1 /* 2 * Broadcom NetXtreme-E RoCE driver. 3 * 4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term 5 * Broadcom refers to Broadcom Limited and/or its subsidiaries. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in 21 * the documentation and/or other materials provided with the 22 * distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 * Description: QPLib resource manager 37 */ 38 39 #define dev_fmt(fmt) "QPLIB: " fmt 40 41 #include <linux/spinlock.h> 42 #include <linux/pci.h> 43 #include <linux/interrupt.h> 44 #include <linux/inetdevice.h> 45 #include <linux/dma-mapping.h> 46 #include <linux/if_vlan.h> 47 #include <linux/vmalloc.h> 48 #include <rdma/ib_verbs.h> 49 #include <rdma/ib_umem.h> 50 51 #include "roce_hsi.h" 52 #include "qplib_res.h" 53 #include "qplib_sp.h" 54 #include "qplib_rcfw.h" 55 56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev, 57 struct bnxt_qplib_stats *stats); 58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev, 59 struct bnxt_qplib_chip_ctx *cctx, 60 struct bnxt_qplib_stats *stats); 61 62 /* PBL */ 63 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl, 64 bool is_umem) 65 { 66 struct pci_dev *pdev = res->pdev; 67 int i; 68 69 if (!is_umem) { 70 for (i = 0; i < pbl->pg_count; i++) { 71 if (pbl->pg_arr[i]) 72 dma_free_coherent(&pdev->dev, pbl->pg_size, 73 (void *)((unsigned long) 74 pbl->pg_arr[i] & 75 PAGE_MASK), 76 pbl->pg_map_arr[i]); 77 else 78 dev_warn(&pdev->dev, 79 "PBL free pg_arr[%d] empty?!\n", i); 80 pbl->pg_arr[i] = NULL; 81 } 82 } 83 vfree(pbl->pg_arr); 84 pbl->pg_arr = NULL; 85 vfree(pbl->pg_map_arr); 86 pbl->pg_map_arr = NULL; 87 pbl->pg_count = 0; 88 pbl->pg_size = 0; 89 } 90 91 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl, 92 struct bnxt_qplib_sg_info *sginfo) 93 { 94 struct ib_block_iter biter; 95 int i = 0; 96 97 rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) { 98 pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter); 99 pbl->pg_arr[i] = NULL; 100 pbl->pg_count++; 101 i++; 102 } 103 } 104 105 static int __alloc_pbl(struct bnxt_qplib_res *res, 106 struct bnxt_qplib_pbl *pbl, 107 struct bnxt_qplib_sg_info *sginfo) 108 { 109 struct pci_dev *pdev = res->pdev; 110 bool is_umem = false; 111 u32 pages; 112 int i; 113 114 if (sginfo->nopte) 115 return 0; 116 if (sginfo->umem) 117 pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize); 118 else 119 pages = sginfo->npages; 120 /* page ptr arrays */ 121 pbl->pg_arr = vmalloc(pages * sizeof(void *)); 122 if (!pbl->pg_arr) 123 return -ENOMEM; 124 125 pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t)); 126 if (!pbl->pg_map_arr) { 127 vfree(pbl->pg_arr); 128 pbl->pg_arr = NULL; 129 return -ENOMEM; 130 } 131 pbl->pg_count = 0; 132 pbl->pg_size = sginfo->pgsize; 133 134 if (!sginfo->umem) { 135 for (i = 0; i < pages; i++) { 136 pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev, 137 pbl->pg_size, 138 &pbl->pg_map_arr[i], 139 GFP_KERNEL); 140 if (!pbl->pg_arr[i]) 141 goto fail; 142 pbl->pg_count++; 143 } 144 } else { 145 is_umem = true; 146 bnxt_qplib_fill_user_dma_pages(pbl, sginfo); 147 } 148 149 return 0; 150 fail: 151 __free_pbl(res, pbl, is_umem); 152 return -ENOMEM; 153 } 154 155 /* HWQ */ 156 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res, 157 struct bnxt_qplib_hwq *hwq) 158 { 159 int i; 160 161 if (!hwq->max_elements) 162 return; 163 if (hwq->level >= PBL_LVL_MAX) 164 return; 165 166 for (i = 0; i < hwq->level + 1; i++) { 167 if (i == hwq->level) 168 __free_pbl(res, &hwq->pbl[i], hwq->is_user); 169 else 170 __free_pbl(res, &hwq->pbl[i], false); 171 } 172 173 hwq->level = PBL_LVL_MAX; 174 hwq->max_elements = 0; 175 hwq->element_size = 0; 176 hwq->prod = 0; 177 hwq->cons = 0; 178 hwq->cp_bit = 0; 179 } 180 181 /* All HWQs are power of 2 in size */ 182 183 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq, 184 struct bnxt_qplib_hwq_attr *hwq_attr) 185 { 186 u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0; 187 struct bnxt_qplib_sg_info sginfo = {}; 188 u32 depth, stride, npbl, npde; 189 dma_addr_t *src_phys_ptr, **dst_virt_ptr; 190 struct bnxt_qplib_res *res; 191 struct pci_dev *pdev; 192 int i, rc, lvl; 193 194 res = hwq_attr->res; 195 pdev = res->pdev; 196 pg_size = hwq_attr->sginfo->pgsize; 197 hwq->level = PBL_LVL_MAX; 198 199 depth = roundup_pow_of_two(hwq_attr->depth); 200 stride = roundup_pow_of_two(hwq_attr->stride); 201 if (hwq_attr->aux_depth) { 202 aux_slots = hwq_attr->aux_depth; 203 aux_size = roundup_pow_of_two(hwq_attr->aux_stride); 204 aux_pages = (aux_slots * aux_size) / pg_size; 205 if ((aux_slots * aux_size) % pg_size) 206 aux_pages++; 207 } 208 209 if (!hwq_attr->sginfo->umem) { 210 hwq->is_user = false; 211 npages = (depth * stride) / pg_size + aux_pages; 212 if ((depth * stride) % pg_size) 213 npages++; 214 if (!npages) 215 return -EINVAL; 216 hwq_attr->sginfo->npages = npages; 217 } else { 218 unsigned long sginfo_num_pages = ib_umem_num_dma_blocks( 219 hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize); 220 221 hwq->is_user = true; 222 npages = sginfo_num_pages; 223 npages = (npages * PAGE_SIZE) / 224 BIT_ULL(hwq_attr->sginfo->pgshft); 225 if ((sginfo_num_pages * PAGE_SIZE) % 226 BIT_ULL(hwq_attr->sginfo->pgshft)) 227 if (!npages) 228 npages++; 229 } 230 231 if (npages == MAX_PBL_LVL_0_PGS && !hwq_attr->sginfo->nopte) { 232 /* This request is Level 0, map PTE */ 233 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo); 234 if (rc) 235 goto fail; 236 hwq->level = PBL_LVL_0; 237 goto done; 238 } 239 240 if (npages >= MAX_PBL_LVL_0_PGS) { 241 if (npages > MAX_PBL_LVL_1_PGS) { 242 u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ? 243 0 : PTU_PTE_VALID; 244 /* 2 levels of indirection */ 245 npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT; 246 if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT)) 247 npbl++; 248 npde = npbl >> MAX_PDL_LVL_SHIFT; 249 if (npbl % BIT(MAX_PDL_LVL_SHIFT)) 250 npde++; 251 /* Alloc PDE pages */ 252 sginfo.pgsize = npde * pg_size; 253 sginfo.npages = 1; 254 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo); 255 256 /* Alloc PBL pages */ 257 sginfo.npages = npbl; 258 sginfo.pgsize = PAGE_SIZE; 259 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo); 260 if (rc) 261 goto fail; 262 /* Fill PDL with PBL page pointers */ 263 dst_virt_ptr = 264 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; 265 src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; 266 if (hwq_attr->type == HWQ_TYPE_MR) { 267 /* For MR it is expected that we supply only 1 contigous 268 * page i.e only 1 entry in the PDL that will contain 269 * all the PBLs for the user supplied memory region 270 */ 271 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; 272 i++) 273 dst_virt_ptr[0][i] = src_phys_ptr[i] | 274 flag; 275 } else { 276 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; 277 i++) 278 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = 279 src_phys_ptr[i] | 280 PTU_PDE_VALID; 281 } 282 /* Alloc or init PTEs */ 283 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2], 284 hwq_attr->sginfo); 285 if (rc) 286 goto fail; 287 hwq->level = PBL_LVL_2; 288 if (hwq_attr->sginfo->nopte) 289 goto done; 290 /* Fill PBLs with PTE pointers */ 291 dst_virt_ptr = 292 (dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr; 293 src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr; 294 for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) { 295 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = 296 src_phys_ptr[i] | PTU_PTE_VALID; 297 } 298 if (hwq_attr->type == HWQ_TYPE_QUEUE) { 299 /* Find the last pg of the size */ 300 i = hwq->pbl[PBL_LVL_2].pg_count; 301 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= 302 PTU_PTE_LAST; 303 if (i > 1) 304 dst_virt_ptr[PTR_PG(i - 2)] 305 [PTR_IDX(i - 2)] |= 306 PTU_PTE_NEXT_TO_LAST; 307 } 308 } else { /* pages < 512 npbl = 1, npde = 0 */ 309 u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ? 310 0 : PTU_PTE_VALID; 311 312 /* 1 level of indirection */ 313 npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT; 314 if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT)) 315 npbl++; 316 sginfo.npages = npbl; 317 sginfo.pgsize = PAGE_SIZE; 318 /* Alloc PBL page */ 319 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo); 320 if (rc) 321 goto fail; 322 /* Alloc or init PTEs */ 323 rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], 324 hwq_attr->sginfo); 325 if (rc) 326 goto fail; 327 hwq->level = PBL_LVL_1; 328 if (hwq_attr->sginfo->nopte) 329 goto done; 330 /* Fill PBL with PTE pointers */ 331 dst_virt_ptr = 332 (dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr; 333 src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr; 334 for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++) 335 dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] = 336 src_phys_ptr[i] | flag; 337 if (hwq_attr->type == HWQ_TYPE_QUEUE) { 338 /* Find the last pg of the size */ 339 i = hwq->pbl[PBL_LVL_1].pg_count; 340 dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |= 341 PTU_PTE_LAST; 342 if (i > 1) 343 dst_virt_ptr[PTR_PG(i - 2)] 344 [PTR_IDX(i - 2)] |= 345 PTU_PTE_NEXT_TO_LAST; 346 } 347 } 348 } 349 done: 350 hwq->prod = 0; 351 hwq->cons = 0; 352 hwq->pdev = pdev; 353 hwq->depth = hwq_attr->depth; 354 hwq->max_elements = depth; 355 hwq->element_size = stride; 356 hwq->qe_ppg = pg_size / stride; 357 /* For direct access to the elements */ 358 lvl = hwq->level; 359 if (hwq_attr->sginfo->nopte && hwq->level) 360 lvl = hwq->level - 1; 361 hwq->pbl_ptr = hwq->pbl[lvl].pg_arr; 362 hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr; 363 spin_lock_init(&hwq->lock); 364 365 return 0; 366 fail: 367 bnxt_qplib_free_hwq(res, hwq); 368 return -ENOMEM; 369 } 370 371 /* Context Tables */ 372 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res, 373 struct bnxt_qplib_ctx *ctx) 374 { 375 int i; 376 377 bnxt_qplib_free_hwq(res, &ctx->qpc_tbl); 378 bnxt_qplib_free_hwq(res, &ctx->mrw_tbl); 379 bnxt_qplib_free_hwq(res, &ctx->srqc_tbl); 380 bnxt_qplib_free_hwq(res, &ctx->cq_tbl); 381 bnxt_qplib_free_hwq(res, &ctx->tim_tbl); 382 for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) 383 bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]); 384 /* restore original pde level before destroy */ 385 ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level; 386 bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde); 387 bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats); 388 } 389 390 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res, 391 struct bnxt_qplib_ctx *ctx) 392 { 393 struct bnxt_qplib_hwq_attr hwq_attr = {}; 394 struct bnxt_qplib_sg_info sginfo = {}; 395 struct bnxt_qplib_tqm_ctx *tqmctx; 396 int rc = 0; 397 int i; 398 399 tqmctx = &ctx->tqm_ctx; 400 401 sginfo.pgsize = PAGE_SIZE; 402 sginfo.pgshft = PAGE_SHIFT; 403 hwq_attr.sginfo = &sginfo; 404 hwq_attr.res = res; 405 hwq_attr.type = HWQ_TYPE_CTX; 406 hwq_attr.depth = 512; 407 hwq_attr.stride = sizeof(u64); 408 /* Alloc pdl buffer */ 409 rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr); 410 if (rc) 411 goto out; 412 /* Save original pdl level */ 413 tqmctx->pde_level = tqmctx->pde.level; 414 415 hwq_attr.stride = 1; 416 for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) { 417 if (!tqmctx->qcount[i]) 418 continue; 419 hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i]; 420 rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr); 421 if (rc) 422 goto out; 423 } 424 out: 425 return rc; 426 } 427 428 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx) 429 { 430 struct bnxt_qplib_hwq *tbl; 431 dma_addr_t *dma_ptr; 432 __le64 **pbl_ptr, *ptr; 433 int i, j, k; 434 int fnz_idx = -1; 435 int pg_count; 436 437 pbl_ptr = (__le64 **)ctx->pde.pbl_ptr; 438 439 for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ; 440 i++, j += MAX_TQM_ALLOC_BLK_SIZE) { 441 tbl = &ctx->qtbl[i]; 442 if (!tbl->max_elements) 443 continue; 444 if (fnz_idx == -1) 445 fnz_idx = i; /* first non-zero index */ 446 switch (tbl->level) { 447 case PBL_LVL_2: 448 pg_count = tbl->pbl[PBL_LVL_1].pg_count; 449 for (k = 0; k < pg_count; k++) { 450 ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)]; 451 dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k]; 452 *ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID); 453 } 454 break; 455 case PBL_LVL_1: 456 case PBL_LVL_0: 457 default: 458 ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)]; 459 *ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] | 460 PTU_PTE_VALID); 461 break; 462 } 463 } 464 if (fnz_idx == -1) 465 fnz_idx = 0; 466 /* update pde level as per page table programming */ 467 ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 : 468 ctx->qtbl[fnz_idx].level + 1; 469 } 470 471 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res, 472 struct bnxt_qplib_ctx *ctx) 473 { 474 int rc = 0; 475 476 rc = bnxt_qplib_alloc_tqm_rings(res, ctx); 477 if (rc) 478 goto fail; 479 480 bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx); 481 fail: 482 return rc; 483 } 484 485 /* 486 * Routine: bnxt_qplib_alloc_ctx 487 * Description: 488 * Context tables are memories which are used by the chip fw. 489 * The 6 tables defined are: 490 * QPC ctx - holds QP states 491 * MRW ctx - holds memory region and window 492 * SRQ ctx - holds shared RQ states 493 * CQ ctx - holds completion queue states 494 * TQM ctx - holds Tx Queue Manager context 495 * TIM ctx - holds timer context 496 * Depending on the size of the tbl requested, either a 1 Page Buffer List 497 * or a 1-to-2-stage indirection Page Directory List + 1 PBL is used 498 * instead. 499 * Table might be employed as follows: 500 * For 0 < ctx size <= 1 PAGE, 0 level of ind is used 501 * For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used 502 * For 512 < ctx size <= MAX, 2 levels of ind is used 503 * Returns: 504 * 0 if success, else -ERRORS 505 */ 506 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res, 507 struct bnxt_qplib_ctx *ctx, 508 bool virt_fn, bool is_p5) 509 { 510 struct bnxt_qplib_hwq_attr hwq_attr = {}; 511 struct bnxt_qplib_sg_info sginfo = {}; 512 int rc = 0; 513 514 if (virt_fn || is_p5) 515 goto stats_alloc; 516 517 /* QPC Tables */ 518 sginfo.pgsize = PAGE_SIZE; 519 sginfo.pgshft = PAGE_SHIFT; 520 hwq_attr.sginfo = &sginfo; 521 522 hwq_attr.res = res; 523 hwq_attr.depth = ctx->qpc_count; 524 hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE; 525 hwq_attr.type = HWQ_TYPE_CTX; 526 rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr); 527 if (rc) 528 goto fail; 529 530 /* MRW Tables */ 531 hwq_attr.depth = ctx->mrw_count; 532 hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE; 533 rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr); 534 if (rc) 535 goto fail; 536 537 /* SRQ Tables */ 538 hwq_attr.depth = ctx->srqc_count; 539 hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE; 540 rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr); 541 if (rc) 542 goto fail; 543 544 /* CQ Tables */ 545 hwq_attr.depth = ctx->cq_count; 546 hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE; 547 rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr); 548 if (rc) 549 goto fail; 550 551 /* TQM Buffer */ 552 rc = bnxt_qplib_setup_tqm_rings(res, ctx); 553 if (rc) 554 goto fail; 555 /* TIM Buffer */ 556 ctx->tim_tbl.max_elements = ctx->qpc_count * 16; 557 hwq_attr.depth = ctx->qpc_count * 16; 558 hwq_attr.stride = 1; 559 rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr); 560 if (rc) 561 goto fail; 562 stats_alloc: 563 /* Stats */ 564 rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats); 565 if (rc) 566 goto fail; 567 568 return 0; 569 570 fail: 571 bnxt_qplib_free_ctx(res, ctx); 572 return rc; 573 } 574 575 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res, 576 struct bnxt_qplib_sgid_tbl *sgid_tbl) 577 { 578 kfree(sgid_tbl->tbl); 579 kfree(sgid_tbl->hw_id); 580 kfree(sgid_tbl->ctx); 581 kfree(sgid_tbl->vlan); 582 sgid_tbl->tbl = NULL; 583 sgid_tbl->hw_id = NULL; 584 sgid_tbl->ctx = NULL; 585 sgid_tbl->vlan = NULL; 586 sgid_tbl->max = 0; 587 sgid_tbl->active = 0; 588 } 589 590 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res, 591 struct bnxt_qplib_sgid_tbl *sgid_tbl, 592 u16 max) 593 { 594 sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL); 595 if (!sgid_tbl->tbl) 596 return -ENOMEM; 597 598 sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL); 599 if (!sgid_tbl->hw_id) 600 goto out_free1; 601 602 sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL); 603 if (!sgid_tbl->ctx) 604 goto out_free2; 605 606 sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL); 607 if (!sgid_tbl->vlan) 608 goto out_free3; 609 610 sgid_tbl->max = max; 611 return 0; 612 out_free3: 613 kfree(sgid_tbl->ctx); 614 sgid_tbl->ctx = NULL; 615 out_free2: 616 kfree(sgid_tbl->hw_id); 617 sgid_tbl->hw_id = NULL; 618 out_free1: 619 kfree(sgid_tbl->tbl); 620 sgid_tbl->tbl = NULL; 621 return -ENOMEM; 622 }; 623 624 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res, 625 struct bnxt_qplib_sgid_tbl *sgid_tbl) 626 { 627 int i; 628 629 for (i = 0; i < sgid_tbl->max; i++) { 630 if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero, 631 sizeof(bnxt_qplib_gid_zero))) 632 bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid, 633 sgid_tbl->tbl[i].vlan_id, true); 634 } 635 memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max); 636 memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); 637 memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max); 638 sgid_tbl->active = 0; 639 } 640 641 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl, 642 struct net_device *netdev) 643 { 644 u32 i; 645 646 for (i = 0; i < sgid_tbl->max; i++) 647 sgid_tbl->tbl[i].vlan_id = 0xffff; 648 649 memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max); 650 } 651 652 /* PDs */ 653 int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd) 654 { 655 u32 bit_num; 656 657 bit_num = find_first_bit(pdt->tbl, pdt->max); 658 if (bit_num == pdt->max) 659 return -ENOMEM; 660 661 /* Found unused PD */ 662 clear_bit(bit_num, pdt->tbl); 663 pd->id = bit_num; 664 return 0; 665 } 666 667 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res, 668 struct bnxt_qplib_pd_tbl *pdt, 669 struct bnxt_qplib_pd *pd) 670 { 671 if (test_and_set_bit(pd->id, pdt->tbl)) { 672 dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n", 673 pd->id); 674 return -EINVAL; 675 } 676 pd->id = 0; 677 return 0; 678 } 679 680 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt) 681 { 682 kfree(pdt->tbl); 683 pdt->tbl = NULL; 684 pdt->max = 0; 685 } 686 687 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res, 688 struct bnxt_qplib_pd_tbl *pdt, 689 u32 max) 690 { 691 u32 bytes; 692 693 bytes = max >> 3; 694 if (!bytes) 695 bytes = 1; 696 pdt->tbl = kmalloc(bytes, GFP_KERNEL); 697 if (!pdt->tbl) 698 return -ENOMEM; 699 700 pdt->max = max; 701 memset((u8 *)pdt->tbl, 0xFF, bytes); 702 703 return 0; 704 } 705 706 /* DPIs */ 707 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit, 708 struct bnxt_qplib_dpi *dpi, 709 void *app) 710 { 711 u32 bit_num; 712 713 bit_num = find_first_bit(dpit->tbl, dpit->max); 714 if (bit_num == dpit->max) 715 return -ENOMEM; 716 717 /* Found unused DPI */ 718 clear_bit(bit_num, dpit->tbl); 719 dpit->app_tbl[bit_num] = app; 720 721 dpi->dpi = bit_num; 722 dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE); 723 dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE); 724 725 return 0; 726 } 727 728 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res, 729 struct bnxt_qplib_dpi_tbl *dpit, 730 struct bnxt_qplib_dpi *dpi) 731 { 732 if (dpi->dpi >= dpit->max) { 733 dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi); 734 return -EINVAL; 735 } 736 if (test_and_set_bit(dpi->dpi, dpit->tbl)) { 737 dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n", 738 dpi->dpi); 739 return -EINVAL; 740 } 741 if (dpit->app_tbl) 742 dpit->app_tbl[dpi->dpi] = NULL; 743 memset(dpi, 0, sizeof(*dpi)); 744 745 return 0; 746 } 747 748 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res *res, 749 struct bnxt_qplib_dpi_tbl *dpit) 750 { 751 kfree(dpit->tbl); 752 kfree(dpit->app_tbl); 753 if (dpit->dbr_bar_reg_iomem) 754 pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); 755 memset(dpit, 0, sizeof(*dpit)); 756 } 757 758 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res, 759 struct bnxt_qplib_dpi_tbl *dpit, 760 u32 dbr_offset) 761 { 762 u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION; 763 resource_size_t bar_reg_base; 764 u32 dbr_len, bytes; 765 766 if (dpit->dbr_bar_reg_iomem) { 767 dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n", 768 dbr_bar_reg); 769 return -EALREADY; 770 } 771 772 bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg); 773 if (!bar_reg_base) { 774 dev_err(&res->pdev->dev, "BAR region %d resc start failed\n", 775 dbr_bar_reg); 776 return -ENOMEM; 777 } 778 779 dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset; 780 if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) { 781 dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len); 782 return -ENOMEM; 783 } 784 785 dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset, 786 dbr_len); 787 if (!dpit->dbr_bar_reg_iomem) { 788 dev_err(&res->pdev->dev, 789 "FP: DBR BAR region %d mapping failed\n", dbr_bar_reg); 790 return -ENOMEM; 791 } 792 793 dpit->unmapped_dbr = bar_reg_base + dbr_offset; 794 dpit->max = dbr_len / PAGE_SIZE; 795 796 dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL); 797 if (!dpit->app_tbl) 798 goto unmap_io; 799 800 bytes = dpit->max >> 3; 801 if (!bytes) 802 bytes = 1; 803 804 dpit->tbl = kmalloc(bytes, GFP_KERNEL); 805 if (!dpit->tbl) { 806 kfree(dpit->app_tbl); 807 dpit->app_tbl = NULL; 808 goto unmap_io; 809 } 810 811 memset((u8 *)dpit->tbl, 0xFF, bytes); 812 813 return 0; 814 815 unmap_io: 816 pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem); 817 dpit->dbr_bar_reg_iomem = NULL; 818 return -ENOMEM; 819 } 820 821 /* Stats */ 822 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev, 823 struct bnxt_qplib_stats *stats) 824 { 825 if (stats->dma) { 826 dma_free_coherent(&pdev->dev, stats->size, 827 stats->dma, stats->dma_map); 828 } 829 memset(stats, 0, sizeof(*stats)); 830 stats->fw_id = -1; 831 } 832 833 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev, 834 struct bnxt_qplib_chip_ctx *cctx, 835 struct bnxt_qplib_stats *stats) 836 { 837 memset(stats, 0, sizeof(*stats)); 838 stats->fw_id = -1; 839 stats->size = cctx->hw_stats_size; 840 stats->dma = dma_alloc_coherent(&pdev->dev, stats->size, 841 &stats->dma_map, GFP_KERNEL); 842 if (!stats->dma) { 843 dev_err(&pdev->dev, "Stats DMA allocation failed\n"); 844 return -ENOMEM; 845 } 846 return 0; 847 } 848 849 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res) 850 { 851 bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl); 852 } 853 854 int bnxt_qplib_init_res(struct bnxt_qplib_res *res) 855 { 856 bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev); 857 858 return 0; 859 } 860 861 void bnxt_qplib_free_res(struct bnxt_qplib_res *res) 862 { 863 bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl); 864 bnxt_qplib_free_pd_tbl(&res->pd_tbl); 865 bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl); 866 } 867 868 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev, 869 struct net_device *netdev, 870 struct bnxt_qplib_dev_attr *dev_attr) 871 { 872 int rc = 0; 873 874 res->pdev = pdev; 875 res->netdev = netdev; 876 877 rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid); 878 if (rc) 879 goto fail; 880 881 rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd); 882 if (rc) 883 goto fail; 884 885 rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size); 886 if (rc) 887 goto fail; 888 889 return 0; 890 fail: 891 bnxt_qplib_free_res(res); 892 return rc; 893 } 894 895 int bnxt_qplib_determine_atomics(struct pci_dev *dev) 896 { 897 int comp; 898 u16 ctl2; 899 900 comp = pci_enable_atomic_ops_to_root(dev, 901 PCI_EXP_DEVCAP2_ATOMIC_COMP32); 902 if (comp) 903 return -EOPNOTSUPP; 904 comp = pci_enable_atomic_ops_to_root(dev, 905 PCI_EXP_DEVCAP2_ATOMIC_COMP64); 906 if (comp) 907 return -EOPNOTSUPP; 908 pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2); 909 return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ); 910 } 911