1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: Slow Path Operators
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/interrupt.h>
42 #include <linux/spinlock.h>
43 #include <linux/sched.h>
44 #include <linux/pci.h>
45 
46 #include "roce_hsi.h"
47 
48 #include "qplib_res.h"
49 #include "qplib_rcfw.h"
50 #include "qplib_sp.h"
51 #include "qplib_tlv.h"
52 
53 const struct bnxt_qplib_gid bnxt_qplib_gid_zero = {{ 0, 0, 0, 0, 0, 0, 0, 0,
54 						     0, 0, 0, 0, 0, 0, 0, 0 } };
55 
56 /* Device */
57 
58 static bool bnxt_qplib_is_atomic_cap(struct bnxt_qplib_rcfw *rcfw)
59 {
60 	u16 pcie_ctl2 = 0;
61 
62 	if (!bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx))
63 		return false;
64 
65 	pcie_capability_read_word(rcfw->pdev, PCI_EXP_DEVCTL2, &pcie_ctl2);
66 	return (pcie_ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
67 }
68 
69 static void bnxt_qplib_query_version(struct bnxt_qplib_rcfw *rcfw,
70 				     char *fw_ver)
71 {
72 	struct creq_query_version_resp resp = {};
73 	struct bnxt_qplib_cmdqmsg msg = {};
74 	struct cmdq_query_version req = {};
75 	int rc;
76 
77 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
78 				 CMDQ_BASE_OPCODE_QUERY_VERSION,
79 				 sizeof(req));
80 
81 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req), sizeof(resp), 0);
82 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
83 	if (rc)
84 		return;
85 	fw_ver[0] = resp.fw_maj;
86 	fw_ver[1] = resp.fw_minor;
87 	fw_ver[2] = resp.fw_bld;
88 	fw_ver[3] = resp.fw_rsvd;
89 }
90 
91 int bnxt_qplib_get_dev_attr(struct bnxt_qplib_rcfw *rcfw,
92 			    struct bnxt_qplib_dev_attr *attr)
93 {
94 	struct creq_query_func_resp resp = {};
95 	struct bnxt_qplib_cmdqmsg msg = {};
96 	struct creq_query_func_resp_sb *sb;
97 	struct bnxt_qplib_rcfw_sbuf sbuf;
98 	struct cmdq_query_func req = {};
99 	u8 *tqm_alloc;
100 	int i, rc;
101 	u32 temp;
102 
103 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
104 				 CMDQ_BASE_OPCODE_QUERY_FUNC,
105 				 sizeof(req));
106 
107 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
108 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
109 				     &sbuf.dma_addr, GFP_KERNEL);
110 	if (!sbuf.sb)
111 		return -ENOMEM;
112 	sb = sbuf.sb;
113 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
114 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
115 				sizeof(resp), 0);
116 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
117 	if (rc)
118 		goto bail;
119 
120 	/* Extract the context from the side buffer */
121 	attr->max_qp = le32_to_cpu(sb->max_qp);
122 	/* max_qp value reported by FW doesn't include the QP1 */
123 	attr->max_qp += 1;
124 	attr->max_qp_rd_atom =
125 		sb->max_qp_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
126 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_rd_atom;
127 	attr->max_qp_init_rd_atom =
128 		sb->max_qp_init_rd_atom > BNXT_QPLIB_MAX_OUT_RD_ATOM ?
129 		BNXT_QPLIB_MAX_OUT_RD_ATOM : sb->max_qp_init_rd_atom;
130 	attr->max_qp_wqes = le16_to_cpu(sb->max_qp_wr);
131 	/*
132 	 * 128 WQEs needs to be reserved for the HW (8916). Prevent
133 	 * reporting the max number
134 	 */
135 	attr->max_qp_wqes -= BNXT_QPLIB_RESERVED_QP_WRS + 1;
136 	attr->max_qp_sges = bnxt_qplib_is_chip_gen_p5_p7(rcfw->res->cctx) ?
137 			    6 : sb->max_sge;
138 	attr->max_cq = le32_to_cpu(sb->max_cq);
139 	attr->max_cq_wqes = le32_to_cpu(sb->max_cqe);
140 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
141 		attr->max_cq_wqes = min_t(u32, BNXT_QPLIB_MAX_CQ_WQES, attr->max_cq_wqes);
142 	attr->max_cq_sges = attr->max_qp_sges;
143 	attr->max_mr = le32_to_cpu(sb->max_mr);
144 	attr->max_mw = le32_to_cpu(sb->max_mw);
145 
146 	attr->max_mr_size = le64_to_cpu(sb->max_mr_size);
147 	attr->max_pd = 64 * 1024;
148 	attr->max_raw_ethy_qp = le32_to_cpu(sb->max_raw_eth_qp);
149 	attr->max_ah = le32_to_cpu(sb->max_ah);
150 
151 	attr->max_srq = le16_to_cpu(sb->max_srq);
152 	attr->max_srq_wqes = le32_to_cpu(sb->max_srq_wr) - 1;
153 	attr->max_srq_sges = sb->max_srq_sge;
154 	attr->max_pkey = 1;
155 	attr->max_inline_data = le32_to_cpu(sb->max_inline_data);
156 	if (!bnxt_qplib_is_chip_gen_p7(rcfw->res->cctx))
157 		attr->l2_db_size = (sb->l2_db_space_size + 1) *
158 				    (0x01 << RCFW_DBR_BASE_PAGE_SHIFT);
159 	attr->max_sgid = BNXT_QPLIB_NUM_GIDS_SUPPORTED;
160 	attr->dev_cap_flags = le16_to_cpu(sb->dev_cap_flags);
161 
162 	bnxt_qplib_query_version(rcfw, attr->fw_ver);
163 
164 	for (i = 0; i < MAX_TQM_ALLOC_REQ / 4; i++) {
165 		temp = le32_to_cpu(sb->tqm_alloc_reqs[i]);
166 		tqm_alloc = (u8 *)&temp;
167 		attr->tqm_alloc_reqs[i * 4] = *tqm_alloc;
168 		attr->tqm_alloc_reqs[i * 4 + 1] = *(++tqm_alloc);
169 		attr->tqm_alloc_reqs[i * 4 + 2] = *(++tqm_alloc);
170 		attr->tqm_alloc_reqs[i * 4 + 3] = *(++tqm_alloc);
171 	}
172 
173 	if (rcfw->res->cctx->hwrm_intf_ver >= HWRM_VERSION_DEV_ATTR_MAX_DPI)
174 		attr->max_dpi = le32_to_cpu(sb->max_dpi);
175 
176 	attr->is_atomic = bnxt_qplib_is_atomic_cap(rcfw);
177 bail:
178 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
179 			  sbuf.sb, sbuf.dma_addr);
180 	return rc;
181 }
182 
183 int bnxt_qplib_set_func_resources(struct bnxt_qplib_res *res,
184 				  struct bnxt_qplib_rcfw *rcfw,
185 				  struct bnxt_qplib_ctx *ctx)
186 {
187 	struct creq_set_func_resources_resp resp = {};
188 	struct cmdq_set_func_resources req = {};
189 	struct bnxt_qplib_cmdqmsg msg = {};
190 	int rc;
191 
192 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
193 				 CMDQ_BASE_OPCODE_SET_FUNC_RESOURCES,
194 				 sizeof(req));
195 
196 	req.number_of_qp = cpu_to_le32(ctx->qpc_count);
197 	req.number_of_mrw = cpu_to_le32(ctx->mrw_count);
198 	req.number_of_srq =  cpu_to_le32(ctx->srqc_count);
199 	req.number_of_cq = cpu_to_le32(ctx->cq_count);
200 
201 	req.max_qp_per_vf = cpu_to_le32(ctx->vf_res.max_qp_per_vf);
202 	req.max_mrw_per_vf = cpu_to_le32(ctx->vf_res.max_mrw_per_vf);
203 	req.max_srq_per_vf = cpu_to_le32(ctx->vf_res.max_srq_per_vf);
204 	req.max_cq_per_vf = cpu_to_le32(ctx->vf_res.max_cq_per_vf);
205 	req.max_gid_per_vf = cpu_to_le32(ctx->vf_res.max_gid_per_vf);
206 
207 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
208 				sizeof(resp), 0);
209 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
210 	if (rc) {
211 		dev_err(&res->pdev->dev, "Failed to set function resources\n");
212 	}
213 	return rc;
214 }
215 
216 /* SGID */
217 int bnxt_qplib_get_sgid(struct bnxt_qplib_res *res,
218 			struct bnxt_qplib_sgid_tbl *sgid_tbl, int index,
219 			struct bnxt_qplib_gid *gid)
220 {
221 	if (index >= sgid_tbl->max) {
222 		dev_err(&res->pdev->dev,
223 			"Index %d exceeded SGID table max (%d)\n",
224 			index, sgid_tbl->max);
225 		return -EINVAL;
226 	}
227 	memcpy(gid, &sgid_tbl->tbl[index].gid, sizeof(*gid));
228 	return 0;
229 }
230 
231 int bnxt_qplib_del_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
232 			struct bnxt_qplib_gid *gid, u16 vlan_id, bool update)
233 {
234 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
235 						   struct bnxt_qplib_res,
236 						   sgid_tbl);
237 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
238 	int index;
239 
240 	/* Do we need a sgid_lock here? */
241 	if (!sgid_tbl->active) {
242 		dev_err(&res->pdev->dev, "SGID table has no active entries\n");
243 		return -ENOMEM;
244 	}
245 	for (index = 0; index < sgid_tbl->max; index++) {
246 		if (!memcmp(&sgid_tbl->tbl[index].gid, gid, sizeof(*gid)) &&
247 		    vlan_id == sgid_tbl->tbl[index].vlan_id)
248 			break;
249 	}
250 	if (index == sgid_tbl->max) {
251 		dev_warn(&res->pdev->dev, "GID not found in the SGID table\n");
252 		return 0;
253 	}
254 	/* Remove GID from the SGID table */
255 	if (update) {
256 		struct creq_delete_gid_resp resp = {};
257 		struct bnxt_qplib_cmdqmsg msg = {};
258 		struct cmdq_delete_gid req = {};
259 		int rc;
260 
261 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
262 					 CMDQ_BASE_OPCODE_DELETE_GID,
263 					 sizeof(req));
264 		if (sgid_tbl->hw_id[index] == 0xFFFF) {
265 			dev_err(&res->pdev->dev,
266 				"GID entry contains an invalid HW id\n");
267 			return -EINVAL;
268 		}
269 		req.gid_index = cpu_to_le16(sgid_tbl->hw_id[index]);
270 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
271 					sizeof(resp), 0);
272 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
273 		if (rc)
274 			return rc;
275 	}
276 	memcpy(&sgid_tbl->tbl[index].gid, &bnxt_qplib_gid_zero,
277 	       sizeof(bnxt_qplib_gid_zero));
278 	sgid_tbl->tbl[index].vlan_id = 0xFFFF;
279 	sgid_tbl->vlan[index] = 0;
280 	sgid_tbl->active--;
281 	dev_dbg(&res->pdev->dev,
282 		"SGID deleted hw_id[0x%x] = 0x%x active = 0x%x\n",
283 		 index, sgid_tbl->hw_id[index], sgid_tbl->active);
284 	sgid_tbl->hw_id[index] = (u16)-1;
285 
286 	/* unlock */
287 	return 0;
288 }
289 
290 int bnxt_qplib_add_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
291 			struct bnxt_qplib_gid *gid, const u8 *smac,
292 			u16 vlan_id, bool update, u32 *index)
293 {
294 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
295 						   struct bnxt_qplib_res,
296 						   sgid_tbl);
297 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
298 	int i, free_idx;
299 
300 	/* Do we need a sgid_lock here? */
301 	if (sgid_tbl->active == sgid_tbl->max) {
302 		dev_err(&res->pdev->dev, "SGID table is full\n");
303 		return -ENOMEM;
304 	}
305 	free_idx = sgid_tbl->max;
306 	for (i = 0; i < sgid_tbl->max; i++) {
307 		if (!memcmp(&sgid_tbl->tbl[i], gid, sizeof(*gid)) &&
308 		    sgid_tbl->tbl[i].vlan_id == vlan_id) {
309 			dev_dbg(&res->pdev->dev,
310 				"SGID entry already exist in entry %d!\n", i);
311 			*index = i;
312 			return -EALREADY;
313 		} else if (!memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
314 				   sizeof(bnxt_qplib_gid_zero)) &&
315 			   free_idx == sgid_tbl->max) {
316 			free_idx = i;
317 		}
318 	}
319 	if (free_idx == sgid_tbl->max) {
320 		dev_err(&res->pdev->dev,
321 			"SGID table is FULL but count is not MAX??\n");
322 		return -ENOMEM;
323 	}
324 	if (update) {
325 		struct creq_add_gid_resp resp = {};
326 		struct bnxt_qplib_cmdqmsg msg = {};
327 		struct cmdq_add_gid req = {};
328 		int rc;
329 
330 		bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
331 					 CMDQ_BASE_OPCODE_ADD_GID,
332 					 sizeof(req));
333 
334 		req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
335 		req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
336 		req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
337 		req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
338 		/*
339 		 * driver should ensure that all RoCE traffic is always VLAN
340 		 * tagged if RoCE traffic is running on non-zero VLAN ID or
341 		 * RoCE traffic is running on non-zero Priority.
342 		 */
343 		if ((vlan_id != 0xFFFF) || res->prio) {
344 			if (vlan_id != 0xFFFF)
345 				req.vlan = cpu_to_le16
346 				(vlan_id & CMDQ_ADD_GID_VLAN_VLAN_ID_MASK);
347 			req.vlan |= cpu_to_le16
348 					(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
349 					 CMDQ_ADD_GID_VLAN_VLAN_EN);
350 		}
351 
352 		/* MAC in network format */
353 		req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
354 		req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
355 		req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
356 
357 		bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
358 					sizeof(resp), 0);
359 		rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
360 		if (rc)
361 			return rc;
362 		sgid_tbl->hw_id[free_idx] = le32_to_cpu(resp.xid);
363 	}
364 	/* Add GID to the sgid_tbl */
365 	memcpy(&sgid_tbl->tbl[free_idx], gid, sizeof(*gid));
366 	sgid_tbl->tbl[free_idx].vlan_id = vlan_id;
367 	sgid_tbl->active++;
368 	if (vlan_id != 0xFFFF)
369 		sgid_tbl->vlan[free_idx] = 1;
370 
371 	dev_dbg(&res->pdev->dev,
372 		"SGID added hw_id[0x%x] = 0x%x active = 0x%x\n",
373 		 free_idx, sgid_tbl->hw_id[free_idx], sgid_tbl->active);
374 
375 	*index = free_idx;
376 	/* unlock */
377 	return 0;
378 }
379 
380 int bnxt_qplib_update_sgid(struct bnxt_qplib_sgid_tbl *sgid_tbl,
381 			   struct bnxt_qplib_gid *gid, u16 gid_idx,
382 			   const u8 *smac)
383 {
384 	struct bnxt_qplib_res *res = to_bnxt_qplib(sgid_tbl,
385 						   struct bnxt_qplib_res,
386 						   sgid_tbl);
387 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
388 	struct creq_modify_gid_resp resp = {};
389 	struct bnxt_qplib_cmdqmsg msg = {};
390 	struct cmdq_modify_gid req = {};
391 	int rc;
392 
393 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
394 				 CMDQ_BASE_OPCODE_MODIFY_GID,
395 				 sizeof(req));
396 
397 	req.gid[0] = cpu_to_be32(((u32 *)gid->data)[3]);
398 	req.gid[1] = cpu_to_be32(((u32 *)gid->data)[2]);
399 	req.gid[2] = cpu_to_be32(((u32 *)gid->data)[1]);
400 	req.gid[3] = cpu_to_be32(((u32 *)gid->data)[0]);
401 	if (res->prio) {
402 		req.vlan |= cpu_to_le16
403 			(CMDQ_ADD_GID_VLAN_TPID_TPID_8100 |
404 			 CMDQ_ADD_GID_VLAN_VLAN_EN);
405 	}
406 
407 	/* MAC in network format */
408 	req.src_mac[0] = cpu_to_be16(((u16 *)smac)[0]);
409 	req.src_mac[1] = cpu_to_be16(((u16 *)smac)[1]);
410 	req.src_mac[2] = cpu_to_be16(((u16 *)smac)[2]);
411 
412 	req.gid_index = cpu_to_le16(gid_idx);
413 
414 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
415 				sizeof(resp), 0);
416 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
417 	return rc;
418 }
419 
420 /* AH */
421 int bnxt_qplib_create_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
422 			 bool block)
423 {
424 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
425 	struct creq_create_ah_resp resp = {};
426 	struct bnxt_qplib_cmdqmsg msg = {};
427 	struct cmdq_create_ah req = {};
428 	u32 temp32[4];
429 	u16 temp16[3];
430 	int rc;
431 
432 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
433 				 CMDQ_BASE_OPCODE_CREATE_AH,
434 				 sizeof(req));
435 
436 	memcpy(temp32, ah->dgid.data, sizeof(struct bnxt_qplib_gid));
437 	req.dgid[0] = cpu_to_le32(temp32[0]);
438 	req.dgid[1] = cpu_to_le32(temp32[1]);
439 	req.dgid[2] = cpu_to_le32(temp32[2]);
440 	req.dgid[3] = cpu_to_le32(temp32[3]);
441 
442 	req.type = ah->nw_type;
443 	req.hop_limit = ah->hop_limit;
444 	req.sgid_index = cpu_to_le16(res->sgid_tbl.hw_id[ah->sgid_index]);
445 	req.dest_vlan_id_flow_label = cpu_to_le32((ah->flow_label &
446 					CMDQ_CREATE_AH_FLOW_LABEL_MASK) |
447 					CMDQ_CREATE_AH_DEST_VLAN_ID_MASK);
448 	req.pd_id = cpu_to_le32(ah->pd->id);
449 	req.traffic_class = ah->traffic_class;
450 
451 	/* MAC in network format */
452 	memcpy(temp16, ah->dmac, 6);
453 	req.dest_mac[0] = cpu_to_le16(temp16[0]);
454 	req.dest_mac[1] = cpu_to_le16(temp16[1]);
455 	req.dest_mac[2] = cpu_to_le16(temp16[2]);
456 
457 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
458 				sizeof(resp), block);
459 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
460 	if (rc)
461 		return rc;
462 
463 	ah->id = le32_to_cpu(resp.xid);
464 	return 0;
465 }
466 
467 int bnxt_qplib_destroy_ah(struct bnxt_qplib_res *res, struct bnxt_qplib_ah *ah,
468 			  bool block)
469 {
470 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
471 	struct creq_destroy_ah_resp resp = {};
472 	struct bnxt_qplib_cmdqmsg msg = {};
473 	struct cmdq_destroy_ah req = {};
474 	int rc;
475 
476 	/* Clean up the AH table in the device */
477 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
478 				 CMDQ_BASE_OPCODE_DESTROY_AH,
479 				 sizeof(req));
480 
481 	req.ah_cid = cpu_to_le32(ah->id);
482 
483 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
484 				sizeof(resp), block);
485 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
486 	return rc;
487 }
488 
489 /* MRW */
490 int bnxt_qplib_free_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
491 {
492 	struct creq_deallocate_key_resp resp = {};
493 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
494 	struct cmdq_deallocate_key req = {};
495 	struct bnxt_qplib_cmdqmsg msg = {};
496 	int rc;
497 
498 	if (mrw->lkey == 0xFFFFFFFF) {
499 		dev_info(&res->pdev->dev, "SP: Free a reserved lkey MRW\n");
500 		return 0;
501 	}
502 
503 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
504 				 CMDQ_BASE_OPCODE_DEALLOCATE_KEY,
505 				 sizeof(req));
506 
507 	req.mrw_flags = mrw->type;
508 
509 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
510 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
511 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
512 		req.key = cpu_to_le32(mrw->rkey);
513 	else
514 		req.key = cpu_to_le32(mrw->lkey);
515 
516 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
517 				sizeof(resp), 0);
518 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
519 	if (rc)
520 		return rc;
521 
522 	/* Free the qplib's MRW memory */
523 	if (mrw->hwq.max_elements)
524 		bnxt_qplib_free_hwq(res, &mrw->hwq);
525 
526 	return 0;
527 }
528 
529 int bnxt_qplib_alloc_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw)
530 {
531 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
532 	struct creq_allocate_mrw_resp resp = {};
533 	struct bnxt_qplib_cmdqmsg msg = {};
534 	struct cmdq_allocate_mrw req = {};
535 	unsigned long tmp;
536 	int rc;
537 
538 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
539 				 CMDQ_BASE_OPCODE_ALLOCATE_MRW,
540 				 sizeof(req));
541 
542 	req.pd_id = cpu_to_le32(mrw->pd->id);
543 	req.mrw_flags = mrw->type;
544 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_PMR &&
545 	     mrw->flags & BNXT_QPLIB_FR_PMR) ||
546 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A ||
547 	    mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B)
548 		req.access = CMDQ_ALLOCATE_MRW_ACCESS_CONSUMER_OWNED_KEY;
549 	tmp = (unsigned long)mrw;
550 	req.mrw_handle = cpu_to_le64(tmp);
551 
552 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
553 				sizeof(resp), 0);
554 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
555 	if (rc)
556 		return rc;
557 
558 	if ((mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE1)  ||
559 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2A) ||
560 	    (mrw->type == CMDQ_ALLOCATE_MRW_MRW_FLAGS_MW_TYPE2B))
561 		mrw->rkey = le32_to_cpu(resp.xid);
562 	else
563 		mrw->lkey = le32_to_cpu(resp.xid);
564 	return 0;
565 }
566 
567 int bnxt_qplib_dereg_mrw(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mrw,
568 			 bool block)
569 {
570 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
571 	struct creq_deregister_mr_resp resp = {};
572 	struct bnxt_qplib_cmdqmsg msg = {};
573 	struct cmdq_deregister_mr req = {};
574 	int rc;
575 
576 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
577 				 CMDQ_BASE_OPCODE_DEREGISTER_MR,
578 				 sizeof(req));
579 
580 	req.lkey = cpu_to_le32(mrw->lkey);
581 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
582 				sizeof(resp), block);
583 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
584 	if (rc)
585 		return rc;
586 
587 	/* Free the qplib's MR memory */
588 	if (mrw->hwq.max_elements) {
589 		mrw->va = 0;
590 		mrw->total_size = 0;
591 		bnxt_qplib_free_hwq(res, &mrw->hwq);
592 	}
593 
594 	return 0;
595 }
596 
597 int bnxt_qplib_reg_mr(struct bnxt_qplib_res *res, struct bnxt_qplib_mrw *mr,
598 		      struct ib_umem *umem, int num_pbls, u32 buf_pg_size)
599 {
600 	struct bnxt_qplib_rcfw *rcfw = res->rcfw;
601 	struct bnxt_qplib_hwq_attr hwq_attr = {};
602 	struct bnxt_qplib_sg_info sginfo = {};
603 	struct creq_register_mr_resp resp = {};
604 	struct bnxt_qplib_cmdqmsg msg = {};
605 	struct cmdq_register_mr req = {};
606 	int pages, rc;
607 	u32 pg_size;
608 	u16 level;
609 
610 	if (num_pbls) {
611 		pages = roundup_pow_of_two(num_pbls);
612 		/* Allocate memory for the non-leaf pages to store buf ptrs.
613 		 * Non-leaf pages always uses system PAGE_SIZE
614 		 */
615 		/* Free the hwq if it already exist, must be a rereg */
616 		if (mr->hwq.max_elements)
617 			bnxt_qplib_free_hwq(res, &mr->hwq);
618 		hwq_attr.res = res;
619 		hwq_attr.depth = pages;
620 		hwq_attr.stride = sizeof(dma_addr_t);
621 		hwq_attr.type = HWQ_TYPE_MR;
622 		hwq_attr.sginfo = &sginfo;
623 		hwq_attr.sginfo->umem = umem;
624 		hwq_attr.sginfo->npages = pages;
625 		hwq_attr.sginfo->pgsize = buf_pg_size;
626 		hwq_attr.sginfo->pgshft = ilog2(buf_pg_size);
627 		rc = bnxt_qplib_alloc_init_hwq(&mr->hwq, &hwq_attr);
628 		if (rc) {
629 			dev_err(&res->pdev->dev,
630 				"SP: Reg MR memory allocation failed\n");
631 			return -ENOMEM;
632 		}
633 	}
634 
635 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
636 				 CMDQ_BASE_OPCODE_REGISTER_MR,
637 				 sizeof(req));
638 
639 	/* Configure the request */
640 	if (mr->hwq.level == PBL_LVL_MAX) {
641 		/* No PBL provided, just use system PAGE_SIZE */
642 		level = 0;
643 		req.pbl = 0;
644 		pg_size = PAGE_SIZE;
645 	} else {
646 		level = mr->hwq.level;
647 		req.pbl = cpu_to_le64(mr->hwq.pbl[PBL_LVL_0].pg_map_arr[0]);
648 	}
649 	pg_size = buf_pg_size ? buf_pg_size : PAGE_SIZE;
650 	req.log2_pg_size_lvl = (level << CMDQ_REGISTER_MR_LVL_SFT) |
651 			       ((ilog2(pg_size) <<
652 				 CMDQ_REGISTER_MR_LOG2_PG_SIZE_SFT) &
653 				CMDQ_REGISTER_MR_LOG2_PG_SIZE_MASK);
654 	req.log2_pbl_pg_size = cpu_to_le16(((ilog2(PAGE_SIZE) <<
655 				 CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_SFT) &
656 				CMDQ_REGISTER_MR_LOG2_PBL_PG_SIZE_MASK));
657 	req.access = (mr->flags & 0xFFFF);
658 	req.va = cpu_to_le64(mr->va);
659 	req.key = cpu_to_le32(mr->lkey);
660 	req.mr_size = cpu_to_le64(mr->total_size);
661 
662 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, NULL, sizeof(req),
663 				sizeof(resp), 0);
664 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
665 	if (rc)
666 		goto fail;
667 
668 	return 0;
669 
670 fail:
671 	if (mr->hwq.max_elements)
672 		bnxt_qplib_free_hwq(res, &mr->hwq);
673 	return rc;
674 }
675 
676 int bnxt_qplib_alloc_fast_reg_page_list(struct bnxt_qplib_res *res,
677 					struct bnxt_qplib_frpl *frpl,
678 					int max_pg_ptrs)
679 {
680 	struct bnxt_qplib_hwq_attr hwq_attr = {};
681 	struct bnxt_qplib_sg_info sginfo = {};
682 	int pg_ptrs, pages, rc;
683 
684 	/* Re-calculate the max to fit the HWQ allocation model */
685 	pg_ptrs = roundup_pow_of_two(max_pg_ptrs);
686 	pages = pg_ptrs >> MAX_PBL_LVL_1_PGS_SHIFT;
687 	if (!pages)
688 		pages++;
689 
690 	if (pages > MAX_PBL_LVL_1_PGS)
691 		return -ENOMEM;
692 
693 	sginfo.pgsize = PAGE_SIZE;
694 	sginfo.nopte = true;
695 
696 	hwq_attr.res = res;
697 	hwq_attr.depth = pg_ptrs;
698 	hwq_attr.stride = PAGE_SIZE;
699 	hwq_attr.sginfo = &sginfo;
700 	hwq_attr.type = HWQ_TYPE_CTX;
701 	rc = bnxt_qplib_alloc_init_hwq(&frpl->hwq, &hwq_attr);
702 	if (!rc)
703 		frpl->max_pg_ptrs = pg_ptrs;
704 
705 	return rc;
706 }
707 
708 int bnxt_qplib_free_fast_reg_page_list(struct bnxt_qplib_res *res,
709 				       struct bnxt_qplib_frpl *frpl)
710 {
711 	bnxt_qplib_free_hwq(res, &frpl->hwq);
712 	return 0;
713 }
714 
715 int bnxt_qplib_get_roce_stats(struct bnxt_qplib_rcfw *rcfw,
716 			      struct bnxt_qplib_roce_stats *stats)
717 {
718 	struct creq_query_roce_stats_resp resp = {};
719 	struct creq_query_roce_stats_resp_sb *sb;
720 	struct cmdq_query_roce_stats req = {};
721 	struct bnxt_qplib_cmdqmsg msg = {};
722 	struct bnxt_qplib_rcfw_sbuf sbuf;
723 	int rc;
724 
725 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
726 				 CMDQ_BASE_OPCODE_QUERY_ROCE_STATS,
727 				 sizeof(req));
728 
729 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
730 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
731 				     &sbuf.dma_addr, GFP_KERNEL);
732 	if (!sbuf.sb)
733 		return -ENOMEM;
734 	sb = sbuf.sb;
735 
736 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
737 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
738 				sizeof(resp), 0);
739 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
740 	if (rc)
741 		goto bail;
742 	/* Extract the context from the side buffer */
743 	stats->to_retransmits = le64_to_cpu(sb->to_retransmits);
744 	stats->seq_err_naks_rcvd = le64_to_cpu(sb->seq_err_naks_rcvd);
745 	stats->max_retry_exceeded = le64_to_cpu(sb->max_retry_exceeded);
746 	stats->rnr_naks_rcvd = le64_to_cpu(sb->rnr_naks_rcvd);
747 	stats->missing_resp = le64_to_cpu(sb->missing_resp);
748 	stats->unrecoverable_err = le64_to_cpu(sb->unrecoverable_err);
749 	stats->bad_resp_err = le64_to_cpu(sb->bad_resp_err);
750 	stats->local_qp_op_err = le64_to_cpu(sb->local_qp_op_err);
751 	stats->local_protection_err = le64_to_cpu(sb->local_protection_err);
752 	stats->mem_mgmt_op_err = le64_to_cpu(sb->mem_mgmt_op_err);
753 	stats->remote_invalid_req_err = le64_to_cpu(sb->remote_invalid_req_err);
754 	stats->remote_access_err = le64_to_cpu(sb->remote_access_err);
755 	stats->remote_op_err = le64_to_cpu(sb->remote_op_err);
756 	stats->dup_req = le64_to_cpu(sb->dup_req);
757 	stats->res_exceed_max = le64_to_cpu(sb->res_exceed_max);
758 	stats->res_length_mismatch = le64_to_cpu(sb->res_length_mismatch);
759 	stats->res_exceeds_wqe = le64_to_cpu(sb->res_exceeds_wqe);
760 	stats->res_opcode_err = le64_to_cpu(sb->res_opcode_err);
761 	stats->res_rx_invalid_rkey = le64_to_cpu(sb->res_rx_invalid_rkey);
762 	stats->res_rx_domain_err = le64_to_cpu(sb->res_rx_domain_err);
763 	stats->res_rx_no_perm = le64_to_cpu(sb->res_rx_no_perm);
764 	stats->res_rx_range_err = le64_to_cpu(sb->res_rx_range_err);
765 	stats->res_tx_invalid_rkey = le64_to_cpu(sb->res_tx_invalid_rkey);
766 	stats->res_tx_domain_err = le64_to_cpu(sb->res_tx_domain_err);
767 	stats->res_tx_no_perm = le64_to_cpu(sb->res_tx_no_perm);
768 	stats->res_tx_range_err = le64_to_cpu(sb->res_tx_range_err);
769 	stats->res_irrq_oflow = le64_to_cpu(sb->res_irrq_oflow);
770 	stats->res_unsup_opcode = le64_to_cpu(sb->res_unsup_opcode);
771 	stats->res_unaligned_atomic = le64_to_cpu(sb->res_unaligned_atomic);
772 	stats->res_rem_inv_err = le64_to_cpu(sb->res_rem_inv_err);
773 	stats->res_mem_error = le64_to_cpu(sb->res_mem_error);
774 	stats->res_srq_err = le64_to_cpu(sb->res_srq_err);
775 	stats->res_cmp_err = le64_to_cpu(sb->res_cmp_err);
776 	stats->res_invalid_dup_rkey = le64_to_cpu(sb->res_invalid_dup_rkey);
777 	stats->res_wqe_format_err = le64_to_cpu(sb->res_wqe_format_err);
778 	stats->res_cq_load_err = le64_to_cpu(sb->res_cq_load_err);
779 	stats->res_srq_load_err = le64_to_cpu(sb->res_srq_load_err);
780 	stats->res_tx_pci_err = le64_to_cpu(sb->res_tx_pci_err);
781 	stats->res_rx_pci_err = le64_to_cpu(sb->res_rx_pci_err);
782 	if (!rcfw->init_oos_stats) {
783 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
784 		rcfw->init_oos_stats = 1;
785 	} else {
786 		stats->res_oos_drop_count +=
787 				(le64_to_cpu(sb->res_oos_drop_count) -
788 				 rcfw->oos_prev) & BNXT_QPLIB_OOS_COUNT_MASK;
789 		rcfw->oos_prev = le64_to_cpu(sb->res_oos_drop_count);
790 	}
791 
792 bail:
793 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
794 			  sbuf.sb, sbuf.dma_addr);
795 	return rc;
796 }
797 
798 int bnxt_qplib_qext_stat(struct bnxt_qplib_rcfw *rcfw, u32 fid,
799 			 struct bnxt_qplib_ext_stat *estat)
800 {
801 	struct creq_query_roce_stats_ext_resp resp = {};
802 	struct creq_query_roce_stats_ext_resp_sb *sb;
803 	struct cmdq_query_roce_stats_ext req = {};
804 	struct bnxt_qplib_cmdqmsg msg = {};
805 	struct bnxt_qplib_rcfw_sbuf sbuf;
806 	int rc;
807 
808 	sbuf.size = ALIGN(sizeof(*sb), BNXT_QPLIB_CMDQE_UNITS);
809 	sbuf.sb = dma_alloc_coherent(&rcfw->pdev->dev, sbuf.size,
810 				     &sbuf.dma_addr, GFP_KERNEL);
811 	if (!sbuf.sb)
812 		return -ENOMEM;
813 
814 	sb = sbuf.sb;
815 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)&req,
816 				 CMDQ_QUERY_ROCE_STATS_EXT_OPCODE_QUERY_ROCE_STATS,
817 				 sizeof(req));
818 
819 	req.resp_size = sbuf.size / BNXT_QPLIB_CMDQE_UNITS;
820 	req.resp_addr = cpu_to_le64(sbuf.dma_addr);
821 	req.function_id = cpu_to_le32(fid);
822 	req.flags = cpu_to_le16(CMDQ_QUERY_ROCE_STATS_EXT_FLAGS_FUNCTION_ID);
823 
824 	bnxt_qplib_fill_cmdqmsg(&msg, &req, &resp, &sbuf, sizeof(req),
825 				sizeof(resp), 0);
826 	rc = bnxt_qplib_rcfw_send_message(rcfw, &msg);
827 	if (rc)
828 		goto bail;
829 
830 	estat->tx_atomic_req = le64_to_cpu(sb->tx_atomic_req_pkts);
831 	estat->tx_read_req = le64_to_cpu(sb->tx_read_req_pkts);
832 	estat->tx_read_res = le64_to_cpu(sb->tx_read_res_pkts);
833 	estat->tx_write_req = le64_to_cpu(sb->tx_write_req_pkts);
834 	estat->tx_send_req = le64_to_cpu(sb->tx_send_req_pkts);
835 	estat->tx_roce_pkts = le64_to_cpu(sb->tx_roce_pkts);
836 	estat->tx_roce_bytes = le64_to_cpu(sb->tx_roce_bytes);
837 	estat->rx_atomic_req = le64_to_cpu(sb->rx_atomic_req_pkts);
838 	estat->rx_read_req = le64_to_cpu(sb->rx_read_req_pkts);
839 	estat->rx_read_res = le64_to_cpu(sb->rx_read_res_pkts);
840 	estat->rx_write_req = le64_to_cpu(sb->rx_write_req_pkts);
841 	estat->rx_send_req = le64_to_cpu(sb->rx_send_req_pkts);
842 	estat->rx_roce_pkts = le64_to_cpu(sb->rx_roce_pkts);
843 	estat->rx_roce_bytes = le64_to_cpu(sb->rx_roce_bytes);
844 	estat->rx_roce_good_pkts = le64_to_cpu(sb->rx_roce_good_pkts);
845 	estat->rx_roce_good_bytes = le64_to_cpu(sb->rx_roce_good_bytes);
846 	estat->rx_out_of_buffer = le64_to_cpu(sb->rx_out_of_buffer_pkts);
847 	estat->rx_out_of_sequence = le64_to_cpu(sb->rx_out_of_sequence_pkts);
848 	estat->tx_cnp = le64_to_cpu(sb->tx_cnp_pkts);
849 	estat->rx_cnp = le64_to_cpu(sb->rx_cnp_pkts);
850 	estat->rx_ecn_marked = le64_to_cpu(sb->rx_ecn_marked_pkts);
851 
852 bail:
853 	dma_free_coherent(&rcfw->pdev->dev, sbuf.size,
854 			  sbuf.sb, sbuf.dma_addr);
855 	return rc;
856 }
857 
858 static void bnxt_qplib_fill_cc_gen1(struct cmdq_modify_roce_cc_gen1_tlv *ext_req,
859 				    struct bnxt_qplib_cc_param_ext *cc_ext)
860 {
861 	ext_req->modify_mask = cpu_to_le64(cc_ext->ext_mask);
862 	cc_ext->ext_mask = 0;
863 	ext_req->inactivity_th_hi = cpu_to_le16(cc_ext->inact_th_hi);
864 	ext_req->min_time_between_cnps = cpu_to_le16(cc_ext->min_delta_cnp);
865 	ext_req->init_cp = cpu_to_le16(cc_ext->init_cp);
866 	ext_req->tr_update_mode = cc_ext->tr_update_mode;
867 	ext_req->tr_update_cycles = cc_ext->tr_update_cyls;
868 	ext_req->fr_num_rtts = cc_ext->fr_rtt;
869 	ext_req->ai_rate_increase = cc_ext->ai_rate_incr;
870 	ext_req->reduction_relax_rtts_th = cpu_to_le16(cc_ext->rr_rtt_th);
871 	ext_req->additional_relax_cr_th = cpu_to_le16(cc_ext->ar_cr_th);
872 	ext_req->cr_min_th = cpu_to_le16(cc_ext->cr_min_th);
873 	ext_req->bw_avg_weight = cc_ext->bw_avg_weight;
874 	ext_req->actual_cr_factor = cc_ext->cr_factor;
875 	ext_req->max_cp_cr_th = cpu_to_le16(cc_ext->cr_th_max_cp);
876 	ext_req->cp_bias_en = cc_ext->cp_bias_en;
877 	ext_req->cp_bias = cc_ext->cp_bias;
878 	ext_req->cnp_ecn = cc_ext->cnp_ecn;
879 	ext_req->rtt_jitter_en = cc_ext->rtt_jitter_en;
880 	ext_req->link_bytes_per_usec = cpu_to_le16(cc_ext->bytes_per_usec);
881 	ext_req->reset_cc_cr_th = cpu_to_le16(cc_ext->cc_cr_reset_th);
882 	ext_req->cr_width = cc_ext->cr_width;
883 	ext_req->quota_period_min = cc_ext->min_quota;
884 	ext_req->quota_period_max = cc_ext->max_quota;
885 	ext_req->quota_period_abs_max = cc_ext->abs_max_quota;
886 	ext_req->tr_lower_bound = cpu_to_le16(cc_ext->tr_lb);
887 	ext_req->cr_prob_factor = cc_ext->cr_prob_fac;
888 	ext_req->tr_prob_factor = cc_ext->tr_prob_fac;
889 	ext_req->fairness_cr_th = cpu_to_le16(cc_ext->fair_cr_th);
890 	ext_req->red_div = cc_ext->red_div;
891 	ext_req->cnp_ratio_th = cc_ext->cnp_ratio_th;
892 	ext_req->exp_ai_rtts = cpu_to_le16(cc_ext->ai_ext_rtt);
893 	ext_req->exp_ai_cr_cp_ratio = cc_ext->exp_crcp_ratio;
894 	ext_req->use_rate_table = cc_ext->low_rate_en;
895 	ext_req->cp_exp_update_th = cpu_to_le16(cc_ext->cpcr_update_th);
896 	ext_req->high_exp_ai_rtts_th1 = cpu_to_le16(cc_ext->ai_rtt_th1);
897 	ext_req->high_exp_ai_rtts_th2 = cpu_to_le16(cc_ext->ai_rtt_th2);
898 	ext_req->actual_cr_cong_free_rtts_th = cpu_to_le16(cc_ext->cf_rtt_th);
899 	ext_req->severe_cong_cr_th1 = cpu_to_le16(cc_ext->sc_cr_th1);
900 	ext_req->severe_cong_cr_th2 = cpu_to_le16(cc_ext->sc_cr_th2);
901 	ext_req->link64B_per_rtt = cpu_to_le32(cc_ext->l64B_per_rtt);
902 	ext_req->cc_ack_bytes = cc_ext->cc_ack_bytes;
903 }
904 
905 int bnxt_qplib_modify_cc(struct bnxt_qplib_res *res,
906 			 struct bnxt_qplib_cc_param *cc_param)
907 {
908 	struct bnxt_qplib_tlv_modify_cc_req tlv_req = {};
909 	struct creq_modify_roce_cc_resp resp = {};
910 	struct bnxt_qplib_cmdqmsg msg = {};
911 	struct cmdq_modify_roce_cc *req;
912 	int req_size;
913 	void *cmd;
914 	int rc;
915 
916 	/* Prepare the older base command */
917 	req = &tlv_req.base_req;
918 	cmd = req;
919 	req_size = sizeof(*req);
920 	bnxt_qplib_rcfw_cmd_prep((struct cmdq_base *)req, CMDQ_BASE_OPCODE_MODIFY_ROCE_CC,
921 				 sizeof(*req));
922 	req->modify_mask = cpu_to_le32(cc_param->mask);
923 	req->enable_cc = cc_param->enable;
924 	req->g = cc_param->g;
925 	req->num_phases_per_state = cc_param->nph_per_state;
926 	req->time_per_phase = cc_param->time_pph;
927 	req->pkts_per_phase = cc_param->pkts_pph;
928 	req->init_cr = cpu_to_le16(cc_param->init_cr);
929 	req->init_tr = cpu_to_le16(cc_param->init_tr);
930 	req->tos_dscp_tos_ecn = (cc_param->tos_dscp << CMDQ_MODIFY_ROCE_CC_TOS_DSCP_SFT) |
931 				(cc_param->tos_ecn & CMDQ_MODIFY_ROCE_CC_TOS_ECN_MASK);
932 	req->alt_vlan_pcp = cc_param->alt_vlan_pcp;
933 	req->alt_tos_dscp = cpu_to_le16(cc_param->alt_tos_dscp);
934 	req->rtt = cpu_to_le16(cc_param->rtt);
935 	req->tcp_cp = cpu_to_le16(cc_param->tcp_cp);
936 	req->cc_mode = cc_param->cc_mode;
937 	req->inactivity_th = cpu_to_le16(cc_param->inact_th);
938 
939 	/* For chip gen P5 onwards fill extended cmd and header */
940 	if (bnxt_qplib_is_chip_gen_p5_p7(res->cctx)) {
941 		struct roce_tlv *hdr;
942 		u32 payload;
943 		u32 chunks;
944 
945 		cmd = &tlv_req;
946 		req_size = sizeof(tlv_req);
947 		/* Prepare primary tlv header */
948 		hdr = &tlv_req.tlv_hdr;
949 		chunks = CHUNKS(sizeof(struct bnxt_qplib_tlv_modify_cc_req));
950 		payload = sizeof(struct cmdq_modify_roce_cc);
951 		__roce_1st_tlv_prep(hdr, chunks, payload, true);
952 		/* Prepare secondary tlv header */
953 		hdr = (struct roce_tlv *)&tlv_req.ext_req;
954 		payload = sizeof(struct cmdq_modify_roce_cc_gen1_tlv) -
955 			  sizeof(struct roce_tlv);
956 		__roce_ext_tlv_prep(hdr, TLV_TYPE_MODIFY_ROCE_CC_GEN1, payload, false, true);
957 		bnxt_qplib_fill_cc_gen1(&tlv_req.ext_req, &cc_param->cc_ext);
958 	}
959 
960 	bnxt_qplib_fill_cmdqmsg(&msg, cmd, &resp, NULL, req_size,
961 				sizeof(resp), 0);
962 	rc = bnxt_qplib_rcfw_send_message(res->rcfw, &msg);
963 	return rc;
964 }
965