xref: /openbmc/linux/drivers/infiniband/hw/bnxt_re/qplib_sp.c (revision d10cd7bf574ead01fae140ce117a11bcdacbe6a8)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Slow Path Operators
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45 
46 #include "roce_hsi.h"
47 
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52 
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 						     0, 0, 0, 0, 0, 0, 0, 0 } };
55 
56 /* Device */
57 
58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 	u16 pcie_ctl2 = 0;
61 
62 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 		return false;
64 
65 	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68 
69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 				     char *fw_ver)
71 {
72 	struct creq_query_version_resp resp = {};
73 	struct bnxt_qplib_cmdqmsg msg = {};
74 	struct cmdq_query_version req = {};
75 	int rc;
76 
77 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 				 sizeof(req));
80 
81 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 	if (rc)
84 		return;
85 	fw_ver[0] = resp.fw_maj;
86 	fw_ver[1] = resp.fw_minor;
87 	fw_ver[2] = resp.fw_bld;
88 	fw_ver[3] = resp.fw_rsvd;
89 }
90 
91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92 			    struct bnxt_qplib_dev_attr *attr)
93 {
94 	struct creq_query_func_resp resp = {};
95 	struct bnxt_qplib_cmdqmsg msg = {};
96 	struct creq_query_func_resp_sb *sb;
97 	struct bnxt_qplib_rcfw_sbuf sbuf;
98 	struct cmdq_query_func req = {};
99 	u8 *tqm_alloc;
100 	int i, rc;
101 	u32 temp;
102 
103 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
104 				 CMDQ_BASE_OPCODE_QUERY_FUNC,
105 				 sizeof(req));
106 
107 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
108 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
109 				     &sbuf.dma_addr, GFP_KERNEL);
110 	if (!sbuf.sb)
111 		return -ENOMEM;
112 	sb = sbuf.sb;
113 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
114 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
115 				sizeof(resp), 0);
116 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
117 	if (rc)
118 		goto bail;
119 
120 	/* Extract the context from the side buffer */
121 	attr->max_qp = le32_to_cpu(sb->max_qp);
122 	/* max_qp value reported by FW doesn't include the QP1 */
123 	attr->max_qp += 1;
124 	attr->max_qp_rd_atom =
125 		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
126 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
127 	attr->max_qp_init_rd_atom =
128 		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
129 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
130 	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
131 	/*
132 	 * 128 WQEs needs to be reserved for the HW (8916). Prevent
133 	 * reporting the max number
134 	 */
135 	attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
136 	attr->max_qp_sges = bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx) ?
137 			    6 : sb->max_sge;
138 	attr->max_cq = le32_to_cpu(sb->max_cq);
139 	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
140 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
141 		attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
142 	attr->max_cq_sges = attr->max_qp_sges;
143 	attr->max_mr = le32_to_cpu(sb->max_mr);
144 	attr->max_mw = le32_to_cpu(sb->max_mw);
145 
146 	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
147 	attr->max_pd = 64 * 1024;
148 	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
149 	attr->max_ah = le32_to_cpu(sb->max_ah);
150 
151 	attr->max_srq = le16_to_cpu(sb->max_srq);
152 	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
153 	attr->max_srq_sges = sb->max_srq_sge;
154 	attr->max_pkey = 1;
155 	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
156 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
157 		attr->l2_db_size = (sb->l2_db_space_size + 1) *
158 				    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
159 	/*
160 	 * Read the max gid supported by HW.
161 	 * For each entry in HW  GID in HW table, we consume 2
162 	 * GID entries in the kernel GID table.  So max_gid reported
163 	 * to stack can be up to twice the value reported by the HW, up to 256 gids.
164 	 */
165 	attr->max_sgid = le32_to_cpu(sb->max_gid);
166 	attr->max_sgid = min_t(u32, BNXT_QPLIB_NUM_GIDS_SUPPORTED, 2 * attr->max_sgid);
167 	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
168 
169 	bnxt_qplib_query_version(rcfw, attr->fw_ver);
170 
171 	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
172 		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
173 		tqm_alloc = (u8 *)&temp;
174 		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
175 		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
176 		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
177 		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
178 	}
179 
180 	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
181 		attr->max_dpi = le32_to_cpu(sb->max_dpi);
182 
183 	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
184 bail:
185 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
186 			  sbuf.sb, sbuf.dma_addr);
187 	return rc;
188 }
189 
190 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
191 				  struct bnxt_qplib_rcfw *rcfw,
192 				  struct bnxt_qplib_ctx *ctx)
193 {
194 	struct creq_set_func_resources_resp resp = {};
195 	struct cmdq_set_func_resources req = {};
196 	struct bnxt_qplib_cmdqmsg msg = {};
197 	int rc;
198 
199 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
200 				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
201 				 sizeof(req));
202 
203 	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
204 	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
205 	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
206 	req.number_of_cq = cpu_to_le32(ctx->cq_count);
207 
208 	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
209 	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
210 	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
211 	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
212 	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
213 
214 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
215 				sizeof(resp), 0);
216 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
217 	if (rc) {
218 		dev_err(&res->pdev->dev, "Failed to set function resources\n");
219 	}
220 	return rc;
221 }
222 
223 /* SGID */
224 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
225 			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
226 			struct bnxt_qplib_gid *gid)
227 {
228 	if (index >= sgid_tbl->max) {
229 		dev_err(&res->pdev->dev,
230 			"Index %d exceeded SGID table max (%d)\n",
231 			index, sgid_tbl->max);
232 		return -EINVAL;
233 	}
234 	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
235 	return 0;
236 }
237 
238 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
239 			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
240 {
241 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
242 						   struct bnxt_qplib_res,
243 						   sgid_tbl);
244 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
245 	int index;
246 
247 	/* Do we need a sgid_lock here? */
248 	if (!sgid_tbl->active) {
249 		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
250 		return -ENOMEM;
251 	}
252 	for (index = 0; index < sgid_tbl->max; index++) {
253 		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
254 		    vlan_id == sgid_tbl->tbl[index].vlan_id)
255 			break;
256 	}
257 	if (index == sgid_tbl->max) {
258 		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
259 		return 0;
260 	}
261 	/* Remove GID from the SGID table */
262 	if (update) {
263 		struct creq_delete_gid_resp resp = {};
264 		struct bnxt_qplib_cmdqmsg msg = {};
265 		struct cmdq_delete_gid req = {};
266 		int rc;
267 
268 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
269 					 CMDQ_BASE_OPCODE_DELETE_GID,
270 					 sizeof(req));
271 		if (sgid_tbl->hw_id[index] == 0xFFFF) {
272 			dev_err(&res->pdev->dev,
273 				"GID entry contains an invalid HW id\n");
274 			return -EINVAL;
275 		}
276 		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
277 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
278 					sizeof(resp), 0);
279 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
280 		if (rc)
281 			return rc;
282 	}
283 	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
284 	       sizeof(bnxt_qplib_gid_zero));
285 	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
286 	sgid_tbl->vlan[index] = 0;
287 	sgid_tbl->active--;
288 	dev_dbg(&res->pdev->dev,
289 		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
290 		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
291 	sgid_tbl->hw_id[index] = (u16)-1;
292 
293 	/* unlock */
294 	return 0;
295 }
296 
297 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
298 			struct bnxt_qplib_gid *gid, const u8 *smac,
299 			u16 vlan_id, bool update, u32 *index)
300 {
301 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
302 						   struct bnxt_qplib_res,
303 						   sgid_tbl);
304 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
305 	int i, free_idx;
306 
307 	/* Do we need a sgid_lock here? */
308 	if (sgid_tbl->active == sgid_tbl->max) {
309 		dev_err(&res->pdev->dev, "SGID table is full\n");
310 		return -ENOMEM;
311 	}
312 	free_idx = sgid_tbl->max;
313 	for (i = 0; i < sgid_tbl->max; i++) {
314 		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
315 		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
316 			dev_dbg(&res->pdev->dev,
317 				"SGID entry already exist in entry %d!\n", i);
318 			*index = i;
319 			return -EALREADY;
320 		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
321 				   sizeof(bnxt_qplib_gid_zero)) &&
322 			   free_idx == sgid_tbl->max) {
323 			free_idx = i;
324 		}
325 	}
326 	if (free_idx == sgid_tbl->max) {
327 		dev_err(&res->pdev->dev,
328 			"SGID table is FULL but count is not MAX??\n");
329 		return -ENOMEM;
330 	}
331 	if (update) {
332 		struct creq_add_gid_resp resp = {};
333 		struct bnxt_qplib_cmdqmsg msg = {};
334 		struct cmdq_add_gid req = {};
335 		int rc;
336 
337 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
338 					 CMDQ_BASE_OPCODE_ADD_GID,
339 					 sizeof(req));
340 
341 		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
342 		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
343 		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
344 		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
345 		/*
346 		 * driver should ensure that all RoCE traffic is always VLAN
347 		 * tagged if RoCE traffic is running on non-zero VLAN ID or
348 		 * RoCE traffic is running on non-zero Priority.
349 		 */
350 		if ((vlan_id != 0xFFFF) || res->prio) {
351 			if (vlan_id != 0xFFFF)
352 				req.vlan = cpu_to_le16
353 				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
354 			req.vlan |= cpu_to_le16
355 					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
356 					 CMDQ_ADD_GID_VLAN_VLAN_EN);
357 		}
358 
359 		/* MAC in network format */
360 		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
361 		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
362 		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
363 
364 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
365 					sizeof(resp), 0);
366 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
367 		if (rc)
368 			return rc;
369 		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
370 	}
371 	/* Add GID to the sgid_tbl */
372 	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
373 	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
374 	sgid_tbl->active++;
375 	if (vlan_id != 0xFFFF)
376 		sgid_tbl->vlan[free_idx] = 1;
377 
378 	dev_dbg(&res->pdev->dev,
379 		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
380 		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
381 
382 	*index = free_idx;
383 	/* unlock */
384 	return 0;
385 }
386 
387 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
388 			   struct bnxt_qplib_gid *gid, u16 gid_idx,
389 			   const u8 *smac)
390 {
391 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
392 						   struct bnxt_qplib_res,
393 						   sgid_tbl);
394 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
395 	struct creq_modify_gid_resp resp = {};
396 	struct bnxt_qplib_cmdqmsg msg = {};
397 	struct cmdq_modify_gid req = {};
398 	int rc;
399 
400 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
401 				 CMDQ_BASE_OPCODE_MODIFY_GID,
402 				 sizeof(req));
403 
404 	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
405 	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
406 	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
407 	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
408 	if (res->prio) {
409 		req.vlan |= cpu_to_le16
410 			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
411 			 CMDQ_ADD_GID_VLAN_VLAN_EN);
412 	}
413 
414 	/* MAC in network format */
415 	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
416 	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
417 	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
418 
419 	req.gid_index = cpu_to_le16(gid_idx);
420 
421 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
422 				sizeof(resp), 0);
423 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
424 	return rc;
425 }
426 
427 /* AH */
428 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
429 			 bool block)
430 {
431 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
432 	struct creq_create_ah_resp resp = {};
433 	struct bnxt_qplib_cmdqmsg msg = {};
434 	struct cmdq_create_ah req = {};
435 	u32 temp32[4];
436 	u16 temp16[3];
437 	int rc;
438 
439 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
440 				 CMDQ_BASE_OPCODE_CREATE_AH,
441 				 sizeof(req));
442 
443 	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
444 	req.dgid[0] = cpu_to_le32(temp32[0]);
445 	req.dgid[1] = cpu_to_le32(temp32[1]);
446 	req.dgid[2] = cpu_to_le32(temp32[2]);
447 	req.dgid[3] = cpu_to_le32(temp32[3]);
448 
449 	req.type = ah->nw_type;
450 	req.hop_limit = ah->hop_limit;
451 	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
452 	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
453 					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
454 					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
455 	req.pd_id = cpu_to_le32(ah->pd->id);
456 	req.traffic_class = ah->traffic_class;
457 
458 	/* MAC in network format */
459 	memcpy(temp16, ah->dmac, 6);
460 	req.dest_mac[0] = cpu_to_le16(temp16[0]);
461 	req.dest_mac[1] = cpu_to_le16(temp16[1]);
462 	req.dest_mac[2] = cpu_to_le16(temp16[2]);
463 
464 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
465 				sizeof(resp), block);
466 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
467 	if (rc)
468 		return rc;
469 
470 	ah->id = le32_to_cpu(resp.xid);
471 	return 0;
472 }
473 
474 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
475 			  bool block)
476 {
477 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
478 	struct creq_destroy_ah_resp resp = {};
479 	struct bnxt_qplib_cmdqmsg msg = {};
480 	struct cmdq_destroy_ah req = {};
481 	int rc;
482 
483 	/* Clean up the AH table in the device */
484 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
485 				 CMDQ_BASE_OPCODE_DESTROY_AH,
486 				 sizeof(req));
487 
488 	req.ah_cid = cpu_to_le32(ah->id);
489 
490 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
491 				sizeof(resp), block);
492 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
493 	return rc;
494 }
495 
496 /* MRW */
497 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
498 {
499 	struct creq_deallocate_key_resp resp = {};
500 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
501 	struct cmdq_deallocate_key req = {};
502 	struct bnxt_qplib_cmdqmsg msg = {};
503 	int rc;
504 
505 	if (mrw->lkey == 0xFFFFFFFF) {
506 		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
507 		return 0;
508 	}
509 
510 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
511 				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
512 				 sizeof(req));
513 
514 	req.mrw_flags = mrw->type;
515 
516 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
517 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
518 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
519 		req.key = cpu_to_le32(mrw->rkey);
520 	else
521 		req.key = cpu_to_le32(mrw->lkey);
522 
523 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
524 				sizeof(resp), 0);
525 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
526 	if (rc)
527 		return rc;
528 
529 	/* Free the qplib's MRW memory */
530 	if (mrw->hwq.max_elements)
531 		bnxt_qplib_free_hwq(res, &mrw->hwq);
532 
533 	return 0;
534 }
535 
536 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
537 {
538 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
539 	struct creq_allocate_mrw_resp resp = {};
540 	struct bnxt_qplib_cmdqmsg msg = {};
541 	struct cmdq_allocate_mrw req = {};
542 	unsigned long tmp;
543 	int rc;
544 
545 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
546 				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
547 				 sizeof(req));
548 
549 	req.pd_id = cpu_to_le32(mrw->pd->id);
550 	req.mrw_flags = mrw->type;
551 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
552 	     mrw->flags & BNXT_QPLIB_FR_PMR) ||
553 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
554 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
555 		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
556 	tmp = (unsigned long)mrw;
557 	req.mrw_handle = cpu_to_le64(tmp);
558 
559 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
560 				sizeof(resp), 0);
561 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
562 	if (rc)
563 		return rc;
564 
565 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
566 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
567 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
568 		mrw->rkey = le32_to_cpu(resp.xid);
569 	else
570 		mrw->lkey = le32_to_cpu(resp.xid);
571 	return 0;
572 }
573 
574 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
575 			 bool block)
576 {
577 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
578 	struct creq_deregister_mr_resp resp = {};
579 	struct bnxt_qplib_cmdqmsg msg = {};
580 	struct cmdq_deregister_mr req = {};
581 	int rc;
582 
583 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
584 				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
585 				 sizeof(req));
586 
587 	req.lkey = cpu_to_le32(mrw->lkey);
588 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
589 				sizeof(resp), block);
590 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
591 	if (rc)
592 		return rc;
593 
594 	/* Free the qplib's MR memory */
595 	if (mrw->hwq.max_elements) {
596 		mrw->va = 0;
597 		mrw->total_size = 0;
598 		bnxt_qplib_free_hwq(res, &mrw->hwq);
599 	}
600 
601 	return 0;
602 }
603 
604 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
605 		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
606 {
607 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
608 	struct bnxt_qplib_hwq_attr hwq_attr = {};
609 	struct bnxt_qplib_sg_info sginfo = {};
610 	struct creq_register_mr_resp resp = {};
611 	struct bnxt_qplib_cmdqmsg msg = {};
612 	struct cmdq_register_mr req = {};
613 	int pages, rc;
614 	u32 pg_size;
615 	u16 level;
616 
617 	if (num_pbls) {
618 		pages = roundup_pow_of_two(num_pbls);
619 		/* Allocate memory for the non-leaf pages to store buf ptrs.
620 		 * Non-leaf pages always uses system PAGE_SIZE
621 		 */
622 		/* Free the hwq if it already exist, must be a rereg */
623 		if (mr->hwq.max_elements)
624 			bnxt_qplib_free_hwq(res, &mr->hwq);
625 		hwq_attr.res = res;
626 		hwq_attr.depth = pages;
627 		hwq_attr.stride = sizeof(dma_addr_t);
628 		hwq_attr.type = HWQ_TYPE_MR;
629 		hwq_attr.sginfo = &sginfo;
630 		hwq_attr.sginfo->umem = umem;
631 		hwq_attr.sginfo->npages = pages;
632 		hwq_attr.sginfo->pgsize = buf_pg_size;
633 		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
634 		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
635 		if (rc) {
636 			dev_err(&res->pdev->dev,
637 				"SP: Reg MR memory allocation failed\n");
638 			return -ENOMEM;
639 		}
640 	}
641 
642 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
643 				 CMDQ_BASE_OPCODE_REGISTER_MR,
644 				 sizeof(req));
645 
646 	/* Configure the request */
647 	if (mr->hwq.level == PBL_LVL_MAX) {
648 		/* No PBL provided, just use system PAGE_SIZE */
649 		level = 0;
650 		req.pbl = 0;
651 		pg_size = PAGE_SIZE;
652 	} else {
653 		level = mr->hwq.level;
654 		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
655 	}
656 	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
657 	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
658 			       ((ilog2(pg_size) <<
659 				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
660 				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
661 	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
662 				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
663 				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
664 	req.access = (mr->flags & 0xFFFF);
665 	req.va = cpu_to_le64(mr->va);
666 	req.key = cpu_to_le32(mr->lkey);
667 	req.mr_size = cpu_to_le64(mr->total_size);
668 
669 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
670 				sizeof(resp), 0);
671 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
672 	if (rc)
673 		goto fail;
674 
675 	return 0;
676 
677 fail:
678 	if (mr->hwq.max_elements)
679 		bnxt_qplib_free_hwq(res, &mr->hwq);
680 	return rc;
681 }
682 
683 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
684 					struct bnxt_qplib_frpl *frpl,
685 					int max_pg_ptrs)
686 {
687 	struct bnxt_qplib_hwq_attr hwq_attr = {};
688 	struct bnxt_qplib_sg_info sginfo = {};
689 	int pg_ptrs, pages, rc;
690 
691 	/* Re-calculate the max to fit the HWQ allocation model */
692 	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
693 	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
694 	if (!pages)
695 		pages++;
696 
697 	if (pages > MAX_PBL_LVL_1_PGS)
698 		return -ENOMEM;
699 
700 	sginfo.pgsize = PAGE_SIZE;
701 	sginfo.nopte = true;
702 
703 	hwq_attr.res = res;
704 	hwq_attr.depth = pg_ptrs;
705 	hwq_attr.stride = PAGE_SIZE;
706 	hwq_attr.sginfo = &sginfo;
707 	hwq_attr.type = HWQ_TYPE_CTX;
708 	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
709 	if (!rc)
710 		frpl->max_pg_ptrs = pg_ptrs;
711 
712 	return rc;
713 }
714 
715 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
716 				       struct bnxt_qplib_frpl *frpl)
717 {
718 	bnxt_qplib_free_hwq(res, &frpl->hwq);
719 	return 0;
720 }
721 
722 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
723 			      struct bnxt_qplib_roce_stats *stats)
724 {
725 	struct creq_query_roce_stats_resp resp = {};
726 	struct creq_query_roce_stats_resp_sb *sb;
727 	struct cmdq_query_roce_stats req = {};
728 	struct bnxt_qplib_cmdqmsg msg = {};
729 	struct bnxt_qplib_rcfw_sbuf sbuf;
730 	int rc;
731 
732 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
733 				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
734 				 sizeof(req));
735 
736 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
737 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
738 				     &sbuf.dma_addr, GFP_KERNEL);
739 	if (!sbuf.sb)
740 		return -ENOMEM;
741 	sb = sbuf.sb;
742 
743 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
744 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
745 				sizeof(resp), 0);
746 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
747 	if (rc)
748 		goto bail;
749 	/* Extract the context from the side buffer */
750 	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
751 	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
752 	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
753 	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
754 	stats->missing_resp = le64_to_cpu(sb->missing_resp);
755 	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
756 	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
757 	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
758 	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
759 	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
760 	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
761 	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
762 	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
763 	stats->dup_req = le64_to_cpu(sb->dup_req);
764 	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
765 	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
766 	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
767 	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
768 	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
769 	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
770 	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
771 	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
772 	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
773 	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
774 	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
775 	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
776 	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
777 	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
778 	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
779 	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
780 	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
781 	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
782 	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
783 	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
784 	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
785 	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
786 	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
787 	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
788 	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
789 	if (!rcfw->init_oos_stats) {
790 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
791 		rcfw->init_oos_stats = 1;
792 	} else {
793 		stats->res_oos_drop_count +=
794 				(le64_to_cpu(sb->res_oos_drop_count) -
795 				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
796 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
797 	}
798 
799 bail:
800 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
801 			  sbuf.sb, sbuf.dma_addr);
802 	return rc;
803 }
804 
805 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
806 			 struct bnxt_qplib_ext_stat *estat)
807 {
808 	struct creq_query_roce_stats_ext_resp resp = {};
809 	struct creq_query_roce_stats_ext_resp_sb *sb;
810 	struct cmdq_query_roce_stats_ext req = {};
811 	struct bnxt_qplib_cmdqmsg msg = {};
812 	struct bnxt_qplib_rcfw_sbuf sbuf;
813 	int rc;
814 
815 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
816 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
817 				     &sbuf.dma_addr, GFP_KERNEL);
818 	if (!sbuf.sb)
819 		return -ENOMEM;
820 
821 	sb = sbuf.sb;
822 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
823 				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
824 				 sizeof(req));
825 
826 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
827 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
828 	req.function_id = cpu_to_le32(fid);
829 	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
830 
831 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
832 				sizeof(resp), 0);
833 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
834 	if (rc)
835 		goto bail;
836 
837 	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
838 	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
839 	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
840 	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
841 	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
842 	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
843 	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
844 	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
845 	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
846 	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
847 	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
848 	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
849 	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
850 	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
851 	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
852 	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
853 	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
854 	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
855 	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
856 	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
857 	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
858 
859 bail:
860 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
861 			  sbuf.sb, sbuf.dma_addr);
862 	return rc;
863 }
864 
865 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
866 				    struct bnxt_qplib_cc_param_ext *cc_ext)
867 {
868 	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
869 	cc_ext->ext_mask = 0;
870 	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
871 	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
872 	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
873 	ext_req->tr_update_mode = cc_ext->tr_update_mode;
874 	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
875 	ext_req->fr_num_rtts = cc_ext->fr_rtt;
876 	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
877 	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
878 	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
879 	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
880 	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
881 	ext_req->actual_cr_factor = cc_ext->cr_factor;
882 	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
883 	ext_req->cp_bias_en = cc_ext->cp_bias_en;
884 	ext_req->cp_bias = cc_ext->cp_bias;
885 	ext_req->cnp_ecn = cc_ext->cnp_ecn;
886 	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
887 	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
888 	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
889 	ext_req->cr_width = cc_ext->cr_width;
890 	ext_req->quota_period_min = cc_ext->min_quota;
891 	ext_req->quota_period_max = cc_ext->max_quota;
892 	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
893 	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
894 	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
895 	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
896 	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
897 	ext_req->red_div = cc_ext->red_div;
898 	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
899 	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
900 	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
901 	ext_req->use_rate_table = cc_ext->low_rate_en;
902 	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
903 	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
904 	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
905 	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
906 	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
907 	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
908 	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
909 	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
910 }
911 
912 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
913 			 struct bnxt_qplib_cc_param *cc_param)
914 {
915 	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
916 	struct creq_modify_roce_cc_resp resp = {};
917 	struct bnxt_qplib_cmdqmsg msg = {};
918 	struct cmdq_modify_roce_cc *req;
919 	int req_size;
920 	void *cmd;
921 	int rc;
922 
923 	/* Prepare the older base command */
924 	req = &tlv_req.base_req;
925 	cmd = req;
926 	req_size = sizeof(*req);
927 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
928 				 sizeof(*req));
929 	req->modify_mask = cpu_to_le32(cc_param->mask);
930 	req->enable_cc = cc_param->enable;
931 	req->g = cc_param->g;
932 	req->num_phases_per_state = cc_param->nph_per_state;
933 	req->time_per_phase = cc_param->time_pph;
934 	req->pkts_per_phase = cc_param->pkts_pph;
935 	req->init_cr = cpu_to_le16(cc_param->init_cr);
936 	req->init_tr = cpu_to_le16(cc_param->init_tr);
937 	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
938 				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
939 	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
940 	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
941 	req->rtt = cpu_to_le16(cc_param->rtt);
942 	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
943 	req->cc_mode = cc_param->cc_mode;
944 	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
945 
946 	/* For chip gen P5 onwards fill extended cmd and header */
947 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
948 		struct roce_tlv *hdr;
949 		u32 payload;
950 		u32 chunks;
951 
952 		cmd = &tlv_req;
953 		req_size = sizeof(tlv_req);
954 		/* Prepare primary tlv header */
955 		hdr = &tlv_req.tlv_hdr;
956 		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
957 		payload = sizeof(struct cmdq_modify_roce_cc);
958 		__roce_1st_tlv_prep(hdr, chunks, payload, true);
959 		/* Prepare secondary tlv header */
960 		hdr = (struct roce_tlv *)&tlv_req.ext_req;
961 		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
962 			  sizeof(struct roce_tlv);
963 		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
964 		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
965 	}
966 
967 	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
968 				sizeof(resp), 0);
969 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
970 	return rc;
971 }
972