1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_umem.h>
50 
51 #include "roce_hsi.h"
52 #include "qplib_res.h"
53 #include "qplib_sp.h"
54 #include "qplib_rcfw.h"
55 
56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
57 				      struct bnxt_qplib_stats *stats);
58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
59 				      struct bnxt_qplib_stats *stats);
60 
61 /* PBL */
62 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
63 		       bool is_umem)
64 {
65 	struct pci_dev *pdev = res->pdev;
66 	int i;
67 
68 	if (!is_umem) {
69 		for (i = 0; i < pbl->pg_count; i++) {
70 			if (pbl->pg_arr[i])
71 				dma_free_coherent(&pdev->dev, pbl->pg_size,
72 						  (void *)((unsigned long)
73 						   pbl->pg_arr[i] &
74 						  PAGE_MASK),
75 						  pbl->pg_map_arr[i]);
76 			else
77 				dev_warn(&pdev->dev,
78 					 "PBL free pg_arr[%d] empty?!\n", i);
79 			pbl->pg_arr[i] = NULL;
80 		}
81 	}
82 	vfree(pbl->pg_arr);
83 	pbl->pg_arr = NULL;
84 	vfree(pbl->pg_map_arr);
85 	pbl->pg_map_arr = NULL;
86 	pbl->pg_count = 0;
87 	pbl->pg_size = 0;
88 }
89 
90 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
91 					   struct bnxt_qplib_sg_info *sginfo)
92 {
93 	struct ib_block_iter biter;
94 	int i = 0;
95 
96 	rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
97 		pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
98 		pbl->pg_arr[i] = NULL;
99 		pbl->pg_count++;
100 		i++;
101 	}
102 }
103 
104 static int __alloc_pbl(struct bnxt_qplib_res *res,
105 		       struct bnxt_qplib_pbl *pbl,
106 		       struct bnxt_qplib_sg_info *sginfo)
107 {
108 	struct pci_dev *pdev = res->pdev;
109 	bool is_umem = false;
110 	u32 pages;
111 	int i;
112 
113 	if (sginfo->nopte)
114 		return 0;
115 	if (sginfo->umem)
116 		pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
117 	else
118 		pages = sginfo->npages;
119 	/* page ptr arrays */
120 	pbl->pg_arr = vmalloc(pages * sizeof(void *));
121 	if (!pbl->pg_arr)
122 		return -ENOMEM;
123 
124 	pbl->pg_map_arr = vmalloc(pages * sizeof(dma_addr_t));
125 	if (!pbl->pg_map_arr) {
126 		vfree(pbl->pg_arr);
127 		pbl->pg_arr = NULL;
128 		return -ENOMEM;
129 	}
130 	pbl->pg_count = 0;
131 	pbl->pg_size = sginfo->pgsize;
132 
133 	if (!sginfo->umem) {
134 		for (i = 0; i < pages; i++) {
135 			pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
136 							    pbl->pg_size,
137 							    &pbl->pg_map_arr[i],
138 							    GFP_KERNEL);
139 			if (!pbl->pg_arr[i])
140 				goto fail;
141 			pbl->pg_count++;
142 		}
143 	} else {
144 		is_umem = true;
145 		bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
146 	}
147 
148 	return 0;
149 fail:
150 	__free_pbl(res, pbl, is_umem);
151 	return -ENOMEM;
152 }
153 
154 /* HWQ */
155 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
156 			 struct bnxt_qplib_hwq *hwq)
157 {
158 	int i;
159 
160 	if (!hwq->max_elements)
161 		return;
162 	if (hwq->level >= PBL_LVL_MAX)
163 		return;
164 
165 	for (i = 0; i < hwq->level + 1; i++) {
166 		if (i == hwq->level)
167 			__free_pbl(res, &hwq->pbl[i], hwq->is_user);
168 		else
169 			__free_pbl(res, &hwq->pbl[i], false);
170 	}
171 
172 	hwq->level = PBL_LVL_MAX;
173 	hwq->max_elements = 0;
174 	hwq->element_size = 0;
175 	hwq->prod = 0;
176 	hwq->cons = 0;
177 	hwq->cp_bit = 0;
178 }
179 
180 /* All HWQs are power of 2 in size */
181 
182 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
183 			      struct bnxt_qplib_hwq_attr *hwq_attr)
184 {
185 	u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
186 	struct bnxt_qplib_sg_info sginfo = {};
187 	u32 depth, stride, npbl, npde;
188 	dma_addr_t *src_phys_ptr, **dst_virt_ptr;
189 	struct bnxt_qplib_res *res;
190 	struct pci_dev *pdev;
191 	int i, rc, lvl;
192 
193 	res = hwq_attr->res;
194 	pdev = res->pdev;
195 	pg_size = hwq_attr->sginfo->pgsize;
196 	hwq->level = PBL_LVL_MAX;
197 
198 	depth = roundup_pow_of_two(hwq_attr->depth);
199 	stride = roundup_pow_of_two(hwq_attr->stride);
200 	if (hwq_attr->aux_depth) {
201 		aux_slots = hwq_attr->aux_depth;
202 		aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
203 		aux_pages = (aux_slots * aux_size) / pg_size;
204 		if ((aux_slots * aux_size) % pg_size)
205 			aux_pages++;
206 	}
207 
208 	if (!hwq_attr->sginfo->umem) {
209 		hwq->is_user = false;
210 		npages = (depth * stride) / pg_size + aux_pages;
211 		if ((depth * stride) % pg_size)
212 			npages++;
213 		if (!npages)
214 			return -EINVAL;
215 		hwq_attr->sginfo->npages = npages;
216 	} else {
217 		unsigned long sginfo_num_pages = ib_umem_num_dma_blocks(
218 			hwq_attr->sginfo->umem, hwq_attr->sginfo->pgsize);
219 
220 		hwq->is_user = true;
221 		npages = sginfo_num_pages;
222 		npages = (npages * PAGE_SIZE) /
223 			  BIT_ULL(hwq_attr->sginfo->pgshft);
224 		if ((sginfo_num_pages * PAGE_SIZE) %
225 		     BIT_ULL(hwq_attr->sginfo->pgshft))
226 			if (!npages)
227 				npages++;
228 	}
229 
230 	if (npages == MAX_PBL_LVL_0_PGS) {
231 		/* This request is Level 0, map PTE */
232 		rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
233 		if (rc)
234 			goto fail;
235 		hwq->level = PBL_LVL_0;
236 	}
237 
238 	if (npages > MAX_PBL_LVL_0_PGS) {
239 		if (npages > MAX_PBL_LVL_1_PGS) {
240 			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
241 				    0 : PTU_PTE_VALID;
242 			/* 2 levels of indirection */
243 			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
244 			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
245 				npbl++;
246 			npde = npbl >> MAX_PDL_LVL_SHIFT;
247 			if (npbl % BIT(MAX_PDL_LVL_SHIFT))
248 				npde++;
249 			/* Alloc PDE pages */
250 			sginfo.pgsize = npde * pg_size;
251 			sginfo.npages = 1;
252 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
253 
254 			/* Alloc PBL pages */
255 			sginfo.npages = npbl;
256 			sginfo.pgsize = PAGE_SIZE;
257 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
258 			if (rc)
259 				goto fail;
260 			/* Fill PDL with PBL page pointers */
261 			dst_virt_ptr =
262 				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
263 			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
264 			if (hwq_attr->type == HWQ_TYPE_MR) {
265 			/* For MR it is expected that we supply only 1 contigous
266 			 * page i.e only 1 entry in the PDL that will contain
267 			 * all the PBLs for the user supplied memory region
268 			 */
269 				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
270 				     i++)
271 					dst_virt_ptr[0][i] = src_phys_ptr[i] |
272 						flag;
273 			} else {
274 				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
275 				     i++)
276 					dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
277 						src_phys_ptr[i] |
278 						PTU_PDE_VALID;
279 			}
280 			/* Alloc or init PTEs */
281 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
282 					 hwq_attr->sginfo);
283 			if (rc)
284 				goto fail;
285 			hwq->level = PBL_LVL_2;
286 			if (hwq_attr->sginfo->nopte)
287 				goto done;
288 			/* Fill PBLs with PTE pointers */
289 			dst_virt_ptr =
290 				(dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
291 			src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
292 			for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
293 				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
294 					src_phys_ptr[i] | PTU_PTE_VALID;
295 			}
296 			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
297 				/* Find the last pg of the size */
298 				i = hwq->pbl[PBL_LVL_2].pg_count;
299 				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
300 								  PTU_PTE_LAST;
301 				if (i > 1)
302 					dst_virt_ptr[PTR_PG(i - 2)]
303 						    [PTR_IDX(i - 2)] |=
304 						    PTU_PTE_NEXT_TO_LAST;
305 			}
306 		} else { /* pages < 512 npbl = 1, npde = 0 */
307 			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
308 				    0 : PTU_PTE_VALID;
309 
310 			/* 1 level of indirection */
311 			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
312 			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
313 				npbl++;
314 			sginfo.npages = npbl;
315 			sginfo.pgsize = PAGE_SIZE;
316 			/* Alloc PBL page */
317 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
318 			if (rc)
319 				goto fail;
320 			/* Alloc or init  PTEs */
321 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
322 					 hwq_attr->sginfo);
323 			if (rc)
324 				goto fail;
325 			hwq->level = PBL_LVL_1;
326 			if (hwq_attr->sginfo->nopte)
327 				goto done;
328 			/* Fill PBL with PTE pointers */
329 			dst_virt_ptr =
330 				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
331 			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
332 			for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
333 				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
334 					src_phys_ptr[i] | flag;
335 			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
336 				/* Find the last pg of the size */
337 				i = hwq->pbl[PBL_LVL_1].pg_count;
338 				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
339 								  PTU_PTE_LAST;
340 				if (i > 1)
341 					dst_virt_ptr[PTR_PG(i - 2)]
342 						    [PTR_IDX(i - 2)] |=
343 						    PTU_PTE_NEXT_TO_LAST;
344 			}
345 		}
346 	}
347 done:
348 	hwq->prod = 0;
349 	hwq->cons = 0;
350 	hwq->pdev = pdev;
351 	hwq->depth = hwq_attr->depth;
352 	hwq->max_elements = depth;
353 	hwq->element_size = stride;
354 	hwq->qe_ppg = pg_size / stride;
355 	/* For direct access to the elements */
356 	lvl = hwq->level;
357 	if (hwq_attr->sginfo->nopte && hwq->level)
358 		lvl = hwq->level - 1;
359 	hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
360 	hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
361 	spin_lock_init(&hwq->lock);
362 
363 	return 0;
364 fail:
365 	bnxt_qplib_free_hwq(res, hwq);
366 	return -ENOMEM;
367 }
368 
369 /* Context Tables */
370 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
371 			 struct bnxt_qplib_ctx *ctx)
372 {
373 	int i;
374 
375 	bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
376 	bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
377 	bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
378 	bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
379 	bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
380 	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
381 		bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
382 	/* restore original pde level before destroy */
383 	ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
384 	bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
385 	bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
386 }
387 
388 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
389 				      struct bnxt_qplib_ctx *ctx)
390 {
391 	struct bnxt_qplib_hwq_attr hwq_attr = {};
392 	struct bnxt_qplib_sg_info sginfo = {};
393 	struct bnxt_qplib_tqm_ctx *tqmctx;
394 	int rc = 0;
395 	int i;
396 
397 	tqmctx = &ctx->tqm_ctx;
398 
399 	sginfo.pgsize = PAGE_SIZE;
400 	sginfo.pgshft = PAGE_SHIFT;
401 	hwq_attr.sginfo = &sginfo;
402 	hwq_attr.res = res;
403 	hwq_attr.type = HWQ_TYPE_CTX;
404 	hwq_attr.depth = 512;
405 	hwq_attr.stride = sizeof(u64);
406 	/* Alloc pdl buffer */
407 	rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
408 	if (rc)
409 		goto out;
410 	/* Save original pdl level */
411 	tqmctx->pde_level = tqmctx->pde.level;
412 
413 	hwq_attr.stride = 1;
414 	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
415 		if (!tqmctx->qcount[i])
416 			continue;
417 		hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
418 		rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
419 		if (rc)
420 			goto out;
421 	}
422 out:
423 	return rc;
424 }
425 
426 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
427 {
428 	struct bnxt_qplib_hwq *tbl;
429 	dma_addr_t *dma_ptr;
430 	__le64 **pbl_ptr, *ptr;
431 	int i, j, k;
432 	int fnz_idx = -1;
433 	int pg_count;
434 
435 	pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
436 
437 	for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
438 	     i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
439 		tbl = &ctx->qtbl[i];
440 		if (!tbl->max_elements)
441 			continue;
442 		if (fnz_idx == -1)
443 			fnz_idx = i; /* first non-zero index */
444 		switch (tbl->level) {
445 		case PBL_LVL_2:
446 			pg_count = tbl->pbl[PBL_LVL_1].pg_count;
447 			for (k = 0; k < pg_count; k++) {
448 				ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
449 				dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
450 				*ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
451 			}
452 			break;
453 		case PBL_LVL_1:
454 		case PBL_LVL_0:
455 		default:
456 			ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
457 			*ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
458 					   PTU_PTE_VALID);
459 			break;
460 		}
461 	}
462 	if (fnz_idx == -1)
463 		fnz_idx = 0;
464 	/* update pde level as per page table programming */
465 	ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
466 			  ctx->qtbl[fnz_idx].level + 1;
467 }
468 
469 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
470 				      struct bnxt_qplib_ctx *ctx)
471 {
472 	int rc = 0;
473 
474 	rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
475 	if (rc)
476 		goto fail;
477 
478 	bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
479 fail:
480 	return rc;
481 }
482 
483 /*
484  * Routine: bnxt_qplib_alloc_ctx
485  * Description:
486  *     Context tables are memories which are used by the chip fw.
487  *     The 6 tables defined are:
488  *             QPC ctx - holds QP states
489  *             MRW ctx - holds memory region and window
490  *             SRQ ctx - holds shared RQ states
491  *             CQ ctx - holds completion queue states
492  *             TQM ctx - holds Tx Queue Manager context
493  *             TIM ctx - holds timer context
494  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
495  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
496  *     instead.
497  *     Table might be employed as follows:
498  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
499  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
500  *             For 512    < ctx size <= MAX, 2 levels of ind is used
501  * Returns:
502  *     0 if success, else -ERRORS
503  */
504 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
505 			 struct bnxt_qplib_ctx *ctx,
506 			 bool virt_fn, bool is_p5)
507 {
508 	struct bnxt_qplib_hwq_attr hwq_attr = {};
509 	struct bnxt_qplib_sg_info sginfo = {};
510 	int rc = 0;
511 
512 	if (virt_fn || is_p5)
513 		goto stats_alloc;
514 
515 	/* QPC Tables */
516 	sginfo.pgsize = PAGE_SIZE;
517 	sginfo.pgshft = PAGE_SHIFT;
518 	hwq_attr.sginfo = &sginfo;
519 
520 	hwq_attr.res = res;
521 	hwq_attr.depth = ctx->qpc_count;
522 	hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
523 	hwq_attr.type = HWQ_TYPE_CTX;
524 	rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
525 	if (rc)
526 		goto fail;
527 
528 	/* MRW Tables */
529 	hwq_attr.depth = ctx->mrw_count;
530 	hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
531 	rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
532 	if (rc)
533 		goto fail;
534 
535 	/* SRQ Tables */
536 	hwq_attr.depth = ctx->srqc_count;
537 	hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
538 	rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
539 	if (rc)
540 		goto fail;
541 
542 	/* CQ Tables */
543 	hwq_attr.depth = ctx->cq_count;
544 	hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
545 	rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
546 	if (rc)
547 		goto fail;
548 
549 	/* TQM Buffer */
550 	rc = bnxt_qplib_setup_tqm_rings(res, ctx);
551 	if (rc)
552 		goto fail;
553 	/* TIM Buffer */
554 	ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
555 	hwq_attr.depth = ctx->qpc_count * 16;
556 	hwq_attr.stride = 1;
557 	rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
558 	if (rc)
559 		goto fail;
560 stats_alloc:
561 	/* Stats */
562 	rc = bnxt_qplib_alloc_stats_ctx(res->pdev, &ctx->stats);
563 	if (rc)
564 		goto fail;
565 
566 	return 0;
567 
568 fail:
569 	bnxt_qplib_free_ctx(res, ctx);
570 	return rc;
571 }
572 
573 /* GUID */
574 void bnxt_qplib_get_guid(u8 *dev_addr, u8 *guid)
575 {
576 	u8 mac[ETH_ALEN];
577 
578 	/* MAC-48 to EUI-64 mapping */
579 	memcpy(mac, dev_addr, ETH_ALEN);
580 	guid[0] = mac[0] ^ 2;
581 	guid[1] = mac[1];
582 	guid[2] = mac[2];
583 	guid[3] = 0xff;
584 	guid[4] = 0xfe;
585 	guid[5] = mac[3];
586 	guid[6] = mac[4];
587 	guid[7] = mac[5];
588 }
589 
590 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
591 				     struct bnxt_qplib_sgid_tbl *sgid_tbl)
592 {
593 	kfree(sgid_tbl->tbl);
594 	kfree(sgid_tbl->hw_id);
595 	kfree(sgid_tbl->ctx);
596 	kfree(sgid_tbl->vlan);
597 	sgid_tbl->tbl = NULL;
598 	sgid_tbl->hw_id = NULL;
599 	sgid_tbl->ctx = NULL;
600 	sgid_tbl->vlan = NULL;
601 	sgid_tbl->max = 0;
602 	sgid_tbl->active = 0;
603 }
604 
605 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
606 				     struct bnxt_qplib_sgid_tbl *sgid_tbl,
607 				     u16 max)
608 {
609 	sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
610 	if (!sgid_tbl->tbl)
611 		return -ENOMEM;
612 
613 	sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
614 	if (!sgid_tbl->hw_id)
615 		goto out_free1;
616 
617 	sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
618 	if (!sgid_tbl->ctx)
619 		goto out_free2;
620 
621 	sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
622 	if (!sgid_tbl->vlan)
623 		goto out_free3;
624 
625 	sgid_tbl->max = max;
626 	return 0;
627 out_free3:
628 	kfree(sgid_tbl->ctx);
629 	sgid_tbl->ctx = NULL;
630 out_free2:
631 	kfree(sgid_tbl->hw_id);
632 	sgid_tbl->hw_id = NULL;
633 out_free1:
634 	kfree(sgid_tbl->tbl);
635 	sgid_tbl->tbl = NULL;
636 	return -ENOMEM;
637 };
638 
639 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
640 					struct bnxt_qplib_sgid_tbl *sgid_tbl)
641 {
642 	int i;
643 
644 	for (i = 0; i < sgid_tbl->max; i++) {
645 		if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
646 			   sizeof(bnxt_qplib_gid_zero)))
647 			bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
648 					    sgid_tbl->tbl[i].vlan_id, true);
649 	}
650 	memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
651 	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
652 	memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
653 	sgid_tbl->active = 0;
654 }
655 
656 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
657 				     struct net_device *netdev)
658 {
659 	u32 i;
660 
661 	for (i = 0; i < sgid_tbl->max; i++)
662 		sgid_tbl->tbl[i].vlan_id = 0xffff;
663 
664 	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
665 }
666 
667 static void bnxt_qplib_free_pkey_tbl(struct bnxt_qplib_res *res,
668 				     struct bnxt_qplib_pkey_tbl *pkey_tbl)
669 {
670 	if (!pkey_tbl->tbl)
671 		dev_dbg(&res->pdev->dev, "PKEY tbl not present\n");
672 	else
673 		kfree(pkey_tbl->tbl);
674 
675 	pkey_tbl->tbl = NULL;
676 	pkey_tbl->max = 0;
677 	pkey_tbl->active = 0;
678 }
679 
680 static int bnxt_qplib_alloc_pkey_tbl(struct bnxt_qplib_res *res,
681 				     struct bnxt_qplib_pkey_tbl *pkey_tbl,
682 				     u16 max)
683 {
684 	pkey_tbl->tbl = kcalloc(max, sizeof(u16), GFP_KERNEL);
685 	if (!pkey_tbl->tbl)
686 		return -ENOMEM;
687 
688 	pkey_tbl->max = max;
689 	return 0;
690 };
691 
692 /* PDs */
693 int bnxt_qplib_alloc_pd(struct bnxt_qplib_pd_tbl *pdt, struct bnxt_qplib_pd *pd)
694 {
695 	u32 bit_num;
696 
697 	bit_num = find_first_bit(pdt->tbl, pdt->max);
698 	if (bit_num == pdt->max)
699 		return -ENOMEM;
700 
701 	/* Found unused PD */
702 	clear_bit(bit_num, pdt->tbl);
703 	pd->id = bit_num;
704 	return 0;
705 }
706 
707 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
708 			  struct bnxt_qplib_pd_tbl *pdt,
709 			  struct bnxt_qplib_pd *pd)
710 {
711 	if (test_and_set_bit(pd->id, pdt->tbl)) {
712 		dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
713 			 pd->id);
714 		return -EINVAL;
715 	}
716 	pd->id = 0;
717 	return 0;
718 }
719 
720 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
721 {
722 	kfree(pdt->tbl);
723 	pdt->tbl = NULL;
724 	pdt->max = 0;
725 }
726 
727 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
728 				   struct bnxt_qplib_pd_tbl *pdt,
729 				   u32 max)
730 {
731 	u32 bytes;
732 
733 	bytes = max >> 3;
734 	if (!bytes)
735 		bytes = 1;
736 	pdt->tbl = kmalloc(bytes, GFP_KERNEL);
737 	if (!pdt->tbl)
738 		return -ENOMEM;
739 
740 	pdt->max = max;
741 	memset((u8 *)pdt->tbl, 0xFF, bytes);
742 
743 	return 0;
744 }
745 
746 /* DPIs */
747 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_dpi_tbl *dpit,
748 			 struct bnxt_qplib_dpi     *dpi,
749 			 void                      *app)
750 {
751 	u32 bit_num;
752 
753 	bit_num = find_first_bit(dpit->tbl, dpit->max);
754 	if (bit_num == dpit->max)
755 		return -ENOMEM;
756 
757 	/* Found unused DPI */
758 	clear_bit(bit_num, dpit->tbl);
759 	dpit->app_tbl[bit_num] = app;
760 
761 	dpi->dpi = bit_num;
762 	dpi->dbr = dpit->dbr_bar_reg_iomem + (bit_num * PAGE_SIZE);
763 	dpi->umdbr = dpit->unmapped_dbr + (bit_num * PAGE_SIZE);
764 
765 	return 0;
766 }
767 
768 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
769 			   struct bnxt_qplib_dpi_tbl *dpit,
770 			   struct bnxt_qplib_dpi     *dpi)
771 {
772 	if (dpi->dpi >= dpit->max) {
773 		dev_warn(&res->pdev->dev, "Invalid DPI? dpi = %d\n", dpi->dpi);
774 		return -EINVAL;
775 	}
776 	if (test_and_set_bit(dpi->dpi, dpit->tbl)) {
777 		dev_warn(&res->pdev->dev, "Freeing an unused DPI? dpi = %d\n",
778 			 dpi->dpi);
779 		return -EINVAL;
780 	}
781 	if (dpit->app_tbl)
782 		dpit->app_tbl[dpi->dpi] = NULL;
783 	memset(dpi, 0, sizeof(*dpi));
784 
785 	return 0;
786 }
787 
788 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
789 				    struct bnxt_qplib_dpi_tbl *dpit)
790 {
791 	kfree(dpit->tbl);
792 	kfree(dpit->app_tbl);
793 	if (dpit->dbr_bar_reg_iomem)
794 		pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
795 	memset(dpit, 0, sizeof(*dpit));
796 }
797 
798 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res     *res,
799 				    struct bnxt_qplib_dpi_tbl *dpit,
800 				    u32                       dbr_offset)
801 {
802 	u32 dbr_bar_reg = RCFW_DBR_PCI_BAR_REGION;
803 	resource_size_t bar_reg_base;
804 	u32 dbr_len, bytes;
805 
806 	if (dpit->dbr_bar_reg_iomem) {
807 		dev_err(&res->pdev->dev, "DBR BAR region %d already mapped\n",
808 			dbr_bar_reg);
809 		return -EALREADY;
810 	}
811 
812 	bar_reg_base = pci_resource_start(res->pdev, dbr_bar_reg);
813 	if (!bar_reg_base) {
814 		dev_err(&res->pdev->dev, "BAR region %d resc start failed\n",
815 			dbr_bar_reg);
816 		return -ENOMEM;
817 	}
818 
819 	dbr_len = pci_resource_len(res->pdev, dbr_bar_reg) - dbr_offset;
820 	if (!dbr_len || ((dbr_len & (PAGE_SIZE - 1)) != 0)) {
821 		dev_err(&res->pdev->dev, "Invalid DBR length %d\n", dbr_len);
822 		return -ENOMEM;
823 	}
824 
825 	dpit->dbr_bar_reg_iomem = ioremap(bar_reg_base + dbr_offset,
826 						  dbr_len);
827 	if (!dpit->dbr_bar_reg_iomem) {
828 		dev_err(&res->pdev->dev,
829 			"FP: DBR BAR region %d mapping failed\n", dbr_bar_reg);
830 		return -ENOMEM;
831 	}
832 
833 	dpit->unmapped_dbr = bar_reg_base + dbr_offset;
834 	dpit->max = dbr_len / PAGE_SIZE;
835 
836 	dpit->app_tbl = kcalloc(dpit->max, sizeof(void *), GFP_KERNEL);
837 	if (!dpit->app_tbl)
838 		goto unmap_io;
839 
840 	bytes = dpit->max >> 3;
841 	if (!bytes)
842 		bytes = 1;
843 
844 	dpit->tbl = kmalloc(bytes, GFP_KERNEL);
845 	if (!dpit->tbl) {
846 		kfree(dpit->app_tbl);
847 		dpit->app_tbl = NULL;
848 		goto unmap_io;
849 	}
850 
851 	memset((u8 *)dpit->tbl, 0xFF, bytes);
852 
853 	return 0;
854 
855 unmap_io:
856 	pci_iounmap(res->pdev, dpit->dbr_bar_reg_iomem);
857 	return -ENOMEM;
858 }
859 
860 /* PKEYs */
861 static void bnxt_qplib_cleanup_pkey_tbl(struct bnxt_qplib_pkey_tbl *pkey_tbl)
862 {
863 	memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
864 	pkey_tbl->active = 0;
865 }
866 
867 static void bnxt_qplib_init_pkey_tbl(struct bnxt_qplib_res *res,
868 				     struct bnxt_qplib_pkey_tbl *pkey_tbl)
869 {
870 	u16 pkey = 0xFFFF;
871 
872 	memset(pkey_tbl->tbl, 0, sizeof(u16) * pkey_tbl->max);
873 
874 	/* pkey default = 0xFFFF */
875 	bnxt_qplib_add_pkey(res, pkey_tbl, &pkey, false);
876 }
877 
878 /* Stats */
879 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
880 				      struct bnxt_qplib_stats *stats)
881 {
882 	if (stats->dma) {
883 		dma_free_coherent(&pdev->dev, stats->size,
884 				  stats->dma, stats->dma_map);
885 	}
886 	memset(stats, 0, sizeof(*stats));
887 	stats->fw_id = -1;
888 }
889 
890 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
891 				      struct bnxt_qplib_stats *stats)
892 {
893 	memset(stats, 0, sizeof(*stats));
894 	stats->fw_id = -1;
895 	/* 128 byte aligned context memory is required only for 57500.
896 	 * However making this unconditional, it does not harm previous
897 	 * generation.
898 	 */
899 	stats->size = ALIGN(sizeof(struct ctx_hw_stats), 128);
900 	stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
901 					&stats->dma_map, GFP_KERNEL);
902 	if (!stats->dma) {
903 		dev_err(&pdev->dev, "Stats DMA allocation failed\n");
904 		return -ENOMEM;
905 	}
906 	return 0;
907 }
908 
909 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
910 {
911 	bnxt_qplib_cleanup_pkey_tbl(&res->pkey_tbl);
912 	bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
913 }
914 
915 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
916 {
917 	bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
918 	bnxt_qplib_init_pkey_tbl(res, &res->pkey_tbl);
919 
920 	return 0;
921 }
922 
923 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
924 {
925 	bnxt_qplib_free_pkey_tbl(res, &res->pkey_tbl);
926 	bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
927 	bnxt_qplib_free_pd_tbl(&res->pd_tbl);
928 	bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
929 }
930 
931 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
932 			 struct net_device *netdev,
933 			 struct bnxt_qplib_dev_attr *dev_attr)
934 {
935 	int rc = 0;
936 
937 	res->pdev = pdev;
938 	res->netdev = netdev;
939 
940 	rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
941 	if (rc)
942 		goto fail;
943 
944 	rc = bnxt_qplib_alloc_pkey_tbl(res, &res->pkey_tbl, dev_attr->max_pkey);
945 	if (rc)
946 		goto fail;
947 
948 	rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
949 	if (rc)
950 		goto fail;
951 
952 	rc = bnxt_qplib_alloc_dpi_tbl(res, &res->dpi_tbl, dev_attr->l2_db_size);
953 	if (rc)
954 		goto fail;
955 
956 	return 0;
957 fail:
958 	bnxt_qplib_free_res(res);
959 	return rc;
960 }
961