xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/cm.c (revision 0edbfea5)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include "iw_cxgb4.h"
53 #include "clip_tbl.h"
54 
55 static char *states[] = {
56 	"idle",
57 	"listen",
58 	"connecting",
59 	"mpa_wait_req",
60 	"mpa_req_sent",
61 	"mpa_req_rcvd",
62 	"mpa_rep_sent",
63 	"fpdu_mode",
64 	"aborting",
65 	"closing",
66 	"moribund",
67 	"dead",
68 	NULL,
69 };
70 
71 static int nocong;
72 module_param(nocong, int, 0644);
73 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
74 
75 static int enable_ecn;
76 module_param(enable_ecn, int, 0644);
77 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
78 
79 static int dack_mode = 1;
80 module_param(dack_mode, int, 0644);
81 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
82 
83 uint c4iw_max_read_depth = 32;
84 module_param(c4iw_max_read_depth, int, 0644);
85 MODULE_PARM_DESC(c4iw_max_read_depth,
86 		 "Per-connection max ORD/IRD (default=32)");
87 
88 static int enable_tcp_timestamps;
89 module_param(enable_tcp_timestamps, int, 0644);
90 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
91 
92 static int enable_tcp_sack;
93 module_param(enable_tcp_sack, int, 0644);
94 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
95 
96 static int enable_tcp_window_scaling = 1;
97 module_param(enable_tcp_window_scaling, int, 0644);
98 MODULE_PARM_DESC(enable_tcp_window_scaling,
99 		 "Enable tcp window scaling (default=1)");
100 
101 int c4iw_debug;
102 module_param(c4iw_debug, int, 0644);
103 MODULE_PARM_DESC(c4iw_debug, "Enable debug logging (default=0)");
104 
105 static int peer2peer = 1;
106 module_param(peer2peer, int, 0644);
107 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
108 
109 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
110 module_param(p2p_type, int, 0644);
111 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
112 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
113 
114 static int ep_timeout_secs = 60;
115 module_param(ep_timeout_secs, int, 0644);
116 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
117 				   "in seconds (default=60)");
118 
119 static int mpa_rev = 2;
120 module_param(mpa_rev, int, 0644);
121 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
122 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
123 		" compliant (default=2)");
124 
125 static int markers_enabled;
126 module_param(markers_enabled, int, 0644);
127 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
128 
129 static int crc_enabled = 1;
130 module_param(crc_enabled, int, 0644);
131 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
132 
133 static int rcv_win = 256 * 1024;
134 module_param(rcv_win, int, 0644);
135 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
136 
137 static int snd_win = 128 * 1024;
138 module_param(snd_win, int, 0644);
139 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
140 
141 static struct workqueue_struct *workq;
142 
143 static struct sk_buff_head rxq;
144 
145 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
146 static void ep_timeout(unsigned long arg);
147 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
148 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
149 
150 static LIST_HEAD(timeout_list);
151 static spinlock_t timeout_lock;
152 
153 static void deref_cm_id(struct c4iw_ep_common *epc)
154 {
155 	epc->cm_id->rem_ref(epc->cm_id);
156 	epc->cm_id = NULL;
157 	set_bit(CM_ID_DEREFED, &epc->history);
158 }
159 
160 static void ref_cm_id(struct c4iw_ep_common *epc)
161 {
162 	set_bit(CM_ID_REFED, &epc->history);
163 	epc->cm_id->add_ref(epc->cm_id);
164 }
165 
166 static void deref_qp(struct c4iw_ep *ep)
167 {
168 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
169 	clear_bit(QP_REFERENCED, &ep->com.flags);
170 	set_bit(QP_DEREFED, &ep->com.history);
171 }
172 
173 static void ref_qp(struct c4iw_ep *ep)
174 {
175 	set_bit(QP_REFERENCED, &ep->com.flags);
176 	set_bit(QP_REFED, &ep->com.history);
177 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
178 }
179 
180 static void start_ep_timer(struct c4iw_ep *ep)
181 {
182 	PDBG("%s ep %p\n", __func__, ep);
183 	if (timer_pending(&ep->timer)) {
184 		pr_err("%s timer already started! ep %p\n",
185 		       __func__, ep);
186 		return;
187 	}
188 	clear_bit(TIMEOUT, &ep->com.flags);
189 	c4iw_get_ep(&ep->com);
190 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
191 	ep->timer.data = (unsigned long)ep;
192 	ep->timer.function = ep_timeout;
193 	add_timer(&ep->timer);
194 }
195 
196 static int stop_ep_timer(struct c4iw_ep *ep)
197 {
198 	PDBG("%s ep %p stopping\n", __func__, ep);
199 	del_timer_sync(&ep->timer);
200 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
201 		c4iw_put_ep(&ep->com);
202 		return 0;
203 	}
204 	return 1;
205 }
206 
207 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
208 		  struct l2t_entry *l2e)
209 {
210 	int	error = 0;
211 
212 	if (c4iw_fatal_error(rdev)) {
213 		kfree_skb(skb);
214 		PDBG("%s - device in error state - dropping\n", __func__);
215 		return -EIO;
216 	}
217 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
218 	if (error < 0)
219 		kfree_skb(skb);
220 	else if (error == NET_XMIT_DROP)
221 		return -ENOMEM;
222 	return error < 0 ? error : 0;
223 }
224 
225 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
226 {
227 	int	error = 0;
228 
229 	if (c4iw_fatal_error(rdev)) {
230 		kfree_skb(skb);
231 		PDBG("%s - device in error state - dropping\n", __func__);
232 		return -EIO;
233 	}
234 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
235 	if (error < 0)
236 		kfree_skb(skb);
237 	return error < 0 ? error : 0;
238 }
239 
240 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
241 {
242 	struct cpl_tid_release *req;
243 
244 	skb = get_skb(skb, sizeof *req, GFP_KERNEL);
245 	if (!skb)
246 		return;
247 	req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
248 	INIT_TP_WR(req, hwtid);
249 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
250 	set_wr_txq(skb, CPL_PRIORITY_SETUP, 0);
251 	c4iw_ofld_send(rdev, skb);
252 	return;
253 }
254 
255 static void set_emss(struct c4iw_ep *ep, u16 opt)
256 {
257 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
258 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
259 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
260 		   sizeof(struct tcphdr);
261 	ep->mss = ep->emss;
262 	if (TCPOPT_TSTAMP_G(opt))
263 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
264 	if (ep->emss < 128)
265 		ep->emss = 128;
266 	if (ep->emss & 7)
267 		PDBG("Warning: misaligned mtu idx %u mss %u emss=%u\n",
268 		     TCPOPT_MSS_G(opt), ep->mss, ep->emss);
269 	PDBG("%s mss_idx %u mss %u emss=%u\n", __func__, TCPOPT_MSS_G(opt),
270 	     ep->mss, ep->emss);
271 }
272 
273 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
274 {
275 	enum c4iw_ep_state state;
276 
277 	mutex_lock(&epc->mutex);
278 	state = epc->state;
279 	mutex_unlock(&epc->mutex);
280 	return state;
281 }
282 
283 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
284 {
285 	epc->state = new;
286 }
287 
288 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
289 {
290 	mutex_lock(&epc->mutex);
291 	PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
292 	__state_set(epc, new);
293 	mutex_unlock(&epc->mutex);
294 	return;
295 }
296 
297 static void *alloc_ep(int size, gfp_t gfp)
298 {
299 	struct c4iw_ep_common *epc;
300 
301 	epc = kzalloc(size, gfp);
302 	if (epc) {
303 		kref_init(&epc->kref);
304 		mutex_init(&epc->mutex);
305 		c4iw_init_wr_wait(&epc->wr_wait);
306 	}
307 	PDBG("%s alloc ep %p\n", __func__, epc);
308 	return epc;
309 }
310 
311 static void remove_ep_tid(struct c4iw_ep *ep)
312 {
313 	unsigned long flags;
314 
315 	spin_lock_irqsave(&ep->com.dev->lock, flags);
316 	_remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
317 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
318 }
319 
320 static void insert_ep_tid(struct c4iw_ep *ep)
321 {
322 	unsigned long flags;
323 
324 	spin_lock_irqsave(&ep->com.dev->lock, flags);
325 	_insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
326 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
327 }
328 
329 /*
330  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
331  */
332 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
333 {
334 	struct c4iw_ep *ep;
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(&dev->lock, flags);
338 	ep = idr_find(&dev->hwtid_idr, tid);
339 	if (ep)
340 		c4iw_get_ep(&ep->com);
341 	spin_unlock_irqrestore(&dev->lock, flags);
342 	return ep;
343 }
344 
345 /*
346  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
347  */
348 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
349 					       unsigned int stid)
350 {
351 	struct c4iw_listen_ep *ep;
352 	unsigned long flags;
353 
354 	spin_lock_irqsave(&dev->lock, flags);
355 	ep = idr_find(&dev->stid_idr, stid);
356 	if (ep)
357 		c4iw_get_ep(&ep->com);
358 	spin_unlock_irqrestore(&dev->lock, flags);
359 	return ep;
360 }
361 
362 void _c4iw_free_ep(struct kref *kref)
363 {
364 	struct c4iw_ep *ep;
365 
366 	ep = container_of(kref, struct c4iw_ep, com.kref);
367 	PDBG("%s ep %p state %s\n", __func__, ep, states[ep->com.state]);
368 	if (test_bit(QP_REFERENCED, &ep->com.flags))
369 		deref_qp(ep);
370 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
371 		if (ep->com.remote_addr.ss_family == AF_INET6) {
372 			struct sockaddr_in6 *sin6 =
373 					(struct sockaddr_in6 *)
374 					&ep->com.local_addr;
375 
376 			cxgb4_clip_release(
377 					ep->com.dev->rdev.lldi.ports[0],
378 					(const u32 *)&sin6->sin6_addr.s6_addr,
379 					1);
380 		}
381 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
382 		dst_release(ep->dst);
383 		cxgb4_l2t_release(ep->l2t);
384 		if (ep->mpa_skb)
385 			kfree_skb(ep->mpa_skb);
386 	}
387 	kfree(ep);
388 }
389 
390 static void release_ep_resources(struct c4iw_ep *ep)
391 {
392 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
393 
394 	/*
395 	 * If we have a hwtid, then remove it from the idr table
396 	 * so lookups will no longer find this endpoint.  Otherwise
397 	 * we have a race where one thread finds the ep ptr just
398 	 * before the other thread is freeing the ep memory.
399 	 */
400 	if (ep->hwtid != -1)
401 		remove_ep_tid(ep);
402 	c4iw_put_ep(&ep->com);
403 }
404 
405 static int status2errno(int status)
406 {
407 	switch (status) {
408 	case CPL_ERR_NONE:
409 		return 0;
410 	case CPL_ERR_CONN_RESET:
411 		return -ECONNRESET;
412 	case CPL_ERR_ARP_MISS:
413 		return -EHOSTUNREACH;
414 	case CPL_ERR_CONN_TIMEDOUT:
415 		return -ETIMEDOUT;
416 	case CPL_ERR_TCAM_FULL:
417 		return -ENOMEM;
418 	case CPL_ERR_CONN_EXIST:
419 		return -EADDRINUSE;
420 	default:
421 		return -EIO;
422 	}
423 }
424 
425 /*
426  * Try and reuse skbs already allocated...
427  */
428 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
429 {
430 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
431 		skb_trim(skb, 0);
432 		skb_get(skb);
433 		skb_reset_transport_header(skb);
434 	} else {
435 		skb = alloc_skb(len, gfp);
436 	}
437 	t4_set_arp_err_handler(skb, NULL, NULL);
438 	return skb;
439 }
440 
441 static struct net_device *get_real_dev(struct net_device *egress_dev)
442 {
443 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
444 }
445 
446 static int our_interface(struct c4iw_dev *dev, struct net_device *egress_dev)
447 {
448 	int i;
449 
450 	egress_dev = get_real_dev(egress_dev);
451 	for (i = 0; i < dev->rdev.lldi.nports; i++)
452 		if (dev->rdev.lldi.ports[i] == egress_dev)
453 			return 1;
454 	return 0;
455 }
456 
457 static struct dst_entry *find_route6(struct c4iw_dev *dev, __u8 *local_ip,
458 				     __u8 *peer_ip, __be16 local_port,
459 				     __be16 peer_port, u8 tos,
460 				     __u32 sin6_scope_id)
461 {
462 	struct dst_entry *dst = NULL;
463 
464 	if (IS_ENABLED(CONFIG_IPV6)) {
465 		struct flowi6 fl6;
466 
467 		memset(&fl6, 0, sizeof(fl6));
468 		memcpy(&fl6.daddr, peer_ip, 16);
469 		memcpy(&fl6.saddr, local_ip, 16);
470 		if (ipv6_addr_type(&fl6.daddr) & IPV6_ADDR_LINKLOCAL)
471 			fl6.flowi6_oif = sin6_scope_id;
472 		dst = ip6_route_output(&init_net, NULL, &fl6);
473 		if (!dst)
474 			goto out;
475 		if (!our_interface(dev, ip6_dst_idev(dst)->dev) &&
476 		    !(ip6_dst_idev(dst)->dev->flags & IFF_LOOPBACK)) {
477 			dst_release(dst);
478 			dst = NULL;
479 		}
480 	}
481 
482 out:
483 	return dst;
484 }
485 
486 static struct dst_entry *find_route(struct c4iw_dev *dev, __be32 local_ip,
487 				 __be32 peer_ip, __be16 local_port,
488 				 __be16 peer_port, u8 tos)
489 {
490 	struct rtable *rt;
491 	struct flowi4 fl4;
492 	struct neighbour *n;
493 
494 	rt = ip_route_output_ports(&init_net, &fl4, NULL, peer_ip, local_ip,
495 				   peer_port, local_port, IPPROTO_TCP,
496 				   tos, 0);
497 	if (IS_ERR(rt))
498 		return NULL;
499 	n = dst_neigh_lookup(&rt->dst, &peer_ip);
500 	if (!n)
501 		return NULL;
502 	if (!our_interface(dev, n->dev) &&
503 	    !(n->dev->flags & IFF_LOOPBACK)) {
504 		neigh_release(n);
505 		dst_release(&rt->dst);
506 		return NULL;
507 	}
508 	neigh_release(n);
509 	return &rt->dst;
510 }
511 
512 static void arp_failure_discard(void *handle, struct sk_buff *skb)
513 {
514 	pr_err(MOD "ARP failure\n");
515 	kfree_skb(skb);
516 }
517 
518 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
519 {
520 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
521 }
522 
523 enum {
524 	NUM_FAKE_CPLS = 2,
525 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
526 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
527 };
528 
529 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
530 {
531 	struct c4iw_ep *ep;
532 
533 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
534 	release_ep_resources(ep);
535 	return 0;
536 }
537 
538 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
539 {
540 	struct c4iw_ep *ep;
541 
542 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
543 	c4iw_put_ep(&ep->parent_ep->com);
544 	release_ep_resources(ep);
545 	return 0;
546 }
547 
548 /*
549  * Fake up a special CPL opcode and call sched() so process_work() will call
550  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
551  * because ARP error handlers are called in an ATOMIC context, and
552  * _c4iw_free_ep() needs to block.
553  */
554 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
555 				  int cpl)
556 {
557 	struct cpl_act_establish *rpl = cplhdr(skb);
558 
559 	/* Set our special ARP_FAILURE opcode */
560 	rpl->ot.opcode = cpl;
561 
562 	/*
563 	 * Save ep in the skb->cb area, after where sched() will save the dev
564 	 * ptr.
565 	 */
566 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
567 	sched(ep->com.dev, skb);
568 }
569 
570 /* Handle an ARP failure for an accept */
571 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
572 {
573 	struct c4iw_ep *ep = handle;
574 
575 	pr_err(MOD "ARP failure during accept - tid %u -dropping connection\n",
576 	       ep->hwtid);
577 
578 	__state_set(&ep->com, DEAD);
579 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
580 }
581 
582 /*
583  * Handle an ARP failure for an active open.
584  */
585 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
586 {
587 	struct c4iw_ep *ep = handle;
588 
589 	printk(KERN_ERR MOD "ARP failure during connect\n");
590 	connect_reply_upcall(ep, -EHOSTUNREACH);
591 	__state_set(&ep->com, DEAD);
592 	if (ep->com.remote_addr.ss_family == AF_INET6) {
593 		struct sockaddr_in6 *sin6 =
594 			(struct sockaddr_in6 *)&ep->com.local_addr;
595 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
596 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
597 	}
598 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
599 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
600 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
601 }
602 
603 /*
604  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
605  * and send it along.
606  */
607 static void abort_arp_failure(void *handle, struct sk_buff *skb)
608 {
609 	int ret;
610 	struct c4iw_ep *ep = handle;
611 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
612 	struct cpl_abort_req *req = cplhdr(skb);
613 
614 	PDBG("%s rdev %p\n", __func__, rdev);
615 	req->cmd = CPL_ABORT_NO_RST;
616 	ret = c4iw_ofld_send(rdev, skb);
617 	if (ret) {
618 		__state_set(&ep->com, DEAD);
619 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
620 	}
621 }
622 
623 static int send_flowc(struct c4iw_ep *ep, struct sk_buff *skb)
624 {
625 	unsigned int flowclen = 80;
626 	struct fw_flowc_wr *flowc;
627 	int i;
628 	u16 vlan = ep->l2t->vlan;
629 	int nparams;
630 
631 	if (vlan == CPL_L2T_VLAN_NONE)
632 		nparams = 8;
633 	else
634 		nparams = 9;
635 
636 	skb = get_skb(skb, flowclen, GFP_KERNEL);
637 	flowc = (struct fw_flowc_wr *)__skb_put(skb, flowclen);
638 
639 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
640 					   FW_FLOWC_WR_NPARAMS_V(nparams));
641 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(DIV_ROUND_UP(flowclen,
642 					  16)) | FW_WR_FLOWID_V(ep->hwtid));
643 
644 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
645 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
646 					    (ep->com.dev->rdev.lldi.pf));
647 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
648 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
649 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
650 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
651 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
652 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
653 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
654 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
655 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
656 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
657 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
658 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
659 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
660 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
661 	if (nparams == 9) {
662 		u16 pri;
663 
664 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
665 		flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
666 		flowc->mnemval[8].val = cpu_to_be32(pri);
667 	} else {
668 		/* Pad WR to 16 byte boundary */
669 		flowc->mnemval[8].mnemonic = 0;
670 		flowc->mnemval[8].val = 0;
671 	}
672 	for (i = 0; i < 9; i++) {
673 		flowc->mnemval[i].r4[0] = 0;
674 		flowc->mnemval[i].r4[1] = 0;
675 		flowc->mnemval[i].r4[2] = 0;
676 	}
677 
678 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
679 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
680 }
681 
682 static int send_halfclose(struct c4iw_ep *ep, gfp_t gfp)
683 {
684 	struct cpl_close_con_req *req;
685 	struct sk_buff *skb;
686 	int wrlen = roundup(sizeof *req, 16);
687 
688 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
689 	skb = get_skb(NULL, wrlen, gfp);
690 	if (!skb) {
691 		printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
692 		return -ENOMEM;
693 	}
694 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
695 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
696 	req = (struct cpl_close_con_req *) skb_put(skb, wrlen);
697 	memset(req, 0, wrlen);
698 	INIT_TP_WR(req, ep->hwtid);
699 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_CLOSE_CON_REQ,
700 						    ep->hwtid));
701 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
702 }
703 
704 static int send_abort(struct c4iw_ep *ep, struct sk_buff *skb, gfp_t gfp)
705 {
706 	struct cpl_abort_req *req;
707 	int wrlen = roundup(sizeof *req, 16);
708 
709 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
710 	skb = get_skb(skb, wrlen, gfp);
711 	if (!skb) {
712 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
713 		       __func__);
714 		return -ENOMEM;
715 	}
716 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
717 	t4_set_arp_err_handler(skb, ep, abort_arp_failure);
718 	req = (struct cpl_abort_req *) skb_put(skb, wrlen);
719 	memset(req, 0, wrlen);
720 	INIT_TP_WR(req, ep->hwtid);
721 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
722 	req->cmd = CPL_ABORT_SEND_RST;
723 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
724 }
725 
726 static void best_mtu(const unsigned short *mtus, unsigned short mtu,
727 		     unsigned int *idx, int use_ts, int ipv6)
728 {
729 	unsigned short hdr_size = (ipv6 ?
730 				   sizeof(struct ipv6hdr) :
731 				   sizeof(struct iphdr)) +
732 				  sizeof(struct tcphdr) +
733 				  (use_ts ?
734 				   round_up(TCPOLEN_TIMESTAMP, 4) : 0);
735 	unsigned short data_size = mtu - hdr_size;
736 
737 	cxgb4_best_aligned_mtu(mtus, hdr_size, data_size, 8, idx);
738 }
739 
740 static int send_connect(struct c4iw_ep *ep)
741 {
742 	struct cpl_act_open_req *req = NULL;
743 	struct cpl_t5_act_open_req *t5req = NULL;
744 	struct cpl_t6_act_open_req *t6req = NULL;
745 	struct cpl_act_open_req6 *req6 = NULL;
746 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
747 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
748 	struct sk_buff *skb;
749 	u64 opt0;
750 	u32 opt2;
751 	unsigned int mtu_idx;
752 	int wscale;
753 	int win, sizev4, sizev6, wrlen;
754 	struct sockaddr_in *la = (struct sockaddr_in *)
755 				 &ep->com.local_addr;
756 	struct sockaddr_in *ra = (struct sockaddr_in *)
757 				 &ep->com.remote_addr;
758 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
759 				   &ep->com.local_addr;
760 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
761 				   &ep->com.remote_addr;
762 	int ret;
763 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
764 	u32 isn = (prandom_u32() & ~7UL) - 1;
765 
766 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
767 	case CHELSIO_T4:
768 		sizev4 = sizeof(struct cpl_act_open_req);
769 		sizev6 = sizeof(struct cpl_act_open_req6);
770 		break;
771 	case CHELSIO_T5:
772 		sizev4 = sizeof(struct cpl_t5_act_open_req);
773 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
774 		break;
775 	case CHELSIO_T6:
776 		sizev4 = sizeof(struct cpl_t6_act_open_req);
777 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
778 		break;
779 	default:
780 		pr_err("T%d Chip is not supported\n",
781 		       CHELSIO_CHIP_VERSION(adapter_type));
782 		return -EINVAL;
783 	}
784 
785 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
786 			roundup(sizev4, 16) :
787 			roundup(sizev6, 16);
788 
789 	PDBG("%s ep %p atid %u\n", __func__, ep, ep->atid);
790 
791 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
792 	if (!skb) {
793 		printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
794 		       __func__);
795 		return -ENOMEM;
796 	}
797 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
798 
799 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
800 		 enable_tcp_timestamps,
801 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
802 	wscale = compute_wscale(rcv_win);
803 
804 	/*
805 	 * Specify the largest window that will fit in opt0. The
806 	 * remainder will be specified in the rx_data_ack.
807 	 */
808 	win = ep->rcv_win >> 10;
809 	if (win > RCV_BUFSIZ_M)
810 		win = RCV_BUFSIZ_M;
811 
812 	opt0 = (nocong ? NO_CONG_F : 0) |
813 	       KEEP_ALIVE_F |
814 	       DELACK_F |
815 	       WND_SCALE_V(wscale) |
816 	       MSS_IDX_V(mtu_idx) |
817 	       L2T_IDX_V(ep->l2t->idx) |
818 	       TX_CHAN_V(ep->tx_chan) |
819 	       SMAC_SEL_V(ep->smac_idx) |
820 	       DSCP_V(ep->tos >> 2) |
821 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
822 	       RCV_BUFSIZ_V(win);
823 	opt2 = RX_CHANNEL_V(0) |
824 	       CCTRL_ECN_V(enable_ecn) |
825 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
826 	if (enable_tcp_timestamps)
827 		opt2 |= TSTAMPS_EN_F;
828 	if (enable_tcp_sack)
829 		opt2 |= SACK_EN_F;
830 	if (wscale && enable_tcp_window_scaling)
831 		opt2 |= WND_SCALE_EN_F;
832 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
833 		if (peer2peer)
834 			isn += 4;
835 
836 		opt2 |= T5_OPT_2_VALID_F;
837 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
838 		opt2 |= T5_ISS_F;
839 	}
840 
841 	if (ep->com.remote_addr.ss_family == AF_INET6)
842 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
843 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
844 
845 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
846 
847 	if (ep->com.remote_addr.ss_family == AF_INET) {
848 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
849 		case CHELSIO_T4:
850 			req = (struct cpl_act_open_req *)skb_put(skb, wrlen);
851 			INIT_TP_WR(req, 0);
852 			break;
853 		case CHELSIO_T5:
854 			t5req = (struct cpl_t5_act_open_req *)skb_put(skb,
855 					wrlen);
856 			INIT_TP_WR(t5req, 0);
857 			req = (struct cpl_act_open_req *)t5req;
858 			break;
859 		case CHELSIO_T6:
860 			t6req = (struct cpl_t6_act_open_req *)skb_put(skb,
861 					wrlen);
862 			INIT_TP_WR(t6req, 0);
863 			req = (struct cpl_act_open_req *)t6req;
864 			t5req = (struct cpl_t5_act_open_req *)t6req;
865 			break;
866 		default:
867 			pr_err("T%d Chip is not supported\n",
868 			       CHELSIO_CHIP_VERSION(adapter_type));
869 			ret = -EINVAL;
870 			goto clip_release;
871 		}
872 
873 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
874 					((ep->rss_qid<<14) | ep->atid)));
875 		req->local_port = la->sin_port;
876 		req->peer_port = ra->sin_port;
877 		req->local_ip = la->sin_addr.s_addr;
878 		req->peer_ip = ra->sin_addr.s_addr;
879 		req->opt0 = cpu_to_be64(opt0);
880 
881 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
882 			req->params = cpu_to_be32(cxgb4_select_ntuple(
883 						ep->com.dev->rdev.lldi.ports[0],
884 						ep->l2t));
885 			req->opt2 = cpu_to_be32(opt2);
886 		} else {
887 			t5req->params = cpu_to_be64(FILTER_TUPLE_V(
888 						cxgb4_select_ntuple(
889 						ep->com.dev->rdev.lldi.ports[0],
890 						ep->l2t)));
891 			t5req->rsvd = cpu_to_be32(isn);
892 			PDBG("%s snd_isn %u\n", __func__, t5req->rsvd);
893 			t5req->opt2 = cpu_to_be32(opt2);
894 		}
895 	} else {
896 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
897 		case CHELSIO_T4:
898 			req6 = (struct cpl_act_open_req6 *)skb_put(skb, wrlen);
899 			INIT_TP_WR(req6, 0);
900 			break;
901 		case CHELSIO_T5:
902 			t5req6 = (struct cpl_t5_act_open_req6 *)skb_put(skb,
903 					wrlen);
904 			INIT_TP_WR(t5req6, 0);
905 			req6 = (struct cpl_act_open_req6 *)t5req6;
906 			break;
907 		case CHELSIO_T6:
908 			t6req6 = (struct cpl_t6_act_open_req6 *)skb_put(skb,
909 					wrlen);
910 			INIT_TP_WR(t6req6, 0);
911 			req6 = (struct cpl_act_open_req6 *)t6req6;
912 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
913 			break;
914 		default:
915 			pr_err("T%d Chip is not supported\n",
916 			       CHELSIO_CHIP_VERSION(adapter_type));
917 			ret = -EINVAL;
918 			goto clip_release;
919 		}
920 
921 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
922 					((ep->rss_qid<<14)|ep->atid)));
923 		req6->local_port = la6->sin6_port;
924 		req6->peer_port = ra6->sin6_port;
925 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
926 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
927 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
928 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
929 		req6->opt0 = cpu_to_be64(opt0);
930 
931 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
932 			req6->params = cpu_to_be32(cxgb4_select_ntuple(
933 						ep->com.dev->rdev.lldi.ports[0],
934 						ep->l2t));
935 			req6->opt2 = cpu_to_be32(opt2);
936 		} else {
937 			t5req6->params = cpu_to_be64(FILTER_TUPLE_V(
938 						cxgb4_select_ntuple(
939 						ep->com.dev->rdev.lldi.ports[0],
940 						ep->l2t)));
941 			t5req6->rsvd = cpu_to_be32(isn);
942 			PDBG("%s snd_isn %u\n", __func__, t5req6->rsvd);
943 			t5req6->opt2 = cpu_to_be32(opt2);
944 		}
945 	}
946 
947 	set_bit(ACT_OPEN_REQ, &ep->com.history);
948 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
949 clip_release:
950 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
951 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
952 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
953 	return ret;
954 }
955 
956 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
957 			u8 mpa_rev_to_use)
958 {
959 	int mpalen, wrlen, ret;
960 	struct fw_ofld_tx_data_wr *req;
961 	struct mpa_message *mpa;
962 	struct mpa_v2_conn_params mpa_v2_params;
963 
964 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
965 
966 	BUG_ON(skb_cloned(skb));
967 
968 	mpalen = sizeof(*mpa) + ep->plen;
969 	if (mpa_rev_to_use == 2)
970 		mpalen += sizeof(struct mpa_v2_conn_params);
971 	wrlen = roundup(mpalen + sizeof *req, 16);
972 	skb = get_skb(skb, wrlen, GFP_KERNEL);
973 	if (!skb) {
974 		connect_reply_upcall(ep, -ENOMEM);
975 		return -ENOMEM;
976 	}
977 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
978 
979 	req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
980 	memset(req, 0, wrlen);
981 	req->op_to_immdlen = cpu_to_be32(
982 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
983 		FW_WR_COMPL_F |
984 		FW_WR_IMMDLEN_V(mpalen));
985 	req->flowid_len16 = cpu_to_be32(
986 		FW_WR_FLOWID_V(ep->hwtid) |
987 		FW_WR_LEN16_V(wrlen >> 4));
988 	req->plen = cpu_to_be32(mpalen);
989 	req->tunnel_to_proxy = cpu_to_be32(
990 		FW_OFLD_TX_DATA_WR_FLUSH_F |
991 		FW_OFLD_TX_DATA_WR_SHOVE_F);
992 
993 	mpa = (struct mpa_message *)(req + 1);
994 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
995 	mpa->flags = (crc_enabled ? MPA_CRC : 0) |
996 		     (markers_enabled ? MPA_MARKERS : 0) |
997 		     (mpa_rev_to_use == 2 ? MPA_ENHANCED_RDMA_CONN : 0);
998 	mpa->private_data_size = htons(ep->plen);
999 	mpa->revision = mpa_rev_to_use;
1000 	if (mpa_rev_to_use == 1) {
1001 		ep->tried_with_mpa_v1 = 1;
1002 		ep->retry_with_mpa_v1 = 0;
1003 	}
1004 
1005 	if (mpa_rev_to_use == 2) {
1006 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1007 					       sizeof (struct mpa_v2_conn_params));
1008 		PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1009 		     ep->ord);
1010 		mpa_v2_params.ird = htons((u16)ep->ird);
1011 		mpa_v2_params.ord = htons((u16)ep->ord);
1012 
1013 		if (peer2peer) {
1014 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1015 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1016 				mpa_v2_params.ord |=
1017 					htons(MPA_V2_RDMA_WRITE_RTR);
1018 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1019 				mpa_v2_params.ord |=
1020 					htons(MPA_V2_RDMA_READ_RTR);
1021 		}
1022 		memcpy(mpa->private_data, &mpa_v2_params,
1023 		       sizeof(struct mpa_v2_conn_params));
1024 
1025 		if (ep->plen)
1026 			memcpy(mpa->private_data +
1027 			       sizeof(struct mpa_v2_conn_params),
1028 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1029 	} else
1030 		if (ep->plen)
1031 			memcpy(mpa->private_data,
1032 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1033 
1034 	/*
1035 	 * Reference the mpa skb.  This ensures the data area
1036 	 * will remain in memory until the hw acks the tx.
1037 	 * Function fw4_ack() will deref it.
1038 	 */
1039 	skb_get(skb);
1040 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1041 	BUG_ON(ep->mpa_skb);
1042 	ep->mpa_skb = skb;
1043 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1044 	if (ret)
1045 		return ret;
1046 	start_ep_timer(ep);
1047 	__state_set(&ep->com, MPA_REQ_SENT);
1048 	ep->mpa_attr.initiator = 1;
1049 	ep->snd_seq += mpalen;
1050 	return ret;
1051 }
1052 
1053 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1054 {
1055 	int mpalen, wrlen;
1056 	struct fw_ofld_tx_data_wr *req;
1057 	struct mpa_message *mpa;
1058 	struct sk_buff *skb;
1059 	struct mpa_v2_conn_params mpa_v2_params;
1060 
1061 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1062 
1063 	mpalen = sizeof(*mpa) + plen;
1064 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1065 		mpalen += sizeof(struct mpa_v2_conn_params);
1066 	wrlen = roundup(mpalen + sizeof *req, 16);
1067 
1068 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1069 	if (!skb) {
1070 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1071 		return -ENOMEM;
1072 	}
1073 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1074 
1075 	req = (struct fw_ofld_tx_data_wr *)skb_put(skb, wrlen);
1076 	memset(req, 0, wrlen);
1077 	req->op_to_immdlen = cpu_to_be32(
1078 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1079 		FW_WR_COMPL_F |
1080 		FW_WR_IMMDLEN_V(mpalen));
1081 	req->flowid_len16 = cpu_to_be32(
1082 		FW_WR_FLOWID_V(ep->hwtid) |
1083 		FW_WR_LEN16_V(wrlen >> 4));
1084 	req->plen = cpu_to_be32(mpalen);
1085 	req->tunnel_to_proxy = cpu_to_be32(
1086 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1087 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1088 
1089 	mpa = (struct mpa_message *)(req + 1);
1090 	memset(mpa, 0, sizeof(*mpa));
1091 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1092 	mpa->flags = MPA_REJECT;
1093 	mpa->revision = ep->mpa_attr.version;
1094 	mpa->private_data_size = htons(plen);
1095 
1096 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1097 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1098 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1099 					       sizeof (struct mpa_v2_conn_params));
1100 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1101 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1102 					   0));
1103 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1104 					  (p2p_type ==
1105 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1106 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1107 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1108 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1109 		memcpy(mpa->private_data, &mpa_v2_params,
1110 		       sizeof(struct mpa_v2_conn_params));
1111 
1112 		if (ep->plen)
1113 			memcpy(mpa->private_data +
1114 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1115 	} else
1116 		if (plen)
1117 			memcpy(mpa->private_data, pdata, plen);
1118 
1119 	/*
1120 	 * Reference the mpa skb again.  This ensures the data area
1121 	 * will remain in memory until the hw acks the tx.
1122 	 * Function fw4_ack() will deref it.
1123 	 */
1124 	skb_get(skb);
1125 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1126 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1127 	BUG_ON(ep->mpa_skb);
1128 	ep->mpa_skb = skb;
1129 	ep->snd_seq += mpalen;
1130 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1131 }
1132 
1133 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1134 {
1135 	int mpalen, wrlen;
1136 	struct fw_ofld_tx_data_wr *req;
1137 	struct mpa_message *mpa;
1138 	struct sk_buff *skb;
1139 	struct mpa_v2_conn_params mpa_v2_params;
1140 
1141 	PDBG("%s ep %p tid %u pd_len %d\n", __func__, ep, ep->hwtid, ep->plen);
1142 
1143 	mpalen = sizeof(*mpa) + plen;
1144 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1145 		mpalen += sizeof(struct mpa_v2_conn_params);
1146 	wrlen = roundup(mpalen + sizeof *req, 16);
1147 
1148 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1149 	if (!skb) {
1150 		printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
1151 		return -ENOMEM;
1152 	}
1153 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1154 
1155 	req = (struct fw_ofld_tx_data_wr *) skb_put(skb, wrlen);
1156 	memset(req, 0, wrlen);
1157 	req->op_to_immdlen = cpu_to_be32(
1158 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1159 		FW_WR_COMPL_F |
1160 		FW_WR_IMMDLEN_V(mpalen));
1161 	req->flowid_len16 = cpu_to_be32(
1162 		FW_WR_FLOWID_V(ep->hwtid) |
1163 		FW_WR_LEN16_V(wrlen >> 4));
1164 	req->plen = cpu_to_be32(mpalen);
1165 	req->tunnel_to_proxy = cpu_to_be32(
1166 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1167 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1168 
1169 	mpa = (struct mpa_message *)(req + 1);
1170 	memset(mpa, 0, sizeof(*mpa));
1171 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1172 	mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
1173 		     (markers_enabled ? MPA_MARKERS : 0);
1174 	mpa->revision = ep->mpa_attr.version;
1175 	mpa->private_data_size = htons(plen);
1176 
1177 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1178 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1179 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1180 					       sizeof (struct mpa_v2_conn_params));
1181 		mpa_v2_params.ird = htons((u16)ep->ird);
1182 		mpa_v2_params.ord = htons((u16)ep->ord);
1183 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1184 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1185 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1186 
1187 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1188 				mpa_v2_params.ord |=
1189 					htons(MPA_V2_RDMA_WRITE_RTR);
1190 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1191 				mpa_v2_params.ord |=
1192 					htons(MPA_V2_RDMA_READ_RTR);
1193 		}
1194 
1195 		memcpy(mpa->private_data, &mpa_v2_params,
1196 		       sizeof(struct mpa_v2_conn_params));
1197 
1198 		if (ep->plen)
1199 			memcpy(mpa->private_data +
1200 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1201 	} else
1202 		if (plen)
1203 			memcpy(mpa->private_data, pdata, plen);
1204 
1205 	/*
1206 	 * Reference the mpa skb.  This ensures the data area
1207 	 * will remain in memory until the hw acks the tx.
1208 	 * Function fw4_ack() will deref it.
1209 	 */
1210 	skb_get(skb);
1211 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1212 	ep->mpa_skb = skb;
1213 	__state_set(&ep->com, MPA_REP_SENT);
1214 	ep->snd_seq += mpalen;
1215 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1216 }
1217 
1218 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1219 {
1220 	struct c4iw_ep *ep;
1221 	struct cpl_act_establish *req = cplhdr(skb);
1222 	unsigned int tid = GET_TID(req);
1223 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1224 	struct tid_info *t = dev->rdev.lldi.tids;
1225 	int ret;
1226 
1227 	ep = lookup_atid(t, atid);
1228 
1229 	PDBG("%s ep %p tid %u snd_isn %u rcv_isn %u\n", __func__, ep, tid,
1230 	     be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1231 
1232 	mutex_lock(&ep->com.mutex);
1233 	dst_confirm(ep->dst);
1234 
1235 	/* setup the hwtid for this connection */
1236 	ep->hwtid = tid;
1237 	cxgb4_insert_tid(t, ep, tid);
1238 	insert_ep_tid(ep);
1239 
1240 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1241 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1242 
1243 	set_emss(ep, ntohs(req->tcp_opt));
1244 
1245 	/* dealloc the atid */
1246 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1247 	cxgb4_free_atid(t, atid);
1248 	set_bit(ACT_ESTAB, &ep->com.history);
1249 
1250 	/* start MPA negotiation */
1251 	ret = send_flowc(ep, NULL);
1252 	if (ret)
1253 		goto err;
1254 	if (ep->retry_with_mpa_v1)
1255 		ret = send_mpa_req(ep, skb, 1);
1256 	else
1257 		ret = send_mpa_req(ep, skb, mpa_rev);
1258 	if (ret)
1259 		goto err;
1260 	mutex_unlock(&ep->com.mutex);
1261 	return 0;
1262 err:
1263 	mutex_unlock(&ep->com.mutex);
1264 	connect_reply_upcall(ep, -ENOMEM);
1265 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1266 	return 0;
1267 }
1268 
1269 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1270 {
1271 	struct iw_cm_event event;
1272 
1273 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1274 	memset(&event, 0, sizeof(event));
1275 	event.event = IW_CM_EVENT_CLOSE;
1276 	event.status = status;
1277 	if (ep->com.cm_id) {
1278 		PDBG("close complete delivered ep %p cm_id %p tid %u\n",
1279 		     ep, ep->com.cm_id, ep->hwtid);
1280 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1281 		deref_cm_id(&ep->com);
1282 		set_bit(CLOSE_UPCALL, &ep->com.history);
1283 	}
1284 }
1285 
1286 static void peer_close_upcall(struct c4iw_ep *ep)
1287 {
1288 	struct iw_cm_event event;
1289 
1290 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1291 	memset(&event, 0, sizeof(event));
1292 	event.event = IW_CM_EVENT_DISCONNECT;
1293 	if (ep->com.cm_id) {
1294 		PDBG("peer close delivered ep %p cm_id %p tid %u\n",
1295 		     ep, ep->com.cm_id, ep->hwtid);
1296 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1297 		set_bit(DISCONN_UPCALL, &ep->com.history);
1298 	}
1299 }
1300 
1301 static void peer_abort_upcall(struct c4iw_ep *ep)
1302 {
1303 	struct iw_cm_event event;
1304 
1305 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1306 	memset(&event, 0, sizeof(event));
1307 	event.event = IW_CM_EVENT_CLOSE;
1308 	event.status = -ECONNRESET;
1309 	if (ep->com.cm_id) {
1310 		PDBG("abort delivered ep %p cm_id %p tid %u\n", ep,
1311 		     ep->com.cm_id, ep->hwtid);
1312 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1313 		deref_cm_id(&ep->com);
1314 		set_bit(ABORT_UPCALL, &ep->com.history);
1315 	}
1316 }
1317 
1318 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1319 {
1320 	struct iw_cm_event event;
1321 
1322 	PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid, status);
1323 	memset(&event, 0, sizeof(event));
1324 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1325 	event.status = status;
1326 	memcpy(&event.local_addr, &ep->com.local_addr,
1327 	       sizeof(ep->com.local_addr));
1328 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1329 	       sizeof(ep->com.remote_addr));
1330 
1331 	if ((status == 0) || (status == -ECONNREFUSED)) {
1332 		if (!ep->tried_with_mpa_v1) {
1333 			/* this means MPA_v2 is used */
1334 			event.ord = ep->ird;
1335 			event.ird = ep->ord;
1336 			event.private_data_len = ep->plen -
1337 				sizeof(struct mpa_v2_conn_params);
1338 			event.private_data = ep->mpa_pkt +
1339 				sizeof(struct mpa_message) +
1340 				sizeof(struct mpa_v2_conn_params);
1341 		} else {
1342 			/* this means MPA_v1 is used */
1343 			event.ord = cur_max_read_depth(ep->com.dev);
1344 			event.ird = cur_max_read_depth(ep->com.dev);
1345 			event.private_data_len = ep->plen;
1346 			event.private_data = ep->mpa_pkt +
1347 				sizeof(struct mpa_message);
1348 		}
1349 	}
1350 
1351 	PDBG("%s ep %p tid %u status %d\n", __func__, ep,
1352 	     ep->hwtid, status);
1353 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1354 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1355 
1356 	if (status < 0)
1357 		deref_cm_id(&ep->com);
1358 }
1359 
1360 static int connect_request_upcall(struct c4iw_ep *ep)
1361 {
1362 	struct iw_cm_event event;
1363 	int ret;
1364 
1365 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1366 	memset(&event, 0, sizeof(event));
1367 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1368 	memcpy(&event.local_addr, &ep->com.local_addr,
1369 	       sizeof(ep->com.local_addr));
1370 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1371 	       sizeof(ep->com.remote_addr));
1372 	event.provider_data = ep;
1373 	if (!ep->tried_with_mpa_v1) {
1374 		/* this means MPA_v2 is used */
1375 		event.ord = ep->ord;
1376 		event.ird = ep->ird;
1377 		event.private_data_len = ep->plen -
1378 			sizeof(struct mpa_v2_conn_params);
1379 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1380 			sizeof(struct mpa_v2_conn_params);
1381 	} else {
1382 		/* this means MPA_v1 is used. Send max supported */
1383 		event.ord = cur_max_read_depth(ep->com.dev);
1384 		event.ird = cur_max_read_depth(ep->com.dev);
1385 		event.private_data_len = ep->plen;
1386 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1387 	}
1388 	c4iw_get_ep(&ep->com);
1389 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1390 						      &event);
1391 	if (ret)
1392 		c4iw_put_ep(&ep->com);
1393 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1394 	c4iw_put_ep(&ep->parent_ep->com);
1395 	return ret;
1396 }
1397 
1398 static void established_upcall(struct c4iw_ep *ep)
1399 {
1400 	struct iw_cm_event event;
1401 
1402 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1403 	memset(&event, 0, sizeof(event));
1404 	event.event = IW_CM_EVENT_ESTABLISHED;
1405 	event.ird = ep->ord;
1406 	event.ord = ep->ird;
1407 	if (ep->com.cm_id) {
1408 		PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1409 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1410 		set_bit(ESTAB_UPCALL, &ep->com.history);
1411 	}
1412 }
1413 
1414 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1415 {
1416 	struct cpl_rx_data_ack *req;
1417 	struct sk_buff *skb;
1418 	int wrlen = roundup(sizeof *req, 16);
1419 
1420 	PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
1421 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1422 	if (!skb) {
1423 		printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
1424 		return 0;
1425 	}
1426 
1427 	/*
1428 	 * If we couldn't specify the entire rcv window at connection setup
1429 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1430 	 * then add the overage in to the credits returned.
1431 	 */
1432 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1433 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1434 
1435 	req = (struct cpl_rx_data_ack *) skb_put(skb, wrlen);
1436 	memset(req, 0, wrlen);
1437 	INIT_TP_WR(req, ep->hwtid);
1438 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_RX_DATA_ACK,
1439 						    ep->hwtid));
1440 	req->credit_dack = cpu_to_be32(credits | RX_FORCE_ACK_F |
1441 				       RX_DACK_CHANGE_F |
1442 				       RX_DACK_MODE_V(dack_mode));
1443 	set_wr_txq(skb, CPL_PRIORITY_ACK, ep->ctrlq_idx);
1444 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1445 	return credits;
1446 }
1447 
1448 #define RELAXED_IRD_NEGOTIATION 1
1449 
1450 /*
1451  * process_mpa_reply - process streaming mode MPA reply
1452  *
1453  * Returns:
1454  *
1455  * 0 upon success indicating a connect request was delivered to the ULP
1456  * or the mpa request is incomplete but valid so far.
1457  *
1458  * 1 if a failure requires the caller to close the connection.
1459  *
1460  * 2 if a failure requires the caller to abort the connection.
1461  */
1462 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1463 {
1464 	struct mpa_message *mpa;
1465 	struct mpa_v2_conn_params *mpa_v2_params;
1466 	u16 plen;
1467 	u16 resp_ird, resp_ord;
1468 	u8 rtr_mismatch = 0, insuff_ird = 0;
1469 	struct c4iw_qp_attributes attrs;
1470 	enum c4iw_qp_attr_mask mask;
1471 	int err;
1472 	int disconnect = 0;
1473 
1474 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1475 
1476 	/*
1477 	 * If we get more than the supported amount of private data
1478 	 * then we must fail this connection.
1479 	 */
1480 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1481 		err = -EINVAL;
1482 		goto err_stop_timer;
1483 	}
1484 
1485 	/*
1486 	 * copy the new data into our accumulation buffer.
1487 	 */
1488 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1489 				  skb->len);
1490 	ep->mpa_pkt_len += skb->len;
1491 
1492 	/*
1493 	 * if we don't even have the mpa message, then bail.
1494 	 */
1495 	if (ep->mpa_pkt_len < sizeof(*mpa))
1496 		return 0;
1497 	mpa = (struct mpa_message *) ep->mpa_pkt;
1498 
1499 	/* Validate MPA header. */
1500 	if (mpa->revision > mpa_rev) {
1501 		printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1502 		       " Received = %d\n", __func__, mpa_rev, mpa->revision);
1503 		err = -EPROTO;
1504 		goto err_stop_timer;
1505 	}
1506 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1507 		err = -EPROTO;
1508 		goto err_stop_timer;
1509 	}
1510 
1511 	plen = ntohs(mpa->private_data_size);
1512 
1513 	/*
1514 	 * Fail if there's too much private data.
1515 	 */
1516 	if (plen > MPA_MAX_PRIVATE_DATA) {
1517 		err = -EPROTO;
1518 		goto err_stop_timer;
1519 	}
1520 
1521 	/*
1522 	 * If plen does not account for pkt size
1523 	 */
1524 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1525 		err = -EPROTO;
1526 		goto err_stop_timer;
1527 	}
1528 
1529 	ep->plen = (u8) plen;
1530 
1531 	/*
1532 	 * If we don't have all the pdata yet, then bail.
1533 	 * We'll continue process when more data arrives.
1534 	 */
1535 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1536 		return 0;
1537 
1538 	if (mpa->flags & MPA_REJECT) {
1539 		err = -ECONNREFUSED;
1540 		goto err_stop_timer;
1541 	}
1542 
1543 	/*
1544 	 * Stop mpa timer.  If it expired, then
1545 	 * we ignore the MPA reply.  process_timeout()
1546 	 * will abort the connection.
1547 	 */
1548 	if (stop_ep_timer(ep))
1549 		return 0;
1550 
1551 	/*
1552 	 * If we get here we have accumulated the entire mpa
1553 	 * start reply message including private data. And
1554 	 * the MPA header is valid.
1555 	 */
1556 	__state_set(&ep->com, FPDU_MODE);
1557 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1558 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1559 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1560 	ep->mpa_attr.version = mpa->revision;
1561 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1562 
1563 	if (mpa->revision == 2) {
1564 		ep->mpa_attr.enhanced_rdma_conn =
1565 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1566 		if (ep->mpa_attr.enhanced_rdma_conn) {
1567 			mpa_v2_params = (struct mpa_v2_conn_params *)
1568 				(ep->mpa_pkt + sizeof(*mpa));
1569 			resp_ird = ntohs(mpa_v2_params->ird) &
1570 				MPA_V2_IRD_ORD_MASK;
1571 			resp_ord = ntohs(mpa_v2_params->ord) &
1572 				MPA_V2_IRD_ORD_MASK;
1573 			PDBG("%s responder ird %u ord %u ep ird %u ord %u\n",
1574 			     __func__, resp_ird, resp_ord, ep->ird, ep->ord);
1575 
1576 			/*
1577 			 * This is a double-check. Ideally, below checks are
1578 			 * not required since ird/ord stuff has been taken
1579 			 * care of in c4iw_accept_cr
1580 			 */
1581 			if (ep->ird < resp_ord) {
1582 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1583 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1584 					ep->ird = resp_ord;
1585 				else
1586 					insuff_ird = 1;
1587 			} else if (ep->ird > resp_ord) {
1588 				ep->ird = resp_ord;
1589 			}
1590 			if (ep->ord > resp_ird) {
1591 				if (RELAXED_IRD_NEGOTIATION)
1592 					ep->ord = resp_ird;
1593 				else
1594 					insuff_ird = 1;
1595 			}
1596 			if (insuff_ird) {
1597 				err = -ENOMEM;
1598 				ep->ird = resp_ord;
1599 				ep->ord = resp_ird;
1600 			}
1601 
1602 			if (ntohs(mpa_v2_params->ird) &
1603 					MPA_V2_PEER2PEER_MODEL) {
1604 				if (ntohs(mpa_v2_params->ord) &
1605 						MPA_V2_RDMA_WRITE_RTR)
1606 					ep->mpa_attr.p2p_type =
1607 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1608 				else if (ntohs(mpa_v2_params->ord) &
1609 						MPA_V2_RDMA_READ_RTR)
1610 					ep->mpa_attr.p2p_type =
1611 						FW_RI_INIT_P2PTYPE_READ_REQ;
1612 			}
1613 		}
1614 	} else if (mpa->revision == 1)
1615 		if (peer2peer)
1616 			ep->mpa_attr.p2p_type = p2p_type;
1617 
1618 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1619 	     "xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = "
1620 	     "%d\n", __func__, ep->mpa_attr.crc_enabled,
1621 	     ep->mpa_attr.recv_marker_enabled,
1622 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1623 	     ep->mpa_attr.p2p_type, p2p_type);
1624 
1625 	/*
1626 	 * If responder's RTR does not match with that of initiator, assign
1627 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1628 	 * generated when moving QP to RTS state.
1629 	 * A TERM message will be sent after QP has moved to RTS state
1630 	 */
1631 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1632 			(ep->mpa_attr.p2p_type != p2p_type)) {
1633 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1634 		rtr_mismatch = 1;
1635 	}
1636 
1637 	attrs.mpa_attr = ep->mpa_attr;
1638 	attrs.max_ird = ep->ird;
1639 	attrs.max_ord = ep->ord;
1640 	attrs.llp_stream_handle = ep;
1641 	attrs.next_state = C4IW_QP_STATE_RTS;
1642 
1643 	mask = C4IW_QP_ATTR_NEXT_STATE |
1644 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1645 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1646 
1647 	/* bind QP and TID with INIT_WR */
1648 	err = c4iw_modify_qp(ep->com.qp->rhp,
1649 			     ep->com.qp, mask, &attrs, 1);
1650 	if (err)
1651 		goto err;
1652 
1653 	/*
1654 	 * If responder's RTR requirement did not match with what initiator
1655 	 * supports, generate TERM message
1656 	 */
1657 	if (rtr_mismatch) {
1658 		printk(KERN_ERR "%s: RTR mismatch, sending TERM\n", __func__);
1659 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1660 		attrs.ecode = MPA_NOMATCH_RTR;
1661 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1662 		attrs.send_term = 1;
1663 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1664 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1665 		err = -ENOMEM;
1666 		disconnect = 1;
1667 		goto out;
1668 	}
1669 
1670 	/*
1671 	 * Generate TERM if initiator IRD is not sufficient for responder
1672 	 * provided ORD. Currently, we do the same behaviour even when
1673 	 * responder provided IRD is also not sufficient as regards to
1674 	 * initiator ORD.
1675 	 */
1676 	if (insuff_ird) {
1677 		printk(KERN_ERR "%s: Insufficient IRD, sending TERM\n",
1678 				__func__);
1679 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1680 		attrs.ecode = MPA_INSUFF_IRD;
1681 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1682 		attrs.send_term = 1;
1683 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1684 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1685 		err = -ENOMEM;
1686 		disconnect = 1;
1687 		goto out;
1688 	}
1689 	goto out;
1690 err_stop_timer:
1691 	stop_ep_timer(ep);
1692 err:
1693 	disconnect = 2;
1694 out:
1695 	connect_reply_upcall(ep, err);
1696 	return disconnect;
1697 }
1698 
1699 /*
1700  * process_mpa_request - process streaming mode MPA request
1701  *
1702  * Returns:
1703  *
1704  * 0 upon success indicating a connect request was delivered to the ULP
1705  * or the mpa request is incomplete but valid so far.
1706  *
1707  * 1 if a failure requires the caller to close the connection.
1708  *
1709  * 2 if a failure requires the caller to abort the connection.
1710  */
1711 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1712 {
1713 	struct mpa_message *mpa;
1714 	struct mpa_v2_conn_params *mpa_v2_params;
1715 	u16 plen;
1716 
1717 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1718 
1719 	/*
1720 	 * If we get more than the supported amount of private data
1721 	 * then we must fail this connection.
1722 	 */
1723 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1724 		goto err_stop_timer;
1725 
1726 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1727 
1728 	/*
1729 	 * Copy the new data into our accumulation buffer.
1730 	 */
1731 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1732 				  skb->len);
1733 	ep->mpa_pkt_len += skb->len;
1734 
1735 	/*
1736 	 * If we don't even have the mpa message, then bail.
1737 	 * We'll continue process when more data arrives.
1738 	 */
1739 	if (ep->mpa_pkt_len < sizeof(*mpa))
1740 		return 0;
1741 
1742 	PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
1743 	mpa = (struct mpa_message *) ep->mpa_pkt;
1744 
1745 	/*
1746 	 * Validate MPA Header.
1747 	 */
1748 	if (mpa->revision > mpa_rev) {
1749 		printk(KERN_ERR MOD "%s MPA version mismatch. Local = %d,"
1750 		       " Received = %d\n", __func__, mpa_rev, mpa->revision);
1751 		goto err_stop_timer;
1752 	}
1753 
1754 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1755 		goto err_stop_timer;
1756 
1757 	plen = ntohs(mpa->private_data_size);
1758 
1759 	/*
1760 	 * Fail if there's too much private data.
1761 	 */
1762 	if (plen > MPA_MAX_PRIVATE_DATA)
1763 		goto err_stop_timer;
1764 
1765 	/*
1766 	 * If plen does not account for pkt size
1767 	 */
1768 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1769 		goto err_stop_timer;
1770 	ep->plen = (u8) plen;
1771 
1772 	/*
1773 	 * If we don't have all the pdata yet, then bail.
1774 	 */
1775 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1776 		return 0;
1777 
1778 	/*
1779 	 * If we get here we have accumulated the entire mpa
1780 	 * start reply message including private data.
1781 	 */
1782 	ep->mpa_attr.initiator = 0;
1783 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1784 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1785 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1786 	ep->mpa_attr.version = mpa->revision;
1787 	if (mpa->revision == 1)
1788 		ep->tried_with_mpa_v1 = 1;
1789 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1790 
1791 	if (mpa->revision == 2) {
1792 		ep->mpa_attr.enhanced_rdma_conn =
1793 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1794 		if (ep->mpa_attr.enhanced_rdma_conn) {
1795 			mpa_v2_params = (struct mpa_v2_conn_params *)
1796 				(ep->mpa_pkt + sizeof(*mpa));
1797 			ep->ird = ntohs(mpa_v2_params->ird) &
1798 				MPA_V2_IRD_ORD_MASK;
1799 			ep->ord = ntohs(mpa_v2_params->ord) &
1800 				MPA_V2_IRD_ORD_MASK;
1801 			PDBG("%s initiator ird %u ord %u\n", __func__, ep->ird,
1802 			     ep->ord);
1803 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1804 				if (peer2peer) {
1805 					if (ntohs(mpa_v2_params->ord) &
1806 							MPA_V2_RDMA_WRITE_RTR)
1807 						ep->mpa_attr.p2p_type =
1808 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1809 					else if (ntohs(mpa_v2_params->ord) &
1810 							MPA_V2_RDMA_READ_RTR)
1811 						ep->mpa_attr.p2p_type =
1812 						FW_RI_INIT_P2PTYPE_READ_REQ;
1813 				}
1814 		}
1815 	} else if (mpa->revision == 1)
1816 		if (peer2peer)
1817 			ep->mpa_attr.p2p_type = p2p_type;
1818 
1819 	PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1820 	     "xmit_marker_enabled=%d, version=%d p2p_type=%d\n", __func__,
1821 	     ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1822 	     ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1823 	     ep->mpa_attr.p2p_type);
1824 
1825 	__state_set(&ep->com, MPA_REQ_RCVD);
1826 
1827 	/* drive upcall */
1828 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1829 	if (ep->parent_ep->com.state != DEAD) {
1830 		if (connect_request_upcall(ep))
1831 			goto err_unlock_parent;
1832 	} else {
1833 		goto err_unlock_parent;
1834 	}
1835 	mutex_unlock(&ep->parent_ep->com.mutex);
1836 	return 0;
1837 
1838 err_unlock_parent:
1839 	mutex_unlock(&ep->parent_ep->com.mutex);
1840 	goto err_out;
1841 err_stop_timer:
1842 	(void)stop_ep_timer(ep);
1843 err_out:
1844 	return 2;
1845 }
1846 
1847 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1848 {
1849 	struct c4iw_ep *ep;
1850 	struct cpl_rx_data *hdr = cplhdr(skb);
1851 	unsigned int dlen = ntohs(hdr->len);
1852 	unsigned int tid = GET_TID(hdr);
1853 	__u8 status = hdr->status;
1854 	int disconnect = 0;
1855 
1856 	ep = get_ep_from_tid(dev, tid);
1857 	if (!ep)
1858 		return 0;
1859 	PDBG("%s ep %p tid %u dlen %u\n", __func__, ep, ep->hwtid, dlen);
1860 	skb_pull(skb, sizeof(*hdr));
1861 	skb_trim(skb, dlen);
1862 	mutex_lock(&ep->com.mutex);
1863 
1864 	/* update RX credits */
1865 	update_rx_credits(ep, dlen);
1866 
1867 	switch (ep->com.state) {
1868 	case MPA_REQ_SENT:
1869 		ep->rcv_seq += dlen;
1870 		disconnect = process_mpa_reply(ep, skb);
1871 		break;
1872 	case MPA_REQ_WAIT:
1873 		ep->rcv_seq += dlen;
1874 		disconnect = process_mpa_request(ep, skb);
1875 		break;
1876 	case FPDU_MODE: {
1877 		struct c4iw_qp_attributes attrs;
1878 		BUG_ON(!ep->com.qp);
1879 		if (status)
1880 			pr_err("%s Unexpected streaming data." \
1881 			       " qpid %u ep %p state %d tid %u status %d\n",
1882 			       __func__, ep->com.qp->wq.sq.qid, ep,
1883 			       ep->com.state, ep->hwtid, status);
1884 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1885 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1886 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1887 		disconnect = 1;
1888 		break;
1889 	}
1890 	default:
1891 		break;
1892 	}
1893 	mutex_unlock(&ep->com.mutex);
1894 	if (disconnect)
1895 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1896 	c4iw_put_ep(&ep->com);
1897 	return 0;
1898 }
1899 
1900 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1901 {
1902 	struct c4iw_ep *ep;
1903 	struct cpl_abort_rpl_rss *rpl = cplhdr(skb);
1904 	int release = 0;
1905 	unsigned int tid = GET_TID(rpl);
1906 
1907 	ep = get_ep_from_tid(dev, tid);
1908 	if (!ep) {
1909 		printk(KERN_WARNING MOD "Abort rpl to freed endpoint\n");
1910 		return 0;
1911 	}
1912 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1913 	mutex_lock(&ep->com.mutex);
1914 	switch (ep->com.state) {
1915 	case ABORTING:
1916 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
1917 		__state_set(&ep->com, DEAD);
1918 		release = 1;
1919 		break;
1920 	default:
1921 		printk(KERN_ERR "%s ep %p state %d\n",
1922 		     __func__, ep, ep->com.state);
1923 		break;
1924 	}
1925 	mutex_unlock(&ep->com.mutex);
1926 
1927 	if (release)
1928 		release_ep_resources(ep);
1929 	c4iw_put_ep(&ep->com);
1930 	return 0;
1931 }
1932 
1933 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1934 {
1935 	struct sk_buff *skb;
1936 	struct fw_ofld_connection_wr *req;
1937 	unsigned int mtu_idx;
1938 	int wscale;
1939 	struct sockaddr_in *sin;
1940 	int win;
1941 
1942 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1943 	req = (struct fw_ofld_connection_wr *)__skb_put(skb, sizeof(*req));
1944 	memset(req, 0, sizeof(*req));
1945 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1946 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1947 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1948 				     ep->com.dev->rdev.lldi.ports[0],
1949 				     ep->l2t));
1950 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1951 	req->le.lport = sin->sin_port;
1952 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1953 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1954 	req->le.pport = sin->sin_port;
1955 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1956 	req->tcb.t_state_to_astid =
1957 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1958 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1959 	req->tcb.cplrxdataack_cplpassacceptrpl =
1960 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1961 	req->tcb.tx_max = (__force __be32) jiffies;
1962 	req->tcb.rcv_adv = htons(1);
1963 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1964 		 enable_tcp_timestamps,
1965 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
1966 	wscale = compute_wscale(rcv_win);
1967 
1968 	/*
1969 	 * Specify the largest window that will fit in opt0. The
1970 	 * remainder will be specified in the rx_data_ack.
1971 	 */
1972 	win = ep->rcv_win >> 10;
1973 	if (win > RCV_BUFSIZ_M)
1974 		win = RCV_BUFSIZ_M;
1975 
1976 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
1977 		(nocong ? NO_CONG_F : 0) |
1978 		KEEP_ALIVE_F |
1979 		DELACK_F |
1980 		WND_SCALE_V(wscale) |
1981 		MSS_IDX_V(mtu_idx) |
1982 		L2T_IDX_V(ep->l2t->idx) |
1983 		TX_CHAN_V(ep->tx_chan) |
1984 		SMAC_SEL_V(ep->smac_idx) |
1985 		DSCP_V(ep->tos >> 2) |
1986 		ULP_MODE_V(ULP_MODE_TCPDDP) |
1987 		RCV_BUFSIZ_V(win));
1988 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
1989 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
1990 		RX_CHANNEL_V(0) |
1991 		CCTRL_ECN_V(enable_ecn) |
1992 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
1993 	if (enable_tcp_timestamps)
1994 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
1995 	if (enable_tcp_sack)
1996 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
1997 	if (wscale && enable_tcp_window_scaling)
1998 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
1999 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2000 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2001 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2002 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2003 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2004 }
2005 
2006 /*
2007  * Return whether a failed active open has allocated a TID
2008  */
2009 static inline int act_open_has_tid(int status)
2010 {
2011 	return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
2012 	       status != CPL_ERR_ARP_MISS;
2013 }
2014 
2015 /* Returns whether a CPL status conveys negative advice.
2016  */
2017 static int is_neg_adv(unsigned int status)
2018 {
2019 	return status == CPL_ERR_RTX_NEG_ADVICE ||
2020 	       status == CPL_ERR_PERSIST_NEG_ADVICE ||
2021 	       status == CPL_ERR_KEEPALV_NEG_ADVICE;
2022 }
2023 
2024 static char *neg_adv_str(unsigned int status)
2025 {
2026 	switch (status) {
2027 	case CPL_ERR_RTX_NEG_ADVICE:
2028 		return "Retransmit timeout";
2029 	case CPL_ERR_PERSIST_NEG_ADVICE:
2030 		return "Persist timeout";
2031 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2032 		return "Keepalive timeout";
2033 	default:
2034 		return "Unknown";
2035 	}
2036 }
2037 
2038 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2039 {
2040 	ep->snd_win = snd_win;
2041 	ep->rcv_win = rcv_win;
2042 	PDBG("%s snd_win %d rcv_win %d\n", __func__, ep->snd_win, ep->rcv_win);
2043 }
2044 
2045 #define ACT_OPEN_RETRY_COUNT 2
2046 
2047 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2048 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2049 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2050 {
2051 	struct neighbour *n;
2052 	int err, step;
2053 	struct net_device *pdev;
2054 
2055 	n = dst_neigh_lookup(dst, peer_ip);
2056 	if (!n)
2057 		return -ENODEV;
2058 
2059 	rcu_read_lock();
2060 	err = -ENOMEM;
2061 	if (n->dev->flags & IFF_LOOPBACK) {
2062 		if (iptype == 4)
2063 			pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2064 		else if (IS_ENABLED(CONFIG_IPV6))
2065 			for_each_netdev(&init_net, pdev) {
2066 				if (ipv6_chk_addr(&init_net,
2067 						  (struct in6_addr *)peer_ip,
2068 						  pdev, 1))
2069 					break;
2070 			}
2071 		else
2072 			pdev = NULL;
2073 
2074 		if (!pdev) {
2075 			err = -ENODEV;
2076 			goto out;
2077 		}
2078 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2079 					n, pdev, rt_tos2priority(tos));
2080 		if (!ep->l2t)
2081 			goto out;
2082 		ep->mtu = pdev->mtu;
2083 		ep->tx_chan = cxgb4_port_chan(pdev);
2084 		ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2085 						cxgb4_port_viid(pdev));
2086 		step = cdev->rdev.lldi.ntxq /
2087 			cdev->rdev.lldi.nchan;
2088 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2089 		step = cdev->rdev.lldi.nrxq /
2090 			cdev->rdev.lldi.nchan;
2091 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2092 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2093 			cxgb4_port_idx(pdev) * step];
2094 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2095 		dev_put(pdev);
2096 	} else {
2097 		pdev = get_real_dev(n->dev);
2098 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2099 					n, pdev, 0);
2100 		if (!ep->l2t)
2101 			goto out;
2102 		ep->mtu = dst_mtu(dst);
2103 		ep->tx_chan = cxgb4_port_chan(pdev);
2104 		ep->smac_idx = cxgb4_tp_smt_idx(adapter_type,
2105 						cxgb4_port_viid(pdev));
2106 		step = cdev->rdev.lldi.ntxq /
2107 			cdev->rdev.lldi.nchan;
2108 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2109 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2110 		step = cdev->rdev.lldi.nrxq /
2111 			cdev->rdev.lldi.nchan;
2112 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2113 			cxgb4_port_idx(pdev) * step];
2114 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2115 
2116 		if (clear_mpa_v1) {
2117 			ep->retry_with_mpa_v1 = 0;
2118 			ep->tried_with_mpa_v1 = 0;
2119 		}
2120 	}
2121 	err = 0;
2122 out:
2123 	rcu_read_unlock();
2124 
2125 	neigh_release(n);
2126 
2127 	return err;
2128 }
2129 
2130 static int c4iw_reconnect(struct c4iw_ep *ep)
2131 {
2132 	int err = 0;
2133 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2134 				    &ep->com.cm_id->m_local_addr;
2135 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2136 				    &ep->com.cm_id->m_remote_addr;
2137 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2138 				      &ep->com.cm_id->m_local_addr;
2139 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2140 				      &ep->com.cm_id->m_remote_addr;
2141 	int iptype;
2142 	__u8 *ra;
2143 
2144 	PDBG("%s qp %p cm_id %p\n", __func__, ep->com.qp, ep->com.cm_id);
2145 	init_timer(&ep->timer);
2146 	c4iw_init_wr_wait(&ep->com.wr_wait);
2147 
2148 	/*
2149 	 * Allocate an active TID to initiate a TCP connection.
2150 	 */
2151 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2152 	if (ep->atid == -1) {
2153 		pr_err("%s - cannot alloc atid.\n", __func__);
2154 		err = -ENOMEM;
2155 		goto fail2;
2156 	}
2157 	insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2158 
2159 	/* find a route */
2160 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2161 		ep->dst = find_route(ep->com.dev, laddr->sin_addr.s_addr,
2162 				     raddr->sin_addr.s_addr, laddr->sin_port,
2163 				     raddr->sin_port, ep->com.cm_id->tos);
2164 		iptype = 4;
2165 		ra = (__u8 *)&raddr->sin_addr;
2166 	} else {
2167 		ep->dst = find_route6(ep->com.dev, laddr6->sin6_addr.s6_addr,
2168 				      raddr6->sin6_addr.s6_addr,
2169 				      laddr6->sin6_port, raddr6->sin6_port, 0,
2170 				      raddr6->sin6_scope_id);
2171 		iptype = 6;
2172 		ra = (__u8 *)&raddr6->sin6_addr;
2173 	}
2174 	if (!ep->dst) {
2175 		pr_err("%s - cannot find route.\n", __func__);
2176 		err = -EHOSTUNREACH;
2177 		goto fail3;
2178 	}
2179 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2180 			ep->com.dev->rdev.lldi.adapter_type,
2181 			ep->com.cm_id->tos);
2182 	if (err) {
2183 		pr_err("%s - cannot alloc l2e.\n", __func__);
2184 		goto fail4;
2185 	}
2186 
2187 	PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2188 	     __func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2189 	     ep->l2t->idx);
2190 
2191 	state_set(&ep->com, CONNECTING);
2192 	ep->tos = ep->com.cm_id->tos;
2193 
2194 	/* send connect request to rnic */
2195 	err = send_connect(ep);
2196 	if (!err)
2197 		goto out;
2198 
2199 	cxgb4_l2t_release(ep->l2t);
2200 fail4:
2201 	dst_release(ep->dst);
2202 fail3:
2203 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2204 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2205 fail2:
2206 	/*
2207 	 * remember to send notification to upper layer.
2208 	 * We are in here so the upper layer is not aware that this is
2209 	 * re-connect attempt and so, upper layer is still waiting for
2210 	 * response of 1st connect request.
2211 	 */
2212 	connect_reply_upcall(ep, -ECONNRESET);
2213 	c4iw_put_ep(&ep->com);
2214 out:
2215 	return err;
2216 }
2217 
2218 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2219 {
2220 	struct c4iw_ep *ep;
2221 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2222 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2223 				      ntohl(rpl->atid_status)));
2224 	struct tid_info *t = dev->rdev.lldi.tids;
2225 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2226 	struct sockaddr_in *la;
2227 	struct sockaddr_in *ra;
2228 	struct sockaddr_in6 *la6;
2229 	struct sockaddr_in6 *ra6;
2230 	int ret = 0;
2231 
2232 	ep = lookup_atid(t, atid);
2233 	la = (struct sockaddr_in *)&ep->com.local_addr;
2234 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2235 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2236 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2237 
2238 	PDBG("%s ep %p atid %u status %u errno %d\n", __func__, ep, atid,
2239 	     status, status2errno(status));
2240 
2241 	if (is_neg_adv(status)) {
2242 		PDBG("%s Connection problems for atid %u status %u (%s)\n",
2243 		     __func__, atid, status, neg_adv_str(status));
2244 		ep->stats.connect_neg_adv++;
2245 		mutex_lock(&dev->rdev.stats.lock);
2246 		dev->rdev.stats.neg_adv++;
2247 		mutex_unlock(&dev->rdev.stats.lock);
2248 		return 0;
2249 	}
2250 
2251 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2252 
2253 	/*
2254 	 * Log interesting failures.
2255 	 */
2256 	switch (status) {
2257 	case CPL_ERR_CONN_RESET:
2258 	case CPL_ERR_CONN_TIMEDOUT:
2259 		break;
2260 	case CPL_ERR_TCAM_FULL:
2261 		mutex_lock(&dev->rdev.stats.lock);
2262 		dev->rdev.stats.tcam_full++;
2263 		mutex_unlock(&dev->rdev.stats.lock);
2264 		if (ep->com.local_addr.ss_family == AF_INET &&
2265 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2266 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2267 						   ntohl(rpl->atid_status))));
2268 			if (ret)
2269 				goto fail;
2270 			return 0;
2271 		}
2272 		break;
2273 	case CPL_ERR_CONN_EXIST:
2274 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2275 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2276 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2277 				struct sockaddr_in6 *sin6 =
2278 						(struct sockaddr_in6 *)
2279 						&ep->com.local_addr;
2280 				cxgb4_clip_release(
2281 						ep->com.dev->rdev.lldi.ports[0],
2282 						(const u32 *)
2283 						&sin6->sin6_addr.s6_addr, 1);
2284 			}
2285 			remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2286 					atid);
2287 			cxgb4_free_atid(t, atid);
2288 			dst_release(ep->dst);
2289 			cxgb4_l2t_release(ep->l2t);
2290 			c4iw_reconnect(ep);
2291 			return 0;
2292 		}
2293 		break;
2294 	default:
2295 		if (ep->com.local_addr.ss_family == AF_INET) {
2296 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2297 				atid, status, status2errno(status),
2298 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2299 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2300 		} else {
2301 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2302 				atid, status, status2errno(status),
2303 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2304 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2305 		}
2306 		break;
2307 	}
2308 
2309 fail:
2310 	connect_reply_upcall(ep, status2errno(status));
2311 	state_set(&ep->com, DEAD);
2312 
2313 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2314 		struct sockaddr_in6 *sin6 =
2315 			(struct sockaddr_in6 *)&ep->com.local_addr;
2316 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2317 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2318 	}
2319 	if (status && act_open_has_tid(status))
2320 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl));
2321 
2322 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2323 	cxgb4_free_atid(t, atid);
2324 	dst_release(ep->dst);
2325 	cxgb4_l2t_release(ep->l2t);
2326 	c4iw_put_ep(&ep->com);
2327 
2328 	return 0;
2329 }
2330 
2331 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2332 {
2333 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2334 	unsigned int stid = GET_TID(rpl);
2335 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2336 
2337 	if (!ep) {
2338 		PDBG("%s stid %d lookup failure!\n", __func__, stid);
2339 		goto out;
2340 	}
2341 	PDBG("%s ep %p status %d error %d\n", __func__, ep,
2342 	     rpl->status, status2errno(rpl->status));
2343 	c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2344 	c4iw_put_ep(&ep->com);
2345 out:
2346 	return 0;
2347 }
2348 
2349 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2350 {
2351 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2352 	unsigned int stid = GET_TID(rpl);
2353 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2354 
2355 	PDBG("%s ep %p\n", __func__, ep);
2356 	c4iw_wake_up(&ep->com.wr_wait, status2errno(rpl->status));
2357 	c4iw_put_ep(&ep->com);
2358 	return 0;
2359 }
2360 
2361 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2362 		     struct cpl_pass_accept_req *req)
2363 {
2364 	struct cpl_pass_accept_rpl *rpl;
2365 	unsigned int mtu_idx;
2366 	u64 opt0;
2367 	u32 opt2;
2368 	int wscale;
2369 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2370 	int win;
2371 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2372 
2373 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2374 	BUG_ON(skb_cloned(skb));
2375 
2376 	skb_get(skb);
2377 	rpl = cplhdr(skb);
2378 	if (!is_t4(adapter_type)) {
2379 		skb_trim(skb, roundup(sizeof(*rpl5), 16));
2380 		rpl5 = (void *)rpl;
2381 		INIT_TP_WR(rpl5, ep->hwtid);
2382 	} else {
2383 		skb_trim(skb, sizeof(*rpl));
2384 		INIT_TP_WR(rpl, ep->hwtid);
2385 	}
2386 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2387 						    ep->hwtid));
2388 
2389 	best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2390 		 enable_tcp_timestamps && req->tcpopt.tstamp,
2391 		 (AF_INET == ep->com.remote_addr.ss_family) ? 0 : 1);
2392 	wscale = compute_wscale(rcv_win);
2393 
2394 	/*
2395 	 * Specify the largest window that will fit in opt0. The
2396 	 * remainder will be specified in the rx_data_ack.
2397 	 */
2398 	win = ep->rcv_win >> 10;
2399 	if (win > RCV_BUFSIZ_M)
2400 		win = RCV_BUFSIZ_M;
2401 	opt0 = (nocong ? NO_CONG_F : 0) |
2402 	       KEEP_ALIVE_F |
2403 	       DELACK_F |
2404 	       WND_SCALE_V(wscale) |
2405 	       MSS_IDX_V(mtu_idx) |
2406 	       L2T_IDX_V(ep->l2t->idx) |
2407 	       TX_CHAN_V(ep->tx_chan) |
2408 	       SMAC_SEL_V(ep->smac_idx) |
2409 	       DSCP_V(ep->tos >> 2) |
2410 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2411 	       RCV_BUFSIZ_V(win);
2412 	opt2 = RX_CHANNEL_V(0) |
2413 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2414 
2415 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2416 		opt2 |= TSTAMPS_EN_F;
2417 	if (enable_tcp_sack && req->tcpopt.sack)
2418 		opt2 |= SACK_EN_F;
2419 	if (wscale && enable_tcp_window_scaling)
2420 		opt2 |= WND_SCALE_EN_F;
2421 	if (enable_ecn) {
2422 		const struct tcphdr *tcph;
2423 		u32 hlen = ntohl(req->hdr_len);
2424 
2425 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2426 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2427 				IP_HDR_LEN_G(hlen);
2428 		else
2429 			tcph = (const void *)(req + 1) +
2430 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2431 		if (tcph->ece && tcph->cwr)
2432 			opt2 |= CCTRL_ECN_V(1);
2433 	}
2434 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2435 		u32 isn = (prandom_u32() & ~7UL) - 1;
2436 		opt2 |= T5_OPT_2_VALID_F;
2437 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2438 		opt2 |= T5_ISS_F;
2439 		rpl5 = (void *)rpl;
2440 		memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2441 		if (peer2peer)
2442 			isn += 4;
2443 		rpl5->iss = cpu_to_be32(isn);
2444 		PDBG("%s iss %u\n", __func__, be32_to_cpu(rpl5->iss));
2445 	}
2446 
2447 	rpl->opt0 = cpu_to_be64(opt0);
2448 	rpl->opt2 = cpu_to_be32(opt2);
2449 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2450 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2451 
2452 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2453 }
2454 
2455 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2456 {
2457 	PDBG("%s c4iw_dev %p tid %u\n", __func__, dev, hwtid);
2458 	BUG_ON(skb_cloned(skb));
2459 	skb_trim(skb, sizeof(struct cpl_tid_release));
2460 	release_tid(&dev->rdev, hwtid, skb);
2461 	return;
2462 }
2463 
2464 static void get_4tuple(struct cpl_pass_accept_req *req, enum chip_type type,
2465 		       int *iptype, __u8 *local_ip, __u8 *peer_ip,
2466 		       __be16 *local_port, __be16 *peer_port)
2467 {
2468 	int eth_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2469 		      ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2470 		      T6_ETH_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2471 	int ip_len = (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) ?
2472 		     IP_HDR_LEN_G(be32_to_cpu(req->hdr_len)) :
2473 		     T6_IP_HDR_LEN_G(be32_to_cpu(req->hdr_len));
2474 	struct iphdr *ip = (struct iphdr *)((u8 *)(req + 1) + eth_len);
2475 	struct ipv6hdr *ip6 = (struct ipv6hdr *)((u8 *)(req + 1) + eth_len);
2476 	struct tcphdr *tcp = (struct tcphdr *)
2477 			     ((u8 *)(req + 1) + eth_len + ip_len);
2478 
2479 	if (ip->version == 4) {
2480 		PDBG("%s saddr 0x%x daddr 0x%x sport %u dport %u\n", __func__,
2481 		     ntohl(ip->saddr), ntohl(ip->daddr), ntohs(tcp->source),
2482 		     ntohs(tcp->dest));
2483 		*iptype = 4;
2484 		memcpy(peer_ip, &ip->saddr, 4);
2485 		memcpy(local_ip, &ip->daddr, 4);
2486 	} else {
2487 		PDBG("%s saddr %pI6 daddr %pI6 sport %u dport %u\n", __func__,
2488 		     ip6->saddr.s6_addr, ip6->daddr.s6_addr, ntohs(tcp->source),
2489 		     ntohs(tcp->dest));
2490 		*iptype = 6;
2491 		memcpy(peer_ip, ip6->saddr.s6_addr, 16);
2492 		memcpy(local_ip, ip6->daddr.s6_addr, 16);
2493 	}
2494 	*peer_port = tcp->source;
2495 	*local_port = tcp->dest;
2496 
2497 	return;
2498 }
2499 
2500 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2501 {
2502 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2503 	struct cpl_pass_accept_req *req = cplhdr(skb);
2504 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2505 	struct tid_info *t = dev->rdev.lldi.tids;
2506 	unsigned int hwtid = GET_TID(req);
2507 	struct dst_entry *dst;
2508 	__u8 local_ip[16], peer_ip[16];
2509 	__be16 local_port, peer_port;
2510 	struct sockaddr_in6 *sin6;
2511 	int err;
2512 	u16 peer_mss = ntohs(req->tcpopt.mss);
2513 	int iptype;
2514 	unsigned short hdrs;
2515 	u8 tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2516 
2517 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2518 	if (!parent_ep) {
2519 		PDBG("%s connect request on invalid stid %d\n", __func__, stid);
2520 		goto reject;
2521 	}
2522 
2523 	if (state_read(&parent_ep->com) != LISTEN) {
2524 		PDBG("%s - listening ep not in LISTEN\n", __func__);
2525 		goto reject;
2526 	}
2527 
2528 	get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type, &iptype,
2529 		   local_ip, peer_ip, &local_port, &peer_port);
2530 
2531 	/* Find output route */
2532 	if (iptype == 4)  {
2533 		PDBG("%s parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2534 		     , __func__, parent_ep, hwtid,
2535 		     local_ip, peer_ip, ntohs(local_port),
2536 		     ntohs(peer_port), peer_mss);
2537 		dst = find_route(dev, *(__be32 *)local_ip, *(__be32 *)peer_ip,
2538 				 local_port, peer_port,
2539 				 tos);
2540 	} else {
2541 		PDBG("%s parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2542 		     , __func__, parent_ep, hwtid,
2543 		     local_ip, peer_ip, ntohs(local_port),
2544 		     ntohs(peer_port), peer_mss);
2545 		dst = find_route6(dev, local_ip, peer_ip, local_port, peer_port,
2546 				  PASS_OPEN_TOS_G(ntohl(req->tos_stid)),
2547 				  ((struct sockaddr_in6 *)
2548 				  &parent_ep->com.local_addr)->sin6_scope_id);
2549 	}
2550 	if (!dst) {
2551 		printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
2552 		       __func__);
2553 		goto reject;
2554 	}
2555 
2556 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2557 	if (!child_ep) {
2558 		printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
2559 		       __func__);
2560 		dst_release(dst);
2561 		goto reject;
2562 	}
2563 
2564 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2565 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2566 	if (err) {
2567 		printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
2568 		       __func__);
2569 		dst_release(dst);
2570 		kfree(child_ep);
2571 		goto reject;
2572 	}
2573 
2574 	hdrs = sizeof(struct iphdr) + sizeof(struct tcphdr) +
2575 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2576 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2577 		child_ep->mtu = peer_mss + hdrs;
2578 
2579 	state_set(&child_ep->com, CONNECTING);
2580 	child_ep->com.dev = dev;
2581 	child_ep->com.cm_id = NULL;
2582 
2583 	if (iptype == 4) {
2584 		struct sockaddr_in *sin = (struct sockaddr_in *)
2585 			&child_ep->com.local_addr;
2586 
2587 		sin->sin_family = PF_INET;
2588 		sin->sin_port = local_port;
2589 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2590 
2591 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2592 		sin->sin_family = PF_INET;
2593 		sin->sin_port = ((struct sockaddr_in *)
2594 				 &parent_ep->com.local_addr)->sin_port;
2595 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2596 
2597 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2598 		sin->sin_family = PF_INET;
2599 		sin->sin_port = peer_port;
2600 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2601 	} else {
2602 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2603 		sin6->sin6_family = PF_INET6;
2604 		sin6->sin6_port = local_port;
2605 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2606 
2607 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2608 		sin6->sin6_family = PF_INET6;
2609 		sin6->sin6_port = ((struct sockaddr_in6 *)
2610 				   &parent_ep->com.local_addr)->sin6_port;
2611 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2612 
2613 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2614 		sin6->sin6_family = PF_INET6;
2615 		sin6->sin6_port = peer_port;
2616 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2617 	}
2618 
2619 	c4iw_get_ep(&parent_ep->com);
2620 	child_ep->parent_ep = parent_ep;
2621 	child_ep->tos = tos;
2622 	child_ep->dst = dst;
2623 	child_ep->hwtid = hwtid;
2624 
2625 	PDBG("%s tx_chan %u smac_idx %u rss_qid %u\n", __func__,
2626 	     child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2627 
2628 	init_timer(&child_ep->timer);
2629 	cxgb4_insert_tid(t, child_ep, hwtid);
2630 	insert_ep_tid(child_ep);
2631 	if (accept_cr(child_ep, skb, req)) {
2632 		c4iw_put_ep(&parent_ep->com);
2633 		release_ep_resources(child_ep);
2634 	} else {
2635 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2636 	}
2637 	if (iptype == 6) {
2638 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2639 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2640 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2641 	}
2642 	goto out;
2643 reject:
2644 	reject_cr(dev, hwtid, skb);
2645 	if (parent_ep)
2646 		c4iw_put_ep(&parent_ep->com);
2647 out:
2648 	return 0;
2649 }
2650 
2651 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2652 {
2653 	struct c4iw_ep *ep;
2654 	struct cpl_pass_establish *req = cplhdr(skb);
2655 	unsigned int tid = GET_TID(req);
2656 	int ret;
2657 
2658 	ep = get_ep_from_tid(dev, tid);
2659 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2660 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2661 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2662 
2663 	PDBG("%s ep %p hwtid %u tcp_opt 0x%02x\n", __func__, ep, tid,
2664 	     ntohs(req->tcp_opt));
2665 
2666 	set_emss(ep, ntohs(req->tcp_opt));
2667 
2668 	dst_confirm(ep->dst);
2669 	mutex_lock(&ep->com.mutex);
2670 	ep->com.state = MPA_REQ_WAIT;
2671 	start_ep_timer(ep);
2672 	set_bit(PASS_ESTAB, &ep->com.history);
2673 	ret = send_flowc(ep, skb);
2674 	mutex_unlock(&ep->com.mutex);
2675 	if (ret)
2676 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2677 	c4iw_put_ep(&ep->com);
2678 
2679 	return 0;
2680 }
2681 
2682 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2683 {
2684 	struct cpl_peer_close *hdr = cplhdr(skb);
2685 	struct c4iw_ep *ep;
2686 	struct c4iw_qp_attributes attrs;
2687 	int disconnect = 1;
2688 	int release = 0;
2689 	unsigned int tid = GET_TID(hdr);
2690 	int ret;
2691 
2692 	ep = get_ep_from_tid(dev, tid);
2693 	if (!ep)
2694 		return 0;
2695 
2696 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2697 	dst_confirm(ep->dst);
2698 
2699 	set_bit(PEER_CLOSE, &ep->com.history);
2700 	mutex_lock(&ep->com.mutex);
2701 	switch (ep->com.state) {
2702 	case MPA_REQ_WAIT:
2703 		__state_set(&ep->com, CLOSING);
2704 		break;
2705 	case MPA_REQ_SENT:
2706 		__state_set(&ep->com, CLOSING);
2707 		connect_reply_upcall(ep, -ECONNRESET);
2708 		break;
2709 	case MPA_REQ_RCVD:
2710 
2711 		/*
2712 		 * We're gonna mark this puppy DEAD, but keep
2713 		 * the reference on it until the ULP accepts or
2714 		 * rejects the CR. Also wake up anyone waiting
2715 		 * in rdma connection migration (see c4iw_accept_cr()).
2716 		 */
2717 		__state_set(&ep->com, CLOSING);
2718 		PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2719 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2720 		break;
2721 	case MPA_REP_SENT:
2722 		__state_set(&ep->com, CLOSING);
2723 		PDBG("waking up ep %p tid %u\n", ep, ep->hwtid);
2724 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2725 		break;
2726 	case FPDU_MODE:
2727 		start_ep_timer(ep);
2728 		__state_set(&ep->com, CLOSING);
2729 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2730 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2731 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2732 		if (ret != -ECONNRESET) {
2733 			peer_close_upcall(ep);
2734 			disconnect = 1;
2735 		}
2736 		break;
2737 	case ABORTING:
2738 		disconnect = 0;
2739 		break;
2740 	case CLOSING:
2741 		__state_set(&ep->com, MORIBUND);
2742 		disconnect = 0;
2743 		break;
2744 	case MORIBUND:
2745 		(void)stop_ep_timer(ep);
2746 		if (ep->com.cm_id && ep->com.qp) {
2747 			attrs.next_state = C4IW_QP_STATE_IDLE;
2748 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2749 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2750 		}
2751 		close_complete_upcall(ep, 0);
2752 		__state_set(&ep->com, DEAD);
2753 		release = 1;
2754 		disconnect = 0;
2755 		break;
2756 	case DEAD:
2757 		disconnect = 0;
2758 		break;
2759 	default:
2760 		BUG_ON(1);
2761 	}
2762 	mutex_unlock(&ep->com.mutex);
2763 	if (disconnect)
2764 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2765 	if (release)
2766 		release_ep_resources(ep);
2767 	c4iw_put_ep(&ep->com);
2768 	return 0;
2769 }
2770 
2771 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2772 {
2773 	struct cpl_abort_req_rss *req = cplhdr(skb);
2774 	struct c4iw_ep *ep;
2775 	struct cpl_abort_rpl *rpl;
2776 	struct sk_buff *rpl_skb;
2777 	struct c4iw_qp_attributes attrs;
2778 	int ret;
2779 	int release = 0;
2780 	unsigned int tid = GET_TID(req);
2781 
2782 	ep = get_ep_from_tid(dev, tid);
2783 	if (!ep)
2784 		return 0;
2785 
2786 	if (is_neg_adv(req->status)) {
2787 		PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
2788 		     __func__, ep->hwtid, req->status,
2789 		     neg_adv_str(req->status));
2790 		ep->stats.abort_neg_adv++;
2791 		mutex_lock(&dev->rdev.stats.lock);
2792 		dev->rdev.stats.neg_adv++;
2793 		mutex_unlock(&dev->rdev.stats.lock);
2794 		goto deref_ep;
2795 	}
2796 	PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
2797 	     ep->com.state);
2798 	set_bit(PEER_ABORT, &ep->com.history);
2799 
2800 	/*
2801 	 * Wake up any threads in rdma_init() or rdma_fini().
2802 	 * However, this is not needed if com state is just
2803 	 * MPA_REQ_SENT
2804 	 */
2805 	if (ep->com.state != MPA_REQ_SENT)
2806 		c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
2807 
2808 	mutex_lock(&ep->com.mutex);
2809 	switch (ep->com.state) {
2810 	case CONNECTING:
2811 		c4iw_put_ep(&ep->parent_ep->com);
2812 		break;
2813 	case MPA_REQ_WAIT:
2814 		(void)stop_ep_timer(ep);
2815 		break;
2816 	case MPA_REQ_SENT:
2817 		(void)stop_ep_timer(ep);
2818 		if (mpa_rev == 1 || (mpa_rev == 2 && ep->tried_with_mpa_v1))
2819 			connect_reply_upcall(ep, -ECONNRESET);
2820 		else {
2821 			/*
2822 			 * we just don't send notification upwards because we
2823 			 * want to retry with mpa_v1 without upper layers even
2824 			 * knowing it.
2825 			 *
2826 			 * do some housekeeping so as to re-initiate the
2827 			 * connection
2828 			 */
2829 			PDBG("%s: mpa_rev=%d. Retrying with mpav1\n", __func__,
2830 			     mpa_rev);
2831 			ep->retry_with_mpa_v1 = 1;
2832 		}
2833 		break;
2834 	case MPA_REP_SENT:
2835 		break;
2836 	case MPA_REQ_RCVD:
2837 		break;
2838 	case MORIBUND:
2839 	case CLOSING:
2840 		stop_ep_timer(ep);
2841 		/*FALLTHROUGH*/
2842 	case FPDU_MODE:
2843 		if (ep->com.cm_id && ep->com.qp) {
2844 			attrs.next_state = C4IW_QP_STATE_ERROR;
2845 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2846 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2847 				     &attrs, 1);
2848 			if (ret)
2849 				printk(KERN_ERR MOD
2850 				       "%s - qp <- error failed!\n",
2851 				       __func__);
2852 		}
2853 		peer_abort_upcall(ep);
2854 		break;
2855 	case ABORTING:
2856 		break;
2857 	case DEAD:
2858 		PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2859 		mutex_unlock(&ep->com.mutex);
2860 		goto deref_ep;
2861 	default:
2862 		BUG_ON(1);
2863 		break;
2864 	}
2865 	dst_confirm(ep->dst);
2866 	if (ep->com.state != ABORTING) {
2867 		__state_set(&ep->com, DEAD);
2868 		/* we don't release if we want to retry with mpa_v1 */
2869 		if (!ep->retry_with_mpa_v1)
2870 			release = 1;
2871 	}
2872 	mutex_unlock(&ep->com.mutex);
2873 
2874 	rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
2875 	if (!rpl_skb) {
2876 		printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
2877 		       __func__);
2878 		release = 1;
2879 		goto out;
2880 	}
2881 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
2882 	rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
2883 	INIT_TP_WR(rpl, ep->hwtid);
2884 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
2885 	rpl->cmd = CPL_ABORT_NO_RST;
2886 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2887 out:
2888 	if (release)
2889 		release_ep_resources(ep);
2890 	else if (ep->retry_with_mpa_v1) {
2891 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2892 			struct sockaddr_in6 *sin6 =
2893 					(struct sockaddr_in6 *)
2894 					&ep->com.local_addr;
2895 			cxgb4_clip_release(
2896 					ep->com.dev->rdev.lldi.ports[0],
2897 					(const u32 *)&sin6->sin6_addr.s6_addr,
2898 					1);
2899 		}
2900 		remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2901 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid);
2902 		dst_release(ep->dst);
2903 		cxgb4_l2t_release(ep->l2t);
2904 		c4iw_reconnect(ep);
2905 	}
2906 
2907 deref_ep:
2908 	c4iw_put_ep(&ep->com);
2909 	/* Dereferencing ep, referenced in peer_abort_intr() */
2910 	c4iw_put_ep(&ep->com);
2911 	return 0;
2912 }
2913 
2914 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2915 {
2916 	struct c4iw_ep *ep;
2917 	struct c4iw_qp_attributes attrs;
2918 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2919 	int release = 0;
2920 	unsigned int tid = GET_TID(rpl);
2921 
2922 	ep = get_ep_from_tid(dev, tid);
2923 	if (!ep)
2924 		return 0;
2925 
2926 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
2927 	BUG_ON(!ep);
2928 
2929 	/* The cm_id may be null if we failed to connect */
2930 	mutex_lock(&ep->com.mutex);
2931 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2932 	switch (ep->com.state) {
2933 	case CLOSING:
2934 		__state_set(&ep->com, MORIBUND);
2935 		break;
2936 	case MORIBUND:
2937 		(void)stop_ep_timer(ep);
2938 		if ((ep->com.cm_id) && (ep->com.qp)) {
2939 			attrs.next_state = C4IW_QP_STATE_IDLE;
2940 			c4iw_modify_qp(ep->com.qp->rhp,
2941 					     ep->com.qp,
2942 					     C4IW_QP_ATTR_NEXT_STATE,
2943 					     &attrs, 1);
2944 		}
2945 		close_complete_upcall(ep, 0);
2946 		__state_set(&ep->com, DEAD);
2947 		release = 1;
2948 		break;
2949 	case ABORTING:
2950 	case DEAD:
2951 		break;
2952 	default:
2953 		BUG_ON(1);
2954 		break;
2955 	}
2956 	mutex_unlock(&ep->com.mutex);
2957 	if (release)
2958 		release_ep_resources(ep);
2959 	c4iw_put_ep(&ep->com);
2960 	return 0;
2961 }
2962 
2963 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
2964 {
2965 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
2966 	unsigned int tid = GET_TID(rpl);
2967 	struct c4iw_ep *ep;
2968 	struct c4iw_qp_attributes attrs;
2969 
2970 	ep = get_ep_from_tid(dev, tid);
2971 	BUG_ON(!ep);
2972 
2973 	if (ep && ep->com.qp) {
2974 		printk(KERN_WARNING MOD "TERM received tid %u qpid %u\n", tid,
2975 		       ep->com.qp->wq.sq.qid);
2976 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
2977 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2978 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2979 	} else
2980 		printk(KERN_WARNING MOD "TERM received tid %u no ep/qp\n", tid);
2981 	c4iw_put_ep(&ep->com);
2982 
2983 	return 0;
2984 }
2985 
2986 /*
2987  * Upcall from the adapter indicating data has been transmitted.
2988  * For us its just the single MPA request or reply.  We can now free
2989  * the skb holding the mpa message.
2990  */
2991 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
2992 {
2993 	struct c4iw_ep *ep;
2994 	struct cpl_fw4_ack *hdr = cplhdr(skb);
2995 	u8 credits = hdr->credits;
2996 	unsigned int tid = GET_TID(hdr);
2997 
2998 
2999 	ep = get_ep_from_tid(dev, tid);
3000 	if (!ep)
3001 		return 0;
3002 	PDBG("%s ep %p tid %u credits %u\n", __func__, ep, ep->hwtid, credits);
3003 	if (credits == 0) {
3004 		PDBG("%s 0 credit ack ep %p tid %u state %u\n",
3005 		     __func__, ep, ep->hwtid, state_read(&ep->com));
3006 		goto out;
3007 	}
3008 
3009 	dst_confirm(ep->dst);
3010 	if (ep->mpa_skb) {
3011 		PDBG("%s last streaming msg ack ep %p tid %u state %u "
3012 		     "initiator %u freeing skb\n", __func__, ep, ep->hwtid,
3013 		     state_read(&ep->com), ep->mpa_attr.initiator ? 1 : 0);
3014 		kfree_skb(ep->mpa_skb);
3015 		ep->mpa_skb = NULL;
3016 		mutex_lock(&ep->com.mutex);
3017 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3018 			stop_ep_timer(ep);
3019 		mutex_unlock(&ep->com.mutex);
3020 	}
3021 out:
3022 	c4iw_put_ep(&ep->com);
3023 	return 0;
3024 }
3025 
3026 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3027 {
3028 	int err = 0;
3029 	int disconnect = 0;
3030 	struct c4iw_ep *ep = to_ep(cm_id);
3031 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3032 
3033 	mutex_lock(&ep->com.mutex);
3034 	if (ep->com.state != MPA_REQ_RCVD) {
3035 		mutex_unlock(&ep->com.mutex);
3036 		c4iw_put_ep(&ep->com);
3037 		return -ECONNRESET;
3038 	}
3039 	set_bit(ULP_REJECT, &ep->com.history);
3040 	if (mpa_rev == 0)
3041 		disconnect = 2;
3042 	else {
3043 		err = send_mpa_reject(ep, pdata, pdata_len);
3044 		disconnect = 1;
3045 	}
3046 	mutex_unlock(&ep->com.mutex);
3047 	if (disconnect) {
3048 		stop_ep_timer(ep);
3049 		err = c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
3050 	}
3051 	c4iw_put_ep(&ep->com);
3052 	return 0;
3053 }
3054 
3055 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3056 {
3057 	int err;
3058 	struct c4iw_qp_attributes attrs;
3059 	enum c4iw_qp_attr_mask mask;
3060 	struct c4iw_ep *ep = to_ep(cm_id);
3061 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3062 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3063 	int abort = 0;
3064 
3065 	PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
3066 
3067 	mutex_lock(&ep->com.mutex);
3068 	if (ep->com.state != MPA_REQ_RCVD) {
3069 		err = -ECONNRESET;
3070 		goto err_out;
3071 	}
3072 
3073 	BUG_ON(!qp);
3074 
3075 	set_bit(ULP_ACCEPT, &ep->com.history);
3076 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3077 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3078 		err = -EINVAL;
3079 		goto err_abort;
3080 	}
3081 
3082 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3083 		if (conn_param->ord > ep->ird) {
3084 			if (RELAXED_IRD_NEGOTIATION) {
3085 				ep->ord = ep->ird;
3086 			} else {
3087 				ep->ird = conn_param->ird;
3088 				ep->ord = conn_param->ord;
3089 				send_mpa_reject(ep, conn_param->private_data,
3090 						conn_param->private_data_len);
3091 				err = -ENOMEM;
3092 				goto err_abort;
3093 			}
3094 		}
3095 		if (conn_param->ird < ep->ord) {
3096 			if (RELAXED_IRD_NEGOTIATION &&
3097 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3098 				conn_param->ird = ep->ord;
3099 			} else {
3100 				err = -ENOMEM;
3101 				goto err_abort;
3102 			}
3103 		}
3104 	}
3105 	ep->ird = conn_param->ird;
3106 	ep->ord = conn_param->ord;
3107 
3108 	if (ep->mpa_attr.version == 1) {
3109 		if (peer2peer && ep->ird == 0)
3110 			ep->ird = 1;
3111 	} else {
3112 		if (peer2peer &&
3113 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3114 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3115 			ep->ird = 1;
3116 	}
3117 
3118 	PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
3119 
3120 	ep->com.cm_id = cm_id;
3121 	ref_cm_id(&ep->com);
3122 	ep->com.qp = qp;
3123 	ref_qp(ep);
3124 
3125 	/* bind QP to EP and move to RTS */
3126 	attrs.mpa_attr = ep->mpa_attr;
3127 	attrs.max_ird = ep->ird;
3128 	attrs.max_ord = ep->ord;
3129 	attrs.llp_stream_handle = ep;
3130 	attrs.next_state = C4IW_QP_STATE_RTS;
3131 
3132 	/* bind QP and TID with INIT_WR */
3133 	mask = C4IW_QP_ATTR_NEXT_STATE |
3134 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3135 			     C4IW_QP_ATTR_MPA_ATTR |
3136 			     C4IW_QP_ATTR_MAX_IRD |
3137 			     C4IW_QP_ATTR_MAX_ORD;
3138 
3139 	err = c4iw_modify_qp(ep->com.qp->rhp,
3140 			     ep->com.qp, mask, &attrs, 1);
3141 	if (err)
3142 		goto err_deref_cm_id;
3143 
3144 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3145 	err = send_mpa_reply(ep, conn_param->private_data,
3146 			     conn_param->private_data_len);
3147 	if (err)
3148 		goto err_deref_cm_id;
3149 
3150 	__state_set(&ep->com, FPDU_MODE);
3151 	established_upcall(ep);
3152 	mutex_unlock(&ep->com.mutex);
3153 	c4iw_put_ep(&ep->com);
3154 	return 0;
3155 err_deref_cm_id:
3156 	deref_cm_id(&ep->com);
3157 err_abort:
3158 	abort = 1;
3159 err_out:
3160 	mutex_unlock(&ep->com.mutex);
3161 	if (abort)
3162 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3163 	c4iw_put_ep(&ep->com);
3164 	return err;
3165 }
3166 
3167 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3168 {
3169 	struct in_device *ind;
3170 	int found = 0;
3171 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3172 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3173 
3174 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3175 	if (!ind)
3176 		return -EADDRNOTAVAIL;
3177 	for_primary_ifa(ind) {
3178 		laddr->sin_addr.s_addr = ifa->ifa_address;
3179 		raddr->sin_addr.s_addr = ifa->ifa_address;
3180 		found = 1;
3181 		break;
3182 	}
3183 	endfor_ifa(ind);
3184 	in_dev_put(ind);
3185 	return found ? 0 : -EADDRNOTAVAIL;
3186 }
3187 
3188 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3189 		      unsigned char banned_flags)
3190 {
3191 	struct inet6_dev *idev;
3192 	int err = -EADDRNOTAVAIL;
3193 
3194 	rcu_read_lock();
3195 	idev = __in6_dev_get(dev);
3196 	if (idev != NULL) {
3197 		struct inet6_ifaddr *ifp;
3198 
3199 		read_lock_bh(&idev->lock);
3200 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3201 			if (ifp->scope == IFA_LINK &&
3202 			    !(ifp->flags & banned_flags)) {
3203 				memcpy(addr, &ifp->addr, 16);
3204 				err = 0;
3205 				break;
3206 			}
3207 		}
3208 		read_unlock_bh(&idev->lock);
3209 	}
3210 	rcu_read_unlock();
3211 	return err;
3212 }
3213 
3214 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3215 {
3216 	struct in6_addr uninitialized_var(addr);
3217 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3218 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3219 
3220 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3221 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3222 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3223 		return 0;
3224 	}
3225 	return -EADDRNOTAVAIL;
3226 }
3227 
3228 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3229 {
3230 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3231 	struct c4iw_ep *ep;
3232 	int err = 0;
3233 	struct sockaddr_in *laddr;
3234 	struct sockaddr_in *raddr;
3235 	struct sockaddr_in6 *laddr6;
3236 	struct sockaddr_in6 *raddr6;
3237 	__u8 *ra;
3238 	int iptype;
3239 
3240 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3241 	    (conn_param->ird > cur_max_read_depth(dev))) {
3242 		err = -EINVAL;
3243 		goto out;
3244 	}
3245 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3246 	if (!ep) {
3247 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3248 		err = -ENOMEM;
3249 		goto out;
3250 	}
3251 	init_timer(&ep->timer);
3252 	ep->plen = conn_param->private_data_len;
3253 	if (ep->plen)
3254 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3255 		       conn_param->private_data, ep->plen);
3256 	ep->ird = conn_param->ird;
3257 	ep->ord = conn_param->ord;
3258 
3259 	if (peer2peer && ep->ord == 0)
3260 		ep->ord = 1;
3261 
3262 	ep->com.cm_id = cm_id;
3263 	ref_cm_id(&ep->com);
3264 	ep->com.dev = dev;
3265 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3266 	if (!ep->com.qp) {
3267 		PDBG("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3268 		err = -EINVAL;
3269 		goto fail1;
3270 	}
3271 	ref_qp(ep);
3272 	PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
3273 	     ep->com.qp, cm_id);
3274 
3275 	/*
3276 	 * Allocate an active TID to initiate a TCP connection.
3277 	 */
3278 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3279 	if (ep->atid == -1) {
3280 		printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
3281 		err = -ENOMEM;
3282 		goto fail1;
3283 	}
3284 	insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3285 
3286 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3287 	       sizeof(ep->com.local_addr));
3288 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3289 	       sizeof(ep->com.remote_addr));
3290 
3291 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3292 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3293 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3294 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3295 
3296 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3297 		iptype = 4;
3298 		ra = (__u8 *)&raddr->sin_addr;
3299 
3300 		/*
3301 		 * Handle loopback requests to INADDR_ANY.
3302 		 */
3303 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3304 			err = pick_local_ipaddrs(dev, cm_id);
3305 			if (err)
3306 				goto fail1;
3307 		}
3308 
3309 		/* find a route */
3310 		PDBG("%s saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3311 		     __func__, &laddr->sin_addr, ntohs(laddr->sin_port),
3312 		     ra, ntohs(raddr->sin_port));
3313 		ep->dst = find_route(dev, laddr->sin_addr.s_addr,
3314 				     raddr->sin_addr.s_addr, laddr->sin_port,
3315 				     raddr->sin_port, cm_id->tos);
3316 	} else {
3317 		iptype = 6;
3318 		ra = (__u8 *)&raddr6->sin6_addr;
3319 
3320 		/*
3321 		 * Handle loopback requests to INADDR_ANY.
3322 		 */
3323 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3324 			err = pick_local_ip6addrs(dev, cm_id);
3325 			if (err)
3326 				goto fail1;
3327 		}
3328 
3329 		/* find a route */
3330 		PDBG("%s saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3331 		     __func__, laddr6->sin6_addr.s6_addr,
3332 		     ntohs(laddr6->sin6_port),
3333 		     raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3334 		ep->dst = find_route6(dev, laddr6->sin6_addr.s6_addr,
3335 				      raddr6->sin6_addr.s6_addr,
3336 				      laddr6->sin6_port, raddr6->sin6_port, 0,
3337 				      raddr6->sin6_scope_id);
3338 	}
3339 	if (!ep->dst) {
3340 		printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
3341 		err = -EHOSTUNREACH;
3342 		goto fail2;
3343 	}
3344 
3345 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3346 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3347 	if (err) {
3348 		printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
3349 		goto fail3;
3350 	}
3351 
3352 	PDBG("%s txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3353 		__func__, ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3354 		ep->l2t->idx);
3355 
3356 	state_set(&ep->com, CONNECTING);
3357 	ep->tos = cm_id->tos;
3358 
3359 	/* send connect request to rnic */
3360 	err = send_connect(ep);
3361 	if (!err)
3362 		goto out;
3363 
3364 	cxgb4_l2t_release(ep->l2t);
3365 fail3:
3366 	dst_release(ep->dst);
3367 fail2:
3368 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3369 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3370 fail1:
3371 	deref_cm_id(&ep->com);
3372 	c4iw_put_ep(&ep->com);
3373 out:
3374 	return err;
3375 }
3376 
3377 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3378 {
3379 	int err;
3380 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3381 				    &ep->com.local_addr;
3382 
3383 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3384 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3385 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3386 		if (err)
3387 			return err;
3388 	}
3389 	c4iw_init_wr_wait(&ep->com.wr_wait);
3390 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3391 				   ep->stid, &sin6->sin6_addr,
3392 				   sin6->sin6_port,
3393 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3394 	if (!err)
3395 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3396 					  &ep->com.wr_wait,
3397 					  0, 0, __func__);
3398 	else if (err > 0)
3399 		err = net_xmit_errno(err);
3400 	if (err) {
3401 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3402 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3403 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3404 		       err, ep->stid,
3405 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3406 	}
3407 	return err;
3408 }
3409 
3410 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3411 {
3412 	int err;
3413 	struct sockaddr_in *sin = (struct sockaddr_in *)
3414 				  &ep->com.local_addr;
3415 
3416 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3417 		do {
3418 			err = cxgb4_create_server_filter(
3419 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3420 				sin->sin_addr.s_addr, sin->sin_port, 0,
3421 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3422 			if (err == -EBUSY) {
3423 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3424 					err = -EIO;
3425 					break;
3426 				}
3427 				set_current_state(TASK_UNINTERRUPTIBLE);
3428 				schedule_timeout(usecs_to_jiffies(100));
3429 			}
3430 		} while (err == -EBUSY);
3431 	} else {
3432 		c4iw_init_wr_wait(&ep->com.wr_wait);
3433 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3434 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3435 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3436 		if (!err)
3437 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3438 						  &ep->com.wr_wait,
3439 						  0, 0, __func__);
3440 		else if (err > 0)
3441 			err = net_xmit_errno(err);
3442 	}
3443 	if (err)
3444 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3445 		       , err, ep->stid,
3446 		       &sin->sin_addr, ntohs(sin->sin_port));
3447 	return err;
3448 }
3449 
3450 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3451 {
3452 	int err = 0;
3453 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3454 	struct c4iw_listen_ep *ep;
3455 
3456 	might_sleep();
3457 
3458 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3459 	if (!ep) {
3460 		printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
3461 		err = -ENOMEM;
3462 		goto fail1;
3463 	}
3464 	PDBG("%s ep %p\n", __func__, ep);
3465 	ep->com.cm_id = cm_id;
3466 	ref_cm_id(&ep->com);
3467 	ep->com.dev = dev;
3468 	ep->backlog = backlog;
3469 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3470 	       sizeof(ep->com.local_addr));
3471 
3472 	/*
3473 	 * Allocate a server TID.
3474 	 */
3475 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3476 	    ep->com.local_addr.ss_family == AF_INET)
3477 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3478 					     cm_id->m_local_addr.ss_family, ep);
3479 	else
3480 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3481 					    cm_id->m_local_addr.ss_family, ep);
3482 
3483 	if (ep->stid == -1) {
3484 		printk(KERN_ERR MOD "%s - cannot alloc stid.\n", __func__);
3485 		err = -ENOMEM;
3486 		goto fail2;
3487 	}
3488 	insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3489 
3490 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3491 	       sizeof(ep->com.local_addr));
3492 
3493 	state_set(&ep->com, LISTEN);
3494 	if (ep->com.local_addr.ss_family == AF_INET)
3495 		err = create_server4(dev, ep);
3496 	else
3497 		err = create_server6(dev, ep);
3498 	if (!err) {
3499 		cm_id->provider_data = ep;
3500 		goto out;
3501 	}
3502 
3503 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3504 			ep->com.local_addr.ss_family);
3505 fail2:
3506 	deref_cm_id(&ep->com);
3507 	c4iw_put_ep(&ep->com);
3508 fail1:
3509 out:
3510 	return err;
3511 }
3512 
3513 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3514 {
3515 	int err;
3516 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3517 
3518 	PDBG("%s ep %p\n", __func__, ep);
3519 
3520 	might_sleep();
3521 	state_set(&ep->com, DEAD);
3522 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3523 	    ep->com.local_addr.ss_family == AF_INET) {
3524 		err = cxgb4_remove_server_filter(
3525 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3526 			ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3527 	} else {
3528 		struct sockaddr_in6 *sin6;
3529 		c4iw_init_wr_wait(&ep->com.wr_wait);
3530 		err = cxgb4_remove_server(
3531 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3532 				ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3533 		if (err)
3534 			goto done;
3535 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, &ep->com.wr_wait,
3536 					  0, 0, __func__);
3537 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3538 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3539 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3540 	}
3541 	remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3542 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3543 			ep->com.local_addr.ss_family);
3544 done:
3545 	deref_cm_id(&ep->com);
3546 	c4iw_put_ep(&ep->com);
3547 	return err;
3548 }
3549 
3550 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3551 {
3552 	int ret = 0;
3553 	int close = 0;
3554 	int fatal = 0;
3555 	struct c4iw_rdev *rdev;
3556 
3557 	mutex_lock(&ep->com.mutex);
3558 
3559 	PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
3560 	     states[ep->com.state], abrupt);
3561 
3562 	/*
3563 	 * Ref the ep here in case we have fatal errors causing the
3564 	 * ep to be released and freed.
3565 	 */
3566 	c4iw_get_ep(&ep->com);
3567 
3568 	rdev = &ep->com.dev->rdev;
3569 	if (c4iw_fatal_error(rdev)) {
3570 		fatal = 1;
3571 		close_complete_upcall(ep, -EIO);
3572 		ep->com.state = DEAD;
3573 	}
3574 	switch (ep->com.state) {
3575 	case MPA_REQ_WAIT:
3576 	case MPA_REQ_SENT:
3577 	case MPA_REQ_RCVD:
3578 	case MPA_REP_SENT:
3579 	case FPDU_MODE:
3580 		close = 1;
3581 		if (abrupt)
3582 			ep->com.state = ABORTING;
3583 		else {
3584 			ep->com.state = CLOSING;
3585 			start_ep_timer(ep);
3586 		}
3587 		set_bit(CLOSE_SENT, &ep->com.flags);
3588 		break;
3589 	case CLOSING:
3590 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3591 			close = 1;
3592 			if (abrupt) {
3593 				(void)stop_ep_timer(ep);
3594 				ep->com.state = ABORTING;
3595 			} else
3596 				ep->com.state = MORIBUND;
3597 		}
3598 		break;
3599 	case MORIBUND:
3600 	case ABORTING:
3601 	case DEAD:
3602 		PDBG("%s ignoring disconnect ep %p state %u\n",
3603 		     __func__, ep, ep->com.state);
3604 		break;
3605 	default:
3606 		BUG();
3607 		break;
3608 	}
3609 
3610 	if (close) {
3611 		if (abrupt) {
3612 			set_bit(EP_DISC_ABORT, &ep->com.history);
3613 			close_complete_upcall(ep, -ECONNRESET);
3614 			ret = send_abort(ep, NULL, gfp);
3615 		} else {
3616 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3617 			ret = send_halfclose(ep, gfp);
3618 		}
3619 		if (ret) {
3620 			set_bit(EP_DISC_FAIL, &ep->com.history);
3621 			if (!abrupt) {
3622 				stop_ep_timer(ep);
3623 				close_complete_upcall(ep, -EIO);
3624 			}
3625 			if (ep->com.qp) {
3626 				struct c4iw_qp_attributes attrs;
3627 
3628 				attrs.next_state = C4IW_QP_STATE_ERROR;
3629 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3630 						     ep->com.qp,
3631 						     C4IW_QP_ATTR_NEXT_STATE,
3632 						     &attrs, 1);
3633 				if (ret)
3634 					pr_err(MOD
3635 					       "%s - qp <- error failed!\n",
3636 					       __func__);
3637 			}
3638 			fatal = 1;
3639 		}
3640 	}
3641 	mutex_unlock(&ep->com.mutex);
3642 	c4iw_put_ep(&ep->com);
3643 	if (fatal)
3644 		release_ep_resources(ep);
3645 	return ret;
3646 }
3647 
3648 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3649 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3650 {
3651 	struct c4iw_ep *ep;
3652 	int atid = be32_to_cpu(req->tid);
3653 
3654 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3655 					   (__force u32) req->tid);
3656 	if (!ep)
3657 		return;
3658 
3659 	switch (req->retval) {
3660 	case FW_ENOMEM:
3661 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3662 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3663 			send_fw_act_open_req(ep, atid);
3664 			return;
3665 		}
3666 	case FW_EADDRINUSE:
3667 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3668 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3669 			send_fw_act_open_req(ep, atid);
3670 			return;
3671 		}
3672 		break;
3673 	default:
3674 		pr_info("%s unexpected ofld conn wr retval %d\n",
3675 		       __func__, req->retval);
3676 		break;
3677 	}
3678 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3679 	       req->retval, atid);
3680 	mutex_lock(&dev->rdev.stats.lock);
3681 	dev->rdev.stats.act_ofld_conn_fails++;
3682 	mutex_unlock(&dev->rdev.stats.lock);
3683 	connect_reply_upcall(ep, status2errno(req->retval));
3684 	state_set(&ep->com, DEAD);
3685 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3686 		struct sockaddr_in6 *sin6 =
3687 			(struct sockaddr_in6 *)&ep->com.local_addr;
3688 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3689 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3690 	}
3691 	remove_handle(dev, &dev->atid_idr, atid);
3692 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3693 	dst_release(ep->dst);
3694 	cxgb4_l2t_release(ep->l2t);
3695 	c4iw_put_ep(&ep->com);
3696 }
3697 
3698 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3699 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3700 {
3701 	struct sk_buff *rpl_skb;
3702 	struct cpl_pass_accept_req *cpl;
3703 	int ret;
3704 
3705 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3706 	BUG_ON(!rpl_skb);
3707 	if (req->retval) {
3708 		PDBG("%s passive open failure %d\n", __func__, req->retval);
3709 		mutex_lock(&dev->rdev.stats.lock);
3710 		dev->rdev.stats.pas_ofld_conn_fails++;
3711 		mutex_unlock(&dev->rdev.stats.lock);
3712 		kfree_skb(rpl_skb);
3713 	} else {
3714 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3715 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3716 					(__force u32) htonl(
3717 					(__force u32) req->tid)));
3718 		ret = pass_accept_req(dev, rpl_skb);
3719 		if (!ret)
3720 			kfree_skb(rpl_skb);
3721 	}
3722 	return;
3723 }
3724 
3725 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3726 {
3727 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3728 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3729 
3730 	switch (rpl->type) {
3731 	case FW6_TYPE_CQE:
3732 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3733 		break;
3734 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3735 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3736 		switch (req->t_state) {
3737 		case TCP_SYN_SENT:
3738 			active_ofld_conn_reply(dev, skb, req);
3739 			break;
3740 		case TCP_SYN_RECV:
3741 			passive_ofld_conn_reply(dev, skb, req);
3742 			break;
3743 		default:
3744 			pr_err("%s unexpected ofld conn wr state %d\n",
3745 			       __func__, req->t_state);
3746 			break;
3747 		}
3748 		break;
3749 	}
3750 	return 0;
3751 }
3752 
3753 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3754 {
3755 	__be32 l2info;
3756 	__be16 hdr_len, vlantag, len;
3757 	u16 eth_hdr_len;
3758 	int tcp_hdr_len, ip_hdr_len;
3759 	u8 intf;
3760 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3761 	struct cpl_pass_accept_req *req;
3762 	struct tcp_options_received tmp_opt;
3763 	struct c4iw_dev *dev;
3764 	enum chip_type type;
3765 
3766 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3767 	/* Store values from cpl_rx_pkt in temporary location. */
3768 	vlantag = cpl->vlan;
3769 	len = cpl->len;
3770 	l2info  = cpl->l2info;
3771 	hdr_len = cpl->hdr_len;
3772 	intf = cpl->iff;
3773 
3774 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3775 
3776 	/*
3777 	 * We need to parse the TCP options from SYN packet.
3778 	 * to generate cpl_pass_accept_req.
3779 	 */
3780 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3781 	tcp_clear_options(&tmp_opt);
3782 	tcp_parse_options(skb, &tmp_opt, 0, NULL);
3783 
3784 	req = (struct cpl_pass_accept_req *)__skb_push(skb, sizeof(*req));
3785 	memset(req, 0, sizeof(*req));
3786 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3787 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3788 			 be32_to_cpu(l2info))) |
3789 			 SYN_XACT_MATCH_F);
3790 	type = dev->rdev.lldi.adapter_type;
3791 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3792 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3793 	req->hdr_len =
3794 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3795 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3796 		eth_hdr_len = is_t4(type) ?
3797 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3798 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3799 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3800 					    IP_HDR_LEN_V(ip_hdr_len) |
3801 					    ETH_HDR_LEN_V(eth_hdr_len));
3802 	} else { /* T6 and later */
3803 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3804 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3805 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3806 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3807 	}
3808 	req->vlan = vlantag;
3809 	req->len = len;
3810 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3811 				    PASS_OPEN_TOS_V(tos));
3812 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3813 	if (tmp_opt.wscale_ok)
3814 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3815 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3816 	if (tmp_opt.sack_ok)
3817 		req->tcpopt.sack = 1;
3818 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3819 	return;
3820 }
3821 
3822 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3823 				  __be32 laddr, __be16 lport,
3824 				  __be32 raddr, __be16 rport,
3825 				  u32 rcv_isn, u32 filter, u16 window,
3826 				  u32 rss_qid, u8 port_id)
3827 {
3828 	struct sk_buff *req_skb;
3829 	struct fw_ofld_connection_wr *req;
3830 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
3831 	int ret;
3832 
3833 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3834 	req = (struct fw_ofld_connection_wr *)__skb_put(req_skb, sizeof(*req));
3835 	memset(req, 0, sizeof(*req));
3836 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3837 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3838 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3839 	req->le.filter = (__force __be32) filter;
3840 	req->le.lport = lport;
3841 	req->le.pport = rport;
3842 	req->le.u.ipv4.lip = laddr;
3843 	req->le.u.ipv4.pip = raddr;
3844 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3845 	req->tcb.rcv_adv = htons(window);
3846 	req->tcb.t_state_to_astid =
3847 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3848 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3849 			FW_OFLD_CONNECTION_WR_ASTID_V(
3850 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
3851 
3852 	/*
3853 	 * We store the qid in opt2 which will be used by the firmware
3854 	 * to send us the wr response.
3855 	 */
3856 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
3857 
3858 	/*
3859 	 * We initialize the MSS index in TCB to 0xF.
3860 	 * So that when driver sends cpl_pass_accept_rpl
3861 	 * TCB picks up the correct value. If this was 0
3862 	 * TP will ignore any value > 0 for MSS index.
3863 	 */
3864 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
3865 	req->cookie = (uintptr_t)skb;
3866 
3867 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
3868 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
3869 	if (ret < 0) {
3870 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
3871 		       ret);
3872 		kfree_skb(skb);
3873 		kfree_skb(req_skb);
3874 	}
3875 }
3876 
3877 /*
3878  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
3879  * messages when a filter is being used instead of server to
3880  * redirect a syn packet. When packets hit filter they are redirected
3881  * to the offload queue and driver tries to establish the connection
3882  * using firmware work request.
3883  */
3884 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
3885 {
3886 	int stid;
3887 	unsigned int filter;
3888 	struct ethhdr *eh = NULL;
3889 	struct vlan_ethhdr *vlan_eh = NULL;
3890 	struct iphdr *iph;
3891 	struct tcphdr *tcph;
3892 	struct rss_header *rss = (void *)skb->data;
3893 	struct cpl_rx_pkt *cpl = (void *)skb->data;
3894 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
3895 	struct l2t_entry *e;
3896 	struct dst_entry *dst;
3897 	struct c4iw_ep *lep = NULL;
3898 	u16 window;
3899 	struct port_info *pi;
3900 	struct net_device *pdev;
3901 	u16 rss_qid, eth_hdr_len;
3902 	int step;
3903 	u32 tx_chan;
3904 	struct neighbour *neigh;
3905 
3906 	/* Drop all non-SYN packets */
3907 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
3908 		goto reject;
3909 
3910 	/*
3911 	 * Drop all packets which did not hit the filter.
3912 	 * Unlikely to happen.
3913 	 */
3914 	if (!(rss->filter_hit && rss->filter_tid))
3915 		goto reject;
3916 
3917 	/*
3918 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
3919 	 */
3920 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
3921 
3922 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
3923 	if (!lep) {
3924 		PDBG("%s connect request on invalid stid %d\n", __func__, stid);
3925 		goto reject;
3926 	}
3927 
3928 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
3929 	case CHELSIO_T4:
3930 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3931 		break;
3932 	case CHELSIO_T5:
3933 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3934 		break;
3935 	case CHELSIO_T6:
3936 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
3937 		break;
3938 	default:
3939 		pr_err("T%d Chip is not supported\n",
3940 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
3941 		goto reject;
3942 	}
3943 
3944 	if (eth_hdr_len == ETH_HLEN) {
3945 		eh = (struct ethhdr *)(req + 1);
3946 		iph = (struct iphdr *)(eh + 1);
3947 	} else {
3948 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
3949 		iph = (struct iphdr *)(vlan_eh + 1);
3950 		skb->vlan_tci = ntohs(cpl->vlan);
3951 	}
3952 
3953 	if (iph->version != 0x4)
3954 		goto reject;
3955 
3956 	tcph = (struct tcphdr *)(iph + 1);
3957 	skb_set_network_header(skb, (void *)iph - (void *)rss);
3958 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
3959 	skb_get(skb);
3960 
3961 	PDBG("%s lip 0x%x lport %u pip 0x%x pport %u tos %d\n", __func__,
3962 	     ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
3963 	     ntohs(tcph->source), iph->tos);
3964 
3965 	dst = find_route(dev, iph->daddr, iph->saddr, tcph->dest, tcph->source,
3966 			 iph->tos);
3967 	if (!dst) {
3968 		pr_err("%s - failed to find dst entry!\n",
3969 		       __func__);
3970 		goto reject;
3971 	}
3972 	neigh = dst_neigh_lookup_skb(dst, skb);
3973 
3974 	if (!neigh) {
3975 		pr_err("%s - failed to allocate neigh!\n",
3976 		       __func__);
3977 		goto free_dst;
3978 	}
3979 
3980 	if (neigh->dev->flags & IFF_LOOPBACK) {
3981 		pdev = ip_dev_find(&init_net, iph->daddr);
3982 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3983 				    pdev, 0);
3984 		pi = (struct port_info *)netdev_priv(pdev);
3985 		tx_chan = cxgb4_port_chan(pdev);
3986 		dev_put(pdev);
3987 	} else {
3988 		pdev = get_real_dev(neigh->dev);
3989 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
3990 					pdev, 0);
3991 		pi = (struct port_info *)netdev_priv(pdev);
3992 		tx_chan = cxgb4_port_chan(pdev);
3993 	}
3994 	neigh_release(neigh);
3995 	if (!e) {
3996 		pr_err("%s - failed to allocate l2t entry!\n",
3997 		       __func__);
3998 		goto free_dst;
3999 	}
4000 
4001 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4002 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4003 	window = (__force u16) htons((__force u16)tcph->window);
4004 
4005 	/* Calcuate filter portion for LE region. */
4006 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4007 						    dev->rdev.lldi.ports[0],
4008 						    e));
4009 
4010 	/*
4011 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4012 	 * TID. Once firmware sends a reply with TID we update the TID field
4013 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4014 	 */
4015 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4016 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4017 			      tcph->source, ntohl(tcph->seq), filter, window,
4018 			      rss_qid, pi->port_id);
4019 	cxgb4_l2t_release(e);
4020 free_dst:
4021 	dst_release(dst);
4022 reject:
4023 	if (lep)
4024 		c4iw_put_ep(&lep->com);
4025 	return 0;
4026 }
4027 
4028 /*
4029  * These are the real handlers that are called from a
4030  * work queue.
4031  */
4032 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4033 	[CPL_ACT_ESTABLISH] = act_establish,
4034 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4035 	[CPL_RX_DATA] = rx_data,
4036 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4037 	[CPL_ABORT_RPL] = abort_rpl,
4038 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4039 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4040 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4041 	[CPL_PASS_ESTABLISH] = pass_establish,
4042 	[CPL_PEER_CLOSE] = peer_close,
4043 	[CPL_ABORT_REQ_RSS] = peer_abort,
4044 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4045 	[CPL_RDMA_TERMINATE] = terminate,
4046 	[CPL_FW4_ACK] = fw4_ack,
4047 	[CPL_FW6_MSG] = deferred_fw6_msg,
4048 	[CPL_RX_PKT] = rx_pkt,
4049 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4050 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4051 };
4052 
4053 static void process_timeout(struct c4iw_ep *ep)
4054 {
4055 	struct c4iw_qp_attributes attrs;
4056 	int abort = 1;
4057 
4058 	mutex_lock(&ep->com.mutex);
4059 	PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
4060 	     ep->com.state);
4061 	set_bit(TIMEDOUT, &ep->com.history);
4062 	switch (ep->com.state) {
4063 	case MPA_REQ_SENT:
4064 		connect_reply_upcall(ep, -ETIMEDOUT);
4065 		break;
4066 	case MPA_REQ_WAIT:
4067 	case MPA_REQ_RCVD:
4068 	case MPA_REP_SENT:
4069 	case FPDU_MODE:
4070 		break;
4071 	case CLOSING:
4072 	case MORIBUND:
4073 		if (ep->com.cm_id && ep->com.qp) {
4074 			attrs.next_state = C4IW_QP_STATE_ERROR;
4075 			c4iw_modify_qp(ep->com.qp->rhp,
4076 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4077 				     &attrs, 1);
4078 		}
4079 		close_complete_upcall(ep, -ETIMEDOUT);
4080 		break;
4081 	case ABORTING:
4082 	case DEAD:
4083 
4084 		/*
4085 		 * These states are expected if the ep timed out at the same
4086 		 * time as another thread was calling stop_ep_timer().
4087 		 * So we silently do nothing for these states.
4088 		 */
4089 		abort = 0;
4090 		break;
4091 	default:
4092 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4093 			__func__, ep, ep->hwtid, ep->com.state);
4094 		abort = 0;
4095 	}
4096 	mutex_unlock(&ep->com.mutex);
4097 	if (abort)
4098 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4099 	c4iw_put_ep(&ep->com);
4100 }
4101 
4102 static void process_timedout_eps(void)
4103 {
4104 	struct c4iw_ep *ep;
4105 
4106 	spin_lock_irq(&timeout_lock);
4107 	while (!list_empty(&timeout_list)) {
4108 		struct list_head *tmp;
4109 
4110 		tmp = timeout_list.next;
4111 		list_del(tmp);
4112 		tmp->next = NULL;
4113 		tmp->prev = NULL;
4114 		spin_unlock_irq(&timeout_lock);
4115 		ep = list_entry(tmp, struct c4iw_ep, entry);
4116 		process_timeout(ep);
4117 		spin_lock_irq(&timeout_lock);
4118 	}
4119 	spin_unlock_irq(&timeout_lock);
4120 }
4121 
4122 static void process_work(struct work_struct *work)
4123 {
4124 	struct sk_buff *skb = NULL;
4125 	struct c4iw_dev *dev;
4126 	struct cpl_act_establish *rpl;
4127 	unsigned int opcode;
4128 	int ret;
4129 
4130 	process_timedout_eps();
4131 	while ((skb = skb_dequeue(&rxq))) {
4132 		rpl = cplhdr(skb);
4133 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4134 		opcode = rpl->ot.opcode;
4135 
4136 		BUG_ON(!work_handlers[opcode]);
4137 		ret = work_handlers[opcode](dev, skb);
4138 		if (!ret)
4139 			kfree_skb(skb);
4140 		process_timedout_eps();
4141 	}
4142 }
4143 
4144 static DECLARE_WORK(skb_work, process_work);
4145 
4146 static void ep_timeout(unsigned long arg)
4147 {
4148 	struct c4iw_ep *ep = (struct c4iw_ep *)arg;
4149 	int kickit = 0;
4150 
4151 	spin_lock(&timeout_lock);
4152 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4153 		/*
4154 		 * Only insert if it is not already on the list.
4155 		 */
4156 		if (!ep->entry.next) {
4157 			list_add_tail(&ep->entry, &timeout_list);
4158 			kickit = 1;
4159 		}
4160 	}
4161 	spin_unlock(&timeout_lock);
4162 	if (kickit)
4163 		queue_work(workq, &skb_work);
4164 }
4165 
4166 /*
4167  * All the CM events are handled on a work queue to have a safe context.
4168  */
4169 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4170 {
4171 
4172 	/*
4173 	 * Save dev in the skb->cb area.
4174 	 */
4175 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4176 
4177 	/*
4178 	 * Queue the skb and schedule the worker thread.
4179 	 */
4180 	skb_queue_tail(&rxq, skb);
4181 	queue_work(workq, &skb_work);
4182 	return 0;
4183 }
4184 
4185 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4186 {
4187 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4188 
4189 	if (rpl->status != CPL_ERR_NONE) {
4190 		printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
4191 		       "for tid %u\n", rpl->status, GET_TID(rpl));
4192 	}
4193 	kfree_skb(skb);
4194 	return 0;
4195 }
4196 
4197 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4198 {
4199 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4200 	struct c4iw_wr_wait *wr_waitp;
4201 	int ret;
4202 
4203 	PDBG("%s type %u\n", __func__, rpl->type);
4204 
4205 	switch (rpl->type) {
4206 	case FW6_TYPE_WR_RPL:
4207 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4208 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4209 		PDBG("%s wr_waitp %p ret %u\n", __func__, wr_waitp, ret);
4210 		if (wr_waitp)
4211 			c4iw_wake_up(wr_waitp, ret ? -ret : 0);
4212 		kfree_skb(skb);
4213 		break;
4214 	case FW6_TYPE_CQE:
4215 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4216 		sched(dev, skb);
4217 		break;
4218 	default:
4219 		printk(KERN_ERR MOD "%s unexpected fw6 msg type %u\n", __func__,
4220 		       rpl->type);
4221 		kfree_skb(skb);
4222 		break;
4223 	}
4224 	return 0;
4225 }
4226 
4227 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4228 {
4229 	struct cpl_abort_req_rss *req = cplhdr(skb);
4230 	struct c4iw_ep *ep;
4231 	unsigned int tid = GET_TID(req);
4232 
4233 	ep = get_ep_from_tid(dev, tid);
4234 	/* This EP will be dereferenced in peer_abort() */
4235 	if (!ep) {
4236 		printk(KERN_WARNING MOD
4237 		       "Abort on non-existent endpoint, tid %d\n", tid);
4238 		kfree_skb(skb);
4239 		return 0;
4240 	}
4241 	if (is_neg_adv(req->status)) {
4242 		PDBG("%s Negative advice on abort- tid %u status %d (%s)\n",
4243 		     __func__, ep->hwtid, req->status,
4244 		     neg_adv_str(req->status));
4245 		goto out;
4246 	}
4247 	PDBG("%s ep %p tid %u state %u\n", __func__, ep, ep->hwtid,
4248 	     ep->com.state);
4249 
4250 	c4iw_wake_up(&ep->com.wr_wait, -ECONNRESET);
4251 out:
4252 	sched(dev, skb);
4253 	return 0;
4254 }
4255 
4256 /*
4257  * Most upcalls from the T4 Core go to sched() to
4258  * schedule the processing on a work queue.
4259  */
4260 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4261 	[CPL_ACT_ESTABLISH] = sched,
4262 	[CPL_ACT_OPEN_RPL] = sched,
4263 	[CPL_RX_DATA] = sched,
4264 	[CPL_ABORT_RPL_RSS] = sched,
4265 	[CPL_ABORT_RPL] = sched,
4266 	[CPL_PASS_OPEN_RPL] = sched,
4267 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4268 	[CPL_PASS_ACCEPT_REQ] = sched,
4269 	[CPL_PASS_ESTABLISH] = sched,
4270 	[CPL_PEER_CLOSE] = sched,
4271 	[CPL_CLOSE_CON_RPL] = sched,
4272 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4273 	[CPL_RDMA_TERMINATE] = sched,
4274 	[CPL_FW4_ACK] = sched,
4275 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4276 	[CPL_FW6_MSG] = fw6_msg,
4277 	[CPL_RX_PKT] = sched
4278 };
4279 
4280 int __init c4iw_cm_init(void)
4281 {
4282 	spin_lock_init(&timeout_lock);
4283 	skb_queue_head_init(&rxq);
4284 
4285 	workq = create_singlethread_workqueue("iw_cxgb4");
4286 	if (!workq)
4287 		return -ENOMEM;
4288 
4289 	return 0;
4290 }
4291 
4292 void c4iw_cm_term(void)
4293 {
4294 	WARN_ON(!list_empty(&timeout_list));
4295 	flush_workqueue(workq);
4296 	destroy_workqueue(workq);
4297 }
4298