 ep->com.state = DEAD; 3514 } 3515 switch (ep->com.state) { 3516 case MPA_REQ_WAIT: 3517 case MPA_REQ_SENT: 3518 case MPA_REQ_RCVD: 3519 case MPA_REP_SENT: 3520 case FPDU_MODE: 3521 case CONNECTING: 3522 close = 1; 3523 if (abrupt) 3524 ep->com.state = ABORTING; 3525 else { 3526 ep->com.state = CLOSING; 3527 3528 /* 3529 * if we close before we see the fw4_ack() then we fix 3530 * up the timer state since we're reusing it. 3531 */ 3532 if (ep->mpa_skb && 3533 test_bit(STOP_MPA_TIMER, &ep->com.flags)) { 3534 clear_bit(STOP_MPA_TIMER, &ep->com.flags); 3535 stop_ep_timer(ep); 3536 } 3537 start_ep_timer(ep); 3538 } 3539 set_bit(CLOSE_SENT, &ep->com.flags); 3540 break; 3541 case CLOSING: 3542 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) { 3543 close = 1; 3544 if (abrupt) { 3545 (void)stop_ep_timer(ep); 3546 ep->com.state = ABORTING; 3547 } else 3548 ep->com.state = MORIBUND; 3549 } 3550 break; 3551 case MORIBUND: 3552 case ABORTING: 3553 case DEAD: 3554 PDBG("%s ignoring disconnect ep %p state %u\n", 3555 __func__, ep, ep->com.state); 3556 break; 3557 default: 3558 BUG(); 3559 break; 3560 } 3561 3562 if (close) { 3563 if (abrupt) { 3564 set_bit(EP_DISC_ABORT, &ep->com.history); 3565 close_complete_upcall(ep, -ECONNRESET); 3566 ret = send_abort(ep); 3567 } else { 3568 set_bit(EP_DISC_CLOSE, &ep->com.history); 3569 ret = send_halfclose(ep); 3570 } 3571 if (ret) { 3572 set_bit(EP_DISC_FAIL, &ep->com.history); 3573 if (!abrupt) { 3574 stop_ep_timer(ep); 3575 close_complete_upcall(ep, -EIO); 3576 } 3577 if (ep->com.qp) { 3578 struct c4iw_qp_attributes attrs; 3579 3580 attrs.next_state = C4IW_QP_STATE_ERROR; 3581 ret = c4iw_modify_qp(ep->com.qp->rhp, 3582 ep->com.qp, 3583 C4IW_QP_ATTR_NEXT_STATE, 3584 &attrs, 1); 3585 if (ret) 3586 pr_err(MOD 3587 "%s - qp <- error failed!\n", 3588 __func__); 3589 } 3590 fatal = 1; 3591 } 3592 } 3593 mutex_unlock(&ep->com.mutex); 3594 c4iw_put_ep(&ep->com); 3595 if (fatal) 3596 release_ep_resources(ep); 3597 return ret; 3598 } 3599 3600 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3601 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3602 { 3603 struct c4iw_ep *ep; 3604 int atid = be32_to_cpu(req->tid); 3605 3606 ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids, 3607 (__force u32) req->tid); 3608 if (!ep) 3609 return; 3610 3611 switch (req->retval) { 3612 case FW_ENOMEM: 3613 set_bit(ACT_RETRY_NOMEM, &ep->com.history); 3614 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3615 send_fw_act_open_req(ep, atid); 3616 return; 3617 } 3618 case FW_EADDRINUSE: 3619 set_bit(ACT_RETRY_INUSE, &ep->com.history); 3620 if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) { 3621 send_fw_act_open_req(ep, atid); 3622 return; 3623 } 3624 break; 3625 default: 3626 pr_info("%s unexpected ofld conn wr retval %d\n", 3627 __func__, req->retval); 3628 break; 3629 } 3630 pr_err("active ofld_connect_wr failure %d atid %d\n", 3631 req->retval, atid); 3632 mutex_lock(&dev->rdev.stats.lock); 3633 dev->rdev.stats.act_ofld_conn_fails++; 3634 mutex_unlock(&dev->rdev.stats.lock); 3635 connect_reply_upcall(ep, status2errno(req->retval)); 3636 state_set(&ep->com, DEAD); 3637 if (ep->com.remote_addr.ss_family == AF_INET6) { 3638 struct sockaddr_in6 *sin6 = 3639 (struct sockaddr_in6 *)&ep->com.local_addr; 3640 cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0], 3641 (const u32 *)&sin6->sin6_addr.s6_addr, 1); 3642 } 3643 remove_handle(dev, &dev->atid_idr, atid); 3644 cxgb4_free_atid(dev->rdev.lldi.tids, atid); 3645 dst_release(ep->dst); 3646 cxgb4_l2t_release(ep->l2t); 3647 c4iw_put_ep(&ep->com); 3648 } 3649 3650 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb, 3651 struct cpl_fw6_msg_ofld_connection_wr_rpl *req) 3652 { 3653 struct sk_buff *rpl_skb; 3654 struct cpl_pass_accept_req *cpl; 3655 int ret; 3656 3657 rpl_skb = (struct sk_buff *)(unsigned long)req->cookie; 3658 BUG_ON(!rpl_skb); 3659 if (req->retval) { 3660 PDBG("%s passive open failure %d\n", __func__, req->retval); 3661 mutex_lock(&dev->rdev.stats.lock); 3662 dev->rdev.stats.pas_ofld_conn_fails++; 3663 mutex_unlock(&dev->rdev.stats.lock); 3664 kfree_skb(rpl_skb); 3665 } else { 3666 cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb); 3667 OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 3668 (__force u32) htonl( 3669 (__force u32) req->tid))); 3670 ret = pass_accept_req(dev, rpl_skb); 3671 if (!ret) 3672 kfree_skb(rpl_skb); 3673 } 3674 return; 3675 } 3676 3677 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 3678 { 3679 struct cpl_fw6_msg *rpl = cplhdr(skb); 3680 struct cpl_fw6_msg_ofld_connection_wr_rpl *req; 3681 3682 switch (rpl->type) { 3683 case FW6_TYPE_CQE: 3684 c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]); 3685 break; 3686 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 3687 req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data; 3688 switch (req->t_state) { 3689 case TCP_SYN_SENT: 3690 active_ofld_conn_reply(dev, skb, req); 3691 break; 3692 case TCP_SYN_RECV: 3693 passive_ofld_conn_reply(dev, skb, req); 3694 break; 3695 default: 3696 pr_err("%s unexpected ofld conn wr state %d\n", 3697 __func__, req->t_state); 3698 break; 3699 } 3700 break; 3701 } 3702 return 0; 3703 } 3704 3705 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos) 3706 { 3707 __be32 l2info; 3708 __be16 hdr_len, vlantag, len; 3709 u16 eth_hdr_len; 3710 int tcp_hdr_len, ip_hdr_len; 3711 u8 intf; 3712 struct cpl_rx_pkt *cpl = cplhdr(skb); 3713 struct cpl_pass_accept_req *req; 3714 struct tcp_options_received tmp_opt; 3715 struct c4iw_dev *dev; 3716 enum chip_type type; 3717 3718 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 3719 /* Store values from cpl_rx_pkt in temporary location. */ 3720 vlantag = cpl->vlan; 3721 len = cpl->len; 3722 l2info = cpl->l2info; 3723 hdr_len = cpl->hdr_len; 3724 intf = cpl->iff; 3725 3726 __skb_pull(skb, sizeof(*req) + sizeof(struct rss_header)); 3727 3728 /* 3729 * We need to parse the TCP options from SYN packet. 3730 * to generate cpl_pass_accept_req. 3731 */ 3732 memset(&tmp_opt, 0, sizeof(tmp_opt)); 3733 tcp_clear_options(&tmp_opt); 3734 tcp_parse_options(skb, &tmp_opt, 0, NULL); 3735 3736 req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req)); 3737 memset(req, 0, sizeof(*req)); 3738 req->l2info = cpu_to_be16(SYN_INTF_V(intf) | 3739 SYN_MAC_IDX_V(RX_MACIDX_G( 3740 be32_to_cpu(l2info))) | 3741 SYN_XACT_MATCH_F); 3742 type = dev->rdev.lldi.adapter_type; 3743 tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len)); 3744 ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len)); 3745 req->hdr_len = 3746 cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info)))); 3747 if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) { 3748 eth_hdr_len = is_t4(type) ? 3749 RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) : 3750 RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3751 req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) | 3752 IP_HDR_LEN_V(ip_hdr_len) | 3753 ETH_HDR_LEN_V(eth_hdr_len)); 3754 } else { /* T6 and later */ 3755 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info)); 3756 req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) | 3757 T6_IP_HDR_LEN_V(ip_hdr_len) | 3758 T6_ETH_HDR_LEN_V(eth_hdr_len)); 3759 } 3760 req->vlan = vlantag; 3761 req->len = len; 3762 req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) | 3763 PASS_OPEN_TOS_V(tos)); 3764 req->tcpopt.mss = htons(tmp_opt.mss_clamp); 3765 if (tmp_opt.wscale_ok) 3766 req->tcpopt.wsf = tmp_opt.snd_wscale; 3767 req->tcpopt.tstamp = tmp_opt.saw_tstamp; 3768 if (tmp_opt.sack_ok) 3769 req->tcpopt.sack = 1; 3770 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0)); 3771 return; 3772 } 3773 3774 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb, 3775 __be32 laddr, __be16 lport, 3776 __be32 raddr, __be16 rport, 3777 u32 rcv_isn, u32 filter, u16 window, 3778 u32 rss_qid, u8 port_id) 3779 { 3780 struct sk_buff *req_skb; 3781 struct fw_ofld_connection_wr *req; 3782 struct cpl_pass_accept_req *cpl = cplhdr(skb); 3783 int ret; 3784 3785 req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL); 3786 req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req)); 3787 memset(req, 0, sizeof(*req)); 3788 req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F); 3789 req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16))); 3790 req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F); 3791 req->le.filter = (__force __be32) filter; 3792 req->le.lport = lport; 3793 req->le.pport = rport; 3794 req->le.u.ipv4.lip = laddr; 3795 req->le.u.ipv4.pip = raddr; 3796 req->tcb.rcv_nxt = htonl(rcv_isn + 1); 3797 req->tcb.rcv_adv = htons(window); 3798 req->tcb.t_state_to_astid = 3799 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) | 3800 FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) | 3801 FW_OFLD_CONNECTION_WR_ASTID_V( 3802 PASS_OPEN_TID_G(ntohl(cpl->tos_stid)))); 3803 3804 /* 3805 * We store the qid in opt2 which will be used by the firmware 3806 * to send us the wr response. 3807 */ 3808 req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid)); 3809 3810 /* 3811 * We initialize the MSS index in TCB to 0xF. 3812 * So that when driver sends cpl_pass_accept_rpl 3813 * TCB picks up the correct value. If this was 0 3814 * TP will ignore any value > 0 for MSS index. 3815 */ 3816 req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF)); 3817 req->cookie = (uintptr_t)skb; 3818 3819 set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id); 3820 ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb); 3821 if (ret < 0) { 3822 pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__, 3823 ret); 3824 kfree_skb(skb); 3825 kfree_skb(req_skb); 3826 } 3827 } 3828 3829 /* 3830 * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt 3831 * messages when a filter is being used instead of server to 3832 * redirect a syn packet. When packets hit filter they are redirected 3833 * to the offload queue and driver tries to establish the connection 3834 * using firmware work request. 3835 */ 3836 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb) 3837 { 3838 int stid; 3839 unsigned int filter; 3840 struct ethhdr *eh = NULL; 3841 struct vlan_ethhdr *vlan_eh = NULL; 3842 struct iphdr *iph; 3843 struct tcphdr *tcph; 3844 struct rss_header *rss = (void *)skb->data; 3845 struct cpl_rx_pkt *cpl = (void *)skb->data; 3846 struct cpl_pass_accept_req *req = (void *)(rss + 1); 3847 struct l2t_entry *e; 3848 struct dst_entry *dst; 3849 struct c4iw_ep *lep = NULL; 3850 u16 window; 3851 struct port_info *pi; 3852 struct net_device *pdev; 3853 u16 rss_qid, eth_hdr_len; 3854 int step; 3855 u32 tx_chan; 3856 struct neighbour *neigh; 3857 3858 /* Drop all non-SYN packets */ 3859 if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F))) 3860 goto reject; 3861 3862 /* 3863 * Drop all packets which did not hit the filter. 3864 * Unlikely to happen. 3865 */ 3866 if (!(rss->filter_hit && rss->filter_tid)) 3867 goto reject; 3868 3869 /* 3870 * Calculate the server tid from filter hit index from cpl_rx_pkt. 3871 */ 3872 stid = (__force int) cpu_to_be32((__force u32) rss->hash_val); 3873 3874 lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid); 3875 if (!lep) { 3876 PDBG("%s connect request on invalid stid %d\n", __func__, stid); 3877 goto reject; 3878 } 3879 3880 switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) { 3881 case CHELSIO_T4: 3882 eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3883 break; 3884 case CHELSIO_T5: 3885 eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3886 break; 3887 case CHELSIO_T6: 3888 eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info)); 3889 break; 3890 default: 3891 pr_err("T%d Chip is not supported\n", 3892 CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)); 3893 goto reject; 3894 } 3895 3896 if (eth_hdr_len == ETH_HLEN) { 3897 eh = (struct ethhdr *)(req + 1); 3898 iph = (struct iphdr *)(eh + 1); 3899 } else { 3900 vlan_eh = (struct vlan_ethhdr *)(req + 1); 3901 iph = (struct iphdr *)(vlan_eh + 1); 3902 skb->vlan_tci = ntohs(cpl->vlan); 3903 } 3904 3905 if (iph->version != 0x4) 3906 goto reject; 3907 3908 tcph = (struct tcphdr *)(iph + 1); 3909 skb_set_network_header(skb, (void *)iph - (void *)rss); 3910 skb_set_transport_header(skb, (void *)tcph - (void *)rss); 3911 skb_get(skb); 3912 3913 PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__, 3914 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr), 3915 ntohs(tcph->source), iph->tos); 3916 3917 dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev, 3918 iph->daddr, iph->saddr, tcph->dest, 3919 tcph->source, iph->tos); 3920 if (!dst) { 3921 pr_err("%s - failed to find dst entry!\n", 3922 __func__); 3923 goto reject; 3924 } 3925 neigh = dst_neigh_lookup_skb(dst, skb); 3926 3927 if (!neigh) { 3928 pr_err("%s - failed to allocate neigh!\n", 3929 __func__); 3930 goto free_dst; 3931 } 3932 3933 if (neigh->dev->flags & IFF_LOOPBACK) { 3934 pdev = ip_dev_find(&init_net, iph->daddr); 3935 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3936 pdev, 0); 3937 pi = (struct port_info *)netdev_priv(pdev); 3938 tx_chan = cxgb4_port_chan(pdev); 3939 dev_put(pdev); 3940 } else { 3941 pdev = get_real_dev(neigh->dev); 3942 e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh, 3943 pdev, 0); 3944 pi = (struct port_info *)netdev_priv(pdev); 3945 tx_chan = cxgb4_port_chan(pdev); 3946 } 3947 neigh_release(neigh); 3948 if (!e) { 3949 pr_err("%s - failed to allocate l2t entry!\n", 3950 __func__); 3951 goto free_dst; 3952 } 3953 3954 step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan; 3955 rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step]; 3956 window = (__force u16) htons((__force u16)tcph->window); 3957 3958 /* Calcuate filter portion for LE region. */ 3959 filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple( 3960 dev->rdev.lldi.ports[0], 3961 e)); 3962 3963 /* 3964 * Synthesize the cpl_pass_accept_req. We have everything except the 3965 * TID. Once firmware sends a reply with TID we update the TID field 3966 * in cpl and pass it through the regular cpl_pass_accept_req path. 3967 */ 3968 build_cpl_pass_accept_req(skb, stid, iph->tos); 3969 send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr, 3970 tcph->source, ntohl(tcph->seq), filter, window, 3971 rss_qid, pi->port_id); 3972 cxgb4_l2t_release(e); 3973 free_dst: 3974 dst_release(dst); 3975 reject: 3976 if (lep) 3977 c4iw_put_ep(&lep->com); 3978 return 0; 3979 } 3980 3981 /* 3982 * These are the real handlers that are called from a 3983 * work queue. 3984 */ 3985 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = { 3986 [CPL_ACT_ESTABLISH] = act_establish, 3987 [CPL_ACT_OPEN_RPL] = act_open_rpl, 3988 [CPL_RX_DATA] = rx_data, 3989 [CPL_ABORT_RPL_RSS] = abort_rpl, 3990 [CPL_ABORT_RPL] = abort_rpl, 3991 [CPL_PASS_OPEN_RPL] = pass_open_rpl, 3992 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl, 3993 [CPL_PASS_ACCEPT_REQ] = pass_accept_req, 3994 [CPL_PASS_ESTABLISH] = pass_establish, 3995 [CPL_PEER_CLOSE] = peer_close, 3996 [CPL_ABORT_REQ_RSS] = peer_abort, 3997 [CPL_CLOSE_CON_RPL] = close_con_rpl, 3998 [CPL_RDMA_TERMINATE] = terminate, 3999 [CPL_FW4_ACK] = fw4_ack, 4000 [CPL_FW6_MSG] = deferred_fw6_msg, 4001 [CPL_RX_PKT] = rx_pkt, 4002 [FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe, 4003 [FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe 4004 }; 4005 4006 static void process_timeout(struct c4iw_ep *ep) 4007 { 4008 struct c4iw_qp_attributes attrs; 4009 int abort = 1; 4010 4011 mutex_lock(&ep->com.mutex); 4012 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid, 4013 ep->com.state); 4014 set_bit(TIMEDOUT, &ep->com.history); 4015 switch (ep->com.state) { 4016 case MPA_REQ_SENT: 4017 connect_reply_upcall(ep, -ETIMEDOUT); 4018 break; 4019 case MPA_REQ_WAIT: 4020 case MPA_REQ_RCVD: 4021 case MPA_REP_SENT: 4022 case FPDU_MODE: 4023 break; 4024 case CLOSING: 4025 case MORIBUND: 4026 if (ep->com.cm_id && ep->com.qp) { 4027 attrs.next_state = C4IW_QP_STATE_ERROR; 4028 c4iw_modify_qp(ep->com.qp->rhp, 4029 ep->com.qp, C4IW_QP_ATTR_NEXT_STATE, 4030 &attrs, 1); 4031 } 4032 close_complete_upcall(ep, -ETIMEDOUT); 4033 break; 4034 case ABORTING: 4035 case DEAD: 4036 4037 /* 4038 * These states are expected if the ep timed out at the same 4039 * time as another thread was calling stop_ep_timer(). 4040 * So we silently do nothing for these states. 4041 */ 4042 abort = 0; 4043 break; 4044 default: 4045 WARN(1, "%s unexpected state ep %p tid %u state %u\n", 4046 __func__, ep, ep->hwtid, ep->com.state); 4047 abort = 0; 4048 } 4049 mutex_unlock(&ep->com.mutex); 4050 if (abort) 4051 c4iw_ep_disconnect(ep, 1, GFP_KERNEL); 4052 c4iw_put_ep(&ep->com); 4053 } 4054 4055 static void process_timedout_eps(void) 4056 { 4057 struct c4iw_ep *ep; 4058 4059 spin_lock_irq(&timeout_lock); 4060 while (!list_empty(&timeout_list)) { 4061 struct list_head *tmp; 4062 4063 tmp = timeout_list.next; 4064 list_del(tmp); 4065 tmp->next = NULL; 4066 tmp->prev = NULL; 4067 spin_unlock_irq(&timeout_lock); 4068 ep = list_entry(tmp, struct c4iw_ep, entry); 4069 process_timeout(ep); 4070 spin_lock_irq(&timeout_lock); 4071 } 4072 spin_unlock_irq(&timeout_lock); 4073 } 4074 4075 static void process_work(struct work_struct *work) 4076 { 4077 struct sk_buff *skb = NULL; 4078 struct c4iw_dev *dev; 4079 struct cpl_act_establish *rpl; 4080 unsigned int opcode; 4081 int ret; 4082 4083 process_timedout_eps(); 4084 while ((skb = skb_dequeue(&rxq))) { 4085 rpl = cplhdr(skb); 4086 dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *))); 4087 opcode = rpl->ot.opcode; 4088 4089 BUG_ON(!work_handlers[opcode]); 4090 ret = work_handlers[opcode](dev, skb); 4091 if (!ret) 4092 kfree_skb(skb); 4093 process_timedout_eps(); 4094 } 4095 } 4096 4097 static DECLARE_WORK(skb_work, process_work); 4098 4099 static void ep_timeout(unsigned long arg) 4100 { 4101 struct c4iw_ep *ep = (struct c4iw_ep *)arg; 4102 int kickit = 0; 4103 4104 spin_lock(&timeout_lock); 4105 if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) { 4106 /* 4107 * Only insert if it is not already on the list. 4108 */ 4109 if (!ep->entry.next) { 4110 list_add_tail(&ep->entry, &timeout_list); 4111 kickit = 1; 4112 } 4113 } 4114 spin_unlock(&timeout_lock); 4115 if (kickit) 4116 queue_work(workq, &skb_work); 4117 } 4118 4119 /* 4120 * All the CM events are handled on a work queue to have a safe context. 4121 */ 4122 static int sched(struct c4iw_dev *dev, struct sk_buff *skb) 4123 { 4124 4125 /* 4126 * Save dev in the skb->cb area. 4127 */ 4128 *((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev; 4129 4130 /* 4131 * Queue the skb and schedule the worker thread. 4132 */ 4133 skb_queue_tail(&rxq, skb); 4134 queue_work(workq, &skb_work); 4135 return 0; 4136 } 4137 4138 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb) 4139 { 4140 struct cpl_set_tcb_rpl *rpl = cplhdr(skb); 4141 4142 if (rpl->status != CPL_ERR_NONE) { 4143 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u " 4144 "for tid %u\n", rpl->status, GET_TID(rpl)); 4145 } 4146 kfree_skb(skb); 4147 return 0; 4148 } 4149 4150 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb) 4151 { 4152 struct cpl_fw6_msg *rpl = cplhdr(skb); 4153 struct c4iw_wr_wait *wr_waitp; 4154 int ret; 4155 4156 PDBG("%s type %u\n", __func__, rpl->type); 4157 4158 switch (rpl->type) { 4159 case FW6_TYPE_WR_RPL: 4160 ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff); 4161 wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1]; 4162 PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret); 4163 if (wr_waitp) 4164 c4iw_wake_up(wr_waitp, ret ? -ret : 0); 4165 kfree_skb(skb); 4166 break; 4167 case FW6_TYPE_CQE: 4168 case FW6_TYPE_OFLD_CONNECTION_WR_RPL: 4169 sched(dev, skb); 4170 break; 4171 default: 4172 printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__, 4173 rpl->type); 4174 kfree_skb(skb); 4175 break; 4176 } 4177 return 0; 4178 } 4179 4180 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb) 4181 { 4182 struct cpl_abort_req_rss *req = cplhdr(skb); 4183 struct c4iw_ep *ep; 4184 unsigned int tid = GET_TID(req); 4185 4186 ep = get_ep_from_tid(dev, tid); 4187 /* This EP will be dereferenced in peer_abort() */ 4188 if (!ep) { 4189 printk(KERN_WARNING MOD 4190 "Abort on non-existent endpoint, tid %d\n", tid); 4191 kfree_skb(skb); 4192 return 0; 4193 } 4194 if (cxgb_is_neg_adv(req->status)) { 4195 PDBG("%s Negative advice on abort- tid %u status %d (%s)\n", 4196 __func__, ep->hwtid, req->status, 4197 neg_adv_str(req->status)); 4198 goto out; 4199 } 4200 PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid, 4201 ep->com.state); 4202 4203 c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET); 4204 out: 4205 sched(dev, skb); 4206 return 0; 4207 } 4208 4209 /* 4210 * Most upcalls from the T4 Core go to sched() to 4211 * schedule the processing on a work queue. 4212 */ 4213 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = { 4214 [CPL_ACT_ESTABLISH] = sched, 4215 [CPL_ACT_OPEN_RPL] = sched, 4216 [CPL_RX_DATA] = sched, 4217 [CPL_ABORT_RPL_RSS] = sched, 4218 [CPL_ABORT_RPL] = sched, 4219 [CPL_PASS_OPEN_RPL] = sched, 4220 [CPL_CLOSE_LISTSRV_RPL] = sched, 4221 [CPL_PASS_ACCEPT_REQ] = sched, 4222 [CPL_PASS_ESTABLISH] = sched, 4223 [CPL_PEER_CLOSE] = sched, 4224 [CPL_CLOSE_CON_RPL] = sched, 4225 [CPL_ABORT_REQ_RSS] = peer_abort_intr, 4226 [CPL_RDMA_TERMINATE] = sched, 4227 [CPL_FW4_ACK] = sched, 4228 [CPL_SET_TCB_RPL] = set_tcb_rpl, 4229 [CPL_FW6_MSG] = fw6_msg, 4230 [CPL_RX_PKT] = sched 4231 }; 4232 4233 int __init c4iw_cm_init(void) 4234 { 4235 spin_lock_init(&timeout_lock); 4236 skb_queue_head_init(&rxq); 4237 4238 workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM); 4239 if (!workq) 4240 return -ENOMEM; 4241 4242 return 0; 4243 } 4244 4245 void c4iw_cm_term(void) 4246 { 4247 WARN_ON(!list_empty(&timeout_list)); 4248 flush_workqueue(workq); 4249 destroy_workqueue(workq); 4250 } 4251