1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 #include <rdma/lag.h> 54 55 #include "core_priv.h" 56 #include <trace/events/rdma_core.h> 57 58 static int ib_resolve_eth_dmac(struct ib_device *device, 59 struct rdma_ah_attr *ah_attr); 60 61 static const char * const ib_events[] = { 62 [IB_EVENT_CQ_ERR] = "CQ error", 63 [IB_EVENT_QP_FATAL] = "QP fatal error", 64 [IB_EVENT_QP_REQ_ERR] = "QP request error", 65 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 66 [IB_EVENT_COMM_EST] = "communication established", 67 [IB_EVENT_SQ_DRAINED] = "send queue drained", 68 [IB_EVENT_PATH_MIG] = "path migration successful", 69 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 70 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 71 [IB_EVENT_PORT_ACTIVE] = "port active", 72 [IB_EVENT_PORT_ERR] = "port error", 73 [IB_EVENT_LID_CHANGE] = "LID change", 74 [IB_EVENT_PKEY_CHANGE] = "P_key change", 75 [IB_EVENT_SM_CHANGE] = "SM change", 76 [IB_EVENT_SRQ_ERR] = "SRQ error", 77 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 78 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 79 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 80 [IB_EVENT_GID_CHANGE] = "GID changed", 81 }; 82 83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 84 { 85 size_t index = event; 86 87 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 88 ib_events[index] : "unrecognized event"; 89 } 90 EXPORT_SYMBOL(ib_event_msg); 91 92 static const char * const wc_statuses[] = { 93 [IB_WC_SUCCESS] = "success", 94 [IB_WC_LOC_LEN_ERR] = "local length error", 95 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 96 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 97 [IB_WC_LOC_PROT_ERR] = "local protection error", 98 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 99 [IB_WC_MW_BIND_ERR] = "memory bind operation error", 100 [IB_WC_BAD_RESP_ERR] = "bad response error", 101 [IB_WC_LOC_ACCESS_ERR] = "local access error", 102 [IB_WC_REM_INV_REQ_ERR] = "remote invalid request error", 103 [IB_WC_REM_ACCESS_ERR] = "remote access error", 104 [IB_WC_REM_OP_ERR] = "remote operation error", 105 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 106 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 107 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 108 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 109 [IB_WC_REM_ABORT_ERR] = "operation aborted", 110 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 111 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 112 [IB_WC_FATAL_ERR] = "fatal error", 113 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 114 [IB_WC_GENERAL_ERR] = "general error", 115 }; 116 117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 118 { 119 size_t index = status; 120 121 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 122 wc_statuses[index] : "unrecognized status"; 123 } 124 EXPORT_SYMBOL(ib_wc_status_msg); 125 126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 127 { 128 switch (rate) { 129 case IB_RATE_2_5_GBPS: return 1; 130 case IB_RATE_5_GBPS: return 2; 131 case IB_RATE_10_GBPS: return 4; 132 case IB_RATE_20_GBPS: return 8; 133 case IB_RATE_30_GBPS: return 12; 134 case IB_RATE_40_GBPS: return 16; 135 case IB_RATE_60_GBPS: return 24; 136 case IB_RATE_80_GBPS: return 32; 137 case IB_RATE_120_GBPS: return 48; 138 case IB_RATE_14_GBPS: return 6; 139 case IB_RATE_56_GBPS: return 22; 140 case IB_RATE_112_GBPS: return 45; 141 case IB_RATE_168_GBPS: return 67; 142 case IB_RATE_25_GBPS: return 10; 143 case IB_RATE_100_GBPS: return 40; 144 case IB_RATE_200_GBPS: return 80; 145 case IB_RATE_300_GBPS: return 120; 146 case IB_RATE_28_GBPS: return 11; 147 case IB_RATE_50_GBPS: return 20; 148 case IB_RATE_400_GBPS: return 160; 149 case IB_RATE_600_GBPS: return 240; 150 default: return -1; 151 } 152 } 153 EXPORT_SYMBOL(ib_rate_to_mult); 154 155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 156 { 157 switch (mult) { 158 case 1: return IB_RATE_2_5_GBPS; 159 case 2: return IB_RATE_5_GBPS; 160 case 4: return IB_RATE_10_GBPS; 161 case 8: return IB_RATE_20_GBPS; 162 case 12: return IB_RATE_30_GBPS; 163 case 16: return IB_RATE_40_GBPS; 164 case 24: return IB_RATE_60_GBPS; 165 case 32: return IB_RATE_80_GBPS; 166 case 48: return IB_RATE_120_GBPS; 167 case 6: return IB_RATE_14_GBPS; 168 case 22: return IB_RATE_56_GBPS; 169 case 45: return IB_RATE_112_GBPS; 170 case 67: return IB_RATE_168_GBPS; 171 case 10: return IB_RATE_25_GBPS; 172 case 40: return IB_RATE_100_GBPS; 173 case 80: return IB_RATE_200_GBPS; 174 case 120: return IB_RATE_300_GBPS; 175 case 11: return IB_RATE_28_GBPS; 176 case 20: return IB_RATE_50_GBPS; 177 case 160: return IB_RATE_400_GBPS; 178 case 240: return IB_RATE_600_GBPS; 179 default: return IB_RATE_PORT_CURRENT; 180 } 181 } 182 EXPORT_SYMBOL(mult_to_ib_rate); 183 184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 185 { 186 switch (rate) { 187 case IB_RATE_2_5_GBPS: return 2500; 188 case IB_RATE_5_GBPS: return 5000; 189 case IB_RATE_10_GBPS: return 10000; 190 case IB_RATE_20_GBPS: return 20000; 191 case IB_RATE_30_GBPS: return 30000; 192 case IB_RATE_40_GBPS: return 40000; 193 case IB_RATE_60_GBPS: return 60000; 194 case IB_RATE_80_GBPS: return 80000; 195 case IB_RATE_120_GBPS: return 120000; 196 case IB_RATE_14_GBPS: return 14062; 197 case IB_RATE_56_GBPS: return 56250; 198 case IB_RATE_112_GBPS: return 112500; 199 case IB_RATE_168_GBPS: return 168750; 200 case IB_RATE_25_GBPS: return 25781; 201 case IB_RATE_100_GBPS: return 103125; 202 case IB_RATE_200_GBPS: return 206250; 203 case IB_RATE_300_GBPS: return 309375; 204 case IB_RATE_28_GBPS: return 28125; 205 case IB_RATE_50_GBPS: return 53125; 206 case IB_RATE_400_GBPS: return 425000; 207 case IB_RATE_600_GBPS: return 637500; 208 default: return -1; 209 } 210 } 211 EXPORT_SYMBOL(ib_rate_to_mbps); 212 213 __attribute_const__ enum rdma_transport_type 214 rdma_node_get_transport(unsigned int node_type) 215 { 216 217 if (node_type == RDMA_NODE_USNIC) 218 return RDMA_TRANSPORT_USNIC; 219 if (node_type == RDMA_NODE_USNIC_UDP) 220 return RDMA_TRANSPORT_USNIC_UDP; 221 if (node_type == RDMA_NODE_RNIC) 222 return RDMA_TRANSPORT_IWARP; 223 if (node_type == RDMA_NODE_UNSPECIFIED) 224 return RDMA_TRANSPORT_UNSPECIFIED; 225 226 return RDMA_TRANSPORT_IB; 227 } 228 EXPORT_SYMBOL(rdma_node_get_transport); 229 230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 231 u32 port_num) 232 { 233 enum rdma_transport_type lt; 234 if (device->ops.get_link_layer) 235 return device->ops.get_link_layer(device, port_num); 236 237 lt = rdma_node_get_transport(device->node_type); 238 if (lt == RDMA_TRANSPORT_IB) 239 return IB_LINK_LAYER_INFINIBAND; 240 241 return IB_LINK_LAYER_ETHERNET; 242 } 243 EXPORT_SYMBOL(rdma_port_get_link_layer); 244 245 /* Protection domains */ 246 247 /** 248 * __ib_alloc_pd - Allocates an unused protection domain. 249 * @device: The device on which to allocate the protection domain. 250 * @flags: protection domain flags 251 * @caller: caller's build-time module name 252 * 253 * A protection domain object provides an association between QPs, shared 254 * receive queues, address handles, memory regions, and memory windows. 255 * 256 * Every PD has a local_dma_lkey which can be used as the lkey value for local 257 * memory operations. 258 */ 259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 260 const char *caller) 261 { 262 struct ib_pd *pd; 263 int mr_access_flags = 0; 264 int ret; 265 266 pd = rdma_zalloc_drv_obj(device, ib_pd); 267 if (!pd) 268 return ERR_PTR(-ENOMEM); 269 270 pd->device = device; 271 pd->flags = flags; 272 273 rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD); 274 rdma_restrack_set_name(&pd->res, caller); 275 276 ret = device->ops.alloc_pd(pd, NULL); 277 if (ret) { 278 rdma_restrack_put(&pd->res); 279 kfree(pd); 280 return ERR_PTR(ret); 281 } 282 rdma_restrack_add(&pd->res); 283 284 if (device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY) 285 pd->local_dma_lkey = device->local_dma_lkey; 286 else 287 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 288 289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 290 pr_warn("%s: enabling unsafe global rkey\n", caller); 291 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 292 } 293 294 if (mr_access_flags) { 295 struct ib_mr *mr; 296 297 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 298 if (IS_ERR(mr)) { 299 ib_dealloc_pd(pd); 300 return ERR_CAST(mr); 301 } 302 303 mr->device = pd->device; 304 mr->pd = pd; 305 mr->type = IB_MR_TYPE_DMA; 306 mr->uobject = NULL; 307 mr->need_inval = false; 308 309 pd->__internal_mr = mr; 310 311 if (!(device->attrs.kernel_cap_flags & IBK_LOCAL_DMA_LKEY)) 312 pd->local_dma_lkey = pd->__internal_mr->lkey; 313 314 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 315 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 316 } 317 318 return pd; 319 } 320 EXPORT_SYMBOL(__ib_alloc_pd); 321 322 /** 323 * ib_dealloc_pd_user - Deallocates a protection domain. 324 * @pd: The protection domain to deallocate. 325 * @udata: Valid user data or NULL for kernel object 326 * 327 * It is an error to call this function while any resources in the pd still 328 * exist. The caller is responsible to synchronously destroy them and 329 * guarantee no new allocations will happen. 330 */ 331 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 332 { 333 int ret; 334 335 if (pd->__internal_mr) { 336 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 337 WARN_ON(ret); 338 pd->__internal_mr = NULL; 339 } 340 341 ret = pd->device->ops.dealloc_pd(pd, udata); 342 if (ret) 343 return ret; 344 345 rdma_restrack_del(&pd->res); 346 kfree(pd); 347 return ret; 348 } 349 EXPORT_SYMBOL(ib_dealloc_pd_user); 350 351 /* Address handles */ 352 353 /** 354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 355 * @dest: Pointer to destination ah_attr. Contents of the destination 356 * pointer is assumed to be invalid and attribute are overwritten. 357 * @src: Pointer to source ah_attr. 358 */ 359 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 360 const struct rdma_ah_attr *src) 361 { 362 *dest = *src; 363 if (dest->grh.sgid_attr) 364 rdma_hold_gid_attr(dest->grh.sgid_attr); 365 } 366 EXPORT_SYMBOL(rdma_copy_ah_attr); 367 368 /** 369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 370 * @old: Pointer to existing ah_attr which needs to be replaced. 371 * old is assumed to be valid or zero'd 372 * @new: Pointer to the new ah_attr. 373 * 374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 375 * old the ah_attr is valid; after that it copies the new attribute and holds 376 * the reference to the replaced ah_attr. 377 */ 378 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 379 const struct rdma_ah_attr *new) 380 { 381 rdma_destroy_ah_attr(old); 382 *old = *new; 383 if (old->grh.sgid_attr) 384 rdma_hold_gid_attr(old->grh.sgid_attr); 385 } 386 EXPORT_SYMBOL(rdma_replace_ah_attr); 387 388 /** 389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 390 * @dest: Pointer to destination ah_attr to copy to. 391 * dest is assumed to be valid or zero'd 392 * @src: Pointer to the new ah_attr. 393 * 394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 395 * if it is valid. This also transfers ownership of internal references from 396 * src to dest, making src invalid in the process. No new reference of the src 397 * ah_attr is taken. 398 */ 399 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 400 { 401 rdma_destroy_ah_attr(dest); 402 *dest = *src; 403 src->grh.sgid_attr = NULL; 404 } 405 EXPORT_SYMBOL(rdma_move_ah_attr); 406 407 /* 408 * Validate that the rdma_ah_attr is valid for the device before passing it 409 * off to the driver. 410 */ 411 static int rdma_check_ah_attr(struct ib_device *device, 412 struct rdma_ah_attr *ah_attr) 413 { 414 if (!rdma_is_port_valid(device, ah_attr->port_num)) 415 return -EINVAL; 416 417 if ((rdma_is_grh_required(device, ah_attr->port_num) || 418 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 419 !(ah_attr->ah_flags & IB_AH_GRH)) 420 return -EINVAL; 421 422 if (ah_attr->grh.sgid_attr) { 423 /* 424 * Make sure the passed sgid_attr is consistent with the 425 * parameters 426 */ 427 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 428 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 429 return -EINVAL; 430 } 431 return 0; 432 } 433 434 /* 435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 436 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 437 */ 438 static int rdma_fill_sgid_attr(struct ib_device *device, 439 struct rdma_ah_attr *ah_attr, 440 const struct ib_gid_attr **old_sgid_attr) 441 { 442 const struct ib_gid_attr *sgid_attr; 443 struct ib_global_route *grh; 444 int ret; 445 446 *old_sgid_attr = ah_attr->grh.sgid_attr; 447 448 ret = rdma_check_ah_attr(device, ah_attr); 449 if (ret) 450 return ret; 451 452 if (!(ah_attr->ah_flags & IB_AH_GRH)) 453 return 0; 454 455 grh = rdma_ah_retrieve_grh(ah_attr); 456 if (grh->sgid_attr) 457 return 0; 458 459 sgid_attr = 460 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 461 if (IS_ERR(sgid_attr)) 462 return PTR_ERR(sgid_attr); 463 464 /* Move ownerhip of the kref into the ah_attr */ 465 grh->sgid_attr = sgid_attr; 466 return 0; 467 } 468 469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 470 const struct ib_gid_attr *old_sgid_attr) 471 { 472 /* 473 * Fill didn't change anything, the caller retains ownership of 474 * whatever it passed 475 */ 476 if (ah_attr->grh.sgid_attr == old_sgid_attr) 477 return; 478 479 /* 480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 481 * doesn't see any change in the rdma_ah_attr. If we get here 482 * old_sgid_attr is NULL. 483 */ 484 rdma_destroy_ah_attr(ah_attr); 485 } 486 487 static const struct ib_gid_attr * 488 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 489 const struct ib_gid_attr *old_attr) 490 { 491 if (old_attr) 492 rdma_put_gid_attr(old_attr); 493 if (ah_attr->ah_flags & IB_AH_GRH) { 494 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 495 return ah_attr->grh.sgid_attr; 496 } 497 return NULL; 498 } 499 500 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 501 struct rdma_ah_attr *ah_attr, 502 u32 flags, 503 struct ib_udata *udata, 504 struct net_device *xmit_slave) 505 { 506 struct rdma_ah_init_attr init_attr = {}; 507 struct ib_device *device = pd->device; 508 struct ib_ah *ah; 509 int ret; 510 511 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 512 513 if (!udata && !device->ops.create_ah) 514 return ERR_PTR(-EOPNOTSUPP); 515 516 ah = rdma_zalloc_drv_obj_gfp( 517 device, ib_ah, 518 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 519 if (!ah) 520 return ERR_PTR(-ENOMEM); 521 522 ah->device = device; 523 ah->pd = pd; 524 ah->type = ah_attr->type; 525 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 526 init_attr.ah_attr = ah_attr; 527 init_attr.flags = flags; 528 init_attr.xmit_slave = xmit_slave; 529 530 if (udata) 531 ret = device->ops.create_user_ah(ah, &init_attr, udata); 532 else 533 ret = device->ops.create_ah(ah, &init_attr, NULL); 534 if (ret) { 535 if (ah->sgid_attr) 536 rdma_put_gid_attr(ah->sgid_attr); 537 kfree(ah); 538 return ERR_PTR(ret); 539 } 540 541 atomic_inc(&pd->usecnt); 542 return ah; 543 } 544 545 /** 546 * rdma_create_ah - Creates an address handle for the 547 * given address vector. 548 * @pd: The protection domain associated with the address handle. 549 * @ah_attr: The attributes of the address vector. 550 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 551 * 552 * It returns 0 on success and returns appropriate error code on error. 553 * The address handle is used to reference a local or global destination 554 * in all UD QP post sends. 555 */ 556 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 557 u32 flags) 558 { 559 const struct ib_gid_attr *old_sgid_attr; 560 struct net_device *slave; 561 struct ib_ah *ah; 562 int ret; 563 564 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 565 if (ret) 566 return ERR_PTR(ret); 567 slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr, 568 (flags & RDMA_CREATE_AH_SLEEPABLE) ? 569 GFP_KERNEL : GFP_ATOMIC); 570 if (IS_ERR(slave)) { 571 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 572 return (void *)slave; 573 } 574 ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave); 575 rdma_lag_put_ah_roce_slave(slave); 576 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 577 return ah; 578 } 579 EXPORT_SYMBOL(rdma_create_ah); 580 581 /** 582 * rdma_create_user_ah - Creates an address handle for the 583 * given address vector. 584 * It resolves destination mac address for ah attribute of RoCE type. 585 * @pd: The protection domain associated with the address handle. 586 * @ah_attr: The attributes of the address vector. 587 * @udata: pointer to user's input output buffer information need by 588 * provider driver. 589 * 590 * It returns 0 on success and returns appropriate error code on error. 591 * The address handle is used to reference a local or global destination 592 * in all UD QP post sends. 593 */ 594 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 595 struct rdma_ah_attr *ah_attr, 596 struct ib_udata *udata) 597 { 598 const struct ib_gid_attr *old_sgid_attr; 599 struct ib_ah *ah; 600 int err; 601 602 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 603 if (err) 604 return ERR_PTR(err); 605 606 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 607 err = ib_resolve_eth_dmac(pd->device, ah_attr); 608 if (err) { 609 ah = ERR_PTR(err); 610 goto out; 611 } 612 } 613 614 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, 615 udata, NULL); 616 617 out: 618 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 619 return ah; 620 } 621 EXPORT_SYMBOL(rdma_create_user_ah); 622 623 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 624 { 625 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 626 struct iphdr ip4h_checked; 627 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 628 629 /* If it's IPv6, the version must be 6, otherwise, the first 630 * 20 bytes (before the IPv4 header) are garbled. 631 */ 632 if (ip6h->version != 6) 633 return (ip4h->version == 4) ? 4 : 0; 634 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 635 636 /* RoCE v2 requires no options, thus header length 637 * must be 5 words 638 */ 639 if (ip4h->ihl != 5) 640 return 6; 641 642 /* Verify checksum. 643 * We can't write on scattered buffers so we need to copy to 644 * temp buffer. 645 */ 646 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 647 ip4h_checked.check = 0; 648 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 649 /* if IPv4 header checksum is OK, believe it */ 650 if (ip4h->check == ip4h_checked.check) 651 return 4; 652 return 6; 653 } 654 EXPORT_SYMBOL(ib_get_rdma_header_version); 655 656 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 657 u32 port_num, 658 const struct ib_grh *grh) 659 { 660 int grh_version; 661 662 if (rdma_protocol_ib(device, port_num)) 663 return RDMA_NETWORK_IB; 664 665 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 666 667 if (grh_version == 4) 668 return RDMA_NETWORK_IPV4; 669 670 if (grh->next_hdr == IPPROTO_UDP) 671 return RDMA_NETWORK_IPV6; 672 673 return RDMA_NETWORK_ROCE_V1; 674 } 675 676 struct find_gid_index_context { 677 u16 vlan_id; 678 enum ib_gid_type gid_type; 679 }; 680 681 static bool find_gid_index(const union ib_gid *gid, 682 const struct ib_gid_attr *gid_attr, 683 void *context) 684 { 685 struct find_gid_index_context *ctx = context; 686 u16 vlan_id = 0xffff; 687 int ret; 688 689 if (ctx->gid_type != gid_attr->gid_type) 690 return false; 691 692 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 693 if (ret) 694 return false; 695 696 return ctx->vlan_id == vlan_id; 697 } 698 699 static const struct ib_gid_attr * 700 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num, 701 u16 vlan_id, const union ib_gid *sgid, 702 enum ib_gid_type gid_type) 703 { 704 struct find_gid_index_context context = {.vlan_id = vlan_id, 705 .gid_type = gid_type}; 706 707 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 708 &context); 709 } 710 711 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 712 enum rdma_network_type net_type, 713 union ib_gid *sgid, union ib_gid *dgid) 714 { 715 struct sockaddr_in src_in; 716 struct sockaddr_in dst_in; 717 __be32 src_saddr, dst_saddr; 718 719 if (!sgid || !dgid) 720 return -EINVAL; 721 722 if (net_type == RDMA_NETWORK_IPV4) { 723 memcpy(&src_in.sin_addr.s_addr, 724 &hdr->roce4grh.saddr, 4); 725 memcpy(&dst_in.sin_addr.s_addr, 726 &hdr->roce4grh.daddr, 4); 727 src_saddr = src_in.sin_addr.s_addr; 728 dst_saddr = dst_in.sin_addr.s_addr; 729 ipv6_addr_set_v4mapped(src_saddr, 730 (struct in6_addr *)sgid); 731 ipv6_addr_set_v4mapped(dst_saddr, 732 (struct in6_addr *)dgid); 733 return 0; 734 } else if (net_type == RDMA_NETWORK_IPV6 || 735 net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) { 736 *dgid = hdr->ibgrh.dgid; 737 *sgid = hdr->ibgrh.sgid; 738 return 0; 739 } else { 740 return -EINVAL; 741 } 742 } 743 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 744 745 /* Resolve destination mac address and hop limit for unicast destination 746 * GID entry, considering the source GID entry as well. 747 * ah_attribute must have have valid port_num, sgid_index. 748 */ 749 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 750 struct rdma_ah_attr *ah_attr) 751 { 752 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 753 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 754 int hop_limit = 0xff; 755 int ret = 0; 756 757 /* If destination is link local and source GID is RoCEv1, 758 * IP stack is not used. 759 */ 760 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 761 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 762 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 763 ah_attr->roce.dmac); 764 return ret; 765 } 766 767 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 768 ah_attr->roce.dmac, 769 sgid_attr, &hop_limit); 770 771 grh->hop_limit = hop_limit; 772 return ret; 773 } 774 775 /* 776 * This function initializes address handle attributes from the incoming packet. 777 * Incoming packet has dgid of the receiver node on which this code is 778 * getting executed and, sgid contains the GID of the sender. 779 * 780 * When resolving mac address of destination, the arrived dgid is used 781 * as sgid and, sgid is used as dgid because sgid contains destinations 782 * GID whom to respond to. 783 * 784 * On success the caller is responsible to call rdma_destroy_ah_attr on the 785 * attr. 786 */ 787 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num, 788 const struct ib_wc *wc, const struct ib_grh *grh, 789 struct rdma_ah_attr *ah_attr) 790 { 791 u32 flow_class; 792 int ret; 793 enum rdma_network_type net_type = RDMA_NETWORK_IB; 794 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 795 const struct ib_gid_attr *sgid_attr; 796 int hoplimit = 0xff; 797 union ib_gid dgid; 798 union ib_gid sgid; 799 800 might_sleep(); 801 802 memset(ah_attr, 0, sizeof *ah_attr); 803 ah_attr->type = rdma_ah_find_type(device, port_num); 804 if (rdma_cap_eth_ah(device, port_num)) { 805 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 806 net_type = wc->network_hdr_type; 807 else 808 net_type = ib_get_net_type_by_grh(device, port_num, grh); 809 gid_type = ib_network_to_gid_type(net_type); 810 } 811 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 812 &sgid, &dgid); 813 if (ret) 814 return ret; 815 816 rdma_ah_set_sl(ah_attr, wc->sl); 817 rdma_ah_set_port_num(ah_attr, port_num); 818 819 if (rdma_protocol_roce(device, port_num)) { 820 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 821 wc->vlan_id : 0xffff; 822 823 if (!(wc->wc_flags & IB_WC_GRH)) 824 return -EPROTOTYPE; 825 826 sgid_attr = get_sgid_attr_from_eth(device, port_num, 827 vlan_id, &dgid, 828 gid_type); 829 if (IS_ERR(sgid_attr)) 830 return PTR_ERR(sgid_attr); 831 832 flow_class = be32_to_cpu(grh->version_tclass_flow); 833 rdma_move_grh_sgid_attr(ah_attr, 834 &sgid, 835 flow_class & 0xFFFFF, 836 hoplimit, 837 (flow_class >> 20) & 0xFF, 838 sgid_attr); 839 840 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 841 if (ret) 842 rdma_destroy_ah_attr(ah_attr); 843 844 return ret; 845 } else { 846 rdma_ah_set_dlid(ah_attr, wc->slid); 847 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 848 849 if ((wc->wc_flags & IB_WC_GRH) == 0) 850 return 0; 851 852 if (dgid.global.interface_id != 853 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 854 sgid_attr = rdma_find_gid_by_port( 855 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 856 } else 857 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 858 859 if (IS_ERR(sgid_attr)) 860 return PTR_ERR(sgid_attr); 861 flow_class = be32_to_cpu(grh->version_tclass_flow); 862 rdma_move_grh_sgid_attr(ah_attr, 863 &sgid, 864 flow_class & 0xFFFFF, 865 hoplimit, 866 (flow_class >> 20) & 0xFF, 867 sgid_attr); 868 869 return 0; 870 } 871 } 872 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 873 874 /** 875 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 876 * of the reference 877 * 878 * @attr: Pointer to AH attribute structure 879 * @dgid: Destination GID 880 * @flow_label: Flow label 881 * @hop_limit: Hop limit 882 * @traffic_class: traffic class 883 * @sgid_attr: Pointer to SGID attribute 884 * 885 * This takes ownership of the sgid_attr reference. The caller must ensure 886 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 887 * calling this function. 888 */ 889 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 890 u32 flow_label, u8 hop_limit, u8 traffic_class, 891 const struct ib_gid_attr *sgid_attr) 892 { 893 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 894 traffic_class); 895 attr->grh.sgid_attr = sgid_attr; 896 } 897 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 898 899 /** 900 * rdma_destroy_ah_attr - Release reference to SGID attribute of 901 * ah attribute. 902 * @ah_attr: Pointer to ah attribute 903 * 904 * Release reference to the SGID attribute of the ah attribute if it is 905 * non NULL. It is safe to call this multiple times, and safe to call it on 906 * a zero initialized ah_attr. 907 */ 908 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 909 { 910 if (ah_attr->grh.sgid_attr) { 911 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 912 ah_attr->grh.sgid_attr = NULL; 913 } 914 } 915 EXPORT_SYMBOL(rdma_destroy_ah_attr); 916 917 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 918 const struct ib_grh *grh, u32 port_num) 919 { 920 struct rdma_ah_attr ah_attr; 921 struct ib_ah *ah; 922 int ret; 923 924 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 925 if (ret) 926 return ERR_PTR(ret); 927 928 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 929 930 rdma_destroy_ah_attr(&ah_attr); 931 return ah; 932 } 933 EXPORT_SYMBOL(ib_create_ah_from_wc); 934 935 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 936 { 937 const struct ib_gid_attr *old_sgid_attr; 938 int ret; 939 940 if (ah->type != ah_attr->type) 941 return -EINVAL; 942 943 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 944 if (ret) 945 return ret; 946 947 ret = ah->device->ops.modify_ah ? 948 ah->device->ops.modify_ah(ah, ah_attr) : 949 -EOPNOTSUPP; 950 951 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 952 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 953 return ret; 954 } 955 EXPORT_SYMBOL(rdma_modify_ah); 956 957 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 958 { 959 ah_attr->grh.sgid_attr = NULL; 960 961 return ah->device->ops.query_ah ? 962 ah->device->ops.query_ah(ah, ah_attr) : 963 -EOPNOTSUPP; 964 } 965 EXPORT_SYMBOL(rdma_query_ah); 966 967 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 968 { 969 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 970 struct ib_pd *pd; 971 int ret; 972 973 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 974 975 pd = ah->pd; 976 977 ret = ah->device->ops.destroy_ah(ah, flags); 978 if (ret) 979 return ret; 980 981 atomic_dec(&pd->usecnt); 982 if (sgid_attr) 983 rdma_put_gid_attr(sgid_attr); 984 985 kfree(ah); 986 return ret; 987 } 988 EXPORT_SYMBOL(rdma_destroy_ah_user); 989 990 /* Shared receive queues */ 991 992 /** 993 * ib_create_srq_user - Creates a SRQ associated with the specified protection 994 * domain. 995 * @pd: The protection domain associated with the SRQ. 996 * @srq_init_attr: A list of initial attributes required to create the 997 * SRQ. If SRQ creation succeeds, then the attributes are updated to 998 * the actual capabilities of the created SRQ. 999 * @uobject: uobject pointer if this is not a kernel SRQ 1000 * @udata: udata pointer if this is not a kernel SRQ 1001 * 1002 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 1003 * requested size of the SRQ, and set to the actual values allocated 1004 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 1005 * will always be at least as large as the requested values. 1006 */ 1007 struct ib_srq *ib_create_srq_user(struct ib_pd *pd, 1008 struct ib_srq_init_attr *srq_init_attr, 1009 struct ib_usrq_object *uobject, 1010 struct ib_udata *udata) 1011 { 1012 struct ib_srq *srq; 1013 int ret; 1014 1015 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 1016 if (!srq) 1017 return ERR_PTR(-ENOMEM); 1018 1019 srq->device = pd->device; 1020 srq->pd = pd; 1021 srq->event_handler = srq_init_attr->event_handler; 1022 srq->srq_context = srq_init_attr->srq_context; 1023 srq->srq_type = srq_init_attr->srq_type; 1024 srq->uobject = uobject; 1025 1026 if (ib_srq_has_cq(srq->srq_type)) { 1027 srq->ext.cq = srq_init_attr->ext.cq; 1028 atomic_inc(&srq->ext.cq->usecnt); 1029 } 1030 if (srq->srq_type == IB_SRQT_XRC) { 1031 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 1032 if (srq->ext.xrc.xrcd) 1033 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 1034 } 1035 atomic_inc(&pd->usecnt); 1036 1037 rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ); 1038 rdma_restrack_parent_name(&srq->res, &pd->res); 1039 1040 ret = pd->device->ops.create_srq(srq, srq_init_attr, udata); 1041 if (ret) { 1042 rdma_restrack_put(&srq->res); 1043 atomic_dec(&pd->usecnt); 1044 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1045 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1046 if (ib_srq_has_cq(srq->srq_type)) 1047 atomic_dec(&srq->ext.cq->usecnt); 1048 kfree(srq); 1049 return ERR_PTR(ret); 1050 } 1051 1052 rdma_restrack_add(&srq->res); 1053 1054 return srq; 1055 } 1056 EXPORT_SYMBOL(ib_create_srq_user); 1057 1058 int ib_modify_srq(struct ib_srq *srq, 1059 struct ib_srq_attr *srq_attr, 1060 enum ib_srq_attr_mask srq_attr_mask) 1061 { 1062 return srq->device->ops.modify_srq ? 1063 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1064 NULL) : -EOPNOTSUPP; 1065 } 1066 EXPORT_SYMBOL(ib_modify_srq); 1067 1068 int ib_query_srq(struct ib_srq *srq, 1069 struct ib_srq_attr *srq_attr) 1070 { 1071 return srq->device->ops.query_srq ? 1072 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1073 } 1074 EXPORT_SYMBOL(ib_query_srq); 1075 1076 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1077 { 1078 int ret; 1079 1080 if (atomic_read(&srq->usecnt)) 1081 return -EBUSY; 1082 1083 ret = srq->device->ops.destroy_srq(srq, udata); 1084 if (ret) 1085 return ret; 1086 1087 atomic_dec(&srq->pd->usecnt); 1088 if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd) 1089 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1090 if (ib_srq_has_cq(srq->srq_type)) 1091 atomic_dec(&srq->ext.cq->usecnt); 1092 rdma_restrack_del(&srq->res); 1093 kfree(srq); 1094 1095 return ret; 1096 } 1097 EXPORT_SYMBOL(ib_destroy_srq_user); 1098 1099 /* Queue pairs */ 1100 1101 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1102 { 1103 struct ib_qp *qp = context; 1104 unsigned long flags; 1105 1106 spin_lock_irqsave(&qp->device->qp_open_list_lock, flags); 1107 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1108 if (event->element.qp->event_handler) 1109 event->element.qp->event_handler(event, event->element.qp->qp_context); 1110 spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags); 1111 } 1112 1113 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1114 void (*event_handler)(struct ib_event *, void *), 1115 void *qp_context) 1116 { 1117 struct ib_qp *qp; 1118 unsigned long flags; 1119 int err; 1120 1121 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1122 if (!qp) 1123 return ERR_PTR(-ENOMEM); 1124 1125 qp->real_qp = real_qp; 1126 err = ib_open_shared_qp_security(qp, real_qp->device); 1127 if (err) { 1128 kfree(qp); 1129 return ERR_PTR(err); 1130 } 1131 1132 qp->real_qp = real_qp; 1133 atomic_inc(&real_qp->usecnt); 1134 qp->device = real_qp->device; 1135 qp->event_handler = event_handler; 1136 qp->qp_context = qp_context; 1137 qp->qp_num = real_qp->qp_num; 1138 qp->qp_type = real_qp->qp_type; 1139 1140 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1141 list_add(&qp->open_list, &real_qp->open_list); 1142 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1143 1144 return qp; 1145 } 1146 1147 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1148 struct ib_qp_open_attr *qp_open_attr) 1149 { 1150 struct ib_qp *qp, *real_qp; 1151 1152 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1153 return ERR_PTR(-EINVAL); 1154 1155 down_read(&xrcd->tgt_qps_rwsem); 1156 real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num); 1157 if (!real_qp) { 1158 up_read(&xrcd->tgt_qps_rwsem); 1159 return ERR_PTR(-EINVAL); 1160 } 1161 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1162 qp_open_attr->qp_context); 1163 up_read(&xrcd->tgt_qps_rwsem); 1164 return qp; 1165 } 1166 EXPORT_SYMBOL(ib_open_qp); 1167 1168 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1169 struct ib_qp_init_attr *qp_init_attr) 1170 { 1171 struct ib_qp *real_qp = qp; 1172 int err; 1173 1174 qp->event_handler = __ib_shared_qp_event_handler; 1175 qp->qp_context = qp; 1176 qp->pd = NULL; 1177 qp->send_cq = qp->recv_cq = NULL; 1178 qp->srq = NULL; 1179 qp->xrcd = qp_init_attr->xrcd; 1180 atomic_inc(&qp_init_attr->xrcd->usecnt); 1181 INIT_LIST_HEAD(&qp->open_list); 1182 1183 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1184 qp_init_attr->qp_context); 1185 if (IS_ERR(qp)) 1186 return qp; 1187 1188 err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num, 1189 real_qp, GFP_KERNEL)); 1190 if (err) { 1191 ib_close_qp(qp); 1192 return ERR_PTR(err); 1193 } 1194 return qp; 1195 } 1196 1197 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd, 1198 struct ib_qp_init_attr *attr, 1199 struct ib_udata *udata, 1200 struct ib_uqp_object *uobj, const char *caller) 1201 { 1202 struct ib_udata dummy = {}; 1203 struct ib_qp *qp; 1204 int ret; 1205 1206 if (!dev->ops.create_qp) 1207 return ERR_PTR(-EOPNOTSUPP); 1208 1209 qp = rdma_zalloc_drv_obj_numa(dev, ib_qp); 1210 if (!qp) 1211 return ERR_PTR(-ENOMEM); 1212 1213 qp->device = dev; 1214 qp->pd = pd; 1215 qp->uobject = uobj; 1216 qp->real_qp = qp; 1217 1218 qp->qp_type = attr->qp_type; 1219 qp->rwq_ind_tbl = attr->rwq_ind_tbl; 1220 qp->srq = attr->srq; 1221 qp->event_handler = attr->event_handler; 1222 qp->port = attr->port_num; 1223 qp->qp_context = attr->qp_context; 1224 1225 spin_lock_init(&qp->mr_lock); 1226 INIT_LIST_HEAD(&qp->rdma_mrs); 1227 INIT_LIST_HEAD(&qp->sig_mrs); 1228 1229 qp->send_cq = attr->send_cq; 1230 qp->recv_cq = attr->recv_cq; 1231 1232 rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP); 1233 WARN_ONCE(!udata && !caller, "Missing kernel QP owner"); 1234 rdma_restrack_set_name(&qp->res, udata ? NULL : caller); 1235 ret = dev->ops.create_qp(qp, attr, udata); 1236 if (ret) 1237 goto err_create; 1238 1239 /* 1240 * TODO: The mlx4 internally overwrites send_cq and recv_cq. 1241 * Unfortunately, it is not an easy task to fix that driver. 1242 */ 1243 qp->send_cq = attr->send_cq; 1244 qp->recv_cq = attr->recv_cq; 1245 1246 ret = ib_create_qp_security(qp, dev); 1247 if (ret) 1248 goto err_security; 1249 1250 rdma_restrack_add(&qp->res); 1251 return qp; 1252 1253 err_security: 1254 qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL); 1255 err_create: 1256 rdma_restrack_put(&qp->res); 1257 kfree(qp); 1258 return ERR_PTR(ret); 1259 1260 } 1261 1262 /** 1263 * ib_create_qp_user - Creates a QP associated with the specified protection 1264 * domain. 1265 * @dev: IB device 1266 * @pd: The protection domain associated with the QP. 1267 * @attr: A list of initial attributes required to create the 1268 * QP. If QP creation succeeds, then the attributes are updated to 1269 * the actual capabilities of the created QP. 1270 * @udata: User data 1271 * @uobj: uverbs obect 1272 * @caller: caller's build-time module name 1273 */ 1274 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd, 1275 struct ib_qp_init_attr *attr, 1276 struct ib_udata *udata, 1277 struct ib_uqp_object *uobj, const char *caller) 1278 { 1279 struct ib_qp *qp, *xrc_qp; 1280 1281 if (attr->qp_type == IB_QPT_XRC_TGT) 1282 qp = create_qp(dev, pd, attr, NULL, NULL, caller); 1283 else 1284 qp = create_qp(dev, pd, attr, udata, uobj, NULL); 1285 if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp)) 1286 return qp; 1287 1288 xrc_qp = create_xrc_qp_user(qp, attr); 1289 if (IS_ERR(xrc_qp)) { 1290 ib_destroy_qp(qp); 1291 return xrc_qp; 1292 } 1293 1294 xrc_qp->uobject = uobj; 1295 return xrc_qp; 1296 } 1297 EXPORT_SYMBOL(ib_create_qp_user); 1298 1299 void ib_qp_usecnt_inc(struct ib_qp *qp) 1300 { 1301 if (qp->pd) 1302 atomic_inc(&qp->pd->usecnt); 1303 if (qp->send_cq) 1304 atomic_inc(&qp->send_cq->usecnt); 1305 if (qp->recv_cq) 1306 atomic_inc(&qp->recv_cq->usecnt); 1307 if (qp->srq) 1308 atomic_inc(&qp->srq->usecnt); 1309 if (qp->rwq_ind_tbl) 1310 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1311 } 1312 EXPORT_SYMBOL(ib_qp_usecnt_inc); 1313 1314 void ib_qp_usecnt_dec(struct ib_qp *qp) 1315 { 1316 if (qp->rwq_ind_tbl) 1317 atomic_dec(&qp->rwq_ind_tbl->usecnt); 1318 if (qp->srq) 1319 atomic_dec(&qp->srq->usecnt); 1320 if (qp->recv_cq) 1321 atomic_dec(&qp->recv_cq->usecnt); 1322 if (qp->send_cq) 1323 atomic_dec(&qp->send_cq->usecnt); 1324 if (qp->pd) 1325 atomic_dec(&qp->pd->usecnt); 1326 } 1327 EXPORT_SYMBOL(ib_qp_usecnt_dec); 1328 1329 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd, 1330 struct ib_qp_init_attr *qp_init_attr, 1331 const char *caller) 1332 { 1333 struct ib_device *device = pd->device; 1334 struct ib_qp *qp; 1335 int ret; 1336 1337 /* 1338 * If the callers is using the RDMA API calculate the resources 1339 * needed for the RDMA READ/WRITE operations. 1340 * 1341 * Note that these callers need to pass in a port number. 1342 */ 1343 if (qp_init_attr->cap.max_rdma_ctxs) 1344 rdma_rw_init_qp(device, qp_init_attr); 1345 1346 qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller); 1347 if (IS_ERR(qp)) 1348 return qp; 1349 1350 ib_qp_usecnt_inc(qp); 1351 1352 if (qp_init_attr->cap.max_rdma_ctxs) { 1353 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1354 if (ret) 1355 goto err; 1356 } 1357 1358 /* 1359 * Note: all hw drivers guarantee that max_send_sge is lower than 1360 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1361 * max_send_sge <= max_sge_rd. 1362 */ 1363 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1364 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1365 device->attrs.max_sge_rd); 1366 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1367 qp->integrity_en = true; 1368 1369 return qp; 1370 1371 err: 1372 ib_destroy_qp(qp); 1373 return ERR_PTR(ret); 1374 1375 } 1376 EXPORT_SYMBOL(ib_create_qp_kernel); 1377 1378 static const struct { 1379 int valid; 1380 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1381 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1382 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1383 [IB_QPS_RESET] = { 1384 [IB_QPS_RESET] = { .valid = 1 }, 1385 [IB_QPS_INIT] = { 1386 .valid = 1, 1387 .req_param = { 1388 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1389 IB_QP_PORT | 1390 IB_QP_QKEY), 1391 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1392 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1393 IB_QP_PORT | 1394 IB_QP_ACCESS_FLAGS), 1395 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1396 IB_QP_PORT | 1397 IB_QP_ACCESS_FLAGS), 1398 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1399 IB_QP_PORT | 1400 IB_QP_ACCESS_FLAGS), 1401 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1402 IB_QP_PORT | 1403 IB_QP_ACCESS_FLAGS), 1404 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1405 IB_QP_QKEY), 1406 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1407 IB_QP_QKEY), 1408 } 1409 }, 1410 }, 1411 [IB_QPS_INIT] = { 1412 [IB_QPS_RESET] = { .valid = 1 }, 1413 [IB_QPS_ERR] = { .valid = 1 }, 1414 [IB_QPS_INIT] = { 1415 .valid = 1, 1416 .opt_param = { 1417 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1418 IB_QP_PORT | 1419 IB_QP_QKEY), 1420 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1421 IB_QP_PORT | 1422 IB_QP_ACCESS_FLAGS), 1423 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1424 IB_QP_PORT | 1425 IB_QP_ACCESS_FLAGS), 1426 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1427 IB_QP_PORT | 1428 IB_QP_ACCESS_FLAGS), 1429 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1430 IB_QP_PORT | 1431 IB_QP_ACCESS_FLAGS), 1432 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1433 IB_QP_QKEY), 1434 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1435 IB_QP_QKEY), 1436 } 1437 }, 1438 [IB_QPS_RTR] = { 1439 .valid = 1, 1440 .req_param = { 1441 [IB_QPT_UC] = (IB_QP_AV | 1442 IB_QP_PATH_MTU | 1443 IB_QP_DEST_QPN | 1444 IB_QP_RQ_PSN), 1445 [IB_QPT_RC] = (IB_QP_AV | 1446 IB_QP_PATH_MTU | 1447 IB_QP_DEST_QPN | 1448 IB_QP_RQ_PSN | 1449 IB_QP_MAX_DEST_RD_ATOMIC | 1450 IB_QP_MIN_RNR_TIMER), 1451 [IB_QPT_XRC_INI] = (IB_QP_AV | 1452 IB_QP_PATH_MTU | 1453 IB_QP_DEST_QPN | 1454 IB_QP_RQ_PSN), 1455 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1456 IB_QP_PATH_MTU | 1457 IB_QP_DEST_QPN | 1458 IB_QP_RQ_PSN | 1459 IB_QP_MAX_DEST_RD_ATOMIC | 1460 IB_QP_MIN_RNR_TIMER), 1461 }, 1462 .opt_param = { 1463 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1464 IB_QP_QKEY), 1465 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1466 IB_QP_ACCESS_FLAGS | 1467 IB_QP_PKEY_INDEX), 1468 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1469 IB_QP_ACCESS_FLAGS | 1470 IB_QP_PKEY_INDEX), 1471 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1472 IB_QP_ACCESS_FLAGS | 1473 IB_QP_PKEY_INDEX), 1474 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1475 IB_QP_ACCESS_FLAGS | 1476 IB_QP_PKEY_INDEX), 1477 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1478 IB_QP_QKEY), 1479 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1480 IB_QP_QKEY), 1481 }, 1482 }, 1483 }, 1484 [IB_QPS_RTR] = { 1485 [IB_QPS_RESET] = { .valid = 1 }, 1486 [IB_QPS_ERR] = { .valid = 1 }, 1487 [IB_QPS_RTS] = { 1488 .valid = 1, 1489 .req_param = { 1490 [IB_QPT_UD] = IB_QP_SQ_PSN, 1491 [IB_QPT_UC] = IB_QP_SQ_PSN, 1492 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1493 IB_QP_RETRY_CNT | 1494 IB_QP_RNR_RETRY | 1495 IB_QP_SQ_PSN | 1496 IB_QP_MAX_QP_RD_ATOMIC), 1497 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1498 IB_QP_RETRY_CNT | 1499 IB_QP_RNR_RETRY | 1500 IB_QP_SQ_PSN | 1501 IB_QP_MAX_QP_RD_ATOMIC), 1502 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1503 IB_QP_SQ_PSN), 1504 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1505 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1506 }, 1507 .opt_param = { 1508 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1509 IB_QP_QKEY), 1510 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1511 IB_QP_ALT_PATH | 1512 IB_QP_ACCESS_FLAGS | 1513 IB_QP_PATH_MIG_STATE), 1514 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1515 IB_QP_ALT_PATH | 1516 IB_QP_ACCESS_FLAGS | 1517 IB_QP_MIN_RNR_TIMER | 1518 IB_QP_PATH_MIG_STATE), 1519 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1520 IB_QP_ALT_PATH | 1521 IB_QP_ACCESS_FLAGS | 1522 IB_QP_PATH_MIG_STATE), 1523 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1524 IB_QP_ALT_PATH | 1525 IB_QP_ACCESS_FLAGS | 1526 IB_QP_MIN_RNR_TIMER | 1527 IB_QP_PATH_MIG_STATE), 1528 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1529 IB_QP_QKEY), 1530 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1531 IB_QP_QKEY), 1532 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1533 } 1534 } 1535 }, 1536 [IB_QPS_RTS] = { 1537 [IB_QPS_RESET] = { .valid = 1 }, 1538 [IB_QPS_ERR] = { .valid = 1 }, 1539 [IB_QPS_RTS] = { 1540 .valid = 1, 1541 .opt_param = { 1542 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1543 IB_QP_QKEY), 1544 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1545 IB_QP_ACCESS_FLAGS | 1546 IB_QP_ALT_PATH | 1547 IB_QP_PATH_MIG_STATE), 1548 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1549 IB_QP_ACCESS_FLAGS | 1550 IB_QP_ALT_PATH | 1551 IB_QP_PATH_MIG_STATE | 1552 IB_QP_MIN_RNR_TIMER), 1553 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1554 IB_QP_ACCESS_FLAGS | 1555 IB_QP_ALT_PATH | 1556 IB_QP_PATH_MIG_STATE), 1557 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1558 IB_QP_ACCESS_FLAGS | 1559 IB_QP_ALT_PATH | 1560 IB_QP_PATH_MIG_STATE | 1561 IB_QP_MIN_RNR_TIMER), 1562 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1563 IB_QP_QKEY), 1564 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1565 IB_QP_QKEY), 1566 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1567 } 1568 }, 1569 [IB_QPS_SQD] = { 1570 .valid = 1, 1571 .opt_param = { 1572 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1573 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1574 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1575 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1576 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1577 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1578 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1579 } 1580 }, 1581 }, 1582 [IB_QPS_SQD] = { 1583 [IB_QPS_RESET] = { .valid = 1 }, 1584 [IB_QPS_ERR] = { .valid = 1 }, 1585 [IB_QPS_RTS] = { 1586 .valid = 1, 1587 .opt_param = { 1588 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1589 IB_QP_QKEY), 1590 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1591 IB_QP_ALT_PATH | 1592 IB_QP_ACCESS_FLAGS | 1593 IB_QP_PATH_MIG_STATE), 1594 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1595 IB_QP_ALT_PATH | 1596 IB_QP_ACCESS_FLAGS | 1597 IB_QP_MIN_RNR_TIMER | 1598 IB_QP_PATH_MIG_STATE), 1599 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1600 IB_QP_ALT_PATH | 1601 IB_QP_ACCESS_FLAGS | 1602 IB_QP_PATH_MIG_STATE), 1603 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1604 IB_QP_ALT_PATH | 1605 IB_QP_ACCESS_FLAGS | 1606 IB_QP_MIN_RNR_TIMER | 1607 IB_QP_PATH_MIG_STATE), 1608 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1609 IB_QP_QKEY), 1610 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1611 IB_QP_QKEY), 1612 } 1613 }, 1614 [IB_QPS_SQD] = { 1615 .valid = 1, 1616 .opt_param = { 1617 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1618 IB_QP_QKEY), 1619 [IB_QPT_UC] = (IB_QP_AV | 1620 IB_QP_ALT_PATH | 1621 IB_QP_ACCESS_FLAGS | 1622 IB_QP_PKEY_INDEX | 1623 IB_QP_PATH_MIG_STATE), 1624 [IB_QPT_RC] = (IB_QP_PORT | 1625 IB_QP_AV | 1626 IB_QP_TIMEOUT | 1627 IB_QP_RETRY_CNT | 1628 IB_QP_RNR_RETRY | 1629 IB_QP_MAX_QP_RD_ATOMIC | 1630 IB_QP_MAX_DEST_RD_ATOMIC | 1631 IB_QP_ALT_PATH | 1632 IB_QP_ACCESS_FLAGS | 1633 IB_QP_PKEY_INDEX | 1634 IB_QP_MIN_RNR_TIMER | 1635 IB_QP_PATH_MIG_STATE), 1636 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1637 IB_QP_AV | 1638 IB_QP_TIMEOUT | 1639 IB_QP_RETRY_CNT | 1640 IB_QP_RNR_RETRY | 1641 IB_QP_MAX_QP_RD_ATOMIC | 1642 IB_QP_ALT_PATH | 1643 IB_QP_ACCESS_FLAGS | 1644 IB_QP_PKEY_INDEX | 1645 IB_QP_PATH_MIG_STATE), 1646 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1647 IB_QP_AV | 1648 IB_QP_TIMEOUT | 1649 IB_QP_MAX_DEST_RD_ATOMIC | 1650 IB_QP_ALT_PATH | 1651 IB_QP_ACCESS_FLAGS | 1652 IB_QP_PKEY_INDEX | 1653 IB_QP_MIN_RNR_TIMER | 1654 IB_QP_PATH_MIG_STATE), 1655 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1656 IB_QP_QKEY), 1657 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1658 IB_QP_QKEY), 1659 } 1660 } 1661 }, 1662 [IB_QPS_SQE] = { 1663 [IB_QPS_RESET] = { .valid = 1 }, 1664 [IB_QPS_ERR] = { .valid = 1 }, 1665 [IB_QPS_RTS] = { 1666 .valid = 1, 1667 .opt_param = { 1668 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1669 IB_QP_QKEY), 1670 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1671 IB_QP_ACCESS_FLAGS), 1672 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1673 IB_QP_QKEY), 1674 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1675 IB_QP_QKEY), 1676 } 1677 } 1678 }, 1679 [IB_QPS_ERR] = { 1680 [IB_QPS_RESET] = { .valid = 1 }, 1681 [IB_QPS_ERR] = { .valid = 1 } 1682 } 1683 }; 1684 1685 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1686 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1687 { 1688 enum ib_qp_attr_mask req_param, opt_param; 1689 1690 if (mask & IB_QP_CUR_STATE && 1691 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1692 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1693 return false; 1694 1695 if (!qp_state_table[cur_state][next_state].valid) 1696 return false; 1697 1698 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1699 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1700 1701 if ((mask & req_param) != req_param) 1702 return false; 1703 1704 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1705 return false; 1706 1707 return true; 1708 } 1709 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1710 1711 /** 1712 * ib_resolve_eth_dmac - Resolve destination mac address 1713 * @device: Device to consider 1714 * @ah_attr: address handle attribute which describes the 1715 * source and destination parameters 1716 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1717 * returns 0 on success or appropriate error code. It initializes the 1718 * necessary ah_attr fields when call is successful. 1719 */ 1720 static int ib_resolve_eth_dmac(struct ib_device *device, 1721 struct rdma_ah_attr *ah_attr) 1722 { 1723 int ret = 0; 1724 1725 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1726 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1727 __be32 addr = 0; 1728 1729 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1730 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1731 } else { 1732 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1733 (char *)ah_attr->roce.dmac); 1734 } 1735 } else { 1736 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1737 } 1738 return ret; 1739 } 1740 1741 static bool is_qp_type_connected(const struct ib_qp *qp) 1742 { 1743 return (qp->qp_type == IB_QPT_UC || 1744 qp->qp_type == IB_QPT_RC || 1745 qp->qp_type == IB_QPT_XRC_INI || 1746 qp->qp_type == IB_QPT_XRC_TGT); 1747 } 1748 1749 /* 1750 * IB core internal function to perform QP attributes modification. 1751 */ 1752 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1753 int attr_mask, struct ib_udata *udata) 1754 { 1755 u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1756 const struct ib_gid_attr *old_sgid_attr_av; 1757 const struct ib_gid_attr *old_sgid_attr_alt_av; 1758 int ret; 1759 1760 attr->xmit_slave = NULL; 1761 if (attr_mask & IB_QP_AV) { 1762 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1763 &old_sgid_attr_av); 1764 if (ret) 1765 return ret; 1766 1767 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1768 is_qp_type_connected(qp)) { 1769 struct net_device *slave; 1770 1771 /* 1772 * If the user provided the qp_attr then we have to 1773 * resolve it. Kerne users have to provide already 1774 * resolved rdma_ah_attr's. 1775 */ 1776 if (udata) { 1777 ret = ib_resolve_eth_dmac(qp->device, 1778 &attr->ah_attr); 1779 if (ret) 1780 goto out_av; 1781 } 1782 slave = rdma_lag_get_ah_roce_slave(qp->device, 1783 &attr->ah_attr, 1784 GFP_KERNEL); 1785 if (IS_ERR(slave)) { 1786 ret = PTR_ERR(slave); 1787 goto out_av; 1788 } 1789 attr->xmit_slave = slave; 1790 } 1791 } 1792 if (attr_mask & IB_QP_ALT_PATH) { 1793 /* 1794 * FIXME: This does not track the migration state, so if the 1795 * user loads a new alternate path after the HW has migrated 1796 * from primary->alternate we will keep the wrong 1797 * references. This is OK for IB because the reference 1798 * counting does not serve any functional purpose. 1799 */ 1800 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1801 &old_sgid_attr_alt_av); 1802 if (ret) 1803 goto out_av; 1804 1805 /* 1806 * Today the core code can only handle alternate paths and APM 1807 * for IB. Ban them in roce mode. 1808 */ 1809 if (!(rdma_protocol_ib(qp->device, 1810 attr->alt_ah_attr.port_num) && 1811 rdma_protocol_ib(qp->device, port))) { 1812 ret = -EINVAL; 1813 goto out; 1814 } 1815 } 1816 1817 if (rdma_ib_or_roce(qp->device, port)) { 1818 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1819 dev_warn(&qp->device->dev, 1820 "%s rq_psn overflow, masking to 24 bits\n", 1821 __func__); 1822 attr->rq_psn &= 0xffffff; 1823 } 1824 1825 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1826 dev_warn(&qp->device->dev, 1827 " %s sq_psn overflow, masking to 24 bits\n", 1828 __func__); 1829 attr->sq_psn &= 0xffffff; 1830 } 1831 } 1832 1833 /* 1834 * Bind this qp to a counter automatically based on the rdma counter 1835 * rules. This only set in RST2INIT with port specified 1836 */ 1837 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1838 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1839 rdma_counter_bind_qp_auto(qp, attr->port_num); 1840 1841 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1842 if (ret) 1843 goto out; 1844 1845 if (attr_mask & IB_QP_PORT) 1846 qp->port = attr->port_num; 1847 if (attr_mask & IB_QP_AV) 1848 qp->av_sgid_attr = 1849 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1850 if (attr_mask & IB_QP_ALT_PATH) 1851 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1852 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1853 1854 out: 1855 if (attr_mask & IB_QP_ALT_PATH) 1856 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1857 out_av: 1858 if (attr_mask & IB_QP_AV) { 1859 rdma_lag_put_ah_roce_slave(attr->xmit_slave); 1860 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1861 } 1862 return ret; 1863 } 1864 1865 /** 1866 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1867 * @ib_qp: The QP to modify. 1868 * @attr: On input, specifies the QP attributes to modify. On output, 1869 * the current values of selected QP attributes are returned. 1870 * @attr_mask: A bit-mask used to specify which attributes of the QP 1871 * are being modified. 1872 * @udata: pointer to user's input output buffer information 1873 * are being modified. 1874 * It returns 0 on success and returns appropriate error code on error. 1875 */ 1876 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1877 int attr_mask, struct ib_udata *udata) 1878 { 1879 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1880 } 1881 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1882 1883 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width) 1884 { 1885 int rc; 1886 u32 netdev_speed; 1887 struct net_device *netdev; 1888 struct ethtool_link_ksettings lksettings; 1889 1890 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1891 return -EINVAL; 1892 1893 netdev = ib_device_get_netdev(dev, port_num); 1894 if (!netdev) 1895 return -ENODEV; 1896 1897 rtnl_lock(); 1898 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1899 rtnl_unlock(); 1900 1901 dev_put(netdev); 1902 1903 if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) { 1904 netdev_speed = lksettings.base.speed; 1905 } else { 1906 netdev_speed = SPEED_1000; 1907 pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name, 1908 netdev_speed); 1909 } 1910 1911 if (netdev_speed <= SPEED_1000) { 1912 *width = IB_WIDTH_1X; 1913 *speed = IB_SPEED_SDR; 1914 } else if (netdev_speed <= SPEED_10000) { 1915 *width = IB_WIDTH_1X; 1916 *speed = IB_SPEED_FDR10; 1917 } else if (netdev_speed <= SPEED_20000) { 1918 *width = IB_WIDTH_4X; 1919 *speed = IB_SPEED_DDR; 1920 } else if (netdev_speed <= SPEED_25000) { 1921 *width = IB_WIDTH_1X; 1922 *speed = IB_SPEED_EDR; 1923 } else if (netdev_speed <= SPEED_40000) { 1924 *width = IB_WIDTH_4X; 1925 *speed = IB_SPEED_FDR10; 1926 } else { 1927 *width = IB_WIDTH_4X; 1928 *speed = IB_SPEED_EDR; 1929 } 1930 1931 return 0; 1932 } 1933 EXPORT_SYMBOL(ib_get_eth_speed); 1934 1935 int ib_modify_qp(struct ib_qp *qp, 1936 struct ib_qp_attr *qp_attr, 1937 int qp_attr_mask) 1938 { 1939 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1940 } 1941 EXPORT_SYMBOL(ib_modify_qp); 1942 1943 int ib_query_qp(struct ib_qp *qp, 1944 struct ib_qp_attr *qp_attr, 1945 int qp_attr_mask, 1946 struct ib_qp_init_attr *qp_init_attr) 1947 { 1948 qp_attr->ah_attr.grh.sgid_attr = NULL; 1949 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1950 1951 return qp->device->ops.query_qp ? 1952 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1953 qp_init_attr) : -EOPNOTSUPP; 1954 } 1955 EXPORT_SYMBOL(ib_query_qp); 1956 1957 int ib_close_qp(struct ib_qp *qp) 1958 { 1959 struct ib_qp *real_qp; 1960 unsigned long flags; 1961 1962 real_qp = qp->real_qp; 1963 if (real_qp == qp) 1964 return -EINVAL; 1965 1966 spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags); 1967 list_del(&qp->open_list); 1968 spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags); 1969 1970 atomic_dec(&real_qp->usecnt); 1971 if (qp->qp_sec) 1972 ib_close_shared_qp_security(qp->qp_sec); 1973 kfree(qp); 1974 1975 return 0; 1976 } 1977 EXPORT_SYMBOL(ib_close_qp); 1978 1979 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1980 { 1981 struct ib_xrcd *xrcd; 1982 struct ib_qp *real_qp; 1983 int ret; 1984 1985 real_qp = qp->real_qp; 1986 xrcd = real_qp->xrcd; 1987 down_write(&xrcd->tgt_qps_rwsem); 1988 ib_close_qp(qp); 1989 if (atomic_read(&real_qp->usecnt) == 0) 1990 xa_erase(&xrcd->tgt_qps, real_qp->qp_num); 1991 else 1992 real_qp = NULL; 1993 up_write(&xrcd->tgt_qps_rwsem); 1994 1995 if (real_qp) { 1996 ret = ib_destroy_qp(real_qp); 1997 if (!ret) 1998 atomic_dec(&xrcd->usecnt); 1999 } 2000 2001 return 0; 2002 } 2003 2004 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 2005 { 2006 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 2007 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 2008 struct ib_qp_security *sec; 2009 int ret; 2010 2011 WARN_ON_ONCE(qp->mrs_used > 0); 2012 2013 if (atomic_read(&qp->usecnt)) 2014 return -EBUSY; 2015 2016 if (qp->real_qp != qp) 2017 return __ib_destroy_shared_qp(qp); 2018 2019 sec = qp->qp_sec; 2020 if (sec) 2021 ib_destroy_qp_security_begin(sec); 2022 2023 if (!qp->uobject) 2024 rdma_rw_cleanup_mrs(qp); 2025 2026 rdma_counter_unbind_qp(qp, true); 2027 ret = qp->device->ops.destroy_qp(qp, udata); 2028 if (ret) { 2029 if (sec) 2030 ib_destroy_qp_security_abort(sec); 2031 return ret; 2032 } 2033 2034 if (alt_path_sgid_attr) 2035 rdma_put_gid_attr(alt_path_sgid_attr); 2036 if (av_sgid_attr) 2037 rdma_put_gid_attr(av_sgid_attr); 2038 2039 ib_qp_usecnt_dec(qp); 2040 if (sec) 2041 ib_destroy_qp_security_end(sec); 2042 2043 rdma_restrack_del(&qp->res); 2044 kfree(qp); 2045 return ret; 2046 } 2047 EXPORT_SYMBOL(ib_destroy_qp_user); 2048 2049 /* Completion queues */ 2050 2051 struct ib_cq *__ib_create_cq(struct ib_device *device, 2052 ib_comp_handler comp_handler, 2053 void (*event_handler)(struct ib_event *, void *), 2054 void *cq_context, 2055 const struct ib_cq_init_attr *cq_attr, 2056 const char *caller) 2057 { 2058 struct ib_cq *cq; 2059 int ret; 2060 2061 cq = rdma_zalloc_drv_obj(device, ib_cq); 2062 if (!cq) 2063 return ERR_PTR(-ENOMEM); 2064 2065 cq->device = device; 2066 cq->uobject = NULL; 2067 cq->comp_handler = comp_handler; 2068 cq->event_handler = event_handler; 2069 cq->cq_context = cq_context; 2070 atomic_set(&cq->usecnt, 0); 2071 2072 rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ); 2073 rdma_restrack_set_name(&cq->res, caller); 2074 2075 ret = device->ops.create_cq(cq, cq_attr, NULL); 2076 if (ret) { 2077 rdma_restrack_put(&cq->res); 2078 kfree(cq); 2079 return ERR_PTR(ret); 2080 } 2081 2082 rdma_restrack_add(&cq->res); 2083 return cq; 2084 } 2085 EXPORT_SYMBOL(__ib_create_cq); 2086 2087 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 2088 { 2089 if (cq->shared) 2090 return -EOPNOTSUPP; 2091 2092 return cq->device->ops.modify_cq ? 2093 cq->device->ops.modify_cq(cq, cq_count, 2094 cq_period) : -EOPNOTSUPP; 2095 } 2096 EXPORT_SYMBOL(rdma_set_cq_moderation); 2097 2098 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 2099 { 2100 int ret; 2101 2102 if (WARN_ON_ONCE(cq->shared)) 2103 return -EOPNOTSUPP; 2104 2105 if (atomic_read(&cq->usecnt)) 2106 return -EBUSY; 2107 2108 ret = cq->device->ops.destroy_cq(cq, udata); 2109 if (ret) 2110 return ret; 2111 2112 rdma_restrack_del(&cq->res); 2113 kfree(cq); 2114 return ret; 2115 } 2116 EXPORT_SYMBOL(ib_destroy_cq_user); 2117 2118 int ib_resize_cq(struct ib_cq *cq, int cqe) 2119 { 2120 if (cq->shared) 2121 return -EOPNOTSUPP; 2122 2123 return cq->device->ops.resize_cq ? 2124 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 2125 } 2126 EXPORT_SYMBOL(ib_resize_cq); 2127 2128 /* Memory regions */ 2129 2130 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, 2131 u64 virt_addr, int access_flags) 2132 { 2133 struct ib_mr *mr; 2134 2135 if (access_flags & IB_ACCESS_ON_DEMAND) { 2136 if (!(pd->device->attrs.kernel_cap_flags & 2137 IBK_ON_DEMAND_PAGING)) { 2138 pr_debug("ODP support not available\n"); 2139 return ERR_PTR(-EINVAL); 2140 } 2141 } 2142 2143 mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr, 2144 access_flags, NULL); 2145 2146 if (IS_ERR(mr)) 2147 return mr; 2148 2149 mr->device = pd->device; 2150 mr->type = IB_MR_TYPE_USER; 2151 mr->pd = pd; 2152 mr->dm = NULL; 2153 atomic_inc(&pd->usecnt); 2154 mr->iova = virt_addr; 2155 mr->length = length; 2156 2157 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2158 rdma_restrack_parent_name(&mr->res, &pd->res); 2159 rdma_restrack_add(&mr->res); 2160 2161 return mr; 2162 } 2163 EXPORT_SYMBOL(ib_reg_user_mr); 2164 2165 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, 2166 u32 flags, struct ib_sge *sg_list, u32 num_sge) 2167 { 2168 if (!pd->device->ops.advise_mr) 2169 return -EOPNOTSUPP; 2170 2171 if (!num_sge) 2172 return 0; 2173 2174 return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge, 2175 NULL); 2176 } 2177 EXPORT_SYMBOL(ib_advise_mr); 2178 2179 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 2180 { 2181 struct ib_pd *pd = mr->pd; 2182 struct ib_dm *dm = mr->dm; 2183 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 2184 int ret; 2185 2186 trace_mr_dereg(mr); 2187 rdma_restrack_del(&mr->res); 2188 ret = mr->device->ops.dereg_mr(mr, udata); 2189 if (!ret) { 2190 atomic_dec(&pd->usecnt); 2191 if (dm) 2192 atomic_dec(&dm->usecnt); 2193 kfree(sig_attrs); 2194 } 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(ib_dereg_mr_user); 2199 2200 /** 2201 * ib_alloc_mr() - Allocates a memory region 2202 * @pd: protection domain associated with the region 2203 * @mr_type: memory region type 2204 * @max_num_sg: maximum sg entries available for registration. 2205 * 2206 * Notes: 2207 * Memory registeration page/sg lists must not exceed max_num_sg. 2208 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2209 * max_num_sg * used_page_size. 2210 * 2211 */ 2212 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, 2213 u32 max_num_sg) 2214 { 2215 struct ib_mr *mr; 2216 2217 if (!pd->device->ops.alloc_mr) { 2218 mr = ERR_PTR(-EOPNOTSUPP); 2219 goto out; 2220 } 2221 2222 if (mr_type == IB_MR_TYPE_INTEGRITY) { 2223 WARN_ON_ONCE(1); 2224 mr = ERR_PTR(-EINVAL); 2225 goto out; 2226 } 2227 2228 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg); 2229 if (IS_ERR(mr)) 2230 goto out; 2231 2232 mr->device = pd->device; 2233 mr->pd = pd; 2234 mr->dm = NULL; 2235 mr->uobject = NULL; 2236 atomic_inc(&pd->usecnt); 2237 mr->need_inval = false; 2238 mr->type = mr_type; 2239 mr->sig_attrs = NULL; 2240 2241 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2242 rdma_restrack_parent_name(&mr->res, &pd->res); 2243 rdma_restrack_add(&mr->res); 2244 out: 2245 trace_mr_alloc(pd, mr_type, max_num_sg, mr); 2246 return mr; 2247 } 2248 EXPORT_SYMBOL(ib_alloc_mr); 2249 2250 /** 2251 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2252 * @pd: protection domain associated with the region 2253 * @max_num_data_sg: maximum data sg entries available for registration 2254 * @max_num_meta_sg: maximum metadata sg entries available for 2255 * registration 2256 * 2257 * Notes: 2258 * Memory registration page/sg lists must not exceed max_num_sg, 2259 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2260 * 2261 */ 2262 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2263 u32 max_num_data_sg, 2264 u32 max_num_meta_sg) 2265 { 2266 struct ib_mr *mr; 2267 struct ib_sig_attrs *sig_attrs; 2268 2269 if (!pd->device->ops.alloc_mr_integrity || 2270 !pd->device->ops.map_mr_sg_pi) { 2271 mr = ERR_PTR(-EOPNOTSUPP); 2272 goto out; 2273 } 2274 2275 if (!max_num_meta_sg) { 2276 mr = ERR_PTR(-EINVAL); 2277 goto out; 2278 } 2279 2280 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2281 if (!sig_attrs) { 2282 mr = ERR_PTR(-ENOMEM); 2283 goto out; 2284 } 2285 2286 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2287 max_num_meta_sg); 2288 if (IS_ERR(mr)) { 2289 kfree(sig_attrs); 2290 goto out; 2291 } 2292 2293 mr->device = pd->device; 2294 mr->pd = pd; 2295 mr->dm = NULL; 2296 mr->uobject = NULL; 2297 atomic_inc(&pd->usecnt); 2298 mr->need_inval = false; 2299 mr->type = IB_MR_TYPE_INTEGRITY; 2300 mr->sig_attrs = sig_attrs; 2301 2302 rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR); 2303 rdma_restrack_parent_name(&mr->res, &pd->res); 2304 rdma_restrack_add(&mr->res); 2305 out: 2306 trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr); 2307 return mr; 2308 } 2309 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2310 2311 /* Multicast groups */ 2312 2313 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2314 { 2315 struct ib_qp_init_attr init_attr = {}; 2316 struct ib_qp_attr attr = {}; 2317 int num_eth_ports = 0; 2318 unsigned int port; 2319 2320 /* If QP state >= init, it is assigned to a port and we can check this 2321 * port only. 2322 */ 2323 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2324 if (attr.qp_state >= IB_QPS_INIT) { 2325 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2326 IB_LINK_LAYER_INFINIBAND) 2327 return true; 2328 goto lid_check; 2329 } 2330 } 2331 2332 /* Can't get a quick answer, iterate over all ports */ 2333 rdma_for_each_port(qp->device, port) 2334 if (rdma_port_get_link_layer(qp->device, port) != 2335 IB_LINK_LAYER_INFINIBAND) 2336 num_eth_ports++; 2337 2338 /* If we have at lease one Ethernet port, RoCE annex declares that 2339 * multicast LID should be ignored. We can't tell at this step if the 2340 * QP belongs to an IB or Ethernet port. 2341 */ 2342 if (num_eth_ports) 2343 return true; 2344 2345 /* If all the ports are IB, we can check according to IB spec. */ 2346 lid_check: 2347 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2348 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2349 } 2350 2351 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2352 { 2353 int ret; 2354 2355 if (!qp->device->ops.attach_mcast) 2356 return -EOPNOTSUPP; 2357 2358 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2359 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2360 return -EINVAL; 2361 2362 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2363 if (!ret) 2364 atomic_inc(&qp->usecnt); 2365 return ret; 2366 } 2367 EXPORT_SYMBOL(ib_attach_mcast); 2368 2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2370 { 2371 int ret; 2372 2373 if (!qp->device->ops.detach_mcast) 2374 return -EOPNOTSUPP; 2375 2376 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2377 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2378 return -EINVAL; 2379 2380 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2381 if (!ret) 2382 atomic_dec(&qp->usecnt); 2383 return ret; 2384 } 2385 EXPORT_SYMBOL(ib_detach_mcast); 2386 2387 /** 2388 * ib_alloc_xrcd_user - Allocates an XRC domain. 2389 * @device: The device on which to allocate the XRC domain. 2390 * @inode: inode to connect XRCD 2391 * @udata: Valid user data or NULL for kernel object 2392 */ 2393 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device, 2394 struct inode *inode, struct ib_udata *udata) 2395 { 2396 struct ib_xrcd *xrcd; 2397 int ret; 2398 2399 if (!device->ops.alloc_xrcd) 2400 return ERR_PTR(-EOPNOTSUPP); 2401 2402 xrcd = rdma_zalloc_drv_obj(device, ib_xrcd); 2403 if (!xrcd) 2404 return ERR_PTR(-ENOMEM); 2405 2406 xrcd->device = device; 2407 xrcd->inode = inode; 2408 atomic_set(&xrcd->usecnt, 0); 2409 init_rwsem(&xrcd->tgt_qps_rwsem); 2410 xa_init(&xrcd->tgt_qps); 2411 2412 ret = device->ops.alloc_xrcd(xrcd, udata); 2413 if (ret) 2414 goto err; 2415 return xrcd; 2416 err: 2417 kfree(xrcd); 2418 return ERR_PTR(ret); 2419 } 2420 EXPORT_SYMBOL(ib_alloc_xrcd_user); 2421 2422 /** 2423 * ib_dealloc_xrcd_user - Deallocates an XRC domain. 2424 * @xrcd: The XRC domain to deallocate. 2425 * @udata: Valid user data or NULL for kernel object 2426 */ 2427 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata) 2428 { 2429 int ret; 2430 2431 if (atomic_read(&xrcd->usecnt)) 2432 return -EBUSY; 2433 2434 WARN_ON(!xa_empty(&xrcd->tgt_qps)); 2435 ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2436 if (ret) 2437 return ret; 2438 kfree(xrcd); 2439 return ret; 2440 } 2441 EXPORT_SYMBOL(ib_dealloc_xrcd_user); 2442 2443 /** 2444 * ib_create_wq - Creates a WQ associated with the specified protection 2445 * domain. 2446 * @pd: The protection domain associated with the WQ. 2447 * @wq_attr: A list of initial attributes required to create the 2448 * WQ. If WQ creation succeeds, then the attributes are updated to 2449 * the actual capabilities of the created WQ. 2450 * 2451 * wq_attr->max_wr and wq_attr->max_sge determine 2452 * the requested size of the WQ, and set to the actual values allocated 2453 * on return. 2454 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2455 * at least as large as the requested values. 2456 */ 2457 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2458 struct ib_wq_init_attr *wq_attr) 2459 { 2460 struct ib_wq *wq; 2461 2462 if (!pd->device->ops.create_wq) 2463 return ERR_PTR(-EOPNOTSUPP); 2464 2465 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2466 if (!IS_ERR(wq)) { 2467 wq->event_handler = wq_attr->event_handler; 2468 wq->wq_context = wq_attr->wq_context; 2469 wq->wq_type = wq_attr->wq_type; 2470 wq->cq = wq_attr->cq; 2471 wq->device = pd->device; 2472 wq->pd = pd; 2473 wq->uobject = NULL; 2474 atomic_inc(&pd->usecnt); 2475 atomic_inc(&wq_attr->cq->usecnt); 2476 atomic_set(&wq->usecnt, 0); 2477 } 2478 return wq; 2479 } 2480 EXPORT_SYMBOL(ib_create_wq); 2481 2482 /** 2483 * ib_destroy_wq_user - Destroys the specified user WQ. 2484 * @wq: The WQ to destroy. 2485 * @udata: Valid user data 2486 */ 2487 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata) 2488 { 2489 struct ib_cq *cq = wq->cq; 2490 struct ib_pd *pd = wq->pd; 2491 int ret; 2492 2493 if (atomic_read(&wq->usecnt)) 2494 return -EBUSY; 2495 2496 ret = wq->device->ops.destroy_wq(wq, udata); 2497 if (ret) 2498 return ret; 2499 2500 atomic_dec(&pd->usecnt); 2501 atomic_dec(&cq->usecnt); 2502 return ret; 2503 } 2504 EXPORT_SYMBOL(ib_destroy_wq_user); 2505 2506 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2507 struct ib_mr_status *mr_status) 2508 { 2509 if (!mr->device->ops.check_mr_status) 2510 return -EOPNOTSUPP; 2511 2512 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2513 } 2514 EXPORT_SYMBOL(ib_check_mr_status); 2515 2516 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port, 2517 int state) 2518 { 2519 if (!device->ops.set_vf_link_state) 2520 return -EOPNOTSUPP; 2521 2522 return device->ops.set_vf_link_state(device, vf, port, state); 2523 } 2524 EXPORT_SYMBOL(ib_set_vf_link_state); 2525 2526 int ib_get_vf_config(struct ib_device *device, int vf, u32 port, 2527 struct ifla_vf_info *info) 2528 { 2529 if (!device->ops.get_vf_config) 2530 return -EOPNOTSUPP; 2531 2532 return device->ops.get_vf_config(device, vf, port, info); 2533 } 2534 EXPORT_SYMBOL(ib_get_vf_config); 2535 2536 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port, 2537 struct ifla_vf_stats *stats) 2538 { 2539 if (!device->ops.get_vf_stats) 2540 return -EOPNOTSUPP; 2541 2542 return device->ops.get_vf_stats(device, vf, port, stats); 2543 } 2544 EXPORT_SYMBOL(ib_get_vf_stats); 2545 2546 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid, 2547 int type) 2548 { 2549 if (!device->ops.set_vf_guid) 2550 return -EOPNOTSUPP; 2551 2552 return device->ops.set_vf_guid(device, vf, port, guid, type); 2553 } 2554 EXPORT_SYMBOL(ib_set_vf_guid); 2555 2556 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port, 2557 struct ifla_vf_guid *node_guid, 2558 struct ifla_vf_guid *port_guid) 2559 { 2560 if (!device->ops.get_vf_guid) 2561 return -EOPNOTSUPP; 2562 2563 return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid); 2564 } 2565 EXPORT_SYMBOL(ib_get_vf_guid); 2566 /** 2567 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2568 * information) and set an appropriate memory region for registration. 2569 * @mr: memory region 2570 * @data_sg: dma mapped scatterlist for data 2571 * @data_sg_nents: number of entries in data_sg 2572 * @data_sg_offset: offset in bytes into data_sg 2573 * @meta_sg: dma mapped scatterlist for metadata 2574 * @meta_sg_nents: number of entries in meta_sg 2575 * @meta_sg_offset: offset in bytes into meta_sg 2576 * @page_size: page vector desired page size 2577 * 2578 * Constraints: 2579 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2580 * 2581 * Return: 0 on success. 2582 * 2583 * After this completes successfully, the memory region 2584 * is ready for registration. 2585 */ 2586 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2587 int data_sg_nents, unsigned int *data_sg_offset, 2588 struct scatterlist *meta_sg, int meta_sg_nents, 2589 unsigned int *meta_sg_offset, unsigned int page_size) 2590 { 2591 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2592 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2593 return -EOPNOTSUPP; 2594 2595 mr->page_size = page_size; 2596 2597 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2598 data_sg_offset, meta_sg, 2599 meta_sg_nents, meta_sg_offset); 2600 } 2601 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2602 2603 /** 2604 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2605 * and set it the memory region. 2606 * @mr: memory region 2607 * @sg: dma mapped scatterlist 2608 * @sg_nents: number of entries in sg 2609 * @sg_offset: offset in bytes into sg 2610 * @page_size: page vector desired page size 2611 * 2612 * Constraints: 2613 * 2614 * - The first sg element is allowed to have an offset. 2615 * - Each sg element must either be aligned to page_size or virtually 2616 * contiguous to the previous element. In case an sg element has a 2617 * non-contiguous offset, the mapping prefix will not include it. 2618 * - The last sg element is allowed to have length less than page_size. 2619 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2620 * then only max_num_sg entries will be mapped. 2621 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2622 * constraints holds and the page_size argument is ignored. 2623 * 2624 * Returns the number of sg elements that were mapped to the memory region. 2625 * 2626 * After this completes successfully, the memory region 2627 * is ready for registration. 2628 */ 2629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2630 unsigned int *sg_offset, unsigned int page_size) 2631 { 2632 if (unlikely(!mr->device->ops.map_mr_sg)) 2633 return -EOPNOTSUPP; 2634 2635 mr->page_size = page_size; 2636 2637 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2638 } 2639 EXPORT_SYMBOL(ib_map_mr_sg); 2640 2641 /** 2642 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2643 * to a page vector 2644 * @mr: memory region 2645 * @sgl: dma mapped scatterlist 2646 * @sg_nents: number of entries in sg 2647 * @sg_offset_p: ==== ======================================================= 2648 * IN start offset in bytes into sg 2649 * OUT offset in bytes for element n of the sg of the first 2650 * byte that has not been processed where n is the return 2651 * value of this function. 2652 * ==== ======================================================= 2653 * @set_page: driver page assignment function pointer 2654 * 2655 * Core service helper for drivers to convert the largest 2656 * prefix of given sg list to a page vector. The sg list 2657 * prefix converted is the prefix that meet the requirements 2658 * of ib_map_mr_sg. 2659 * 2660 * Returns the number of sg elements that were assigned to 2661 * a page vector. 2662 */ 2663 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2664 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2665 { 2666 struct scatterlist *sg; 2667 u64 last_end_dma_addr = 0; 2668 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2669 unsigned int last_page_off = 0; 2670 u64 page_mask = ~((u64)mr->page_size - 1); 2671 int i, ret; 2672 2673 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2674 return -EINVAL; 2675 2676 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2677 mr->length = 0; 2678 2679 for_each_sg(sgl, sg, sg_nents, i) { 2680 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2681 u64 prev_addr = dma_addr; 2682 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2683 u64 end_dma_addr = dma_addr + dma_len; 2684 u64 page_addr = dma_addr & page_mask; 2685 2686 /* 2687 * For the second and later elements, check whether either the 2688 * end of element i-1 or the start of element i is not aligned 2689 * on a page boundary. 2690 */ 2691 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2692 /* Stop mapping if there is a gap. */ 2693 if (last_end_dma_addr != dma_addr) 2694 break; 2695 2696 /* 2697 * Coalesce this element with the last. If it is small 2698 * enough just update mr->length. Otherwise start 2699 * mapping from the next page. 2700 */ 2701 goto next_page; 2702 } 2703 2704 do { 2705 ret = set_page(mr, page_addr); 2706 if (unlikely(ret < 0)) { 2707 sg_offset = prev_addr - sg_dma_address(sg); 2708 mr->length += prev_addr - dma_addr; 2709 if (sg_offset_p) 2710 *sg_offset_p = sg_offset; 2711 return i || sg_offset ? i : ret; 2712 } 2713 prev_addr = page_addr; 2714 next_page: 2715 page_addr += mr->page_size; 2716 } while (page_addr < end_dma_addr); 2717 2718 mr->length += dma_len; 2719 last_end_dma_addr = end_dma_addr; 2720 last_page_off = end_dma_addr & ~page_mask; 2721 2722 sg_offset = 0; 2723 } 2724 2725 if (sg_offset_p) 2726 *sg_offset_p = 0; 2727 return i; 2728 } 2729 EXPORT_SYMBOL(ib_sg_to_pages); 2730 2731 struct ib_drain_cqe { 2732 struct ib_cqe cqe; 2733 struct completion done; 2734 }; 2735 2736 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2737 { 2738 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2739 cqe); 2740 2741 complete(&cqe->done); 2742 } 2743 2744 /* 2745 * Post a WR and block until its completion is reaped for the SQ. 2746 */ 2747 static void __ib_drain_sq(struct ib_qp *qp) 2748 { 2749 struct ib_cq *cq = qp->send_cq; 2750 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2751 struct ib_drain_cqe sdrain; 2752 struct ib_rdma_wr swr = { 2753 .wr = { 2754 .next = NULL, 2755 { .wr_cqe = &sdrain.cqe, }, 2756 .opcode = IB_WR_RDMA_WRITE, 2757 }, 2758 }; 2759 int ret; 2760 2761 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2762 if (ret) { 2763 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2764 return; 2765 } 2766 2767 sdrain.cqe.done = ib_drain_qp_done; 2768 init_completion(&sdrain.done); 2769 2770 ret = ib_post_send(qp, &swr.wr, NULL); 2771 if (ret) { 2772 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2773 return; 2774 } 2775 2776 if (cq->poll_ctx == IB_POLL_DIRECT) 2777 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2778 ib_process_cq_direct(cq, -1); 2779 else 2780 wait_for_completion(&sdrain.done); 2781 } 2782 2783 /* 2784 * Post a WR and block until its completion is reaped for the RQ. 2785 */ 2786 static void __ib_drain_rq(struct ib_qp *qp) 2787 { 2788 struct ib_cq *cq = qp->recv_cq; 2789 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2790 struct ib_drain_cqe rdrain; 2791 struct ib_recv_wr rwr = {}; 2792 int ret; 2793 2794 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2795 if (ret) { 2796 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2797 return; 2798 } 2799 2800 rwr.wr_cqe = &rdrain.cqe; 2801 rdrain.cqe.done = ib_drain_qp_done; 2802 init_completion(&rdrain.done); 2803 2804 ret = ib_post_recv(qp, &rwr, NULL); 2805 if (ret) { 2806 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2807 return; 2808 } 2809 2810 if (cq->poll_ctx == IB_POLL_DIRECT) 2811 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2812 ib_process_cq_direct(cq, -1); 2813 else 2814 wait_for_completion(&rdrain.done); 2815 } 2816 2817 /** 2818 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2819 * application. 2820 * @qp: queue pair to drain 2821 * 2822 * If the device has a provider-specific drain function, then 2823 * call that. Otherwise call the generic drain function 2824 * __ib_drain_sq(). 2825 * 2826 * The caller must: 2827 * 2828 * ensure there is room in the CQ and SQ for the drain work request and 2829 * completion. 2830 * 2831 * allocate the CQ using ib_alloc_cq(). 2832 * 2833 * ensure that there are no other contexts that are posting WRs concurrently. 2834 * Otherwise the drain is not guaranteed. 2835 */ 2836 void ib_drain_sq(struct ib_qp *qp) 2837 { 2838 if (qp->device->ops.drain_sq) 2839 qp->device->ops.drain_sq(qp); 2840 else 2841 __ib_drain_sq(qp); 2842 trace_cq_drain_complete(qp->send_cq); 2843 } 2844 EXPORT_SYMBOL(ib_drain_sq); 2845 2846 /** 2847 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2848 * application. 2849 * @qp: queue pair to drain 2850 * 2851 * If the device has a provider-specific drain function, then 2852 * call that. Otherwise call the generic drain function 2853 * __ib_drain_rq(). 2854 * 2855 * The caller must: 2856 * 2857 * ensure there is room in the CQ and RQ for the drain work request and 2858 * completion. 2859 * 2860 * allocate the CQ using ib_alloc_cq(). 2861 * 2862 * ensure that there are no other contexts that are posting WRs concurrently. 2863 * Otherwise the drain is not guaranteed. 2864 */ 2865 void ib_drain_rq(struct ib_qp *qp) 2866 { 2867 if (qp->device->ops.drain_rq) 2868 qp->device->ops.drain_rq(qp); 2869 else 2870 __ib_drain_rq(qp); 2871 trace_cq_drain_complete(qp->recv_cq); 2872 } 2873 EXPORT_SYMBOL(ib_drain_rq); 2874 2875 /** 2876 * ib_drain_qp() - Block until all CQEs have been consumed by the 2877 * application on both the RQ and SQ. 2878 * @qp: queue pair to drain 2879 * 2880 * The caller must: 2881 * 2882 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2883 * and completions. 2884 * 2885 * allocate the CQs using ib_alloc_cq(). 2886 * 2887 * ensure that there are no other contexts that are posting WRs concurrently. 2888 * Otherwise the drain is not guaranteed. 2889 */ 2890 void ib_drain_qp(struct ib_qp *qp) 2891 { 2892 ib_drain_sq(qp); 2893 if (!qp->srq) 2894 ib_drain_rq(qp); 2895 } 2896 EXPORT_SYMBOL(ib_drain_qp); 2897 2898 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num, 2899 enum rdma_netdev_t type, const char *name, 2900 unsigned char name_assign_type, 2901 void (*setup)(struct net_device *)) 2902 { 2903 struct rdma_netdev_alloc_params params; 2904 struct net_device *netdev; 2905 int rc; 2906 2907 if (!device->ops.rdma_netdev_get_params) 2908 return ERR_PTR(-EOPNOTSUPP); 2909 2910 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2911 ¶ms); 2912 if (rc) 2913 return ERR_PTR(rc); 2914 2915 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2916 setup, params.txqs, params.rxqs); 2917 if (!netdev) 2918 return ERR_PTR(-ENOMEM); 2919 2920 return netdev; 2921 } 2922 EXPORT_SYMBOL(rdma_alloc_netdev); 2923 2924 int rdma_init_netdev(struct ib_device *device, u32 port_num, 2925 enum rdma_netdev_t type, const char *name, 2926 unsigned char name_assign_type, 2927 void (*setup)(struct net_device *), 2928 struct net_device *netdev) 2929 { 2930 struct rdma_netdev_alloc_params params; 2931 int rc; 2932 2933 if (!device->ops.rdma_netdev_get_params) 2934 return -EOPNOTSUPP; 2935 2936 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2937 ¶ms); 2938 if (rc) 2939 return rc; 2940 2941 return params.initialize_rdma_netdev(device, port_num, 2942 netdev, params.param); 2943 } 2944 EXPORT_SYMBOL(rdma_init_netdev); 2945 2946 void __rdma_block_iter_start(struct ib_block_iter *biter, 2947 struct scatterlist *sglist, unsigned int nents, 2948 unsigned long pgsz) 2949 { 2950 memset(biter, 0, sizeof(struct ib_block_iter)); 2951 biter->__sg = sglist; 2952 biter->__sg_nents = nents; 2953 2954 /* Driver provides best block size to use */ 2955 biter->__pg_bit = __fls(pgsz); 2956 } 2957 EXPORT_SYMBOL(__rdma_block_iter_start); 2958 2959 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2960 { 2961 unsigned int block_offset; 2962 unsigned int sg_delta; 2963 2964 if (!biter->__sg_nents || !biter->__sg) 2965 return false; 2966 2967 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2968 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2969 sg_delta = BIT_ULL(biter->__pg_bit) - block_offset; 2970 2971 if (sg_dma_len(biter->__sg) - biter->__sg_advance > sg_delta) { 2972 biter->__sg_advance += sg_delta; 2973 } else { 2974 biter->__sg_advance = 0; 2975 biter->__sg = sg_next(biter->__sg); 2976 biter->__sg_nents--; 2977 } 2978 2979 return true; 2980 } 2981 EXPORT_SYMBOL(__rdma_block_iter_next); 2982 2983 /** 2984 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 2985 * for the drivers. 2986 * @descs: array of static descriptors 2987 * @num_counters: number of elements in array 2988 * @lifespan: milliseconds between updates 2989 */ 2990 struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 2991 const struct rdma_stat_desc *descs, int num_counters, 2992 unsigned long lifespan) 2993 { 2994 struct rdma_hw_stats *stats; 2995 2996 stats = kzalloc(struct_size(stats, value, num_counters), GFP_KERNEL); 2997 if (!stats) 2998 return NULL; 2999 3000 stats->is_disabled = kcalloc(BITS_TO_LONGS(num_counters), 3001 sizeof(*stats->is_disabled), GFP_KERNEL); 3002 if (!stats->is_disabled) 3003 goto err; 3004 3005 stats->descs = descs; 3006 stats->num_counters = num_counters; 3007 stats->lifespan = msecs_to_jiffies(lifespan); 3008 mutex_init(&stats->lock); 3009 3010 return stats; 3011 3012 err: 3013 kfree(stats); 3014 return NULL; 3015 } 3016 EXPORT_SYMBOL(rdma_alloc_hw_stats_struct); 3017 3018 /** 3019 * rdma_free_hw_stats_struct - Helper function to release rdma_hw_stats 3020 * @stats: statistics to release 3021 */ 3022 void rdma_free_hw_stats_struct(struct rdma_hw_stats *stats) 3023 { 3024 if (!stats) 3025 return; 3026 3027 kfree(stats->is_disabled); 3028 kfree(stats); 3029 } 3030 EXPORT_SYMBOL(rdma_free_hw_stats_struct); 3031