1 /* 2 * Broadcom NetXtreme-E RoCE driver. 3 * 4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term 5 * Broadcom refers to Broadcom Limited and/or its subsidiaries. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in 21 * the documentation and/or other materials provided with the 22 * distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 * Description: Main component of the bnxt_re driver 37 */ 38 39 #include <linux/module.h> 40 #include <linux/netdevice.h> 41 #include <linux/ethtool.h> 42 #include <linux/mutex.h> 43 #include <linux/list.h> 44 #include <linux/rculist.h> 45 #include <linux/spinlock.h> 46 #include <linux/pci.h> 47 #include <net/dcbnl.h> 48 #include <net/ipv6.h> 49 #include <net/addrconf.h> 50 #include <linux/if_ether.h> 51 #include <linux/auxiliary_bus.h> 52 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_user_verbs.h> 55 #include <rdma/ib_umem.h> 56 #include <rdma/ib_addr.h> 57 58 #include "bnxt_ulp.h" 59 #include "roce_hsi.h" 60 #include "qplib_res.h" 61 #include "qplib_sp.h" 62 #include "qplib_fp.h" 63 #include "qplib_rcfw.h" 64 #include "bnxt_re.h" 65 #include "ib_verbs.h" 66 #include <rdma/bnxt_re-abi.h> 67 #include "bnxt.h" 68 #include "hw_counters.h" 69 70 static char version[] = 71 BNXT_RE_DESC "\n"; 72 73 MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>"); 74 MODULE_DESCRIPTION(BNXT_RE_DESC); 75 MODULE_LICENSE("Dual BSD/GPL"); 76 77 /* globals */ 78 static DEFINE_MUTEX(bnxt_re_mutex); 79 80 static void bnxt_re_stop_irq(void *handle); 81 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev); 82 static int bnxt_re_netdev_event(struct notifier_block *notifier, 83 unsigned long event, void *ptr); 84 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev); 85 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev); 86 static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev); 87 88 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, 89 u32 *offset); 90 static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev) 91 { 92 struct bnxt_qplib_chip_ctx *cctx; 93 struct bnxt_en_dev *en_dev; 94 struct bnxt_qplib_res *res; 95 u32 l2db_len = 0; 96 u32 offset = 0; 97 u32 barlen; 98 int rc; 99 100 res = &rdev->qplib_res; 101 en_dev = rdev->en_dev; 102 cctx = rdev->chip_ctx; 103 104 /* Issue qcfg */ 105 rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset); 106 if (rc) 107 dev_info(rdev_to_dev(rdev), 108 "Couldn't get DB bar size, Low latency framework is disabled\n"); 109 /* set register offsets for both UC and WC */ 110 if (bnxt_qplib_is_chip_gen_p7(cctx)) 111 res->dpi_tbl.ucreg.offset = offset; 112 else 113 res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET : 114 BNXT_QPLIB_DBR_PF_DB_OFFSET; 115 res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset; 116 117 /* If WC mapping is disabled by L2 driver then en_dev->l2_db_size 118 * is equal to the DB-Bar actual size. This indicates that L2 119 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping 120 * in such cases and DB-push will be disabled. 121 */ 122 barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION); 123 if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) { 124 res->dpi_tbl.wcreg.offset = en_dev->l2_db_size; 125 dev_info(rdev_to_dev(rdev), "Low latency framework is enabled\n"); 126 } 127 } 128 129 static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev, u8 mode) 130 { 131 struct bnxt_qplib_chip_ctx *cctx; 132 133 cctx = rdev->chip_ctx; 134 cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ? 135 mode : BNXT_QPLIB_WQE_MODE_STATIC; 136 if (bnxt_re_hwrm_qcaps(rdev)) 137 dev_err(rdev_to_dev(rdev), 138 "Failed to query hwrm qcaps\n"); 139 } 140 141 static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev) 142 { 143 struct bnxt_qplib_chip_ctx *chip_ctx; 144 145 if (!rdev->chip_ctx) 146 return; 147 chip_ctx = rdev->chip_ctx; 148 rdev->chip_ctx = NULL; 149 rdev->rcfw.res = NULL; 150 rdev->qplib_res.cctx = NULL; 151 rdev->qplib_res.pdev = NULL; 152 rdev->qplib_res.netdev = NULL; 153 kfree(chip_ctx); 154 } 155 156 static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev, u8 wqe_mode) 157 { 158 struct bnxt_qplib_chip_ctx *chip_ctx; 159 struct bnxt_en_dev *en_dev; 160 int rc; 161 162 en_dev = rdev->en_dev; 163 164 chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL); 165 if (!chip_ctx) 166 return -ENOMEM; 167 chip_ctx->chip_num = en_dev->chip_num; 168 chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size; 169 170 rdev->chip_ctx = chip_ctx; 171 /* rest members to follow eventually */ 172 173 rdev->qplib_res.cctx = rdev->chip_ctx; 174 rdev->rcfw.res = &rdev->qplib_res; 175 rdev->qplib_res.dattr = &rdev->dev_attr; 176 rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev); 177 178 bnxt_re_set_drv_mode(rdev, wqe_mode); 179 180 bnxt_re_set_db_offset(rdev); 181 rc = bnxt_qplib_map_db_bar(&rdev->qplib_res); 182 if (rc) { 183 kfree(rdev->chip_ctx); 184 rdev->chip_ctx = NULL; 185 return rc; 186 } 187 188 if (bnxt_qplib_determine_atomics(en_dev->pdev)) 189 ibdev_info(&rdev->ibdev, 190 "platform doesn't support global atomics."); 191 return 0; 192 } 193 194 /* SR-IOV helper functions */ 195 196 static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev) 197 { 198 if (BNXT_EN_VF(rdev->en_dev)) 199 rdev->is_virtfn = 1; 200 } 201 202 /* Set the maximum number of each resource that the driver actually wants 203 * to allocate. This may be up to the maximum number the firmware has 204 * reserved for the function. The driver may choose to allocate fewer 205 * resources than the firmware maximum. 206 */ 207 static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev) 208 { 209 struct bnxt_qplib_dev_attr *attr; 210 struct bnxt_qplib_ctx *ctx; 211 int i; 212 213 attr = &rdev->dev_attr; 214 ctx = &rdev->qplib_ctx; 215 216 ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT, 217 attr->max_qp); 218 ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K; 219 /* Use max_mr from fw since max_mrw does not get set */ 220 ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr); 221 ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT, 222 attr->max_srq); 223 ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq); 224 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) 225 for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) 226 rdev->qplib_ctx.tqm_ctx.qcount[i] = 227 rdev->dev_attr.tqm_alloc_reqs[i]; 228 } 229 230 static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf) 231 { 232 struct bnxt_qplib_vf_res *vf_res; 233 u32 mrws = 0; 234 u32 vf_pct; 235 u32 nvfs; 236 237 vf_res = &qplib_ctx->vf_res; 238 /* 239 * Reserve a set of resources for the PF. Divide the remaining 240 * resources among the VFs 241 */ 242 vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF; 243 nvfs = num_vf; 244 num_vf = 100 * num_vf; 245 vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf; 246 vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf; 247 vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf; 248 /* 249 * The driver allows many more MRs than other resources. If the 250 * firmware does also, then reserve a fixed amount for the PF and 251 * divide the rest among VFs. VFs may use many MRs for NFS 252 * mounts, ISER, NVME applications, etc. If the firmware severely 253 * restricts the number of MRs, then let PF have half and divide 254 * the rest among VFs, as for the other resource types. 255 */ 256 if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) { 257 mrws = qplib_ctx->mrw_count * vf_pct; 258 nvfs = num_vf; 259 } else { 260 mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF; 261 } 262 vf_res->max_mrw_per_vf = (mrws / nvfs); 263 vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF; 264 } 265 266 static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev) 267 { 268 u32 num_vfs; 269 270 memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res)); 271 bnxt_re_limit_pf_res(rdev); 272 273 num_vfs = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ? 274 BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs; 275 if (num_vfs) 276 bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs); 277 } 278 279 static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev) 280 { 281 282 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 283 return; 284 rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev); 285 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) { 286 bnxt_re_set_resource_limits(rdev); 287 bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw, 288 &rdev->qplib_ctx); 289 } 290 } 291 292 static void bnxt_re_shutdown(struct auxiliary_device *adev) 293 { 294 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 295 296 if (!rdev) 297 return; 298 ib_unregister_device(&rdev->ibdev); 299 bnxt_re_dev_uninit(rdev); 300 } 301 302 static void bnxt_re_stop_irq(void *handle) 303 { 304 struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle; 305 struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw; 306 struct bnxt_qplib_nq *nq; 307 int indx; 308 309 for (indx = BNXT_RE_NQ_IDX; indx < rdev->num_msix; indx++) { 310 nq = &rdev->nq[indx - 1]; 311 bnxt_qplib_nq_stop_irq(nq, false); 312 } 313 314 bnxt_qplib_rcfw_stop_irq(rcfw, false); 315 } 316 317 static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent) 318 { 319 struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle; 320 struct bnxt_msix_entry *msix_ent = rdev->en_dev->msix_entries; 321 struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw; 322 struct bnxt_qplib_nq *nq; 323 int indx, rc; 324 325 if (!ent) { 326 /* Not setting the f/w timeout bit in rcfw. 327 * During the driver unload the first command 328 * to f/w will timeout and that will set the 329 * timeout bit. 330 */ 331 ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n"); 332 return; 333 } 334 335 /* Vectors may change after restart, so update with new vectors 336 * in device sctructure. 337 */ 338 for (indx = 0; indx < rdev->num_msix; indx++) 339 rdev->en_dev->msix_entries[indx].vector = ent[indx].vector; 340 341 rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector, 342 false); 343 if (rc) { 344 ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n"); 345 return; 346 } 347 for (indx = BNXT_RE_NQ_IDX ; indx < rdev->num_msix; indx++) { 348 nq = &rdev->nq[indx - 1]; 349 rc = bnxt_qplib_nq_start_irq(nq, indx - 1, 350 msix_ent[indx].vector, false); 351 if (rc) { 352 ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n", 353 indx - 1); 354 return; 355 } 356 } 357 } 358 359 static struct bnxt_ulp_ops bnxt_re_ulp_ops = { 360 .ulp_irq_stop = bnxt_re_stop_irq, 361 .ulp_irq_restart = bnxt_re_start_irq 362 }; 363 364 /* RoCE -> Net driver */ 365 366 static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev) 367 { 368 struct bnxt_en_dev *en_dev; 369 int rc; 370 371 en_dev = rdev->en_dev; 372 373 rc = bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev); 374 if (!rc) 375 rdev->qplib_res.pdev = rdev->en_dev->pdev; 376 return rc; 377 } 378 379 static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd) 380 { 381 hdr->req_type = cpu_to_le16(opcd); 382 hdr->cmpl_ring = cpu_to_le16(-1); 383 hdr->target_id = cpu_to_le16(-1); 384 } 385 386 static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg, 387 int msg_len, void *resp, int resp_max_len, 388 int timeout) 389 { 390 fw_msg->msg = msg; 391 fw_msg->msg_len = msg_len; 392 fw_msg->resp = resp; 393 fw_msg->resp_max_len = resp_max_len; 394 fw_msg->timeout = timeout; 395 } 396 397 /* Query device config using common hwrm */ 398 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, 399 u32 *offset) 400 { 401 struct bnxt_en_dev *en_dev = rdev->en_dev; 402 struct hwrm_func_qcfg_output resp = {0}; 403 struct hwrm_func_qcfg_input req = {0}; 404 struct bnxt_fw_msg fw_msg = {}; 405 int rc; 406 407 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG); 408 req.fid = cpu_to_le16(0xffff); 409 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 410 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 411 rc = bnxt_send_msg(en_dev, &fw_msg); 412 if (!rc) { 413 *db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024); 414 *offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024); 415 } 416 return rc; 417 } 418 419 /* Query function capabilities using common hwrm */ 420 int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev) 421 { 422 struct bnxt_en_dev *en_dev = rdev->en_dev; 423 struct hwrm_func_qcaps_output resp = {}; 424 struct hwrm_func_qcaps_input req = {}; 425 struct bnxt_qplib_chip_ctx *cctx; 426 struct bnxt_fw_msg fw_msg = {}; 427 int rc; 428 429 cctx = rdev->chip_ctx; 430 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS); 431 req.fid = cpu_to_le16(0xffff); 432 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 433 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 434 435 rc = bnxt_send_msg(en_dev, &fw_msg); 436 if (rc) 437 return rc; 438 cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE; 439 440 cctx->modes.dbr_pacing = 441 le32_to_cpu(resp.flags_ext2) & 442 FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED; 443 return 0; 444 } 445 446 static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev) 447 { 448 struct hwrm_func_dbr_pacing_qcfg_output resp = {}; 449 struct hwrm_func_dbr_pacing_qcfg_input req = {}; 450 struct bnxt_en_dev *en_dev = rdev->en_dev; 451 struct bnxt_qplib_chip_ctx *cctx; 452 struct bnxt_fw_msg fw_msg = {}; 453 int rc; 454 455 cctx = rdev->chip_ctx; 456 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG); 457 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 458 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 459 rc = bnxt_send_msg(en_dev, &fw_msg); 460 if (rc) 461 return rc; 462 463 if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) & 464 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) == 465 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC) 466 cctx->dbr_stat_db_fifo = 467 le32_to_cpu(resp.dbr_stat_db_fifo_reg) & 468 ~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK; 469 return 0; 470 } 471 472 /* Update the pacing tunable parameters to the default values */ 473 static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev) 474 { 475 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; 476 477 pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing; 478 pacing_data->pacing_th = rdev->pacing.pacing_algo_th; 479 pacing_data->alarm_th = 480 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; 481 } 482 483 static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev) 484 { 485 u32 read_val, fifo_occup; 486 487 /* loop shouldn't run infintely as the occupancy usually goes 488 * below pacing algo threshold as soon as pacing kicks in. 489 */ 490 while (1) { 491 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); 492 fifo_occup = BNXT_RE_MAX_FIFO_DEPTH - 493 ((read_val & BNXT_RE_DB_FIFO_ROOM_MASK) >> 494 BNXT_RE_DB_FIFO_ROOM_SHIFT); 495 /* Fifo occupancy cannot be greater the MAX FIFO depth */ 496 if (fifo_occup > BNXT_RE_MAX_FIFO_DEPTH) 497 break; 498 499 if (fifo_occup < rdev->qplib_res.pacing_data->pacing_th) 500 break; 501 } 502 } 503 504 static void bnxt_re_db_fifo_check(struct work_struct *work) 505 { 506 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 507 dbq_fifo_check_work); 508 struct bnxt_qplib_db_pacing_data *pacing_data; 509 u32 pacing_save; 510 511 if (!mutex_trylock(&rdev->pacing.dbq_lock)) 512 return; 513 pacing_data = rdev->qplib_res.pacing_data; 514 pacing_save = rdev->pacing.do_pacing_save; 515 __wait_for_fifo_occupancy_below_th(rdev); 516 cancel_delayed_work_sync(&rdev->dbq_pacing_work); 517 if (pacing_save > rdev->pacing.dbr_def_do_pacing) { 518 /* Double the do_pacing value during the congestion */ 519 pacing_save = pacing_save << 1; 520 } else { 521 /* 522 * when a new congestion is detected increase the do_pacing 523 * by 8 times. And also increase the pacing_th by 4 times. The 524 * reason to increase pacing_th is to give more space for the 525 * queue to oscillate down without getting empty, but also more 526 * room for the queue to increase without causing another alarm. 527 */ 528 pacing_save = pacing_save << 3; 529 pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4; 530 } 531 532 if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING) 533 pacing_save = BNXT_RE_MAX_DBR_DO_PACING; 534 535 pacing_data->do_pacing = pacing_save; 536 rdev->pacing.do_pacing_save = pacing_data->do_pacing; 537 pacing_data->alarm_th = 538 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; 539 schedule_delayed_work(&rdev->dbq_pacing_work, 540 msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); 541 rdev->stats.pacing.alerts++; 542 mutex_unlock(&rdev->pacing.dbq_lock); 543 } 544 545 static void bnxt_re_pacing_timer_exp(struct work_struct *work) 546 { 547 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 548 dbq_pacing_work.work); 549 struct bnxt_qplib_db_pacing_data *pacing_data; 550 u32 read_val, fifo_occup; 551 552 if (!mutex_trylock(&rdev->pacing.dbq_lock)) 553 return; 554 555 pacing_data = rdev->qplib_res.pacing_data; 556 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); 557 fifo_occup = BNXT_RE_MAX_FIFO_DEPTH - 558 ((read_val & BNXT_RE_DB_FIFO_ROOM_MASK) >> 559 BNXT_RE_DB_FIFO_ROOM_SHIFT); 560 561 if (fifo_occup > pacing_data->pacing_th) 562 goto restart_timer; 563 564 /* 565 * Instead of immediately going back to the default do_pacing 566 * reduce it by 1/8 times and restart the timer. 567 */ 568 pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3); 569 pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing); 570 if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) { 571 bnxt_re_set_default_pacing_data(rdev); 572 rdev->stats.pacing.complete++; 573 goto dbq_unlock; 574 } 575 576 restart_timer: 577 schedule_delayed_work(&rdev->dbq_pacing_work, 578 msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); 579 rdev->stats.pacing.resched++; 580 dbq_unlock: 581 rdev->pacing.do_pacing_save = pacing_data->do_pacing; 582 mutex_unlock(&rdev->pacing.dbq_lock); 583 } 584 585 void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev) 586 { 587 struct bnxt_qplib_db_pacing_data *pacing_data; 588 589 if (!rdev->pacing.dbr_pacing) 590 return; 591 mutex_lock(&rdev->pacing.dbq_lock); 592 pacing_data = rdev->qplib_res.pacing_data; 593 594 /* 595 * Increase the alarm_th to max so that other user lib instances do not 596 * keep alerting the driver. 597 */ 598 pacing_data->alarm_th = BNXT_RE_MAX_FIFO_DEPTH; 599 pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING; 600 cancel_work_sync(&rdev->dbq_fifo_check_work); 601 schedule_work(&rdev->dbq_fifo_check_work); 602 mutex_unlock(&rdev->pacing.dbq_lock); 603 } 604 605 static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev) 606 { 607 if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) 608 return -EIO; 609 610 /* Allocate a page for app use */ 611 rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL); 612 if (!rdev->pacing.dbr_page) 613 return -ENOMEM; 614 615 memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE); 616 rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page; 617 618 /* MAP HW window 2 for reading db fifo depth */ 619 writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK, 620 rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 621 rdev->pacing.dbr_db_fifo_reg_off = 622 (rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) + 623 BNXT_RE_GRC_FIFO_REG_BASE; 624 rdev->pacing.dbr_bar_addr = 625 pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off; 626 627 rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD; 628 rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME; 629 rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION; 630 rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing; 631 rdev->qplib_res.pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH; 632 rdev->qplib_res.pacing_data->fifo_room_mask = BNXT_RE_DB_FIFO_ROOM_MASK; 633 rdev->qplib_res.pacing_data->fifo_room_shift = BNXT_RE_DB_FIFO_ROOM_SHIFT; 634 rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off; 635 bnxt_re_set_default_pacing_data(rdev); 636 /* Initialize worker for DBR Pacing */ 637 INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check); 638 INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp); 639 return 0; 640 } 641 642 static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev) 643 { 644 cancel_work_sync(&rdev->dbq_fifo_check_work); 645 cancel_delayed_work_sync(&rdev->dbq_pacing_work); 646 if (rdev->pacing.dbr_page) 647 free_page((u64)rdev->pacing.dbr_page); 648 649 rdev->pacing.dbr_page = NULL; 650 rdev->pacing.dbr_pacing = false; 651 } 652 653 static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev, 654 u16 fw_ring_id, int type) 655 { 656 struct bnxt_en_dev *en_dev; 657 struct hwrm_ring_free_input req = {}; 658 struct hwrm_ring_free_output resp; 659 struct bnxt_fw_msg fw_msg = {}; 660 int rc = -EINVAL; 661 662 if (!rdev) 663 return rc; 664 665 en_dev = rdev->en_dev; 666 667 if (!en_dev) 668 return rc; 669 670 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 671 return 0; 672 673 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE); 674 req.ring_type = type; 675 req.ring_id = cpu_to_le16(fw_ring_id); 676 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 677 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 678 rc = bnxt_send_msg(en_dev, &fw_msg); 679 if (rc) 680 ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x", 681 req.ring_id, rc); 682 return rc; 683 } 684 685 static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev, 686 struct bnxt_re_ring_attr *ring_attr, 687 u16 *fw_ring_id) 688 { 689 struct bnxt_en_dev *en_dev = rdev->en_dev; 690 struct hwrm_ring_alloc_input req = {}; 691 struct hwrm_ring_alloc_output resp; 692 struct bnxt_fw_msg fw_msg = {}; 693 int rc = -EINVAL; 694 695 if (!en_dev) 696 return rc; 697 698 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC); 699 req.enables = 0; 700 req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]); 701 if (ring_attr->pages > 1) { 702 /* Page size is in log2 units */ 703 req.page_size = BNXT_PAGE_SHIFT; 704 req.page_tbl_depth = 1; 705 } 706 req.fbo = 0; 707 /* Association of ring index with doorbell index and MSIX number */ 708 req.logical_id = cpu_to_le16(ring_attr->lrid); 709 req.length = cpu_to_le32(ring_attr->depth + 1); 710 req.ring_type = ring_attr->type; 711 req.int_mode = ring_attr->mode; 712 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 713 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 714 rc = bnxt_send_msg(en_dev, &fw_msg); 715 if (!rc) 716 *fw_ring_id = le16_to_cpu(resp.ring_id); 717 718 return rc; 719 } 720 721 static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev, 722 u32 fw_stats_ctx_id) 723 { 724 struct bnxt_en_dev *en_dev = rdev->en_dev; 725 struct hwrm_stat_ctx_free_input req = {}; 726 struct hwrm_stat_ctx_free_output resp = {}; 727 struct bnxt_fw_msg fw_msg = {}; 728 int rc = -EINVAL; 729 730 if (!en_dev) 731 return rc; 732 733 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 734 return 0; 735 736 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE); 737 req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id); 738 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 739 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 740 rc = bnxt_send_msg(en_dev, &fw_msg); 741 if (rc) 742 ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x", 743 rc); 744 745 return rc; 746 } 747 748 static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev, 749 dma_addr_t dma_map, 750 u32 *fw_stats_ctx_id) 751 { 752 struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx; 753 struct hwrm_stat_ctx_alloc_output resp = {}; 754 struct hwrm_stat_ctx_alloc_input req = {}; 755 struct bnxt_en_dev *en_dev = rdev->en_dev; 756 struct bnxt_fw_msg fw_msg = {}; 757 int rc = -EINVAL; 758 759 *fw_stats_ctx_id = INVALID_STATS_CTX_ID; 760 761 if (!en_dev) 762 return rc; 763 764 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC); 765 req.update_period_ms = cpu_to_le32(1000); 766 req.stats_dma_addr = cpu_to_le64(dma_map); 767 req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size); 768 req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE; 769 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 770 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 771 rc = bnxt_send_msg(en_dev, &fw_msg); 772 if (!rc) 773 *fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id); 774 775 return rc; 776 } 777 778 static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext) 779 { 780 } 781 782 /* Device */ 783 784 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev) 785 { 786 struct ib_device *ibdev = 787 ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE); 788 if (!ibdev) 789 return NULL; 790 791 return container_of(ibdev, struct bnxt_re_dev, ibdev); 792 } 793 794 static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr, 795 char *buf) 796 { 797 struct bnxt_re_dev *rdev = 798 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); 799 800 return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor); 801 } 802 static DEVICE_ATTR_RO(hw_rev); 803 804 static ssize_t hca_type_show(struct device *device, 805 struct device_attribute *attr, char *buf) 806 { 807 struct bnxt_re_dev *rdev = 808 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); 809 810 return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc); 811 } 812 static DEVICE_ATTR_RO(hca_type); 813 814 static struct attribute *bnxt_re_attributes[] = { 815 &dev_attr_hw_rev.attr, 816 &dev_attr_hca_type.attr, 817 NULL 818 }; 819 820 static const struct attribute_group bnxt_re_dev_attr_group = { 821 .attrs = bnxt_re_attributes, 822 }; 823 824 static const struct ib_device_ops bnxt_re_dev_ops = { 825 .owner = THIS_MODULE, 826 .driver_id = RDMA_DRIVER_BNXT_RE, 827 .uverbs_abi_ver = BNXT_RE_ABI_VERSION, 828 829 .add_gid = bnxt_re_add_gid, 830 .alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats, 831 .alloc_mr = bnxt_re_alloc_mr, 832 .alloc_pd = bnxt_re_alloc_pd, 833 .alloc_ucontext = bnxt_re_alloc_ucontext, 834 .create_ah = bnxt_re_create_ah, 835 .create_cq = bnxt_re_create_cq, 836 .create_qp = bnxt_re_create_qp, 837 .create_srq = bnxt_re_create_srq, 838 .create_user_ah = bnxt_re_create_ah, 839 .dealloc_pd = bnxt_re_dealloc_pd, 840 .dealloc_ucontext = bnxt_re_dealloc_ucontext, 841 .del_gid = bnxt_re_del_gid, 842 .dereg_mr = bnxt_re_dereg_mr, 843 .destroy_ah = bnxt_re_destroy_ah, 844 .destroy_cq = bnxt_re_destroy_cq, 845 .destroy_qp = bnxt_re_destroy_qp, 846 .destroy_srq = bnxt_re_destroy_srq, 847 .device_group = &bnxt_re_dev_attr_group, 848 .disassociate_ucontext = bnxt_re_disassociate_ucontext, 849 .get_dev_fw_str = bnxt_re_query_fw_str, 850 .get_dma_mr = bnxt_re_get_dma_mr, 851 .get_hw_stats = bnxt_re_ib_get_hw_stats, 852 .get_link_layer = bnxt_re_get_link_layer, 853 .get_port_immutable = bnxt_re_get_port_immutable, 854 .map_mr_sg = bnxt_re_map_mr_sg, 855 .mmap = bnxt_re_mmap, 856 .mmap_free = bnxt_re_mmap_free, 857 .modify_qp = bnxt_re_modify_qp, 858 .modify_srq = bnxt_re_modify_srq, 859 .poll_cq = bnxt_re_poll_cq, 860 .post_recv = bnxt_re_post_recv, 861 .post_send = bnxt_re_post_send, 862 .post_srq_recv = bnxt_re_post_srq_recv, 863 .query_ah = bnxt_re_query_ah, 864 .query_device = bnxt_re_query_device, 865 .query_pkey = bnxt_re_query_pkey, 866 .query_port = bnxt_re_query_port, 867 .query_qp = bnxt_re_query_qp, 868 .query_srq = bnxt_re_query_srq, 869 .reg_user_mr = bnxt_re_reg_user_mr, 870 .reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf, 871 .req_notify_cq = bnxt_re_req_notify_cq, 872 .resize_cq = bnxt_re_resize_cq, 873 INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah), 874 INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq), 875 INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd), 876 INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp), 877 INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq), 878 INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx), 879 }; 880 881 static int bnxt_re_register_ib(struct bnxt_re_dev *rdev) 882 { 883 struct ib_device *ibdev = &rdev->ibdev; 884 int ret; 885 886 /* ib device init */ 887 ibdev->node_type = RDMA_NODE_IB_CA; 888 strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA", 889 strlen(BNXT_RE_DESC) + 5); 890 ibdev->phys_port_cnt = 1; 891 892 addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr); 893 894 ibdev->num_comp_vectors = rdev->num_msix - 1; 895 ibdev->dev.parent = &rdev->en_dev->pdev->dev; 896 ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY; 897 898 if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)) 899 ibdev->driver_def = bnxt_re_uapi_defs; 900 901 ib_set_device_ops(ibdev, &bnxt_re_dev_ops); 902 ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1); 903 if (ret) 904 return ret; 905 906 dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX); 907 ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ); 908 return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev); 909 } 910 911 static struct bnxt_re_dev *bnxt_re_dev_add(struct bnxt_aux_priv *aux_priv, 912 struct bnxt_en_dev *en_dev) 913 { 914 struct bnxt_re_dev *rdev; 915 916 /* Allocate bnxt_re_dev instance here */ 917 rdev = ib_alloc_device(bnxt_re_dev, ibdev); 918 if (!rdev) { 919 ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!", 920 ROCE_DRV_MODULE_NAME); 921 return NULL; 922 } 923 /* Default values */ 924 rdev->nb.notifier_call = NULL; 925 rdev->netdev = en_dev->net; 926 rdev->en_dev = en_dev; 927 rdev->id = rdev->en_dev->pdev->devfn; 928 INIT_LIST_HEAD(&rdev->qp_list); 929 mutex_init(&rdev->qp_lock); 930 mutex_init(&rdev->pacing.dbq_lock); 931 atomic_set(&rdev->stats.res.qp_count, 0); 932 atomic_set(&rdev->stats.res.cq_count, 0); 933 atomic_set(&rdev->stats.res.srq_count, 0); 934 atomic_set(&rdev->stats.res.mr_count, 0); 935 atomic_set(&rdev->stats.res.mw_count, 0); 936 atomic_set(&rdev->stats.res.ah_count, 0); 937 atomic_set(&rdev->stats.res.pd_count, 0); 938 rdev->cosq[0] = 0xFFFF; 939 rdev->cosq[1] = 0xFFFF; 940 941 return rdev; 942 } 943 944 static int bnxt_re_handle_unaffi_async_event(struct creq_func_event 945 *unaffi_async) 946 { 947 switch (unaffi_async->event) { 948 case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR: 949 break; 950 case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR: 951 break; 952 case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR: 953 break; 954 case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR: 955 break; 956 case CREQ_FUNC_EVENT_EVENT_CQ_ERROR: 957 break; 958 case CREQ_FUNC_EVENT_EVENT_TQM_ERROR: 959 break; 960 case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR: 961 break; 962 case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR: 963 break; 964 case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR: 965 break; 966 case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR: 967 break; 968 case CREQ_FUNC_EVENT_EVENT_TIM_ERROR: 969 break; 970 default: 971 return -EINVAL; 972 } 973 return 0; 974 } 975 976 static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event, 977 struct bnxt_re_qp *qp) 978 { 979 struct ib_event event = {}; 980 unsigned int flags; 981 982 if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR && 983 rdma_is_kernel_res(&qp->ib_qp.res)) { 984 flags = bnxt_re_lock_cqs(qp); 985 bnxt_qplib_add_flush_qp(&qp->qplib_qp); 986 bnxt_re_unlock_cqs(qp, flags); 987 } 988 989 if (qp->qplib_qp.srq) { 990 event.device = &qp->rdev->ibdev; 991 event.element.qp = &qp->ib_qp; 992 event.event = IB_EVENT_QP_LAST_WQE_REACHED; 993 } 994 995 if (event.device && qp->ib_qp.event_handler) 996 qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context); 997 998 return 0; 999 } 1000 1001 static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async, 1002 void *obj) 1003 { 1004 int rc = 0; 1005 u8 event; 1006 1007 if (!obj) 1008 return rc; /* QP was already dead, still return success */ 1009 1010 event = affi_async->event; 1011 if (event == CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION) { 1012 struct bnxt_qplib_qp *lib_qp = obj; 1013 struct bnxt_re_qp *qp = container_of(lib_qp, struct bnxt_re_qp, 1014 qplib_qp); 1015 rc = bnxt_re_handle_qp_async_event(affi_async, qp); 1016 } 1017 return rc; 1018 } 1019 1020 static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw, 1021 void *aeqe, void *obj) 1022 { 1023 struct creq_qp_event *affi_async; 1024 struct creq_func_event *unaffi_async; 1025 u8 type; 1026 int rc; 1027 1028 type = ((struct creq_base *)aeqe)->type; 1029 if (type == CREQ_BASE_TYPE_FUNC_EVENT) { 1030 unaffi_async = aeqe; 1031 rc = bnxt_re_handle_unaffi_async_event(unaffi_async); 1032 } else { 1033 affi_async = aeqe; 1034 rc = bnxt_re_handle_affi_async_event(affi_async, obj); 1035 } 1036 1037 return rc; 1038 } 1039 1040 static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq, 1041 struct bnxt_qplib_srq *handle, u8 event) 1042 { 1043 struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq, 1044 qplib_srq); 1045 struct ib_event ib_event; 1046 1047 ib_event.device = &srq->rdev->ibdev; 1048 ib_event.element.srq = &srq->ib_srq; 1049 if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT) 1050 ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED; 1051 else 1052 ib_event.event = IB_EVENT_SRQ_ERR; 1053 1054 if (srq->ib_srq.event_handler) { 1055 /* Lock event_handler? */ 1056 (*srq->ib_srq.event_handler)(&ib_event, 1057 srq->ib_srq.srq_context); 1058 } 1059 return 0; 1060 } 1061 1062 static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq, 1063 struct bnxt_qplib_cq *handle) 1064 { 1065 struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq, 1066 qplib_cq); 1067 1068 if (cq->ib_cq.comp_handler) { 1069 /* Lock comp_handler? */ 1070 (*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context); 1071 } 1072 1073 return 0; 1074 } 1075 1076 static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev) 1077 { 1078 int i; 1079 1080 for (i = 1; i < rdev->num_msix; i++) 1081 bnxt_qplib_disable_nq(&rdev->nq[i - 1]); 1082 1083 if (rdev->qplib_res.rcfw) 1084 bnxt_qplib_cleanup_res(&rdev->qplib_res); 1085 } 1086 1087 static int bnxt_re_init_res(struct bnxt_re_dev *rdev) 1088 { 1089 int num_vec_enabled = 0; 1090 int rc = 0, i; 1091 u32 db_offt; 1092 1093 bnxt_qplib_init_res(&rdev->qplib_res); 1094 1095 for (i = 1; i < rdev->num_msix ; i++) { 1096 db_offt = rdev->en_dev->msix_entries[i].db_offset; 1097 rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nq[i - 1], 1098 i - 1, rdev->en_dev->msix_entries[i].vector, 1099 db_offt, &bnxt_re_cqn_handler, 1100 &bnxt_re_srqn_handler); 1101 if (rc) { 1102 ibdev_err(&rdev->ibdev, 1103 "Failed to enable NQ with rc = 0x%x", rc); 1104 goto fail; 1105 } 1106 num_vec_enabled++; 1107 } 1108 return 0; 1109 fail: 1110 for (i = num_vec_enabled; i >= 0; i--) 1111 bnxt_qplib_disable_nq(&rdev->nq[i]); 1112 return rc; 1113 } 1114 1115 static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev) 1116 { 1117 u8 type; 1118 int i; 1119 1120 for (i = 0; i < rdev->num_msix - 1; i++) { 1121 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1122 bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); 1123 bnxt_qplib_free_nq(&rdev->nq[i]); 1124 rdev->nq[i].res = NULL; 1125 } 1126 } 1127 1128 static void bnxt_re_free_res(struct bnxt_re_dev *rdev) 1129 { 1130 bnxt_re_free_nq_res(rdev); 1131 1132 if (rdev->qplib_res.dpi_tbl.max) { 1133 bnxt_qplib_dealloc_dpi(&rdev->qplib_res, 1134 &rdev->dpi_privileged); 1135 } 1136 if (rdev->qplib_res.rcfw) { 1137 bnxt_qplib_free_res(&rdev->qplib_res); 1138 rdev->qplib_res.rcfw = NULL; 1139 } 1140 } 1141 1142 static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev) 1143 { 1144 struct bnxt_re_ring_attr rattr = {}; 1145 int num_vec_created = 0; 1146 int rc, i; 1147 u8 type; 1148 1149 /* Configure and allocate resources for qplib */ 1150 rdev->qplib_res.rcfw = &rdev->rcfw; 1151 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); 1152 if (rc) 1153 goto fail; 1154 1155 rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev, 1156 rdev->netdev, &rdev->dev_attr); 1157 if (rc) 1158 goto fail; 1159 1160 rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res, 1161 &rdev->dpi_privileged, 1162 rdev, BNXT_QPLIB_DPI_TYPE_KERNEL); 1163 if (rc) 1164 goto dealloc_res; 1165 1166 for (i = 0; i < rdev->num_msix - 1; i++) { 1167 struct bnxt_qplib_nq *nq; 1168 1169 nq = &rdev->nq[i]; 1170 nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT; 1171 rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, &rdev->nq[i]); 1172 if (rc) { 1173 ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x", 1174 i, rc); 1175 goto free_nq; 1176 } 1177 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1178 rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr; 1179 rattr.pages = nq->hwq.pbl[rdev->nq[i].hwq.level].pg_count; 1180 rattr.type = type; 1181 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; 1182 rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1; 1183 rattr.lrid = rdev->en_dev->msix_entries[i + 1].ring_idx; 1184 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id); 1185 if (rc) { 1186 ibdev_err(&rdev->ibdev, 1187 "Failed to allocate NQ fw id with rc = 0x%x", 1188 rc); 1189 bnxt_qplib_free_nq(&rdev->nq[i]); 1190 goto free_nq; 1191 } 1192 num_vec_created++; 1193 } 1194 return 0; 1195 free_nq: 1196 for (i = num_vec_created - 1; i >= 0; i--) { 1197 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1198 bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); 1199 bnxt_qplib_free_nq(&rdev->nq[i]); 1200 } 1201 bnxt_qplib_dealloc_dpi(&rdev->qplib_res, 1202 &rdev->dpi_privileged); 1203 dealloc_res: 1204 bnxt_qplib_free_res(&rdev->qplib_res); 1205 1206 fail: 1207 rdev->qplib_res.rcfw = NULL; 1208 return rc; 1209 } 1210 1211 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp, 1212 u8 port_num, enum ib_event_type event) 1213 { 1214 struct ib_event ib_event; 1215 1216 ib_event.device = ibdev; 1217 if (qp) { 1218 ib_event.element.qp = qp; 1219 ib_event.event = event; 1220 if (qp->event_handler) 1221 qp->event_handler(&ib_event, qp->qp_context); 1222 1223 } else { 1224 ib_event.element.port_num = port_num; 1225 ib_event.event = event; 1226 ib_dispatch_event(&ib_event); 1227 } 1228 } 1229 1230 static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev, 1231 struct bnxt_re_qp *qp) 1232 { 1233 return (qp->ib_qp.qp_type == IB_QPT_GSI) || 1234 (qp == rdev->gsi_ctx.gsi_sqp); 1235 } 1236 1237 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev) 1238 { 1239 int mask = IB_QP_STATE; 1240 struct ib_qp_attr qp_attr; 1241 struct bnxt_re_qp *qp; 1242 1243 qp_attr.qp_state = IB_QPS_ERR; 1244 mutex_lock(&rdev->qp_lock); 1245 list_for_each_entry(qp, &rdev->qp_list, list) { 1246 /* Modify the state of all QPs except QP1/Shadow QP */ 1247 if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) { 1248 if (qp->qplib_qp.state != 1249 CMDQ_MODIFY_QP_NEW_STATE_RESET && 1250 qp->qplib_qp.state != 1251 CMDQ_MODIFY_QP_NEW_STATE_ERR) { 1252 bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp, 1253 1, IB_EVENT_QP_FATAL); 1254 bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, mask, 1255 NULL); 1256 } 1257 } 1258 } 1259 mutex_unlock(&rdev->qp_lock); 1260 } 1261 1262 static int bnxt_re_update_gid(struct bnxt_re_dev *rdev) 1263 { 1264 struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl; 1265 struct bnxt_qplib_gid gid; 1266 u16 gid_idx, index; 1267 int rc = 0; 1268 1269 if (!ib_device_try_get(&rdev->ibdev)) 1270 return 0; 1271 1272 for (index = 0; index < sgid_tbl->active; index++) { 1273 gid_idx = sgid_tbl->hw_id[index]; 1274 1275 if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero, 1276 sizeof(bnxt_qplib_gid_zero))) 1277 continue; 1278 /* need to modify the VLAN enable setting of non VLAN GID only 1279 * as setting is done for VLAN GID while adding GID 1280 */ 1281 if (sgid_tbl->vlan[index]) 1282 continue; 1283 1284 memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid)); 1285 1286 rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx, 1287 rdev->qplib_res.netdev->dev_addr); 1288 } 1289 1290 ib_device_put(&rdev->ibdev); 1291 return rc; 1292 } 1293 1294 static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev) 1295 { 1296 u32 prio_map = 0, tmp_map = 0; 1297 struct net_device *netdev; 1298 struct dcb_app app = {}; 1299 1300 netdev = rdev->netdev; 1301 1302 app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE; 1303 app.protocol = ETH_P_IBOE; 1304 tmp_map = dcb_ieee_getapp_mask(netdev, &app); 1305 prio_map = tmp_map; 1306 1307 app.selector = IEEE_8021QAZ_APP_SEL_DGRAM; 1308 app.protocol = ROCE_V2_UDP_DPORT; 1309 tmp_map = dcb_ieee_getapp_mask(netdev, &app); 1310 prio_map |= tmp_map; 1311 1312 return prio_map; 1313 } 1314 1315 static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev) 1316 { 1317 u8 prio_map = 0; 1318 1319 /* Get priority for roce */ 1320 prio_map = bnxt_re_get_priority_mask(rdev); 1321 1322 if (prio_map == rdev->cur_prio_map) 1323 return 0; 1324 rdev->cur_prio_map = prio_map; 1325 /* Actual priorities are not programmed as they are already 1326 * done by L2 driver; just enable or disable priority vlan tagging 1327 */ 1328 if ((prio_map == 0 && rdev->qplib_res.prio) || 1329 (prio_map != 0 && !rdev->qplib_res.prio)) { 1330 rdev->qplib_res.prio = prio_map; 1331 bnxt_re_update_gid(rdev); 1332 } 1333 1334 return 0; 1335 } 1336 1337 static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev) 1338 { 1339 struct bnxt_en_dev *en_dev = rdev->en_dev; 1340 struct hwrm_ver_get_output resp = {}; 1341 struct hwrm_ver_get_input req = {}; 1342 struct bnxt_qplib_chip_ctx *cctx; 1343 struct bnxt_fw_msg fw_msg = {}; 1344 int rc; 1345 1346 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET); 1347 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 1348 req.hwrm_intf_min = HWRM_VERSION_MINOR; 1349 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 1350 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 1351 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 1352 rc = bnxt_send_msg(en_dev, &fw_msg); 1353 if (rc) { 1354 ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x", 1355 rc); 1356 return; 1357 } 1358 1359 cctx = rdev->chip_ctx; 1360 cctx->hwrm_intf_ver = 1361 (u64)le16_to_cpu(resp.hwrm_intf_major) << 48 | 1362 (u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 | 1363 (u64)le16_to_cpu(resp.hwrm_intf_build) << 16 | 1364 le16_to_cpu(resp.hwrm_intf_patch); 1365 1366 cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout); 1367 1368 if (!cctx->hwrm_cmd_max_timeout) 1369 cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT; 1370 } 1371 1372 static int bnxt_re_ib_init(struct bnxt_re_dev *rdev) 1373 { 1374 int rc; 1375 u32 event; 1376 1377 /* Register ib dev */ 1378 rc = bnxt_re_register_ib(rdev); 1379 if (rc) { 1380 pr_err("Failed to register with IB: %#x\n", rc); 1381 return rc; 1382 } 1383 dev_info(rdev_to_dev(rdev), "Device registered with IB successfully"); 1384 set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags); 1385 1386 event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ? 1387 IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; 1388 1389 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event); 1390 1391 return rc; 1392 } 1393 1394 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev) 1395 { 1396 u8 type; 1397 int rc; 1398 1399 if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags)) 1400 cancel_delayed_work_sync(&rdev->worker); 1401 1402 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, 1403 &rdev->flags)) 1404 bnxt_re_cleanup_res(rdev); 1405 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags)) 1406 bnxt_re_free_res(rdev); 1407 1408 if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) { 1409 rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw); 1410 if (rc) 1411 ibdev_warn(&rdev->ibdev, 1412 "Failed to deinitialize RCFW: %#x", rc); 1413 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); 1414 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); 1415 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); 1416 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1417 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); 1418 bnxt_qplib_free_rcfw_channel(&rdev->rcfw); 1419 } 1420 1421 rdev->num_msix = 0; 1422 1423 if (rdev->pacing.dbr_pacing) 1424 bnxt_re_deinitialize_dbr_pacing(rdev); 1425 1426 bnxt_re_destroy_chip_ctx(rdev); 1427 if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags)) 1428 bnxt_unregister_dev(rdev->en_dev); 1429 } 1430 1431 /* worker thread for polling periodic events. Now used for QoS programming*/ 1432 static void bnxt_re_worker(struct work_struct *work) 1433 { 1434 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 1435 worker.work); 1436 1437 bnxt_re_setup_qos(rdev); 1438 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); 1439 } 1440 1441 static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 wqe_mode) 1442 { 1443 struct bnxt_re_ring_attr rattr = {}; 1444 struct bnxt_qplib_creq_ctx *creq; 1445 u32 db_offt; 1446 int vid; 1447 u8 type; 1448 int rc; 1449 1450 /* Registered a new RoCE device instance to netdev */ 1451 rc = bnxt_re_register_netdev(rdev); 1452 if (rc) { 1453 ibdev_err(&rdev->ibdev, 1454 "Failed to register with netedev: %#x\n", rc); 1455 return -EINVAL; 1456 } 1457 set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); 1458 1459 rc = bnxt_re_setup_chip_ctx(rdev, wqe_mode); 1460 if (rc) { 1461 bnxt_unregister_dev(rdev->en_dev); 1462 clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); 1463 ibdev_err(&rdev->ibdev, "Failed to get chip context\n"); 1464 return -EINVAL; 1465 } 1466 1467 /* Check whether VF or PF */ 1468 bnxt_re_get_sriov_func_type(rdev); 1469 1470 if (!rdev->en_dev->ulp_tbl->msix_requested) { 1471 ibdev_err(&rdev->ibdev, 1472 "Failed to get MSI-X vectors: %#x\n", rc); 1473 rc = -EINVAL; 1474 goto fail; 1475 } 1476 ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n", 1477 rdev->en_dev->ulp_tbl->msix_requested); 1478 rdev->num_msix = rdev->en_dev->ulp_tbl->msix_requested; 1479 1480 bnxt_re_query_hwrm_intf_version(rdev); 1481 1482 /* Establish RCFW Communication Channel to initialize the context 1483 * memory for the function and all child VFs 1484 */ 1485 rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw, 1486 &rdev->qplib_ctx, 1487 BNXT_RE_MAX_QPC_COUNT); 1488 if (rc) { 1489 ibdev_err(&rdev->ibdev, 1490 "Failed to allocate RCFW Channel: %#x\n", rc); 1491 goto fail; 1492 } 1493 1494 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1495 creq = &rdev->rcfw.creq; 1496 rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr; 1497 rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count; 1498 rattr.type = type; 1499 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; 1500 rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1; 1501 rattr.lrid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].ring_idx; 1502 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id); 1503 if (rc) { 1504 ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc); 1505 goto free_rcfw; 1506 } 1507 db_offt = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].db_offset; 1508 vid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].vector; 1509 rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw, 1510 vid, db_offt, 1511 &bnxt_re_aeq_handler); 1512 if (rc) { 1513 ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n", 1514 rc); 1515 goto free_ring; 1516 } 1517 1518 if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) { 1519 rc = bnxt_re_initialize_dbr_pacing(rdev); 1520 if (!rc) { 1521 rdev->pacing.dbr_pacing = true; 1522 } else { 1523 ibdev_err(&rdev->ibdev, 1524 "DBR pacing disabled with error : %d\n", rc); 1525 rdev->pacing.dbr_pacing = false; 1526 } 1527 } 1528 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); 1529 if (rc) 1530 goto disable_rcfw; 1531 1532 bnxt_re_set_resource_limits(rdev); 1533 1534 rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0, 1535 bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)); 1536 if (rc) { 1537 ibdev_err(&rdev->ibdev, 1538 "Failed to allocate QPLIB context: %#x\n", rc); 1539 goto disable_rcfw; 1540 } 1541 rc = bnxt_re_net_stats_ctx_alloc(rdev, 1542 rdev->qplib_ctx.stats.dma_map, 1543 &rdev->qplib_ctx.stats.fw_id); 1544 if (rc) { 1545 ibdev_err(&rdev->ibdev, 1546 "Failed to allocate stats context: %#x\n", rc); 1547 goto free_ctx; 1548 } 1549 1550 rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx, 1551 rdev->is_virtfn); 1552 if (rc) { 1553 ibdev_err(&rdev->ibdev, 1554 "Failed to initialize RCFW: %#x\n", rc); 1555 goto free_sctx; 1556 } 1557 set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags); 1558 1559 /* Resources based on the 'new' device caps */ 1560 rc = bnxt_re_alloc_res(rdev); 1561 if (rc) { 1562 ibdev_err(&rdev->ibdev, 1563 "Failed to allocate resources: %#x\n", rc); 1564 goto fail; 1565 } 1566 set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags); 1567 rc = bnxt_re_init_res(rdev); 1568 if (rc) { 1569 ibdev_err(&rdev->ibdev, 1570 "Failed to initialize resources: %#x\n", rc); 1571 goto fail; 1572 } 1573 1574 set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags); 1575 1576 if (!rdev->is_virtfn) { 1577 rc = bnxt_re_setup_qos(rdev); 1578 if (rc) 1579 ibdev_info(&rdev->ibdev, 1580 "RoCE priority not yet configured\n"); 1581 1582 INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker); 1583 set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags); 1584 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); 1585 /* 1586 * Use the total VF count since the actual VF count may not be 1587 * available at this point. 1588 */ 1589 bnxt_re_vf_res_config(rdev); 1590 } 1591 1592 return 0; 1593 free_sctx: 1594 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); 1595 free_ctx: 1596 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); 1597 disable_rcfw: 1598 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); 1599 free_ring: 1600 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1601 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); 1602 free_rcfw: 1603 bnxt_qplib_free_rcfw_channel(&rdev->rcfw); 1604 fail: 1605 bnxt_re_dev_uninit(rdev); 1606 1607 return rc; 1608 } 1609 1610 static int bnxt_re_add_device(struct auxiliary_device *adev, u8 wqe_mode) 1611 { 1612 struct bnxt_aux_priv *aux_priv = 1613 container_of(adev, struct bnxt_aux_priv, aux_dev); 1614 struct bnxt_en_dev *en_dev; 1615 struct bnxt_re_dev *rdev; 1616 int rc; 1617 1618 /* en_dev should never be NULL as long as adev and aux_dev are valid. */ 1619 en_dev = aux_priv->edev; 1620 1621 rdev = bnxt_re_dev_add(aux_priv, en_dev); 1622 if (!rdev || !rdev_to_dev(rdev)) { 1623 rc = -ENOMEM; 1624 goto exit; 1625 } 1626 1627 rc = bnxt_re_dev_init(rdev, wqe_mode); 1628 if (rc) 1629 goto re_dev_dealloc; 1630 1631 rc = bnxt_re_ib_init(rdev); 1632 if (rc) { 1633 pr_err("Failed to register with IB: %s", 1634 aux_priv->aux_dev.name); 1635 goto re_dev_uninit; 1636 } 1637 auxiliary_set_drvdata(adev, rdev); 1638 1639 return 0; 1640 1641 re_dev_uninit: 1642 bnxt_re_dev_uninit(rdev); 1643 re_dev_dealloc: 1644 ib_dealloc_device(&rdev->ibdev); 1645 exit: 1646 return rc; 1647 } 1648 1649 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable) 1650 { 1651 struct bnxt_qplib_cc_param cc_param = {}; 1652 1653 /* Do not enable congestion control on VFs */ 1654 if (rdev->is_virtfn) 1655 return; 1656 1657 /* Currently enabling only for GenP5 adapters */ 1658 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) 1659 return; 1660 1661 if (enable) { 1662 cc_param.enable = 1; 1663 cc_param.cc_mode = CMDQ_MODIFY_ROCE_CC_CC_MODE_PROBABILISTIC_CC_MODE; 1664 } 1665 1666 cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE | 1667 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC | 1668 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN); 1669 1670 if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param)) 1671 ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable); 1672 } 1673 1674 /* 1675 * "Notifier chain callback can be invoked for the same chain from 1676 * different CPUs at the same time". 1677 * 1678 * For cases when the netdev is already present, our call to the 1679 * register_netdevice_notifier() will actually get the rtnl_lock() 1680 * before sending NETDEV_REGISTER and (if up) NETDEV_UP 1681 * events. 1682 * 1683 * But for cases when the netdev is not already present, the notifier 1684 * chain is subjected to be invoked from different CPUs simultaneously. 1685 * 1686 * This is protected by the netdev_mutex. 1687 */ 1688 static int bnxt_re_netdev_event(struct notifier_block *notifier, 1689 unsigned long event, void *ptr) 1690 { 1691 struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr); 1692 struct bnxt_re_dev *rdev; 1693 1694 real_dev = rdma_vlan_dev_real_dev(netdev); 1695 if (!real_dev) 1696 real_dev = netdev; 1697 1698 if (real_dev != netdev) 1699 goto exit; 1700 1701 rdev = bnxt_re_from_netdev(real_dev); 1702 if (!rdev) 1703 return NOTIFY_DONE; 1704 1705 1706 switch (event) { 1707 case NETDEV_UP: 1708 case NETDEV_DOWN: 1709 case NETDEV_CHANGE: 1710 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, 1711 netif_carrier_ok(real_dev) ? 1712 IB_EVENT_PORT_ACTIVE : 1713 IB_EVENT_PORT_ERR); 1714 break; 1715 default: 1716 break; 1717 } 1718 ib_device_put(&rdev->ibdev); 1719 exit: 1720 return NOTIFY_DONE; 1721 } 1722 1723 #define BNXT_ADEV_NAME "bnxt_en" 1724 1725 static void bnxt_re_remove(struct auxiliary_device *adev) 1726 { 1727 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1728 1729 if (!rdev) 1730 return; 1731 1732 mutex_lock(&bnxt_re_mutex); 1733 if (rdev->nb.notifier_call) { 1734 unregister_netdevice_notifier(&rdev->nb); 1735 rdev->nb.notifier_call = NULL; 1736 } else { 1737 /* If notifier is null, we should have already done a 1738 * clean up before coming here. 1739 */ 1740 goto skip_remove; 1741 } 1742 bnxt_re_setup_cc(rdev, false); 1743 ib_unregister_device(&rdev->ibdev); 1744 bnxt_re_dev_uninit(rdev); 1745 ib_dealloc_device(&rdev->ibdev); 1746 skip_remove: 1747 mutex_unlock(&bnxt_re_mutex); 1748 } 1749 1750 static int bnxt_re_probe(struct auxiliary_device *adev, 1751 const struct auxiliary_device_id *id) 1752 { 1753 struct bnxt_re_dev *rdev; 1754 int rc; 1755 1756 mutex_lock(&bnxt_re_mutex); 1757 rc = bnxt_re_add_device(adev, BNXT_QPLIB_WQE_MODE_STATIC); 1758 if (rc) { 1759 mutex_unlock(&bnxt_re_mutex); 1760 return rc; 1761 } 1762 1763 rdev = auxiliary_get_drvdata(adev); 1764 1765 rdev->nb.notifier_call = bnxt_re_netdev_event; 1766 rc = register_netdevice_notifier(&rdev->nb); 1767 if (rc) { 1768 rdev->nb.notifier_call = NULL; 1769 pr_err("%s: Cannot register to netdevice_notifier", 1770 ROCE_DRV_MODULE_NAME); 1771 goto err; 1772 } 1773 1774 bnxt_re_setup_cc(rdev, true); 1775 mutex_unlock(&bnxt_re_mutex); 1776 return 0; 1777 1778 err: 1779 mutex_unlock(&bnxt_re_mutex); 1780 bnxt_re_remove(adev); 1781 1782 return rc; 1783 } 1784 1785 static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state) 1786 { 1787 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1788 1789 if (!rdev) 1790 return 0; 1791 1792 mutex_lock(&bnxt_re_mutex); 1793 /* L2 driver may invoke this callback during device error/crash or device 1794 * reset. Current RoCE driver doesn't recover the device in case of 1795 * error. Handle the error by dispatching fatal events to all qps 1796 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as 1797 * L2 driver want to modify the MSIx table. 1798 */ 1799 1800 ibdev_info(&rdev->ibdev, "Handle device suspend call"); 1801 /* Check the current device state from bnxt_en_dev and move the 1802 * device to detached state if FW_FATAL_COND is set. 1803 * This prevents more commands to HW during clean-up, 1804 * in case the device is already in error. 1805 */ 1806 if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state)) 1807 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); 1808 1809 bnxt_re_dev_stop(rdev); 1810 bnxt_re_stop_irq(rdev); 1811 /* Move the device states to detached and avoid sending any more 1812 * commands to HW 1813 */ 1814 set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags); 1815 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); 1816 wake_up_all(&rdev->rcfw.cmdq.waitq); 1817 mutex_unlock(&bnxt_re_mutex); 1818 1819 return 0; 1820 } 1821 1822 static int bnxt_re_resume(struct auxiliary_device *adev) 1823 { 1824 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1825 1826 if (!rdev) 1827 return 0; 1828 1829 mutex_lock(&bnxt_re_mutex); 1830 /* L2 driver may invoke this callback during device recovery, resume. 1831 * reset. Current RoCE driver doesn't recover the device in case of 1832 * error. Handle the error by dispatching fatal events to all qps 1833 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as 1834 * L2 driver want to modify the MSIx table. 1835 */ 1836 1837 ibdev_info(&rdev->ibdev, "Handle device resume call"); 1838 mutex_unlock(&bnxt_re_mutex); 1839 1840 return 0; 1841 } 1842 1843 static const struct auxiliary_device_id bnxt_re_id_table[] = { 1844 { .name = BNXT_ADEV_NAME ".rdma", }, 1845 {}, 1846 }; 1847 1848 MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table); 1849 1850 static struct auxiliary_driver bnxt_re_driver = { 1851 .name = "rdma", 1852 .probe = bnxt_re_probe, 1853 .remove = bnxt_re_remove, 1854 .shutdown = bnxt_re_shutdown, 1855 .suspend = bnxt_re_suspend, 1856 .resume = bnxt_re_resume, 1857 .id_table = bnxt_re_id_table, 1858 }; 1859 1860 static int __init bnxt_re_mod_init(void) 1861 { 1862 int rc; 1863 1864 pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version); 1865 rc = auxiliary_driver_register(&bnxt_re_driver); 1866 if (rc) { 1867 pr_err("%s: Failed to register auxiliary driver\n", 1868 ROCE_DRV_MODULE_NAME); 1869 return rc; 1870 } 1871 return 0; 1872 } 1873 1874 static void __exit bnxt_re_mod_exit(void) 1875 { 1876 auxiliary_driver_unregister(&bnxt_re_driver); 1877 } 1878 1879 module_init(bnxt_re_mod_init); 1880 module_exit(bnxt_re_mod_exit); 1881