xref: /openbmc/linux/drivers/infiniband/hw/bnxt_re/qplib_res.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 /*
2  * Broadcom NetXtreme-E RoCE driver.
3  *
4  * Copyright (c) 2016 - 2017, Broadcom. All rights reserved.  The term
5  * Broadcom refers to Broadcom Limited and/or its subsidiaries.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * BSD license below:
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  *
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in
21  *    the documentation and/or other materials provided with the
22  *    distribution.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS''
25  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
26  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
31  * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
32  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
33  * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
34  * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35  *
36  * Description: QPLib resource manager
37  */
38 
39 #define dev_fmt(fmt) "QPLIB: " fmt
40 
41 #include <linux/spinlock.h>
42 #include <linux/pci.h>
43 #include <linux/interrupt.h>
44 #include <linux/inetdevice.h>
45 #include <linux/dma-mapping.h>
46 #include <linux/if_vlan.h>
47 #include <linux/vmalloc.h>
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_umem.h>
50 
51 #include "roce_hsi.h"
52 #include "qplib_res.h"
53 #include "qplib_sp.h"
54 #include "qplib_rcfw.h"
55 
56 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
57 				      struct bnxt_qplib_stats *stats);
58 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
59 				      struct bnxt_qplib_chip_ctx *cctx,
60 				      struct bnxt_qplib_stats *stats);
61 
62 /* PBL */
63 static void __free_pbl(struct bnxt_qplib_res *res, struct bnxt_qplib_pbl *pbl,
64 		       bool is_umem)
65 {
66 	struct pci_dev *pdev = res->pdev;
67 	int i;
68 
69 	if (!is_umem) {
70 		for (i = 0; i < pbl->pg_count; i++) {
71 			if (pbl->pg_arr[i])
72 				dma_free_coherent(&pdev->dev, pbl->pg_size,
73 						  (void *)((unsigned long)
74 						   pbl->pg_arr[i] &
75 						  PAGE_MASK),
76 						  pbl->pg_map_arr[i]);
77 			else
78 				dev_warn(&pdev->dev,
79 					 "PBL free pg_arr[%d] empty?!\n", i);
80 			pbl->pg_arr[i] = NULL;
81 		}
82 	}
83 	vfree(pbl->pg_arr);
84 	pbl->pg_arr = NULL;
85 	vfree(pbl->pg_map_arr);
86 	pbl->pg_map_arr = NULL;
87 	pbl->pg_count = 0;
88 	pbl->pg_size = 0;
89 }
90 
91 static void bnxt_qplib_fill_user_dma_pages(struct bnxt_qplib_pbl *pbl,
92 					   struct bnxt_qplib_sg_info *sginfo)
93 {
94 	struct ib_block_iter biter;
95 	int i = 0;
96 
97 	rdma_umem_for_each_dma_block(sginfo->umem, &biter, sginfo->pgsize) {
98 		pbl->pg_map_arr[i] = rdma_block_iter_dma_address(&biter);
99 		pbl->pg_arr[i] = NULL;
100 		pbl->pg_count++;
101 		i++;
102 	}
103 }
104 
105 static int __alloc_pbl(struct bnxt_qplib_res *res,
106 		       struct bnxt_qplib_pbl *pbl,
107 		       struct bnxt_qplib_sg_info *sginfo)
108 {
109 	struct pci_dev *pdev = res->pdev;
110 	bool is_umem = false;
111 	u32 pages;
112 	int i;
113 
114 	if (sginfo->nopte)
115 		return 0;
116 	if (sginfo->umem)
117 		pages = ib_umem_num_dma_blocks(sginfo->umem, sginfo->pgsize);
118 	else
119 		pages = sginfo->npages;
120 	/* page ptr arrays */
121 	pbl->pg_arr = vmalloc_array(pages, sizeof(void *));
122 	if (!pbl->pg_arr)
123 		return -ENOMEM;
124 
125 	pbl->pg_map_arr = vmalloc_array(pages, sizeof(dma_addr_t));
126 	if (!pbl->pg_map_arr) {
127 		vfree(pbl->pg_arr);
128 		pbl->pg_arr = NULL;
129 		return -ENOMEM;
130 	}
131 	pbl->pg_count = 0;
132 	pbl->pg_size = sginfo->pgsize;
133 
134 	if (!sginfo->umem) {
135 		for (i = 0; i < pages; i++) {
136 			pbl->pg_arr[i] = dma_alloc_coherent(&pdev->dev,
137 							    pbl->pg_size,
138 							    &pbl->pg_map_arr[i],
139 							    GFP_KERNEL);
140 			if (!pbl->pg_arr[i])
141 				goto fail;
142 			pbl->pg_count++;
143 		}
144 	} else {
145 		is_umem = true;
146 		bnxt_qplib_fill_user_dma_pages(pbl, sginfo);
147 	}
148 
149 	return 0;
150 fail:
151 	__free_pbl(res, pbl, is_umem);
152 	return -ENOMEM;
153 }
154 
155 /* HWQ */
156 void bnxt_qplib_free_hwq(struct bnxt_qplib_res *res,
157 			 struct bnxt_qplib_hwq *hwq)
158 {
159 	int i;
160 
161 	if (!hwq->max_elements)
162 		return;
163 	if (hwq->level >= PBL_LVL_MAX)
164 		return;
165 
166 	for (i = 0; i < hwq->level + 1; i++) {
167 		if (i == hwq->level)
168 			__free_pbl(res, &hwq->pbl[i], hwq->is_user);
169 		else
170 			__free_pbl(res, &hwq->pbl[i], false);
171 	}
172 
173 	hwq->level = PBL_LVL_MAX;
174 	hwq->max_elements = 0;
175 	hwq->element_size = 0;
176 	hwq->prod = 0;
177 	hwq->cons = 0;
178 	hwq->cp_bit = 0;
179 }
180 
181 /* All HWQs are power of 2 in size */
182 
183 int bnxt_qplib_alloc_init_hwq(struct bnxt_qplib_hwq *hwq,
184 			      struct bnxt_qplib_hwq_attr *hwq_attr)
185 {
186 	u32 npages, aux_slots, pg_size, aux_pages = 0, aux_size = 0;
187 	struct bnxt_qplib_sg_info sginfo = {};
188 	u32 depth, stride, npbl, npde;
189 	dma_addr_t *src_phys_ptr, **dst_virt_ptr;
190 	struct bnxt_qplib_res *res;
191 	struct pci_dev *pdev;
192 	int i, rc, lvl;
193 
194 	res = hwq_attr->res;
195 	pdev = res->pdev;
196 	pg_size = hwq_attr->sginfo->pgsize;
197 	hwq->level = PBL_LVL_MAX;
198 
199 	depth = roundup_pow_of_two(hwq_attr->depth);
200 	stride = roundup_pow_of_two(hwq_attr->stride);
201 	if (hwq_attr->aux_depth) {
202 		aux_slots = hwq_attr->aux_depth;
203 		aux_size = roundup_pow_of_two(hwq_attr->aux_stride);
204 		aux_pages = (aux_slots * aux_size) / pg_size;
205 		if ((aux_slots * aux_size) % pg_size)
206 			aux_pages++;
207 	}
208 
209 	if (!hwq_attr->sginfo->umem) {
210 		hwq->is_user = false;
211 		npages = (depth * stride) / pg_size + aux_pages;
212 		if ((depth * stride) % pg_size)
213 			npages++;
214 		if (!npages)
215 			return -EINVAL;
216 		hwq_attr->sginfo->npages = npages;
217 	} else {
218 		npages = ib_umem_num_dma_blocks(hwq_attr->sginfo->umem,
219 						hwq_attr->sginfo->pgsize);
220 		hwq->is_user = true;
221 	}
222 
223 	if (npages == MAX_PBL_LVL_0_PGS && !hwq_attr->sginfo->nopte) {
224 		/* This request is Level 0, map PTE */
225 		rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], hwq_attr->sginfo);
226 		if (rc)
227 			goto fail;
228 		hwq->level = PBL_LVL_0;
229 		goto done;
230 	}
231 
232 	if (npages >= MAX_PBL_LVL_0_PGS) {
233 		if (npages > MAX_PBL_LVL_1_PGS) {
234 			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
235 				    0 : PTU_PTE_VALID;
236 			/* 2 levels of indirection */
237 			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
238 			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
239 				npbl++;
240 			npde = npbl >> MAX_PDL_LVL_SHIFT;
241 			if (npbl % BIT(MAX_PDL_LVL_SHIFT))
242 				npde++;
243 			/* Alloc PDE pages */
244 			sginfo.pgsize = npde * pg_size;
245 			sginfo.npages = 1;
246 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
247 
248 			/* Alloc PBL pages */
249 			sginfo.npages = npbl;
250 			sginfo.pgsize = PAGE_SIZE;
251 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1], &sginfo);
252 			if (rc)
253 				goto fail;
254 			/* Fill PDL with PBL page pointers */
255 			dst_virt_ptr =
256 				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
257 			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
258 			if (hwq_attr->type == HWQ_TYPE_MR) {
259 			/* For MR it is expected that we supply only 1 contigous
260 			 * page i.e only 1 entry in the PDL that will contain
261 			 * all the PBLs for the user supplied memory region
262 			 */
263 				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
264 				     i++)
265 					dst_virt_ptr[0][i] = src_phys_ptr[i] |
266 						flag;
267 			} else {
268 				for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count;
269 				     i++)
270 					dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
271 						src_phys_ptr[i] |
272 						PTU_PDE_VALID;
273 			}
274 			/* Alloc or init PTEs */
275 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_2],
276 					 hwq_attr->sginfo);
277 			if (rc)
278 				goto fail;
279 			hwq->level = PBL_LVL_2;
280 			if (hwq_attr->sginfo->nopte)
281 				goto done;
282 			/* Fill PBLs with PTE pointers */
283 			dst_virt_ptr =
284 				(dma_addr_t **)hwq->pbl[PBL_LVL_1].pg_arr;
285 			src_phys_ptr = hwq->pbl[PBL_LVL_2].pg_map_arr;
286 			for (i = 0; i < hwq->pbl[PBL_LVL_2].pg_count; i++) {
287 				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
288 					src_phys_ptr[i] | PTU_PTE_VALID;
289 			}
290 			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
291 				/* Find the last pg of the size */
292 				i = hwq->pbl[PBL_LVL_2].pg_count;
293 				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
294 								  PTU_PTE_LAST;
295 				if (i > 1)
296 					dst_virt_ptr[PTR_PG(i - 2)]
297 						    [PTR_IDX(i - 2)] |=
298 						    PTU_PTE_NEXT_TO_LAST;
299 			}
300 		} else { /* pages < 512 npbl = 1, npde = 0 */
301 			u32 flag = (hwq_attr->type == HWQ_TYPE_L2_CMPL) ?
302 				    0 : PTU_PTE_VALID;
303 
304 			/* 1 level of indirection */
305 			npbl = npages >> MAX_PBL_LVL_1_PGS_SHIFT;
306 			if (npages % BIT(MAX_PBL_LVL_1_PGS_SHIFT))
307 				npbl++;
308 			sginfo.npages = npbl;
309 			sginfo.pgsize = PAGE_SIZE;
310 			/* Alloc PBL page */
311 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_0], &sginfo);
312 			if (rc)
313 				goto fail;
314 			/* Alloc or init  PTEs */
315 			rc = __alloc_pbl(res, &hwq->pbl[PBL_LVL_1],
316 					 hwq_attr->sginfo);
317 			if (rc)
318 				goto fail;
319 			hwq->level = PBL_LVL_1;
320 			if (hwq_attr->sginfo->nopte)
321 				goto done;
322 			/* Fill PBL with PTE pointers */
323 			dst_virt_ptr =
324 				(dma_addr_t **)hwq->pbl[PBL_LVL_0].pg_arr;
325 			src_phys_ptr = hwq->pbl[PBL_LVL_1].pg_map_arr;
326 			for (i = 0; i < hwq->pbl[PBL_LVL_1].pg_count; i++)
327 				dst_virt_ptr[PTR_PG(i)][PTR_IDX(i)] =
328 					src_phys_ptr[i] | flag;
329 			if (hwq_attr->type == HWQ_TYPE_QUEUE) {
330 				/* Find the last pg of the size */
331 				i = hwq->pbl[PBL_LVL_1].pg_count;
332 				dst_virt_ptr[PTR_PG(i - 1)][PTR_IDX(i - 1)] |=
333 								  PTU_PTE_LAST;
334 				if (i > 1)
335 					dst_virt_ptr[PTR_PG(i - 2)]
336 						    [PTR_IDX(i - 2)] |=
337 						    PTU_PTE_NEXT_TO_LAST;
338 			}
339 		}
340 	}
341 done:
342 	hwq->prod = 0;
343 	hwq->cons = 0;
344 	hwq->pdev = pdev;
345 	hwq->depth = hwq_attr->depth;
346 	hwq->max_elements = depth;
347 	hwq->element_size = stride;
348 	hwq->qe_ppg = pg_size / stride;
349 	/* For direct access to the elements */
350 	lvl = hwq->level;
351 	if (hwq_attr->sginfo->nopte && hwq->level)
352 		lvl = hwq->level - 1;
353 	hwq->pbl_ptr = hwq->pbl[lvl].pg_arr;
354 	hwq->pbl_dma_ptr = hwq->pbl[lvl].pg_map_arr;
355 	spin_lock_init(&hwq->lock);
356 
357 	return 0;
358 fail:
359 	bnxt_qplib_free_hwq(res, hwq);
360 	return -ENOMEM;
361 }
362 
363 /* Context Tables */
364 void bnxt_qplib_free_ctx(struct bnxt_qplib_res *res,
365 			 struct bnxt_qplib_ctx *ctx)
366 {
367 	int i;
368 
369 	bnxt_qplib_free_hwq(res, &ctx->qpc_tbl);
370 	bnxt_qplib_free_hwq(res, &ctx->mrw_tbl);
371 	bnxt_qplib_free_hwq(res, &ctx->srqc_tbl);
372 	bnxt_qplib_free_hwq(res, &ctx->cq_tbl);
373 	bnxt_qplib_free_hwq(res, &ctx->tim_tbl);
374 	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++)
375 		bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.qtbl[i]);
376 	/* restore original pde level before destroy */
377 	ctx->tqm_ctx.pde.level = ctx->tqm_ctx.pde_level;
378 	bnxt_qplib_free_hwq(res, &ctx->tqm_ctx.pde);
379 	bnxt_qplib_free_stats_ctx(res->pdev, &ctx->stats);
380 }
381 
382 static int bnxt_qplib_alloc_tqm_rings(struct bnxt_qplib_res *res,
383 				      struct bnxt_qplib_ctx *ctx)
384 {
385 	struct bnxt_qplib_hwq_attr hwq_attr = {};
386 	struct bnxt_qplib_sg_info sginfo = {};
387 	struct bnxt_qplib_tqm_ctx *tqmctx;
388 	int rc;
389 	int i;
390 
391 	tqmctx = &ctx->tqm_ctx;
392 
393 	sginfo.pgsize = PAGE_SIZE;
394 	sginfo.pgshft = PAGE_SHIFT;
395 	hwq_attr.sginfo = &sginfo;
396 	hwq_attr.res = res;
397 	hwq_attr.type = HWQ_TYPE_CTX;
398 	hwq_attr.depth = 512;
399 	hwq_attr.stride = sizeof(u64);
400 	/* Alloc pdl buffer */
401 	rc = bnxt_qplib_alloc_init_hwq(&tqmctx->pde, &hwq_attr);
402 	if (rc)
403 		goto out;
404 	/* Save original pdl level */
405 	tqmctx->pde_level = tqmctx->pde.level;
406 
407 	hwq_attr.stride = 1;
408 	for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) {
409 		if (!tqmctx->qcount[i])
410 			continue;
411 		hwq_attr.depth = ctx->qpc_count * tqmctx->qcount[i];
412 		rc = bnxt_qplib_alloc_init_hwq(&tqmctx->qtbl[i], &hwq_attr);
413 		if (rc)
414 			goto out;
415 	}
416 out:
417 	return rc;
418 }
419 
420 static void bnxt_qplib_map_tqm_pgtbl(struct bnxt_qplib_tqm_ctx *ctx)
421 {
422 	struct bnxt_qplib_hwq *tbl;
423 	dma_addr_t *dma_ptr;
424 	__le64 **pbl_ptr, *ptr;
425 	int i, j, k;
426 	int fnz_idx = -1;
427 	int pg_count;
428 
429 	pbl_ptr = (__le64 **)ctx->pde.pbl_ptr;
430 
431 	for (i = 0, j = 0; i < MAX_TQM_ALLOC_REQ;
432 	     i++, j += MAX_TQM_ALLOC_BLK_SIZE) {
433 		tbl = &ctx->qtbl[i];
434 		if (!tbl->max_elements)
435 			continue;
436 		if (fnz_idx == -1)
437 			fnz_idx = i; /* first non-zero index */
438 		switch (tbl->level) {
439 		case PBL_LVL_2:
440 			pg_count = tbl->pbl[PBL_LVL_1].pg_count;
441 			for (k = 0; k < pg_count; k++) {
442 				ptr = &pbl_ptr[PTR_PG(j + k)][PTR_IDX(j + k)];
443 				dma_ptr = &tbl->pbl[PBL_LVL_1].pg_map_arr[k];
444 				*ptr = cpu_to_le64(*dma_ptr | PTU_PTE_VALID);
445 			}
446 			break;
447 		case PBL_LVL_1:
448 		case PBL_LVL_0:
449 		default:
450 			ptr = &pbl_ptr[PTR_PG(j)][PTR_IDX(j)];
451 			*ptr = cpu_to_le64(tbl->pbl[PBL_LVL_0].pg_map_arr[0] |
452 					   PTU_PTE_VALID);
453 			break;
454 		}
455 	}
456 	if (fnz_idx == -1)
457 		fnz_idx = 0;
458 	/* update pde level as per page table programming */
459 	ctx->pde.level = (ctx->qtbl[fnz_idx].level == PBL_LVL_2) ? PBL_LVL_2 :
460 			  ctx->qtbl[fnz_idx].level + 1;
461 }
462 
463 static int bnxt_qplib_setup_tqm_rings(struct bnxt_qplib_res *res,
464 				      struct bnxt_qplib_ctx *ctx)
465 {
466 	int rc;
467 
468 	rc = bnxt_qplib_alloc_tqm_rings(res, ctx);
469 	if (rc)
470 		goto fail;
471 
472 	bnxt_qplib_map_tqm_pgtbl(&ctx->tqm_ctx);
473 fail:
474 	return rc;
475 }
476 
477 /*
478  * Routine: bnxt_qplib_alloc_ctx
479  * Description:
480  *     Context tables are memories which are used by the chip fw.
481  *     The 6 tables defined are:
482  *             QPC ctx - holds QP states
483  *             MRW ctx - holds memory region and window
484  *             SRQ ctx - holds shared RQ states
485  *             CQ ctx - holds completion queue states
486  *             TQM ctx - holds Tx Queue Manager context
487  *             TIM ctx - holds timer context
488  *     Depending on the size of the tbl requested, either a 1 Page Buffer List
489  *     or a 1-to-2-stage indirection Page Directory List + 1 PBL is used
490  *     instead.
491  *     Table might be employed as follows:
492  *             For 0      < ctx size <= 1 PAGE, 0 level of ind is used
493  *             For 1 PAGE < ctx size <= 512 entries size, 1 level of ind is used
494  *             For 512    < ctx size <= MAX, 2 levels of ind is used
495  * Returns:
496  *     0 if success, else -ERRORS
497  */
498 int bnxt_qplib_alloc_ctx(struct bnxt_qplib_res *res,
499 			 struct bnxt_qplib_ctx *ctx,
500 			 bool virt_fn, bool is_p5)
501 {
502 	struct bnxt_qplib_hwq_attr hwq_attr = {};
503 	struct bnxt_qplib_sg_info sginfo = {};
504 	int rc;
505 
506 	if (virt_fn || is_p5)
507 		goto stats_alloc;
508 
509 	/* QPC Tables */
510 	sginfo.pgsize = PAGE_SIZE;
511 	sginfo.pgshft = PAGE_SHIFT;
512 	hwq_attr.sginfo = &sginfo;
513 
514 	hwq_attr.res = res;
515 	hwq_attr.depth = ctx->qpc_count;
516 	hwq_attr.stride = BNXT_QPLIB_MAX_QP_CTX_ENTRY_SIZE;
517 	hwq_attr.type = HWQ_TYPE_CTX;
518 	rc = bnxt_qplib_alloc_init_hwq(&ctx->qpc_tbl, &hwq_attr);
519 	if (rc)
520 		goto fail;
521 
522 	/* MRW Tables */
523 	hwq_attr.depth = ctx->mrw_count;
524 	hwq_attr.stride = BNXT_QPLIB_MAX_MRW_CTX_ENTRY_SIZE;
525 	rc = bnxt_qplib_alloc_init_hwq(&ctx->mrw_tbl, &hwq_attr);
526 	if (rc)
527 		goto fail;
528 
529 	/* SRQ Tables */
530 	hwq_attr.depth = ctx->srqc_count;
531 	hwq_attr.stride = BNXT_QPLIB_MAX_SRQ_CTX_ENTRY_SIZE;
532 	rc = bnxt_qplib_alloc_init_hwq(&ctx->srqc_tbl, &hwq_attr);
533 	if (rc)
534 		goto fail;
535 
536 	/* CQ Tables */
537 	hwq_attr.depth = ctx->cq_count;
538 	hwq_attr.stride = BNXT_QPLIB_MAX_CQ_CTX_ENTRY_SIZE;
539 	rc = bnxt_qplib_alloc_init_hwq(&ctx->cq_tbl, &hwq_attr);
540 	if (rc)
541 		goto fail;
542 
543 	/* TQM Buffer */
544 	rc = bnxt_qplib_setup_tqm_rings(res, ctx);
545 	if (rc)
546 		goto fail;
547 	/* TIM Buffer */
548 	ctx->tim_tbl.max_elements = ctx->qpc_count * 16;
549 	hwq_attr.depth = ctx->qpc_count * 16;
550 	hwq_attr.stride = 1;
551 	rc = bnxt_qplib_alloc_init_hwq(&ctx->tim_tbl, &hwq_attr);
552 	if (rc)
553 		goto fail;
554 stats_alloc:
555 	/* Stats */
556 	rc = bnxt_qplib_alloc_stats_ctx(res->pdev, res->cctx, &ctx->stats);
557 	if (rc)
558 		goto fail;
559 
560 	return 0;
561 
562 fail:
563 	bnxt_qplib_free_ctx(res, ctx);
564 	return rc;
565 }
566 
567 static void bnxt_qplib_free_sgid_tbl(struct bnxt_qplib_res *res,
568 				     struct bnxt_qplib_sgid_tbl *sgid_tbl)
569 {
570 	kfree(sgid_tbl->tbl);
571 	kfree(sgid_tbl->hw_id);
572 	kfree(sgid_tbl->ctx);
573 	kfree(sgid_tbl->vlan);
574 	sgid_tbl->tbl = NULL;
575 	sgid_tbl->hw_id = NULL;
576 	sgid_tbl->ctx = NULL;
577 	sgid_tbl->vlan = NULL;
578 	sgid_tbl->max = 0;
579 	sgid_tbl->active = 0;
580 }
581 
582 static int bnxt_qplib_alloc_sgid_tbl(struct bnxt_qplib_res *res,
583 				     struct bnxt_qplib_sgid_tbl *sgid_tbl,
584 				     u16 max)
585 {
586 	sgid_tbl->tbl = kcalloc(max, sizeof(*sgid_tbl->tbl), GFP_KERNEL);
587 	if (!sgid_tbl->tbl)
588 		return -ENOMEM;
589 
590 	sgid_tbl->hw_id = kcalloc(max, sizeof(u16), GFP_KERNEL);
591 	if (!sgid_tbl->hw_id)
592 		goto out_free1;
593 
594 	sgid_tbl->ctx = kcalloc(max, sizeof(void *), GFP_KERNEL);
595 	if (!sgid_tbl->ctx)
596 		goto out_free2;
597 
598 	sgid_tbl->vlan = kcalloc(max, sizeof(u8), GFP_KERNEL);
599 	if (!sgid_tbl->vlan)
600 		goto out_free3;
601 
602 	sgid_tbl->max = max;
603 	return 0;
604 out_free3:
605 	kfree(sgid_tbl->ctx);
606 	sgid_tbl->ctx = NULL;
607 out_free2:
608 	kfree(sgid_tbl->hw_id);
609 	sgid_tbl->hw_id = NULL;
610 out_free1:
611 	kfree(sgid_tbl->tbl);
612 	sgid_tbl->tbl = NULL;
613 	return -ENOMEM;
614 };
615 
616 static void bnxt_qplib_cleanup_sgid_tbl(struct bnxt_qplib_res *res,
617 					struct bnxt_qplib_sgid_tbl *sgid_tbl)
618 {
619 	int i;
620 
621 	for (i = 0; i < sgid_tbl->max; i++) {
622 		if (memcmp(&sgid_tbl->tbl[i], &bnxt_qplib_gid_zero,
623 			   sizeof(bnxt_qplib_gid_zero)))
624 			bnxt_qplib_del_sgid(sgid_tbl, &sgid_tbl->tbl[i].gid,
625 					    sgid_tbl->tbl[i].vlan_id, true);
626 	}
627 	memset(sgid_tbl->tbl, 0, sizeof(*sgid_tbl->tbl) * sgid_tbl->max);
628 	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
629 	memset(sgid_tbl->vlan, 0, sizeof(u8) * sgid_tbl->max);
630 	sgid_tbl->active = 0;
631 }
632 
633 static void bnxt_qplib_init_sgid_tbl(struct bnxt_qplib_sgid_tbl *sgid_tbl,
634 				     struct net_device *netdev)
635 {
636 	u32 i;
637 
638 	for (i = 0; i < sgid_tbl->max; i++)
639 		sgid_tbl->tbl[i].vlan_id = 0xffff;
640 
641 	memset(sgid_tbl->hw_id, -1, sizeof(u16) * sgid_tbl->max);
642 }
643 
644 /* PDs */
645 int bnxt_qplib_alloc_pd(struct bnxt_qplib_res  *res, struct bnxt_qplib_pd *pd)
646 {
647 	struct bnxt_qplib_pd_tbl *pdt = &res->pd_tbl;
648 	u32 bit_num;
649 	int rc = 0;
650 
651 	mutex_lock(&res->pd_tbl_lock);
652 	bit_num = find_first_bit(pdt->tbl, pdt->max);
653 	if (bit_num == pdt->max) {
654 		rc = -ENOMEM;
655 		goto exit;
656 	}
657 
658 	/* Found unused PD */
659 	clear_bit(bit_num, pdt->tbl);
660 	pd->id = bit_num;
661 exit:
662 	mutex_unlock(&res->pd_tbl_lock);
663 	return rc;
664 }
665 
666 int bnxt_qplib_dealloc_pd(struct bnxt_qplib_res *res,
667 			  struct bnxt_qplib_pd_tbl *pdt,
668 			  struct bnxt_qplib_pd *pd)
669 {
670 	int rc = 0;
671 
672 	mutex_lock(&res->pd_tbl_lock);
673 	if (test_and_set_bit(pd->id, pdt->tbl)) {
674 		dev_warn(&res->pdev->dev, "Freeing an unused PD? pdn = %d\n",
675 			 pd->id);
676 		rc = -EINVAL;
677 		goto exit;
678 	}
679 	pd->id = 0;
680 exit:
681 	mutex_unlock(&res->pd_tbl_lock);
682 	return rc;
683 }
684 
685 static void bnxt_qplib_free_pd_tbl(struct bnxt_qplib_pd_tbl *pdt)
686 {
687 	kfree(pdt->tbl);
688 	pdt->tbl = NULL;
689 	pdt->max = 0;
690 }
691 
692 static int bnxt_qplib_alloc_pd_tbl(struct bnxt_qplib_res *res,
693 				   struct bnxt_qplib_pd_tbl *pdt,
694 				   u32 max)
695 {
696 	u32 bytes;
697 
698 	bytes = max >> 3;
699 	if (!bytes)
700 		bytes = 1;
701 	pdt->tbl = kmalloc(bytes, GFP_KERNEL);
702 	if (!pdt->tbl)
703 		return -ENOMEM;
704 
705 	pdt->max = max;
706 	memset((u8 *)pdt->tbl, 0xFF, bytes);
707 	mutex_init(&res->pd_tbl_lock);
708 
709 	return 0;
710 }
711 
712 /* DPIs */
713 int bnxt_qplib_alloc_dpi(struct bnxt_qplib_res *res,
714 			 struct bnxt_qplib_dpi *dpi,
715 			 void *app, u8 type)
716 {
717 	struct bnxt_qplib_dpi_tbl *dpit = &res->dpi_tbl;
718 	struct bnxt_qplib_reg_desc *reg;
719 	u32 bit_num;
720 	u64 umaddr;
721 
722 	reg = &dpit->wcreg;
723 	mutex_lock(&res->dpi_tbl_lock);
724 
725 	bit_num = find_first_bit(dpit->tbl, dpit->max);
726 	if (bit_num == dpit->max) {
727 		mutex_unlock(&res->dpi_tbl_lock);
728 		return -ENOMEM;
729 	}
730 
731 	/* Found unused DPI */
732 	clear_bit(bit_num, dpit->tbl);
733 	dpit->app_tbl[bit_num] = app;
734 
735 	dpi->bit = bit_num;
736 	dpi->dpi = bit_num + (reg->offset - dpit->ucreg.offset) / PAGE_SIZE;
737 
738 	umaddr = reg->bar_base + reg->offset + bit_num * PAGE_SIZE;
739 	dpi->umdbr = umaddr;
740 
741 	switch (type) {
742 	case BNXT_QPLIB_DPI_TYPE_KERNEL:
743 		/* privileged dbr was already mapped just initialize it. */
744 		dpi->umdbr = dpit->ucreg.bar_base +
745 			     dpit->ucreg.offset + bit_num * PAGE_SIZE;
746 		dpi->dbr = dpit->priv_db;
747 		dpi->dpi = dpi->bit;
748 		break;
749 	case BNXT_QPLIB_DPI_TYPE_WC:
750 		dpi->dbr = ioremap_wc(umaddr, PAGE_SIZE);
751 		break;
752 	default:
753 		dpi->dbr = ioremap(umaddr, PAGE_SIZE);
754 		break;
755 	}
756 
757 	dpi->type = type;
758 	mutex_unlock(&res->dpi_tbl_lock);
759 	return 0;
760 
761 }
762 
763 int bnxt_qplib_dealloc_dpi(struct bnxt_qplib_res *res,
764 			   struct bnxt_qplib_dpi *dpi)
765 {
766 	struct bnxt_qplib_dpi_tbl *dpit = &res->dpi_tbl;
767 
768 	mutex_lock(&res->dpi_tbl_lock);
769 	if (dpi->dpi && dpi->type != BNXT_QPLIB_DPI_TYPE_KERNEL)
770 		pci_iounmap(res->pdev, dpi->dbr);
771 
772 	if (test_and_set_bit(dpi->bit, dpit->tbl)) {
773 		dev_warn(&res->pdev->dev,
774 			 "Freeing an unused DPI? dpi = %d, bit = %d\n",
775 				dpi->dpi, dpi->bit);
776 		mutex_unlock(&res->dpi_tbl_lock);
777 		return -EINVAL;
778 	}
779 	if (dpit->app_tbl)
780 		dpit->app_tbl[dpi->bit] = NULL;
781 	memset(dpi, 0, sizeof(*dpi));
782 	mutex_unlock(&res->dpi_tbl_lock);
783 	return 0;
784 }
785 
786 static void bnxt_qplib_free_dpi_tbl(struct bnxt_qplib_res     *res,
787 				    struct bnxt_qplib_dpi_tbl *dpit)
788 {
789 	kfree(dpit->tbl);
790 	kfree(dpit->app_tbl);
791 	dpit->tbl = NULL;
792 	dpit->app_tbl = NULL;
793 	dpit->max = 0;
794 }
795 
796 static int bnxt_qplib_alloc_dpi_tbl(struct bnxt_qplib_res *res,
797 				    struct bnxt_qplib_dev_attr *dev_attr)
798 {
799 	struct bnxt_qplib_dpi_tbl *dpit;
800 	struct bnxt_qplib_reg_desc *reg;
801 	unsigned long bar_len;
802 	u32 dbr_offset;
803 	u32 bytes;
804 
805 	dpit = &res->dpi_tbl;
806 	reg = &dpit->wcreg;
807 
808 	if (!bnxt_qplib_is_chip_gen_p5(res->cctx)) {
809 		/* Offest should come from L2 driver */
810 		dbr_offset = dev_attr->l2_db_size;
811 		dpit->ucreg.offset = dbr_offset;
812 		dpit->wcreg.offset = dbr_offset;
813 	}
814 
815 	bar_len = pci_resource_len(res->pdev, reg->bar_id);
816 	dpit->max = (bar_len - reg->offset) / PAGE_SIZE;
817 	if (dev_attr->max_dpi)
818 		dpit->max = min_t(u32, dpit->max, dev_attr->max_dpi);
819 
820 	dpit->app_tbl = kcalloc(dpit->max,  sizeof(void *), GFP_KERNEL);
821 	if (!dpit->app_tbl)
822 		return -ENOMEM;
823 
824 	bytes = dpit->max >> 3;
825 	if (!bytes)
826 		bytes = 1;
827 
828 	dpit->tbl = kmalloc(bytes, GFP_KERNEL);
829 	if (!dpit->tbl) {
830 		kfree(dpit->app_tbl);
831 		dpit->app_tbl = NULL;
832 		return -ENOMEM;
833 	}
834 
835 	memset((u8 *)dpit->tbl, 0xFF, bytes);
836 	mutex_init(&res->dpi_tbl_lock);
837 	dpit->priv_db = dpit->ucreg.bar_reg + dpit->ucreg.offset;
838 
839 	return 0;
840 
841 }
842 
843 /* Stats */
844 static void bnxt_qplib_free_stats_ctx(struct pci_dev *pdev,
845 				      struct bnxt_qplib_stats *stats)
846 {
847 	if (stats->dma) {
848 		dma_free_coherent(&pdev->dev, stats->size,
849 				  stats->dma, stats->dma_map);
850 	}
851 	memset(stats, 0, sizeof(*stats));
852 	stats->fw_id = -1;
853 }
854 
855 static int bnxt_qplib_alloc_stats_ctx(struct pci_dev *pdev,
856 				      struct bnxt_qplib_chip_ctx *cctx,
857 				      struct bnxt_qplib_stats *stats)
858 {
859 	memset(stats, 0, sizeof(*stats));
860 	stats->fw_id = -1;
861 	stats->size = cctx->hw_stats_size;
862 	stats->dma = dma_alloc_coherent(&pdev->dev, stats->size,
863 					&stats->dma_map, GFP_KERNEL);
864 	if (!stats->dma) {
865 		dev_err(&pdev->dev, "Stats DMA allocation failed\n");
866 		return -ENOMEM;
867 	}
868 	return 0;
869 }
870 
871 void bnxt_qplib_cleanup_res(struct bnxt_qplib_res *res)
872 {
873 	bnxt_qplib_cleanup_sgid_tbl(res, &res->sgid_tbl);
874 }
875 
876 int bnxt_qplib_init_res(struct bnxt_qplib_res *res)
877 {
878 	bnxt_qplib_init_sgid_tbl(&res->sgid_tbl, res->netdev);
879 
880 	return 0;
881 }
882 
883 void bnxt_qplib_free_res(struct bnxt_qplib_res *res)
884 {
885 	bnxt_qplib_free_sgid_tbl(res, &res->sgid_tbl);
886 	bnxt_qplib_free_pd_tbl(&res->pd_tbl);
887 	bnxt_qplib_free_dpi_tbl(res, &res->dpi_tbl);
888 }
889 
890 int bnxt_qplib_alloc_res(struct bnxt_qplib_res *res, struct pci_dev *pdev,
891 			 struct net_device *netdev,
892 			 struct bnxt_qplib_dev_attr *dev_attr)
893 {
894 	int rc;
895 
896 	res->pdev = pdev;
897 	res->netdev = netdev;
898 
899 	rc = bnxt_qplib_alloc_sgid_tbl(res, &res->sgid_tbl, dev_attr->max_sgid);
900 	if (rc)
901 		goto fail;
902 
903 	rc = bnxt_qplib_alloc_pd_tbl(res, &res->pd_tbl, dev_attr->max_pd);
904 	if (rc)
905 		goto fail;
906 
907 	rc = bnxt_qplib_alloc_dpi_tbl(res, dev_attr);
908 	if (rc)
909 		goto fail;
910 
911 	return 0;
912 fail:
913 	bnxt_qplib_free_res(res);
914 	return rc;
915 }
916 
917 void bnxt_qplib_unmap_db_bar(struct bnxt_qplib_res *res)
918 {
919 	struct bnxt_qplib_reg_desc *reg;
920 
921 	reg = &res->dpi_tbl.ucreg;
922 	if (reg->bar_reg)
923 		pci_iounmap(res->pdev, reg->bar_reg);
924 	reg->bar_reg = NULL;
925 	reg->bar_base = 0;
926 	reg->len = 0;
927 	reg->bar_id = 0;
928 }
929 
930 int bnxt_qplib_map_db_bar(struct bnxt_qplib_res *res)
931 {
932 	struct bnxt_qplib_reg_desc *ucreg;
933 	struct bnxt_qplib_reg_desc *wcreg;
934 
935 	wcreg = &res->dpi_tbl.wcreg;
936 	wcreg->bar_id = RCFW_DBR_PCI_BAR_REGION;
937 	wcreg->bar_base = pci_resource_start(res->pdev, wcreg->bar_id);
938 
939 	ucreg = &res->dpi_tbl.ucreg;
940 	ucreg->bar_id = RCFW_DBR_PCI_BAR_REGION;
941 	ucreg->bar_base = pci_resource_start(res->pdev, ucreg->bar_id);
942 	ucreg->len = ucreg->offset + PAGE_SIZE;
943 	if (!ucreg->len || ((ucreg->len & (PAGE_SIZE - 1)) != 0)) {
944 		dev_err(&res->pdev->dev, "QPLIB: invalid dbr length %d",
945 			(int)ucreg->len);
946 		return -EINVAL;
947 	}
948 	ucreg->bar_reg = ioremap(ucreg->bar_base, ucreg->len);
949 	if (!ucreg->bar_reg) {
950 		dev_err(&res->pdev->dev, "privileged dpi map failed!");
951 		return -ENOMEM;
952 	}
953 
954 	return 0;
955 }
956 
957 int bnxt_qplib_determine_atomics(struct pci_dev *dev)
958 {
959 	int comp;
960 	u16 ctl2;
961 
962 	comp = pci_enable_atomic_ops_to_root(dev,
963 					     PCI_EXP_DEVCAP2_ATOMIC_COMP32);
964 	if (comp)
965 		return -EOPNOTSUPP;
966 	comp = pci_enable_atomic_ops_to_root(dev,
967 					     PCI_EXP_DEVCAP2_ATOMIC_COMP64);
968 	if (comp)
969 		return -EOPNOTSUPP;
970 	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &ctl2);
971 	return !(ctl2 & PCI_EXP_DEVCTL2_ATOMIC_REQ);
972 }
973