xref: /openbmc/linux/drivers/infiniband/hw/cxgb4/cm.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Copyright (c) 2009-2014 Chelsio, Inc. All rights reserved.
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *	  copyright notice, this list of conditions and the following
16  *	  disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *	  copyright notice, this list of conditions and the following
20  *	  disclaimer in the documentation and/or other materials
21  *	  provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/workqueue.h>
35 #include <linux/skbuff.h>
36 #include <linux/timer.h>
37 #include <linux/notifier.h>
38 #include <linux/inetdevice.h>
39 #include <linux/ip.h>
40 #include <linux/tcp.h>
41 #include <linux/if_vlan.h>
42 
43 #include <net/neighbour.h>
44 #include <net/netevent.h>
45 #include <net/route.h>
46 #include <net/tcp.h>
47 #include <net/ip6_route.h>
48 #include <net/addrconf.h>
49 
50 #include <rdma/ib_addr.h>
51 
52 #include <libcxgb_cm.h>
53 #include "iw_cxgb4.h"
54 #include "clip_tbl.h"
55 
56 static char *states[] = {
57 	"idle",
58 	"listen",
59 	"connecting",
60 	"mpa_wait_req",
61 	"mpa_req_sent",
62 	"mpa_req_rcvd",
63 	"mpa_rep_sent",
64 	"fpdu_mode",
65 	"aborting",
66 	"closing",
67 	"moribund",
68 	"dead",
69 	NULL,
70 };
71 
72 static int nocong;
73 module_param(nocong, int, 0644);
74 MODULE_PARM_DESC(nocong, "Turn of congestion control (default=0)");
75 
76 static int enable_ecn;
77 module_param(enable_ecn, int, 0644);
78 MODULE_PARM_DESC(enable_ecn, "Enable ECN (default=0/disabled)");
79 
80 static int dack_mode = 1;
81 module_param(dack_mode, int, 0644);
82 MODULE_PARM_DESC(dack_mode, "Delayed ack mode (default=1)");
83 
84 uint c4iw_max_read_depth = 32;
85 module_param(c4iw_max_read_depth, int, 0644);
86 MODULE_PARM_DESC(c4iw_max_read_depth,
87 		 "Per-connection max ORD/IRD (default=32)");
88 
89 static int enable_tcp_timestamps;
90 module_param(enable_tcp_timestamps, int, 0644);
91 MODULE_PARM_DESC(enable_tcp_timestamps, "Enable tcp timestamps (default=0)");
92 
93 static int enable_tcp_sack;
94 module_param(enable_tcp_sack, int, 0644);
95 MODULE_PARM_DESC(enable_tcp_sack, "Enable tcp SACK (default=0)");
96 
97 static int enable_tcp_window_scaling = 1;
98 module_param(enable_tcp_window_scaling, int, 0644);
99 MODULE_PARM_DESC(enable_tcp_window_scaling,
100 		 "Enable tcp window scaling (default=1)");
101 
102 static int peer2peer = 1;
103 module_param(peer2peer, int, 0644);
104 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=1)");
105 
106 static int p2p_type = FW_RI_INIT_P2PTYPE_READ_REQ;
107 module_param(p2p_type, int, 0644);
108 MODULE_PARM_DESC(p2p_type, "RDMAP opcode to use for the RTR message: "
109 			   "1=RDMA_READ 0=RDMA_WRITE (default 1)");
110 
111 static int ep_timeout_secs = 60;
112 module_param(ep_timeout_secs, int, 0644);
113 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
114 				   "in seconds (default=60)");
115 
116 static int mpa_rev = 2;
117 module_param(mpa_rev, int, 0644);
118 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
119 		"1 is RFC5044 spec compliant, 2 is IETF MPA Peer Connect Draft"
120 		" compliant (default=2)");
121 
122 static int markers_enabled;
123 module_param(markers_enabled, int, 0644);
124 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
125 
126 static int crc_enabled = 1;
127 module_param(crc_enabled, int, 0644);
128 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
129 
130 static int rcv_win = 256 * 1024;
131 module_param(rcv_win, int, 0644);
132 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256KB)");
133 
134 static int snd_win = 128 * 1024;
135 module_param(snd_win, int, 0644);
136 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=128KB)");
137 
138 static struct workqueue_struct *workq;
139 
140 static struct sk_buff_head rxq;
141 
142 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
143 static void ep_timeout(struct timer_list *t);
144 static void connect_reply_upcall(struct c4iw_ep *ep, int status);
145 static int sched(struct c4iw_dev *dev, struct sk_buff *skb);
146 
147 static LIST_HEAD(timeout_list);
148 static spinlock_t timeout_lock;
149 
150 static void deref_cm_id(struct c4iw_ep_common *epc)
151 {
152 	epc->cm_id->rem_ref(epc->cm_id);
153 	epc->cm_id = NULL;
154 	set_bit(CM_ID_DEREFED, &epc->history);
155 }
156 
157 static void ref_cm_id(struct c4iw_ep_common *epc)
158 {
159 	set_bit(CM_ID_REFED, &epc->history);
160 	epc->cm_id->add_ref(epc->cm_id);
161 }
162 
163 static void deref_qp(struct c4iw_ep *ep)
164 {
165 	c4iw_qp_rem_ref(&ep->com.qp->ibqp);
166 	clear_bit(QP_REFERENCED, &ep->com.flags);
167 	set_bit(QP_DEREFED, &ep->com.history);
168 }
169 
170 static void ref_qp(struct c4iw_ep *ep)
171 {
172 	set_bit(QP_REFERENCED, &ep->com.flags);
173 	set_bit(QP_REFED, &ep->com.history);
174 	c4iw_qp_add_ref(&ep->com.qp->ibqp);
175 }
176 
177 static void start_ep_timer(struct c4iw_ep *ep)
178 {
179 	pr_debug("ep %p\n", ep);
180 	if (timer_pending(&ep->timer)) {
181 		pr_err("%s timer already started! ep %p\n",
182 		       __func__, ep);
183 		return;
184 	}
185 	clear_bit(TIMEOUT, &ep->com.flags);
186 	c4iw_get_ep(&ep->com);
187 	ep->timer.expires = jiffies + ep_timeout_secs * HZ;
188 	add_timer(&ep->timer);
189 }
190 
191 static int stop_ep_timer(struct c4iw_ep *ep)
192 {
193 	pr_debug("ep %p stopping\n", ep);
194 	del_timer_sync(&ep->timer);
195 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
196 		c4iw_put_ep(&ep->com);
197 		return 0;
198 	}
199 	return 1;
200 }
201 
202 static int c4iw_l2t_send(struct c4iw_rdev *rdev, struct sk_buff *skb,
203 		  struct l2t_entry *l2e)
204 {
205 	int	error = 0;
206 
207 	if (c4iw_fatal_error(rdev)) {
208 		kfree_skb(skb);
209 		pr_err("%s - device in error state - dropping\n", __func__);
210 		return -EIO;
211 	}
212 	error = cxgb4_l2t_send(rdev->lldi.ports[0], skb, l2e);
213 	if (error < 0)
214 		kfree_skb(skb);
215 	else if (error == NET_XMIT_DROP)
216 		return -ENOMEM;
217 	return error < 0 ? error : 0;
218 }
219 
220 int c4iw_ofld_send(struct c4iw_rdev *rdev, struct sk_buff *skb)
221 {
222 	int	error = 0;
223 
224 	if (c4iw_fatal_error(rdev)) {
225 		kfree_skb(skb);
226 		pr_err("%s - device in error state - dropping\n", __func__);
227 		return -EIO;
228 	}
229 	error = cxgb4_ofld_send(rdev->lldi.ports[0], skb);
230 	if (error < 0)
231 		kfree_skb(skb);
232 	return error < 0 ? error : 0;
233 }
234 
235 static void release_tid(struct c4iw_rdev *rdev, u32 hwtid, struct sk_buff *skb)
236 {
237 	u32 len = roundup(sizeof(struct cpl_tid_release), 16);
238 
239 	skb = get_skb(skb, len, GFP_KERNEL);
240 	if (!skb)
241 		return;
242 
243 	cxgb_mk_tid_release(skb, len, hwtid, 0);
244 	c4iw_ofld_send(rdev, skb);
245 	return;
246 }
247 
248 static void set_emss(struct c4iw_ep *ep, u16 opt)
249 {
250 	ep->emss = ep->com.dev->rdev.lldi.mtus[TCPOPT_MSS_G(opt)] -
251 		   ((AF_INET == ep->com.remote_addr.ss_family) ?
252 		    sizeof(struct iphdr) : sizeof(struct ipv6hdr)) -
253 		   sizeof(struct tcphdr);
254 	ep->mss = ep->emss;
255 	if (TCPOPT_TSTAMP_G(opt))
256 		ep->emss -= round_up(TCPOLEN_TIMESTAMP, 4);
257 	if (ep->emss < 128)
258 		ep->emss = 128;
259 	if (ep->emss & 7)
260 		pr_debug("Warning: misaligned mtu idx %u mss %u emss=%u\n",
261 			 TCPOPT_MSS_G(opt), ep->mss, ep->emss);
262 	pr_debug("mss_idx %u mss %u emss=%u\n", TCPOPT_MSS_G(opt), ep->mss,
263 		 ep->emss);
264 }
265 
266 static enum c4iw_ep_state state_read(struct c4iw_ep_common *epc)
267 {
268 	enum c4iw_ep_state state;
269 
270 	mutex_lock(&epc->mutex);
271 	state = epc->state;
272 	mutex_unlock(&epc->mutex);
273 	return state;
274 }
275 
276 static void __state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
277 {
278 	epc->state = new;
279 }
280 
281 static void state_set(struct c4iw_ep_common *epc, enum c4iw_ep_state new)
282 {
283 	mutex_lock(&epc->mutex);
284 	pr_debug("%s -> %s\n", states[epc->state], states[new]);
285 	__state_set(epc, new);
286 	mutex_unlock(&epc->mutex);
287 	return;
288 }
289 
290 static int alloc_ep_skb_list(struct sk_buff_head *ep_skb_list, int size)
291 {
292 	struct sk_buff *skb;
293 	unsigned int i;
294 	size_t len;
295 
296 	len = roundup(sizeof(union cpl_wr_size), 16);
297 	for (i = 0; i < size; i++) {
298 		skb = alloc_skb(len, GFP_KERNEL);
299 		if (!skb)
300 			goto fail;
301 		skb_queue_tail(ep_skb_list, skb);
302 	}
303 	return 0;
304 fail:
305 	skb_queue_purge(ep_skb_list);
306 	return -ENOMEM;
307 }
308 
309 static void *alloc_ep(int size, gfp_t gfp)
310 {
311 	struct c4iw_ep_common *epc;
312 
313 	epc = kzalloc(size, gfp);
314 	if (epc) {
315 		epc->wr_waitp = c4iw_alloc_wr_wait(gfp);
316 		if (!epc->wr_waitp) {
317 			kfree(epc);
318 			epc = NULL;
319 			goto out;
320 		}
321 		kref_init(&epc->kref);
322 		mutex_init(&epc->mutex);
323 		c4iw_init_wr_wait(epc->wr_waitp);
324 	}
325 	pr_debug("alloc ep %p\n", epc);
326 out:
327 	return epc;
328 }
329 
330 static void remove_ep_tid(struct c4iw_ep *ep)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(&ep->com.dev->lock, flags);
335 	_remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid, 0);
336 	if (idr_is_empty(&ep->com.dev->hwtid_idr))
337 		wake_up(&ep->com.dev->wait);
338 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
339 }
340 
341 static void insert_ep_tid(struct c4iw_ep *ep)
342 {
343 	unsigned long flags;
344 
345 	spin_lock_irqsave(&ep->com.dev->lock, flags);
346 	_insert_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep, ep->hwtid, 0);
347 	spin_unlock_irqrestore(&ep->com.dev->lock, flags);
348 }
349 
350 /*
351  * Atomically lookup the ep ptr given the tid and grab a reference on the ep.
352  */
353 static struct c4iw_ep *get_ep_from_tid(struct c4iw_dev *dev, unsigned int tid)
354 {
355 	struct c4iw_ep *ep;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&dev->lock, flags);
359 	ep = idr_find(&dev->hwtid_idr, tid);
360 	if (ep)
361 		c4iw_get_ep(&ep->com);
362 	spin_unlock_irqrestore(&dev->lock, flags);
363 	return ep;
364 }
365 
366 /*
367  * Atomically lookup the ep ptr given the stid and grab a reference on the ep.
368  */
369 static struct c4iw_listen_ep *get_ep_from_stid(struct c4iw_dev *dev,
370 					       unsigned int stid)
371 {
372 	struct c4iw_listen_ep *ep;
373 	unsigned long flags;
374 
375 	spin_lock_irqsave(&dev->lock, flags);
376 	ep = idr_find(&dev->stid_idr, stid);
377 	if (ep)
378 		c4iw_get_ep(&ep->com);
379 	spin_unlock_irqrestore(&dev->lock, flags);
380 	return ep;
381 }
382 
383 void _c4iw_free_ep(struct kref *kref)
384 {
385 	struct c4iw_ep *ep;
386 
387 	ep = container_of(kref, struct c4iw_ep, com.kref);
388 	pr_debug("ep %p state %s\n", ep, states[ep->com.state]);
389 	if (test_bit(QP_REFERENCED, &ep->com.flags))
390 		deref_qp(ep);
391 	if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
392 		if (ep->com.remote_addr.ss_family == AF_INET6) {
393 			struct sockaddr_in6 *sin6 =
394 					(struct sockaddr_in6 *)
395 					&ep->com.local_addr;
396 
397 			cxgb4_clip_release(
398 					ep->com.dev->rdev.lldi.ports[0],
399 					(const u32 *)&sin6->sin6_addr.s6_addr,
400 					1);
401 		}
402 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
403 				 ep->com.local_addr.ss_family);
404 		dst_release(ep->dst);
405 		cxgb4_l2t_release(ep->l2t);
406 		kfree_skb(ep->mpa_skb);
407 	}
408 	if (!skb_queue_empty(&ep->com.ep_skb_list))
409 		skb_queue_purge(&ep->com.ep_skb_list);
410 	c4iw_put_wr_wait(ep->com.wr_waitp);
411 	kfree(ep);
412 }
413 
414 static void release_ep_resources(struct c4iw_ep *ep)
415 {
416 	set_bit(RELEASE_RESOURCES, &ep->com.flags);
417 
418 	/*
419 	 * If we have a hwtid, then remove it from the idr table
420 	 * so lookups will no longer find this endpoint.  Otherwise
421 	 * we have a race where one thread finds the ep ptr just
422 	 * before the other thread is freeing the ep memory.
423 	 */
424 	if (ep->hwtid != -1)
425 		remove_ep_tid(ep);
426 	c4iw_put_ep(&ep->com);
427 }
428 
429 static int status2errno(int status)
430 {
431 	switch (status) {
432 	case CPL_ERR_NONE:
433 		return 0;
434 	case CPL_ERR_CONN_RESET:
435 		return -ECONNRESET;
436 	case CPL_ERR_ARP_MISS:
437 		return -EHOSTUNREACH;
438 	case CPL_ERR_CONN_TIMEDOUT:
439 		return -ETIMEDOUT;
440 	case CPL_ERR_TCAM_FULL:
441 		return -ENOMEM;
442 	case CPL_ERR_CONN_EXIST:
443 		return -EADDRINUSE;
444 	default:
445 		return -EIO;
446 	}
447 }
448 
449 /*
450  * Try and reuse skbs already allocated...
451  */
452 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
453 {
454 	if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
455 		skb_trim(skb, 0);
456 		skb_get(skb);
457 		skb_reset_transport_header(skb);
458 	} else {
459 		skb = alloc_skb(len, gfp);
460 	}
461 	t4_set_arp_err_handler(skb, NULL, NULL);
462 	return skb;
463 }
464 
465 static struct net_device *get_real_dev(struct net_device *egress_dev)
466 {
467 	return rdma_vlan_dev_real_dev(egress_dev) ? : egress_dev;
468 }
469 
470 static void arp_failure_discard(void *handle, struct sk_buff *skb)
471 {
472 	pr_err("ARP failure\n");
473 	kfree_skb(skb);
474 }
475 
476 static void mpa_start_arp_failure(void *handle, struct sk_buff *skb)
477 {
478 	pr_err("ARP failure during MPA Negotiation - Closing Connection\n");
479 }
480 
481 enum {
482 	NUM_FAKE_CPLS = 2,
483 	FAKE_CPL_PUT_EP_SAFE = NUM_CPL_CMDS + 0,
484 	FAKE_CPL_PASS_PUT_EP_SAFE = NUM_CPL_CMDS + 1,
485 };
486 
487 static int _put_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
488 {
489 	struct c4iw_ep *ep;
490 
491 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
492 	release_ep_resources(ep);
493 	kfree_skb(skb);
494 	return 0;
495 }
496 
497 static int _put_pass_ep_safe(struct c4iw_dev *dev, struct sk_buff *skb)
498 {
499 	struct c4iw_ep *ep;
500 
501 	ep = *((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *)));
502 	c4iw_put_ep(&ep->parent_ep->com);
503 	release_ep_resources(ep);
504 	kfree_skb(skb);
505 	return 0;
506 }
507 
508 /*
509  * Fake up a special CPL opcode and call sched() so process_work() will call
510  * _put_ep_safe() in a safe context to free the ep resources.  This is needed
511  * because ARP error handlers are called in an ATOMIC context, and
512  * _c4iw_free_ep() needs to block.
513  */
514 static void queue_arp_failure_cpl(struct c4iw_ep *ep, struct sk_buff *skb,
515 				  int cpl)
516 {
517 	struct cpl_act_establish *rpl = cplhdr(skb);
518 
519 	/* Set our special ARP_FAILURE opcode */
520 	rpl->ot.opcode = cpl;
521 
522 	/*
523 	 * Save ep in the skb->cb area, after where sched() will save the dev
524 	 * ptr.
525 	 */
526 	*((struct c4iw_ep **)(skb->cb + 2 * sizeof(void *))) = ep;
527 	sched(ep->com.dev, skb);
528 }
529 
530 /* Handle an ARP failure for an accept */
531 static void pass_accept_rpl_arp_failure(void *handle, struct sk_buff *skb)
532 {
533 	struct c4iw_ep *ep = handle;
534 
535 	pr_err("ARP failure during accept - tid %u - dropping connection\n",
536 	       ep->hwtid);
537 
538 	__state_set(&ep->com, DEAD);
539 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PASS_PUT_EP_SAFE);
540 }
541 
542 /*
543  * Handle an ARP failure for an active open.
544  */
545 static void act_open_req_arp_failure(void *handle, struct sk_buff *skb)
546 {
547 	struct c4iw_ep *ep = handle;
548 
549 	pr_err("ARP failure during connect\n");
550 	connect_reply_upcall(ep, -EHOSTUNREACH);
551 	__state_set(&ep->com, DEAD);
552 	if (ep->com.remote_addr.ss_family == AF_INET6) {
553 		struct sockaddr_in6 *sin6 =
554 			(struct sockaddr_in6 *)&ep->com.local_addr;
555 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
556 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
557 	}
558 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
559 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
560 	queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
561 }
562 
563 /*
564  * Handle an ARP failure for a CPL_ABORT_REQ.  Change it into a no RST variant
565  * and send it along.
566  */
567 static void abort_arp_failure(void *handle, struct sk_buff *skb)
568 {
569 	int ret;
570 	struct c4iw_ep *ep = handle;
571 	struct c4iw_rdev *rdev = &ep->com.dev->rdev;
572 	struct cpl_abort_req *req = cplhdr(skb);
573 
574 	pr_debug("rdev %p\n", rdev);
575 	req->cmd = CPL_ABORT_NO_RST;
576 	skb_get(skb);
577 	ret = c4iw_ofld_send(rdev, skb);
578 	if (ret) {
579 		__state_set(&ep->com, DEAD);
580 		queue_arp_failure_cpl(ep, skb, FAKE_CPL_PUT_EP_SAFE);
581 	} else
582 		kfree_skb(skb);
583 }
584 
585 static int send_flowc(struct c4iw_ep *ep)
586 {
587 	struct fw_flowc_wr *flowc;
588 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
589 	u16 vlan = ep->l2t->vlan;
590 	int nparams;
591 	int flowclen, flowclen16;
592 
593 	if (WARN_ON(!skb))
594 		return -ENOMEM;
595 
596 	if (vlan == CPL_L2T_VLAN_NONE)
597 		nparams = 9;
598 	else
599 		nparams = 10;
600 
601 	flowclen = offsetof(struct fw_flowc_wr, mnemval[nparams]);
602 	flowclen16 = DIV_ROUND_UP(flowclen, 16);
603 	flowclen = flowclen16 * 16;
604 
605 	flowc = __skb_put(skb, flowclen);
606 	memset(flowc, 0, flowclen);
607 
608 	flowc->op_to_nparams = cpu_to_be32(FW_WR_OP_V(FW_FLOWC_WR) |
609 					   FW_FLOWC_WR_NPARAMS_V(nparams));
610 	flowc->flowid_len16 = cpu_to_be32(FW_WR_LEN16_V(flowclen16) |
611 					  FW_WR_FLOWID_V(ep->hwtid));
612 
613 	flowc->mnemval[0].mnemonic = FW_FLOWC_MNEM_PFNVFN;
614 	flowc->mnemval[0].val = cpu_to_be32(FW_PFVF_CMD_PFN_V
615 					    (ep->com.dev->rdev.lldi.pf));
616 	flowc->mnemval[1].mnemonic = FW_FLOWC_MNEM_CH;
617 	flowc->mnemval[1].val = cpu_to_be32(ep->tx_chan);
618 	flowc->mnemval[2].mnemonic = FW_FLOWC_MNEM_PORT;
619 	flowc->mnemval[2].val = cpu_to_be32(ep->tx_chan);
620 	flowc->mnemval[3].mnemonic = FW_FLOWC_MNEM_IQID;
621 	flowc->mnemval[3].val = cpu_to_be32(ep->rss_qid);
622 	flowc->mnemval[4].mnemonic = FW_FLOWC_MNEM_SNDNXT;
623 	flowc->mnemval[4].val = cpu_to_be32(ep->snd_seq);
624 	flowc->mnemval[5].mnemonic = FW_FLOWC_MNEM_RCVNXT;
625 	flowc->mnemval[5].val = cpu_to_be32(ep->rcv_seq);
626 	flowc->mnemval[6].mnemonic = FW_FLOWC_MNEM_SNDBUF;
627 	flowc->mnemval[6].val = cpu_to_be32(ep->snd_win);
628 	flowc->mnemval[7].mnemonic = FW_FLOWC_MNEM_MSS;
629 	flowc->mnemval[7].val = cpu_to_be32(ep->emss);
630 	flowc->mnemval[8].mnemonic = FW_FLOWC_MNEM_RCV_SCALE;
631 	flowc->mnemval[8].val = cpu_to_be32(ep->snd_wscale);
632 	if (nparams == 10) {
633 		u16 pri;
634 		pri = (vlan & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
635 		flowc->mnemval[9].mnemonic = FW_FLOWC_MNEM_SCHEDCLASS;
636 		flowc->mnemval[9].val = cpu_to_be32(pri);
637 	}
638 
639 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
640 	return c4iw_ofld_send(&ep->com.dev->rdev, skb);
641 }
642 
643 static int send_halfclose(struct c4iw_ep *ep)
644 {
645 	struct sk_buff *skb = skb_dequeue(&ep->com.ep_skb_list);
646 	u32 wrlen = roundup(sizeof(struct cpl_close_con_req), 16);
647 
648 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
649 	if (WARN_ON(!skb))
650 		return -ENOMEM;
651 
652 	cxgb_mk_close_con_req(skb, wrlen, ep->hwtid, ep->txq_idx,
653 			      NULL, arp_failure_discard);
654 
655 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
656 }
657 
658 static void read_tcb(struct c4iw_ep *ep)
659 {
660 	struct sk_buff *skb;
661 	struct cpl_get_tcb *req;
662 	int wrlen = roundup(sizeof(*req), 16);
663 
664 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
665 	if (WARN_ON(!skb))
666 		return;
667 
668 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
669 	req = (struct cpl_get_tcb *) skb_put(skb, wrlen);
670 	memset(req, 0, wrlen);
671 	INIT_TP_WR(req, ep->hwtid);
672 	OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_GET_TCB, ep->hwtid));
673 	req->reply_ctrl = htons(REPLY_CHAN_V(0) | QUEUENO_V(ep->rss_qid));
674 
675 	/*
676 	 * keep a ref on the ep so the tcb is not unlocked before this
677 	 * cpl completes. The ref is released in read_tcb_rpl().
678 	 */
679 	c4iw_get_ep(&ep->com);
680 	if (WARN_ON(c4iw_ofld_send(&ep->com.dev->rdev, skb)))
681 		c4iw_put_ep(&ep->com);
682 }
683 
684 static int send_abort_req(struct c4iw_ep *ep)
685 {
686 	u32 wrlen = roundup(sizeof(struct cpl_abort_req), 16);
687 	struct sk_buff *req_skb = skb_dequeue(&ep->com.ep_skb_list);
688 
689 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
690 	if (WARN_ON(!req_skb))
691 		return -ENOMEM;
692 
693 	cxgb_mk_abort_req(req_skb, wrlen, ep->hwtid, ep->txq_idx,
694 			  ep, abort_arp_failure);
695 
696 	return c4iw_l2t_send(&ep->com.dev->rdev, req_skb, ep->l2t);
697 }
698 
699 static int send_abort(struct c4iw_ep *ep)
700 {
701 	if (!ep->com.qp || !ep->com.qp->srq) {
702 		send_abort_req(ep);
703 		return 0;
704 	}
705 	set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags);
706 	read_tcb(ep);
707 	return 0;
708 }
709 
710 static int send_connect(struct c4iw_ep *ep)
711 {
712 	struct cpl_act_open_req *req = NULL;
713 	struct cpl_t5_act_open_req *t5req = NULL;
714 	struct cpl_t6_act_open_req *t6req = NULL;
715 	struct cpl_act_open_req6 *req6 = NULL;
716 	struct cpl_t5_act_open_req6 *t5req6 = NULL;
717 	struct cpl_t6_act_open_req6 *t6req6 = NULL;
718 	struct sk_buff *skb;
719 	u64 opt0;
720 	u32 opt2;
721 	unsigned int mtu_idx;
722 	u32 wscale;
723 	int win, sizev4, sizev6, wrlen;
724 	struct sockaddr_in *la = (struct sockaddr_in *)
725 				 &ep->com.local_addr;
726 	struct sockaddr_in *ra = (struct sockaddr_in *)
727 				 &ep->com.remote_addr;
728 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)
729 				   &ep->com.local_addr;
730 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)
731 				   &ep->com.remote_addr;
732 	int ret;
733 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
734 	u32 isn = (prandom_u32() & ~7UL) - 1;
735 	struct net_device *netdev;
736 	u64 params;
737 
738 	netdev = ep->com.dev->rdev.lldi.ports[0];
739 
740 	switch (CHELSIO_CHIP_VERSION(adapter_type)) {
741 	case CHELSIO_T4:
742 		sizev4 = sizeof(struct cpl_act_open_req);
743 		sizev6 = sizeof(struct cpl_act_open_req6);
744 		break;
745 	case CHELSIO_T5:
746 		sizev4 = sizeof(struct cpl_t5_act_open_req);
747 		sizev6 = sizeof(struct cpl_t5_act_open_req6);
748 		break;
749 	case CHELSIO_T6:
750 		sizev4 = sizeof(struct cpl_t6_act_open_req);
751 		sizev6 = sizeof(struct cpl_t6_act_open_req6);
752 		break;
753 	default:
754 		pr_err("T%d Chip is not supported\n",
755 		       CHELSIO_CHIP_VERSION(adapter_type));
756 		return -EINVAL;
757 	}
758 
759 	wrlen = (ep->com.remote_addr.ss_family == AF_INET) ?
760 			roundup(sizev4, 16) :
761 			roundup(sizev6, 16);
762 
763 	pr_debug("ep %p atid %u\n", ep, ep->atid);
764 
765 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
766 	if (!skb) {
767 		pr_err("%s - failed to alloc skb\n", __func__);
768 		return -ENOMEM;
769 	}
770 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
771 
772 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
773 		      enable_tcp_timestamps,
774 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
775 	wscale = cxgb_compute_wscale(rcv_win);
776 
777 	/*
778 	 * Specify the largest window that will fit in opt0. The
779 	 * remainder will be specified in the rx_data_ack.
780 	 */
781 	win = ep->rcv_win >> 10;
782 	if (win > RCV_BUFSIZ_M)
783 		win = RCV_BUFSIZ_M;
784 
785 	opt0 = (nocong ? NO_CONG_F : 0) |
786 	       KEEP_ALIVE_F |
787 	       DELACK_F |
788 	       WND_SCALE_V(wscale) |
789 	       MSS_IDX_V(mtu_idx) |
790 	       L2T_IDX_V(ep->l2t->idx) |
791 	       TX_CHAN_V(ep->tx_chan) |
792 	       SMAC_SEL_V(ep->smac_idx) |
793 	       DSCP_V(ep->tos >> 2) |
794 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
795 	       RCV_BUFSIZ_V(win);
796 	opt2 = RX_CHANNEL_V(0) |
797 	       CCTRL_ECN_V(enable_ecn) |
798 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
799 	if (enable_tcp_timestamps)
800 		opt2 |= TSTAMPS_EN_F;
801 	if (enable_tcp_sack)
802 		opt2 |= SACK_EN_F;
803 	if (wscale && enable_tcp_window_scaling)
804 		opt2 |= WND_SCALE_EN_F;
805 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
806 		if (peer2peer)
807 			isn += 4;
808 
809 		opt2 |= T5_OPT_2_VALID_F;
810 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
811 		opt2 |= T5_ISS_F;
812 	}
813 
814 	params = cxgb4_select_ntuple(netdev, ep->l2t);
815 
816 	if (ep->com.remote_addr.ss_family == AF_INET6)
817 		cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
818 			       (const u32 *)&la6->sin6_addr.s6_addr, 1);
819 
820 	t4_set_arp_err_handler(skb, ep, act_open_req_arp_failure);
821 
822 	if (ep->com.remote_addr.ss_family == AF_INET) {
823 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
824 		case CHELSIO_T4:
825 			req = skb_put(skb, wrlen);
826 			INIT_TP_WR(req, 0);
827 			break;
828 		case CHELSIO_T5:
829 			t5req = skb_put(skb, wrlen);
830 			INIT_TP_WR(t5req, 0);
831 			req = (struct cpl_act_open_req *)t5req;
832 			break;
833 		case CHELSIO_T6:
834 			t6req = skb_put(skb, wrlen);
835 			INIT_TP_WR(t6req, 0);
836 			req = (struct cpl_act_open_req *)t6req;
837 			t5req = (struct cpl_t5_act_open_req *)t6req;
838 			break;
839 		default:
840 			pr_err("T%d Chip is not supported\n",
841 			       CHELSIO_CHIP_VERSION(adapter_type));
842 			ret = -EINVAL;
843 			goto clip_release;
844 		}
845 
846 		OPCODE_TID(req) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ,
847 					((ep->rss_qid<<14) | ep->atid)));
848 		req->local_port = la->sin_port;
849 		req->peer_port = ra->sin_port;
850 		req->local_ip = la->sin_addr.s_addr;
851 		req->peer_ip = ra->sin_addr.s_addr;
852 		req->opt0 = cpu_to_be64(opt0);
853 
854 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
855 			req->params = cpu_to_be32(params);
856 			req->opt2 = cpu_to_be32(opt2);
857 		} else {
858 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
859 				t5req->params =
860 					  cpu_to_be64(FILTER_TUPLE_V(params));
861 				t5req->rsvd = cpu_to_be32(isn);
862 				pr_debug("snd_isn %u\n", t5req->rsvd);
863 				t5req->opt2 = cpu_to_be32(opt2);
864 			} else {
865 				t6req->params =
866 					  cpu_to_be64(FILTER_TUPLE_V(params));
867 				t6req->rsvd = cpu_to_be32(isn);
868 				pr_debug("snd_isn %u\n", t6req->rsvd);
869 				t6req->opt2 = cpu_to_be32(opt2);
870 			}
871 		}
872 	} else {
873 		switch (CHELSIO_CHIP_VERSION(adapter_type)) {
874 		case CHELSIO_T4:
875 			req6 = skb_put(skb, wrlen);
876 			INIT_TP_WR(req6, 0);
877 			break;
878 		case CHELSIO_T5:
879 			t5req6 = skb_put(skb, wrlen);
880 			INIT_TP_WR(t5req6, 0);
881 			req6 = (struct cpl_act_open_req6 *)t5req6;
882 			break;
883 		case CHELSIO_T6:
884 			t6req6 = skb_put(skb, wrlen);
885 			INIT_TP_WR(t6req6, 0);
886 			req6 = (struct cpl_act_open_req6 *)t6req6;
887 			t5req6 = (struct cpl_t5_act_open_req6 *)t6req6;
888 			break;
889 		default:
890 			pr_err("T%d Chip is not supported\n",
891 			       CHELSIO_CHIP_VERSION(adapter_type));
892 			ret = -EINVAL;
893 			goto clip_release;
894 		}
895 
896 		OPCODE_TID(req6) = cpu_to_be32(MK_OPCODE_TID(CPL_ACT_OPEN_REQ6,
897 					((ep->rss_qid<<14)|ep->atid)));
898 		req6->local_port = la6->sin6_port;
899 		req6->peer_port = ra6->sin6_port;
900 		req6->local_ip_hi = *((__be64 *)(la6->sin6_addr.s6_addr));
901 		req6->local_ip_lo = *((__be64 *)(la6->sin6_addr.s6_addr + 8));
902 		req6->peer_ip_hi = *((__be64 *)(ra6->sin6_addr.s6_addr));
903 		req6->peer_ip_lo = *((__be64 *)(ra6->sin6_addr.s6_addr + 8));
904 		req6->opt0 = cpu_to_be64(opt0);
905 
906 		if (is_t4(ep->com.dev->rdev.lldi.adapter_type)) {
907 			req6->params = cpu_to_be32(cxgb4_select_ntuple(netdev,
908 								      ep->l2t));
909 			req6->opt2 = cpu_to_be32(opt2);
910 		} else {
911 			if (is_t5(ep->com.dev->rdev.lldi.adapter_type)) {
912 				t5req6->params =
913 					    cpu_to_be64(FILTER_TUPLE_V(params));
914 				t5req6->rsvd = cpu_to_be32(isn);
915 				pr_debug("snd_isn %u\n", t5req6->rsvd);
916 				t5req6->opt2 = cpu_to_be32(opt2);
917 			} else {
918 				t6req6->params =
919 					    cpu_to_be64(FILTER_TUPLE_V(params));
920 				t6req6->rsvd = cpu_to_be32(isn);
921 				pr_debug("snd_isn %u\n", t6req6->rsvd);
922 				t6req6->opt2 = cpu_to_be32(opt2);
923 			}
924 
925 		}
926 	}
927 
928 	set_bit(ACT_OPEN_REQ, &ep->com.history);
929 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
930 clip_release:
931 	if (ret && ep->com.remote_addr.ss_family == AF_INET6)
932 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
933 				   (const u32 *)&la6->sin6_addr.s6_addr, 1);
934 	return ret;
935 }
936 
937 static int send_mpa_req(struct c4iw_ep *ep, struct sk_buff *skb,
938 			u8 mpa_rev_to_use)
939 {
940 	int mpalen, wrlen, ret;
941 	struct fw_ofld_tx_data_wr *req;
942 	struct mpa_message *mpa;
943 	struct mpa_v2_conn_params mpa_v2_params;
944 
945 	pr_debug("ep %p tid %u pd_len %d\n",
946 		 ep, ep->hwtid, ep->plen);
947 
948 	mpalen = sizeof(*mpa) + ep->plen;
949 	if (mpa_rev_to_use == 2)
950 		mpalen += sizeof(struct mpa_v2_conn_params);
951 	wrlen = roundup(mpalen + sizeof *req, 16);
952 	skb = get_skb(skb, wrlen, GFP_KERNEL);
953 	if (!skb) {
954 		connect_reply_upcall(ep, -ENOMEM);
955 		return -ENOMEM;
956 	}
957 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
958 
959 	req = skb_put_zero(skb, wrlen);
960 	req->op_to_immdlen = cpu_to_be32(
961 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
962 		FW_WR_COMPL_F |
963 		FW_WR_IMMDLEN_V(mpalen));
964 	req->flowid_len16 = cpu_to_be32(
965 		FW_WR_FLOWID_V(ep->hwtid) |
966 		FW_WR_LEN16_V(wrlen >> 4));
967 	req->plen = cpu_to_be32(mpalen);
968 	req->tunnel_to_proxy = cpu_to_be32(
969 		FW_OFLD_TX_DATA_WR_FLUSH_F |
970 		FW_OFLD_TX_DATA_WR_SHOVE_F);
971 
972 	mpa = (struct mpa_message *)(req + 1);
973 	memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
974 
975 	mpa->flags = 0;
976 	if (crc_enabled)
977 		mpa->flags |= MPA_CRC;
978 	if (markers_enabled) {
979 		mpa->flags |= MPA_MARKERS;
980 		ep->mpa_attr.recv_marker_enabled = 1;
981 	} else {
982 		ep->mpa_attr.recv_marker_enabled = 0;
983 	}
984 	if (mpa_rev_to_use == 2)
985 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
986 
987 	mpa->private_data_size = htons(ep->plen);
988 	mpa->revision = mpa_rev_to_use;
989 	if (mpa_rev_to_use == 1) {
990 		ep->tried_with_mpa_v1 = 1;
991 		ep->retry_with_mpa_v1 = 0;
992 	}
993 
994 	if (mpa_rev_to_use == 2) {
995 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
996 					       sizeof (struct mpa_v2_conn_params));
997 		pr_debug("initiator ird %u ord %u\n", ep->ird,
998 			 ep->ord);
999 		mpa_v2_params.ird = htons((u16)ep->ird);
1000 		mpa_v2_params.ord = htons((u16)ep->ord);
1001 
1002 		if (peer2peer) {
1003 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1004 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1005 				mpa_v2_params.ord |=
1006 					htons(MPA_V2_RDMA_WRITE_RTR);
1007 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1008 				mpa_v2_params.ord |=
1009 					htons(MPA_V2_RDMA_READ_RTR);
1010 		}
1011 		memcpy(mpa->private_data, &mpa_v2_params,
1012 		       sizeof(struct mpa_v2_conn_params));
1013 
1014 		if (ep->plen)
1015 			memcpy(mpa->private_data +
1016 			       sizeof(struct mpa_v2_conn_params),
1017 			       ep->mpa_pkt + sizeof(*mpa), ep->plen);
1018 	} else
1019 		if (ep->plen)
1020 			memcpy(mpa->private_data,
1021 					ep->mpa_pkt + sizeof(*mpa), ep->plen);
1022 
1023 	/*
1024 	 * Reference the mpa skb.  This ensures the data area
1025 	 * will remain in memory until the hw acks the tx.
1026 	 * Function fw4_ack() will deref it.
1027 	 */
1028 	skb_get(skb);
1029 	t4_set_arp_err_handler(skb, NULL, arp_failure_discard);
1030 	ep->mpa_skb = skb;
1031 	ret = c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1032 	if (ret)
1033 		return ret;
1034 	start_ep_timer(ep);
1035 	__state_set(&ep->com, MPA_REQ_SENT);
1036 	ep->mpa_attr.initiator = 1;
1037 	ep->snd_seq += mpalen;
1038 	return ret;
1039 }
1040 
1041 static int send_mpa_reject(struct c4iw_ep *ep, const void *pdata, u8 plen)
1042 {
1043 	int mpalen, wrlen;
1044 	struct fw_ofld_tx_data_wr *req;
1045 	struct mpa_message *mpa;
1046 	struct sk_buff *skb;
1047 	struct mpa_v2_conn_params mpa_v2_params;
1048 
1049 	pr_debug("ep %p tid %u pd_len %d\n",
1050 		 ep, ep->hwtid, ep->plen);
1051 
1052 	mpalen = sizeof(*mpa) + plen;
1053 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1054 		mpalen += sizeof(struct mpa_v2_conn_params);
1055 	wrlen = roundup(mpalen + sizeof *req, 16);
1056 
1057 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1058 	if (!skb) {
1059 		pr_err("%s - cannot alloc skb!\n", __func__);
1060 		return -ENOMEM;
1061 	}
1062 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1063 
1064 	req = skb_put_zero(skb, wrlen);
1065 	req->op_to_immdlen = cpu_to_be32(
1066 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1067 		FW_WR_COMPL_F |
1068 		FW_WR_IMMDLEN_V(mpalen));
1069 	req->flowid_len16 = cpu_to_be32(
1070 		FW_WR_FLOWID_V(ep->hwtid) |
1071 		FW_WR_LEN16_V(wrlen >> 4));
1072 	req->plen = cpu_to_be32(mpalen);
1073 	req->tunnel_to_proxy = cpu_to_be32(
1074 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1075 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1076 
1077 	mpa = (struct mpa_message *)(req + 1);
1078 	memset(mpa, 0, sizeof(*mpa));
1079 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1080 	mpa->flags = MPA_REJECT;
1081 	mpa->revision = ep->mpa_attr.version;
1082 	mpa->private_data_size = htons(plen);
1083 
1084 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1085 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1086 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1087 					       sizeof (struct mpa_v2_conn_params));
1088 		mpa_v2_params.ird = htons(((u16)ep->ird) |
1089 					  (peer2peer ? MPA_V2_PEER2PEER_MODEL :
1090 					   0));
1091 		mpa_v2_params.ord = htons(((u16)ep->ord) | (peer2peer ?
1092 					  (p2p_type ==
1093 					   FW_RI_INIT_P2PTYPE_RDMA_WRITE ?
1094 					   MPA_V2_RDMA_WRITE_RTR : p2p_type ==
1095 					   FW_RI_INIT_P2PTYPE_READ_REQ ?
1096 					   MPA_V2_RDMA_READ_RTR : 0) : 0));
1097 		memcpy(mpa->private_data, &mpa_v2_params,
1098 		       sizeof(struct mpa_v2_conn_params));
1099 
1100 		if (ep->plen)
1101 			memcpy(mpa->private_data +
1102 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1103 	} else
1104 		if (plen)
1105 			memcpy(mpa->private_data, pdata, plen);
1106 
1107 	/*
1108 	 * Reference the mpa skb again.  This ensures the data area
1109 	 * will remain in memory until the hw acks the tx.
1110 	 * Function fw4_ack() will deref it.
1111 	 */
1112 	skb_get(skb);
1113 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1114 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1115 	ep->mpa_skb = skb;
1116 	ep->snd_seq += mpalen;
1117 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1118 }
1119 
1120 static int send_mpa_reply(struct c4iw_ep *ep, const void *pdata, u8 plen)
1121 {
1122 	int mpalen, wrlen;
1123 	struct fw_ofld_tx_data_wr *req;
1124 	struct mpa_message *mpa;
1125 	struct sk_buff *skb;
1126 	struct mpa_v2_conn_params mpa_v2_params;
1127 
1128 	pr_debug("ep %p tid %u pd_len %d\n",
1129 		 ep, ep->hwtid, ep->plen);
1130 
1131 	mpalen = sizeof(*mpa) + plen;
1132 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn)
1133 		mpalen += sizeof(struct mpa_v2_conn_params);
1134 	wrlen = roundup(mpalen + sizeof *req, 16);
1135 
1136 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1137 	if (!skb) {
1138 		pr_err("%s - cannot alloc skb!\n", __func__);
1139 		return -ENOMEM;
1140 	}
1141 	set_wr_txq(skb, CPL_PRIORITY_DATA, ep->txq_idx);
1142 
1143 	req = skb_put_zero(skb, wrlen);
1144 	req->op_to_immdlen = cpu_to_be32(
1145 		FW_WR_OP_V(FW_OFLD_TX_DATA_WR) |
1146 		FW_WR_COMPL_F |
1147 		FW_WR_IMMDLEN_V(mpalen));
1148 	req->flowid_len16 = cpu_to_be32(
1149 		FW_WR_FLOWID_V(ep->hwtid) |
1150 		FW_WR_LEN16_V(wrlen >> 4));
1151 	req->plen = cpu_to_be32(mpalen);
1152 	req->tunnel_to_proxy = cpu_to_be32(
1153 		FW_OFLD_TX_DATA_WR_FLUSH_F |
1154 		FW_OFLD_TX_DATA_WR_SHOVE_F);
1155 
1156 	mpa = (struct mpa_message *)(req + 1);
1157 	memset(mpa, 0, sizeof(*mpa));
1158 	memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
1159 	mpa->flags = 0;
1160 	if (ep->mpa_attr.crc_enabled)
1161 		mpa->flags |= MPA_CRC;
1162 	if (ep->mpa_attr.recv_marker_enabled)
1163 		mpa->flags |= MPA_MARKERS;
1164 	mpa->revision = ep->mpa_attr.version;
1165 	mpa->private_data_size = htons(plen);
1166 
1167 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
1168 		mpa->flags |= MPA_ENHANCED_RDMA_CONN;
1169 		mpa->private_data_size = htons(ntohs(mpa->private_data_size) +
1170 					       sizeof (struct mpa_v2_conn_params));
1171 		mpa_v2_params.ird = htons((u16)ep->ird);
1172 		mpa_v2_params.ord = htons((u16)ep->ord);
1173 		if (peer2peer && (ep->mpa_attr.p2p_type !=
1174 					FW_RI_INIT_P2PTYPE_DISABLED)) {
1175 			mpa_v2_params.ird |= htons(MPA_V2_PEER2PEER_MODEL);
1176 
1177 			if (p2p_type == FW_RI_INIT_P2PTYPE_RDMA_WRITE)
1178 				mpa_v2_params.ord |=
1179 					htons(MPA_V2_RDMA_WRITE_RTR);
1180 			else if (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ)
1181 				mpa_v2_params.ord |=
1182 					htons(MPA_V2_RDMA_READ_RTR);
1183 		}
1184 
1185 		memcpy(mpa->private_data, &mpa_v2_params,
1186 		       sizeof(struct mpa_v2_conn_params));
1187 
1188 		if (ep->plen)
1189 			memcpy(mpa->private_data +
1190 			       sizeof(struct mpa_v2_conn_params), pdata, plen);
1191 	} else
1192 		if (plen)
1193 			memcpy(mpa->private_data, pdata, plen);
1194 
1195 	/*
1196 	 * Reference the mpa skb.  This ensures the data area
1197 	 * will remain in memory until the hw acks the tx.
1198 	 * Function fw4_ack() will deref it.
1199 	 */
1200 	skb_get(skb);
1201 	t4_set_arp_err_handler(skb, NULL, mpa_start_arp_failure);
1202 	ep->mpa_skb = skb;
1203 	__state_set(&ep->com, MPA_REP_SENT);
1204 	ep->snd_seq += mpalen;
1205 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
1206 }
1207 
1208 static int act_establish(struct c4iw_dev *dev, struct sk_buff *skb)
1209 {
1210 	struct c4iw_ep *ep;
1211 	struct cpl_act_establish *req = cplhdr(skb);
1212 	unsigned short tcp_opt = ntohs(req->tcp_opt);
1213 	unsigned int tid = GET_TID(req);
1214 	unsigned int atid = TID_TID_G(ntohl(req->tos_atid));
1215 	struct tid_info *t = dev->rdev.lldi.tids;
1216 	int ret;
1217 
1218 	ep = lookup_atid(t, atid);
1219 
1220 	pr_debug("ep %p tid %u snd_isn %u rcv_isn %u\n", ep, tid,
1221 		 be32_to_cpu(req->snd_isn), be32_to_cpu(req->rcv_isn));
1222 
1223 	mutex_lock(&ep->com.mutex);
1224 	dst_confirm(ep->dst);
1225 
1226 	/* setup the hwtid for this connection */
1227 	ep->hwtid = tid;
1228 	cxgb4_insert_tid(t, ep, tid, ep->com.local_addr.ss_family);
1229 	insert_ep_tid(ep);
1230 
1231 	ep->snd_seq = be32_to_cpu(req->snd_isn);
1232 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
1233 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
1234 
1235 	set_emss(ep, tcp_opt);
1236 
1237 	/* dealloc the atid */
1238 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
1239 	cxgb4_free_atid(t, atid);
1240 	set_bit(ACT_ESTAB, &ep->com.history);
1241 
1242 	/* start MPA negotiation */
1243 	ret = send_flowc(ep);
1244 	if (ret)
1245 		goto err;
1246 	if (ep->retry_with_mpa_v1)
1247 		ret = send_mpa_req(ep, skb, 1);
1248 	else
1249 		ret = send_mpa_req(ep, skb, mpa_rev);
1250 	if (ret)
1251 		goto err;
1252 	mutex_unlock(&ep->com.mutex);
1253 	return 0;
1254 err:
1255 	mutex_unlock(&ep->com.mutex);
1256 	connect_reply_upcall(ep, -ENOMEM);
1257 	c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
1258 	return 0;
1259 }
1260 
1261 static void close_complete_upcall(struct c4iw_ep *ep, int status)
1262 {
1263 	struct iw_cm_event event;
1264 
1265 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1266 	memset(&event, 0, sizeof(event));
1267 	event.event = IW_CM_EVENT_CLOSE;
1268 	event.status = status;
1269 	if (ep->com.cm_id) {
1270 		pr_debug("close complete delivered ep %p cm_id %p tid %u\n",
1271 			 ep, ep->com.cm_id, ep->hwtid);
1272 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1273 		deref_cm_id(&ep->com);
1274 		set_bit(CLOSE_UPCALL, &ep->com.history);
1275 	}
1276 }
1277 
1278 static void peer_close_upcall(struct c4iw_ep *ep)
1279 {
1280 	struct iw_cm_event event;
1281 
1282 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1283 	memset(&event, 0, sizeof(event));
1284 	event.event = IW_CM_EVENT_DISCONNECT;
1285 	if (ep->com.cm_id) {
1286 		pr_debug("peer close delivered ep %p cm_id %p tid %u\n",
1287 			 ep, ep->com.cm_id, ep->hwtid);
1288 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1289 		set_bit(DISCONN_UPCALL, &ep->com.history);
1290 	}
1291 }
1292 
1293 static void peer_abort_upcall(struct c4iw_ep *ep)
1294 {
1295 	struct iw_cm_event event;
1296 
1297 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1298 	memset(&event, 0, sizeof(event));
1299 	event.event = IW_CM_EVENT_CLOSE;
1300 	event.status = -ECONNRESET;
1301 	if (ep->com.cm_id) {
1302 		pr_debug("abort delivered ep %p cm_id %p tid %u\n", ep,
1303 			 ep->com.cm_id, ep->hwtid);
1304 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1305 		deref_cm_id(&ep->com);
1306 		set_bit(ABORT_UPCALL, &ep->com.history);
1307 	}
1308 }
1309 
1310 static void connect_reply_upcall(struct c4iw_ep *ep, int status)
1311 {
1312 	struct iw_cm_event event;
1313 
1314 	pr_debug("ep %p tid %u status %d\n",
1315 		 ep, ep->hwtid, status);
1316 	memset(&event, 0, sizeof(event));
1317 	event.event = IW_CM_EVENT_CONNECT_REPLY;
1318 	event.status = status;
1319 	memcpy(&event.local_addr, &ep->com.local_addr,
1320 	       sizeof(ep->com.local_addr));
1321 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1322 	       sizeof(ep->com.remote_addr));
1323 
1324 	if ((status == 0) || (status == -ECONNREFUSED)) {
1325 		if (!ep->tried_with_mpa_v1) {
1326 			/* this means MPA_v2 is used */
1327 			event.ord = ep->ird;
1328 			event.ird = ep->ord;
1329 			event.private_data_len = ep->plen -
1330 				sizeof(struct mpa_v2_conn_params);
1331 			event.private_data = ep->mpa_pkt +
1332 				sizeof(struct mpa_message) +
1333 				sizeof(struct mpa_v2_conn_params);
1334 		} else {
1335 			/* this means MPA_v1 is used */
1336 			event.ord = cur_max_read_depth(ep->com.dev);
1337 			event.ird = cur_max_read_depth(ep->com.dev);
1338 			event.private_data_len = ep->plen;
1339 			event.private_data = ep->mpa_pkt +
1340 				sizeof(struct mpa_message);
1341 		}
1342 	}
1343 
1344 	pr_debug("ep %p tid %u status %d\n", ep,
1345 		 ep->hwtid, status);
1346 	set_bit(CONN_RPL_UPCALL, &ep->com.history);
1347 	ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1348 
1349 	if (status < 0)
1350 		deref_cm_id(&ep->com);
1351 }
1352 
1353 static int connect_request_upcall(struct c4iw_ep *ep)
1354 {
1355 	struct iw_cm_event event;
1356 	int ret;
1357 
1358 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1359 	memset(&event, 0, sizeof(event));
1360 	event.event = IW_CM_EVENT_CONNECT_REQUEST;
1361 	memcpy(&event.local_addr, &ep->com.local_addr,
1362 	       sizeof(ep->com.local_addr));
1363 	memcpy(&event.remote_addr, &ep->com.remote_addr,
1364 	       sizeof(ep->com.remote_addr));
1365 	event.provider_data = ep;
1366 	if (!ep->tried_with_mpa_v1) {
1367 		/* this means MPA_v2 is used */
1368 		event.ord = ep->ord;
1369 		event.ird = ep->ird;
1370 		event.private_data_len = ep->plen -
1371 			sizeof(struct mpa_v2_conn_params);
1372 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message) +
1373 			sizeof(struct mpa_v2_conn_params);
1374 	} else {
1375 		/* this means MPA_v1 is used. Send max supported */
1376 		event.ord = cur_max_read_depth(ep->com.dev);
1377 		event.ird = cur_max_read_depth(ep->com.dev);
1378 		event.private_data_len = ep->plen;
1379 		event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
1380 	}
1381 	c4iw_get_ep(&ep->com);
1382 	ret = ep->parent_ep->com.cm_id->event_handler(ep->parent_ep->com.cm_id,
1383 						      &event);
1384 	if (ret)
1385 		c4iw_put_ep(&ep->com);
1386 	set_bit(CONNREQ_UPCALL, &ep->com.history);
1387 	c4iw_put_ep(&ep->parent_ep->com);
1388 	return ret;
1389 }
1390 
1391 static void established_upcall(struct c4iw_ep *ep)
1392 {
1393 	struct iw_cm_event event;
1394 
1395 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1396 	memset(&event, 0, sizeof(event));
1397 	event.event = IW_CM_EVENT_ESTABLISHED;
1398 	event.ird = ep->ord;
1399 	event.ord = ep->ird;
1400 	if (ep->com.cm_id) {
1401 		pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1402 		ep->com.cm_id->event_handler(ep->com.cm_id, &event);
1403 		set_bit(ESTAB_UPCALL, &ep->com.history);
1404 	}
1405 }
1406 
1407 static int update_rx_credits(struct c4iw_ep *ep, u32 credits)
1408 {
1409 	struct sk_buff *skb;
1410 	u32 wrlen = roundup(sizeof(struct cpl_rx_data_ack), 16);
1411 	u32 credit_dack;
1412 
1413 	pr_debug("ep %p tid %u credits %u\n",
1414 		 ep, ep->hwtid, credits);
1415 	skb = get_skb(NULL, wrlen, GFP_KERNEL);
1416 	if (!skb) {
1417 		pr_err("update_rx_credits - cannot alloc skb!\n");
1418 		return 0;
1419 	}
1420 
1421 	/*
1422 	 * If we couldn't specify the entire rcv window at connection setup
1423 	 * due to the limit in the number of bits in the RCV_BUFSIZ field,
1424 	 * then add the overage in to the credits returned.
1425 	 */
1426 	if (ep->rcv_win > RCV_BUFSIZ_M * 1024)
1427 		credits += ep->rcv_win - RCV_BUFSIZ_M * 1024;
1428 
1429 	credit_dack = credits | RX_FORCE_ACK_F | RX_DACK_CHANGE_F |
1430 		      RX_DACK_MODE_V(dack_mode);
1431 
1432 	cxgb_mk_rx_data_ack(skb, wrlen, ep->hwtid, ep->ctrlq_idx,
1433 			    credit_dack);
1434 
1435 	c4iw_ofld_send(&ep->com.dev->rdev, skb);
1436 	return credits;
1437 }
1438 
1439 #define RELAXED_IRD_NEGOTIATION 1
1440 
1441 /*
1442  * process_mpa_reply - process streaming mode MPA reply
1443  *
1444  * Returns:
1445  *
1446  * 0 upon success indicating a connect request was delivered to the ULP
1447  * or the mpa request is incomplete but valid so far.
1448  *
1449  * 1 if a failure requires the caller to close the connection.
1450  *
1451  * 2 if a failure requires the caller to abort the connection.
1452  */
1453 static int process_mpa_reply(struct c4iw_ep *ep, struct sk_buff *skb)
1454 {
1455 	struct mpa_message *mpa;
1456 	struct mpa_v2_conn_params *mpa_v2_params;
1457 	u16 plen;
1458 	u16 resp_ird, resp_ord;
1459 	u8 rtr_mismatch = 0, insuff_ird = 0;
1460 	struct c4iw_qp_attributes attrs;
1461 	enum c4iw_qp_attr_mask mask;
1462 	int err;
1463 	int disconnect = 0;
1464 
1465 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1466 
1467 	/*
1468 	 * If we get more than the supported amount of private data
1469 	 * then we must fail this connection.
1470 	 */
1471 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
1472 		err = -EINVAL;
1473 		goto err_stop_timer;
1474 	}
1475 
1476 	/*
1477 	 * copy the new data into our accumulation buffer.
1478 	 */
1479 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1480 				  skb->len);
1481 	ep->mpa_pkt_len += skb->len;
1482 
1483 	/*
1484 	 * if we don't even have the mpa message, then bail.
1485 	 */
1486 	if (ep->mpa_pkt_len < sizeof(*mpa))
1487 		return 0;
1488 	mpa = (struct mpa_message *) ep->mpa_pkt;
1489 
1490 	/* Validate MPA header. */
1491 	if (mpa->revision > mpa_rev) {
1492 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1493 		       __func__, mpa_rev, mpa->revision);
1494 		err = -EPROTO;
1495 		goto err_stop_timer;
1496 	}
1497 	if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
1498 		err = -EPROTO;
1499 		goto err_stop_timer;
1500 	}
1501 
1502 	plen = ntohs(mpa->private_data_size);
1503 
1504 	/*
1505 	 * Fail if there's too much private data.
1506 	 */
1507 	if (plen > MPA_MAX_PRIVATE_DATA) {
1508 		err = -EPROTO;
1509 		goto err_stop_timer;
1510 	}
1511 
1512 	/*
1513 	 * If plen does not account for pkt size
1514 	 */
1515 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1516 		err = -EPROTO;
1517 		goto err_stop_timer;
1518 	}
1519 
1520 	ep->plen = (u8) plen;
1521 
1522 	/*
1523 	 * If we don't have all the pdata yet, then bail.
1524 	 * We'll continue process when more data arrives.
1525 	 */
1526 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1527 		return 0;
1528 
1529 	if (mpa->flags & MPA_REJECT) {
1530 		err = -ECONNREFUSED;
1531 		goto err_stop_timer;
1532 	}
1533 
1534 	/*
1535 	 * Stop mpa timer.  If it expired, then
1536 	 * we ignore the MPA reply.  process_timeout()
1537 	 * will abort the connection.
1538 	 */
1539 	if (stop_ep_timer(ep))
1540 		return 0;
1541 
1542 	/*
1543 	 * If we get here we have accumulated the entire mpa
1544 	 * start reply message including private data. And
1545 	 * the MPA header is valid.
1546 	 */
1547 	__state_set(&ep->com, FPDU_MODE);
1548 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1549 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1550 	ep->mpa_attr.version = mpa->revision;
1551 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1552 
1553 	if (mpa->revision == 2) {
1554 		ep->mpa_attr.enhanced_rdma_conn =
1555 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1556 		if (ep->mpa_attr.enhanced_rdma_conn) {
1557 			mpa_v2_params = (struct mpa_v2_conn_params *)
1558 				(ep->mpa_pkt + sizeof(*mpa));
1559 			resp_ird = ntohs(mpa_v2_params->ird) &
1560 				MPA_V2_IRD_ORD_MASK;
1561 			resp_ord = ntohs(mpa_v2_params->ord) &
1562 				MPA_V2_IRD_ORD_MASK;
1563 			pr_debug("responder ird %u ord %u ep ird %u ord %u\n",
1564 				 resp_ird, resp_ord, ep->ird, ep->ord);
1565 
1566 			/*
1567 			 * This is a double-check. Ideally, below checks are
1568 			 * not required since ird/ord stuff has been taken
1569 			 * care of in c4iw_accept_cr
1570 			 */
1571 			if (ep->ird < resp_ord) {
1572 				if (RELAXED_IRD_NEGOTIATION && resp_ord <=
1573 				    ep->com.dev->rdev.lldi.max_ordird_qp)
1574 					ep->ird = resp_ord;
1575 				else
1576 					insuff_ird = 1;
1577 			} else if (ep->ird > resp_ord) {
1578 				ep->ird = resp_ord;
1579 			}
1580 			if (ep->ord > resp_ird) {
1581 				if (RELAXED_IRD_NEGOTIATION)
1582 					ep->ord = resp_ird;
1583 				else
1584 					insuff_ird = 1;
1585 			}
1586 			if (insuff_ird) {
1587 				err = -ENOMEM;
1588 				ep->ird = resp_ord;
1589 				ep->ord = resp_ird;
1590 			}
1591 
1592 			if (ntohs(mpa_v2_params->ird) &
1593 					MPA_V2_PEER2PEER_MODEL) {
1594 				if (ntohs(mpa_v2_params->ord) &
1595 						MPA_V2_RDMA_WRITE_RTR)
1596 					ep->mpa_attr.p2p_type =
1597 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1598 				else if (ntohs(mpa_v2_params->ord) &
1599 						MPA_V2_RDMA_READ_RTR)
1600 					ep->mpa_attr.p2p_type =
1601 						FW_RI_INIT_P2PTYPE_READ_REQ;
1602 			}
1603 		}
1604 	} else if (mpa->revision == 1)
1605 		if (peer2peer)
1606 			ep->mpa_attr.p2p_type = p2p_type;
1607 
1608 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d local-p2p_type = %d\n",
1609 		 ep->mpa_attr.crc_enabled,
1610 		 ep->mpa_attr.recv_marker_enabled,
1611 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1612 		 ep->mpa_attr.p2p_type, p2p_type);
1613 
1614 	/*
1615 	 * If responder's RTR does not match with that of initiator, assign
1616 	 * FW_RI_INIT_P2PTYPE_DISABLED in mpa attributes so that RTR is not
1617 	 * generated when moving QP to RTS state.
1618 	 * A TERM message will be sent after QP has moved to RTS state
1619 	 */
1620 	if ((ep->mpa_attr.version == 2) && peer2peer &&
1621 			(ep->mpa_attr.p2p_type != p2p_type)) {
1622 		ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1623 		rtr_mismatch = 1;
1624 	}
1625 
1626 	attrs.mpa_attr = ep->mpa_attr;
1627 	attrs.max_ird = ep->ird;
1628 	attrs.max_ord = ep->ord;
1629 	attrs.llp_stream_handle = ep;
1630 	attrs.next_state = C4IW_QP_STATE_RTS;
1631 
1632 	mask = C4IW_QP_ATTR_NEXT_STATE |
1633 	    C4IW_QP_ATTR_LLP_STREAM_HANDLE | C4IW_QP_ATTR_MPA_ATTR |
1634 	    C4IW_QP_ATTR_MAX_IRD | C4IW_QP_ATTR_MAX_ORD;
1635 
1636 	/* bind QP and TID with INIT_WR */
1637 	err = c4iw_modify_qp(ep->com.qp->rhp,
1638 			     ep->com.qp, mask, &attrs, 1);
1639 	if (err)
1640 		goto err;
1641 
1642 	/*
1643 	 * If responder's RTR requirement did not match with what initiator
1644 	 * supports, generate TERM message
1645 	 */
1646 	if (rtr_mismatch) {
1647 		pr_err("%s: RTR mismatch, sending TERM\n", __func__);
1648 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1649 		attrs.ecode = MPA_NOMATCH_RTR;
1650 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1651 		attrs.send_term = 1;
1652 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1653 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1654 		err = -ENOMEM;
1655 		disconnect = 1;
1656 		goto out;
1657 	}
1658 
1659 	/*
1660 	 * Generate TERM if initiator IRD is not sufficient for responder
1661 	 * provided ORD. Currently, we do the same behaviour even when
1662 	 * responder provided IRD is also not sufficient as regards to
1663 	 * initiator ORD.
1664 	 */
1665 	if (insuff_ird) {
1666 		pr_err("%s: Insufficient IRD, sending TERM\n", __func__);
1667 		attrs.layer_etype = LAYER_MPA | DDP_LLP;
1668 		attrs.ecode = MPA_INSUFF_IRD;
1669 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1670 		attrs.send_term = 1;
1671 		err = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1672 				C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1673 		err = -ENOMEM;
1674 		disconnect = 1;
1675 		goto out;
1676 	}
1677 	goto out;
1678 err_stop_timer:
1679 	stop_ep_timer(ep);
1680 err:
1681 	disconnect = 2;
1682 out:
1683 	connect_reply_upcall(ep, err);
1684 	return disconnect;
1685 }
1686 
1687 /*
1688  * process_mpa_request - process streaming mode MPA request
1689  *
1690  * Returns:
1691  *
1692  * 0 upon success indicating a connect request was delivered to the ULP
1693  * or the mpa request is incomplete but valid so far.
1694  *
1695  * 1 if a failure requires the caller to close the connection.
1696  *
1697  * 2 if a failure requires the caller to abort the connection.
1698  */
1699 static int process_mpa_request(struct c4iw_ep *ep, struct sk_buff *skb)
1700 {
1701 	struct mpa_message *mpa;
1702 	struct mpa_v2_conn_params *mpa_v2_params;
1703 	u16 plen;
1704 
1705 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1706 
1707 	/*
1708 	 * If we get more than the supported amount of private data
1709 	 * then we must fail this connection.
1710 	 */
1711 	if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt))
1712 		goto err_stop_timer;
1713 
1714 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1715 
1716 	/*
1717 	 * Copy the new data into our accumulation buffer.
1718 	 */
1719 	skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
1720 				  skb->len);
1721 	ep->mpa_pkt_len += skb->len;
1722 
1723 	/*
1724 	 * If we don't even have the mpa message, then bail.
1725 	 * We'll continue process when more data arrives.
1726 	 */
1727 	if (ep->mpa_pkt_len < sizeof(*mpa))
1728 		return 0;
1729 
1730 	pr_debug("enter (%s line %u)\n", __FILE__, __LINE__);
1731 	mpa = (struct mpa_message *) ep->mpa_pkt;
1732 
1733 	/*
1734 	 * Validate MPA Header.
1735 	 */
1736 	if (mpa->revision > mpa_rev) {
1737 		pr_err("%s MPA version mismatch. Local = %d, Received = %d\n",
1738 		       __func__, mpa_rev, mpa->revision);
1739 		goto err_stop_timer;
1740 	}
1741 
1742 	if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key)))
1743 		goto err_stop_timer;
1744 
1745 	plen = ntohs(mpa->private_data_size);
1746 
1747 	/*
1748 	 * Fail if there's too much private data.
1749 	 */
1750 	if (plen > MPA_MAX_PRIVATE_DATA)
1751 		goto err_stop_timer;
1752 
1753 	/*
1754 	 * If plen does not account for pkt size
1755 	 */
1756 	if (ep->mpa_pkt_len > (sizeof(*mpa) + plen))
1757 		goto err_stop_timer;
1758 	ep->plen = (u8) plen;
1759 
1760 	/*
1761 	 * If we don't have all the pdata yet, then bail.
1762 	 */
1763 	if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1764 		return 0;
1765 
1766 	/*
1767 	 * If we get here we have accumulated the entire mpa
1768 	 * start reply message including private data.
1769 	 */
1770 	ep->mpa_attr.initiator = 0;
1771 	ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1772 	ep->mpa_attr.recv_marker_enabled = markers_enabled;
1773 	ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1774 	ep->mpa_attr.version = mpa->revision;
1775 	if (mpa->revision == 1)
1776 		ep->tried_with_mpa_v1 = 1;
1777 	ep->mpa_attr.p2p_type = FW_RI_INIT_P2PTYPE_DISABLED;
1778 
1779 	if (mpa->revision == 2) {
1780 		ep->mpa_attr.enhanced_rdma_conn =
1781 			mpa->flags & MPA_ENHANCED_RDMA_CONN ? 1 : 0;
1782 		if (ep->mpa_attr.enhanced_rdma_conn) {
1783 			mpa_v2_params = (struct mpa_v2_conn_params *)
1784 				(ep->mpa_pkt + sizeof(*mpa));
1785 			ep->ird = ntohs(mpa_v2_params->ird) &
1786 				MPA_V2_IRD_ORD_MASK;
1787 			ep->ird = min_t(u32, ep->ird,
1788 					cur_max_read_depth(ep->com.dev));
1789 			ep->ord = ntohs(mpa_v2_params->ord) &
1790 				MPA_V2_IRD_ORD_MASK;
1791 			ep->ord = min_t(u32, ep->ord,
1792 					cur_max_read_depth(ep->com.dev));
1793 			pr_debug("initiator ird %u ord %u\n",
1794 				 ep->ird, ep->ord);
1795 			if (ntohs(mpa_v2_params->ird) & MPA_V2_PEER2PEER_MODEL)
1796 				if (peer2peer) {
1797 					if (ntohs(mpa_v2_params->ord) &
1798 							MPA_V2_RDMA_WRITE_RTR)
1799 						ep->mpa_attr.p2p_type =
1800 						FW_RI_INIT_P2PTYPE_RDMA_WRITE;
1801 					else if (ntohs(mpa_v2_params->ord) &
1802 							MPA_V2_RDMA_READ_RTR)
1803 						ep->mpa_attr.p2p_type =
1804 						FW_RI_INIT_P2PTYPE_READ_REQ;
1805 				}
1806 		}
1807 	} else if (mpa->revision == 1)
1808 		if (peer2peer)
1809 			ep->mpa_attr.p2p_type = p2p_type;
1810 
1811 	pr_debug("crc_enabled=%d, recv_marker_enabled=%d, xmit_marker_enabled=%d, version=%d p2p_type=%d\n",
1812 		 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1813 		 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version,
1814 		 ep->mpa_attr.p2p_type);
1815 
1816 	__state_set(&ep->com, MPA_REQ_RCVD);
1817 
1818 	/* drive upcall */
1819 	mutex_lock_nested(&ep->parent_ep->com.mutex, SINGLE_DEPTH_NESTING);
1820 	if (ep->parent_ep->com.state != DEAD) {
1821 		if (connect_request_upcall(ep))
1822 			goto err_unlock_parent;
1823 	} else {
1824 		goto err_unlock_parent;
1825 	}
1826 	mutex_unlock(&ep->parent_ep->com.mutex);
1827 	return 0;
1828 
1829 err_unlock_parent:
1830 	mutex_unlock(&ep->parent_ep->com.mutex);
1831 	goto err_out;
1832 err_stop_timer:
1833 	(void)stop_ep_timer(ep);
1834 err_out:
1835 	return 2;
1836 }
1837 
1838 static int rx_data(struct c4iw_dev *dev, struct sk_buff *skb)
1839 {
1840 	struct c4iw_ep *ep;
1841 	struct cpl_rx_data *hdr = cplhdr(skb);
1842 	unsigned int dlen = ntohs(hdr->len);
1843 	unsigned int tid = GET_TID(hdr);
1844 	__u8 status = hdr->status;
1845 	int disconnect = 0;
1846 
1847 	ep = get_ep_from_tid(dev, tid);
1848 	if (!ep)
1849 		return 0;
1850 	pr_debug("ep %p tid %u dlen %u\n", ep, ep->hwtid, dlen);
1851 	skb_pull(skb, sizeof(*hdr));
1852 	skb_trim(skb, dlen);
1853 	mutex_lock(&ep->com.mutex);
1854 
1855 	switch (ep->com.state) {
1856 	case MPA_REQ_SENT:
1857 		update_rx_credits(ep, dlen);
1858 		ep->rcv_seq += dlen;
1859 		disconnect = process_mpa_reply(ep, skb);
1860 		break;
1861 	case MPA_REQ_WAIT:
1862 		update_rx_credits(ep, dlen);
1863 		ep->rcv_seq += dlen;
1864 		disconnect = process_mpa_request(ep, skb);
1865 		break;
1866 	case FPDU_MODE: {
1867 		struct c4iw_qp_attributes attrs;
1868 
1869 		update_rx_credits(ep, dlen);
1870 		if (status)
1871 			pr_err("%s Unexpected streaming data." \
1872 			       " qpid %u ep %p state %d tid %u status %d\n",
1873 			       __func__, ep->com.qp->wq.sq.qid, ep,
1874 			       ep->com.state, ep->hwtid, status);
1875 		attrs.next_state = C4IW_QP_STATE_TERMINATE;
1876 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
1877 			       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
1878 		disconnect = 1;
1879 		break;
1880 	}
1881 	default:
1882 		break;
1883 	}
1884 	mutex_unlock(&ep->com.mutex);
1885 	if (disconnect)
1886 		c4iw_ep_disconnect(ep, disconnect == 2, GFP_KERNEL);
1887 	c4iw_put_ep(&ep->com);
1888 	return 0;
1889 }
1890 
1891 static void complete_cached_srq_buffers(struct c4iw_ep *ep, u32 srqidx)
1892 {
1893 	enum chip_type adapter_type;
1894 
1895 	adapter_type = ep->com.dev->rdev.lldi.adapter_type;
1896 
1897 	/*
1898 	 * If this TCB had a srq buffer cached, then we must complete
1899 	 * it. For user mode, that means saving the srqidx in the
1900 	 * user/kernel status page for this qp.  For kernel mode, just
1901 	 * synthesize the CQE now.
1902 	 */
1903 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T5 && srqidx) {
1904 		if (ep->com.qp->ibqp.uobject)
1905 			t4_set_wq_in_error(&ep->com.qp->wq, srqidx);
1906 		else
1907 			c4iw_flush_srqidx(ep->com.qp, srqidx);
1908 	}
1909 }
1910 
1911 static int abort_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
1912 {
1913 	u32 srqidx;
1914 	struct c4iw_ep *ep;
1915 	struct cpl_abort_rpl_rss6 *rpl = cplhdr(skb);
1916 	int release = 0;
1917 	unsigned int tid = GET_TID(rpl);
1918 
1919 	ep = get_ep_from_tid(dev, tid);
1920 	if (!ep) {
1921 		pr_warn("Abort rpl to freed endpoint\n");
1922 		return 0;
1923 	}
1924 
1925 	if (ep->com.qp && ep->com.qp->srq) {
1926 		srqidx = ABORT_RSS_SRQIDX_G(be32_to_cpu(rpl->srqidx_status));
1927 		complete_cached_srq_buffers(ep, srqidx ? srqidx : ep->srqe_idx);
1928 	}
1929 
1930 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
1931 	mutex_lock(&ep->com.mutex);
1932 	switch (ep->com.state) {
1933 	case ABORTING:
1934 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
1935 		__state_set(&ep->com, DEAD);
1936 		release = 1;
1937 		break;
1938 	default:
1939 		pr_err("%s ep %p state %d\n", __func__, ep, ep->com.state);
1940 		break;
1941 	}
1942 	mutex_unlock(&ep->com.mutex);
1943 
1944 	if (release) {
1945 		close_complete_upcall(ep, -ECONNRESET);
1946 		release_ep_resources(ep);
1947 	}
1948 	c4iw_put_ep(&ep->com);
1949 	return 0;
1950 }
1951 
1952 static int send_fw_act_open_req(struct c4iw_ep *ep, unsigned int atid)
1953 {
1954 	struct sk_buff *skb;
1955 	struct fw_ofld_connection_wr *req;
1956 	unsigned int mtu_idx;
1957 	u32 wscale;
1958 	struct sockaddr_in *sin;
1959 	int win;
1960 
1961 	skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1962 	req = __skb_put_zero(skb, sizeof(*req));
1963 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR));
1964 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
1965 	req->le.filter = cpu_to_be32(cxgb4_select_ntuple(
1966 				     ep->com.dev->rdev.lldi.ports[0],
1967 				     ep->l2t));
1968 	sin = (struct sockaddr_in *)&ep->com.local_addr;
1969 	req->le.lport = sin->sin_port;
1970 	req->le.u.ipv4.lip = sin->sin_addr.s_addr;
1971 	sin = (struct sockaddr_in *)&ep->com.remote_addr;
1972 	req->le.pport = sin->sin_port;
1973 	req->le.u.ipv4.pip = sin->sin_addr.s_addr;
1974 	req->tcb.t_state_to_astid =
1975 			htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_SENT) |
1976 			FW_OFLD_CONNECTION_WR_ASTID_V(atid));
1977 	req->tcb.cplrxdataack_cplpassacceptrpl =
1978 			htons(FW_OFLD_CONNECTION_WR_CPLRXDATAACK_F);
1979 	req->tcb.tx_max = (__force __be32) jiffies;
1980 	req->tcb.rcv_adv = htons(1);
1981 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
1982 		      enable_tcp_timestamps,
1983 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
1984 	wscale = cxgb_compute_wscale(rcv_win);
1985 
1986 	/*
1987 	 * Specify the largest window that will fit in opt0. The
1988 	 * remainder will be specified in the rx_data_ack.
1989 	 */
1990 	win = ep->rcv_win >> 10;
1991 	if (win > RCV_BUFSIZ_M)
1992 		win = RCV_BUFSIZ_M;
1993 
1994 	req->tcb.opt0 = (__force __be64) (TCAM_BYPASS_F |
1995 		(nocong ? NO_CONG_F : 0) |
1996 		KEEP_ALIVE_F |
1997 		DELACK_F |
1998 		WND_SCALE_V(wscale) |
1999 		MSS_IDX_V(mtu_idx) |
2000 		L2T_IDX_V(ep->l2t->idx) |
2001 		TX_CHAN_V(ep->tx_chan) |
2002 		SMAC_SEL_V(ep->smac_idx) |
2003 		DSCP_V(ep->tos >> 2) |
2004 		ULP_MODE_V(ULP_MODE_TCPDDP) |
2005 		RCV_BUFSIZ_V(win));
2006 	req->tcb.opt2 = (__force __be32) (PACE_V(1) |
2007 		TX_QUEUE_V(ep->com.dev->rdev.lldi.tx_modq[ep->tx_chan]) |
2008 		RX_CHANNEL_V(0) |
2009 		CCTRL_ECN_V(enable_ecn) |
2010 		RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid));
2011 	if (enable_tcp_timestamps)
2012 		req->tcb.opt2 |= (__force __be32)TSTAMPS_EN_F;
2013 	if (enable_tcp_sack)
2014 		req->tcb.opt2 |= (__force __be32)SACK_EN_F;
2015 	if (wscale && enable_tcp_window_scaling)
2016 		req->tcb.opt2 |= (__force __be32)WND_SCALE_EN_F;
2017 	req->tcb.opt0 = cpu_to_be64((__force u64)req->tcb.opt0);
2018 	req->tcb.opt2 = cpu_to_be32((__force u32)req->tcb.opt2);
2019 	set_wr_txq(skb, CPL_PRIORITY_CONTROL, ep->ctrlq_idx);
2020 	set_bit(ACT_OFLD_CONN, &ep->com.history);
2021 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2022 }
2023 
2024 /*
2025  * Some of the error codes above implicitly indicate that there is no TID
2026  * allocated with the result of an ACT_OPEN.  We use this predicate to make
2027  * that explicit.
2028  */
2029 static inline int act_open_has_tid(int status)
2030 {
2031 	return (status != CPL_ERR_TCAM_PARITY &&
2032 		status != CPL_ERR_TCAM_MISS &&
2033 		status != CPL_ERR_TCAM_FULL &&
2034 		status != CPL_ERR_CONN_EXIST_SYNRECV &&
2035 		status != CPL_ERR_CONN_EXIST);
2036 }
2037 
2038 static char *neg_adv_str(unsigned int status)
2039 {
2040 	switch (status) {
2041 	case CPL_ERR_RTX_NEG_ADVICE:
2042 		return "Retransmit timeout";
2043 	case CPL_ERR_PERSIST_NEG_ADVICE:
2044 		return "Persist timeout";
2045 	case CPL_ERR_KEEPALV_NEG_ADVICE:
2046 		return "Keepalive timeout";
2047 	default:
2048 		return "Unknown";
2049 	}
2050 }
2051 
2052 static void set_tcp_window(struct c4iw_ep *ep, struct port_info *pi)
2053 {
2054 	ep->snd_win = snd_win;
2055 	ep->rcv_win = rcv_win;
2056 	pr_debug("snd_win %d rcv_win %d\n",
2057 		 ep->snd_win, ep->rcv_win);
2058 }
2059 
2060 #define ACT_OPEN_RETRY_COUNT 2
2061 
2062 static int import_ep(struct c4iw_ep *ep, int iptype, __u8 *peer_ip,
2063 		     struct dst_entry *dst, struct c4iw_dev *cdev,
2064 		     bool clear_mpa_v1, enum chip_type adapter_type, u8 tos)
2065 {
2066 	struct neighbour *n;
2067 	int err, step;
2068 	struct net_device *pdev;
2069 
2070 	n = dst_neigh_lookup(dst, peer_ip);
2071 	if (!n)
2072 		return -ENODEV;
2073 
2074 	rcu_read_lock();
2075 	err = -ENOMEM;
2076 	if (n->dev->flags & IFF_LOOPBACK) {
2077 		if (iptype == 4)
2078 			pdev = ip_dev_find(&init_net, *(__be32 *)peer_ip);
2079 		else if (IS_ENABLED(CONFIG_IPV6))
2080 			for_each_netdev(&init_net, pdev) {
2081 				if (ipv6_chk_addr(&init_net,
2082 						  (struct in6_addr *)peer_ip,
2083 						  pdev, 1))
2084 					break;
2085 			}
2086 		else
2087 			pdev = NULL;
2088 
2089 		if (!pdev) {
2090 			err = -ENODEV;
2091 			goto out;
2092 		}
2093 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2094 					n, pdev, rt_tos2priority(tos));
2095 		if (!ep->l2t) {
2096 			dev_put(pdev);
2097 			goto out;
2098 		}
2099 		ep->mtu = pdev->mtu;
2100 		ep->tx_chan = cxgb4_port_chan(pdev);
2101 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2102 		step = cdev->rdev.lldi.ntxq /
2103 			cdev->rdev.lldi.nchan;
2104 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2105 		step = cdev->rdev.lldi.nrxq /
2106 			cdev->rdev.lldi.nchan;
2107 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2108 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2109 			cxgb4_port_idx(pdev) * step];
2110 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2111 		dev_put(pdev);
2112 	} else {
2113 		pdev = get_real_dev(n->dev);
2114 		ep->l2t = cxgb4_l2t_get(cdev->rdev.lldi.l2t,
2115 					n, pdev, rt_tos2priority(tos));
2116 		if (!ep->l2t)
2117 			goto out;
2118 		ep->mtu = dst_mtu(dst);
2119 		ep->tx_chan = cxgb4_port_chan(pdev);
2120 		ep->smac_idx = ((struct port_info *)netdev_priv(pdev))->smt_idx;
2121 		step = cdev->rdev.lldi.ntxq /
2122 			cdev->rdev.lldi.nchan;
2123 		ep->txq_idx = cxgb4_port_idx(pdev) * step;
2124 		ep->ctrlq_idx = cxgb4_port_idx(pdev);
2125 		step = cdev->rdev.lldi.nrxq /
2126 			cdev->rdev.lldi.nchan;
2127 		ep->rss_qid = cdev->rdev.lldi.rxq_ids[
2128 			cxgb4_port_idx(pdev) * step];
2129 		set_tcp_window(ep, (struct port_info *)netdev_priv(pdev));
2130 
2131 		if (clear_mpa_v1) {
2132 			ep->retry_with_mpa_v1 = 0;
2133 			ep->tried_with_mpa_v1 = 0;
2134 		}
2135 	}
2136 	err = 0;
2137 out:
2138 	rcu_read_unlock();
2139 
2140 	neigh_release(n);
2141 
2142 	return err;
2143 }
2144 
2145 static int c4iw_reconnect(struct c4iw_ep *ep)
2146 {
2147 	int err = 0;
2148 	int size = 0;
2149 	struct sockaddr_in *laddr = (struct sockaddr_in *)
2150 				    &ep->com.cm_id->m_local_addr;
2151 	struct sockaddr_in *raddr = (struct sockaddr_in *)
2152 				    &ep->com.cm_id->m_remote_addr;
2153 	struct sockaddr_in6 *laddr6 = (struct sockaddr_in6 *)
2154 				      &ep->com.cm_id->m_local_addr;
2155 	struct sockaddr_in6 *raddr6 = (struct sockaddr_in6 *)
2156 				      &ep->com.cm_id->m_remote_addr;
2157 	int iptype;
2158 	__u8 *ra;
2159 
2160 	pr_debug("qp %p cm_id %p\n", ep->com.qp, ep->com.cm_id);
2161 	c4iw_init_wr_wait(ep->com.wr_waitp);
2162 
2163 	/* When MPA revision is different on nodes, the node with MPA_rev=2
2164 	 * tries to reconnect with MPA_rev 1 for the same EP through
2165 	 * c4iw_reconnect(), where the same EP is assigned with new tid for
2166 	 * further connection establishment. As we are using the same EP pointer
2167 	 * for reconnect, few skbs are used during the previous c4iw_connect(),
2168 	 * which leaves the EP with inadequate skbs for further
2169 	 * c4iw_reconnect(), Further causing a crash due to an empty
2170 	 * skb_list() during peer_abort(). Allocate skbs which is already used.
2171 	 */
2172 	size = (CN_MAX_CON_BUF - skb_queue_len(&ep->com.ep_skb_list));
2173 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, size)) {
2174 		err = -ENOMEM;
2175 		goto fail1;
2176 	}
2177 
2178 	/*
2179 	 * Allocate an active TID to initiate a TCP connection.
2180 	 */
2181 	ep->atid = cxgb4_alloc_atid(ep->com.dev->rdev.lldi.tids, ep);
2182 	if (ep->atid == -1) {
2183 		pr_err("%s - cannot alloc atid\n", __func__);
2184 		err = -ENOMEM;
2185 		goto fail2;
2186 	}
2187 	insert_handle(ep->com.dev, &ep->com.dev->atid_idr, ep, ep->atid);
2188 
2189 	/* find a route */
2190 	if (ep->com.cm_id->m_local_addr.ss_family == AF_INET) {
2191 		ep->dst = cxgb_find_route(&ep->com.dev->rdev.lldi, get_real_dev,
2192 					  laddr->sin_addr.s_addr,
2193 					  raddr->sin_addr.s_addr,
2194 					  laddr->sin_port,
2195 					  raddr->sin_port, ep->com.cm_id->tos);
2196 		iptype = 4;
2197 		ra = (__u8 *)&raddr->sin_addr;
2198 	} else {
2199 		ep->dst = cxgb_find_route6(&ep->com.dev->rdev.lldi,
2200 					   get_real_dev,
2201 					   laddr6->sin6_addr.s6_addr,
2202 					   raddr6->sin6_addr.s6_addr,
2203 					   laddr6->sin6_port,
2204 					   raddr6->sin6_port,
2205 					   ep->com.cm_id->tos,
2206 					   raddr6->sin6_scope_id);
2207 		iptype = 6;
2208 		ra = (__u8 *)&raddr6->sin6_addr;
2209 	}
2210 	if (!ep->dst) {
2211 		pr_err("%s - cannot find route\n", __func__);
2212 		err = -EHOSTUNREACH;
2213 		goto fail3;
2214 	}
2215 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, false,
2216 			ep->com.dev->rdev.lldi.adapter_type,
2217 			ep->com.cm_id->tos);
2218 	if (err) {
2219 		pr_err("%s - cannot alloc l2e\n", __func__);
2220 		goto fail4;
2221 	}
2222 
2223 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
2224 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
2225 		 ep->l2t->idx);
2226 
2227 	state_set(&ep->com, CONNECTING);
2228 	ep->tos = ep->com.cm_id->tos;
2229 
2230 	/* send connect request to rnic */
2231 	err = send_connect(ep);
2232 	if (!err)
2233 		goto out;
2234 
2235 	cxgb4_l2t_release(ep->l2t);
2236 fail4:
2237 	dst_release(ep->dst);
2238 fail3:
2239 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
2240 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
2241 fail2:
2242 	/*
2243 	 * remember to send notification to upper layer.
2244 	 * We are in here so the upper layer is not aware that this is
2245 	 * re-connect attempt and so, upper layer is still waiting for
2246 	 * response of 1st connect request.
2247 	 */
2248 	connect_reply_upcall(ep, -ECONNRESET);
2249 fail1:
2250 	c4iw_put_ep(&ep->com);
2251 out:
2252 	return err;
2253 }
2254 
2255 static int act_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2256 {
2257 	struct c4iw_ep *ep;
2258 	struct cpl_act_open_rpl *rpl = cplhdr(skb);
2259 	unsigned int atid = TID_TID_G(AOPEN_ATID_G(
2260 				      ntohl(rpl->atid_status)));
2261 	struct tid_info *t = dev->rdev.lldi.tids;
2262 	int status = AOPEN_STATUS_G(ntohl(rpl->atid_status));
2263 	struct sockaddr_in *la;
2264 	struct sockaddr_in *ra;
2265 	struct sockaddr_in6 *la6;
2266 	struct sockaddr_in6 *ra6;
2267 	int ret = 0;
2268 
2269 	ep = lookup_atid(t, atid);
2270 	la = (struct sockaddr_in *)&ep->com.local_addr;
2271 	ra = (struct sockaddr_in *)&ep->com.remote_addr;
2272 	la6 = (struct sockaddr_in6 *)&ep->com.local_addr;
2273 	ra6 = (struct sockaddr_in6 *)&ep->com.remote_addr;
2274 
2275 	pr_debug("ep %p atid %u status %u errno %d\n", ep, atid,
2276 		 status, status2errno(status));
2277 
2278 	if (cxgb_is_neg_adv(status)) {
2279 		pr_debug("Connection problems for atid %u status %u (%s)\n",
2280 			 atid, status, neg_adv_str(status));
2281 		ep->stats.connect_neg_adv++;
2282 		mutex_lock(&dev->rdev.stats.lock);
2283 		dev->rdev.stats.neg_adv++;
2284 		mutex_unlock(&dev->rdev.stats.lock);
2285 		return 0;
2286 	}
2287 
2288 	set_bit(ACT_OPEN_RPL, &ep->com.history);
2289 
2290 	/*
2291 	 * Log interesting failures.
2292 	 */
2293 	switch (status) {
2294 	case CPL_ERR_CONN_RESET:
2295 	case CPL_ERR_CONN_TIMEDOUT:
2296 		break;
2297 	case CPL_ERR_TCAM_FULL:
2298 		mutex_lock(&dev->rdev.stats.lock);
2299 		dev->rdev.stats.tcam_full++;
2300 		mutex_unlock(&dev->rdev.stats.lock);
2301 		if (ep->com.local_addr.ss_family == AF_INET &&
2302 		    dev->rdev.lldi.enable_fw_ofld_conn) {
2303 			ret = send_fw_act_open_req(ep, TID_TID_G(AOPEN_ATID_G(
2304 						   ntohl(rpl->atid_status))));
2305 			if (ret)
2306 				goto fail;
2307 			return 0;
2308 		}
2309 		break;
2310 	case CPL_ERR_CONN_EXIST:
2311 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
2312 			set_bit(ACT_RETRY_INUSE, &ep->com.history);
2313 			if (ep->com.remote_addr.ss_family == AF_INET6) {
2314 				struct sockaddr_in6 *sin6 =
2315 						(struct sockaddr_in6 *)
2316 						&ep->com.local_addr;
2317 				cxgb4_clip_release(
2318 						ep->com.dev->rdev.lldi.ports[0],
2319 						(const u32 *)
2320 						&sin6->sin6_addr.s6_addr, 1);
2321 			}
2322 			remove_handle(ep->com.dev, &ep->com.dev->atid_idr,
2323 					atid);
2324 			cxgb4_free_atid(t, atid);
2325 			dst_release(ep->dst);
2326 			cxgb4_l2t_release(ep->l2t);
2327 			c4iw_reconnect(ep);
2328 			return 0;
2329 		}
2330 		break;
2331 	default:
2332 		if (ep->com.local_addr.ss_family == AF_INET) {
2333 			pr_info("Active open failure - atid %u status %u errno %d %pI4:%u->%pI4:%u\n",
2334 				atid, status, status2errno(status),
2335 				&la->sin_addr.s_addr, ntohs(la->sin_port),
2336 				&ra->sin_addr.s_addr, ntohs(ra->sin_port));
2337 		} else {
2338 			pr_info("Active open failure - atid %u status %u errno %d %pI6:%u->%pI6:%u\n",
2339 				atid, status, status2errno(status),
2340 				la6->sin6_addr.s6_addr, ntohs(la6->sin6_port),
2341 				ra6->sin6_addr.s6_addr, ntohs(ra6->sin6_port));
2342 		}
2343 		break;
2344 	}
2345 
2346 fail:
2347 	connect_reply_upcall(ep, status2errno(status));
2348 	state_set(&ep->com, DEAD);
2349 
2350 	if (ep->com.remote_addr.ss_family == AF_INET6) {
2351 		struct sockaddr_in6 *sin6 =
2352 			(struct sockaddr_in6 *)&ep->com.local_addr;
2353 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
2354 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2355 	}
2356 	if (status && act_open_has_tid(status))
2357 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, GET_TID(rpl),
2358 				 ep->com.local_addr.ss_family);
2359 
2360 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, atid);
2361 	cxgb4_free_atid(t, atid);
2362 	dst_release(ep->dst);
2363 	cxgb4_l2t_release(ep->l2t);
2364 	c4iw_put_ep(&ep->com);
2365 
2366 	return 0;
2367 }
2368 
2369 static int pass_open_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2370 {
2371 	struct cpl_pass_open_rpl *rpl = cplhdr(skb);
2372 	unsigned int stid = GET_TID(rpl);
2373 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2374 
2375 	if (!ep) {
2376 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2377 		goto out;
2378 	}
2379 	pr_debug("ep %p status %d error %d\n", ep,
2380 		 rpl->status, status2errno(rpl->status));
2381 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2382 	c4iw_put_ep(&ep->com);
2383 out:
2384 	return 0;
2385 }
2386 
2387 static int close_listsrv_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2388 {
2389 	struct cpl_close_listsvr_rpl *rpl = cplhdr(skb);
2390 	unsigned int stid = GET_TID(rpl);
2391 	struct c4iw_listen_ep *ep = get_ep_from_stid(dev, stid);
2392 
2393 	if (!ep) {
2394 		pr_warn("%s stid %d lookup failure!\n", __func__, stid);
2395 		goto out;
2396 	}
2397 	pr_debug("ep %p\n", ep);
2398 	c4iw_wake_up_noref(ep->com.wr_waitp, status2errno(rpl->status));
2399 	c4iw_put_ep(&ep->com);
2400 out:
2401 	return 0;
2402 }
2403 
2404 static int accept_cr(struct c4iw_ep *ep, struct sk_buff *skb,
2405 		     struct cpl_pass_accept_req *req)
2406 {
2407 	struct cpl_pass_accept_rpl *rpl;
2408 	unsigned int mtu_idx;
2409 	u64 opt0;
2410 	u32 opt2;
2411 	u32 wscale;
2412 	struct cpl_t5_pass_accept_rpl *rpl5 = NULL;
2413 	int win;
2414 	enum chip_type adapter_type = ep->com.dev->rdev.lldi.adapter_type;
2415 
2416 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2417 
2418 	skb_get(skb);
2419 	rpl = cplhdr(skb);
2420 	if (!is_t4(adapter_type)) {
2421 		skb_trim(skb, roundup(sizeof(*rpl5), 16));
2422 		rpl5 = (void *)rpl;
2423 		INIT_TP_WR(rpl5, ep->hwtid);
2424 	} else {
2425 		skb_trim(skb, sizeof(*rpl));
2426 		INIT_TP_WR(rpl, ep->hwtid);
2427 	}
2428 	OPCODE_TID(rpl) = cpu_to_be32(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
2429 						    ep->hwtid));
2430 
2431 	cxgb_best_mtu(ep->com.dev->rdev.lldi.mtus, ep->mtu, &mtu_idx,
2432 		      enable_tcp_timestamps && req->tcpopt.tstamp,
2433 		      (ep->com.remote_addr.ss_family == AF_INET) ? 0 : 1);
2434 	wscale = cxgb_compute_wscale(rcv_win);
2435 
2436 	/*
2437 	 * Specify the largest window that will fit in opt0. The
2438 	 * remainder will be specified in the rx_data_ack.
2439 	 */
2440 	win = ep->rcv_win >> 10;
2441 	if (win > RCV_BUFSIZ_M)
2442 		win = RCV_BUFSIZ_M;
2443 	opt0 = (nocong ? NO_CONG_F : 0) |
2444 	       KEEP_ALIVE_F |
2445 	       DELACK_F |
2446 	       WND_SCALE_V(wscale) |
2447 	       MSS_IDX_V(mtu_idx) |
2448 	       L2T_IDX_V(ep->l2t->idx) |
2449 	       TX_CHAN_V(ep->tx_chan) |
2450 	       SMAC_SEL_V(ep->smac_idx) |
2451 	       DSCP_V(ep->tos >> 2) |
2452 	       ULP_MODE_V(ULP_MODE_TCPDDP) |
2453 	       RCV_BUFSIZ_V(win);
2454 	opt2 = RX_CHANNEL_V(0) |
2455 	       RSS_QUEUE_VALID_F | RSS_QUEUE_V(ep->rss_qid);
2456 
2457 	if (enable_tcp_timestamps && req->tcpopt.tstamp)
2458 		opt2 |= TSTAMPS_EN_F;
2459 	if (enable_tcp_sack && req->tcpopt.sack)
2460 		opt2 |= SACK_EN_F;
2461 	if (wscale && enable_tcp_window_scaling)
2462 		opt2 |= WND_SCALE_EN_F;
2463 	if (enable_ecn) {
2464 		const struct tcphdr *tcph;
2465 		u32 hlen = ntohl(req->hdr_len);
2466 
2467 		if (CHELSIO_CHIP_VERSION(adapter_type) <= CHELSIO_T5)
2468 			tcph = (const void *)(req + 1) + ETH_HDR_LEN_G(hlen) +
2469 				IP_HDR_LEN_G(hlen);
2470 		else
2471 			tcph = (const void *)(req + 1) +
2472 				T6_ETH_HDR_LEN_G(hlen) + T6_IP_HDR_LEN_G(hlen);
2473 		if (tcph->ece && tcph->cwr)
2474 			opt2 |= CCTRL_ECN_V(1);
2475 	}
2476 	if (CHELSIO_CHIP_VERSION(adapter_type) > CHELSIO_T4) {
2477 		u32 isn = (prandom_u32() & ~7UL) - 1;
2478 		opt2 |= T5_OPT_2_VALID_F;
2479 		opt2 |= CONG_CNTRL_V(CONG_ALG_TAHOE);
2480 		opt2 |= T5_ISS_F;
2481 		rpl5 = (void *)rpl;
2482 		memset(&rpl5->iss, 0, roundup(sizeof(*rpl5)-sizeof(*rpl), 16));
2483 		if (peer2peer)
2484 			isn += 4;
2485 		rpl5->iss = cpu_to_be32(isn);
2486 		pr_debug("iss %u\n", be32_to_cpu(rpl5->iss));
2487 	}
2488 
2489 	rpl->opt0 = cpu_to_be64(opt0);
2490 	rpl->opt2 = cpu_to_be32(opt2);
2491 	set_wr_txq(skb, CPL_PRIORITY_SETUP, ep->ctrlq_idx);
2492 	t4_set_arp_err_handler(skb, ep, pass_accept_rpl_arp_failure);
2493 
2494 	return c4iw_l2t_send(&ep->com.dev->rdev, skb, ep->l2t);
2495 }
2496 
2497 static void reject_cr(struct c4iw_dev *dev, u32 hwtid, struct sk_buff *skb)
2498 {
2499 	pr_debug("c4iw_dev %p tid %u\n", dev, hwtid);
2500 	skb_trim(skb, sizeof(struct cpl_tid_release));
2501 	release_tid(&dev->rdev, hwtid, skb);
2502 	return;
2503 }
2504 
2505 static int pass_accept_req(struct c4iw_dev *dev, struct sk_buff *skb)
2506 {
2507 	struct c4iw_ep *child_ep = NULL, *parent_ep;
2508 	struct cpl_pass_accept_req *req = cplhdr(skb);
2509 	unsigned int stid = PASS_OPEN_TID_G(ntohl(req->tos_stid));
2510 	struct tid_info *t = dev->rdev.lldi.tids;
2511 	unsigned int hwtid = GET_TID(req);
2512 	struct dst_entry *dst;
2513 	__u8 local_ip[16], peer_ip[16];
2514 	__be16 local_port, peer_port;
2515 	struct sockaddr_in6 *sin6;
2516 	int err;
2517 	u16 peer_mss = ntohs(req->tcpopt.mss);
2518 	int iptype;
2519 	unsigned short hdrs;
2520 	u8 tos;
2521 
2522 	parent_ep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
2523 	if (!parent_ep) {
2524 		pr_err("%s connect request on invalid stid %d\n",
2525 		       __func__, stid);
2526 		goto reject;
2527 	}
2528 
2529 	if (state_read(&parent_ep->com) != LISTEN) {
2530 		pr_err("%s - listening ep not in LISTEN\n", __func__);
2531 		goto reject;
2532 	}
2533 
2534 	if (parent_ep->com.cm_id->tos_set)
2535 		tos = parent_ep->com.cm_id->tos;
2536 	else
2537 		tos = PASS_OPEN_TOS_G(ntohl(req->tos_stid));
2538 
2539 	cxgb_get_4tuple(req, parent_ep->com.dev->rdev.lldi.adapter_type,
2540 			&iptype, local_ip, peer_ip, &local_port, &peer_port);
2541 
2542 	/* Find output route */
2543 	if (iptype == 4)  {
2544 		pr_debug("parent ep %p hwtid %u laddr %pI4 raddr %pI4 lport %d rport %d peer_mss %d\n"
2545 			 , parent_ep, hwtid,
2546 			 local_ip, peer_ip, ntohs(local_port),
2547 			 ntohs(peer_port), peer_mss);
2548 		dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
2549 				      *(__be32 *)local_ip, *(__be32 *)peer_ip,
2550 				      local_port, peer_port, tos);
2551 	} else {
2552 		pr_debug("parent ep %p hwtid %u laddr %pI6 raddr %pI6 lport %d rport %d peer_mss %d\n"
2553 			 , parent_ep, hwtid,
2554 			 local_ip, peer_ip, ntohs(local_port),
2555 			 ntohs(peer_port), peer_mss);
2556 		dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
2557 				local_ip, peer_ip, local_port, peer_port,
2558 				tos,
2559 				((struct sockaddr_in6 *)
2560 				 &parent_ep->com.local_addr)->sin6_scope_id);
2561 	}
2562 	if (!dst) {
2563 		pr_err("%s - failed to find dst entry!\n", __func__);
2564 		goto reject;
2565 	}
2566 
2567 	child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
2568 	if (!child_ep) {
2569 		pr_err("%s - failed to allocate ep entry!\n", __func__);
2570 		dst_release(dst);
2571 		goto reject;
2572 	}
2573 
2574 	err = import_ep(child_ep, iptype, peer_ip, dst, dev, false,
2575 			parent_ep->com.dev->rdev.lldi.adapter_type, tos);
2576 	if (err) {
2577 		pr_err("%s - failed to allocate l2t entry!\n", __func__);
2578 		dst_release(dst);
2579 		kfree(child_ep);
2580 		goto reject;
2581 	}
2582 
2583 	hdrs = ((iptype == 4) ? sizeof(struct iphdr) : sizeof(struct ipv6hdr)) +
2584 	       sizeof(struct tcphdr) +
2585 	       ((enable_tcp_timestamps && req->tcpopt.tstamp) ? 12 : 0);
2586 	if (peer_mss && child_ep->mtu > (peer_mss + hdrs))
2587 		child_ep->mtu = peer_mss + hdrs;
2588 
2589 	skb_queue_head_init(&child_ep->com.ep_skb_list);
2590 	if (alloc_ep_skb_list(&child_ep->com.ep_skb_list, CN_MAX_CON_BUF))
2591 		goto fail;
2592 
2593 	state_set(&child_ep->com, CONNECTING);
2594 	child_ep->com.dev = dev;
2595 	child_ep->com.cm_id = NULL;
2596 
2597 	if (iptype == 4) {
2598 		struct sockaddr_in *sin = (struct sockaddr_in *)
2599 			&child_ep->com.local_addr;
2600 
2601 		sin->sin_family = AF_INET;
2602 		sin->sin_port = local_port;
2603 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2604 
2605 		sin = (struct sockaddr_in *)&child_ep->com.local_addr;
2606 		sin->sin_family = AF_INET;
2607 		sin->sin_port = ((struct sockaddr_in *)
2608 				 &parent_ep->com.local_addr)->sin_port;
2609 		sin->sin_addr.s_addr = *(__be32 *)local_ip;
2610 
2611 		sin = (struct sockaddr_in *)&child_ep->com.remote_addr;
2612 		sin->sin_family = AF_INET;
2613 		sin->sin_port = peer_port;
2614 		sin->sin_addr.s_addr = *(__be32 *)peer_ip;
2615 	} else {
2616 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2617 		sin6->sin6_family = PF_INET6;
2618 		sin6->sin6_port = local_port;
2619 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2620 
2621 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2622 		sin6->sin6_family = PF_INET6;
2623 		sin6->sin6_port = ((struct sockaddr_in6 *)
2624 				   &parent_ep->com.local_addr)->sin6_port;
2625 		memcpy(sin6->sin6_addr.s6_addr, local_ip, 16);
2626 
2627 		sin6 = (struct sockaddr_in6 *)&child_ep->com.remote_addr;
2628 		sin6->sin6_family = PF_INET6;
2629 		sin6->sin6_port = peer_port;
2630 		memcpy(sin6->sin6_addr.s6_addr, peer_ip, 16);
2631 	}
2632 
2633 	c4iw_get_ep(&parent_ep->com);
2634 	child_ep->parent_ep = parent_ep;
2635 	child_ep->tos = tos;
2636 	child_ep->dst = dst;
2637 	child_ep->hwtid = hwtid;
2638 
2639 	pr_debug("tx_chan %u smac_idx %u rss_qid %u\n",
2640 		 child_ep->tx_chan, child_ep->smac_idx, child_ep->rss_qid);
2641 
2642 	timer_setup(&child_ep->timer, ep_timeout, 0);
2643 	cxgb4_insert_tid(t, child_ep, hwtid,
2644 			 child_ep->com.local_addr.ss_family);
2645 	insert_ep_tid(child_ep);
2646 	if (accept_cr(child_ep, skb, req)) {
2647 		c4iw_put_ep(&parent_ep->com);
2648 		release_ep_resources(child_ep);
2649 	} else {
2650 		set_bit(PASS_ACCEPT_REQ, &child_ep->com.history);
2651 	}
2652 	if (iptype == 6) {
2653 		sin6 = (struct sockaddr_in6 *)&child_ep->com.local_addr;
2654 		cxgb4_clip_get(child_ep->com.dev->rdev.lldi.ports[0],
2655 			       (const u32 *)&sin6->sin6_addr.s6_addr, 1);
2656 	}
2657 	goto out;
2658 fail:
2659 	c4iw_put_ep(&child_ep->com);
2660 reject:
2661 	reject_cr(dev, hwtid, skb);
2662 out:
2663 	if (parent_ep)
2664 		c4iw_put_ep(&parent_ep->com);
2665 	return 0;
2666 }
2667 
2668 static int pass_establish(struct c4iw_dev *dev, struct sk_buff *skb)
2669 {
2670 	struct c4iw_ep *ep;
2671 	struct cpl_pass_establish *req = cplhdr(skb);
2672 	unsigned int tid = GET_TID(req);
2673 	int ret;
2674 	u16 tcp_opt = ntohs(req->tcp_opt);
2675 
2676 	ep = get_ep_from_tid(dev, tid);
2677 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2678 	ep->snd_seq = be32_to_cpu(req->snd_isn);
2679 	ep->rcv_seq = be32_to_cpu(req->rcv_isn);
2680 	ep->snd_wscale = TCPOPT_SND_WSCALE_G(tcp_opt);
2681 
2682 	pr_debug("ep %p hwtid %u tcp_opt 0x%02x\n", ep, tid, tcp_opt);
2683 
2684 	set_emss(ep, tcp_opt);
2685 
2686 	dst_confirm(ep->dst);
2687 	mutex_lock(&ep->com.mutex);
2688 	ep->com.state = MPA_REQ_WAIT;
2689 	start_ep_timer(ep);
2690 	set_bit(PASS_ESTAB, &ep->com.history);
2691 	ret = send_flowc(ep);
2692 	mutex_unlock(&ep->com.mutex);
2693 	if (ret)
2694 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
2695 	c4iw_put_ep(&ep->com);
2696 
2697 	return 0;
2698 }
2699 
2700 static int peer_close(struct c4iw_dev *dev, struct sk_buff *skb)
2701 {
2702 	struct cpl_peer_close *hdr = cplhdr(skb);
2703 	struct c4iw_ep *ep;
2704 	struct c4iw_qp_attributes attrs;
2705 	int disconnect = 1;
2706 	int release = 0;
2707 	unsigned int tid = GET_TID(hdr);
2708 	int ret;
2709 
2710 	ep = get_ep_from_tid(dev, tid);
2711 	if (!ep)
2712 		return 0;
2713 
2714 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2715 	dst_confirm(ep->dst);
2716 
2717 	set_bit(PEER_CLOSE, &ep->com.history);
2718 	mutex_lock(&ep->com.mutex);
2719 	switch (ep->com.state) {
2720 	case MPA_REQ_WAIT:
2721 		__state_set(&ep->com, CLOSING);
2722 		break;
2723 	case MPA_REQ_SENT:
2724 		__state_set(&ep->com, CLOSING);
2725 		connect_reply_upcall(ep, -ECONNRESET);
2726 		break;
2727 	case MPA_REQ_RCVD:
2728 
2729 		/*
2730 		 * We're gonna mark this puppy DEAD, but keep
2731 		 * the reference on it until the ULP accepts or
2732 		 * rejects the CR. Also wake up anyone waiting
2733 		 * in rdma connection migration (see c4iw_accept_cr()).
2734 		 */
2735 		__state_set(&ep->com, CLOSING);
2736 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2737 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2738 		break;
2739 	case MPA_REP_SENT:
2740 		__state_set(&ep->com, CLOSING);
2741 		pr_debug("waking up ep %p tid %u\n", ep, ep->hwtid);
2742 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2743 		break;
2744 	case FPDU_MODE:
2745 		start_ep_timer(ep);
2746 		__state_set(&ep->com, CLOSING);
2747 		attrs.next_state = C4IW_QP_STATE_CLOSING;
2748 		ret = c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2749 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2750 		if (ret != -ECONNRESET) {
2751 			peer_close_upcall(ep);
2752 			disconnect = 1;
2753 		}
2754 		break;
2755 	case ABORTING:
2756 		disconnect = 0;
2757 		break;
2758 	case CLOSING:
2759 		__state_set(&ep->com, MORIBUND);
2760 		disconnect = 0;
2761 		break;
2762 	case MORIBUND:
2763 		(void)stop_ep_timer(ep);
2764 		if (ep->com.cm_id && ep->com.qp) {
2765 			attrs.next_state = C4IW_QP_STATE_IDLE;
2766 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2767 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
2768 		}
2769 		close_complete_upcall(ep, 0);
2770 		__state_set(&ep->com, DEAD);
2771 		release = 1;
2772 		disconnect = 0;
2773 		break;
2774 	case DEAD:
2775 		disconnect = 0;
2776 		break;
2777 	default:
2778 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2779 	}
2780 	mutex_unlock(&ep->com.mutex);
2781 	if (disconnect)
2782 		c4iw_ep_disconnect(ep, 0, GFP_KERNEL);
2783 	if (release)
2784 		release_ep_resources(ep);
2785 	c4iw_put_ep(&ep->com);
2786 	return 0;
2787 }
2788 
2789 static void finish_peer_abort(struct c4iw_dev *dev, struct c4iw_ep *ep)
2790 {
2791 	complete_cached_srq_buffers(ep, ep->srqe_idx);
2792 	if (ep->com.cm_id && ep->com.qp) {
2793 		struct c4iw_qp_attributes attrs;
2794 
2795 		attrs.next_state = C4IW_QP_STATE_ERROR;
2796 		c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
2797 			       C4IW_QP_ATTR_NEXT_STATE,	&attrs, 1);
2798 	}
2799 	peer_abort_upcall(ep);
2800 	release_ep_resources(ep);
2801 	c4iw_put_ep(&ep->com);
2802 }
2803 
2804 static int peer_abort(struct c4iw_dev *dev, struct sk_buff *skb)
2805 {
2806 	struct cpl_abort_req_rss6 *req = cplhdr(skb);
2807 	struct c4iw_ep *ep;
2808 	struct sk_buff *rpl_skb;
2809 	struct c4iw_qp_attributes attrs;
2810 	int ret;
2811 	int release = 0;
2812 	unsigned int tid = GET_TID(req);
2813 	u8 status;
2814 	u32 srqidx;
2815 
2816 	u32 len = roundup(sizeof(struct cpl_abort_rpl), 16);
2817 
2818 	ep = get_ep_from_tid(dev, tid);
2819 	if (!ep)
2820 		return 0;
2821 
2822 	status = ABORT_RSS_STATUS_G(be32_to_cpu(req->srqidx_status));
2823 
2824 	if (cxgb_is_neg_adv(status)) {
2825 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
2826 			 ep->hwtid, status, neg_adv_str(status));
2827 		ep->stats.abort_neg_adv++;
2828 		mutex_lock(&dev->rdev.stats.lock);
2829 		dev->rdev.stats.neg_adv++;
2830 		mutex_unlock(&dev->rdev.stats.lock);
2831 		goto deref_ep;
2832 	}
2833 
2834 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid,
2835 		 ep->com.state);
2836 	set_bit(PEER_ABORT, &ep->com.history);
2837 
2838 	/*
2839 	 * Wake up any threads in rdma_init() or rdma_fini().
2840 	 * However, this is not needed if com state is just
2841 	 * MPA_REQ_SENT
2842 	 */
2843 	if (ep->com.state != MPA_REQ_SENT)
2844 		c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
2845 
2846 	mutex_lock(&ep->com.mutex);
2847 	switch (ep->com.state) {
2848 	case CONNECTING:
2849 		c4iw_put_ep(&ep->parent_ep->com);
2850 		break;
2851 	case MPA_REQ_WAIT:
2852 		(void)stop_ep_timer(ep);
2853 		break;
2854 	case MPA_REQ_SENT:
2855 		(void)stop_ep_timer(ep);
2856 		if (status != CPL_ERR_CONN_RESET || mpa_rev == 1 ||
2857 		    (mpa_rev == 2 && ep->tried_with_mpa_v1))
2858 			connect_reply_upcall(ep, -ECONNRESET);
2859 		else {
2860 			/*
2861 			 * we just don't send notification upwards because we
2862 			 * want to retry with mpa_v1 without upper layers even
2863 			 * knowing it.
2864 			 *
2865 			 * do some housekeeping so as to re-initiate the
2866 			 * connection
2867 			 */
2868 			pr_info("%s: mpa_rev=%d. Retrying with mpav1\n",
2869 				__func__, mpa_rev);
2870 			ep->retry_with_mpa_v1 = 1;
2871 		}
2872 		break;
2873 	case MPA_REP_SENT:
2874 		break;
2875 	case MPA_REQ_RCVD:
2876 		break;
2877 	case MORIBUND:
2878 	case CLOSING:
2879 		stop_ep_timer(ep);
2880 		/*FALLTHROUGH*/
2881 	case FPDU_MODE:
2882 		if (ep->com.qp && ep->com.qp->srq) {
2883 			srqidx = ABORT_RSS_SRQIDX_G(
2884 					be32_to_cpu(req->srqidx_status));
2885 			if (srqidx) {
2886 				complete_cached_srq_buffers(ep,
2887 							    req->srqidx_status);
2888 			} else {
2889 				/* Hold ep ref until finish_peer_abort() */
2890 				c4iw_get_ep(&ep->com);
2891 				__state_set(&ep->com, ABORTING);
2892 				set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags);
2893 				read_tcb(ep);
2894 				break;
2895 
2896 			}
2897 		}
2898 
2899 		if (ep->com.cm_id && ep->com.qp) {
2900 			attrs.next_state = C4IW_QP_STATE_ERROR;
2901 			ret = c4iw_modify_qp(ep->com.qp->rhp,
2902 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
2903 				     &attrs, 1);
2904 			if (ret)
2905 				pr_err("%s - qp <- error failed!\n", __func__);
2906 		}
2907 		peer_abort_upcall(ep);
2908 		break;
2909 	case ABORTING:
2910 		break;
2911 	case DEAD:
2912 		pr_warn("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
2913 		mutex_unlock(&ep->com.mutex);
2914 		goto deref_ep;
2915 	default:
2916 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
2917 		break;
2918 	}
2919 	dst_confirm(ep->dst);
2920 	if (ep->com.state != ABORTING) {
2921 		__state_set(&ep->com, DEAD);
2922 		/* we don't release if we want to retry with mpa_v1 */
2923 		if (!ep->retry_with_mpa_v1)
2924 			release = 1;
2925 	}
2926 	mutex_unlock(&ep->com.mutex);
2927 
2928 	rpl_skb = skb_dequeue(&ep->com.ep_skb_list);
2929 	if (WARN_ON(!rpl_skb)) {
2930 		release = 1;
2931 		goto out;
2932 	}
2933 
2934 	cxgb_mk_abort_rpl(rpl_skb, len, ep->hwtid, ep->txq_idx);
2935 
2936 	c4iw_ofld_send(&ep->com.dev->rdev, rpl_skb);
2937 out:
2938 	if (release)
2939 		release_ep_resources(ep);
2940 	else if (ep->retry_with_mpa_v1) {
2941 		if (ep->com.remote_addr.ss_family == AF_INET6) {
2942 			struct sockaddr_in6 *sin6 =
2943 					(struct sockaddr_in6 *)
2944 					&ep->com.local_addr;
2945 			cxgb4_clip_release(
2946 					ep->com.dev->rdev.lldi.ports[0],
2947 					(const u32 *)&sin6->sin6_addr.s6_addr,
2948 					1);
2949 		}
2950 		remove_handle(ep->com.dev, &ep->com.dev->hwtid_idr, ep->hwtid);
2951 		cxgb4_remove_tid(ep->com.dev->rdev.lldi.tids, 0, ep->hwtid,
2952 				 ep->com.local_addr.ss_family);
2953 		dst_release(ep->dst);
2954 		cxgb4_l2t_release(ep->l2t);
2955 		c4iw_reconnect(ep);
2956 	}
2957 
2958 deref_ep:
2959 	c4iw_put_ep(&ep->com);
2960 	/* Dereferencing ep, referenced in peer_abort_intr() */
2961 	c4iw_put_ep(&ep->com);
2962 	return 0;
2963 }
2964 
2965 static int close_con_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
2966 {
2967 	struct c4iw_ep *ep;
2968 	struct c4iw_qp_attributes attrs;
2969 	struct cpl_close_con_rpl *rpl = cplhdr(skb);
2970 	int release = 0;
2971 	unsigned int tid = GET_TID(rpl);
2972 
2973 	ep = get_ep_from_tid(dev, tid);
2974 	if (!ep)
2975 		return 0;
2976 
2977 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
2978 
2979 	/* The cm_id may be null if we failed to connect */
2980 	mutex_lock(&ep->com.mutex);
2981 	set_bit(CLOSE_CON_RPL, &ep->com.history);
2982 	switch (ep->com.state) {
2983 	case CLOSING:
2984 		__state_set(&ep->com, MORIBUND);
2985 		break;
2986 	case MORIBUND:
2987 		(void)stop_ep_timer(ep);
2988 		if ((ep->com.cm_id) && (ep->com.qp)) {
2989 			attrs.next_state = C4IW_QP_STATE_IDLE;
2990 			c4iw_modify_qp(ep->com.qp->rhp,
2991 					     ep->com.qp,
2992 					     C4IW_QP_ATTR_NEXT_STATE,
2993 					     &attrs, 1);
2994 		}
2995 		close_complete_upcall(ep, 0);
2996 		__state_set(&ep->com, DEAD);
2997 		release = 1;
2998 		break;
2999 	case ABORTING:
3000 	case DEAD:
3001 		break;
3002 	default:
3003 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3004 		break;
3005 	}
3006 	mutex_unlock(&ep->com.mutex);
3007 	if (release)
3008 		release_ep_resources(ep);
3009 	c4iw_put_ep(&ep->com);
3010 	return 0;
3011 }
3012 
3013 static int terminate(struct c4iw_dev *dev, struct sk_buff *skb)
3014 {
3015 	struct cpl_rdma_terminate *rpl = cplhdr(skb);
3016 	unsigned int tid = GET_TID(rpl);
3017 	struct c4iw_ep *ep;
3018 	struct c4iw_qp_attributes attrs;
3019 
3020 	ep = get_ep_from_tid(dev, tid);
3021 
3022 	if (ep) {
3023 		if (ep->com.qp) {
3024 			pr_warn("TERM received tid %u qpid %u\n", tid,
3025 				ep->com.qp->wq.sq.qid);
3026 			attrs.next_state = C4IW_QP_STATE_TERMINATE;
3027 			c4iw_modify_qp(ep->com.qp->rhp, ep->com.qp,
3028 				       C4IW_QP_ATTR_NEXT_STATE, &attrs, 1);
3029 		}
3030 
3031 		c4iw_put_ep(&ep->com);
3032 	} else
3033 		pr_warn("TERM received tid %u no ep/qp\n", tid);
3034 
3035 	return 0;
3036 }
3037 
3038 /*
3039  * Upcall from the adapter indicating data has been transmitted.
3040  * For us its just the single MPA request or reply.  We can now free
3041  * the skb holding the mpa message.
3042  */
3043 static int fw4_ack(struct c4iw_dev *dev, struct sk_buff *skb)
3044 {
3045 	struct c4iw_ep *ep;
3046 	struct cpl_fw4_ack *hdr = cplhdr(skb);
3047 	u8 credits = hdr->credits;
3048 	unsigned int tid = GET_TID(hdr);
3049 
3050 
3051 	ep = get_ep_from_tid(dev, tid);
3052 	if (!ep)
3053 		return 0;
3054 	pr_debug("ep %p tid %u credits %u\n",
3055 		 ep, ep->hwtid, credits);
3056 	if (credits == 0) {
3057 		pr_debug("0 credit ack ep %p tid %u state %u\n",
3058 			 ep, ep->hwtid, state_read(&ep->com));
3059 		goto out;
3060 	}
3061 
3062 	dst_confirm(ep->dst);
3063 	if (ep->mpa_skb) {
3064 		pr_debug("last streaming msg ack ep %p tid %u state %u initiator %u freeing skb\n",
3065 			 ep, ep->hwtid, state_read(&ep->com),
3066 			 ep->mpa_attr.initiator ? 1 : 0);
3067 		mutex_lock(&ep->com.mutex);
3068 		kfree_skb(ep->mpa_skb);
3069 		ep->mpa_skb = NULL;
3070 		if (test_bit(STOP_MPA_TIMER, &ep->com.flags))
3071 			stop_ep_timer(ep);
3072 		mutex_unlock(&ep->com.mutex);
3073 	}
3074 out:
3075 	c4iw_put_ep(&ep->com);
3076 	return 0;
3077 }
3078 
3079 int c4iw_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
3080 {
3081 	int abort;
3082 	struct c4iw_ep *ep = to_ep(cm_id);
3083 
3084 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3085 
3086 	mutex_lock(&ep->com.mutex);
3087 	if (ep->com.state != MPA_REQ_RCVD) {
3088 		mutex_unlock(&ep->com.mutex);
3089 		c4iw_put_ep(&ep->com);
3090 		return -ECONNRESET;
3091 	}
3092 	set_bit(ULP_REJECT, &ep->com.history);
3093 	if (mpa_rev == 0)
3094 		abort = 1;
3095 	else
3096 		abort = send_mpa_reject(ep, pdata, pdata_len);
3097 	mutex_unlock(&ep->com.mutex);
3098 
3099 	stop_ep_timer(ep);
3100 	c4iw_ep_disconnect(ep, abort != 0, GFP_KERNEL);
3101 	c4iw_put_ep(&ep->com);
3102 	return 0;
3103 }
3104 
3105 int c4iw_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3106 {
3107 	int err;
3108 	struct c4iw_qp_attributes attrs;
3109 	enum c4iw_qp_attr_mask mask;
3110 	struct c4iw_ep *ep = to_ep(cm_id);
3111 	struct c4iw_dev *h = to_c4iw_dev(cm_id->device);
3112 	struct c4iw_qp *qp = get_qhp(h, conn_param->qpn);
3113 	int abort = 0;
3114 
3115 	pr_debug("ep %p tid %u\n", ep, ep->hwtid);
3116 
3117 	mutex_lock(&ep->com.mutex);
3118 	if (ep->com.state != MPA_REQ_RCVD) {
3119 		err = -ECONNRESET;
3120 		goto err_out;
3121 	}
3122 
3123 	if (!qp) {
3124 		err = -EINVAL;
3125 		goto err_out;
3126 	}
3127 
3128 	set_bit(ULP_ACCEPT, &ep->com.history);
3129 	if ((conn_param->ord > cur_max_read_depth(ep->com.dev)) ||
3130 	    (conn_param->ird > cur_max_read_depth(ep->com.dev))) {
3131 		err = -EINVAL;
3132 		goto err_abort;
3133 	}
3134 
3135 	if (ep->mpa_attr.version == 2 && ep->mpa_attr.enhanced_rdma_conn) {
3136 		if (conn_param->ord > ep->ird) {
3137 			if (RELAXED_IRD_NEGOTIATION) {
3138 				conn_param->ord = ep->ird;
3139 			} else {
3140 				ep->ird = conn_param->ird;
3141 				ep->ord = conn_param->ord;
3142 				send_mpa_reject(ep, conn_param->private_data,
3143 						conn_param->private_data_len);
3144 				err = -ENOMEM;
3145 				goto err_abort;
3146 			}
3147 		}
3148 		if (conn_param->ird < ep->ord) {
3149 			if (RELAXED_IRD_NEGOTIATION &&
3150 			    ep->ord <= h->rdev.lldi.max_ordird_qp) {
3151 				conn_param->ird = ep->ord;
3152 			} else {
3153 				err = -ENOMEM;
3154 				goto err_abort;
3155 			}
3156 		}
3157 	}
3158 	ep->ird = conn_param->ird;
3159 	ep->ord = conn_param->ord;
3160 
3161 	if (ep->mpa_attr.version == 1) {
3162 		if (peer2peer && ep->ird == 0)
3163 			ep->ird = 1;
3164 	} else {
3165 		if (peer2peer &&
3166 		    (ep->mpa_attr.p2p_type != FW_RI_INIT_P2PTYPE_DISABLED) &&
3167 		    (p2p_type == FW_RI_INIT_P2PTYPE_READ_REQ) && ep->ird == 0)
3168 			ep->ird = 1;
3169 	}
3170 
3171 	pr_debug("ird %d ord %d\n", ep->ird, ep->ord);
3172 
3173 	ep->com.cm_id = cm_id;
3174 	ref_cm_id(&ep->com);
3175 	ep->com.qp = qp;
3176 	ref_qp(ep);
3177 
3178 	/* bind QP to EP and move to RTS */
3179 	attrs.mpa_attr = ep->mpa_attr;
3180 	attrs.max_ird = ep->ird;
3181 	attrs.max_ord = ep->ord;
3182 	attrs.llp_stream_handle = ep;
3183 	attrs.next_state = C4IW_QP_STATE_RTS;
3184 
3185 	/* bind QP and TID with INIT_WR */
3186 	mask = C4IW_QP_ATTR_NEXT_STATE |
3187 			     C4IW_QP_ATTR_LLP_STREAM_HANDLE |
3188 			     C4IW_QP_ATTR_MPA_ATTR |
3189 			     C4IW_QP_ATTR_MAX_IRD |
3190 			     C4IW_QP_ATTR_MAX_ORD;
3191 
3192 	err = c4iw_modify_qp(ep->com.qp->rhp,
3193 			     ep->com.qp, mask, &attrs, 1);
3194 	if (err)
3195 		goto err_deref_cm_id;
3196 
3197 	set_bit(STOP_MPA_TIMER, &ep->com.flags);
3198 	err = send_mpa_reply(ep, conn_param->private_data,
3199 			     conn_param->private_data_len);
3200 	if (err)
3201 		goto err_deref_cm_id;
3202 
3203 	__state_set(&ep->com, FPDU_MODE);
3204 	established_upcall(ep);
3205 	mutex_unlock(&ep->com.mutex);
3206 	c4iw_put_ep(&ep->com);
3207 	return 0;
3208 err_deref_cm_id:
3209 	deref_cm_id(&ep->com);
3210 err_abort:
3211 	abort = 1;
3212 err_out:
3213 	mutex_unlock(&ep->com.mutex);
3214 	if (abort)
3215 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
3216 	c4iw_put_ep(&ep->com);
3217 	return err;
3218 }
3219 
3220 static int pick_local_ipaddrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3221 {
3222 	struct in_device *ind;
3223 	int found = 0;
3224 	struct sockaddr_in *laddr = (struct sockaddr_in *)&cm_id->m_local_addr;
3225 	struct sockaddr_in *raddr = (struct sockaddr_in *)&cm_id->m_remote_addr;
3226 
3227 	ind = in_dev_get(dev->rdev.lldi.ports[0]);
3228 	if (!ind)
3229 		return -EADDRNOTAVAIL;
3230 	for_primary_ifa(ind) {
3231 		laddr->sin_addr.s_addr = ifa->ifa_address;
3232 		raddr->sin_addr.s_addr = ifa->ifa_address;
3233 		found = 1;
3234 		break;
3235 	}
3236 	endfor_ifa(ind);
3237 	in_dev_put(ind);
3238 	return found ? 0 : -EADDRNOTAVAIL;
3239 }
3240 
3241 static int get_lladdr(struct net_device *dev, struct in6_addr *addr,
3242 		      unsigned char banned_flags)
3243 {
3244 	struct inet6_dev *idev;
3245 	int err = -EADDRNOTAVAIL;
3246 
3247 	rcu_read_lock();
3248 	idev = __in6_dev_get(dev);
3249 	if (idev != NULL) {
3250 		struct inet6_ifaddr *ifp;
3251 
3252 		read_lock_bh(&idev->lock);
3253 		list_for_each_entry(ifp, &idev->addr_list, if_list) {
3254 			if (ifp->scope == IFA_LINK &&
3255 			    !(ifp->flags & banned_flags)) {
3256 				memcpy(addr, &ifp->addr, 16);
3257 				err = 0;
3258 				break;
3259 			}
3260 		}
3261 		read_unlock_bh(&idev->lock);
3262 	}
3263 	rcu_read_unlock();
3264 	return err;
3265 }
3266 
3267 static int pick_local_ip6addrs(struct c4iw_dev *dev, struct iw_cm_id *cm_id)
3268 {
3269 	struct in6_addr uninitialized_var(addr);
3270 	struct sockaddr_in6 *la6 = (struct sockaddr_in6 *)&cm_id->m_local_addr;
3271 	struct sockaddr_in6 *ra6 = (struct sockaddr_in6 *)&cm_id->m_remote_addr;
3272 
3273 	if (!get_lladdr(dev->rdev.lldi.ports[0], &addr, IFA_F_TENTATIVE)) {
3274 		memcpy(la6->sin6_addr.s6_addr, &addr, 16);
3275 		memcpy(ra6->sin6_addr.s6_addr, &addr, 16);
3276 		return 0;
3277 	}
3278 	return -EADDRNOTAVAIL;
3279 }
3280 
3281 int c4iw_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
3282 {
3283 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3284 	struct c4iw_ep *ep;
3285 	int err = 0;
3286 	struct sockaddr_in *laddr;
3287 	struct sockaddr_in *raddr;
3288 	struct sockaddr_in6 *laddr6;
3289 	struct sockaddr_in6 *raddr6;
3290 	__u8 *ra;
3291 	int iptype;
3292 
3293 	if ((conn_param->ord > cur_max_read_depth(dev)) ||
3294 	    (conn_param->ird > cur_max_read_depth(dev))) {
3295 		err = -EINVAL;
3296 		goto out;
3297 	}
3298 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3299 	if (!ep) {
3300 		pr_err("%s - cannot alloc ep\n", __func__);
3301 		err = -ENOMEM;
3302 		goto out;
3303 	}
3304 
3305 	skb_queue_head_init(&ep->com.ep_skb_list);
3306 	if (alloc_ep_skb_list(&ep->com.ep_skb_list, CN_MAX_CON_BUF)) {
3307 		err = -ENOMEM;
3308 		goto fail1;
3309 	}
3310 
3311 	timer_setup(&ep->timer, ep_timeout, 0);
3312 	ep->plen = conn_param->private_data_len;
3313 	if (ep->plen)
3314 		memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
3315 		       conn_param->private_data, ep->plen);
3316 	ep->ird = conn_param->ird;
3317 	ep->ord = conn_param->ord;
3318 
3319 	if (peer2peer && ep->ord == 0)
3320 		ep->ord = 1;
3321 
3322 	ep->com.cm_id = cm_id;
3323 	ref_cm_id(&ep->com);
3324 	cm_id->provider_data = ep;
3325 	ep->com.dev = dev;
3326 	ep->com.qp = get_qhp(dev, conn_param->qpn);
3327 	if (!ep->com.qp) {
3328 		pr_warn("%s qpn 0x%x not found!\n", __func__, conn_param->qpn);
3329 		err = -EINVAL;
3330 		goto fail2;
3331 	}
3332 	ref_qp(ep);
3333 	pr_debug("qpn 0x%x qp %p cm_id %p\n", conn_param->qpn,
3334 		 ep->com.qp, cm_id);
3335 
3336 	/*
3337 	 * Allocate an active TID to initiate a TCP connection.
3338 	 */
3339 	ep->atid = cxgb4_alloc_atid(dev->rdev.lldi.tids, ep);
3340 	if (ep->atid == -1) {
3341 		pr_err("%s - cannot alloc atid\n", __func__);
3342 		err = -ENOMEM;
3343 		goto fail2;
3344 	}
3345 	insert_handle(dev, &dev->atid_idr, ep, ep->atid);
3346 
3347 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3348 	       sizeof(ep->com.local_addr));
3349 	memcpy(&ep->com.remote_addr, &cm_id->m_remote_addr,
3350 	       sizeof(ep->com.remote_addr));
3351 
3352 	laddr = (struct sockaddr_in *)&ep->com.local_addr;
3353 	raddr = (struct sockaddr_in *)&ep->com.remote_addr;
3354 	laddr6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3355 	raddr6 = (struct sockaddr_in6 *) &ep->com.remote_addr;
3356 
3357 	if (cm_id->m_remote_addr.ss_family == AF_INET) {
3358 		iptype = 4;
3359 		ra = (__u8 *)&raddr->sin_addr;
3360 
3361 		/*
3362 		 * Handle loopback requests to INADDR_ANY.
3363 		 */
3364 		if (raddr->sin_addr.s_addr == htonl(INADDR_ANY)) {
3365 			err = pick_local_ipaddrs(dev, cm_id);
3366 			if (err)
3367 				goto fail2;
3368 		}
3369 
3370 		/* find a route */
3371 		pr_debug("saddr %pI4 sport 0x%x raddr %pI4 rport 0x%x\n",
3372 			 &laddr->sin_addr, ntohs(laddr->sin_port),
3373 			 ra, ntohs(raddr->sin_port));
3374 		ep->dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
3375 					  laddr->sin_addr.s_addr,
3376 					  raddr->sin_addr.s_addr,
3377 					  laddr->sin_port,
3378 					  raddr->sin_port, cm_id->tos);
3379 	} else {
3380 		iptype = 6;
3381 		ra = (__u8 *)&raddr6->sin6_addr;
3382 
3383 		/*
3384 		 * Handle loopback requests to INADDR_ANY.
3385 		 */
3386 		if (ipv6_addr_type(&raddr6->sin6_addr) == IPV6_ADDR_ANY) {
3387 			err = pick_local_ip6addrs(dev, cm_id);
3388 			if (err)
3389 				goto fail2;
3390 		}
3391 
3392 		/* find a route */
3393 		pr_debug("saddr %pI6 sport 0x%x raddr %pI6 rport 0x%x\n",
3394 			 laddr6->sin6_addr.s6_addr,
3395 			 ntohs(laddr6->sin6_port),
3396 			 raddr6->sin6_addr.s6_addr, ntohs(raddr6->sin6_port));
3397 		ep->dst = cxgb_find_route6(&dev->rdev.lldi, get_real_dev,
3398 					   laddr6->sin6_addr.s6_addr,
3399 					   raddr6->sin6_addr.s6_addr,
3400 					   laddr6->sin6_port,
3401 					   raddr6->sin6_port, cm_id->tos,
3402 					   raddr6->sin6_scope_id);
3403 	}
3404 	if (!ep->dst) {
3405 		pr_err("%s - cannot find route\n", __func__);
3406 		err = -EHOSTUNREACH;
3407 		goto fail3;
3408 	}
3409 
3410 	err = import_ep(ep, iptype, ra, ep->dst, ep->com.dev, true,
3411 			ep->com.dev->rdev.lldi.adapter_type, cm_id->tos);
3412 	if (err) {
3413 		pr_err("%s - cannot alloc l2e\n", __func__);
3414 		goto fail4;
3415 	}
3416 
3417 	pr_debug("txq_idx %u tx_chan %u smac_idx %u rss_qid %u l2t_idx %u\n",
3418 		 ep->txq_idx, ep->tx_chan, ep->smac_idx, ep->rss_qid,
3419 		 ep->l2t->idx);
3420 
3421 	state_set(&ep->com, CONNECTING);
3422 	ep->tos = cm_id->tos;
3423 
3424 	/* send connect request to rnic */
3425 	err = send_connect(ep);
3426 	if (!err)
3427 		goto out;
3428 
3429 	cxgb4_l2t_release(ep->l2t);
3430 fail4:
3431 	dst_release(ep->dst);
3432 fail3:
3433 	remove_handle(ep->com.dev, &ep->com.dev->atid_idr, ep->atid);
3434 	cxgb4_free_atid(ep->com.dev->rdev.lldi.tids, ep->atid);
3435 fail2:
3436 	skb_queue_purge(&ep->com.ep_skb_list);
3437 	deref_cm_id(&ep->com);
3438 fail1:
3439 	c4iw_put_ep(&ep->com);
3440 out:
3441 	return err;
3442 }
3443 
3444 static int create_server6(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3445 {
3446 	int err;
3447 	struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)
3448 				    &ep->com.local_addr;
3449 
3450 	if (ipv6_addr_type(&sin6->sin6_addr) != IPV6_ADDR_ANY) {
3451 		err = cxgb4_clip_get(ep->com.dev->rdev.lldi.ports[0],
3452 				     (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3453 		if (err)
3454 			return err;
3455 	}
3456 	c4iw_init_wr_wait(ep->com.wr_waitp);
3457 	err = cxgb4_create_server6(ep->com.dev->rdev.lldi.ports[0],
3458 				   ep->stid, &sin6->sin6_addr,
3459 				   sin6->sin6_port,
3460 				   ep->com.dev->rdev.lldi.rxq_ids[0]);
3461 	if (!err)
3462 		err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3463 					  ep->com.wr_waitp,
3464 					  0, 0, __func__);
3465 	else if (err > 0)
3466 		err = net_xmit_errno(err);
3467 	if (err) {
3468 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3469 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3470 		pr_err("cxgb4_create_server6/filter failed err %d stid %d laddr %pI6 lport %d\n",
3471 		       err, ep->stid,
3472 		       sin6->sin6_addr.s6_addr, ntohs(sin6->sin6_port));
3473 	}
3474 	return err;
3475 }
3476 
3477 static int create_server4(struct c4iw_dev *dev, struct c4iw_listen_ep *ep)
3478 {
3479 	int err;
3480 	struct sockaddr_in *sin = (struct sockaddr_in *)
3481 				  &ep->com.local_addr;
3482 
3483 	if (dev->rdev.lldi.enable_fw_ofld_conn) {
3484 		do {
3485 			err = cxgb4_create_server_filter(
3486 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3487 				sin->sin_addr.s_addr, sin->sin_port, 0,
3488 				ep->com.dev->rdev.lldi.rxq_ids[0], 0, 0);
3489 			if (err == -EBUSY) {
3490 				if (c4iw_fatal_error(&ep->com.dev->rdev)) {
3491 					err = -EIO;
3492 					break;
3493 				}
3494 				set_current_state(TASK_UNINTERRUPTIBLE);
3495 				schedule_timeout(usecs_to_jiffies(100));
3496 			}
3497 		} while (err == -EBUSY);
3498 	} else {
3499 		c4iw_init_wr_wait(ep->com.wr_waitp);
3500 		err = cxgb4_create_server(ep->com.dev->rdev.lldi.ports[0],
3501 				ep->stid, sin->sin_addr.s_addr, sin->sin_port,
3502 				0, ep->com.dev->rdev.lldi.rxq_ids[0]);
3503 		if (!err)
3504 			err = c4iw_wait_for_reply(&ep->com.dev->rdev,
3505 						  ep->com.wr_waitp,
3506 						  0, 0, __func__);
3507 		else if (err > 0)
3508 			err = net_xmit_errno(err);
3509 	}
3510 	if (err)
3511 		pr_err("cxgb4_create_server/filter failed err %d stid %d laddr %pI4 lport %d\n"
3512 		       , err, ep->stid,
3513 		       &sin->sin_addr, ntohs(sin->sin_port));
3514 	return err;
3515 }
3516 
3517 int c4iw_create_listen(struct iw_cm_id *cm_id, int backlog)
3518 {
3519 	int err = 0;
3520 	struct c4iw_dev *dev = to_c4iw_dev(cm_id->device);
3521 	struct c4iw_listen_ep *ep;
3522 
3523 	might_sleep();
3524 
3525 	ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
3526 	if (!ep) {
3527 		pr_err("%s - cannot alloc ep\n", __func__);
3528 		err = -ENOMEM;
3529 		goto fail1;
3530 	}
3531 	skb_queue_head_init(&ep->com.ep_skb_list);
3532 	pr_debug("ep %p\n", ep);
3533 	ep->com.cm_id = cm_id;
3534 	ref_cm_id(&ep->com);
3535 	ep->com.dev = dev;
3536 	ep->backlog = backlog;
3537 	memcpy(&ep->com.local_addr, &cm_id->m_local_addr,
3538 	       sizeof(ep->com.local_addr));
3539 
3540 	/*
3541 	 * Allocate a server TID.
3542 	 */
3543 	if (dev->rdev.lldi.enable_fw_ofld_conn &&
3544 	    ep->com.local_addr.ss_family == AF_INET)
3545 		ep->stid = cxgb4_alloc_sftid(dev->rdev.lldi.tids,
3546 					     cm_id->m_local_addr.ss_family, ep);
3547 	else
3548 		ep->stid = cxgb4_alloc_stid(dev->rdev.lldi.tids,
3549 					    cm_id->m_local_addr.ss_family, ep);
3550 
3551 	if (ep->stid == -1) {
3552 		pr_err("%s - cannot alloc stid\n", __func__);
3553 		err = -ENOMEM;
3554 		goto fail2;
3555 	}
3556 	insert_handle(dev, &dev->stid_idr, ep, ep->stid);
3557 
3558 	state_set(&ep->com, LISTEN);
3559 	if (ep->com.local_addr.ss_family == AF_INET)
3560 		err = create_server4(dev, ep);
3561 	else
3562 		err = create_server6(dev, ep);
3563 	if (!err) {
3564 		cm_id->provider_data = ep;
3565 		goto out;
3566 	}
3567 	remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3568 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3569 			ep->com.local_addr.ss_family);
3570 fail2:
3571 	deref_cm_id(&ep->com);
3572 	c4iw_put_ep(&ep->com);
3573 fail1:
3574 out:
3575 	return err;
3576 }
3577 
3578 int c4iw_destroy_listen(struct iw_cm_id *cm_id)
3579 {
3580 	int err;
3581 	struct c4iw_listen_ep *ep = to_listen_ep(cm_id);
3582 
3583 	pr_debug("ep %p\n", ep);
3584 
3585 	might_sleep();
3586 	state_set(&ep->com, DEAD);
3587 	if (ep->com.dev->rdev.lldi.enable_fw_ofld_conn &&
3588 	    ep->com.local_addr.ss_family == AF_INET) {
3589 		err = cxgb4_remove_server_filter(
3590 			ep->com.dev->rdev.lldi.ports[0], ep->stid,
3591 			ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3592 	} else {
3593 		struct sockaddr_in6 *sin6;
3594 		c4iw_init_wr_wait(ep->com.wr_waitp);
3595 		err = cxgb4_remove_server(
3596 				ep->com.dev->rdev.lldi.ports[0], ep->stid,
3597 				ep->com.dev->rdev.lldi.rxq_ids[0], 0);
3598 		if (err)
3599 			goto done;
3600 		err = c4iw_wait_for_reply(&ep->com.dev->rdev, ep->com.wr_waitp,
3601 					  0, 0, __func__);
3602 		sin6 = (struct sockaddr_in6 *)&ep->com.local_addr;
3603 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3604 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3605 	}
3606 	remove_handle(ep->com.dev, &ep->com.dev->stid_idr, ep->stid);
3607 	cxgb4_free_stid(ep->com.dev->rdev.lldi.tids, ep->stid,
3608 			ep->com.local_addr.ss_family);
3609 done:
3610 	deref_cm_id(&ep->com);
3611 	c4iw_put_ep(&ep->com);
3612 	return err;
3613 }
3614 
3615 int c4iw_ep_disconnect(struct c4iw_ep *ep, int abrupt, gfp_t gfp)
3616 {
3617 	int ret = 0;
3618 	int close = 0;
3619 	int fatal = 0;
3620 	struct c4iw_rdev *rdev;
3621 
3622 	mutex_lock(&ep->com.mutex);
3623 
3624 	pr_debug("ep %p state %s, abrupt %d\n", ep,
3625 		 states[ep->com.state], abrupt);
3626 
3627 	/*
3628 	 * Ref the ep here in case we have fatal errors causing the
3629 	 * ep to be released and freed.
3630 	 */
3631 	c4iw_get_ep(&ep->com);
3632 
3633 	rdev = &ep->com.dev->rdev;
3634 	if (c4iw_fatal_error(rdev)) {
3635 		fatal = 1;
3636 		close_complete_upcall(ep, -EIO);
3637 		ep->com.state = DEAD;
3638 	}
3639 	switch (ep->com.state) {
3640 	case MPA_REQ_WAIT:
3641 	case MPA_REQ_SENT:
3642 	case MPA_REQ_RCVD:
3643 	case MPA_REP_SENT:
3644 	case FPDU_MODE:
3645 	case CONNECTING:
3646 		close = 1;
3647 		if (abrupt)
3648 			ep->com.state = ABORTING;
3649 		else {
3650 			ep->com.state = CLOSING;
3651 
3652 			/*
3653 			 * if we close before we see the fw4_ack() then we fix
3654 			 * up the timer state since we're reusing it.
3655 			 */
3656 			if (ep->mpa_skb &&
3657 			    test_bit(STOP_MPA_TIMER, &ep->com.flags)) {
3658 				clear_bit(STOP_MPA_TIMER, &ep->com.flags);
3659 				stop_ep_timer(ep);
3660 			}
3661 			start_ep_timer(ep);
3662 		}
3663 		set_bit(CLOSE_SENT, &ep->com.flags);
3664 		break;
3665 	case CLOSING:
3666 		if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
3667 			close = 1;
3668 			if (abrupt) {
3669 				(void)stop_ep_timer(ep);
3670 				ep->com.state = ABORTING;
3671 			} else
3672 				ep->com.state = MORIBUND;
3673 		}
3674 		break;
3675 	case MORIBUND:
3676 	case ABORTING:
3677 	case DEAD:
3678 		pr_debug("ignoring disconnect ep %p state %u\n",
3679 			 ep, ep->com.state);
3680 		break;
3681 	default:
3682 		WARN_ONCE(1, "Bad endpoint state %u\n", ep->com.state);
3683 		break;
3684 	}
3685 
3686 	if (close) {
3687 		if (abrupt) {
3688 			set_bit(EP_DISC_ABORT, &ep->com.history);
3689 			ret = send_abort(ep);
3690 		} else {
3691 			set_bit(EP_DISC_CLOSE, &ep->com.history);
3692 			ret = send_halfclose(ep);
3693 		}
3694 		if (ret) {
3695 			set_bit(EP_DISC_FAIL, &ep->com.history);
3696 			if (!abrupt) {
3697 				stop_ep_timer(ep);
3698 				close_complete_upcall(ep, -EIO);
3699 			}
3700 			if (ep->com.qp) {
3701 				struct c4iw_qp_attributes attrs;
3702 
3703 				attrs.next_state = C4IW_QP_STATE_ERROR;
3704 				ret = c4iw_modify_qp(ep->com.qp->rhp,
3705 						     ep->com.qp,
3706 						     C4IW_QP_ATTR_NEXT_STATE,
3707 						     &attrs, 1);
3708 				if (ret)
3709 					pr_err("%s - qp <- error failed!\n",
3710 					       __func__);
3711 			}
3712 			fatal = 1;
3713 		}
3714 	}
3715 	mutex_unlock(&ep->com.mutex);
3716 	c4iw_put_ep(&ep->com);
3717 	if (fatal)
3718 		release_ep_resources(ep);
3719 	return ret;
3720 }
3721 
3722 static void active_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3723 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3724 {
3725 	struct c4iw_ep *ep;
3726 	int atid = be32_to_cpu(req->tid);
3727 
3728 	ep = (struct c4iw_ep *)lookup_atid(dev->rdev.lldi.tids,
3729 					   (__force u32) req->tid);
3730 	if (!ep)
3731 		return;
3732 
3733 	switch (req->retval) {
3734 	case FW_ENOMEM:
3735 		set_bit(ACT_RETRY_NOMEM, &ep->com.history);
3736 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3737 			send_fw_act_open_req(ep, atid);
3738 			return;
3739 		}
3740 		/* fall through */
3741 	case FW_EADDRINUSE:
3742 		set_bit(ACT_RETRY_INUSE, &ep->com.history);
3743 		if (ep->retry_count++ < ACT_OPEN_RETRY_COUNT) {
3744 			send_fw_act_open_req(ep, atid);
3745 			return;
3746 		}
3747 		break;
3748 	default:
3749 		pr_info("%s unexpected ofld conn wr retval %d\n",
3750 		       __func__, req->retval);
3751 		break;
3752 	}
3753 	pr_err("active ofld_connect_wr failure %d atid %d\n",
3754 	       req->retval, atid);
3755 	mutex_lock(&dev->rdev.stats.lock);
3756 	dev->rdev.stats.act_ofld_conn_fails++;
3757 	mutex_unlock(&dev->rdev.stats.lock);
3758 	connect_reply_upcall(ep, status2errno(req->retval));
3759 	state_set(&ep->com, DEAD);
3760 	if (ep->com.remote_addr.ss_family == AF_INET6) {
3761 		struct sockaddr_in6 *sin6 =
3762 			(struct sockaddr_in6 *)&ep->com.local_addr;
3763 		cxgb4_clip_release(ep->com.dev->rdev.lldi.ports[0],
3764 				   (const u32 *)&sin6->sin6_addr.s6_addr, 1);
3765 	}
3766 	remove_handle(dev, &dev->atid_idr, atid);
3767 	cxgb4_free_atid(dev->rdev.lldi.tids, atid);
3768 	dst_release(ep->dst);
3769 	cxgb4_l2t_release(ep->l2t);
3770 	c4iw_put_ep(&ep->com);
3771 }
3772 
3773 static void passive_ofld_conn_reply(struct c4iw_dev *dev, struct sk_buff *skb,
3774 			struct cpl_fw6_msg_ofld_connection_wr_rpl *req)
3775 {
3776 	struct sk_buff *rpl_skb;
3777 	struct cpl_pass_accept_req *cpl;
3778 	int ret;
3779 
3780 	rpl_skb = (struct sk_buff *)(unsigned long)req->cookie;
3781 	if (req->retval) {
3782 		pr_err("%s passive open failure %d\n", __func__, req->retval);
3783 		mutex_lock(&dev->rdev.stats.lock);
3784 		dev->rdev.stats.pas_ofld_conn_fails++;
3785 		mutex_unlock(&dev->rdev.stats.lock);
3786 		kfree_skb(rpl_skb);
3787 	} else {
3788 		cpl = (struct cpl_pass_accept_req *)cplhdr(rpl_skb);
3789 		OPCODE_TID(cpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ,
3790 					(__force u32) htonl(
3791 					(__force u32) req->tid)));
3792 		ret = pass_accept_req(dev, rpl_skb);
3793 		if (!ret)
3794 			kfree_skb(rpl_skb);
3795 	}
3796 	return;
3797 }
3798 
3799 static inline u64 t4_tcb_get_field64(__be64 *tcb, u16 word)
3800 {
3801 	u64 tlo = be64_to_cpu(tcb[((31 - word) / 2)]);
3802 	u64 thi = be64_to_cpu(tcb[((31 - word) / 2) - 1]);
3803 	u64 t;
3804 	u32 shift = 32;
3805 
3806 	t = (thi << shift) | (tlo >> shift);
3807 
3808 	return t;
3809 }
3810 
3811 static inline u32 t4_tcb_get_field32(__be64 *tcb, u16 word, u32 mask, u32 shift)
3812 {
3813 	u32 v;
3814 	u64 t = be64_to_cpu(tcb[(31 - word) / 2]);
3815 
3816 	if (word & 0x1)
3817 		shift += 32;
3818 	v = (t >> shift) & mask;
3819 	return v;
3820 }
3821 
3822 static int read_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
3823 {
3824 	struct cpl_get_tcb_rpl *rpl = cplhdr(skb);
3825 	__be64 *tcb = (__be64 *)(rpl + 1);
3826 	unsigned int tid = GET_TID(rpl);
3827 	struct c4iw_ep *ep;
3828 	u64 t_flags_64;
3829 	u32 rx_pdu_out;
3830 
3831 	ep = get_ep_from_tid(dev, tid);
3832 	if (!ep)
3833 		return 0;
3834 	/* Examine the TF_RX_PDU_OUT (bit 49 of the t_flags) in order to
3835 	 * determine if there's a rx PDU feedback event pending.
3836 	 *
3837 	 * If that bit is set, it means we'll need to re-read the TCB's
3838 	 * rq_start value. The final value is the one present in a TCB
3839 	 * with the TF_RX_PDU_OUT bit cleared.
3840 	 */
3841 
3842 	t_flags_64 = t4_tcb_get_field64(tcb, TCB_T_FLAGS_W);
3843 	rx_pdu_out = (t_flags_64 & TF_RX_PDU_OUT_V(1)) >> TF_RX_PDU_OUT_S;
3844 
3845 	c4iw_put_ep(&ep->com); /* from get_ep_from_tid() */
3846 	c4iw_put_ep(&ep->com); /* from read_tcb() */
3847 
3848 	/* If TF_RX_PDU_OUT bit is set, re-read the TCB */
3849 	if (rx_pdu_out) {
3850 		if (++ep->rx_pdu_out_cnt >= 2) {
3851 			WARN_ONCE(1, "tcb re-read() reached the guard limit, finishing the cleanup\n");
3852 			goto cleanup;
3853 		}
3854 		read_tcb(ep);
3855 		return 0;
3856 	}
3857 
3858 	ep->srqe_idx = t4_tcb_get_field32(tcb, TCB_RQ_START_W, TCB_RQ_START_W,
3859 			TCB_RQ_START_S);
3860 cleanup:
3861 	pr_debug("ep %p tid %u %016x\n", ep, ep->hwtid, ep->srqe_idx);
3862 
3863 	if (test_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags))
3864 		finish_peer_abort(dev, ep);
3865 	else if (test_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags))
3866 		send_abort_req(ep);
3867 	else
3868 		WARN_ONCE(1, "unexpected state!");
3869 
3870 	return 0;
3871 }
3872 
3873 static int deferred_fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
3874 {
3875 	struct cpl_fw6_msg *rpl = cplhdr(skb);
3876 	struct cpl_fw6_msg_ofld_connection_wr_rpl *req;
3877 
3878 	switch (rpl->type) {
3879 	case FW6_TYPE_CQE:
3880 		c4iw_ev_dispatch(dev, (struct t4_cqe *)&rpl->data[0]);
3881 		break;
3882 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
3883 		req = (struct cpl_fw6_msg_ofld_connection_wr_rpl *)rpl->data;
3884 		switch (req->t_state) {
3885 		case TCP_SYN_SENT:
3886 			active_ofld_conn_reply(dev, skb, req);
3887 			break;
3888 		case TCP_SYN_RECV:
3889 			passive_ofld_conn_reply(dev, skb, req);
3890 			break;
3891 		default:
3892 			pr_err("%s unexpected ofld conn wr state %d\n",
3893 			       __func__, req->t_state);
3894 			break;
3895 		}
3896 		break;
3897 	}
3898 	return 0;
3899 }
3900 
3901 static void build_cpl_pass_accept_req(struct sk_buff *skb, int stid , u8 tos)
3902 {
3903 	__be32 l2info;
3904 	__be16 hdr_len, vlantag, len;
3905 	u16 eth_hdr_len;
3906 	int tcp_hdr_len, ip_hdr_len;
3907 	u8 intf;
3908 	struct cpl_rx_pkt *cpl = cplhdr(skb);
3909 	struct cpl_pass_accept_req *req;
3910 	struct tcp_options_received tmp_opt;
3911 	struct c4iw_dev *dev;
3912 	enum chip_type type;
3913 
3914 	dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
3915 	/* Store values from cpl_rx_pkt in temporary location. */
3916 	vlantag = cpl->vlan;
3917 	len = cpl->len;
3918 	l2info  = cpl->l2info;
3919 	hdr_len = cpl->hdr_len;
3920 	intf = cpl->iff;
3921 
3922 	__skb_pull(skb, sizeof(*req) + sizeof(struct rss_header));
3923 
3924 	/*
3925 	 * We need to parse the TCP options from SYN packet.
3926 	 * to generate cpl_pass_accept_req.
3927 	 */
3928 	memset(&tmp_opt, 0, sizeof(tmp_opt));
3929 	tcp_clear_options(&tmp_opt);
3930 	tcp_parse_options(&init_net, skb, &tmp_opt, 0, NULL);
3931 
3932 	req = __skb_push(skb, sizeof(*req));
3933 	memset(req, 0, sizeof(*req));
3934 	req->l2info = cpu_to_be16(SYN_INTF_V(intf) |
3935 			 SYN_MAC_IDX_V(RX_MACIDX_G(
3936 			 be32_to_cpu(l2info))) |
3937 			 SYN_XACT_MATCH_F);
3938 	type = dev->rdev.lldi.adapter_type;
3939 	tcp_hdr_len = RX_TCPHDR_LEN_G(be16_to_cpu(hdr_len));
3940 	ip_hdr_len = RX_IPHDR_LEN_G(be16_to_cpu(hdr_len));
3941 	req->hdr_len =
3942 		cpu_to_be32(SYN_RX_CHAN_V(RX_CHAN_G(be32_to_cpu(l2info))));
3943 	if (CHELSIO_CHIP_VERSION(type) <= CHELSIO_T5) {
3944 		eth_hdr_len = is_t4(type) ?
3945 				RX_ETHHDR_LEN_G(be32_to_cpu(l2info)) :
3946 				RX_T5_ETHHDR_LEN_G(be32_to_cpu(l2info));
3947 		req->hdr_len |= cpu_to_be32(TCP_HDR_LEN_V(tcp_hdr_len) |
3948 					    IP_HDR_LEN_V(ip_hdr_len) |
3949 					    ETH_HDR_LEN_V(eth_hdr_len));
3950 	} else { /* T6 and later */
3951 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(l2info));
3952 		req->hdr_len |= cpu_to_be32(T6_TCP_HDR_LEN_V(tcp_hdr_len) |
3953 					    T6_IP_HDR_LEN_V(ip_hdr_len) |
3954 					    T6_ETH_HDR_LEN_V(eth_hdr_len));
3955 	}
3956 	req->vlan = vlantag;
3957 	req->len = len;
3958 	req->tos_stid = cpu_to_be32(PASS_OPEN_TID_V(stid) |
3959 				    PASS_OPEN_TOS_V(tos));
3960 	req->tcpopt.mss = htons(tmp_opt.mss_clamp);
3961 	if (tmp_opt.wscale_ok)
3962 		req->tcpopt.wsf = tmp_opt.snd_wscale;
3963 	req->tcpopt.tstamp = tmp_opt.saw_tstamp;
3964 	if (tmp_opt.sack_ok)
3965 		req->tcpopt.sack = 1;
3966 	OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_REQ, 0));
3967 	return;
3968 }
3969 
3970 static void send_fw_pass_open_req(struct c4iw_dev *dev, struct sk_buff *skb,
3971 				  __be32 laddr, __be16 lport,
3972 				  __be32 raddr, __be16 rport,
3973 				  u32 rcv_isn, u32 filter, u16 window,
3974 				  u32 rss_qid, u8 port_id)
3975 {
3976 	struct sk_buff *req_skb;
3977 	struct fw_ofld_connection_wr *req;
3978 	struct cpl_pass_accept_req *cpl = cplhdr(skb);
3979 	int ret;
3980 
3981 	req_skb = alloc_skb(sizeof(struct fw_ofld_connection_wr), GFP_KERNEL);
3982 	if (!req_skb)
3983 		return;
3984 	req = __skb_put_zero(req_skb, sizeof(*req));
3985 	req->op_compl = htonl(WR_OP_V(FW_OFLD_CONNECTION_WR) | FW_WR_COMPL_F);
3986 	req->len16_pkd = htonl(FW_WR_LEN16_V(DIV_ROUND_UP(sizeof(*req), 16)));
3987 	req->le.version_cpl = htonl(FW_OFLD_CONNECTION_WR_CPL_F);
3988 	req->le.filter = (__force __be32) filter;
3989 	req->le.lport = lport;
3990 	req->le.pport = rport;
3991 	req->le.u.ipv4.lip = laddr;
3992 	req->le.u.ipv4.pip = raddr;
3993 	req->tcb.rcv_nxt = htonl(rcv_isn + 1);
3994 	req->tcb.rcv_adv = htons(window);
3995 	req->tcb.t_state_to_astid =
3996 		 htonl(FW_OFLD_CONNECTION_WR_T_STATE_V(TCP_SYN_RECV) |
3997 			FW_OFLD_CONNECTION_WR_RCV_SCALE_V(cpl->tcpopt.wsf) |
3998 			FW_OFLD_CONNECTION_WR_ASTID_V(
3999 			PASS_OPEN_TID_G(ntohl(cpl->tos_stid))));
4000 
4001 	/*
4002 	 * We store the qid in opt2 which will be used by the firmware
4003 	 * to send us the wr response.
4004 	 */
4005 	req->tcb.opt2 = htonl(RSS_QUEUE_V(rss_qid));
4006 
4007 	/*
4008 	 * We initialize the MSS index in TCB to 0xF.
4009 	 * So that when driver sends cpl_pass_accept_rpl
4010 	 * TCB picks up the correct value. If this was 0
4011 	 * TP will ignore any value > 0 for MSS index.
4012 	 */
4013 	req->tcb.opt0 = cpu_to_be64(MSS_IDX_V(0xF));
4014 	req->cookie = (uintptr_t)skb;
4015 
4016 	set_wr_txq(req_skb, CPL_PRIORITY_CONTROL, port_id);
4017 	ret = cxgb4_ofld_send(dev->rdev.lldi.ports[0], req_skb);
4018 	if (ret < 0) {
4019 		pr_err("%s - cxgb4_ofld_send error %d - dropping\n", __func__,
4020 		       ret);
4021 		kfree_skb(skb);
4022 		kfree_skb(req_skb);
4023 	}
4024 }
4025 
4026 /*
4027  * Handler for CPL_RX_PKT message. Need to handle cpl_rx_pkt
4028  * messages when a filter is being used instead of server to
4029  * redirect a syn packet. When packets hit filter they are redirected
4030  * to the offload queue and driver tries to establish the connection
4031  * using firmware work request.
4032  */
4033 static int rx_pkt(struct c4iw_dev *dev, struct sk_buff *skb)
4034 {
4035 	int stid;
4036 	unsigned int filter;
4037 	struct ethhdr *eh = NULL;
4038 	struct vlan_ethhdr *vlan_eh = NULL;
4039 	struct iphdr *iph;
4040 	struct tcphdr *tcph;
4041 	struct rss_header *rss = (void *)skb->data;
4042 	struct cpl_rx_pkt *cpl = (void *)skb->data;
4043 	struct cpl_pass_accept_req *req = (void *)(rss + 1);
4044 	struct l2t_entry *e;
4045 	struct dst_entry *dst;
4046 	struct c4iw_ep *lep = NULL;
4047 	u16 window;
4048 	struct port_info *pi;
4049 	struct net_device *pdev;
4050 	u16 rss_qid, eth_hdr_len;
4051 	int step;
4052 	struct neighbour *neigh;
4053 
4054 	/* Drop all non-SYN packets */
4055 	if (!(cpl->l2info & cpu_to_be32(RXF_SYN_F)))
4056 		goto reject;
4057 
4058 	/*
4059 	 * Drop all packets which did not hit the filter.
4060 	 * Unlikely to happen.
4061 	 */
4062 	if (!(rss->filter_hit && rss->filter_tid))
4063 		goto reject;
4064 
4065 	/*
4066 	 * Calculate the server tid from filter hit index from cpl_rx_pkt.
4067 	 */
4068 	stid = (__force int) cpu_to_be32((__force u32) rss->hash_val);
4069 
4070 	lep = (struct c4iw_ep *)get_ep_from_stid(dev, stid);
4071 	if (!lep) {
4072 		pr_warn("%s connect request on invalid stid %d\n",
4073 			__func__, stid);
4074 		goto reject;
4075 	}
4076 
4077 	switch (CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type)) {
4078 	case CHELSIO_T4:
4079 		eth_hdr_len = RX_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4080 		break;
4081 	case CHELSIO_T5:
4082 		eth_hdr_len = RX_T5_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4083 		break;
4084 	case CHELSIO_T6:
4085 		eth_hdr_len = RX_T6_ETHHDR_LEN_G(be32_to_cpu(cpl->l2info));
4086 		break;
4087 	default:
4088 		pr_err("T%d Chip is not supported\n",
4089 		       CHELSIO_CHIP_VERSION(dev->rdev.lldi.adapter_type));
4090 		goto reject;
4091 	}
4092 
4093 	if (eth_hdr_len == ETH_HLEN) {
4094 		eh = (struct ethhdr *)(req + 1);
4095 		iph = (struct iphdr *)(eh + 1);
4096 	} else {
4097 		vlan_eh = (struct vlan_ethhdr *)(req + 1);
4098 		iph = (struct iphdr *)(vlan_eh + 1);
4099 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(cpl->vlan));
4100 	}
4101 
4102 	if (iph->version != 0x4)
4103 		goto reject;
4104 
4105 	tcph = (struct tcphdr *)(iph + 1);
4106 	skb_set_network_header(skb, (void *)iph - (void *)rss);
4107 	skb_set_transport_header(skb, (void *)tcph - (void *)rss);
4108 	skb_get(skb);
4109 
4110 	pr_debug("lip 0x%x lport %u pip 0x%x pport %u tos %d\n",
4111 		 ntohl(iph->daddr), ntohs(tcph->dest), ntohl(iph->saddr),
4112 		 ntohs(tcph->source), iph->tos);
4113 
4114 	dst = cxgb_find_route(&dev->rdev.lldi, get_real_dev,
4115 			      iph->daddr, iph->saddr, tcph->dest,
4116 			      tcph->source, iph->tos);
4117 	if (!dst) {
4118 		pr_err("%s - failed to find dst entry!\n", __func__);
4119 		goto reject;
4120 	}
4121 	neigh = dst_neigh_lookup_skb(dst, skb);
4122 
4123 	if (!neigh) {
4124 		pr_err("%s - failed to allocate neigh!\n", __func__);
4125 		goto free_dst;
4126 	}
4127 
4128 	if (neigh->dev->flags & IFF_LOOPBACK) {
4129 		pdev = ip_dev_find(&init_net, iph->daddr);
4130 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4131 				    pdev, 0);
4132 		pi = (struct port_info *)netdev_priv(pdev);
4133 		dev_put(pdev);
4134 	} else {
4135 		pdev = get_real_dev(neigh->dev);
4136 		e = cxgb4_l2t_get(dev->rdev.lldi.l2t, neigh,
4137 					pdev, 0);
4138 		pi = (struct port_info *)netdev_priv(pdev);
4139 	}
4140 	neigh_release(neigh);
4141 	if (!e) {
4142 		pr_err("%s - failed to allocate l2t entry!\n",
4143 		       __func__);
4144 		goto free_dst;
4145 	}
4146 
4147 	step = dev->rdev.lldi.nrxq / dev->rdev.lldi.nchan;
4148 	rss_qid = dev->rdev.lldi.rxq_ids[pi->port_id * step];
4149 	window = (__force u16) htons((__force u16)tcph->window);
4150 
4151 	/* Calcuate filter portion for LE region. */
4152 	filter = (__force unsigned int) cpu_to_be32(cxgb4_select_ntuple(
4153 						    dev->rdev.lldi.ports[0],
4154 						    e));
4155 
4156 	/*
4157 	 * Synthesize the cpl_pass_accept_req. We have everything except the
4158 	 * TID. Once firmware sends a reply with TID we update the TID field
4159 	 * in cpl and pass it through the regular cpl_pass_accept_req path.
4160 	 */
4161 	build_cpl_pass_accept_req(skb, stid, iph->tos);
4162 	send_fw_pass_open_req(dev, skb, iph->daddr, tcph->dest, iph->saddr,
4163 			      tcph->source, ntohl(tcph->seq), filter, window,
4164 			      rss_qid, pi->port_id);
4165 	cxgb4_l2t_release(e);
4166 free_dst:
4167 	dst_release(dst);
4168 reject:
4169 	if (lep)
4170 		c4iw_put_ep(&lep->com);
4171 	return 0;
4172 }
4173 
4174 /*
4175  * These are the real handlers that are called from a
4176  * work queue.
4177  */
4178 static c4iw_handler_func work_handlers[NUM_CPL_CMDS + NUM_FAKE_CPLS] = {
4179 	[CPL_ACT_ESTABLISH] = act_establish,
4180 	[CPL_ACT_OPEN_RPL] = act_open_rpl,
4181 	[CPL_RX_DATA] = rx_data,
4182 	[CPL_ABORT_RPL_RSS] = abort_rpl,
4183 	[CPL_ABORT_RPL] = abort_rpl,
4184 	[CPL_PASS_OPEN_RPL] = pass_open_rpl,
4185 	[CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
4186 	[CPL_PASS_ACCEPT_REQ] = pass_accept_req,
4187 	[CPL_PASS_ESTABLISH] = pass_establish,
4188 	[CPL_PEER_CLOSE] = peer_close,
4189 	[CPL_ABORT_REQ_RSS] = peer_abort,
4190 	[CPL_CLOSE_CON_RPL] = close_con_rpl,
4191 	[CPL_RDMA_TERMINATE] = terminate,
4192 	[CPL_FW4_ACK] = fw4_ack,
4193 	[CPL_GET_TCB_RPL] = read_tcb_rpl,
4194 	[CPL_FW6_MSG] = deferred_fw6_msg,
4195 	[CPL_RX_PKT] = rx_pkt,
4196 	[FAKE_CPL_PUT_EP_SAFE] = _put_ep_safe,
4197 	[FAKE_CPL_PASS_PUT_EP_SAFE] = _put_pass_ep_safe
4198 };
4199 
4200 static void process_timeout(struct c4iw_ep *ep)
4201 {
4202 	struct c4iw_qp_attributes attrs;
4203 	int abort = 1;
4204 
4205 	mutex_lock(&ep->com.mutex);
4206 	pr_debug("ep %p tid %u state %d\n", ep, ep->hwtid, ep->com.state);
4207 	set_bit(TIMEDOUT, &ep->com.history);
4208 	switch (ep->com.state) {
4209 	case MPA_REQ_SENT:
4210 		connect_reply_upcall(ep, -ETIMEDOUT);
4211 		break;
4212 	case MPA_REQ_WAIT:
4213 	case MPA_REQ_RCVD:
4214 	case MPA_REP_SENT:
4215 	case FPDU_MODE:
4216 		break;
4217 	case CLOSING:
4218 	case MORIBUND:
4219 		if (ep->com.cm_id && ep->com.qp) {
4220 			attrs.next_state = C4IW_QP_STATE_ERROR;
4221 			c4iw_modify_qp(ep->com.qp->rhp,
4222 				     ep->com.qp, C4IW_QP_ATTR_NEXT_STATE,
4223 				     &attrs, 1);
4224 		}
4225 		close_complete_upcall(ep, -ETIMEDOUT);
4226 		break;
4227 	case ABORTING:
4228 	case DEAD:
4229 
4230 		/*
4231 		 * These states are expected if the ep timed out at the same
4232 		 * time as another thread was calling stop_ep_timer().
4233 		 * So we silently do nothing for these states.
4234 		 */
4235 		abort = 0;
4236 		break;
4237 	default:
4238 		WARN(1, "%s unexpected state ep %p tid %u state %u\n",
4239 			__func__, ep, ep->hwtid, ep->com.state);
4240 		abort = 0;
4241 	}
4242 	mutex_unlock(&ep->com.mutex);
4243 	if (abort)
4244 		c4iw_ep_disconnect(ep, 1, GFP_KERNEL);
4245 	c4iw_put_ep(&ep->com);
4246 }
4247 
4248 static void process_timedout_eps(void)
4249 {
4250 	struct c4iw_ep *ep;
4251 
4252 	spin_lock_irq(&timeout_lock);
4253 	while (!list_empty(&timeout_list)) {
4254 		struct list_head *tmp;
4255 
4256 		tmp = timeout_list.next;
4257 		list_del(tmp);
4258 		tmp->next = NULL;
4259 		tmp->prev = NULL;
4260 		spin_unlock_irq(&timeout_lock);
4261 		ep = list_entry(tmp, struct c4iw_ep, entry);
4262 		process_timeout(ep);
4263 		spin_lock_irq(&timeout_lock);
4264 	}
4265 	spin_unlock_irq(&timeout_lock);
4266 }
4267 
4268 static void process_work(struct work_struct *work)
4269 {
4270 	struct sk_buff *skb = NULL;
4271 	struct c4iw_dev *dev;
4272 	struct cpl_act_establish *rpl;
4273 	unsigned int opcode;
4274 	int ret;
4275 
4276 	process_timedout_eps();
4277 	while ((skb = skb_dequeue(&rxq))) {
4278 		rpl = cplhdr(skb);
4279 		dev = *((struct c4iw_dev **) (skb->cb + sizeof(void *)));
4280 		opcode = rpl->ot.opcode;
4281 
4282 		if (opcode >= ARRAY_SIZE(work_handlers) ||
4283 		    !work_handlers[opcode]) {
4284 			pr_err("No handler for opcode 0x%x.\n", opcode);
4285 			kfree_skb(skb);
4286 		} else {
4287 			ret = work_handlers[opcode](dev, skb);
4288 			if (!ret)
4289 				kfree_skb(skb);
4290 		}
4291 		process_timedout_eps();
4292 	}
4293 }
4294 
4295 static DECLARE_WORK(skb_work, process_work);
4296 
4297 static void ep_timeout(struct timer_list *t)
4298 {
4299 	struct c4iw_ep *ep = from_timer(ep, t, timer);
4300 	int kickit = 0;
4301 
4302 	spin_lock(&timeout_lock);
4303 	if (!test_and_set_bit(TIMEOUT, &ep->com.flags)) {
4304 		/*
4305 		 * Only insert if it is not already on the list.
4306 		 */
4307 		if (!ep->entry.next) {
4308 			list_add_tail(&ep->entry, &timeout_list);
4309 			kickit = 1;
4310 		}
4311 	}
4312 	spin_unlock(&timeout_lock);
4313 	if (kickit)
4314 		queue_work(workq, &skb_work);
4315 }
4316 
4317 /*
4318  * All the CM events are handled on a work queue to have a safe context.
4319  */
4320 static int sched(struct c4iw_dev *dev, struct sk_buff *skb)
4321 {
4322 
4323 	/*
4324 	 * Save dev in the skb->cb area.
4325 	 */
4326 	*((struct c4iw_dev **) (skb->cb + sizeof(void *))) = dev;
4327 
4328 	/*
4329 	 * Queue the skb and schedule the worker thread.
4330 	 */
4331 	skb_queue_tail(&rxq, skb);
4332 	queue_work(workq, &skb_work);
4333 	return 0;
4334 }
4335 
4336 static int set_tcb_rpl(struct c4iw_dev *dev, struct sk_buff *skb)
4337 {
4338 	struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
4339 
4340 	if (rpl->status != CPL_ERR_NONE) {
4341 		pr_err("Unexpected SET_TCB_RPL status %u for tid %u\n",
4342 		       rpl->status, GET_TID(rpl));
4343 	}
4344 	kfree_skb(skb);
4345 	return 0;
4346 }
4347 
4348 static int fw6_msg(struct c4iw_dev *dev, struct sk_buff *skb)
4349 {
4350 	struct cpl_fw6_msg *rpl = cplhdr(skb);
4351 	struct c4iw_wr_wait *wr_waitp;
4352 	int ret;
4353 
4354 	pr_debug("type %u\n", rpl->type);
4355 
4356 	switch (rpl->type) {
4357 	case FW6_TYPE_WR_RPL:
4358 		ret = (int)((be64_to_cpu(rpl->data[0]) >> 8) & 0xff);
4359 		wr_waitp = (struct c4iw_wr_wait *)(__force unsigned long) rpl->data[1];
4360 		pr_debug("wr_waitp %p ret %u\n", wr_waitp, ret);
4361 		if (wr_waitp)
4362 			c4iw_wake_up_deref(wr_waitp, ret ? -ret : 0);
4363 		kfree_skb(skb);
4364 		break;
4365 	case FW6_TYPE_CQE:
4366 	case FW6_TYPE_OFLD_CONNECTION_WR_RPL:
4367 		sched(dev, skb);
4368 		break;
4369 	default:
4370 		pr_err("%s unexpected fw6 msg type %u\n",
4371 		       __func__, rpl->type);
4372 		kfree_skb(skb);
4373 		break;
4374 	}
4375 	return 0;
4376 }
4377 
4378 static int peer_abort_intr(struct c4iw_dev *dev, struct sk_buff *skb)
4379 {
4380 	struct cpl_abort_req_rss *req = cplhdr(skb);
4381 	struct c4iw_ep *ep;
4382 	unsigned int tid = GET_TID(req);
4383 
4384 	ep = get_ep_from_tid(dev, tid);
4385 	/* This EP will be dereferenced in peer_abort() */
4386 	if (!ep) {
4387 		pr_warn("Abort on non-existent endpoint, tid %d\n", tid);
4388 		kfree_skb(skb);
4389 		return 0;
4390 	}
4391 	if (cxgb_is_neg_adv(req->status)) {
4392 		pr_debug("Negative advice on abort- tid %u status %d (%s)\n",
4393 			 ep->hwtid, req->status,
4394 			 neg_adv_str(req->status));
4395 		goto out;
4396 	}
4397 	pr_debug("ep %p tid %u state %u\n", ep, ep->hwtid, ep->com.state);
4398 
4399 	c4iw_wake_up_noref(ep->com.wr_waitp, -ECONNRESET);
4400 out:
4401 	sched(dev, skb);
4402 	return 0;
4403 }
4404 
4405 /*
4406  * Most upcalls from the T4 Core go to sched() to
4407  * schedule the processing on a work queue.
4408  */
4409 c4iw_handler_func c4iw_handlers[NUM_CPL_CMDS] = {
4410 	[CPL_ACT_ESTABLISH] = sched,
4411 	[CPL_ACT_OPEN_RPL] = sched,
4412 	[CPL_RX_DATA] = sched,
4413 	[CPL_ABORT_RPL_RSS] = sched,
4414 	[CPL_ABORT_RPL] = sched,
4415 	[CPL_PASS_OPEN_RPL] = sched,
4416 	[CPL_CLOSE_LISTSRV_RPL] = sched,
4417 	[CPL_PASS_ACCEPT_REQ] = sched,
4418 	[CPL_PASS_ESTABLISH] = sched,
4419 	[CPL_PEER_CLOSE] = sched,
4420 	[CPL_CLOSE_CON_RPL] = sched,
4421 	[CPL_ABORT_REQ_RSS] = peer_abort_intr,
4422 	[CPL_RDMA_TERMINATE] = sched,
4423 	[CPL_FW4_ACK] = sched,
4424 	[CPL_SET_TCB_RPL] = set_tcb_rpl,
4425 	[CPL_GET_TCB_RPL] = sched,
4426 	[CPL_FW6_MSG] = fw6_msg,
4427 	[CPL_RX_PKT] = sched
4428 };
4429 
4430 int __init c4iw_cm_init(void)
4431 {
4432 	spin_lock_init(&timeout_lock);
4433 	skb_queue_head_init(&rxq);
4434 
4435 	workq = alloc_ordered_workqueue("iw_cxgb4", WQ_MEM_RECLAIM);
4436 	if (!workq)
4437 		return -ENOMEM;
4438 
4439 	return 0;
4440 }
4441 
4442 void c4iw_cm_term(void)
4443 {
4444 	WARN_ON(!list_empty(&timeout_list));
4445 	flush_workqueue(workq);
4446 	destroy_workqueue(workq);
4447 }
4448