1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 default: return -1; 145 } 146 } 147 EXPORT_SYMBOL(ib_rate_to_mult); 148 149 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 150 { 151 switch (mult) { 152 case 1: return IB_RATE_2_5_GBPS; 153 case 2: return IB_RATE_5_GBPS; 154 case 4: return IB_RATE_10_GBPS; 155 case 8: return IB_RATE_20_GBPS; 156 case 12: return IB_RATE_30_GBPS; 157 case 16: return IB_RATE_40_GBPS; 158 case 24: return IB_RATE_60_GBPS; 159 case 32: return IB_RATE_80_GBPS; 160 case 48: return IB_RATE_120_GBPS; 161 case 6: return IB_RATE_14_GBPS; 162 case 22: return IB_RATE_56_GBPS; 163 case 45: return IB_RATE_112_GBPS; 164 case 67: return IB_RATE_168_GBPS; 165 case 10: return IB_RATE_25_GBPS; 166 case 40: return IB_RATE_100_GBPS; 167 case 80: return IB_RATE_200_GBPS; 168 case 120: return IB_RATE_300_GBPS; 169 default: return IB_RATE_PORT_CURRENT; 170 } 171 } 172 EXPORT_SYMBOL(mult_to_ib_rate); 173 174 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 175 { 176 switch (rate) { 177 case IB_RATE_2_5_GBPS: return 2500; 178 case IB_RATE_5_GBPS: return 5000; 179 case IB_RATE_10_GBPS: return 10000; 180 case IB_RATE_20_GBPS: return 20000; 181 case IB_RATE_30_GBPS: return 30000; 182 case IB_RATE_40_GBPS: return 40000; 183 case IB_RATE_60_GBPS: return 60000; 184 case IB_RATE_80_GBPS: return 80000; 185 case IB_RATE_120_GBPS: return 120000; 186 case IB_RATE_14_GBPS: return 14062; 187 case IB_RATE_56_GBPS: return 56250; 188 case IB_RATE_112_GBPS: return 112500; 189 case IB_RATE_168_GBPS: return 168750; 190 case IB_RATE_25_GBPS: return 25781; 191 case IB_RATE_100_GBPS: return 103125; 192 case IB_RATE_200_GBPS: return 206250; 193 case IB_RATE_300_GBPS: return 309375; 194 default: return -1; 195 } 196 } 197 EXPORT_SYMBOL(ib_rate_to_mbps); 198 199 __attribute_const__ enum rdma_transport_type 200 rdma_node_get_transport(enum rdma_node_type node_type) 201 { 202 203 if (node_type == RDMA_NODE_USNIC) 204 return RDMA_TRANSPORT_USNIC; 205 if (node_type == RDMA_NODE_USNIC_UDP) 206 return RDMA_TRANSPORT_USNIC_UDP; 207 if (node_type == RDMA_NODE_RNIC) 208 return RDMA_TRANSPORT_IWARP; 209 210 return RDMA_TRANSPORT_IB; 211 } 212 EXPORT_SYMBOL(rdma_node_get_transport); 213 214 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 215 { 216 enum rdma_transport_type lt; 217 if (device->get_link_layer) 218 return device->get_link_layer(device, port_num); 219 220 lt = rdma_node_get_transport(device->node_type); 221 if (lt == RDMA_TRANSPORT_IB) 222 return IB_LINK_LAYER_INFINIBAND; 223 224 return IB_LINK_LAYER_ETHERNET; 225 } 226 EXPORT_SYMBOL(rdma_port_get_link_layer); 227 228 /* Protection domains */ 229 230 /** 231 * ib_alloc_pd - Allocates an unused protection domain. 232 * @device: The device on which to allocate the protection domain. 233 * 234 * A protection domain object provides an association between QPs, shared 235 * receive queues, address handles, memory regions, and memory windows. 236 * 237 * Every PD has a local_dma_lkey which can be used as the lkey value for local 238 * memory operations. 239 */ 240 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 241 const char *caller) 242 { 243 struct ib_pd *pd; 244 int mr_access_flags = 0; 245 246 pd = device->alloc_pd(device, NULL, NULL); 247 if (IS_ERR(pd)) 248 return pd; 249 250 pd->device = device; 251 pd->uobject = NULL; 252 pd->__internal_mr = NULL; 253 atomic_set(&pd->usecnt, 0); 254 pd->flags = flags; 255 256 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 257 pd->local_dma_lkey = device->local_dma_lkey; 258 else 259 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 260 261 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 262 pr_warn("%s: enabling unsafe global rkey\n", caller); 263 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 264 } 265 266 pd->res.type = RDMA_RESTRACK_PD; 267 pd->res.kern_name = caller; 268 rdma_restrack_add(&pd->res); 269 270 if (mr_access_flags) { 271 struct ib_mr *mr; 272 273 mr = pd->device->get_dma_mr(pd, mr_access_flags); 274 if (IS_ERR(mr)) { 275 ib_dealloc_pd(pd); 276 return ERR_CAST(mr); 277 } 278 279 mr->device = pd->device; 280 mr->pd = pd; 281 mr->uobject = NULL; 282 mr->need_inval = false; 283 284 pd->__internal_mr = mr; 285 286 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 287 pd->local_dma_lkey = pd->__internal_mr->lkey; 288 289 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 290 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 291 } 292 293 return pd; 294 } 295 EXPORT_SYMBOL(__ib_alloc_pd); 296 297 /** 298 * ib_dealloc_pd - Deallocates a protection domain. 299 * @pd: The protection domain to deallocate. 300 * 301 * It is an error to call this function while any resources in the pd still 302 * exist. The caller is responsible to synchronously destroy them and 303 * guarantee no new allocations will happen. 304 */ 305 void ib_dealloc_pd(struct ib_pd *pd) 306 { 307 int ret; 308 309 if (pd->__internal_mr) { 310 ret = pd->device->dereg_mr(pd->__internal_mr); 311 WARN_ON(ret); 312 pd->__internal_mr = NULL; 313 } 314 315 /* uverbs manipulates usecnt with proper locking, while the kabi 316 requires the caller to guarantee we can't race here. */ 317 WARN_ON(atomic_read(&pd->usecnt)); 318 319 rdma_restrack_del(&pd->res); 320 /* Making delalloc_pd a void return is a WIP, no driver should return 321 an error here. */ 322 ret = pd->device->dealloc_pd(pd); 323 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 324 } 325 EXPORT_SYMBOL(ib_dealloc_pd); 326 327 /* Address handles */ 328 329 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 330 struct rdma_ah_attr *ah_attr, 331 struct ib_udata *udata) 332 { 333 struct ib_ah *ah; 334 335 ah = pd->device->create_ah(pd, ah_attr, udata); 336 337 if (!IS_ERR(ah)) { 338 ah->device = pd->device; 339 ah->pd = pd; 340 ah->uobject = NULL; 341 ah->type = ah_attr->type; 342 atomic_inc(&pd->usecnt); 343 } 344 345 return ah; 346 } 347 348 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) 349 { 350 return _rdma_create_ah(pd, ah_attr, NULL); 351 } 352 EXPORT_SYMBOL(rdma_create_ah); 353 354 /** 355 * rdma_create_user_ah - Creates an address handle for the 356 * given address vector. 357 * It resolves destination mac address for ah attribute of RoCE type. 358 * @pd: The protection domain associated with the address handle. 359 * @ah_attr: The attributes of the address vector. 360 * @udata: pointer to user's input output buffer information need by 361 * provider driver. 362 * 363 * It returns 0 on success and returns appropriate error code on error. 364 * The address handle is used to reference a local or global destination 365 * in all UD QP post sends. 366 */ 367 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 368 struct rdma_ah_attr *ah_attr, 369 struct ib_udata *udata) 370 { 371 int err; 372 373 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 374 err = ib_resolve_eth_dmac(pd->device, ah_attr); 375 if (err) 376 return ERR_PTR(err); 377 } 378 379 return _rdma_create_ah(pd, ah_attr, udata); 380 } 381 EXPORT_SYMBOL(rdma_create_user_ah); 382 383 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 384 { 385 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 386 struct iphdr ip4h_checked; 387 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 388 389 /* If it's IPv6, the version must be 6, otherwise, the first 390 * 20 bytes (before the IPv4 header) are garbled. 391 */ 392 if (ip6h->version != 6) 393 return (ip4h->version == 4) ? 4 : 0; 394 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 395 396 /* RoCE v2 requires no options, thus header length 397 * must be 5 words 398 */ 399 if (ip4h->ihl != 5) 400 return 6; 401 402 /* Verify checksum. 403 * We can't write on scattered buffers so we need to copy to 404 * temp buffer. 405 */ 406 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 407 ip4h_checked.check = 0; 408 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 409 /* if IPv4 header checksum is OK, believe it */ 410 if (ip4h->check == ip4h_checked.check) 411 return 4; 412 return 6; 413 } 414 EXPORT_SYMBOL(ib_get_rdma_header_version); 415 416 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 417 u8 port_num, 418 const struct ib_grh *grh) 419 { 420 int grh_version; 421 422 if (rdma_protocol_ib(device, port_num)) 423 return RDMA_NETWORK_IB; 424 425 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 426 427 if (grh_version == 4) 428 return RDMA_NETWORK_IPV4; 429 430 if (grh->next_hdr == IPPROTO_UDP) 431 return RDMA_NETWORK_IPV6; 432 433 return RDMA_NETWORK_ROCE_V1; 434 } 435 436 struct find_gid_index_context { 437 u16 vlan_id; 438 enum ib_gid_type gid_type; 439 }; 440 441 static bool find_gid_index(const union ib_gid *gid, 442 const struct ib_gid_attr *gid_attr, 443 void *context) 444 { 445 struct find_gid_index_context *ctx = context; 446 447 if (ctx->gid_type != gid_attr->gid_type) 448 return false; 449 450 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 451 (is_vlan_dev(gid_attr->ndev) && 452 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 453 return false; 454 455 return true; 456 } 457 458 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 459 u16 vlan_id, const union ib_gid *sgid, 460 enum ib_gid_type gid_type, 461 u16 *gid_index) 462 { 463 struct find_gid_index_context context = {.vlan_id = vlan_id, 464 .gid_type = gid_type}; 465 466 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 467 &context, gid_index); 468 } 469 470 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 471 enum rdma_network_type net_type, 472 union ib_gid *sgid, union ib_gid *dgid) 473 { 474 struct sockaddr_in src_in; 475 struct sockaddr_in dst_in; 476 __be32 src_saddr, dst_saddr; 477 478 if (!sgid || !dgid) 479 return -EINVAL; 480 481 if (net_type == RDMA_NETWORK_IPV4) { 482 memcpy(&src_in.sin_addr.s_addr, 483 &hdr->roce4grh.saddr, 4); 484 memcpy(&dst_in.sin_addr.s_addr, 485 &hdr->roce4grh.daddr, 4); 486 src_saddr = src_in.sin_addr.s_addr; 487 dst_saddr = dst_in.sin_addr.s_addr; 488 ipv6_addr_set_v4mapped(src_saddr, 489 (struct in6_addr *)sgid); 490 ipv6_addr_set_v4mapped(dst_saddr, 491 (struct in6_addr *)dgid); 492 return 0; 493 } else if (net_type == RDMA_NETWORK_IPV6 || 494 net_type == RDMA_NETWORK_IB) { 495 *dgid = hdr->ibgrh.dgid; 496 *sgid = hdr->ibgrh.sgid; 497 return 0; 498 } else { 499 return -EINVAL; 500 } 501 } 502 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 503 504 /* Resolve destination mac address and hop limit for unicast destination 505 * GID entry, considering the source GID entry as well. 506 * ah_attribute must have have valid port_num, sgid_index. 507 */ 508 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 509 struct rdma_ah_attr *ah_attr) 510 { 511 struct ib_gid_attr sgid_attr; 512 struct ib_global_route *grh; 513 int hop_limit = 0xff; 514 union ib_gid sgid; 515 int ret; 516 517 grh = rdma_ah_retrieve_grh(ah_attr); 518 519 ret = ib_query_gid(device, 520 rdma_ah_get_port_num(ah_attr), 521 grh->sgid_index, 522 &sgid, &sgid_attr); 523 if (ret || !sgid_attr.ndev) { 524 if (!ret) 525 ret = -ENXIO; 526 return ret; 527 } 528 529 /* If destination is link local and source GID is RoCEv1, 530 * IP stack is not used. 531 */ 532 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 533 sgid_attr.gid_type == IB_GID_TYPE_ROCE) { 534 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 535 ah_attr->roce.dmac); 536 goto done; 537 } 538 539 ret = rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, 540 ah_attr->roce.dmac, 541 sgid_attr.ndev, &hop_limit); 542 done: 543 dev_put(sgid_attr.ndev); 544 545 grh->hop_limit = hop_limit; 546 return ret; 547 } 548 549 /* 550 * This function initializes address handle attributes from the incoming packet. 551 * Incoming packet has dgid of the receiver node on which this code is 552 * getting executed and, sgid contains the GID of the sender. 553 * 554 * When resolving mac address of destination, the arrived dgid is used 555 * as sgid and, sgid is used as dgid because sgid contains destinations 556 * GID whom to respond to. 557 * 558 */ 559 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 560 const struct ib_wc *wc, const struct ib_grh *grh, 561 struct rdma_ah_attr *ah_attr) 562 { 563 u32 flow_class; 564 u16 gid_index; 565 int ret; 566 enum rdma_network_type net_type = RDMA_NETWORK_IB; 567 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 568 int hoplimit = 0xff; 569 union ib_gid dgid; 570 union ib_gid sgid; 571 572 might_sleep(); 573 574 memset(ah_attr, 0, sizeof *ah_attr); 575 ah_attr->type = rdma_ah_find_type(device, port_num); 576 if (rdma_cap_eth_ah(device, port_num)) { 577 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 578 net_type = wc->network_hdr_type; 579 else 580 net_type = ib_get_net_type_by_grh(device, port_num, grh); 581 gid_type = ib_network_to_gid_type(net_type); 582 } 583 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 584 &sgid, &dgid); 585 if (ret) 586 return ret; 587 588 rdma_ah_set_sl(ah_attr, wc->sl); 589 rdma_ah_set_port_num(ah_attr, port_num); 590 591 if (rdma_protocol_roce(device, port_num)) { 592 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 593 wc->vlan_id : 0xffff; 594 595 if (!(wc->wc_flags & IB_WC_GRH)) 596 return -EPROTOTYPE; 597 598 ret = get_sgid_index_from_eth(device, port_num, 599 vlan_id, &dgid, 600 gid_type, &gid_index); 601 if (ret) 602 return ret; 603 604 flow_class = be32_to_cpu(grh->version_tclass_flow); 605 rdma_ah_set_grh(ah_attr, &sgid, 606 flow_class & 0xFFFFF, 607 (u8)gid_index, hoplimit, 608 (flow_class >> 20) & 0xFF); 609 return ib_resolve_unicast_gid_dmac(device, ah_attr); 610 } else { 611 rdma_ah_set_dlid(ah_attr, wc->slid); 612 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 613 614 if (wc->wc_flags & IB_WC_GRH) { 615 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 616 ret = ib_find_cached_gid_by_port(device, &dgid, 617 IB_GID_TYPE_IB, 618 port_num, NULL, 619 &gid_index); 620 if (ret) 621 return ret; 622 } else { 623 gid_index = 0; 624 } 625 626 flow_class = be32_to_cpu(grh->version_tclass_flow); 627 rdma_ah_set_grh(ah_attr, &sgid, 628 flow_class & 0xFFFFF, 629 (u8)gid_index, hoplimit, 630 (flow_class >> 20) & 0xFF); 631 } 632 return 0; 633 } 634 } 635 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 636 637 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 638 const struct ib_grh *grh, u8 port_num) 639 { 640 struct rdma_ah_attr ah_attr; 641 int ret; 642 643 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 644 if (ret) 645 return ERR_PTR(ret); 646 647 return rdma_create_ah(pd, &ah_attr); 648 } 649 EXPORT_SYMBOL(ib_create_ah_from_wc); 650 651 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 652 { 653 if (ah->type != ah_attr->type) 654 return -EINVAL; 655 656 return ah->device->modify_ah ? 657 ah->device->modify_ah(ah, ah_attr) : 658 -ENOSYS; 659 } 660 EXPORT_SYMBOL(rdma_modify_ah); 661 662 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 663 { 664 return ah->device->query_ah ? 665 ah->device->query_ah(ah, ah_attr) : 666 -ENOSYS; 667 } 668 EXPORT_SYMBOL(rdma_query_ah); 669 670 int rdma_destroy_ah(struct ib_ah *ah) 671 { 672 struct ib_pd *pd; 673 int ret; 674 675 pd = ah->pd; 676 ret = ah->device->destroy_ah(ah); 677 if (!ret) 678 atomic_dec(&pd->usecnt); 679 680 return ret; 681 } 682 EXPORT_SYMBOL(rdma_destroy_ah); 683 684 /* Shared receive queues */ 685 686 struct ib_srq *ib_create_srq(struct ib_pd *pd, 687 struct ib_srq_init_attr *srq_init_attr) 688 { 689 struct ib_srq *srq; 690 691 if (!pd->device->create_srq) 692 return ERR_PTR(-ENOSYS); 693 694 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 695 696 if (!IS_ERR(srq)) { 697 srq->device = pd->device; 698 srq->pd = pd; 699 srq->uobject = NULL; 700 srq->event_handler = srq_init_attr->event_handler; 701 srq->srq_context = srq_init_attr->srq_context; 702 srq->srq_type = srq_init_attr->srq_type; 703 if (ib_srq_has_cq(srq->srq_type)) { 704 srq->ext.cq = srq_init_attr->ext.cq; 705 atomic_inc(&srq->ext.cq->usecnt); 706 } 707 if (srq->srq_type == IB_SRQT_XRC) { 708 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 709 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 710 } 711 atomic_inc(&pd->usecnt); 712 atomic_set(&srq->usecnt, 0); 713 } 714 715 return srq; 716 } 717 EXPORT_SYMBOL(ib_create_srq); 718 719 int ib_modify_srq(struct ib_srq *srq, 720 struct ib_srq_attr *srq_attr, 721 enum ib_srq_attr_mask srq_attr_mask) 722 { 723 return srq->device->modify_srq ? 724 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 725 -ENOSYS; 726 } 727 EXPORT_SYMBOL(ib_modify_srq); 728 729 int ib_query_srq(struct ib_srq *srq, 730 struct ib_srq_attr *srq_attr) 731 { 732 return srq->device->query_srq ? 733 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 734 } 735 EXPORT_SYMBOL(ib_query_srq); 736 737 int ib_destroy_srq(struct ib_srq *srq) 738 { 739 struct ib_pd *pd; 740 enum ib_srq_type srq_type; 741 struct ib_xrcd *uninitialized_var(xrcd); 742 struct ib_cq *uninitialized_var(cq); 743 int ret; 744 745 if (atomic_read(&srq->usecnt)) 746 return -EBUSY; 747 748 pd = srq->pd; 749 srq_type = srq->srq_type; 750 if (ib_srq_has_cq(srq_type)) 751 cq = srq->ext.cq; 752 if (srq_type == IB_SRQT_XRC) 753 xrcd = srq->ext.xrc.xrcd; 754 755 ret = srq->device->destroy_srq(srq); 756 if (!ret) { 757 atomic_dec(&pd->usecnt); 758 if (srq_type == IB_SRQT_XRC) 759 atomic_dec(&xrcd->usecnt); 760 if (ib_srq_has_cq(srq_type)) 761 atomic_dec(&cq->usecnt); 762 } 763 764 return ret; 765 } 766 EXPORT_SYMBOL(ib_destroy_srq); 767 768 /* Queue pairs */ 769 770 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 771 { 772 struct ib_qp *qp = context; 773 unsigned long flags; 774 775 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 776 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 777 if (event->element.qp->event_handler) 778 event->element.qp->event_handler(event, event->element.qp->qp_context); 779 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 780 } 781 782 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 783 { 784 mutex_lock(&xrcd->tgt_qp_mutex); 785 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 786 mutex_unlock(&xrcd->tgt_qp_mutex); 787 } 788 789 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 790 void (*event_handler)(struct ib_event *, void *), 791 void *qp_context) 792 { 793 struct ib_qp *qp; 794 unsigned long flags; 795 int err; 796 797 qp = kzalloc(sizeof *qp, GFP_KERNEL); 798 if (!qp) 799 return ERR_PTR(-ENOMEM); 800 801 qp->real_qp = real_qp; 802 err = ib_open_shared_qp_security(qp, real_qp->device); 803 if (err) { 804 kfree(qp); 805 return ERR_PTR(err); 806 } 807 808 qp->real_qp = real_qp; 809 atomic_inc(&real_qp->usecnt); 810 qp->device = real_qp->device; 811 qp->event_handler = event_handler; 812 qp->qp_context = qp_context; 813 qp->qp_num = real_qp->qp_num; 814 qp->qp_type = real_qp->qp_type; 815 816 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 817 list_add(&qp->open_list, &real_qp->open_list); 818 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 819 820 return qp; 821 } 822 823 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 824 struct ib_qp_open_attr *qp_open_attr) 825 { 826 struct ib_qp *qp, *real_qp; 827 828 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 829 return ERR_PTR(-EINVAL); 830 831 qp = ERR_PTR(-EINVAL); 832 mutex_lock(&xrcd->tgt_qp_mutex); 833 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 834 if (real_qp->qp_num == qp_open_attr->qp_num) { 835 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 836 qp_open_attr->qp_context); 837 break; 838 } 839 } 840 mutex_unlock(&xrcd->tgt_qp_mutex); 841 return qp; 842 } 843 EXPORT_SYMBOL(ib_open_qp); 844 845 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 846 struct ib_qp_init_attr *qp_init_attr) 847 { 848 struct ib_qp *real_qp = qp; 849 850 qp->event_handler = __ib_shared_qp_event_handler; 851 qp->qp_context = qp; 852 qp->pd = NULL; 853 qp->send_cq = qp->recv_cq = NULL; 854 qp->srq = NULL; 855 qp->xrcd = qp_init_attr->xrcd; 856 atomic_inc(&qp_init_attr->xrcd->usecnt); 857 INIT_LIST_HEAD(&qp->open_list); 858 859 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 860 qp_init_attr->qp_context); 861 if (!IS_ERR(qp)) 862 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 863 else 864 real_qp->device->destroy_qp(real_qp); 865 return qp; 866 } 867 868 struct ib_qp *ib_create_qp(struct ib_pd *pd, 869 struct ib_qp_init_attr *qp_init_attr) 870 { 871 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 872 struct ib_qp *qp; 873 int ret; 874 875 if (qp_init_attr->rwq_ind_tbl && 876 (qp_init_attr->recv_cq || 877 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 878 qp_init_attr->cap.max_recv_sge)) 879 return ERR_PTR(-EINVAL); 880 881 /* 882 * If the callers is using the RDMA API calculate the resources 883 * needed for the RDMA READ/WRITE operations. 884 * 885 * Note that these callers need to pass in a port number. 886 */ 887 if (qp_init_attr->cap.max_rdma_ctxs) 888 rdma_rw_init_qp(device, qp_init_attr); 889 890 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 891 if (IS_ERR(qp)) 892 return qp; 893 894 ret = ib_create_qp_security(qp, device); 895 if (ret) { 896 ib_destroy_qp(qp); 897 return ERR_PTR(ret); 898 } 899 900 qp->real_qp = qp; 901 qp->qp_type = qp_init_attr->qp_type; 902 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 903 904 atomic_set(&qp->usecnt, 0); 905 qp->mrs_used = 0; 906 spin_lock_init(&qp->mr_lock); 907 INIT_LIST_HEAD(&qp->rdma_mrs); 908 INIT_LIST_HEAD(&qp->sig_mrs); 909 qp->port = 0; 910 911 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 912 return ib_create_xrc_qp(qp, qp_init_attr); 913 914 qp->event_handler = qp_init_attr->event_handler; 915 qp->qp_context = qp_init_attr->qp_context; 916 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 917 qp->recv_cq = NULL; 918 qp->srq = NULL; 919 } else { 920 qp->recv_cq = qp_init_attr->recv_cq; 921 if (qp_init_attr->recv_cq) 922 atomic_inc(&qp_init_attr->recv_cq->usecnt); 923 qp->srq = qp_init_attr->srq; 924 if (qp->srq) 925 atomic_inc(&qp_init_attr->srq->usecnt); 926 } 927 928 qp->send_cq = qp_init_attr->send_cq; 929 qp->xrcd = NULL; 930 931 atomic_inc(&pd->usecnt); 932 if (qp_init_attr->send_cq) 933 atomic_inc(&qp_init_attr->send_cq->usecnt); 934 if (qp_init_attr->rwq_ind_tbl) 935 atomic_inc(&qp->rwq_ind_tbl->usecnt); 936 937 if (qp_init_attr->cap.max_rdma_ctxs) { 938 ret = rdma_rw_init_mrs(qp, qp_init_attr); 939 if (ret) { 940 pr_err("failed to init MR pool ret= %d\n", ret); 941 ib_destroy_qp(qp); 942 return ERR_PTR(ret); 943 } 944 } 945 946 /* 947 * Note: all hw drivers guarantee that max_send_sge is lower than 948 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 949 * max_send_sge <= max_sge_rd. 950 */ 951 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 952 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 953 device->attrs.max_sge_rd); 954 955 return qp; 956 } 957 EXPORT_SYMBOL(ib_create_qp); 958 959 static const struct { 960 int valid; 961 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 962 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 963 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 964 [IB_QPS_RESET] = { 965 [IB_QPS_RESET] = { .valid = 1 }, 966 [IB_QPS_INIT] = { 967 .valid = 1, 968 .req_param = { 969 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 970 IB_QP_PORT | 971 IB_QP_QKEY), 972 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 973 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 974 IB_QP_PORT | 975 IB_QP_ACCESS_FLAGS), 976 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 977 IB_QP_PORT | 978 IB_QP_ACCESS_FLAGS), 979 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 980 IB_QP_PORT | 981 IB_QP_ACCESS_FLAGS), 982 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 983 IB_QP_PORT | 984 IB_QP_ACCESS_FLAGS), 985 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 986 IB_QP_QKEY), 987 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 988 IB_QP_QKEY), 989 } 990 }, 991 }, 992 [IB_QPS_INIT] = { 993 [IB_QPS_RESET] = { .valid = 1 }, 994 [IB_QPS_ERR] = { .valid = 1 }, 995 [IB_QPS_INIT] = { 996 .valid = 1, 997 .opt_param = { 998 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 999 IB_QP_PORT | 1000 IB_QP_QKEY), 1001 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1002 IB_QP_PORT | 1003 IB_QP_ACCESS_FLAGS), 1004 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1005 IB_QP_PORT | 1006 IB_QP_ACCESS_FLAGS), 1007 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1008 IB_QP_PORT | 1009 IB_QP_ACCESS_FLAGS), 1010 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1011 IB_QP_PORT | 1012 IB_QP_ACCESS_FLAGS), 1013 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1014 IB_QP_QKEY), 1015 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1016 IB_QP_QKEY), 1017 } 1018 }, 1019 [IB_QPS_RTR] = { 1020 .valid = 1, 1021 .req_param = { 1022 [IB_QPT_UC] = (IB_QP_AV | 1023 IB_QP_PATH_MTU | 1024 IB_QP_DEST_QPN | 1025 IB_QP_RQ_PSN), 1026 [IB_QPT_RC] = (IB_QP_AV | 1027 IB_QP_PATH_MTU | 1028 IB_QP_DEST_QPN | 1029 IB_QP_RQ_PSN | 1030 IB_QP_MAX_DEST_RD_ATOMIC | 1031 IB_QP_MIN_RNR_TIMER), 1032 [IB_QPT_XRC_INI] = (IB_QP_AV | 1033 IB_QP_PATH_MTU | 1034 IB_QP_DEST_QPN | 1035 IB_QP_RQ_PSN), 1036 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1037 IB_QP_PATH_MTU | 1038 IB_QP_DEST_QPN | 1039 IB_QP_RQ_PSN | 1040 IB_QP_MAX_DEST_RD_ATOMIC | 1041 IB_QP_MIN_RNR_TIMER), 1042 }, 1043 .opt_param = { 1044 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1045 IB_QP_QKEY), 1046 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1047 IB_QP_ACCESS_FLAGS | 1048 IB_QP_PKEY_INDEX), 1049 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1050 IB_QP_ACCESS_FLAGS | 1051 IB_QP_PKEY_INDEX), 1052 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1053 IB_QP_ACCESS_FLAGS | 1054 IB_QP_PKEY_INDEX), 1055 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1056 IB_QP_ACCESS_FLAGS | 1057 IB_QP_PKEY_INDEX), 1058 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1059 IB_QP_QKEY), 1060 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1061 IB_QP_QKEY), 1062 }, 1063 }, 1064 }, 1065 [IB_QPS_RTR] = { 1066 [IB_QPS_RESET] = { .valid = 1 }, 1067 [IB_QPS_ERR] = { .valid = 1 }, 1068 [IB_QPS_RTS] = { 1069 .valid = 1, 1070 .req_param = { 1071 [IB_QPT_UD] = IB_QP_SQ_PSN, 1072 [IB_QPT_UC] = IB_QP_SQ_PSN, 1073 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1074 IB_QP_RETRY_CNT | 1075 IB_QP_RNR_RETRY | 1076 IB_QP_SQ_PSN | 1077 IB_QP_MAX_QP_RD_ATOMIC), 1078 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1079 IB_QP_RETRY_CNT | 1080 IB_QP_RNR_RETRY | 1081 IB_QP_SQ_PSN | 1082 IB_QP_MAX_QP_RD_ATOMIC), 1083 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1084 IB_QP_SQ_PSN), 1085 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1086 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1087 }, 1088 .opt_param = { 1089 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1090 IB_QP_QKEY), 1091 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1092 IB_QP_ALT_PATH | 1093 IB_QP_ACCESS_FLAGS | 1094 IB_QP_PATH_MIG_STATE), 1095 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1096 IB_QP_ALT_PATH | 1097 IB_QP_ACCESS_FLAGS | 1098 IB_QP_MIN_RNR_TIMER | 1099 IB_QP_PATH_MIG_STATE), 1100 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1101 IB_QP_ALT_PATH | 1102 IB_QP_ACCESS_FLAGS | 1103 IB_QP_PATH_MIG_STATE), 1104 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1105 IB_QP_ALT_PATH | 1106 IB_QP_ACCESS_FLAGS | 1107 IB_QP_MIN_RNR_TIMER | 1108 IB_QP_PATH_MIG_STATE), 1109 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1110 IB_QP_QKEY), 1111 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1112 IB_QP_QKEY), 1113 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1114 } 1115 } 1116 }, 1117 [IB_QPS_RTS] = { 1118 [IB_QPS_RESET] = { .valid = 1 }, 1119 [IB_QPS_ERR] = { .valid = 1 }, 1120 [IB_QPS_RTS] = { 1121 .valid = 1, 1122 .opt_param = { 1123 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1124 IB_QP_QKEY), 1125 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1126 IB_QP_ACCESS_FLAGS | 1127 IB_QP_ALT_PATH | 1128 IB_QP_PATH_MIG_STATE), 1129 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1130 IB_QP_ACCESS_FLAGS | 1131 IB_QP_ALT_PATH | 1132 IB_QP_PATH_MIG_STATE | 1133 IB_QP_MIN_RNR_TIMER), 1134 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1135 IB_QP_ACCESS_FLAGS | 1136 IB_QP_ALT_PATH | 1137 IB_QP_PATH_MIG_STATE), 1138 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1139 IB_QP_ACCESS_FLAGS | 1140 IB_QP_ALT_PATH | 1141 IB_QP_PATH_MIG_STATE | 1142 IB_QP_MIN_RNR_TIMER), 1143 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1144 IB_QP_QKEY), 1145 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1146 IB_QP_QKEY), 1147 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1148 } 1149 }, 1150 [IB_QPS_SQD] = { 1151 .valid = 1, 1152 .opt_param = { 1153 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1154 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1155 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1156 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1157 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1158 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1159 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1160 } 1161 }, 1162 }, 1163 [IB_QPS_SQD] = { 1164 [IB_QPS_RESET] = { .valid = 1 }, 1165 [IB_QPS_ERR] = { .valid = 1 }, 1166 [IB_QPS_RTS] = { 1167 .valid = 1, 1168 .opt_param = { 1169 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1170 IB_QP_QKEY), 1171 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1172 IB_QP_ALT_PATH | 1173 IB_QP_ACCESS_FLAGS | 1174 IB_QP_PATH_MIG_STATE), 1175 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1176 IB_QP_ALT_PATH | 1177 IB_QP_ACCESS_FLAGS | 1178 IB_QP_MIN_RNR_TIMER | 1179 IB_QP_PATH_MIG_STATE), 1180 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1181 IB_QP_ALT_PATH | 1182 IB_QP_ACCESS_FLAGS | 1183 IB_QP_PATH_MIG_STATE), 1184 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1185 IB_QP_ALT_PATH | 1186 IB_QP_ACCESS_FLAGS | 1187 IB_QP_MIN_RNR_TIMER | 1188 IB_QP_PATH_MIG_STATE), 1189 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1190 IB_QP_QKEY), 1191 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1192 IB_QP_QKEY), 1193 } 1194 }, 1195 [IB_QPS_SQD] = { 1196 .valid = 1, 1197 .opt_param = { 1198 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1199 IB_QP_QKEY), 1200 [IB_QPT_UC] = (IB_QP_AV | 1201 IB_QP_ALT_PATH | 1202 IB_QP_ACCESS_FLAGS | 1203 IB_QP_PKEY_INDEX | 1204 IB_QP_PATH_MIG_STATE), 1205 [IB_QPT_RC] = (IB_QP_PORT | 1206 IB_QP_AV | 1207 IB_QP_TIMEOUT | 1208 IB_QP_RETRY_CNT | 1209 IB_QP_RNR_RETRY | 1210 IB_QP_MAX_QP_RD_ATOMIC | 1211 IB_QP_MAX_DEST_RD_ATOMIC | 1212 IB_QP_ALT_PATH | 1213 IB_QP_ACCESS_FLAGS | 1214 IB_QP_PKEY_INDEX | 1215 IB_QP_MIN_RNR_TIMER | 1216 IB_QP_PATH_MIG_STATE), 1217 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1218 IB_QP_AV | 1219 IB_QP_TIMEOUT | 1220 IB_QP_RETRY_CNT | 1221 IB_QP_RNR_RETRY | 1222 IB_QP_MAX_QP_RD_ATOMIC | 1223 IB_QP_ALT_PATH | 1224 IB_QP_ACCESS_FLAGS | 1225 IB_QP_PKEY_INDEX | 1226 IB_QP_PATH_MIG_STATE), 1227 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1228 IB_QP_AV | 1229 IB_QP_TIMEOUT | 1230 IB_QP_MAX_DEST_RD_ATOMIC | 1231 IB_QP_ALT_PATH | 1232 IB_QP_ACCESS_FLAGS | 1233 IB_QP_PKEY_INDEX | 1234 IB_QP_MIN_RNR_TIMER | 1235 IB_QP_PATH_MIG_STATE), 1236 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1237 IB_QP_QKEY), 1238 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1239 IB_QP_QKEY), 1240 } 1241 } 1242 }, 1243 [IB_QPS_SQE] = { 1244 [IB_QPS_RESET] = { .valid = 1 }, 1245 [IB_QPS_ERR] = { .valid = 1 }, 1246 [IB_QPS_RTS] = { 1247 .valid = 1, 1248 .opt_param = { 1249 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1250 IB_QP_QKEY), 1251 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1252 IB_QP_ACCESS_FLAGS), 1253 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1254 IB_QP_QKEY), 1255 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1256 IB_QP_QKEY), 1257 } 1258 } 1259 }, 1260 [IB_QPS_ERR] = { 1261 [IB_QPS_RESET] = { .valid = 1 }, 1262 [IB_QPS_ERR] = { .valid = 1 } 1263 } 1264 }; 1265 1266 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1267 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1268 enum rdma_link_layer ll) 1269 { 1270 enum ib_qp_attr_mask req_param, opt_param; 1271 1272 if (cur_state < 0 || cur_state > IB_QPS_ERR || 1273 next_state < 0 || next_state > IB_QPS_ERR) 1274 return 0; 1275 1276 if (mask & IB_QP_CUR_STATE && 1277 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1278 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1279 return 0; 1280 1281 if (!qp_state_table[cur_state][next_state].valid) 1282 return 0; 1283 1284 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1285 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1286 1287 if ((mask & req_param) != req_param) 1288 return 0; 1289 1290 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1291 return 0; 1292 1293 return 1; 1294 } 1295 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1296 1297 static int ib_resolve_eth_dmac(struct ib_device *device, 1298 struct rdma_ah_attr *ah_attr) 1299 { 1300 int ret = 0; 1301 struct ib_global_route *grh; 1302 1303 if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) 1304 return -EINVAL; 1305 1306 grh = rdma_ah_retrieve_grh(ah_attr); 1307 1308 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1309 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1310 __be32 addr = 0; 1311 1312 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1313 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1314 } else { 1315 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1316 (char *)ah_attr->roce.dmac); 1317 } 1318 } else { 1319 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1320 } 1321 return ret; 1322 } 1323 1324 /** 1325 * IB core internal function to perform QP attributes modification. 1326 */ 1327 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1328 int attr_mask, struct ib_udata *udata) 1329 { 1330 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1331 int ret; 1332 1333 if (rdma_ib_or_roce(qp->device, port)) { 1334 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1335 pr_warn("%s: %s rq_psn overflow, masking to 24 bits\n", 1336 __func__, qp->device->name); 1337 attr->rq_psn &= 0xffffff; 1338 } 1339 1340 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1341 pr_warn("%s: %s sq_psn overflow, masking to 24 bits\n", 1342 __func__, qp->device->name); 1343 attr->sq_psn &= 0xffffff; 1344 } 1345 } 1346 1347 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1348 if (!ret && (attr_mask & IB_QP_PORT)) 1349 qp->port = attr->port_num; 1350 1351 return ret; 1352 } 1353 1354 static bool is_qp_type_connected(const struct ib_qp *qp) 1355 { 1356 return (qp->qp_type == IB_QPT_UC || 1357 qp->qp_type == IB_QPT_RC || 1358 qp->qp_type == IB_QPT_XRC_INI || 1359 qp->qp_type == IB_QPT_XRC_TGT); 1360 } 1361 1362 /** 1363 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1364 * @ib_qp: The QP to modify. 1365 * @attr: On input, specifies the QP attributes to modify. On output, 1366 * the current values of selected QP attributes are returned. 1367 * @attr_mask: A bit-mask used to specify which attributes of the QP 1368 * are being modified. 1369 * @udata: pointer to user's input output buffer information 1370 * are being modified. 1371 * It returns 0 on success and returns appropriate error code on error. 1372 */ 1373 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1374 int attr_mask, struct ib_udata *udata) 1375 { 1376 struct ib_qp *qp = ib_qp->real_qp; 1377 int ret; 1378 1379 if (attr_mask & IB_QP_AV && 1380 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1381 is_qp_type_connected(qp)) { 1382 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1383 if (ret) 1384 return ret; 1385 } 1386 return _ib_modify_qp(qp, attr, attr_mask, udata); 1387 } 1388 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1389 1390 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1391 { 1392 int rc; 1393 u32 netdev_speed; 1394 struct net_device *netdev; 1395 struct ethtool_link_ksettings lksettings; 1396 1397 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1398 return -EINVAL; 1399 1400 if (!dev->get_netdev) 1401 return -EOPNOTSUPP; 1402 1403 netdev = dev->get_netdev(dev, port_num); 1404 if (!netdev) 1405 return -ENODEV; 1406 1407 rtnl_lock(); 1408 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1409 rtnl_unlock(); 1410 1411 dev_put(netdev); 1412 1413 if (!rc) { 1414 netdev_speed = lksettings.base.speed; 1415 } else { 1416 netdev_speed = SPEED_1000; 1417 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1418 netdev_speed); 1419 } 1420 1421 if (netdev_speed <= SPEED_1000) { 1422 *width = IB_WIDTH_1X; 1423 *speed = IB_SPEED_SDR; 1424 } else if (netdev_speed <= SPEED_10000) { 1425 *width = IB_WIDTH_1X; 1426 *speed = IB_SPEED_FDR10; 1427 } else if (netdev_speed <= SPEED_20000) { 1428 *width = IB_WIDTH_4X; 1429 *speed = IB_SPEED_DDR; 1430 } else if (netdev_speed <= SPEED_25000) { 1431 *width = IB_WIDTH_1X; 1432 *speed = IB_SPEED_EDR; 1433 } else if (netdev_speed <= SPEED_40000) { 1434 *width = IB_WIDTH_4X; 1435 *speed = IB_SPEED_FDR10; 1436 } else { 1437 *width = IB_WIDTH_4X; 1438 *speed = IB_SPEED_EDR; 1439 } 1440 1441 return 0; 1442 } 1443 EXPORT_SYMBOL(ib_get_eth_speed); 1444 1445 int ib_modify_qp(struct ib_qp *qp, 1446 struct ib_qp_attr *qp_attr, 1447 int qp_attr_mask) 1448 { 1449 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1450 } 1451 EXPORT_SYMBOL(ib_modify_qp); 1452 1453 int ib_query_qp(struct ib_qp *qp, 1454 struct ib_qp_attr *qp_attr, 1455 int qp_attr_mask, 1456 struct ib_qp_init_attr *qp_init_attr) 1457 { 1458 return qp->device->query_qp ? 1459 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1460 -ENOSYS; 1461 } 1462 EXPORT_SYMBOL(ib_query_qp); 1463 1464 int ib_close_qp(struct ib_qp *qp) 1465 { 1466 struct ib_qp *real_qp; 1467 unsigned long flags; 1468 1469 real_qp = qp->real_qp; 1470 if (real_qp == qp) 1471 return -EINVAL; 1472 1473 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1474 list_del(&qp->open_list); 1475 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1476 1477 atomic_dec(&real_qp->usecnt); 1478 if (qp->qp_sec) 1479 ib_close_shared_qp_security(qp->qp_sec); 1480 kfree(qp); 1481 1482 return 0; 1483 } 1484 EXPORT_SYMBOL(ib_close_qp); 1485 1486 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1487 { 1488 struct ib_xrcd *xrcd; 1489 struct ib_qp *real_qp; 1490 int ret; 1491 1492 real_qp = qp->real_qp; 1493 xrcd = real_qp->xrcd; 1494 1495 mutex_lock(&xrcd->tgt_qp_mutex); 1496 ib_close_qp(qp); 1497 if (atomic_read(&real_qp->usecnt) == 0) 1498 list_del(&real_qp->xrcd_list); 1499 else 1500 real_qp = NULL; 1501 mutex_unlock(&xrcd->tgt_qp_mutex); 1502 1503 if (real_qp) { 1504 ret = ib_destroy_qp(real_qp); 1505 if (!ret) 1506 atomic_dec(&xrcd->usecnt); 1507 else 1508 __ib_insert_xrcd_qp(xrcd, real_qp); 1509 } 1510 1511 return 0; 1512 } 1513 1514 int ib_destroy_qp(struct ib_qp *qp) 1515 { 1516 struct ib_pd *pd; 1517 struct ib_cq *scq, *rcq; 1518 struct ib_srq *srq; 1519 struct ib_rwq_ind_table *ind_tbl; 1520 struct ib_qp_security *sec; 1521 int ret; 1522 1523 WARN_ON_ONCE(qp->mrs_used > 0); 1524 1525 if (atomic_read(&qp->usecnt)) 1526 return -EBUSY; 1527 1528 if (qp->real_qp != qp) 1529 return __ib_destroy_shared_qp(qp); 1530 1531 pd = qp->pd; 1532 scq = qp->send_cq; 1533 rcq = qp->recv_cq; 1534 srq = qp->srq; 1535 ind_tbl = qp->rwq_ind_tbl; 1536 sec = qp->qp_sec; 1537 if (sec) 1538 ib_destroy_qp_security_begin(sec); 1539 1540 if (!qp->uobject) 1541 rdma_rw_cleanup_mrs(qp); 1542 1543 rdma_restrack_del(&qp->res); 1544 ret = qp->device->destroy_qp(qp); 1545 if (!ret) { 1546 if (pd) 1547 atomic_dec(&pd->usecnt); 1548 if (scq) 1549 atomic_dec(&scq->usecnt); 1550 if (rcq) 1551 atomic_dec(&rcq->usecnt); 1552 if (srq) 1553 atomic_dec(&srq->usecnt); 1554 if (ind_tbl) 1555 atomic_dec(&ind_tbl->usecnt); 1556 if (sec) 1557 ib_destroy_qp_security_end(sec); 1558 } else { 1559 if (sec) 1560 ib_destroy_qp_security_abort(sec); 1561 } 1562 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(ib_destroy_qp); 1566 1567 /* Completion queues */ 1568 1569 struct ib_cq *ib_create_cq(struct ib_device *device, 1570 ib_comp_handler comp_handler, 1571 void (*event_handler)(struct ib_event *, void *), 1572 void *cq_context, 1573 const struct ib_cq_init_attr *cq_attr) 1574 { 1575 struct ib_cq *cq; 1576 1577 cq = device->create_cq(device, cq_attr, NULL, NULL); 1578 1579 if (!IS_ERR(cq)) { 1580 cq->device = device; 1581 cq->uobject = NULL; 1582 cq->comp_handler = comp_handler; 1583 cq->event_handler = event_handler; 1584 cq->cq_context = cq_context; 1585 atomic_set(&cq->usecnt, 0); 1586 cq->res.type = RDMA_RESTRACK_CQ; 1587 rdma_restrack_add(&cq->res); 1588 } 1589 1590 return cq; 1591 } 1592 EXPORT_SYMBOL(ib_create_cq); 1593 1594 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1595 { 1596 return cq->device->modify_cq ? 1597 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1598 } 1599 EXPORT_SYMBOL(rdma_set_cq_moderation); 1600 1601 int ib_destroy_cq(struct ib_cq *cq) 1602 { 1603 if (atomic_read(&cq->usecnt)) 1604 return -EBUSY; 1605 1606 rdma_restrack_del(&cq->res); 1607 return cq->device->destroy_cq(cq); 1608 } 1609 EXPORT_SYMBOL(ib_destroy_cq); 1610 1611 int ib_resize_cq(struct ib_cq *cq, int cqe) 1612 { 1613 return cq->device->resize_cq ? 1614 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1615 } 1616 EXPORT_SYMBOL(ib_resize_cq); 1617 1618 /* Memory regions */ 1619 1620 int ib_dereg_mr(struct ib_mr *mr) 1621 { 1622 struct ib_pd *pd = mr->pd; 1623 int ret; 1624 1625 ret = mr->device->dereg_mr(mr); 1626 if (!ret) 1627 atomic_dec(&pd->usecnt); 1628 1629 return ret; 1630 } 1631 EXPORT_SYMBOL(ib_dereg_mr); 1632 1633 /** 1634 * ib_alloc_mr() - Allocates a memory region 1635 * @pd: protection domain associated with the region 1636 * @mr_type: memory region type 1637 * @max_num_sg: maximum sg entries available for registration. 1638 * 1639 * Notes: 1640 * Memory registeration page/sg lists must not exceed max_num_sg. 1641 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1642 * max_num_sg * used_page_size. 1643 * 1644 */ 1645 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1646 enum ib_mr_type mr_type, 1647 u32 max_num_sg) 1648 { 1649 struct ib_mr *mr; 1650 1651 if (!pd->device->alloc_mr) 1652 return ERR_PTR(-ENOSYS); 1653 1654 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1655 if (!IS_ERR(mr)) { 1656 mr->device = pd->device; 1657 mr->pd = pd; 1658 mr->uobject = NULL; 1659 atomic_inc(&pd->usecnt); 1660 mr->need_inval = false; 1661 } 1662 1663 return mr; 1664 } 1665 EXPORT_SYMBOL(ib_alloc_mr); 1666 1667 /* "Fast" memory regions */ 1668 1669 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1670 int mr_access_flags, 1671 struct ib_fmr_attr *fmr_attr) 1672 { 1673 struct ib_fmr *fmr; 1674 1675 if (!pd->device->alloc_fmr) 1676 return ERR_PTR(-ENOSYS); 1677 1678 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1679 if (!IS_ERR(fmr)) { 1680 fmr->device = pd->device; 1681 fmr->pd = pd; 1682 atomic_inc(&pd->usecnt); 1683 } 1684 1685 return fmr; 1686 } 1687 EXPORT_SYMBOL(ib_alloc_fmr); 1688 1689 int ib_unmap_fmr(struct list_head *fmr_list) 1690 { 1691 struct ib_fmr *fmr; 1692 1693 if (list_empty(fmr_list)) 1694 return 0; 1695 1696 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1697 return fmr->device->unmap_fmr(fmr_list); 1698 } 1699 EXPORT_SYMBOL(ib_unmap_fmr); 1700 1701 int ib_dealloc_fmr(struct ib_fmr *fmr) 1702 { 1703 struct ib_pd *pd; 1704 int ret; 1705 1706 pd = fmr->pd; 1707 ret = fmr->device->dealloc_fmr(fmr); 1708 if (!ret) 1709 atomic_dec(&pd->usecnt); 1710 1711 return ret; 1712 } 1713 EXPORT_SYMBOL(ib_dealloc_fmr); 1714 1715 /* Multicast groups */ 1716 1717 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 1718 { 1719 struct ib_qp_init_attr init_attr = {}; 1720 struct ib_qp_attr attr = {}; 1721 int num_eth_ports = 0; 1722 int port; 1723 1724 /* If QP state >= init, it is assigned to a port and we can check this 1725 * port only. 1726 */ 1727 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 1728 if (attr.qp_state >= IB_QPS_INIT) { 1729 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 1730 IB_LINK_LAYER_INFINIBAND) 1731 return true; 1732 goto lid_check; 1733 } 1734 } 1735 1736 /* Can't get a quick answer, iterate over all ports */ 1737 for (port = 0; port < qp->device->phys_port_cnt; port++) 1738 if (rdma_port_get_link_layer(qp->device, port) != 1739 IB_LINK_LAYER_INFINIBAND) 1740 num_eth_ports++; 1741 1742 /* If we have at lease one Ethernet port, RoCE annex declares that 1743 * multicast LID should be ignored. We can't tell at this step if the 1744 * QP belongs to an IB or Ethernet port. 1745 */ 1746 if (num_eth_ports) 1747 return true; 1748 1749 /* If all the ports are IB, we can check according to IB spec. */ 1750 lid_check: 1751 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 1752 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 1753 } 1754 1755 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1756 { 1757 int ret; 1758 1759 if (!qp->device->attach_mcast) 1760 return -ENOSYS; 1761 1762 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 1763 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 1764 return -EINVAL; 1765 1766 ret = qp->device->attach_mcast(qp, gid, lid); 1767 if (!ret) 1768 atomic_inc(&qp->usecnt); 1769 return ret; 1770 } 1771 EXPORT_SYMBOL(ib_attach_mcast); 1772 1773 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1774 { 1775 int ret; 1776 1777 if (!qp->device->detach_mcast) 1778 return -ENOSYS; 1779 1780 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 1781 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 1782 return -EINVAL; 1783 1784 ret = qp->device->detach_mcast(qp, gid, lid); 1785 if (!ret) 1786 atomic_dec(&qp->usecnt); 1787 return ret; 1788 } 1789 EXPORT_SYMBOL(ib_detach_mcast); 1790 1791 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 1792 { 1793 struct ib_xrcd *xrcd; 1794 1795 if (!device->alloc_xrcd) 1796 return ERR_PTR(-ENOSYS); 1797 1798 xrcd = device->alloc_xrcd(device, NULL, NULL); 1799 if (!IS_ERR(xrcd)) { 1800 xrcd->device = device; 1801 xrcd->inode = NULL; 1802 atomic_set(&xrcd->usecnt, 0); 1803 mutex_init(&xrcd->tgt_qp_mutex); 1804 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1805 } 1806 1807 return xrcd; 1808 } 1809 EXPORT_SYMBOL(__ib_alloc_xrcd); 1810 1811 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1812 { 1813 struct ib_qp *qp; 1814 int ret; 1815 1816 if (atomic_read(&xrcd->usecnt)) 1817 return -EBUSY; 1818 1819 while (!list_empty(&xrcd->tgt_qp_list)) { 1820 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1821 ret = ib_destroy_qp(qp); 1822 if (ret) 1823 return ret; 1824 } 1825 1826 return xrcd->device->dealloc_xrcd(xrcd); 1827 } 1828 EXPORT_SYMBOL(ib_dealloc_xrcd); 1829 1830 /** 1831 * ib_create_wq - Creates a WQ associated with the specified protection 1832 * domain. 1833 * @pd: The protection domain associated with the WQ. 1834 * @wq_attr: A list of initial attributes required to create the 1835 * WQ. If WQ creation succeeds, then the attributes are updated to 1836 * the actual capabilities of the created WQ. 1837 * 1838 * wq_attr->max_wr and wq_attr->max_sge determine 1839 * the requested size of the WQ, and set to the actual values allocated 1840 * on return. 1841 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 1842 * at least as large as the requested values. 1843 */ 1844 struct ib_wq *ib_create_wq(struct ib_pd *pd, 1845 struct ib_wq_init_attr *wq_attr) 1846 { 1847 struct ib_wq *wq; 1848 1849 if (!pd->device->create_wq) 1850 return ERR_PTR(-ENOSYS); 1851 1852 wq = pd->device->create_wq(pd, wq_attr, NULL); 1853 if (!IS_ERR(wq)) { 1854 wq->event_handler = wq_attr->event_handler; 1855 wq->wq_context = wq_attr->wq_context; 1856 wq->wq_type = wq_attr->wq_type; 1857 wq->cq = wq_attr->cq; 1858 wq->device = pd->device; 1859 wq->pd = pd; 1860 wq->uobject = NULL; 1861 atomic_inc(&pd->usecnt); 1862 atomic_inc(&wq_attr->cq->usecnt); 1863 atomic_set(&wq->usecnt, 0); 1864 } 1865 return wq; 1866 } 1867 EXPORT_SYMBOL(ib_create_wq); 1868 1869 /** 1870 * ib_destroy_wq - Destroys the specified WQ. 1871 * @wq: The WQ to destroy. 1872 */ 1873 int ib_destroy_wq(struct ib_wq *wq) 1874 { 1875 int err; 1876 struct ib_cq *cq = wq->cq; 1877 struct ib_pd *pd = wq->pd; 1878 1879 if (atomic_read(&wq->usecnt)) 1880 return -EBUSY; 1881 1882 err = wq->device->destroy_wq(wq); 1883 if (!err) { 1884 atomic_dec(&pd->usecnt); 1885 atomic_dec(&cq->usecnt); 1886 } 1887 return err; 1888 } 1889 EXPORT_SYMBOL(ib_destroy_wq); 1890 1891 /** 1892 * ib_modify_wq - Modifies the specified WQ. 1893 * @wq: The WQ to modify. 1894 * @wq_attr: On input, specifies the WQ attributes to modify. 1895 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 1896 * are being modified. 1897 * On output, the current values of selected WQ attributes are returned. 1898 */ 1899 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 1900 u32 wq_attr_mask) 1901 { 1902 int err; 1903 1904 if (!wq->device->modify_wq) 1905 return -ENOSYS; 1906 1907 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); 1908 return err; 1909 } 1910 EXPORT_SYMBOL(ib_modify_wq); 1911 1912 /* 1913 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 1914 * @device: The device on which to create the rwq indirection table. 1915 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 1916 * create the Indirection Table. 1917 * 1918 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 1919 * than the created ib_rwq_ind_table object and the caller is responsible 1920 * for its memory allocation/free. 1921 */ 1922 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 1923 struct ib_rwq_ind_table_init_attr *init_attr) 1924 { 1925 struct ib_rwq_ind_table *rwq_ind_table; 1926 int i; 1927 u32 table_size; 1928 1929 if (!device->create_rwq_ind_table) 1930 return ERR_PTR(-ENOSYS); 1931 1932 table_size = (1 << init_attr->log_ind_tbl_size); 1933 rwq_ind_table = device->create_rwq_ind_table(device, 1934 init_attr, NULL); 1935 if (IS_ERR(rwq_ind_table)) 1936 return rwq_ind_table; 1937 1938 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 1939 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 1940 rwq_ind_table->device = device; 1941 rwq_ind_table->uobject = NULL; 1942 atomic_set(&rwq_ind_table->usecnt, 0); 1943 1944 for (i = 0; i < table_size; i++) 1945 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 1946 1947 return rwq_ind_table; 1948 } 1949 EXPORT_SYMBOL(ib_create_rwq_ind_table); 1950 1951 /* 1952 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 1953 * @wq_ind_table: The Indirection Table to destroy. 1954 */ 1955 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 1956 { 1957 int err, i; 1958 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 1959 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 1960 1961 if (atomic_read(&rwq_ind_table->usecnt)) 1962 return -EBUSY; 1963 1964 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); 1965 if (!err) { 1966 for (i = 0; i < table_size; i++) 1967 atomic_dec(&ind_tbl[i]->usecnt); 1968 } 1969 1970 return err; 1971 } 1972 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 1973 1974 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1975 struct ib_flow_attr *flow_attr, 1976 int domain) 1977 { 1978 struct ib_flow *flow_id; 1979 if (!qp->device->create_flow) 1980 return ERR_PTR(-ENOSYS); 1981 1982 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1983 if (!IS_ERR(flow_id)) { 1984 atomic_inc(&qp->usecnt); 1985 flow_id->qp = qp; 1986 } 1987 return flow_id; 1988 } 1989 EXPORT_SYMBOL(ib_create_flow); 1990 1991 int ib_destroy_flow(struct ib_flow *flow_id) 1992 { 1993 int err; 1994 struct ib_qp *qp = flow_id->qp; 1995 1996 err = qp->device->destroy_flow(flow_id); 1997 if (!err) 1998 atomic_dec(&qp->usecnt); 1999 return err; 2000 } 2001 EXPORT_SYMBOL(ib_destroy_flow); 2002 2003 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2004 struct ib_mr_status *mr_status) 2005 { 2006 return mr->device->check_mr_status ? 2007 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 2008 } 2009 EXPORT_SYMBOL(ib_check_mr_status); 2010 2011 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2012 int state) 2013 { 2014 if (!device->set_vf_link_state) 2015 return -ENOSYS; 2016 2017 return device->set_vf_link_state(device, vf, port, state); 2018 } 2019 EXPORT_SYMBOL(ib_set_vf_link_state); 2020 2021 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2022 struct ifla_vf_info *info) 2023 { 2024 if (!device->get_vf_config) 2025 return -ENOSYS; 2026 2027 return device->get_vf_config(device, vf, port, info); 2028 } 2029 EXPORT_SYMBOL(ib_get_vf_config); 2030 2031 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2032 struct ifla_vf_stats *stats) 2033 { 2034 if (!device->get_vf_stats) 2035 return -ENOSYS; 2036 2037 return device->get_vf_stats(device, vf, port, stats); 2038 } 2039 EXPORT_SYMBOL(ib_get_vf_stats); 2040 2041 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2042 int type) 2043 { 2044 if (!device->set_vf_guid) 2045 return -ENOSYS; 2046 2047 return device->set_vf_guid(device, vf, port, guid, type); 2048 } 2049 EXPORT_SYMBOL(ib_set_vf_guid); 2050 2051 /** 2052 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2053 * and set it the memory region. 2054 * @mr: memory region 2055 * @sg: dma mapped scatterlist 2056 * @sg_nents: number of entries in sg 2057 * @sg_offset: offset in bytes into sg 2058 * @page_size: page vector desired page size 2059 * 2060 * Constraints: 2061 * - The first sg element is allowed to have an offset. 2062 * - Each sg element must either be aligned to page_size or virtually 2063 * contiguous to the previous element. In case an sg element has a 2064 * non-contiguous offset, the mapping prefix will not include it. 2065 * - The last sg element is allowed to have length less than page_size. 2066 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2067 * then only max_num_sg entries will be mapped. 2068 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2069 * constraints holds and the page_size argument is ignored. 2070 * 2071 * Returns the number of sg elements that were mapped to the memory region. 2072 * 2073 * After this completes successfully, the memory region 2074 * is ready for registration. 2075 */ 2076 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2077 unsigned int *sg_offset, unsigned int page_size) 2078 { 2079 if (unlikely(!mr->device->map_mr_sg)) 2080 return -ENOSYS; 2081 2082 mr->page_size = page_size; 2083 2084 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 2085 } 2086 EXPORT_SYMBOL(ib_map_mr_sg); 2087 2088 /** 2089 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2090 * to a page vector 2091 * @mr: memory region 2092 * @sgl: dma mapped scatterlist 2093 * @sg_nents: number of entries in sg 2094 * @sg_offset_p: IN: start offset in bytes into sg 2095 * OUT: offset in bytes for element n of the sg of the first 2096 * byte that has not been processed where n is the return 2097 * value of this function. 2098 * @set_page: driver page assignment function pointer 2099 * 2100 * Core service helper for drivers to convert the largest 2101 * prefix of given sg list to a page vector. The sg list 2102 * prefix converted is the prefix that meet the requirements 2103 * of ib_map_mr_sg. 2104 * 2105 * Returns the number of sg elements that were assigned to 2106 * a page vector. 2107 */ 2108 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2109 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2110 { 2111 struct scatterlist *sg; 2112 u64 last_end_dma_addr = 0; 2113 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2114 unsigned int last_page_off = 0; 2115 u64 page_mask = ~((u64)mr->page_size - 1); 2116 int i, ret; 2117 2118 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2119 return -EINVAL; 2120 2121 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2122 mr->length = 0; 2123 2124 for_each_sg(sgl, sg, sg_nents, i) { 2125 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2126 u64 prev_addr = dma_addr; 2127 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2128 u64 end_dma_addr = dma_addr + dma_len; 2129 u64 page_addr = dma_addr & page_mask; 2130 2131 /* 2132 * For the second and later elements, check whether either the 2133 * end of element i-1 or the start of element i is not aligned 2134 * on a page boundary. 2135 */ 2136 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2137 /* Stop mapping if there is a gap. */ 2138 if (last_end_dma_addr != dma_addr) 2139 break; 2140 2141 /* 2142 * Coalesce this element with the last. If it is small 2143 * enough just update mr->length. Otherwise start 2144 * mapping from the next page. 2145 */ 2146 goto next_page; 2147 } 2148 2149 do { 2150 ret = set_page(mr, page_addr); 2151 if (unlikely(ret < 0)) { 2152 sg_offset = prev_addr - sg_dma_address(sg); 2153 mr->length += prev_addr - dma_addr; 2154 if (sg_offset_p) 2155 *sg_offset_p = sg_offset; 2156 return i || sg_offset ? i : ret; 2157 } 2158 prev_addr = page_addr; 2159 next_page: 2160 page_addr += mr->page_size; 2161 } while (page_addr < end_dma_addr); 2162 2163 mr->length += dma_len; 2164 last_end_dma_addr = end_dma_addr; 2165 last_page_off = end_dma_addr & ~page_mask; 2166 2167 sg_offset = 0; 2168 } 2169 2170 if (sg_offset_p) 2171 *sg_offset_p = 0; 2172 return i; 2173 } 2174 EXPORT_SYMBOL(ib_sg_to_pages); 2175 2176 struct ib_drain_cqe { 2177 struct ib_cqe cqe; 2178 struct completion done; 2179 }; 2180 2181 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2182 { 2183 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2184 cqe); 2185 2186 complete(&cqe->done); 2187 } 2188 2189 /* 2190 * Post a WR and block until its completion is reaped for the SQ. 2191 */ 2192 static void __ib_drain_sq(struct ib_qp *qp) 2193 { 2194 struct ib_cq *cq = qp->send_cq; 2195 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2196 struct ib_drain_cqe sdrain; 2197 struct ib_send_wr swr = {}, *bad_swr; 2198 int ret; 2199 2200 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2201 if (ret) { 2202 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2203 return; 2204 } 2205 2206 swr.wr_cqe = &sdrain.cqe; 2207 sdrain.cqe.done = ib_drain_qp_done; 2208 init_completion(&sdrain.done); 2209 2210 ret = ib_post_send(qp, &swr, &bad_swr); 2211 if (ret) { 2212 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2213 return; 2214 } 2215 2216 if (cq->poll_ctx == IB_POLL_DIRECT) 2217 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2218 ib_process_cq_direct(cq, -1); 2219 else 2220 wait_for_completion(&sdrain.done); 2221 } 2222 2223 /* 2224 * Post a WR and block until its completion is reaped for the RQ. 2225 */ 2226 static void __ib_drain_rq(struct ib_qp *qp) 2227 { 2228 struct ib_cq *cq = qp->recv_cq; 2229 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2230 struct ib_drain_cqe rdrain; 2231 struct ib_recv_wr rwr = {}, *bad_rwr; 2232 int ret; 2233 2234 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2235 if (ret) { 2236 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2237 return; 2238 } 2239 2240 rwr.wr_cqe = &rdrain.cqe; 2241 rdrain.cqe.done = ib_drain_qp_done; 2242 init_completion(&rdrain.done); 2243 2244 ret = ib_post_recv(qp, &rwr, &bad_rwr); 2245 if (ret) { 2246 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2247 return; 2248 } 2249 2250 if (cq->poll_ctx == IB_POLL_DIRECT) 2251 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2252 ib_process_cq_direct(cq, -1); 2253 else 2254 wait_for_completion(&rdrain.done); 2255 } 2256 2257 /** 2258 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2259 * application. 2260 * @qp: queue pair to drain 2261 * 2262 * If the device has a provider-specific drain function, then 2263 * call that. Otherwise call the generic drain function 2264 * __ib_drain_sq(). 2265 * 2266 * The caller must: 2267 * 2268 * ensure there is room in the CQ and SQ for the drain work request and 2269 * completion. 2270 * 2271 * allocate the CQ using ib_alloc_cq(). 2272 * 2273 * ensure that there are no other contexts that are posting WRs concurrently. 2274 * Otherwise the drain is not guaranteed. 2275 */ 2276 void ib_drain_sq(struct ib_qp *qp) 2277 { 2278 if (qp->device->drain_sq) 2279 qp->device->drain_sq(qp); 2280 else 2281 __ib_drain_sq(qp); 2282 } 2283 EXPORT_SYMBOL(ib_drain_sq); 2284 2285 /** 2286 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2287 * application. 2288 * @qp: queue pair to drain 2289 * 2290 * If the device has a provider-specific drain function, then 2291 * call that. Otherwise call the generic drain function 2292 * __ib_drain_rq(). 2293 * 2294 * The caller must: 2295 * 2296 * ensure there is room in the CQ and RQ for the drain work request and 2297 * completion. 2298 * 2299 * allocate the CQ using ib_alloc_cq(). 2300 * 2301 * ensure that there are no other contexts that are posting WRs concurrently. 2302 * Otherwise the drain is not guaranteed. 2303 */ 2304 void ib_drain_rq(struct ib_qp *qp) 2305 { 2306 if (qp->device->drain_rq) 2307 qp->device->drain_rq(qp); 2308 else 2309 __ib_drain_rq(qp); 2310 } 2311 EXPORT_SYMBOL(ib_drain_rq); 2312 2313 /** 2314 * ib_drain_qp() - Block until all CQEs have been consumed by the 2315 * application on both the RQ and SQ. 2316 * @qp: queue pair to drain 2317 * 2318 * The caller must: 2319 * 2320 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2321 * and completions. 2322 * 2323 * allocate the CQs using ib_alloc_cq(). 2324 * 2325 * ensure that there are no other contexts that are posting WRs concurrently. 2326 * Otherwise the drain is not guaranteed. 2327 */ 2328 void ib_drain_qp(struct ib_qp *qp) 2329 { 2330 ib_drain_sq(qp); 2331 if (!qp->srq) 2332 ib_drain_rq(qp); 2333 } 2334 EXPORT_SYMBOL(ib_drain_qp); 2335