1 /* 2 * Broadcom NetXtreme-E RoCE driver. 3 * 4 * Copyright (c) 2016 - 2017, Broadcom. All rights reserved. The term 5 * Broadcom refers to Broadcom Limited and/or its subsidiaries. 6 * 7 * This software is available to you under a choice of one of two 8 * licenses. You may choose to be licensed under the terms of the GNU 9 * General Public License (GPL) Version 2, available from the file 10 * COPYING in the main directory of this source tree, or the 11 * BSD license below: 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in 21 * the documentation and/or other materials provided with the 22 * distribution. 23 * 24 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' 25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS 28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 31 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 32 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 33 * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN 34 * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 35 * 36 * Description: Main component of the bnxt_re driver 37 */ 38 39 #include <linux/module.h> 40 #include <linux/netdevice.h> 41 #include <linux/ethtool.h> 42 #include <linux/mutex.h> 43 #include <linux/list.h> 44 #include <linux/rculist.h> 45 #include <linux/spinlock.h> 46 #include <linux/pci.h> 47 #include <net/dcbnl.h> 48 #include <net/ipv6.h> 49 #include <net/addrconf.h> 50 #include <linux/if_ether.h> 51 #include <linux/auxiliary_bus.h> 52 53 #include <rdma/ib_verbs.h> 54 #include <rdma/ib_user_verbs.h> 55 #include <rdma/ib_umem.h> 56 #include <rdma/ib_addr.h> 57 58 #include "bnxt_ulp.h" 59 #include "roce_hsi.h" 60 #include "qplib_res.h" 61 #include "qplib_sp.h" 62 #include "qplib_fp.h" 63 #include "qplib_rcfw.h" 64 #include "bnxt_re.h" 65 #include "ib_verbs.h" 66 #include <rdma/bnxt_re-abi.h> 67 #include "bnxt.h" 68 #include "hw_counters.h" 69 70 static char version[] = 71 BNXT_RE_DESC "\n"; 72 73 MODULE_AUTHOR("Eddie Wai <eddie.wai@broadcom.com>"); 74 MODULE_DESCRIPTION(BNXT_RE_DESC); 75 MODULE_LICENSE("Dual BSD/GPL"); 76 77 /* globals */ 78 static DEFINE_MUTEX(bnxt_re_mutex); 79 80 static void bnxt_re_stop_irq(void *handle); 81 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev); 82 static int bnxt_re_netdev_event(struct notifier_block *notifier, 83 unsigned long event, void *ptr); 84 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev); 85 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev); 86 static int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev); 87 88 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, 89 u32 *offset); 90 static void bnxt_re_set_db_offset(struct bnxt_re_dev *rdev) 91 { 92 struct bnxt_qplib_chip_ctx *cctx; 93 struct bnxt_en_dev *en_dev; 94 struct bnxt_qplib_res *res; 95 u32 l2db_len = 0; 96 u32 offset = 0; 97 u32 barlen; 98 int rc; 99 100 res = &rdev->qplib_res; 101 en_dev = rdev->en_dev; 102 cctx = rdev->chip_ctx; 103 104 /* Issue qcfg */ 105 rc = bnxt_re_hwrm_qcfg(rdev, &l2db_len, &offset); 106 if (rc) 107 dev_info(rdev_to_dev(rdev), 108 "Couldn't get DB bar size, Low latency framework is disabled\n"); 109 /* set register offsets for both UC and WC */ 110 if (bnxt_qplib_is_chip_gen_p7(cctx)) { 111 res->dpi_tbl.ucreg.offset = offset; 112 res->dpi_tbl.wcreg.offset = en_dev->l2_db_size; 113 } else { 114 res->dpi_tbl.ucreg.offset = res->is_vf ? BNXT_QPLIB_DBR_VF_DB_OFFSET : 115 BNXT_QPLIB_DBR_PF_DB_OFFSET; 116 res->dpi_tbl.wcreg.offset = res->dpi_tbl.ucreg.offset; 117 } 118 119 /* If WC mapping is disabled by L2 driver then en_dev->l2_db_size 120 * is equal to the DB-Bar actual size. This indicates that L2 121 * is mapping entire bar as UC-. RoCE driver can't enable WC mapping 122 * in such cases and DB-push will be disabled. 123 */ 124 barlen = pci_resource_len(res->pdev, RCFW_DBR_PCI_BAR_REGION); 125 if (cctx->modes.db_push && l2db_len && en_dev->l2_db_size != barlen) { 126 res->dpi_tbl.wcreg.offset = en_dev->l2_db_size; 127 dev_info(rdev_to_dev(rdev), "Low latency framework is enabled\n"); 128 } 129 } 130 131 static void bnxt_re_set_drv_mode(struct bnxt_re_dev *rdev, u8 mode) 132 { 133 struct bnxt_qplib_chip_ctx *cctx; 134 135 cctx = rdev->chip_ctx; 136 cctx->modes.wqe_mode = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ? 137 mode : BNXT_QPLIB_WQE_MODE_STATIC; 138 if (bnxt_re_hwrm_qcaps(rdev)) 139 dev_err(rdev_to_dev(rdev), 140 "Failed to query hwrm qcaps\n"); 141 } 142 143 static void bnxt_re_destroy_chip_ctx(struct bnxt_re_dev *rdev) 144 { 145 struct bnxt_qplib_chip_ctx *chip_ctx; 146 147 if (!rdev->chip_ctx) 148 return; 149 chip_ctx = rdev->chip_ctx; 150 rdev->chip_ctx = NULL; 151 rdev->rcfw.res = NULL; 152 rdev->qplib_res.cctx = NULL; 153 rdev->qplib_res.pdev = NULL; 154 rdev->qplib_res.netdev = NULL; 155 kfree(chip_ctx); 156 } 157 158 static int bnxt_re_setup_chip_ctx(struct bnxt_re_dev *rdev, u8 wqe_mode) 159 { 160 struct bnxt_qplib_chip_ctx *chip_ctx; 161 struct bnxt_en_dev *en_dev; 162 int rc; 163 164 en_dev = rdev->en_dev; 165 166 chip_ctx = kzalloc(sizeof(*chip_ctx), GFP_KERNEL); 167 if (!chip_ctx) 168 return -ENOMEM; 169 chip_ctx->chip_num = en_dev->chip_num; 170 chip_ctx->hw_stats_size = en_dev->hw_ring_stats_size; 171 172 rdev->chip_ctx = chip_ctx; 173 /* rest members to follow eventually */ 174 175 rdev->qplib_res.cctx = rdev->chip_ctx; 176 rdev->rcfw.res = &rdev->qplib_res; 177 rdev->qplib_res.dattr = &rdev->dev_attr; 178 rdev->qplib_res.is_vf = BNXT_EN_VF(en_dev); 179 180 bnxt_re_set_drv_mode(rdev, wqe_mode); 181 182 bnxt_re_set_db_offset(rdev); 183 rc = bnxt_qplib_map_db_bar(&rdev->qplib_res); 184 if (rc) { 185 kfree(rdev->chip_ctx); 186 rdev->chip_ctx = NULL; 187 return rc; 188 } 189 190 if (bnxt_qplib_determine_atomics(en_dev->pdev)) 191 ibdev_info(&rdev->ibdev, 192 "platform doesn't support global atomics."); 193 return 0; 194 } 195 196 /* SR-IOV helper functions */ 197 198 static void bnxt_re_get_sriov_func_type(struct bnxt_re_dev *rdev) 199 { 200 if (BNXT_EN_VF(rdev->en_dev)) 201 rdev->is_virtfn = 1; 202 } 203 204 /* Set the maximum number of each resource that the driver actually wants 205 * to allocate. This may be up to the maximum number the firmware has 206 * reserved for the function. The driver may choose to allocate fewer 207 * resources than the firmware maximum. 208 */ 209 static void bnxt_re_limit_pf_res(struct bnxt_re_dev *rdev) 210 { 211 struct bnxt_qplib_dev_attr *attr; 212 struct bnxt_qplib_ctx *ctx; 213 int i; 214 215 attr = &rdev->dev_attr; 216 ctx = &rdev->qplib_ctx; 217 218 ctx->qpc_count = min_t(u32, BNXT_RE_MAX_QPC_COUNT, 219 attr->max_qp); 220 ctx->mrw_count = BNXT_RE_MAX_MRW_COUNT_256K; 221 /* Use max_mr from fw since max_mrw does not get set */ 222 ctx->mrw_count = min_t(u32, ctx->mrw_count, attr->max_mr); 223 ctx->srqc_count = min_t(u32, BNXT_RE_MAX_SRQC_COUNT, 224 attr->max_srq); 225 ctx->cq_count = min_t(u32, BNXT_RE_MAX_CQ_COUNT, attr->max_cq); 226 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) 227 for (i = 0; i < MAX_TQM_ALLOC_REQ; i++) 228 rdev->qplib_ctx.tqm_ctx.qcount[i] = 229 rdev->dev_attr.tqm_alloc_reqs[i]; 230 } 231 232 static void bnxt_re_limit_vf_res(struct bnxt_qplib_ctx *qplib_ctx, u32 num_vf) 233 { 234 struct bnxt_qplib_vf_res *vf_res; 235 u32 mrws = 0; 236 u32 vf_pct; 237 u32 nvfs; 238 239 vf_res = &qplib_ctx->vf_res; 240 /* 241 * Reserve a set of resources for the PF. Divide the remaining 242 * resources among the VFs 243 */ 244 vf_pct = 100 - BNXT_RE_PCT_RSVD_FOR_PF; 245 nvfs = num_vf; 246 num_vf = 100 * num_vf; 247 vf_res->max_qp_per_vf = (qplib_ctx->qpc_count * vf_pct) / num_vf; 248 vf_res->max_srq_per_vf = (qplib_ctx->srqc_count * vf_pct) / num_vf; 249 vf_res->max_cq_per_vf = (qplib_ctx->cq_count * vf_pct) / num_vf; 250 /* 251 * The driver allows many more MRs than other resources. If the 252 * firmware does also, then reserve a fixed amount for the PF and 253 * divide the rest among VFs. VFs may use many MRs for NFS 254 * mounts, ISER, NVME applications, etc. If the firmware severely 255 * restricts the number of MRs, then let PF have half and divide 256 * the rest among VFs, as for the other resource types. 257 */ 258 if (qplib_ctx->mrw_count < BNXT_RE_MAX_MRW_COUNT_64K) { 259 mrws = qplib_ctx->mrw_count * vf_pct; 260 nvfs = num_vf; 261 } else { 262 mrws = qplib_ctx->mrw_count - BNXT_RE_RESVD_MR_FOR_PF; 263 } 264 vf_res->max_mrw_per_vf = (mrws / nvfs); 265 vf_res->max_gid_per_vf = BNXT_RE_MAX_GID_PER_VF; 266 } 267 268 static void bnxt_re_set_resource_limits(struct bnxt_re_dev *rdev) 269 { 270 u32 num_vfs; 271 272 memset(&rdev->qplib_ctx.vf_res, 0, sizeof(struct bnxt_qplib_vf_res)); 273 bnxt_re_limit_pf_res(rdev); 274 275 num_vfs = bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx) ? 276 BNXT_RE_GEN_P5_MAX_VF : rdev->num_vfs; 277 if (num_vfs) 278 bnxt_re_limit_vf_res(&rdev->qplib_ctx, num_vfs); 279 } 280 281 static void bnxt_re_vf_res_config(struct bnxt_re_dev *rdev) 282 { 283 284 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 285 return; 286 rdev->num_vfs = pci_sriov_get_totalvfs(rdev->en_dev->pdev); 287 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) { 288 bnxt_re_set_resource_limits(rdev); 289 bnxt_qplib_set_func_resources(&rdev->qplib_res, &rdev->rcfw, 290 &rdev->qplib_ctx); 291 } 292 } 293 294 static void bnxt_re_shutdown(struct auxiliary_device *adev) 295 { 296 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 297 298 if (!rdev) 299 return; 300 ib_unregister_device(&rdev->ibdev); 301 bnxt_re_dev_uninit(rdev); 302 } 303 304 static void bnxt_re_stop_irq(void *handle) 305 { 306 struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle; 307 struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw; 308 struct bnxt_qplib_nq *nq; 309 int indx; 310 311 for (indx = BNXT_RE_NQ_IDX; indx < rdev->num_msix; indx++) { 312 nq = &rdev->nq[indx - 1]; 313 bnxt_qplib_nq_stop_irq(nq, false); 314 } 315 316 bnxt_qplib_rcfw_stop_irq(rcfw, false); 317 } 318 319 static void bnxt_re_start_irq(void *handle, struct bnxt_msix_entry *ent) 320 { 321 struct bnxt_re_dev *rdev = (struct bnxt_re_dev *)handle; 322 struct bnxt_msix_entry *msix_ent = rdev->en_dev->msix_entries; 323 struct bnxt_qplib_rcfw *rcfw = &rdev->rcfw; 324 struct bnxt_qplib_nq *nq; 325 int indx, rc; 326 327 if (!ent) { 328 /* Not setting the f/w timeout bit in rcfw. 329 * During the driver unload the first command 330 * to f/w will timeout and that will set the 331 * timeout bit. 332 */ 333 ibdev_err(&rdev->ibdev, "Failed to re-start IRQs\n"); 334 return; 335 } 336 337 /* Vectors may change after restart, so update with new vectors 338 * in device sctructure. 339 */ 340 for (indx = 0; indx < rdev->num_msix; indx++) 341 rdev->en_dev->msix_entries[indx].vector = ent[indx].vector; 342 343 rc = bnxt_qplib_rcfw_start_irq(rcfw, msix_ent[BNXT_RE_AEQ_IDX].vector, 344 false); 345 if (rc) { 346 ibdev_warn(&rdev->ibdev, "Failed to reinit CREQ\n"); 347 return; 348 } 349 for (indx = BNXT_RE_NQ_IDX ; indx < rdev->num_msix; indx++) { 350 nq = &rdev->nq[indx - 1]; 351 rc = bnxt_qplib_nq_start_irq(nq, indx - 1, 352 msix_ent[indx].vector, false); 353 if (rc) { 354 ibdev_warn(&rdev->ibdev, "Failed to reinit NQ index %d\n", 355 indx - 1); 356 return; 357 } 358 } 359 } 360 361 static struct bnxt_ulp_ops bnxt_re_ulp_ops = { 362 .ulp_irq_stop = bnxt_re_stop_irq, 363 .ulp_irq_restart = bnxt_re_start_irq 364 }; 365 366 /* RoCE -> Net driver */ 367 368 static int bnxt_re_register_netdev(struct bnxt_re_dev *rdev) 369 { 370 struct bnxt_en_dev *en_dev; 371 int rc; 372 373 en_dev = rdev->en_dev; 374 375 rc = bnxt_register_dev(en_dev, &bnxt_re_ulp_ops, rdev); 376 if (!rc) 377 rdev->qplib_res.pdev = rdev->en_dev->pdev; 378 return rc; 379 } 380 381 static void bnxt_re_init_hwrm_hdr(struct input *hdr, u16 opcd) 382 { 383 hdr->req_type = cpu_to_le16(opcd); 384 hdr->cmpl_ring = cpu_to_le16(-1); 385 hdr->target_id = cpu_to_le16(-1); 386 } 387 388 static void bnxt_re_fill_fw_msg(struct bnxt_fw_msg *fw_msg, void *msg, 389 int msg_len, void *resp, int resp_max_len, 390 int timeout) 391 { 392 fw_msg->msg = msg; 393 fw_msg->msg_len = msg_len; 394 fw_msg->resp = resp; 395 fw_msg->resp_max_len = resp_max_len; 396 fw_msg->timeout = timeout; 397 } 398 399 /* Query device config using common hwrm */ 400 static int bnxt_re_hwrm_qcfg(struct bnxt_re_dev *rdev, u32 *db_len, 401 u32 *offset) 402 { 403 struct bnxt_en_dev *en_dev = rdev->en_dev; 404 struct hwrm_func_qcfg_output resp = {0}; 405 struct hwrm_func_qcfg_input req = {0}; 406 struct bnxt_fw_msg fw_msg = {}; 407 int rc; 408 409 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCFG); 410 req.fid = cpu_to_le16(0xffff); 411 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 412 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 413 rc = bnxt_send_msg(en_dev, &fw_msg); 414 if (!rc) { 415 *db_len = PAGE_ALIGN(le16_to_cpu(resp.l2_doorbell_bar_size_kb) * 1024); 416 *offset = PAGE_ALIGN(le16_to_cpu(resp.legacy_l2_db_size_kb) * 1024); 417 } 418 return rc; 419 } 420 421 /* Query function capabilities using common hwrm */ 422 int bnxt_re_hwrm_qcaps(struct bnxt_re_dev *rdev) 423 { 424 struct bnxt_en_dev *en_dev = rdev->en_dev; 425 struct hwrm_func_qcaps_output resp = {}; 426 struct hwrm_func_qcaps_input req = {}; 427 struct bnxt_qplib_chip_ctx *cctx; 428 struct bnxt_fw_msg fw_msg = {}; 429 int rc; 430 431 cctx = rdev->chip_ctx; 432 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_QCAPS); 433 req.fid = cpu_to_le16(0xffff); 434 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 435 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 436 437 rc = bnxt_send_msg(en_dev, &fw_msg); 438 if (rc) 439 return rc; 440 cctx->modes.db_push = le32_to_cpu(resp.flags) & FUNC_QCAPS_RESP_FLAGS_WCB_PUSH_MODE; 441 442 cctx->modes.dbr_pacing = 443 le32_to_cpu(resp.flags_ext2) & 444 FUNC_QCAPS_RESP_FLAGS_EXT2_DBR_PACING_EXT_SUPPORTED; 445 return 0; 446 } 447 448 static int bnxt_re_hwrm_dbr_pacing_qcfg(struct bnxt_re_dev *rdev) 449 { 450 struct hwrm_func_dbr_pacing_qcfg_output resp = {}; 451 struct hwrm_func_dbr_pacing_qcfg_input req = {}; 452 struct bnxt_en_dev *en_dev = rdev->en_dev; 453 struct bnxt_qplib_chip_ctx *cctx; 454 struct bnxt_fw_msg fw_msg = {}; 455 int rc; 456 457 cctx = rdev->chip_ctx; 458 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_FUNC_DBR_PACING_QCFG); 459 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 460 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 461 rc = bnxt_send_msg(en_dev, &fw_msg); 462 if (rc) 463 return rc; 464 465 if ((le32_to_cpu(resp.dbr_stat_db_fifo_reg) & 466 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK) == 467 FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_GRC) 468 cctx->dbr_stat_db_fifo = 469 le32_to_cpu(resp.dbr_stat_db_fifo_reg) & 470 ~FUNC_DBR_PACING_QCFG_RESP_DBR_STAT_DB_FIFO_REG_ADDR_SPACE_MASK; 471 return 0; 472 } 473 474 /* Update the pacing tunable parameters to the default values */ 475 static void bnxt_re_set_default_pacing_data(struct bnxt_re_dev *rdev) 476 { 477 struct bnxt_qplib_db_pacing_data *pacing_data = rdev->qplib_res.pacing_data; 478 479 pacing_data->do_pacing = rdev->pacing.dbr_def_do_pacing; 480 pacing_data->pacing_th = rdev->pacing.pacing_algo_th; 481 pacing_data->alarm_th = 482 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; 483 } 484 485 static void __wait_for_fifo_occupancy_below_th(struct bnxt_re_dev *rdev) 486 { 487 u32 read_val, fifo_occup; 488 489 /* loop shouldn't run infintely as the occupancy usually goes 490 * below pacing algo threshold as soon as pacing kicks in. 491 */ 492 while (1) { 493 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); 494 fifo_occup = BNXT_RE_MAX_FIFO_DEPTH - 495 ((read_val & BNXT_RE_DB_FIFO_ROOM_MASK) >> 496 BNXT_RE_DB_FIFO_ROOM_SHIFT); 497 /* Fifo occupancy cannot be greater the MAX FIFO depth */ 498 if (fifo_occup > BNXT_RE_MAX_FIFO_DEPTH) 499 break; 500 501 if (fifo_occup < rdev->qplib_res.pacing_data->pacing_th) 502 break; 503 } 504 } 505 506 static void bnxt_re_db_fifo_check(struct work_struct *work) 507 { 508 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 509 dbq_fifo_check_work); 510 struct bnxt_qplib_db_pacing_data *pacing_data; 511 u32 pacing_save; 512 513 if (!mutex_trylock(&rdev->pacing.dbq_lock)) 514 return; 515 pacing_data = rdev->qplib_res.pacing_data; 516 pacing_save = rdev->pacing.do_pacing_save; 517 __wait_for_fifo_occupancy_below_th(rdev); 518 cancel_delayed_work_sync(&rdev->dbq_pacing_work); 519 if (pacing_save > rdev->pacing.dbr_def_do_pacing) { 520 /* Double the do_pacing value during the congestion */ 521 pacing_save = pacing_save << 1; 522 } else { 523 /* 524 * when a new congestion is detected increase the do_pacing 525 * by 8 times. And also increase the pacing_th by 4 times. The 526 * reason to increase pacing_th is to give more space for the 527 * queue to oscillate down without getting empty, but also more 528 * room for the queue to increase without causing another alarm. 529 */ 530 pacing_save = pacing_save << 3; 531 pacing_data->pacing_th = rdev->pacing.pacing_algo_th * 4; 532 } 533 534 if (pacing_save > BNXT_RE_MAX_DBR_DO_PACING) 535 pacing_save = BNXT_RE_MAX_DBR_DO_PACING; 536 537 pacing_data->do_pacing = pacing_save; 538 rdev->pacing.do_pacing_save = pacing_data->do_pacing; 539 pacing_data->alarm_th = 540 pacing_data->pacing_th * BNXT_RE_PACING_ALARM_TH_MULTIPLE; 541 schedule_delayed_work(&rdev->dbq_pacing_work, 542 msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); 543 rdev->stats.pacing.alerts++; 544 mutex_unlock(&rdev->pacing.dbq_lock); 545 } 546 547 static void bnxt_re_pacing_timer_exp(struct work_struct *work) 548 { 549 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 550 dbq_pacing_work.work); 551 struct bnxt_qplib_db_pacing_data *pacing_data; 552 u32 read_val, fifo_occup; 553 554 if (!mutex_trylock(&rdev->pacing.dbq_lock)) 555 return; 556 557 pacing_data = rdev->qplib_res.pacing_data; 558 read_val = readl(rdev->en_dev->bar0 + rdev->pacing.dbr_db_fifo_reg_off); 559 fifo_occup = BNXT_RE_MAX_FIFO_DEPTH - 560 ((read_val & BNXT_RE_DB_FIFO_ROOM_MASK) >> 561 BNXT_RE_DB_FIFO_ROOM_SHIFT); 562 563 if (fifo_occup > pacing_data->pacing_th) 564 goto restart_timer; 565 566 /* 567 * Instead of immediately going back to the default do_pacing 568 * reduce it by 1/8 times and restart the timer. 569 */ 570 pacing_data->do_pacing = pacing_data->do_pacing - (pacing_data->do_pacing >> 3); 571 pacing_data->do_pacing = max_t(u32, rdev->pacing.dbr_def_do_pacing, pacing_data->do_pacing); 572 if (pacing_data->do_pacing <= rdev->pacing.dbr_def_do_pacing) { 573 bnxt_re_set_default_pacing_data(rdev); 574 rdev->stats.pacing.complete++; 575 goto dbq_unlock; 576 } 577 578 restart_timer: 579 schedule_delayed_work(&rdev->dbq_pacing_work, 580 msecs_to_jiffies(rdev->pacing.dbq_pacing_time)); 581 rdev->stats.pacing.resched++; 582 dbq_unlock: 583 rdev->pacing.do_pacing_save = pacing_data->do_pacing; 584 mutex_unlock(&rdev->pacing.dbq_lock); 585 } 586 587 void bnxt_re_pacing_alert(struct bnxt_re_dev *rdev) 588 { 589 struct bnxt_qplib_db_pacing_data *pacing_data; 590 591 if (!rdev->pacing.dbr_pacing) 592 return; 593 mutex_lock(&rdev->pacing.dbq_lock); 594 pacing_data = rdev->qplib_res.pacing_data; 595 596 /* 597 * Increase the alarm_th to max so that other user lib instances do not 598 * keep alerting the driver. 599 */ 600 pacing_data->alarm_th = BNXT_RE_MAX_FIFO_DEPTH; 601 pacing_data->do_pacing = BNXT_RE_MAX_DBR_DO_PACING; 602 cancel_work_sync(&rdev->dbq_fifo_check_work); 603 schedule_work(&rdev->dbq_fifo_check_work); 604 mutex_unlock(&rdev->pacing.dbq_lock); 605 } 606 607 static int bnxt_re_initialize_dbr_pacing(struct bnxt_re_dev *rdev) 608 { 609 if (bnxt_re_hwrm_dbr_pacing_qcfg(rdev)) 610 return -EIO; 611 612 /* Allocate a page for app use */ 613 rdev->pacing.dbr_page = (void *)__get_free_page(GFP_KERNEL); 614 if (!rdev->pacing.dbr_page) 615 return -ENOMEM; 616 617 memset((u8 *)rdev->pacing.dbr_page, 0, PAGE_SIZE); 618 rdev->qplib_res.pacing_data = (struct bnxt_qplib_db_pacing_data *)rdev->pacing.dbr_page; 619 620 /* MAP HW window 2 for reading db fifo depth */ 621 writel(rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_BASE_MASK, 622 rdev->en_dev->bar0 + BNXT_GRCPF_REG_WINDOW_BASE_OUT + 4); 623 rdev->pacing.dbr_db_fifo_reg_off = 624 (rdev->chip_ctx->dbr_stat_db_fifo & BNXT_GRC_OFFSET_MASK) + 625 BNXT_RE_GRC_FIFO_REG_BASE; 626 rdev->pacing.dbr_bar_addr = 627 pci_resource_start(rdev->qplib_res.pdev, 0) + rdev->pacing.dbr_db_fifo_reg_off; 628 629 rdev->pacing.pacing_algo_th = BNXT_RE_PACING_ALGO_THRESHOLD; 630 rdev->pacing.dbq_pacing_time = BNXT_RE_DBR_PACING_TIME; 631 rdev->pacing.dbr_def_do_pacing = BNXT_RE_DBR_DO_PACING_NO_CONGESTION; 632 rdev->pacing.do_pacing_save = rdev->pacing.dbr_def_do_pacing; 633 rdev->qplib_res.pacing_data->fifo_max_depth = BNXT_RE_MAX_FIFO_DEPTH; 634 rdev->qplib_res.pacing_data->fifo_room_mask = BNXT_RE_DB_FIFO_ROOM_MASK; 635 rdev->qplib_res.pacing_data->fifo_room_shift = BNXT_RE_DB_FIFO_ROOM_SHIFT; 636 rdev->qplib_res.pacing_data->grc_reg_offset = rdev->pacing.dbr_db_fifo_reg_off; 637 bnxt_re_set_default_pacing_data(rdev); 638 /* Initialize worker for DBR Pacing */ 639 INIT_WORK(&rdev->dbq_fifo_check_work, bnxt_re_db_fifo_check); 640 INIT_DELAYED_WORK(&rdev->dbq_pacing_work, bnxt_re_pacing_timer_exp); 641 return 0; 642 } 643 644 static void bnxt_re_deinitialize_dbr_pacing(struct bnxt_re_dev *rdev) 645 { 646 cancel_work_sync(&rdev->dbq_fifo_check_work); 647 cancel_delayed_work_sync(&rdev->dbq_pacing_work); 648 if (rdev->pacing.dbr_page) 649 free_page((u64)rdev->pacing.dbr_page); 650 651 rdev->pacing.dbr_page = NULL; 652 rdev->pacing.dbr_pacing = false; 653 } 654 655 static int bnxt_re_net_ring_free(struct bnxt_re_dev *rdev, 656 u16 fw_ring_id, int type) 657 { 658 struct bnxt_en_dev *en_dev; 659 struct hwrm_ring_free_input req = {}; 660 struct hwrm_ring_free_output resp; 661 struct bnxt_fw_msg fw_msg = {}; 662 int rc = -EINVAL; 663 664 if (!rdev) 665 return rc; 666 667 en_dev = rdev->en_dev; 668 669 if (!en_dev) 670 return rc; 671 672 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 673 return 0; 674 675 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_FREE); 676 req.ring_type = type; 677 req.ring_id = cpu_to_le16(fw_ring_id); 678 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 679 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 680 rc = bnxt_send_msg(en_dev, &fw_msg); 681 if (rc) 682 ibdev_err(&rdev->ibdev, "Failed to free HW ring:%d :%#x", 683 req.ring_id, rc); 684 return rc; 685 } 686 687 static int bnxt_re_net_ring_alloc(struct bnxt_re_dev *rdev, 688 struct bnxt_re_ring_attr *ring_attr, 689 u16 *fw_ring_id) 690 { 691 struct bnxt_en_dev *en_dev = rdev->en_dev; 692 struct hwrm_ring_alloc_input req = {}; 693 struct hwrm_ring_alloc_output resp; 694 struct bnxt_fw_msg fw_msg = {}; 695 int rc = -EINVAL; 696 697 if (!en_dev) 698 return rc; 699 700 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_RING_ALLOC); 701 req.enables = 0; 702 req.page_tbl_addr = cpu_to_le64(ring_attr->dma_arr[0]); 703 if (ring_attr->pages > 1) { 704 /* Page size is in log2 units */ 705 req.page_size = BNXT_PAGE_SHIFT; 706 req.page_tbl_depth = 1; 707 } 708 req.fbo = 0; 709 /* Association of ring index with doorbell index and MSIX number */ 710 req.logical_id = cpu_to_le16(ring_attr->lrid); 711 req.length = cpu_to_le32(ring_attr->depth + 1); 712 req.ring_type = ring_attr->type; 713 req.int_mode = ring_attr->mode; 714 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 715 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 716 rc = bnxt_send_msg(en_dev, &fw_msg); 717 if (!rc) 718 *fw_ring_id = le16_to_cpu(resp.ring_id); 719 720 return rc; 721 } 722 723 static int bnxt_re_net_stats_ctx_free(struct bnxt_re_dev *rdev, 724 u32 fw_stats_ctx_id) 725 { 726 struct bnxt_en_dev *en_dev = rdev->en_dev; 727 struct hwrm_stat_ctx_free_input req = {}; 728 struct hwrm_stat_ctx_free_output resp = {}; 729 struct bnxt_fw_msg fw_msg = {}; 730 int rc = -EINVAL; 731 732 if (!en_dev) 733 return rc; 734 735 if (test_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags)) 736 return 0; 737 738 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_FREE); 739 req.stat_ctx_id = cpu_to_le32(fw_stats_ctx_id); 740 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 741 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 742 rc = bnxt_send_msg(en_dev, &fw_msg); 743 if (rc) 744 ibdev_err(&rdev->ibdev, "Failed to free HW stats context %#x", 745 rc); 746 747 return rc; 748 } 749 750 static int bnxt_re_net_stats_ctx_alloc(struct bnxt_re_dev *rdev, 751 dma_addr_t dma_map, 752 u32 *fw_stats_ctx_id) 753 { 754 struct bnxt_qplib_chip_ctx *chip_ctx = rdev->chip_ctx; 755 struct hwrm_stat_ctx_alloc_output resp = {}; 756 struct hwrm_stat_ctx_alloc_input req = {}; 757 struct bnxt_en_dev *en_dev = rdev->en_dev; 758 struct bnxt_fw_msg fw_msg = {}; 759 int rc = -EINVAL; 760 761 *fw_stats_ctx_id = INVALID_STATS_CTX_ID; 762 763 if (!en_dev) 764 return rc; 765 766 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_STAT_CTX_ALLOC); 767 req.update_period_ms = cpu_to_le32(1000); 768 req.stats_dma_addr = cpu_to_le64(dma_map); 769 req.stats_dma_length = cpu_to_le16(chip_ctx->hw_stats_size); 770 req.stat_ctx_flags = STAT_CTX_ALLOC_REQ_STAT_CTX_FLAGS_ROCE; 771 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 772 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 773 rc = bnxt_send_msg(en_dev, &fw_msg); 774 if (!rc) 775 *fw_stats_ctx_id = le32_to_cpu(resp.stat_ctx_id); 776 777 return rc; 778 } 779 780 static void bnxt_re_disassociate_ucontext(struct ib_ucontext *ibcontext) 781 { 782 } 783 784 /* Device */ 785 786 static struct bnxt_re_dev *bnxt_re_from_netdev(struct net_device *netdev) 787 { 788 struct ib_device *ibdev = 789 ib_device_get_by_netdev(netdev, RDMA_DRIVER_BNXT_RE); 790 if (!ibdev) 791 return NULL; 792 793 return container_of(ibdev, struct bnxt_re_dev, ibdev); 794 } 795 796 static ssize_t hw_rev_show(struct device *device, struct device_attribute *attr, 797 char *buf) 798 { 799 struct bnxt_re_dev *rdev = 800 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); 801 802 return sysfs_emit(buf, "0x%x\n", rdev->en_dev->pdev->vendor); 803 } 804 static DEVICE_ATTR_RO(hw_rev); 805 806 static ssize_t hca_type_show(struct device *device, 807 struct device_attribute *attr, char *buf) 808 { 809 struct bnxt_re_dev *rdev = 810 rdma_device_to_drv_device(device, struct bnxt_re_dev, ibdev); 811 812 return sysfs_emit(buf, "%s\n", rdev->ibdev.node_desc); 813 } 814 static DEVICE_ATTR_RO(hca_type); 815 816 static struct attribute *bnxt_re_attributes[] = { 817 &dev_attr_hw_rev.attr, 818 &dev_attr_hca_type.attr, 819 NULL 820 }; 821 822 static const struct attribute_group bnxt_re_dev_attr_group = { 823 .attrs = bnxt_re_attributes, 824 }; 825 826 static const struct ib_device_ops bnxt_re_dev_ops = { 827 .owner = THIS_MODULE, 828 .driver_id = RDMA_DRIVER_BNXT_RE, 829 .uverbs_abi_ver = BNXT_RE_ABI_VERSION, 830 831 .add_gid = bnxt_re_add_gid, 832 .alloc_hw_port_stats = bnxt_re_ib_alloc_hw_port_stats, 833 .alloc_mr = bnxt_re_alloc_mr, 834 .alloc_pd = bnxt_re_alloc_pd, 835 .alloc_ucontext = bnxt_re_alloc_ucontext, 836 .create_ah = bnxt_re_create_ah, 837 .create_cq = bnxt_re_create_cq, 838 .create_qp = bnxt_re_create_qp, 839 .create_srq = bnxt_re_create_srq, 840 .create_user_ah = bnxt_re_create_ah, 841 .dealloc_pd = bnxt_re_dealloc_pd, 842 .dealloc_ucontext = bnxt_re_dealloc_ucontext, 843 .del_gid = bnxt_re_del_gid, 844 .dereg_mr = bnxt_re_dereg_mr, 845 .destroy_ah = bnxt_re_destroy_ah, 846 .destroy_cq = bnxt_re_destroy_cq, 847 .destroy_qp = bnxt_re_destroy_qp, 848 .destroy_srq = bnxt_re_destroy_srq, 849 .device_group = &bnxt_re_dev_attr_group, 850 .disassociate_ucontext = bnxt_re_disassociate_ucontext, 851 .get_dev_fw_str = bnxt_re_query_fw_str, 852 .get_dma_mr = bnxt_re_get_dma_mr, 853 .get_hw_stats = bnxt_re_ib_get_hw_stats, 854 .get_link_layer = bnxt_re_get_link_layer, 855 .get_port_immutable = bnxt_re_get_port_immutable, 856 .map_mr_sg = bnxt_re_map_mr_sg, 857 .mmap = bnxt_re_mmap, 858 .mmap_free = bnxt_re_mmap_free, 859 .modify_qp = bnxt_re_modify_qp, 860 .modify_srq = bnxt_re_modify_srq, 861 .poll_cq = bnxt_re_poll_cq, 862 .post_recv = bnxt_re_post_recv, 863 .post_send = bnxt_re_post_send, 864 .post_srq_recv = bnxt_re_post_srq_recv, 865 .query_ah = bnxt_re_query_ah, 866 .query_device = bnxt_re_query_device, 867 .query_pkey = bnxt_re_query_pkey, 868 .query_port = bnxt_re_query_port, 869 .query_qp = bnxt_re_query_qp, 870 .query_srq = bnxt_re_query_srq, 871 .reg_user_mr = bnxt_re_reg_user_mr, 872 .reg_user_mr_dmabuf = bnxt_re_reg_user_mr_dmabuf, 873 .req_notify_cq = bnxt_re_req_notify_cq, 874 .resize_cq = bnxt_re_resize_cq, 875 INIT_RDMA_OBJ_SIZE(ib_ah, bnxt_re_ah, ib_ah), 876 INIT_RDMA_OBJ_SIZE(ib_cq, bnxt_re_cq, ib_cq), 877 INIT_RDMA_OBJ_SIZE(ib_pd, bnxt_re_pd, ib_pd), 878 INIT_RDMA_OBJ_SIZE(ib_qp, bnxt_re_qp, ib_qp), 879 INIT_RDMA_OBJ_SIZE(ib_srq, bnxt_re_srq, ib_srq), 880 INIT_RDMA_OBJ_SIZE(ib_ucontext, bnxt_re_ucontext, ib_uctx), 881 }; 882 883 static int bnxt_re_register_ib(struct bnxt_re_dev *rdev) 884 { 885 struct ib_device *ibdev = &rdev->ibdev; 886 int ret; 887 888 /* ib device init */ 889 ibdev->node_type = RDMA_NODE_IB_CA; 890 strscpy(ibdev->node_desc, BNXT_RE_DESC " HCA", 891 strlen(BNXT_RE_DESC) + 5); 892 ibdev->phys_port_cnt = 1; 893 894 addrconf_addr_eui48((u8 *)&ibdev->node_guid, rdev->netdev->dev_addr); 895 896 ibdev->num_comp_vectors = rdev->num_msix - 1; 897 ibdev->dev.parent = &rdev->en_dev->pdev->dev; 898 ibdev->local_dma_lkey = BNXT_QPLIB_RSVD_LKEY; 899 900 if (IS_ENABLED(CONFIG_INFINIBAND_USER_ACCESS)) 901 ibdev->driver_def = bnxt_re_uapi_defs; 902 903 ib_set_device_ops(ibdev, &bnxt_re_dev_ops); 904 ret = ib_device_set_netdev(&rdev->ibdev, rdev->netdev, 1); 905 if (ret) 906 return ret; 907 908 dma_set_max_seg_size(&rdev->en_dev->pdev->dev, UINT_MAX); 909 ibdev->uverbs_cmd_mask |= BIT_ULL(IB_USER_VERBS_CMD_POLL_CQ); 910 return ib_register_device(ibdev, "bnxt_re%d", &rdev->en_dev->pdev->dev); 911 } 912 913 static struct bnxt_re_dev *bnxt_re_dev_add(struct bnxt_aux_priv *aux_priv, 914 struct bnxt_en_dev *en_dev) 915 { 916 struct bnxt_re_dev *rdev; 917 918 /* Allocate bnxt_re_dev instance here */ 919 rdev = ib_alloc_device(bnxt_re_dev, ibdev); 920 if (!rdev) { 921 ibdev_err(NULL, "%s: bnxt_re_dev allocation failure!", 922 ROCE_DRV_MODULE_NAME); 923 return NULL; 924 } 925 /* Default values */ 926 rdev->nb.notifier_call = NULL; 927 rdev->netdev = en_dev->net; 928 rdev->en_dev = en_dev; 929 rdev->id = rdev->en_dev->pdev->devfn; 930 INIT_LIST_HEAD(&rdev->qp_list); 931 mutex_init(&rdev->qp_lock); 932 mutex_init(&rdev->pacing.dbq_lock); 933 atomic_set(&rdev->stats.res.qp_count, 0); 934 atomic_set(&rdev->stats.res.cq_count, 0); 935 atomic_set(&rdev->stats.res.srq_count, 0); 936 atomic_set(&rdev->stats.res.mr_count, 0); 937 atomic_set(&rdev->stats.res.mw_count, 0); 938 atomic_set(&rdev->stats.res.ah_count, 0); 939 atomic_set(&rdev->stats.res.pd_count, 0); 940 rdev->cosq[0] = 0xFFFF; 941 rdev->cosq[1] = 0xFFFF; 942 943 return rdev; 944 } 945 946 static int bnxt_re_handle_unaffi_async_event(struct creq_func_event 947 *unaffi_async) 948 { 949 switch (unaffi_async->event) { 950 case CREQ_FUNC_EVENT_EVENT_TX_WQE_ERROR: 951 break; 952 case CREQ_FUNC_EVENT_EVENT_TX_DATA_ERROR: 953 break; 954 case CREQ_FUNC_EVENT_EVENT_RX_WQE_ERROR: 955 break; 956 case CREQ_FUNC_EVENT_EVENT_RX_DATA_ERROR: 957 break; 958 case CREQ_FUNC_EVENT_EVENT_CQ_ERROR: 959 break; 960 case CREQ_FUNC_EVENT_EVENT_TQM_ERROR: 961 break; 962 case CREQ_FUNC_EVENT_EVENT_CFCQ_ERROR: 963 break; 964 case CREQ_FUNC_EVENT_EVENT_CFCS_ERROR: 965 break; 966 case CREQ_FUNC_EVENT_EVENT_CFCC_ERROR: 967 break; 968 case CREQ_FUNC_EVENT_EVENT_CFCM_ERROR: 969 break; 970 case CREQ_FUNC_EVENT_EVENT_TIM_ERROR: 971 break; 972 default: 973 return -EINVAL; 974 } 975 return 0; 976 } 977 978 static int bnxt_re_handle_qp_async_event(struct creq_qp_event *qp_event, 979 struct bnxt_re_qp *qp) 980 { 981 struct ib_event event = {}; 982 unsigned int flags; 983 984 if (qp->qplib_qp.state == CMDQ_MODIFY_QP_NEW_STATE_ERR && 985 rdma_is_kernel_res(&qp->ib_qp.res)) { 986 flags = bnxt_re_lock_cqs(qp); 987 bnxt_qplib_add_flush_qp(&qp->qplib_qp); 988 bnxt_re_unlock_cqs(qp, flags); 989 } 990 991 if (qp->qplib_qp.srq) { 992 event.device = &qp->rdev->ibdev; 993 event.element.qp = &qp->ib_qp; 994 event.event = IB_EVENT_QP_LAST_WQE_REACHED; 995 } 996 997 if (event.device && qp->ib_qp.event_handler) 998 qp->ib_qp.event_handler(&event, qp->ib_qp.qp_context); 999 1000 return 0; 1001 } 1002 1003 static int bnxt_re_handle_affi_async_event(struct creq_qp_event *affi_async, 1004 void *obj) 1005 { 1006 int rc = 0; 1007 u8 event; 1008 1009 if (!obj) 1010 return rc; /* QP was already dead, still return success */ 1011 1012 event = affi_async->event; 1013 if (event == CREQ_QP_EVENT_EVENT_QP_ERROR_NOTIFICATION) { 1014 struct bnxt_qplib_qp *lib_qp = obj; 1015 struct bnxt_re_qp *qp = container_of(lib_qp, struct bnxt_re_qp, 1016 qplib_qp); 1017 rc = bnxt_re_handle_qp_async_event(affi_async, qp); 1018 } 1019 return rc; 1020 } 1021 1022 static int bnxt_re_aeq_handler(struct bnxt_qplib_rcfw *rcfw, 1023 void *aeqe, void *obj) 1024 { 1025 struct creq_qp_event *affi_async; 1026 struct creq_func_event *unaffi_async; 1027 u8 type; 1028 int rc; 1029 1030 type = ((struct creq_base *)aeqe)->type; 1031 if (type == CREQ_BASE_TYPE_FUNC_EVENT) { 1032 unaffi_async = aeqe; 1033 rc = bnxt_re_handle_unaffi_async_event(unaffi_async); 1034 } else { 1035 affi_async = aeqe; 1036 rc = bnxt_re_handle_affi_async_event(affi_async, obj); 1037 } 1038 1039 return rc; 1040 } 1041 1042 static int bnxt_re_srqn_handler(struct bnxt_qplib_nq *nq, 1043 struct bnxt_qplib_srq *handle, u8 event) 1044 { 1045 struct bnxt_re_srq *srq = container_of(handle, struct bnxt_re_srq, 1046 qplib_srq); 1047 struct ib_event ib_event; 1048 1049 ib_event.device = &srq->rdev->ibdev; 1050 ib_event.element.srq = &srq->ib_srq; 1051 if (event == NQ_SRQ_EVENT_EVENT_SRQ_THRESHOLD_EVENT) 1052 ib_event.event = IB_EVENT_SRQ_LIMIT_REACHED; 1053 else 1054 ib_event.event = IB_EVENT_SRQ_ERR; 1055 1056 if (srq->ib_srq.event_handler) { 1057 /* Lock event_handler? */ 1058 (*srq->ib_srq.event_handler)(&ib_event, 1059 srq->ib_srq.srq_context); 1060 } 1061 return 0; 1062 } 1063 1064 static int bnxt_re_cqn_handler(struct bnxt_qplib_nq *nq, 1065 struct bnxt_qplib_cq *handle) 1066 { 1067 struct bnxt_re_cq *cq = container_of(handle, struct bnxt_re_cq, 1068 qplib_cq); 1069 1070 if (cq->ib_cq.comp_handler) { 1071 /* Lock comp_handler? */ 1072 (*cq->ib_cq.comp_handler)(&cq->ib_cq, cq->ib_cq.cq_context); 1073 } 1074 1075 return 0; 1076 } 1077 1078 static void bnxt_re_cleanup_res(struct bnxt_re_dev *rdev) 1079 { 1080 int i; 1081 1082 for (i = 1; i < rdev->num_msix; i++) 1083 bnxt_qplib_disable_nq(&rdev->nq[i - 1]); 1084 1085 if (rdev->qplib_res.rcfw) 1086 bnxt_qplib_cleanup_res(&rdev->qplib_res); 1087 } 1088 1089 static int bnxt_re_init_res(struct bnxt_re_dev *rdev) 1090 { 1091 int num_vec_enabled = 0; 1092 int rc = 0, i; 1093 u32 db_offt; 1094 1095 bnxt_qplib_init_res(&rdev->qplib_res); 1096 1097 for (i = 1; i < rdev->num_msix ; i++) { 1098 db_offt = rdev->en_dev->msix_entries[i].db_offset; 1099 rc = bnxt_qplib_enable_nq(rdev->en_dev->pdev, &rdev->nq[i - 1], 1100 i - 1, rdev->en_dev->msix_entries[i].vector, 1101 db_offt, &bnxt_re_cqn_handler, 1102 &bnxt_re_srqn_handler); 1103 if (rc) { 1104 ibdev_err(&rdev->ibdev, 1105 "Failed to enable NQ with rc = 0x%x", rc); 1106 goto fail; 1107 } 1108 num_vec_enabled++; 1109 } 1110 return 0; 1111 fail: 1112 for (i = num_vec_enabled; i >= 0; i--) 1113 bnxt_qplib_disable_nq(&rdev->nq[i]); 1114 return rc; 1115 } 1116 1117 static void bnxt_re_free_nq_res(struct bnxt_re_dev *rdev) 1118 { 1119 u8 type; 1120 int i; 1121 1122 for (i = 0; i < rdev->num_msix - 1; i++) { 1123 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1124 bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); 1125 bnxt_qplib_free_nq(&rdev->nq[i]); 1126 rdev->nq[i].res = NULL; 1127 } 1128 } 1129 1130 static void bnxt_re_free_res(struct bnxt_re_dev *rdev) 1131 { 1132 bnxt_re_free_nq_res(rdev); 1133 1134 if (rdev->qplib_res.dpi_tbl.max) { 1135 bnxt_qplib_dealloc_dpi(&rdev->qplib_res, 1136 &rdev->dpi_privileged); 1137 } 1138 if (rdev->qplib_res.rcfw) { 1139 bnxt_qplib_free_res(&rdev->qplib_res); 1140 rdev->qplib_res.rcfw = NULL; 1141 } 1142 } 1143 1144 static int bnxt_re_alloc_res(struct bnxt_re_dev *rdev) 1145 { 1146 struct bnxt_re_ring_attr rattr = {}; 1147 int num_vec_created = 0; 1148 int rc, i; 1149 u8 type; 1150 1151 /* Configure and allocate resources for qplib */ 1152 rdev->qplib_res.rcfw = &rdev->rcfw; 1153 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); 1154 if (rc) 1155 goto fail; 1156 1157 rc = bnxt_qplib_alloc_res(&rdev->qplib_res, rdev->en_dev->pdev, 1158 rdev->netdev, &rdev->dev_attr); 1159 if (rc) 1160 goto fail; 1161 1162 rc = bnxt_qplib_alloc_dpi(&rdev->qplib_res, 1163 &rdev->dpi_privileged, 1164 rdev, BNXT_QPLIB_DPI_TYPE_KERNEL); 1165 if (rc) 1166 goto dealloc_res; 1167 1168 for (i = 0; i < rdev->num_msix - 1; i++) { 1169 struct bnxt_qplib_nq *nq; 1170 1171 nq = &rdev->nq[i]; 1172 nq->hwq.max_elements = BNXT_QPLIB_NQE_MAX_CNT; 1173 rc = bnxt_qplib_alloc_nq(&rdev->qplib_res, &rdev->nq[i]); 1174 if (rc) { 1175 ibdev_err(&rdev->ibdev, "Alloc Failed NQ%d rc:%#x", 1176 i, rc); 1177 goto free_nq; 1178 } 1179 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1180 rattr.dma_arr = nq->hwq.pbl[PBL_LVL_0].pg_map_arr; 1181 rattr.pages = nq->hwq.pbl[rdev->nq[i].hwq.level].pg_count; 1182 rattr.type = type; 1183 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; 1184 rattr.depth = BNXT_QPLIB_NQE_MAX_CNT - 1; 1185 rattr.lrid = rdev->en_dev->msix_entries[i + 1].ring_idx; 1186 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &nq->ring_id); 1187 if (rc) { 1188 ibdev_err(&rdev->ibdev, 1189 "Failed to allocate NQ fw id with rc = 0x%x", 1190 rc); 1191 bnxt_qplib_free_nq(&rdev->nq[i]); 1192 goto free_nq; 1193 } 1194 num_vec_created++; 1195 } 1196 return 0; 1197 free_nq: 1198 for (i = num_vec_created - 1; i >= 0; i--) { 1199 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1200 bnxt_re_net_ring_free(rdev, rdev->nq[i].ring_id, type); 1201 bnxt_qplib_free_nq(&rdev->nq[i]); 1202 } 1203 bnxt_qplib_dealloc_dpi(&rdev->qplib_res, 1204 &rdev->dpi_privileged); 1205 dealloc_res: 1206 bnxt_qplib_free_res(&rdev->qplib_res); 1207 1208 fail: 1209 rdev->qplib_res.rcfw = NULL; 1210 return rc; 1211 } 1212 1213 static void bnxt_re_dispatch_event(struct ib_device *ibdev, struct ib_qp *qp, 1214 u8 port_num, enum ib_event_type event) 1215 { 1216 struct ib_event ib_event; 1217 1218 ib_event.device = ibdev; 1219 if (qp) { 1220 ib_event.element.qp = qp; 1221 ib_event.event = event; 1222 if (qp->event_handler) 1223 qp->event_handler(&ib_event, qp->qp_context); 1224 1225 } else { 1226 ib_event.element.port_num = port_num; 1227 ib_event.event = event; 1228 ib_dispatch_event(&ib_event); 1229 } 1230 } 1231 1232 static bool bnxt_re_is_qp1_or_shadow_qp(struct bnxt_re_dev *rdev, 1233 struct bnxt_re_qp *qp) 1234 { 1235 return (qp->ib_qp.qp_type == IB_QPT_GSI) || 1236 (qp == rdev->gsi_ctx.gsi_sqp); 1237 } 1238 1239 static void bnxt_re_dev_stop(struct bnxt_re_dev *rdev) 1240 { 1241 int mask = IB_QP_STATE; 1242 struct ib_qp_attr qp_attr; 1243 struct bnxt_re_qp *qp; 1244 1245 qp_attr.qp_state = IB_QPS_ERR; 1246 mutex_lock(&rdev->qp_lock); 1247 list_for_each_entry(qp, &rdev->qp_list, list) { 1248 /* Modify the state of all QPs except QP1/Shadow QP */ 1249 if (!bnxt_re_is_qp1_or_shadow_qp(rdev, qp)) { 1250 if (qp->qplib_qp.state != 1251 CMDQ_MODIFY_QP_NEW_STATE_RESET && 1252 qp->qplib_qp.state != 1253 CMDQ_MODIFY_QP_NEW_STATE_ERR) { 1254 bnxt_re_dispatch_event(&rdev->ibdev, &qp->ib_qp, 1255 1, IB_EVENT_QP_FATAL); 1256 bnxt_re_modify_qp(&qp->ib_qp, &qp_attr, mask, 1257 NULL); 1258 } 1259 } 1260 } 1261 mutex_unlock(&rdev->qp_lock); 1262 } 1263 1264 static int bnxt_re_update_gid(struct bnxt_re_dev *rdev) 1265 { 1266 struct bnxt_qplib_sgid_tbl *sgid_tbl = &rdev->qplib_res.sgid_tbl; 1267 struct bnxt_qplib_gid gid; 1268 u16 gid_idx, index; 1269 int rc = 0; 1270 1271 if (!ib_device_try_get(&rdev->ibdev)) 1272 return 0; 1273 1274 for (index = 0; index < sgid_tbl->active; index++) { 1275 gid_idx = sgid_tbl->hw_id[index]; 1276 1277 if (!memcmp(&sgid_tbl->tbl[index], &bnxt_qplib_gid_zero, 1278 sizeof(bnxt_qplib_gid_zero))) 1279 continue; 1280 /* need to modify the VLAN enable setting of non VLAN GID only 1281 * as setting is done for VLAN GID while adding GID 1282 */ 1283 if (sgid_tbl->vlan[index]) 1284 continue; 1285 1286 memcpy(&gid, &sgid_tbl->tbl[index], sizeof(gid)); 1287 1288 rc = bnxt_qplib_update_sgid(sgid_tbl, &gid, gid_idx, 1289 rdev->qplib_res.netdev->dev_addr); 1290 } 1291 1292 ib_device_put(&rdev->ibdev); 1293 return rc; 1294 } 1295 1296 static u32 bnxt_re_get_priority_mask(struct bnxt_re_dev *rdev) 1297 { 1298 u32 prio_map = 0, tmp_map = 0; 1299 struct net_device *netdev; 1300 struct dcb_app app = {}; 1301 1302 netdev = rdev->netdev; 1303 1304 app.selector = IEEE_8021QAZ_APP_SEL_ETHERTYPE; 1305 app.protocol = ETH_P_IBOE; 1306 tmp_map = dcb_ieee_getapp_mask(netdev, &app); 1307 prio_map = tmp_map; 1308 1309 app.selector = IEEE_8021QAZ_APP_SEL_DGRAM; 1310 app.protocol = ROCE_V2_UDP_DPORT; 1311 tmp_map = dcb_ieee_getapp_mask(netdev, &app); 1312 prio_map |= tmp_map; 1313 1314 return prio_map; 1315 } 1316 1317 static int bnxt_re_setup_qos(struct bnxt_re_dev *rdev) 1318 { 1319 u8 prio_map = 0; 1320 1321 /* Get priority for roce */ 1322 prio_map = bnxt_re_get_priority_mask(rdev); 1323 1324 if (prio_map == rdev->cur_prio_map) 1325 return 0; 1326 rdev->cur_prio_map = prio_map; 1327 /* Actual priorities are not programmed as they are already 1328 * done by L2 driver; just enable or disable priority vlan tagging 1329 */ 1330 if ((prio_map == 0 && rdev->qplib_res.prio) || 1331 (prio_map != 0 && !rdev->qplib_res.prio)) { 1332 rdev->qplib_res.prio = prio_map; 1333 bnxt_re_update_gid(rdev); 1334 } 1335 1336 return 0; 1337 } 1338 1339 static void bnxt_re_query_hwrm_intf_version(struct bnxt_re_dev *rdev) 1340 { 1341 struct bnxt_en_dev *en_dev = rdev->en_dev; 1342 struct hwrm_ver_get_output resp = {}; 1343 struct hwrm_ver_get_input req = {}; 1344 struct bnxt_qplib_chip_ctx *cctx; 1345 struct bnxt_fw_msg fw_msg = {}; 1346 int rc; 1347 1348 bnxt_re_init_hwrm_hdr((void *)&req, HWRM_VER_GET); 1349 req.hwrm_intf_maj = HWRM_VERSION_MAJOR; 1350 req.hwrm_intf_min = HWRM_VERSION_MINOR; 1351 req.hwrm_intf_upd = HWRM_VERSION_UPDATE; 1352 bnxt_re_fill_fw_msg(&fw_msg, (void *)&req, sizeof(req), (void *)&resp, 1353 sizeof(resp), DFLT_HWRM_CMD_TIMEOUT); 1354 rc = bnxt_send_msg(en_dev, &fw_msg); 1355 if (rc) { 1356 ibdev_err(&rdev->ibdev, "Failed to query HW version, rc = 0x%x", 1357 rc); 1358 return; 1359 } 1360 1361 cctx = rdev->chip_ctx; 1362 cctx->hwrm_intf_ver = 1363 (u64)le16_to_cpu(resp.hwrm_intf_major) << 48 | 1364 (u64)le16_to_cpu(resp.hwrm_intf_minor) << 32 | 1365 (u64)le16_to_cpu(resp.hwrm_intf_build) << 16 | 1366 le16_to_cpu(resp.hwrm_intf_patch); 1367 1368 cctx->hwrm_cmd_max_timeout = le16_to_cpu(resp.max_req_timeout); 1369 1370 if (!cctx->hwrm_cmd_max_timeout) 1371 cctx->hwrm_cmd_max_timeout = RCFW_FW_STALL_MAX_TIMEOUT; 1372 } 1373 1374 static int bnxt_re_ib_init(struct bnxt_re_dev *rdev) 1375 { 1376 int rc; 1377 u32 event; 1378 1379 /* Register ib dev */ 1380 rc = bnxt_re_register_ib(rdev); 1381 if (rc) { 1382 pr_err("Failed to register with IB: %#x\n", rc); 1383 return rc; 1384 } 1385 dev_info(rdev_to_dev(rdev), "Device registered with IB successfully"); 1386 set_bit(BNXT_RE_FLAG_ISSUE_ROCE_STATS, &rdev->flags); 1387 1388 event = netif_running(rdev->netdev) && netif_carrier_ok(rdev->netdev) ? 1389 IB_EVENT_PORT_ACTIVE : IB_EVENT_PORT_ERR; 1390 1391 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, event); 1392 1393 return rc; 1394 } 1395 1396 static void bnxt_re_dev_uninit(struct bnxt_re_dev *rdev) 1397 { 1398 u8 type; 1399 int rc; 1400 1401 if (test_and_clear_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags)) 1402 cancel_delayed_work_sync(&rdev->worker); 1403 1404 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, 1405 &rdev->flags)) 1406 bnxt_re_cleanup_res(rdev); 1407 if (test_and_clear_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags)) 1408 bnxt_re_free_res(rdev); 1409 1410 if (test_and_clear_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags)) { 1411 rc = bnxt_qplib_deinit_rcfw(&rdev->rcfw); 1412 if (rc) 1413 ibdev_warn(&rdev->ibdev, 1414 "Failed to deinitialize RCFW: %#x", rc); 1415 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); 1416 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); 1417 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); 1418 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1419 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); 1420 bnxt_qplib_free_rcfw_channel(&rdev->rcfw); 1421 } 1422 1423 rdev->num_msix = 0; 1424 1425 if (rdev->pacing.dbr_pacing) 1426 bnxt_re_deinitialize_dbr_pacing(rdev); 1427 1428 bnxt_re_destroy_chip_ctx(rdev); 1429 if (test_and_clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags)) 1430 bnxt_unregister_dev(rdev->en_dev); 1431 } 1432 1433 /* worker thread for polling periodic events. Now used for QoS programming*/ 1434 static void bnxt_re_worker(struct work_struct *work) 1435 { 1436 struct bnxt_re_dev *rdev = container_of(work, struct bnxt_re_dev, 1437 worker.work); 1438 1439 bnxt_re_setup_qos(rdev); 1440 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); 1441 } 1442 1443 static int bnxt_re_dev_init(struct bnxt_re_dev *rdev, u8 wqe_mode) 1444 { 1445 struct bnxt_re_ring_attr rattr = {}; 1446 struct bnxt_qplib_creq_ctx *creq; 1447 u32 db_offt; 1448 int vid; 1449 u8 type; 1450 int rc; 1451 1452 /* Registered a new RoCE device instance to netdev */ 1453 rc = bnxt_re_register_netdev(rdev); 1454 if (rc) { 1455 ibdev_err(&rdev->ibdev, 1456 "Failed to register with netedev: %#x\n", rc); 1457 return -EINVAL; 1458 } 1459 set_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); 1460 1461 rc = bnxt_re_setup_chip_ctx(rdev, wqe_mode); 1462 if (rc) { 1463 bnxt_unregister_dev(rdev->en_dev); 1464 clear_bit(BNXT_RE_FLAG_NETDEV_REGISTERED, &rdev->flags); 1465 ibdev_err(&rdev->ibdev, "Failed to get chip context\n"); 1466 return -EINVAL; 1467 } 1468 1469 /* Check whether VF or PF */ 1470 bnxt_re_get_sriov_func_type(rdev); 1471 1472 if (!rdev->en_dev->ulp_tbl->msix_requested) { 1473 ibdev_err(&rdev->ibdev, 1474 "Failed to get MSI-X vectors: %#x\n", rc); 1475 rc = -EINVAL; 1476 goto fail; 1477 } 1478 ibdev_dbg(&rdev->ibdev, "Got %d MSI-X vectors\n", 1479 rdev->en_dev->ulp_tbl->msix_requested); 1480 rdev->num_msix = rdev->en_dev->ulp_tbl->msix_requested; 1481 1482 bnxt_re_query_hwrm_intf_version(rdev); 1483 1484 /* Establish RCFW Communication Channel to initialize the context 1485 * memory for the function and all child VFs 1486 */ 1487 rc = bnxt_qplib_alloc_rcfw_channel(&rdev->qplib_res, &rdev->rcfw, 1488 &rdev->qplib_ctx, 1489 BNXT_RE_MAX_QPC_COUNT); 1490 if (rc) { 1491 ibdev_err(&rdev->ibdev, 1492 "Failed to allocate RCFW Channel: %#x\n", rc); 1493 goto fail; 1494 } 1495 1496 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1497 creq = &rdev->rcfw.creq; 1498 rattr.dma_arr = creq->hwq.pbl[PBL_LVL_0].pg_map_arr; 1499 rattr.pages = creq->hwq.pbl[creq->hwq.level].pg_count; 1500 rattr.type = type; 1501 rattr.mode = RING_ALLOC_REQ_INT_MODE_MSIX; 1502 rattr.depth = BNXT_QPLIB_CREQE_MAX_CNT - 1; 1503 rattr.lrid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].ring_idx; 1504 rc = bnxt_re_net_ring_alloc(rdev, &rattr, &creq->ring_id); 1505 if (rc) { 1506 ibdev_err(&rdev->ibdev, "Failed to allocate CREQ: %#x\n", rc); 1507 goto free_rcfw; 1508 } 1509 db_offt = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].db_offset; 1510 vid = rdev->en_dev->msix_entries[BNXT_RE_AEQ_IDX].vector; 1511 rc = bnxt_qplib_enable_rcfw_channel(&rdev->rcfw, 1512 vid, db_offt, 1513 &bnxt_re_aeq_handler); 1514 if (rc) { 1515 ibdev_err(&rdev->ibdev, "Failed to enable RCFW channel: %#x\n", 1516 rc); 1517 goto free_ring; 1518 } 1519 1520 if (bnxt_qplib_dbr_pacing_en(rdev->chip_ctx)) { 1521 rc = bnxt_re_initialize_dbr_pacing(rdev); 1522 if (!rc) { 1523 rdev->pacing.dbr_pacing = true; 1524 } else { 1525 ibdev_err(&rdev->ibdev, 1526 "DBR pacing disabled with error : %d\n", rc); 1527 rdev->pacing.dbr_pacing = false; 1528 } 1529 } 1530 rc = bnxt_qplib_get_dev_attr(&rdev->rcfw, &rdev->dev_attr); 1531 if (rc) 1532 goto disable_rcfw; 1533 1534 bnxt_re_set_resource_limits(rdev); 1535 1536 rc = bnxt_qplib_alloc_ctx(&rdev->qplib_res, &rdev->qplib_ctx, 0, 1537 bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)); 1538 if (rc) { 1539 ibdev_err(&rdev->ibdev, 1540 "Failed to allocate QPLIB context: %#x\n", rc); 1541 goto disable_rcfw; 1542 } 1543 rc = bnxt_re_net_stats_ctx_alloc(rdev, 1544 rdev->qplib_ctx.stats.dma_map, 1545 &rdev->qplib_ctx.stats.fw_id); 1546 if (rc) { 1547 ibdev_err(&rdev->ibdev, 1548 "Failed to allocate stats context: %#x\n", rc); 1549 goto free_ctx; 1550 } 1551 1552 rc = bnxt_qplib_init_rcfw(&rdev->rcfw, &rdev->qplib_ctx, 1553 rdev->is_virtfn); 1554 if (rc) { 1555 ibdev_err(&rdev->ibdev, 1556 "Failed to initialize RCFW: %#x\n", rc); 1557 goto free_sctx; 1558 } 1559 set_bit(BNXT_RE_FLAG_RCFW_CHANNEL_EN, &rdev->flags); 1560 1561 /* Resources based on the 'new' device caps */ 1562 rc = bnxt_re_alloc_res(rdev); 1563 if (rc) { 1564 ibdev_err(&rdev->ibdev, 1565 "Failed to allocate resources: %#x\n", rc); 1566 goto fail; 1567 } 1568 set_bit(BNXT_RE_FLAG_RESOURCES_ALLOCATED, &rdev->flags); 1569 rc = bnxt_re_init_res(rdev); 1570 if (rc) { 1571 ibdev_err(&rdev->ibdev, 1572 "Failed to initialize resources: %#x\n", rc); 1573 goto fail; 1574 } 1575 1576 set_bit(BNXT_RE_FLAG_RESOURCES_INITIALIZED, &rdev->flags); 1577 1578 if (!rdev->is_virtfn) { 1579 rc = bnxt_re_setup_qos(rdev); 1580 if (rc) 1581 ibdev_info(&rdev->ibdev, 1582 "RoCE priority not yet configured\n"); 1583 1584 INIT_DELAYED_WORK(&rdev->worker, bnxt_re_worker); 1585 set_bit(BNXT_RE_FLAG_QOS_WORK_REG, &rdev->flags); 1586 schedule_delayed_work(&rdev->worker, msecs_to_jiffies(30000)); 1587 /* 1588 * Use the total VF count since the actual VF count may not be 1589 * available at this point. 1590 */ 1591 bnxt_re_vf_res_config(rdev); 1592 } 1593 1594 return 0; 1595 free_sctx: 1596 bnxt_re_net_stats_ctx_free(rdev, rdev->qplib_ctx.stats.fw_id); 1597 free_ctx: 1598 bnxt_qplib_free_ctx(&rdev->qplib_res, &rdev->qplib_ctx); 1599 disable_rcfw: 1600 bnxt_qplib_disable_rcfw_channel(&rdev->rcfw); 1601 free_ring: 1602 type = bnxt_qplib_get_ring_type(rdev->chip_ctx); 1603 bnxt_re_net_ring_free(rdev, rdev->rcfw.creq.ring_id, type); 1604 free_rcfw: 1605 bnxt_qplib_free_rcfw_channel(&rdev->rcfw); 1606 fail: 1607 bnxt_re_dev_uninit(rdev); 1608 1609 return rc; 1610 } 1611 1612 static int bnxt_re_add_device(struct auxiliary_device *adev, u8 wqe_mode) 1613 { 1614 struct bnxt_aux_priv *aux_priv = 1615 container_of(adev, struct bnxt_aux_priv, aux_dev); 1616 struct bnxt_en_dev *en_dev; 1617 struct bnxt_re_dev *rdev; 1618 int rc; 1619 1620 /* en_dev should never be NULL as long as adev and aux_dev are valid. */ 1621 en_dev = aux_priv->edev; 1622 1623 rdev = bnxt_re_dev_add(aux_priv, en_dev); 1624 if (!rdev || !rdev_to_dev(rdev)) { 1625 rc = -ENOMEM; 1626 goto exit; 1627 } 1628 1629 rc = bnxt_re_dev_init(rdev, wqe_mode); 1630 if (rc) 1631 goto re_dev_dealloc; 1632 1633 rc = bnxt_re_ib_init(rdev); 1634 if (rc) { 1635 pr_err("Failed to register with IB: %s", 1636 aux_priv->aux_dev.name); 1637 goto re_dev_uninit; 1638 } 1639 auxiliary_set_drvdata(adev, rdev); 1640 1641 return 0; 1642 1643 re_dev_uninit: 1644 bnxt_re_dev_uninit(rdev); 1645 re_dev_dealloc: 1646 ib_dealloc_device(&rdev->ibdev); 1647 exit: 1648 return rc; 1649 } 1650 1651 static void bnxt_re_setup_cc(struct bnxt_re_dev *rdev, bool enable) 1652 { 1653 struct bnxt_qplib_cc_param cc_param = {}; 1654 1655 /* Do not enable congestion control on VFs */ 1656 if (rdev->is_virtfn) 1657 return; 1658 1659 /* Currently enabling only for GenP5 adapters */ 1660 if (!bnxt_qplib_is_chip_gen_p5_p7(rdev->chip_ctx)) 1661 return; 1662 1663 if (enable) { 1664 cc_param.enable = 1; 1665 cc_param.cc_mode = CMDQ_MODIFY_ROCE_CC_CC_MODE_PROBABILISTIC_CC_MODE; 1666 } 1667 1668 cc_param.mask = (CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_CC_MODE | 1669 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_ENABLE_CC | 1670 CMDQ_MODIFY_ROCE_CC_MODIFY_MASK_TOS_ECN); 1671 1672 if (bnxt_qplib_modify_cc(&rdev->qplib_res, &cc_param)) 1673 ibdev_err(&rdev->ibdev, "Failed to setup CC enable = %d\n", enable); 1674 } 1675 1676 /* 1677 * "Notifier chain callback can be invoked for the same chain from 1678 * different CPUs at the same time". 1679 * 1680 * For cases when the netdev is already present, our call to the 1681 * register_netdevice_notifier() will actually get the rtnl_lock() 1682 * before sending NETDEV_REGISTER and (if up) NETDEV_UP 1683 * events. 1684 * 1685 * But for cases when the netdev is not already present, the notifier 1686 * chain is subjected to be invoked from different CPUs simultaneously. 1687 * 1688 * This is protected by the netdev_mutex. 1689 */ 1690 static int bnxt_re_netdev_event(struct notifier_block *notifier, 1691 unsigned long event, void *ptr) 1692 { 1693 struct net_device *real_dev, *netdev = netdev_notifier_info_to_dev(ptr); 1694 struct bnxt_re_dev *rdev; 1695 1696 real_dev = rdma_vlan_dev_real_dev(netdev); 1697 if (!real_dev) 1698 real_dev = netdev; 1699 1700 if (real_dev != netdev) 1701 goto exit; 1702 1703 rdev = bnxt_re_from_netdev(real_dev); 1704 if (!rdev) 1705 return NOTIFY_DONE; 1706 1707 1708 switch (event) { 1709 case NETDEV_UP: 1710 case NETDEV_DOWN: 1711 case NETDEV_CHANGE: 1712 bnxt_re_dispatch_event(&rdev->ibdev, NULL, 1, 1713 netif_carrier_ok(real_dev) ? 1714 IB_EVENT_PORT_ACTIVE : 1715 IB_EVENT_PORT_ERR); 1716 break; 1717 default: 1718 break; 1719 } 1720 ib_device_put(&rdev->ibdev); 1721 exit: 1722 return NOTIFY_DONE; 1723 } 1724 1725 #define BNXT_ADEV_NAME "bnxt_en" 1726 1727 static void bnxt_re_remove(struct auxiliary_device *adev) 1728 { 1729 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1730 1731 if (!rdev) 1732 return; 1733 1734 mutex_lock(&bnxt_re_mutex); 1735 if (rdev->nb.notifier_call) { 1736 unregister_netdevice_notifier(&rdev->nb); 1737 rdev->nb.notifier_call = NULL; 1738 } else { 1739 /* If notifier is null, we should have already done a 1740 * clean up before coming here. 1741 */ 1742 goto skip_remove; 1743 } 1744 bnxt_re_setup_cc(rdev, false); 1745 ib_unregister_device(&rdev->ibdev); 1746 bnxt_re_dev_uninit(rdev); 1747 ib_dealloc_device(&rdev->ibdev); 1748 skip_remove: 1749 mutex_unlock(&bnxt_re_mutex); 1750 } 1751 1752 static int bnxt_re_probe(struct auxiliary_device *adev, 1753 const struct auxiliary_device_id *id) 1754 { 1755 struct bnxt_re_dev *rdev; 1756 int rc; 1757 1758 mutex_lock(&bnxt_re_mutex); 1759 rc = bnxt_re_add_device(adev, BNXT_QPLIB_WQE_MODE_STATIC); 1760 if (rc) { 1761 mutex_unlock(&bnxt_re_mutex); 1762 return rc; 1763 } 1764 1765 rdev = auxiliary_get_drvdata(adev); 1766 1767 rdev->nb.notifier_call = bnxt_re_netdev_event; 1768 rc = register_netdevice_notifier(&rdev->nb); 1769 if (rc) { 1770 rdev->nb.notifier_call = NULL; 1771 pr_err("%s: Cannot register to netdevice_notifier", 1772 ROCE_DRV_MODULE_NAME); 1773 goto err; 1774 } 1775 1776 bnxt_re_setup_cc(rdev, true); 1777 mutex_unlock(&bnxt_re_mutex); 1778 return 0; 1779 1780 err: 1781 mutex_unlock(&bnxt_re_mutex); 1782 bnxt_re_remove(adev); 1783 1784 return rc; 1785 } 1786 1787 static int bnxt_re_suspend(struct auxiliary_device *adev, pm_message_t state) 1788 { 1789 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1790 1791 if (!rdev) 1792 return 0; 1793 1794 mutex_lock(&bnxt_re_mutex); 1795 /* L2 driver may invoke this callback during device error/crash or device 1796 * reset. Current RoCE driver doesn't recover the device in case of 1797 * error. Handle the error by dispatching fatal events to all qps 1798 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as 1799 * L2 driver want to modify the MSIx table. 1800 */ 1801 1802 ibdev_info(&rdev->ibdev, "Handle device suspend call"); 1803 /* Check the current device state from bnxt_en_dev and move the 1804 * device to detached state if FW_FATAL_COND is set. 1805 * This prevents more commands to HW during clean-up, 1806 * in case the device is already in error. 1807 */ 1808 if (test_bit(BNXT_STATE_FW_FATAL_COND, &rdev->en_dev->en_state)) 1809 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); 1810 1811 bnxt_re_dev_stop(rdev); 1812 bnxt_re_stop_irq(rdev); 1813 /* Move the device states to detached and avoid sending any more 1814 * commands to HW 1815 */ 1816 set_bit(BNXT_RE_FLAG_ERR_DEVICE_DETACHED, &rdev->flags); 1817 set_bit(ERR_DEVICE_DETACHED, &rdev->rcfw.cmdq.flags); 1818 wake_up_all(&rdev->rcfw.cmdq.waitq); 1819 mutex_unlock(&bnxt_re_mutex); 1820 1821 return 0; 1822 } 1823 1824 static int bnxt_re_resume(struct auxiliary_device *adev) 1825 { 1826 struct bnxt_re_dev *rdev = auxiliary_get_drvdata(adev); 1827 1828 if (!rdev) 1829 return 0; 1830 1831 mutex_lock(&bnxt_re_mutex); 1832 /* L2 driver may invoke this callback during device recovery, resume. 1833 * reset. Current RoCE driver doesn't recover the device in case of 1834 * error. Handle the error by dispatching fatal events to all qps 1835 * ie. by calling bnxt_re_dev_stop and release the MSIx vectors as 1836 * L2 driver want to modify the MSIx table. 1837 */ 1838 1839 ibdev_info(&rdev->ibdev, "Handle device resume call"); 1840 mutex_unlock(&bnxt_re_mutex); 1841 1842 return 0; 1843 } 1844 1845 static const struct auxiliary_device_id bnxt_re_id_table[] = { 1846 { .name = BNXT_ADEV_NAME ".rdma", }, 1847 {}, 1848 }; 1849 1850 MODULE_DEVICE_TABLE(auxiliary, bnxt_re_id_table); 1851 1852 static struct auxiliary_driver bnxt_re_driver = { 1853 .name = "rdma", 1854 .probe = bnxt_re_probe, 1855 .remove = bnxt_re_remove, 1856 .shutdown = bnxt_re_shutdown, 1857 .suspend = bnxt_re_suspend, 1858 .resume = bnxt_re_resume, 1859 .id_table = bnxt_re_id_table, 1860 }; 1861 1862 static int __init bnxt_re_mod_init(void) 1863 { 1864 int rc; 1865 1866 pr_info("%s: %s", ROCE_DRV_MODULE_NAME, version); 1867 rc = auxiliary_driver_register(&bnxt_re_driver); 1868 if (rc) { 1869 pr_err("%s: Failed to register auxiliary driver\n", 1870 ROCE_DRV_MODULE_NAME); 1871 return rc; 1872 } 1873 return 0; 1874 } 1875 1876 static void __exit bnxt_re_mod_exit(void) 1877 { 1878 auxiliary_driver_unregister(&bnxt_re_driver); 1879 } 1880 1881 module_init(bnxt_re_mod_init); 1882 module_exit(bnxt_re_mod_exit); 1883