1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 case IB_RATE_28_GBPS: return 11; 145 case IB_RATE_50_GBPS: return 20; 146 case IB_RATE_400_GBPS: return 160; 147 case IB_RATE_600_GBPS: return 240; 148 default: return -1; 149 } 150 } 151 EXPORT_SYMBOL(ib_rate_to_mult); 152 153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 154 { 155 switch (mult) { 156 case 1: return IB_RATE_2_5_GBPS; 157 case 2: return IB_RATE_5_GBPS; 158 case 4: return IB_RATE_10_GBPS; 159 case 8: return IB_RATE_20_GBPS; 160 case 12: return IB_RATE_30_GBPS; 161 case 16: return IB_RATE_40_GBPS; 162 case 24: return IB_RATE_60_GBPS; 163 case 32: return IB_RATE_80_GBPS; 164 case 48: return IB_RATE_120_GBPS; 165 case 6: return IB_RATE_14_GBPS; 166 case 22: return IB_RATE_56_GBPS; 167 case 45: return IB_RATE_112_GBPS; 168 case 67: return IB_RATE_168_GBPS; 169 case 10: return IB_RATE_25_GBPS; 170 case 40: return IB_RATE_100_GBPS; 171 case 80: return IB_RATE_200_GBPS; 172 case 120: return IB_RATE_300_GBPS; 173 case 11: return IB_RATE_28_GBPS; 174 case 20: return IB_RATE_50_GBPS; 175 case 160: return IB_RATE_400_GBPS; 176 case 240: return IB_RATE_600_GBPS; 177 default: return IB_RATE_PORT_CURRENT; 178 } 179 } 180 EXPORT_SYMBOL(mult_to_ib_rate); 181 182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 183 { 184 switch (rate) { 185 case IB_RATE_2_5_GBPS: return 2500; 186 case IB_RATE_5_GBPS: return 5000; 187 case IB_RATE_10_GBPS: return 10000; 188 case IB_RATE_20_GBPS: return 20000; 189 case IB_RATE_30_GBPS: return 30000; 190 case IB_RATE_40_GBPS: return 40000; 191 case IB_RATE_60_GBPS: return 60000; 192 case IB_RATE_80_GBPS: return 80000; 193 case IB_RATE_120_GBPS: return 120000; 194 case IB_RATE_14_GBPS: return 14062; 195 case IB_RATE_56_GBPS: return 56250; 196 case IB_RATE_112_GBPS: return 112500; 197 case IB_RATE_168_GBPS: return 168750; 198 case IB_RATE_25_GBPS: return 25781; 199 case IB_RATE_100_GBPS: return 103125; 200 case IB_RATE_200_GBPS: return 206250; 201 case IB_RATE_300_GBPS: return 309375; 202 case IB_RATE_28_GBPS: return 28125; 203 case IB_RATE_50_GBPS: return 53125; 204 case IB_RATE_400_GBPS: return 425000; 205 case IB_RATE_600_GBPS: return 637500; 206 default: return -1; 207 } 208 } 209 EXPORT_SYMBOL(ib_rate_to_mbps); 210 211 __attribute_const__ enum rdma_transport_type 212 rdma_node_get_transport(unsigned int node_type) 213 { 214 215 if (node_type == RDMA_NODE_USNIC) 216 return RDMA_TRANSPORT_USNIC; 217 if (node_type == RDMA_NODE_USNIC_UDP) 218 return RDMA_TRANSPORT_USNIC_UDP; 219 if (node_type == RDMA_NODE_RNIC) 220 return RDMA_TRANSPORT_IWARP; 221 if (node_type == RDMA_NODE_UNSPECIFIED) 222 return RDMA_TRANSPORT_UNSPECIFIED; 223 224 return RDMA_TRANSPORT_IB; 225 } 226 EXPORT_SYMBOL(rdma_node_get_transport); 227 228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 229 { 230 enum rdma_transport_type lt; 231 if (device->ops.get_link_layer) 232 return device->ops.get_link_layer(device, port_num); 233 234 lt = rdma_node_get_transport(device->node_type); 235 if (lt == RDMA_TRANSPORT_IB) 236 return IB_LINK_LAYER_INFINIBAND; 237 238 return IB_LINK_LAYER_ETHERNET; 239 } 240 EXPORT_SYMBOL(rdma_port_get_link_layer); 241 242 /* Protection domains */ 243 244 /** 245 * ib_alloc_pd - Allocates an unused protection domain. 246 * @device: The device on which to allocate the protection domain. 247 * 248 * A protection domain object provides an association between QPs, shared 249 * receive queues, address handles, memory regions, and memory windows. 250 * 251 * Every PD has a local_dma_lkey which can be used as the lkey value for local 252 * memory operations. 253 */ 254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 255 const char *caller) 256 { 257 struct ib_pd *pd; 258 int mr_access_flags = 0; 259 int ret; 260 261 pd = rdma_zalloc_drv_obj(device, ib_pd); 262 if (!pd) 263 return ERR_PTR(-ENOMEM); 264 265 pd->device = device; 266 pd->uobject = NULL; 267 pd->__internal_mr = NULL; 268 atomic_set(&pd->usecnt, 0); 269 pd->flags = flags; 270 271 pd->res.type = RDMA_RESTRACK_PD; 272 rdma_restrack_set_task(&pd->res, caller); 273 274 ret = device->ops.alloc_pd(pd, NULL); 275 if (ret) { 276 kfree(pd); 277 return ERR_PTR(ret); 278 } 279 rdma_restrack_kadd(&pd->res); 280 281 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 282 pd->local_dma_lkey = device->local_dma_lkey; 283 else 284 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 285 286 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 287 pr_warn("%s: enabling unsafe global rkey\n", caller); 288 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 289 } 290 291 if (mr_access_flags) { 292 struct ib_mr *mr; 293 294 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 295 if (IS_ERR(mr)) { 296 ib_dealloc_pd(pd); 297 return ERR_CAST(mr); 298 } 299 300 mr->device = pd->device; 301 mr->pd = pd; 302 mr->type = IB_MR_TYPE_DMA; 303 mr->uobject = NULL; 304 mr->need_inval = false; 305 306 pd->__internal_mr = mr; 307 308 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 309 pd->local_dma_lkey = pd->__internal_mr->lkey; 310 311 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 312 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 313 } 314 315 return pd; 316 } 317 EXPORT_SYMBOL(__ib_alloc_pd); 318 319 /** 320 * ib_dealloc_pd_user - Deallocates a protection domain. 321 * @pd: The protection domain to deallocate. 322 * @udata: Valid user data or NULL for kernel object 323 * 324 * It is an error to call this function while any resources in the pd still 325 * exist. The caller is responsible to synchronously destroy them and 326 * guarantee no new allocations will happen. 327 */ 328 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 329 { 330 int ret; 331 332 if (pd->__internal_mr) { 333 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 334 WARN_ON(ret); 335 pd->__internal_mr = NULL; 336 } 337 338 /* uverbs manipulates usecnt with proper locking, while the kabi 339 requires the caller to guarantee we can't race here. */ 340 WARN_ON(atomic_read(&pd->usecnt)); 341 342 rdma_restrack_del(&pd->res); 343 pd->device->ops.dealloc_pd(pd, udata); 344 kfree(pd); 345 } 346 EXPORT_SYMBOL(ib_dealloc_pd_user); 347 348 /* Address handles */ 349 350 /** 351 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 352 * @dest: Pointer to destination ah_attr. Contents of the destination 353 * pointer is assumed to be invalid and attribute are overwritten. 354 * @src: Pointer to source ah_attr. 355 */ 356 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 357 const struct rdma_ah_attr *src) 358 { 359 *dest = *src; 360 if (dest->grh.sgid_attr) 361 rdma_hold_gid_attr(dest->grh.sgid_attr); 362 } 363 EXPORT_SYMBOL(rdma_copy_ah_attr); 364 365 /** 366 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 367 * @old: Pointer to existing ah_attr which needs to be replaced. 368 * old is assumed to be valid or zero'd 369 * @new: Pointer to the new ah_attr. 370 * 371 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 372 * old the ah_attr is valid; after that it copies the new attribute and holds 373 * the reference to the replaced ah_attr. 374 */ 375 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 376 const struct rdma_ah_attr *new) 377 { 378 rdma_destroy_ah_attr(old); 379 *old = *new; 380 if (old->grh.sgid_attr) 381 rdma_hold_gid_attr(old->grh.sgid_attr); 382 } 383 EXPORT_SYMBOL(rdma_replace_ah_attr); 384 385 /** 386 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 387 * @dest: Pointer to destination ah_attr to copy to. 388 * dest is assumed to be valid or zero'd 389 * @src: Pointer to the new ah_attr. 390 * 391 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 392 * if it is valid. This also transfers ownership of internal references from 393 * src to dest, making src invalid in the process. No new reference of the src 394 * ah_attr is taken. 395 */ 396 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 397 { 398 rdma_destroy_ah_attr(dest); 399 *dest = *src; 400 src->grh.sgid_attr = NULL; 401 } 402 EXPORT_SYMBOL(rdma_move_ah_attr); 403 404 /* 405 * Validate that the rdma_ah_attr is valid for the device before passing it 406 * off to the driver. 407 */ 408 static int rdma_check_ah_attr(struct ib_device *device, 409 struct rdma_ah_attr *ah_attr) 410 { 411 if (!rdma_is_port_valid(device, ah_attr->port_num)) 412 return -EINVAL; 413 414 if ((rdma_is_grh_required(device, ah_attr->port_num) || 415 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 416 !(ah_attr->ah_flags & IB_AH_GRH)) 417 return -EINVAL; 418 419 if (ah_attr->grh.sgid_attr) { 420 /* 421 * Make sure the passed sgid_attr is consistent with the 422 * parameters 423 */ 424 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 425 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 426 return -EINVAL; 427 } 428 return 0; 429 } 430 431 /* 432 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 433 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 434 */ 435 static int rdma_fill_sgid_attr(struct ib_device *device, 436 struct rdma_ah_attr *ah_attr, 437 const struct ib_gid_attr **old_sgid_attr) 438 { 439 const struct ib_gid_attr *sgid_attr; 440 struct ib_global_route *grh; 441 int ret; 442 443 *old_sgid_attr = ah_attr->grh.sgid_attr; 444 445 ret = rdma_check_ah_attr(device, ah_attr); 446 if (ret) 447 return ret; 448 449 if (!(ah_attr->ah_flags & IB_AH_GRH)) 450 return 0; 451 452 grh = rdma_ah_retrieve_grh(ah_attr); 453 if (grh->sgid_attr) 454 return 0; 455 456 sgid_attr = 457 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 458 if (IS_ERR(sgid_attr)) 459 return PTR_ERR(sgid_attr); 460 461 /* Move ownerhip of the kref into the ah_attr */ 462 grh->sgid_attr = sgid_attr; 463 return 0; 464 } 465 466 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 467 const struct ib_gid_attr *old_sgid_attr) 468 { 469 /* 470 * Fill didn't change anything, the caller retains ownership of 471 * whatever it passed 472 */ 473 if (ah_attr->grh.sgid_attr == old_sgid_attr) 474 return; 475 476 /* 477 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 478 * doesn't see any change in the rdma_ah_attr. If we get here 479 * old_sgid_attr is NULL. 480 */ 481 rdma_destroy_ah_attr(ah_attr); 482 } 483 484 static const struct ib_gid_attr * 485 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 486 const struct ib_gid_attr *old_attr) 487 { 488 if (old_attr) 489 rdma_put_gid_attr(old_attr); 490 if (ah_attr->ah_flags & IB_AH_GRH) { 491 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 492 return ah_attr->grh.sgid_attr; 493 } 494 return NULL; 495 } 496 497 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 498 struct rdma_ah_attr *ah_attr, 499 u32 flags, 500 struct ib_udata *udata) 501 { 502 struct ib_device *device = pd->device; 503 struct ib_ah *ah; 504 int ret; 505 506 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 507 508 if (!device->ops.create_ah) 509 return ERR_PTR(-EOPNOTSUPP); 510 511 ah = rdma_zalloc_drv_obj_gfp( 512 device, ib_ah, 513 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 514 if (!ah) 515 return ERR_PTR(-ENOMEM); 516 517 ah->device = device; 518 ah->pd = pd; 519 ah->type = ah_attr->type; 520 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 521 522 ret = device->ops.create_ah(ah, ah_attr, flags, udata); 523 if (ret) { 524 kfree(ah); 525 return ERR_PTR(ret); 526 } 527 528 atomic_inc(&pd->usecnt); 529 return ah; 530 } 531 532 /** 533 * rdma_create_ah - Creates an address handle for the 534 * given address vector. 535 * @pd: The protection domain associated with the address handle. 536 * @ah_attr: The attributes of the address vector. 537 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 538 * 539 * It returns 0 on success and returns appropriate error code on error. 540 * The address handle is used to reference a local or global destination 541 * in all UD QP post sends. 542 */ 543 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 544 u32 flags) 545 { 546 const struct ib_gid_attr *old_sgid_attr; 547 struct ib_ah *ah; 548 int ret; 549 550 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 551 if (ret) 552 return ERR_PTR(ret); 553 554 ah = _rdma_create_ah(pd, ah_attr, flags, NULL); 555 556 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 557 return ah; 558 } 559 EXPORT_SYMBOL(rdma_create_ah); 560 561 /** 562 * rdma_create_user_ah - Creates an address handle for the 563 * given address vector. 564 * It resolves destination mac address for ah attribute of RoCE type. 565 * @pd: The protection domain associated with the address handle. 566 * @ah_attr: The attributes of the address vector. 567 * @udata: pointer to user's input output buffer information need by 568 * provider driver. 569 * 570 * It returns 0 on success and returns appropriate error code on error. 571 * The address handle is used to reference a local or global destination 572 * in all UD QP post sends. 573 */ 574 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 575 struct rdma_ah_attr *ah_attr, 576 struct ib_udata *udata) 577 { 578 const struct ib_gid_attr *old_sgid_attr; 579 struct ib_ah *ah; 580 int err; 581 582 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 583 if (err) 584 return ERR_PTR(err); 585 586 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 587 err = ib_resolve_eth_dmac(pd->device, ah_attr); 588 if (err) { 589 ah = ERR_PTR(err); 590 goto out; 591 } 592 } 593 594 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata); 595 596 out: 597 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 598 return ah; 599 } 600 EXPORT_SYMBOL(rdma_create_user_ah); 601 602 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 603 { 604 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 605 struct iphdr ip4h_checked; 606 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 607 608 /* If it's IPv6, the version must be 6, otherwise, the first 609 * 20 bytes (before the IPv4 header) are garbled. 610 */ 611 if (ip6h->version != 6) 612 return (ip4h->version == 4) ? 4 : 0; 613 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 614 615 /* RoCE v2 requires no options, thus header length 616 * must be 5 words 617 */ 618 if (ip4h->ihl != 5) 619 return 6; 620 621 /* Verify checksum. 622 * We can't write on scattered buffers so we need to copy to 623 * temp buffer. 624 */ 625 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 626 ip4h_checked.check = 0; 627 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 628 /* if IPv4 header checksum is OK, believe it */ 629 if (ip4h->check == ip4h_checked.check) 630 return 4; 631 return 6; 632 } 633 EXPORT_SYMBOL(ib_get_rdma_header_version); 634 635 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 636 u8 port_num, 637 const struct ib_grh *grh) 638 { 639 int grh_version; 640 641 if (rdma_protocol_ib(device, port_num)) 642 return RDMA_NETWORK_IB; 643 644 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 645 646 if (grh_version == 4) 647 return RDMA_NETWORK_IPV4; 648 649 if (grh->next_hdr == IPPROTO_UDP) 650 return RDMA_NETWORK_IPV6; 651 652 return RDMA_NETWORK_ROCE_V1; 653 } 654 655 struct find_gid_index_context { 656 u16 vlan_id; 657 enum ib_gid_type gid_type; 658 }; 659 660 static bool find_gid_index(const union ib_gid *gid, 661 const struct ib_gid_attr *gid_attr, 662 void *context) 663 { 664 struct find_gid_index_context *ctx = context; 665 666 if (ctx->gid_type != gid_attr->gid_type) 667 return false; 668 669 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 670 (is_vlan_dev(gid_attr->ndev) && 671 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 672 return false; 673 674 return true; 675 } 676 677 static const struct ib_gid_attr * 678 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 679 u16 vlan_id, const union ib_gid *sgid, 680 enum ib_gid_type gid_type) 681 { 682 struct find_gid_index_context context = {.vlan_id = vlan_id, 683 .gid_type = gid_type}; 684 685 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 686 &context); 687 } 688 689 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 690 enum rdma_network_type net_type, 691 union ib_gid *sgid, union ib_gid *dgid) 692 { 693 struct sockaddr_in src_in; 694 struct sockaddr_in dst_in; 695 __be32 src_saddr, dst_saddr; 696 697 if (!sgid || !dgid) 698 return -EINVAL; 699 700 if (net_type == RDMA_NETWORK_IPV4) { 701 memcpy(&src_in.sin_addr.s_addr, 702 &hdr->roce4grh.saddr, 4); 703 memcpy(&dst_in.sin_addr.s_addr, 704 &hdr->roce4grh.daddr, 4); 705 src_saddr = src_in.sin_addr.s_addr; 706 dst_saddr = dst_in.sin_addr.s_addr; 707 ipv6_addr_set_v4mapped(src_saddr, 708 (struct in6_addr *)sgid); 709 ipv6_addr_set_v4mapped(dst_saddr, 710 (struct in6_addr *)dgid); 711 return 0; 712 } else if (net_type == RDMA_NETWORK_IPV6 || 713 net_type == RDMA_NETWORK_IB) { 714 *dgid = hdr->ibgrh.dgid; 715 *sgid = hdr->ibgrh.sgid; 716 return 0; 717 } else { 718 return -EINVAL; 719 } 720 } 721 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 722 723 /* Resolve destination mac address and hop limit for unicast destination 724 * GID entry, considering the source GID entry as well. 725 * ah_attribute must have have valid port_num, sgid_index. 726 */ 727 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 728 struct rdma_ah_attr *ah_attr) 729 { 730 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 731 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 732 int hop_limit = 0xff; 733 int ret = 0; 734 735 /* If destination is link local and source GID is RoCEv1, 736 * IP stack is not used. 737 */ 738 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 739 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 740 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 741 ah_attr->roce.dmac); 742 return ret; 743 } 744 745 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 746 ah_attr->roce.dmac, 747 sgid_attr, &hop_limit); 748 749 grh->hop_limit = hop_limit; 750 return ret; 751 } 752 753 /* 754 * This function initializes address handle attributes from the incoming packet. 755 * Incoming packet has dgid of the receiver node on which this code is 756 * getting executed and, sgid contains the GID of the sender. 757 * 758 * When resolving mac address of destination, the arrived dgid is used 759 * as sgid and, sgid is used as dgid because sgid contains destinations 760 * GID whom to respond to. 761 * 762 * On success the caller is responsible to call rdma_destroy_ah_attr on the 763 * attr. 764 */ 765 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 766 const struct ib_wc *wc, const struct ib_grh *grh, 767 struct rdma_ah_attr *ah_attr) 768 { 769 u32 flow_class; 770 int ret; 771 enum rdma_network_type net_type = RDMA_NETWORK_IB; 772 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 773 const struct ib_gid_attr *sgid_attr; 774 int hoplimit = 0xff; 775 union ib_gid dgid; 776 union ib_gid sgid; 777 778 might_sleep(); 779 780 memset(ah_attr, 0, sizeof *ah_attr); 781 ah_attr->type = rdma_ah_find_type(device, port_num); 782 if (rdma_cap_eth_ah(device, port_num)) { 783 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 784 net_type = wc->network_hdr_type; 785 else 786 net_type = ib_get_net_type_by_grh(device, port_num, grh); 787 gid_type = ib_network_to_gid_type(net_type); 788 } 789 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 790 &sgid, &dgid); 791 if (ret) 792 return ret; 793 794 rdma_ah_set_sl(ah_attr, wc->sl); 795 rdma_ah_set_port_num(ah_attr, port_num); 796 797 if (rdma_protocol_roce(device, port_num)) { 798 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 799 wc->vlan_id : 0xffff; 800 801 if (!(wc->wc_flags & IB_WC_GRH)) 802 return -EPROTOTYPE; 803 804 sgid_attr = get_sgid_attr_from_eth(device, port_num, 805 vlan_id, &dgid, 806 gid_type); 807 if (IS_ERR(sgid_attr)) 808 return PTR_ERR(sgid_attr); 809 810 flow_class = be32_to_cpu(grh->version_tclass_flow); 811 rdma_move_grh_sgid_attr(ah_attr, 812 &sgid, 813 flow_class & 0xFFFFF, 814 hoplimit, 815 (flow_class >> 20) & 0xFF, 816 sgid_attr); 817 818 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 819 if (ret) 820 rdma_destroy_ah_attr(ah_attr); 821 822 return ret; 823 } else { 824 rdma_ah_set_dlid(ah_attr, wc->slid); 825 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 826 827 if ((wc->wc_flags & IB_WC_GRH) == 0) 828 return 0; 829 830 if (dgid.global.interface_id != 831 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 832 sgid_attr = rdma_find_gid_by_port( 833 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 834 } else 835 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 836 837 if (IS_ERR(sgid_attr)) 838 return PTR_ERR(sgid_attr); 839 flow_class = be32_to_cpu(grh->version_tclass_flow); 840 rdma_move_grh_sgid_attr(ah_attr, 841 &sgid, 842 flow_class & 0xFFFFF, 843 hoplimit, 844 (flow_class >> 20) & 0xFF, 845 sgid_attr); 846 847 return 0; 848 } 849 } 850 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 851 852 /** 853 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 854 * of the reference 855 * 856 * @attr: Pointer to AH attribute structure 857 * @dgid: Destination GID 858 * @flow_label: Flow label 859 * @hop_limit: Hop limit 860 * @traffic_class: traffic class 861 * @sgid_attr: Pointer to SGID attribute 862 * 863 * This takes ownership of the sgid_attr reference. The caller must ensure 864 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 865 * calling this function. 866 */ 867 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 868 u32 flow_label, u8 hop_limit, u8 traffic_class, 869 const struct ib_gid_attr *sgid_attr) 870 { 871 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 872 traffic_class); 873 attr->grh.sgid_attr = sgid_attr; 874 } 875 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 876 877 /** 878 * rdma_destroy_ah_attr - Release reference to SGID attribute of 879 * ah attribute. 880 * @ah_attr: Pointer to ah attribute 881 * 882 * Release reference to the SGID attribute of the ah attribute if it is 883 * non NULL. It is safe to call this multiple times, and safe to call it on 884 * a zero initialized ah_attr. 885 */ 886 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 887 { 888 if (ah_attr->grh.sgid_attr) { 889 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 890 ah_attr->grh.sgid_attr = NULL; 891 } 892 } 893 EXPORT_SYMBOL(rdma_destroy_ah_attr); 894 895 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 896 const struct ib_grh *grh, u8 port_num) 897 { 898 struct rdma_ah_attr ah_attr; 899 struct ib_ah *ah; 900 int ret; 901 902 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 903 if (ret) 904 return ERR_PTR(ret); 905 906 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 907 908 rdma_destroy_ah_attr(&ah_attr); 909 return ah; 910 } 911 EXPORT_SYMBOL(ib_create_ah_from_wc); 912 913 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 914 { 915 const struct ib_gid_attr *old_sgid_attr; 916 int ret; 917 918 if (ah->type != ah_attr->type) 919 return -EINVAL; 920 921 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 922 if (ret) 923 return ret; 924 925 ret = ah->device->ops.modify_ah ? 926 ah->device->ops.modify_ah(ah, ah_attr) : 927 -EOPNOTSUPP; 928 929 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 930 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 931 return ret; 932 } 933 EXPORT_SYMBOL(rdma_modify_ah); 934 935 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 936 { 937 ah_attr->grh.sgid_attr = NULL; 938 939 return ah->device->ops.query_ah ? 940 ah->device->ops.query_ah(ah, ah_attr) : 941 -EOPNOTSUPP; 942 } 943 EXPORT_SYMBOL(rdma_query_ah); 944 945 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 946 { 947 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 948 struct ib_pd *pd; 949 950 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 951 952 pd = ah->pd; 953 954 ah->device->ops.destroy_ah(ah, flags); 955 atomic_dec(&pd->usecnt); 956 if (sgid_attr) 957 rdma_put_gid_attr(sgid_attr); 958 959 kfree(ah); 960 return 0; 961 } 962 EXPORT_SYMBOL(rdma_destroy_ah_user); 963 964 /* Shared receive queues */ 965 966 struct ib_srq *ib_create_srq(struct ib_pd *pd, 967 struct ib_srq_init_attr *srq_init_attr) 968 { 969 struct ib_srq *srq; 970 int ret; 971 972 if (!pd->device->ops.create_srq) 973 return ERR_PTR(-EOPNOTSUPP); 974 975 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 976 if (!srq) 977 return ERR_PTR(-ENOMEM); 978 979 srq->device = pd->device; 980 srq->pd = pd; 981 srq->event_handler = srq_init_attr->event_handler; 982 srq->srq_context = srq_init_attr->srq_context; 983 srq->srq_type = srq_init_attr->srq_type; 984 985 if (ib_srq_has_cq(srq->srq_type)) { 986 srq->ext.cq = srq_init_attr->ext.cq; 987 atomic_inc(&srq->ext.cq->usecnt); 988 } 989 if (srq->srq_type == IB_SRQT_XRC) { 990 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 991 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 992 } 993 atomic_inc(&pd->usecnt); 994 995 ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL); 996 if (ret) { 997 atomic_dec(&srq->pd->usecnt); 998 if (srq->srq_type == IB_SRQT_XRC) 999 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1000 if (ib_srq_has_cq(srq->srq_type)) 1001 atomic_dec(&srq->ext.cq->usecnt); 1002 kfree(srq); 1003 return ERR_PTR(ret); 1004 } 1005 1006 return srq; 1007 } 1008 EXPORT_SYMBOL(ib_create_srq); 1009 1010 int ib_modify_srq(struct ib_srq *srq, 1011 struct ib_srq_attr *srq_attr, 1012 enum ib_srq_attr_mask srq_attr_mask) 1013 { 1014 return srq->device->ops.modify_srq ? 1015 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1016 NULL) : -EOPNOTSUPP; 1017 } 1018 EXPORT_SYMBOL(ib_modify_srq); 1019 1020 int ib_query_srq(struct ib_srq *srq, 1021 struct ib_srq_attr *srq_attr) 1022 { 1023 return srq->device->ops.query_srq ? 1024 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1025 } 1026 EXPORT_SYMBOL(ib_query_srq); 1027 1028 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1029 { 1030 if (atomic_read(&srq->usecnt)) 1031 return -EBUSY; 1032 1033 srq->device->ops.destroy_srq(srq, udata); 1034 1035 atomic_dec(&srq->pd->usecnt); 1036 if (srq->srq_type == IB_SRQT_XRC) 1037 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1038 if (ib_srq_has_cq(srq->srq_type)) 1039 atomic_dec(&srq->ext.cq->usecnt); 1040 kfree(srq); 1041 1042 return 0; 1043 } 1044 EXPORT_SYMBOL(ib_destroy_srq_user); 1045 1046 /* Queue pairs */ 1047 1048 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1049 { 1050 struct ib_qp *qp = context; 1051 unsigned long flags; 1052 1053 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 1054 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1055 if (event->element.qp->event_handler) 1056 event->element.qp->event_handler(event, event->element.qp->qp_context); 1057 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 1058 } 1059 1060 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1061 { 1062 mutex_lock(&xrcd->tgt_qp_mutex); 1063 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1064 mutex_unlock(&xrcd->tgt_qp_mutex); 1065 } 1066 1067 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1068 void (*event_handler)(struct ib_event *, void *), 1069 void *qp_context) 1070 { 1071 struct ib_qp *qp; 1072 unsigned long flags; 1073 int err; 1074 1075 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1076 if (!qp) 1077 return ERR_PTR(-ENOMEM); 1078 1079 qp->real_qp = real_qp; 1080 err = ib_open_shared_qp_security(qp, real_qp->device); 1081 if (err) { 1082 kfree(qp); 1083 return ERR_PTR(err); 1084 } 1085 1086 qp->real_qp = real_qp; 1087 atomic_inc(&real_qp->usecnt); 1088 qp->device = real_qp->device; 1089 qp->event_handler = event_handler; 1090 qp->qp_context = qp_context; 1091 qp->qp_num = real_qp->qp_num; 1092 qp->qp_type = real_qp->qp_type; 1093 1094 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1095 list_add(&qp->open_list, &real_qp->open_list); 1096 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1097 1098 return qp; 1099 } 1100 1101 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1102 struct ib_qp_open_attr *qp_open_attr) 1103 { 1104 struct ib_qp *qp, *real_qp; 1105 1106 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1107 return ERR_PTR(-EINVAL); 1108 1109 qp = ERR_PTR(-EINVAL); 1110 mutex_lock(&xrcd->tgt_qp_mutex); 1111 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1112 if (real_qp->qp_num == qp_open_attr->qp_num) { 1113 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1114 qp_open_attr->qp_context); 1115 break; 1116 } 1117 } 1118 mutex_unlock(&xrcd->tgt_qp_mutex); 1119 return qp; 1120 } 1121 EXPORT_SYMBOL(ib_open_qp); 1122 1123 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1124 struct ib_qp_init_attr *qp_init_attr, 1125 struct ib_udata *udata) 1126 { 1127 struct ib_qp *real_qp = qp; 1128 1129 qp->event_handler = __ib_shared_qp_event_handler; 1130 qp->qp_context = qp; 1131 qp->pd = NULL; 1132 qp->send_cq = qp->recv_cq = NULL; 1133 qp->srq = NULL; 1134 qp->xrcd = qp_init_attr->xrcd; 1135 atomic_inc(&qp_init_attr->xrcd->usecnt); 1136 INIT_LIST_HEAD(&qp->open_list); 1137 1138 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1139 qp_init_attr->qp_context); 1140 if (IS_ERR(qp)) 1141 return qp; 1142 1143 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1144 return qp; 1145 } 1146 1147 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 1148 struct ib_qp_init_attr *qp_init_attr, 1149 struct ib_udata *udata) 1150 { 1151 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1152 struct ib_qp *qp; 1153 int ret; 1154 1155 if (qp_init_attr->rwq_ind_tbl && 1156 (qp_init_attr->recv_cq || 1157 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1158 qp_init_attr->cap.max_recv_sge)) 1159 return ERR_PTR(-EINVAL); 1160 1161 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) && 1162 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER)) 1163 return ERR_PTR(-EINVAL); 1164 1165 /* 1166 * If the callers is using the RDMA API calculate the resources 1167 * needed for the RDMA READ/WRITE operations. 1168 * 1169 * Note that these callers need to pass in a port number. 1170 */ 1171 if (qp_init_attr->cap.max_rdma_ctxs) 1172 rdma_rw_init_qp(device, qp_init_attr); 1173 1174 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1175 if (IS_ERR(qp)) 1176 return qp; 1177 1178 ret = ib_create_qp_security(qp, device); 1179 if (ret) 1180 goto err; 1181 1182 qp->qp_type = qp_init_attr->qp_type; 1183 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 1184 1185 atomic_set(&qp->usecnt, 0); 1186 qp->mrs_used = 0; 1187 spin_lock_init(&qp->mr_lock); 1188 INIT_LIST_HEAD(&qp->rdma_mrs); 1189 INIT_LIST_HEAD(&qp->sig_mrs); 1190 qp->port = 0; 1191 1192 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 1193 struct ib_qp *xrc_qp = 1194 create_xrc_qp_user(qp, qp_init_attr, udata); 1195 1196 if (IS_ERR(xrc_qp)) { 1197 ret = PTR_ERR(xrc_qp); 1198 goto err; 1199 } 1200 return xrc_qp; 1201 } 1202 1203 qp->event_handler = qp_init_attr->event_handler; 1204 qp->qp_context = qp_init_attr->qp_context; 1205 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1206 qp->recv_cq = NULL; 1207 qp->srq = NULL; 1208 } else { 1209 qp->recv_cq = qp_init_attr->recv_cq; 1210 if (qp_init_attr->recv_cq) 1211 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1212 qp->srq = qp_init_attr->srq; 1213 if (qp->srq) 1214 atomic_inc(&qp_init_attr->srq->usecnt); 1215 } 1216 1217 qp->send_cq = qp_init_attr->send_cq; 1218 qp->xrcd = NULL; 1219 1220 atomic_inc(&pd->usecnt); 1221 if (qp_init_attr->send_cq) 1222 atomic_inc(&qp_init_attr->send_cq->usecnt); 1223 if (qp_init_attr->rwq_ind_tbl) 1224 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1225 1226 if (qp_init_attr->cap.max_rdma_ctxs) { 1227 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1228 if (ret) 1229 goto err; 1230 } 1231 1232 /* 1233 * Note: all hw drivers guarantee that max_send_sge is lower than 1234 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1235 * max_send_sge <= max_sge_rd. 1236 */ 1237 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1238 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1239 device->attrs.max_sge_rd); 1240 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1241 qp->integrity_en = true; 1242 1243 return qp; 1244 1245 err: 1246 ib_destroy_qp(qp); 1247 return ERR_PTR(ret); 1248 1249 } 1250 EXPORT_SYMBOL(ib_create_qp_user); 1251 1252 static const struct { 1253 int valid; 1254 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1255 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1256 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1257 [IB_QPS_RESET] = { 1258 [IB_QPS_RESET] = { .valid = 1 }, 1259 [IB_QPS_INIT] = { 1260 .valid = 1, 1261 .req_param = { 1262 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1263 IB_QP_PORT | 1264 IB_QP_QKEY), 1265 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1266 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1267 IB_QP_PORT | 1268 IB_QP_ACCESS_FLAGS), 1269 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1270 IB_QP_PORT | 1271 IB_QP_ACCESS_FLAGS), 1272 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1273 IB_QP_PORT | 1274 IB_QP_ACCESS_FLAGS), 1275 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1276 IB_QP_PORT | 1277 IB_QP_ACCESS_FLAGS), 1278 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1279 IB_QP_QKEY), 1280 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1281 IB_QP_QKEY), 1282 } 1283 }, 1284 }, 1285 [IB_QPS_INIT] = { 1286 [IB_QPS_RESET] = { .valid = 1 }, 1287 [IB_QPS_ERR] = { .valid = 1 }, 1288 [IB_QPS_INIT] = { 1289 .valid = 1, 1290 .opt_param = { 1291 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1292 IB_QP_PORT | 1293 IB_QP_QKEY), 1294 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1295 IB_QP_PORT | 1296 IB_QP_ACCESS_FLAGS), 1297 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1298 IB_QP_PORT | 1299 IB_QP_ACCESS_FLAGS), 1300 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1301 IB_QP_PORT | 1302 IB_QP_ACCESS_FLAGS), 1303 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1304 IB_QP_PORT | 1305 IB_QP_ACCESS_FLAGS), 1306 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1307 IB_QP_QKEY), 1308 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1309 IB_QP_QKEY), 1310 } 1311 }, 1312 [IB_QPS_RTR] = { 1313 .valid = 1, 1314 .req_param = { 1315 [IB_QPT_UC] = (IB_QP_AV | 1316 IB_QP_PATH_MTU | 1317 IB_QP_DEST_QPN | 1318 IB_QP_RQ_PSN), 1319 [IB_QPT_RC] = (IB_QP_AV | 1320 IB_QP_PATH_MTU | 1321 IB_QP_DEST_QPN | 1322 IB_QP_RQ_PSN | 1323 IB_QP_MAX_DEST_RD_ATOMIC | 1324 IB_QP_MIN_RNR_TIMER), 1325 [IB_QPT_XRC_INI] = (IB_QP_AV | 1326 IB_QP_PATH_MTU | 1327 IB_QP_DEST_QPN | 1328 IB_QP_RQ_PSN), 1329 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1330 IB_QP_PATH_MTU | 1331 IB_QP_DEST_QPN | 1332 IB_QP_RQ_PSN | 1333 IB_QP_MAX_DEST_RD_ATOMIC | 1334 IB_QP_MIN_RNR_TIMER), 1335 }, 1336 .opt_param = { 1337 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1338 IB_QP_QKEY), 1339 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1340 IB_QP_ACCESS_FLAGS | 1341 IB_QP_PKEY_INDEX), 1342 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1343 IB_QP_ACCESS_FLAGS | 1344 IB_QP_PKEY_INDEX), 1345 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1346 IB_QP_ACCESS_FLAGS | 1347 IB_QP_PKEY_INDEX), 1348 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1349 IB_QP_ACCESS_FLAGS | 1350 IB_QP_PKEY_INDEX), 1351 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1352 IB_QP_QKEY), 1353 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1354 IB_QP_QKEY), 1355 }, 1356 }, 1357 }, 1358 [IB_QPS_RTR] = { 1359 [IB_QPS_RESET] = { .valid = 1 }, 1360 [IB_QPS_ERR] = { .valid = 1 }, 1361 [IB_QPS_RTS] = { 1362 .valid = 1, 1363 .req_param = { 1364 [IB_QPT_UD] = IB_QP_SQ_PSN, 1365 [IB_QPT_UC] = IB_QP_SQ_PSN, 1366 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1367 IB_QP_RETRY_CNT | 1368 IB_QP_RNR_RETRY | 1369 IB_QP_SQ_PSN | 1370 IB_QP_MAX_QP_RD_ATOMIC), 1371 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1372 IB_QP_RETRY_CNT | 1373 IB_QP_RNR_RETRY | 1374 IB_QP_SQ_PSN | 1375 IB_QP_MAX_QP_RD_ATOMIC), 1376 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1377 IB_QP_SQ_PSN), 1378 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1379 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1380 }, 1381 .opt_param = { 1382 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1383 IB_QP_QKEY), 1384 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1385 IB_QP_ALT_PATH | 1386 IB_QP_ACCESS_FLAGS | 1387 IB_QP_PATH_MIG_STATE), 1388 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1389 IB_QP_ALT_PATH | 1390 IB_QP_ACCESS_FLAGS | 1391 IB_QP_MIN_RNR_TIMER | 1392 IB_QP_PATH_MIG_STATE), 1393 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1394 IB_QP_ALT_PATH | 1395 IB_QP_ACCESS_FLAGS | 1396 IB_QP_PATH_MIG_STATE), 1397 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1398 IB_QP_ALT_PATH | 1399 IB_QP_ACCESS_FLAGS | 1400 IB_QP_MIN_RNR_TIMER | 1401 IB_QP_PATH_MIG_STATE), 1402 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1403 IB_QP_QKEY), 1404 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1405 IB_QP_QKEY), 1406 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1407 } 1408 } 1409 }, 1410 [IB_QPS_RTS] = { 1411 [IB_QPS_RESET] = { .valid = 1 }, 1412 [IB_QPS_ERR] = { .valid = 1 }, 1413 [IB_QPS_RTS] = { 1414 .valid = 1, 1415 .opt_param = { 1416 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1417 IB_QP_QKEY), 1418 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1419 IB_QP_ACCESS_FLAGS | 1420 IB_QP_ALT_PATH | 1421 IB_QP_PATH_MIG_STATE), 1422 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1423 IB_QP_ACCESS_FLAGS | 1424 IB_QP_ALT_PATH | 1425 IB_QP_PATH_MIG_STATE | 1426 IB_QP_MIN_RNR_TIMER), 1427 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1428 IB_QP_ACCESS_FLAGS | 1429 IB_QP_ALT_PATH | 1430 IB_QP_PATH_MIG_STATE), 1431 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1432 IB_QP_ACCESS_FLAGS | 1433 IB_QP_ALT_PATH | 1434 IB_QP_PATH_MIG_STATE | 1435 IB_QP_MIN_RNR_TIMER), 1436 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1437 IB_QP_QKEY), 1438 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1439 IB_QP_QKEY), 1440 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1441 } 1442 }, 1443 [IB_QPS_SQD] = { 1444 .valid = 1, 1445 .opt_param = { 1446 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1447 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1448 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1449 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1450 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1451 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1452 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1453 } 1454 }, 1455 }, 1456 [IB_QPS_SQD] = { 1457 [IB_QPS_RESET] = { .valid = 1 }, 1458 [IB_QPS_ERR] = { .valid = 1 }, 1459 [IB_QPS_RTS] = { 1460 .valid = 1, 1461 .opt_param = { 1462 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1463 IB_QP_QKEY), 1464 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1465 IB_QP_ALT_PATH | 1466 IB_QP_ACCESS_FLAGS | 1467 IB_QP_PATH_MIG_STATE), 1468 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1469 IB_QP_ALT_PATH | 1470 IB_QP_ACCESS_FLAGS | 1471 IB_QP_MIN_RNR_TIMER | 1472 IB_QP_PATH_MIG_STATE), 1473 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1474 IB_QP_ALT_PATH | 1475 IB_QP_ACCESS_FLAGS | 1476 IB_QP_PATH_MIG_STATE), 1477 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1478 IB_QP_ALT_PATH | 1479 IB_QP_ACCESS_FLAGS | 1480 IB_QP_MIN_RNR_TIMER | 1481 IB_QP_PATH_MIG_STATE), 1482 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1483 IB_QP_QKEY), 1484 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1485 IB_QP_QKEY), 1486 } 1487 }, 1488 [IB_QPS_SQD] = { 1489 .valid = 1, 1490 .opt_param = { 1491 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1492 IB_QP_QKEY), 1493 [IB_QPT_UC] = (IB_QP_AV | 1494 IB_QP_ALT_PATH | 1495 IB_QP_ACCESS_FLAGS | 1496 IB_QP_PKEY_INDEX | 1497 IB_QP_PATH_MIG_STATE), 1498 [IB_QPT_RC] = (IB_QP_PORT | 1499 IB_QP_AV | 1500 IB_QP_TIMEOUT | 1501 IB_QP_RETRY_CNT | 1502 IB_QP_RNR_RETRY | 1503 IB_QP_MAX_QP_RD_ATOMIC | 1504 IB_QP_MAX_DEST_RD_ATOMIC | 1505 IB_QP_ALT_PATH | 1506 IB_QP_ACCESS_FLAGS | 1507 IB_QP_PKEY_INDEX | 1508 IB_QP_MIN_RNR_TIMER | 1509 IB_QP_PATH_MIG_STATE), 1510 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1511 IB_QP_AV | 1512 IB_QP_TIMEOUT | 1513 IB_QP_RETRY_CNT | 1514 IB_QP_RNR_RETRY | 1515 IB_QP_MAX_QP_RD_ATOMIC | 1516 IB_QP_ALT_PATH | 1517 IB_QP_ACCESS_FLAGS | 1518 IB_QP_PKEY_INDEX | 1519 IB_QP_PATH_MIG_STATE), 1520 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1521 IB_QP_AV | 1522 IB_QP_TIMEOUT | 1523 IB_QP_MAX_DEST_RD_ATOMIC | 1524 IB_QP_ALT_PATH | 1525 IB_QP_ACCESS_FLAGS | 1526 IB_QP_PKEY_INDEX | 1527 IB_QP_MIN_RNR_TIMER | 1528 IB_QP_PATH_MIG_STATE), 1529 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1530 IB_QP_QKEY), 1531 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1532 IB_QP_QKEY), 1533 } 1534 } 1535 }, 1536 [IB_QPS_SQE] = { 1537 [IB_QPS_RESET] = { .valid = 1 }, 1538 [IB_QPS_ERR] = { .valid = 1 }, 1539 [IB_QPS_RTS] = { 1540 .valid = 1, 1541 .opt_param = { 1542 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1543 IB_QP_QKEY), 1544 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1545 IB_QP_ACCESS_FLAGS), 1546 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1547 IB_QP_QKEY), 1548 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1549 IB_QP_QKEY), 1550 } 1551 } 1552 }, 1553 [IB_QPS_ERR] = { 1554 [IB_QPS_RESET] = { .valid = 1 }, 1555 [IB_QPS_ERR] = { .valid = 1 } 1556 } 1557 }; 1558 1559 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1560 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1561 { 1562 enum ib_qp_attr_mask req_param, opt_param; 1563 1564 if (mask & IB_QP_CUR_STATE && 1565 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1566 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1567 return false; 1568 1569 if (!qp_state_table[cur_state][next_state].valid) 1570 return false; 1571 1572 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1573 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1574 1575 if ((mask & req_param) != req_param) 1576 return false; 1577 1578 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1579 return false; 1580 1581 return true; 1582 } 1583 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1584 1585 /** 1586 * ib_resolve_eth_dmac - Resolve destination mac address 1587 * @device: Device to consider 1588 * @ah_attr: address handle attribute which describes the 1589 * source and destination parameters 1590 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1591 * returns 0 on success or appropriate error code. It initializes the 1592 * necessary ah_attr fields when call is successful. 1593 */ 1594 static int ib_resolve_eth_dmac(struct ib_device *device, 1595 struct rdma_ah_attr *ah_attr) 1596 { 1597 int ret = 0; 1598 1599 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1600 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1601 __be32 addr = 0; 1602 1603 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1604 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1605 } else { 1606 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1607 (char *)ah_attr->roce.dmac); 1608 } 1609 } else { 1610 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1611 } 1612 return ret; 1613 } 1614 1615 static bool is_qp_type_connected(const struct ib_qp *qp) 1616 { 1617 return (qp->qp_type == IB_QPT_UC || 1618 qp->qp_type == IB_QPT_RC || 1619 qp->qp_type == IB_QPT_XRC_INI || 1620 qp->qp_type == IB_QPT_XRC_TGT); 1621 } 1622 1623 /** 1624 * IB core internal function to perform QP attributes modification. 1625 */ 1626 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1627 int attr_mask, struct ib_udata *udata) 1628 { 1629 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1630 const struct ib_gid_attr *old_sgid_attr_av; 1631 const struct ib_gid_attr *old_sgid_attr_alt_av; 1632 int ret; 1633 1634 if (attr_mask & IB_QP_AV) { 1635 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1636 &old_sgid_attr_av); 1637 if (ret) 1638 return ret; 1639 } 1640 if (attr_mask & IB_QP_ALT_PATH) { 1641 /* 1642 * FIXME: This does not track the migration state, so if the 1643 * user loads a new alternate path after the HW has migrated 1644 * from primary->alternate we will keep the wrong 1645 * references. This is OK for IB because the reference 1646 * counting does not serve any functional purpose. 1647 */ 1648 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1649 &old_sgid_attr_alt_av); 1650 if (ret) 1651 goto out_av; 1652 1653 /* 1654 * Today the core code can only handle alternate paths and APM 1655 * for IB. Ban them in roce mode. 1656 */ 1657 if (!(rdma_protocol_ib(qp->device, 1658 attr->alt_ah_attr.port_num) && 1659 rdma_protocol_ib(qp->device, port))) { 1660 ret = EINVAL; 1661 goto out; 1662 } 1663 } 1664 1665 /* 1666 * If the user provided the qp_attr then we have to resolve it. Kernel 1667 * users have to provide already resolved rdma_ah_attr's 1668 */ 1669 if (udata && (attr_mask & IB_QP_AV) && 1670 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1671 is_qp_type_connected(qp)) { 1672 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1673 if (ret) 1674 goto out; 1675 } 1676 1677 if (rdma_ib_or_roce(qp->device, port)) { 1678 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1679 dev_warn(&qp->device->dev, 1680 "%s rq_psn overflow, masking to 24 bits\n", 1681 __func__); 1682 attr->rq_psn &= 0xffffff; 1683 } 1684 1685 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1686 dev_warn(&qp->device->dev, 1687 " %s sq_psn overflow, masking to 24 bits\n", 1688 __func__); 1689 attr->sq_psn &= 0xffffff; 1690 } 1691 } 1692 1693 /* 1694 * Bind this qp to a counter automatically based on the rdma counter 1695 * rules. This only set in RST2INIT with port specified 1696 */ 1697 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1698 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1699 rdma_counter_bind_qp_auto(qp, attr->port_num); 1700 1701 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1702 if (ret) 1703 goto out; 1704 1705 if (attr_mask & IB_QP_PORT) 1706 qp->port = attr->port_num; 1707 if (attr_mask & IB_QP_AV) 1708 qp->av_sgid_attr = 1709 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1710 if (attr_mask & IB_QP_ALT_PATH) 1711 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1712 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1713 1714 out: 1715 if (attr_mask & IB_QP_ALT_PATH) 1716 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1717 out_av: 1718 if (attr_mask & IB_QP_AV) 1719 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1720 return ret; 1721 } 1722 1723 /** 1724 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1725 * @ib_qp: The QP to modify. 1726 * @attr: On input, specifies the QP attributes to modify. On output, 1727 * the current values of selected QP attributes are returned. 1728 * @attr_mask: A bit-mask used to specify which attributes of the QP 1729 * are being modified. 1730 * @udata: pointer to user's input output buffer information 1731 * are being modified. 1732 * It returns 0 on success and returns appropriate error code on error. 1733 */ 1734 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1735 int attr_mask, struct ib_udata *udata) 1736 { 1737 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1738 } 1739 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1740 1741 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1742 { 1743 int rc; 1744 u32 netdev_speed; 1745 struct net_device *netdev; 1746 struct ethtool_link_ksettings lksettings; 1747 1748 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1749 return -EINVAL; 1750 1751 netdev = ib_device_get_netdev(dev, port_num); 1752 if (!netdev) 1753 return -ENODEV; 1754 1755 rtnl_lock(); 1756 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1757 rtnl_unlock(); 1758 1759 dev_put(netdev); 1760 1761 if (!rc) { 1762 netdev_speed = lksettings.base.speed; 1763 } else { 1764 netdev_speed = SPEED_1000; 1765 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1766 netdev_speed); 1767 } 1768 1769 if (netdev_speed <= SPEED_1000) { 1770 *width = IB_WIDTH_1X; 1771 *speed = IB_SPEED_SDR; 1772 } else if (netdev_speed <= SPEED_10000) { 1773 *width = IB_WIDTH_1X; 1774 *speed = IB_SPEED_FDR10; 1775 } else if (netdev_speed <= SPEED_20000) { 1776 *width = IB_WIDTH_4X; 1777 *speed = IB_SPEED_DDR; 1778 } else if (netdev_speed <= SPEED_25000) { 1779 *width = IB_WIDTH_1X; 1780 *speed = IB_SPEED_EDR; 1781 } else if (netdev_speed <= SPEED_40000) { 1782 *width = IB_WIDTH_4X; 1783 *speed = IB_SPEED_FDR10; 1784 } else { 1785 *width = IB_WIDTH_4X; 1786 *speed = IB_SPEED_EDR; 1787 } 1788 1789 return 0; 1790 } 1791 EXPORT_SYMBOL(ib_get_eth_speed); 1792 1793 int ib_modify_qp(struct ib_qp *qp, 1794 struct ib_qp_attr *qp_attr, 1795 int qp_attr_mask) 1796 { 1797 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1798 } 1799 EXPORT_SYMBOL(ib_modify_qp); 1800 1801 int ib_query_qp(struct ib_qp *qp, 1802 struct ib_qp_attr *qp_attr, 1803 int qp_attr_mask, 1804 struct ib_qp_init_attr *qp_init_attr) 1805 { 1806 qp_attr->ah_attr.grh.sgid_attr = NULL; 1807 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1808 1809 return qp->device->ops.query_qp ? 1810 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1811 qp_init_attr) : -EOPNOTSUPP; 1812 } 1813 EXPORT_SYMBOL(ib_query_qp); 1814 1815 int ib_close_qp(struct ib_qp *qp) 1816 { 1817 struct ib_qp *real_qp; 1818 unsigned long flags; 1819 1820 real_qp = qp->real_qp; 1821 if (real_qp == qp) 1822 return -EINVAL; 1823 1824 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1825 list_del(&qp->open_list); 1826 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1827 1828 atomic_dec(&real_qp->usecnt); 1829 if (qp->qp_sec) 1830 ib_close_shared_qp_security(qp->qp_sec); 1831 kfree(qp); 1832 1833 return 0; 1834 } 1835 EXPORT_SYMBOL(ib_close_qp); 1836 1837 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1838 { 1839 struct ib_xrcd *xrcd; 1840 struct ib_qp *real_qp; 1841 int ret; 1842 1843 real_qp = qp->real_qp; 1844 xrcd = real_qp->xrcd; 1845 1846 mutex_lock(&xrcd->tgt_qp_mutex); 1847 ib_close_qp(qp); 1848 if (atomic_read(&real_qp->usecnt) == 0) 1849 list_del(&real_qp->xrcd_list); 1850 else 1851 real_qp = NULL; 1852 mutex_unlock(&xrcd->tgt_qp_mutex); 1853 1854 if (real_qp) { 1855 ret = ib_destroy_qp(real_qp); 1856 if (!ret) 1857 atomic_dec(&xrcd->usecnt); 1858 else 1859 __ib_insert_xrcd_qp(xrcd, real_qp); 1860 } 1861 1862 return 0; 1863 } 1864 1865 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 1866 { 1867 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1868 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1869 struct ib_pd *pd; 1870 struct ib_cq *scq, *rcq; 1871 struct ib_srq *srq; 1872 struct ib_rwq_ind_table *ind_tbl; 1873 struct ib_qp_security *sec; 1874 int ret; 1875 1876 WARN_ON_ONCE(qp->mrs_used > 0); 1877 1878 if (atomic_read(&qp->usecnt)) 1879 return -EBUSY; 1880 1881 if (qp->real_qp != qp) 1882 return __ib_destroy_shared_qp(qp); 1883 1884 pd = qp->pd; 1885 scq = qp->send_cq; 1886 rcq = qp->recv_cq; 1887 srq = qp->srq; 1888 ind_tbl = qp->rwq_ind_tbl; 1889 sec = qp->qp_sec; 1890 if (sec) 1891 ib_destroy_qp_security_begin(sec); 1892 1893 if (!qp->uobject) 1894 rdma_rw_cleanup_mrs(qp); 1895 1896 rdma_counter_unbind_qp(qp, true); 1897 rdma_restrack_del(&qp->res); 1898 ret = qp->device->ops.destroy_qp(qp, udata); 1899 if (!ret) { 1900 if (alt_path_sgid_attr) 1901 rdma_put_gid_attr(alt_path_sgid_attr); 1902 if (av_sgid_attr) 1903 rdma_put_gid_attr(av_sgid_attr); 1904 if (pd) 1905 atomic_dec(&pd->usecnt); 1906 if (scq) 1907 atomic_dec(&scq->usecnt); 1908 if (rcq) 1909 atomic_dec(&rcq->usecnt); 1910 if (srq) 1911 atomic_dec(&srq->usecnt); 1912 if (ind_tbl) 1913 atomic_dec(&ind_tbl->usecnt); 1914 if (sec) 1915 ib_destroy_qp_security_end(sec); 1916 } else { 1917 if (sec) 1918 ib_destroy_qp_security_abort(sec); 1919 } 1920 1921 return ret; 1922 } 1923 EXPORT_SYMBOL(ib_destroy_qp_user); 1924 1925 /* Completion queues */ 1926 1927 struct ib_cq *__ib_create_cq(struct ib_device *device, 1928 ib_comp_handler comp_handler, 1929 void (*event_handler)(struct ib_event *, void *), 1930 void *cq_context, 1931 const struct ib_cq_init_attr *cq_attr, 1932 const char *caller) 1933 { 1934 struct ib_cq *cq; 1935 int ret; 1936 1937 cq = rdma_zalloc_drv_obj(device, ib_cq); 1938 if (!cq) 1939 return ERR_PTR(-ENOMEM); 1940 1941 cq->device = device; 1942 cq->uobject = NULL; 1943 cq->comp_handler = comp_handler; 1944 cq->event_handler = event_handler; 1945 cq->cq_context = cq_context; 1946 atomic_set(&cq->usecnt, 0); 1947 cq->res.type = RDMA_RESTRACK_CQ; 1948 rdma_restrack_set_task(&cq->res, caller); 1949 1950 ret = device->ops.create_cq(cq, cq_attr, NULL); 1951 if (ret) { 1952 kfree(cq); 1953 return ERR_PTR(ret); 1954 } 1955 1956 rdma_restrack_kadd(&cq->res); 1957 return cq; 1958 } 1959 EXPORT_SYMBOL(__ib_create_cq); 1960 1961 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1962 { 1963 return cq->device->ops.modify_cq ? 1964 cq->device->ops.modify_cq(cq, cq_count, 1965 cq_period) : -EOPNOTSUPP; 1966 } 1967 EXPORT_SYMBOL(rdma_set_cq_moderation); 1968 1969 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 1970 { 1971 if (atomic_read(&cq->usecnt)) 1972 return -EBUSY; 1973 1974 rdma_restrack_del(&cq->res); 1975 cq->device->ops.destroy_cq(cq, udata); 1976 kfree(cq); 1977 return 0; 1978 } 1979 EXPORT_SYMBOL(ib_destroy_cq_user); 1980 1981 int ib_resize_cq(struct ib_cq *cq, int cqe) 1982 { 1983 return cq->device->ops.resize_cq ? 1984 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1985 } 1986 EXPORT_SYMBOL(ib_resize_cq); 1987 1988 /* Memory regions */ 1989 1990 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 1991 { 1992 struct ib_pd *pd = mr->pd; 1993 struct ib_dm *dm = mr->dm; 1994 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 1995 int ret; 1996 1997 rdma_restrack_del(&mr->res); 1998 ret = mr->device->ops.dereg_mr(mr, udata); 1999 if (!ret) { 2000 atomic_dec(&pd->usecnt); 2001 if (dm) 2002 atomic_dec(&dm->usecnt); 2003 kfree(sig_attrs); 2004 } 2005 2006 return ret; 2007 } 2008 EXPORT_SYMBOL(ib_dereg_mr_user); 2009 2010 /** 2011 * ib_alloc_mr_user() - Allocates a memory region 2012 * @pd: protection domain associated with the region 2013 * @mr_type: memory region type 2014 * @max_num_sg: maximum sg entries available for registration. 2015 * @udata: user data or null for kernel objects 2016 * 2017 * Notes: 2018 * Memory registeration page/sg lists must not exceed max_num_sg. 2019 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2020 * max_num_sg * used_page_size. 2021 * 2022 */ 2023 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 2024 u32 max_num_sg, struct ib_udata *udata) 2025 { 2026 struct ib_mr *mr; 2027 2028 if (!pd->device->ops.alloc_mr) 2029 return ERR_PTR(-EOPNOTSUPP); 2030 2031 if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY)) 2032 return ERR_PTR(-EINVAL); 2033 2034 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata); 2035 if (!IS_ERR(mr)) { 2036 mr->device = pd->device; 2037 mr->pd = pd; 2038 mr->dm = NULL; 2039 mr->uobject = NULL; 2040 atomic_inc(&pd->usecnt); 2041 mr->need_inval = false; 2042 mr->res.type = RDMA_RESTRACK_MR; 2043 rdma_restrack_kadd(&mr->res); 2044 mr->type = mr_type; 2045 mr->sig_attrs = NULL; 2046 } 2047 2048 return mr; 2049 } 2050 EXPORT_SYMBOL(ib_alloc_mr_user); 2051 2052 /** 2053 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2054 * @pd: protection domain associated with the region 2055 * @max_num_data_sg: maximum data sg entries available for registration 2056 * @max_num_meta_sg: maximum metadata sg entries available for 2057 * registration 2058 * 2059 * Notes: 2060 * Memory registration page/sg lists must not exceed max_num_sg, 2061 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2062 * 2063 */ 2064 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2065 u32 max_num_data_sg, 2066 u32 max_num_meta_sg) 2067 { 2068 struct ib_mr *mr; 2069 struct ib_sig_attrs *sig_attrs; 2070 2071 if (!pd->device->ops.alloc_mr_integrity || 2072 !pd->device->ops.map_mr_sg_pi) 2073 return ERR_PTR(-EOPNOTSUPP); 2074 2075 if (!max_num_meta_sg) 2076 return ERR_PTR(-EINVAL); 2077 2078 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2079 if (!sig_attrs) 2080 return ERR_PTR(-ENOMEM); 2081 2082 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2083 max_num_meta_sg); 2084 if (IS_ERR(mr)) { 2085 kfree(sig_attrs); 2086 return mr; 2087 } 2088 2089 mr->device = pd->device; 2090 mr->pd = pd; 2091 mr->dm = NULL; 2092 mr->uobject = NULL; 2093 atomic_inc(&pd->usecnt); 2094 mr->need_inval = false; 2095 mr->res.type = RDMA_RESTRACK_MR; 2096 rdma_restrack_kadd(&mr->res); 2097 mr->type = IB_MR_TYPE_INTEGRITY; 2098 mr->sig_attrs = sig_attrs; 2099 2100 return mr; 2101 } 2102 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2103 2104 /* "Fast" memory regions */ 2105 2106 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2107 int mr_access_flags, 2108 struct ib_fmr_attr *fmr_attr) 2109 { 2110 struct ib_fmr *fmr; 2111 2112 if (!pd->device->ops.alloc_fmr) 2113 return ERR_PTR(-EOPNOTSUPP); 2114 2115 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr); 2116 if (!IS_ERR(fmr)) { 2117 fmr->device = pd->device; 2118 fmr->pd = pd; 2119 atomic_inc(&pd->usecnt); 2120 } 2121 2122 return fmr; 2123 } 2124 EXPORT_SYMBOL(ib_alloc_fmr); 2125 2126 int ib_unmap_fmr(struct list_head *fmr_list) 2127 { 2128 struct ib_fmr *fmr; 2129 2130 if (list_empty(fmr_list)) 2131 return 0; 2132 2133 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2134 return fmr->device->ops.unmap_fmr(fmr_list); 2135 } 2136 EXPORT_SYMBOL(ib_unmap_fmr); 2137 2138 int ib_dealloc_fmr(struct ib_fmr *fmr) 2139 { 2140 struct ib_pd *pd; 2141 int ret; 2142 2143 pd = fmr->pd; 2144 ret = fmr->device->ops.dealloc_fmr(fmr); 2145 if (!ret) 2146 atomic_dec(&pd->usecnt); 2147 2148 return ret; 2149 } 2150 EXPORT_SYMBOL(ib_dealloc_fmr); 2151 2152 /* Multicast groups */ 2153 2154 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2155 { 2156 struct ib_qp_init_attr init_attr = {}; 2157 struct ib_qp_attr attr = {}; 2158 int num_eth_ports = 0; 2159 int port; 2160 2161 /* If QP state >= init, it is assigned to a port and we can check this 2162 * port only. 2163 */ 2164 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2165 if (attr.qp_state >= IB_QPS_INIT) { 2166 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2167 IB_LINK_LAYER_INFINIBAND) 2168 return true; 2169 goto lid_check; 2170 } 2171 } 2172 2173 /* Can't get a quick answer, iterate over all ports */ 2174 for (port = 0; port < qp->device->phys_port_cnt; port++) 2175 if (rdma_port_get_link_layer(qp->device, port) != 2176 IB_LINK_LAYER_INFINIBAND) 2177 num_eth_ports++; 2178 2179 /* If we have at lease one Ethernet port, RoCE annex declares that 2180 * multicast LID should be ignored. We can't tell at this step if the 2181 * QP belongs to an IB or Ethernet port. 2182 */ 2183 if (num_eth_ports) 2184 return true; 2185 2186 /* If all the ports are IB, we can check according to IB spec. */ 2187 lid_check: 2188 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2189 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2190 } 2191 2192 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2193 { 2194 int ret; 2195 2196 if (!qp->device->ops.attach_mcast) 2197 return -EOPNOTSUPP; 2198 2199 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2200 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2201 return -EINVAL; 2202 2203 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2204 if (!ret) 2205 atomic_inc(&qp->usecnt); 2206 return ret; 2207 } 2208 EXPORT_SYMBOL(ib_attach_mcast); 2209 2210 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2211 { 2212 int ret; 2213 2214 if (!qp->device->ops.detach_mcast) 2215 return -EOPNOTSUPP; 2216 2217 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2218 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2219 return -EINVAL; 2220 2221 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2222 if (!ret) 2223 atomic_dec(&qp->usecnt); 2224 return ret; 2225 } 2226 EXPORT_SYMBOL(ib_detach_mcast); 2227 2228 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2229 { 2230 struct ib_xrcd *xrcd; 2231 2232 if (!device->ops.alloc_xrcd) 2233 return ERR_PTR(-EOPNOTSUPP); 2234 2235 xrcd = device->ops.alloc_xrcd(device, NULL); 2236 if (!IS_ERR(xrcd)) { 2237 xrcd->device = device; 2238 xrcd->inode = NULL; 2239 atomic_set(&xrcd->usecnt, 0); 2240 mutex_init(&xrcd->tgt_qp_mutex); 2241 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2242 } 2243 2244 return xrcd; 2245 } 2246 EXPORT_SYMBOL(__ib_alloc_xrcd); 2247 2248 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata) 2249 { 2250 struct ib_qp *qp; 2251 int ret; 2252 2253 if (atomic_read(&xrcd->usecnt)) 2254 return -EBUSY; 2255 2256 while (!list_empty(&xrcd->tgt_qp_list)) { 2257 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2258 ret = ib_destroy_qp(qp); 2259 if (ret) 2260 return ret; 2261 } 2262 2263 return xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2264 } 2265 EXPORT_SYMBOL(ib_dealloc_xrcd); 2266 2267 /** 2268 * ib_create_wq - Creates a WQ associated with the specified protection 2269 * domain. 2270 * @pd: The protection domain associated with the WQ. 2271 * @wq_attr: A list of initial attributes required to create the 2272 * WQ. If WQ creation succeeds, then the attributes are updated to 2273 * the actual capabilities of the created WQ. 2274 * 2275 * wq_attr->max_wr and wq_attr->max_sge determine 2276 * the requested size of the WQ, and set to the actual values allocated 2277 * on return. 2278 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2279 * at least as large as the requested values. 2280 */ 2281 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2282 struct ib_wq_init_attr *wq_attr) 2283 { 2284 struct ib_wq *wq; 2285 2286 if (!pd->device->ops.create_wq) 2287 return ERR_PTR(-EOPNOTSUPP); 2288 2289 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2290 if (!IS_ERR(wq)) { 2291 wq->event_handler = wq_attr->event_handler; 2292 wq->wq_context = wq_attr->wq_context; 2293 wq->wq_type = wq_attr->wq_type; 2294 wq->cq = wq_attr->cq; 2295 wq->device = pd->device; 2296 wq->pd = pd; 2297 wq->uobject = NULL; 2298 atomic_inc(&pd->usecnt); 2299 atomic_inc(&wq_attr->cq->usecnt); 2300 atomic_set(&wq->usecnt, 0); 2301 } 2302 return wq; 2303 } 2304 EXPORT_SYMBOL(ib_create_wq); 2305 2306 /** 2307 * ib_destroy_wq - Destroys the specified user WQ. 2308 * @wq: The WQ to destroy. 2309 * @udata: Valid user data 2310 */ 2311 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata) 2312 { 2313 struct ib_cq *cq = wq->cq; 2314 struct ib_pd *pd = wq->pd; 2315 2316 if (atomic_read(&wq->usecnt)) 2317 return -EBUSY; 2318 2319 wq->device->ops.destroy_wq(wq, udata); 2320 atomic_dec(&pd->usecnt); 2321 atomic_dec(&cq->usecnt); 2322 2323 return 0; 2324 } 2325 EXPORT_SYMBOL(ib_destroy_wq); 2326 2327 /** 2328 * ib_modify_wq - Modifies the specified WQ. 2329 * @wq: The WQ to modify. 2330 * @wq_attr: On input, specifies the WQ attributes to modify. 2331 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2332 * are being modified. 2333 * On output, the current values of selected WQ attributes are returned. 2334 */ 2335 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2336 u32 wq_attr_mask) 2337 { 2338 int err; 2339 2340 if (!wq->device->ops.modify_wq) 2341 return -EOPNOTSUPP; 2342 2343 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2344 return err; 2345 } 2346 EXPORT_SYMBOL(ib_modify_wq); 2347 2348 /* 2349 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2350 * @device: The device on which to create the rwq indirection table. 2351 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2352 * create the Indirection Table. 2353 * 2354 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2355 * than the created ib_rwq_ind_table object and the caller is responsible 2356 * for its memory allocation/free. 2357 */ 2358 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2359 struct ib_rwq_ind_table_init_attr *init_attr) 2360 { 2361 struct ib_rwq_ind_table *rwq_ind_table; 2362 int i; 2363 u32 table_size; 2364 2365 if (!device->ops.create_rwq_ind_table) 2366 return ERR_PTR(-EOPNOTSUPP); 2367 2368 table_size = (1 << init_attr->log_ind_tbl_size); 2369 rwq_ind_table = device->ops.create_rwq_ind_table(device, 2370 init_attr, NULL); 2371 if (IS_ERR(rwq_ind_table)) 2372 return rwq_ind_table; 2373 2374 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2375 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2376 rwq_ind_table->device = device; 2377 rwq_ind_table->uobject = NULL; 2378 atomic_set(&rwq_ind_table->usecnt, 0); 2379 2380 for (i = 0; i < table_size; i++) 2381 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2382 2383 return rwq_ind_table; 2384 } 2385 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2386 2387 /* 2388 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2389 * @wq_ind_table: The Indirection Table to destroy. 2390 */ 2391 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2392 { 2393 int err, i; 2394 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2395 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2396 2397 if (atomic_read(&rwq_ind_table->usecnt)) 2398 return -EBUSY; 2399 2400 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table); 2401 if (!err) { 2402 for (i = 0; i < table_size; i++) 2403 atomic_dec(&ind_tbl[i]->usecnt); 2404 } 2405 2406 return err; 2407 } 2408 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2409 2410 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2411 struct ib_mr_status *mr_status) 2412 { 2413 if (!mr->device->ops.check_mr_status) 2414 return -EOPNOTSUPP; 2415 2416 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2417 } 2418 EXPORT_SYMBOL(ib_check_mr_status); 2419 2420 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2421 int state) 2422 { 2423 if (!device->ops.set_vf_link_state) 2424 return -EOPNOTSUPP; 2425 2426 return device->ops.set_vf_link_state(device, vf, port, state); 2427 } 2428 EXPORT_SYMBOL(ib_set_vf_link_state); 2429 2430 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2431 struct ifla_vf_info *info) 2432 { 2433 if (!device->ops.get_vf_config) 2434 return -EOPNOTSUPP; 2435 2436 return device->ops.get_vf_config(device, vf, port, info); 2437 } 2438 EXPORT_SYMBOL(ib_get_vf_config); 2439 2440 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2441 struct ifla_vf_stats *stats) 2442 { 2443 if (!device->ops.get_vf_stats) 2444 return -EOPNOTSUPP; 2445 2446 return device->ops.get_vf_stats(device, vf, port, stats); 2447 } 2448 EXPORT_SYMBOL(ib_get_vf_stats); 2449 2450 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2451 int type) 2452 { 2453 if (!device->ops.set_vf_guid) 2454 return -EOPNOTSUPP; 2455 2456 return device->ops.set_vf_guid(device, vf, port, guid, type); 2457 } 2458 EXPORT_SYMBOL(ib_set_vf_guid); 2459 2460 /** 2461 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2462 * information) and set an appropriate memory region for registration. 2463 * @mr: memory region 2464 * @data_sg: dma mapped scatterlist for data 2465 * @data_sg_nents: number of entries in data_sg 2466 * @data_sg_offset: offset in bytes into data_sg 2467 * @meta_sg: dma mapped scatterlist for metadata 2468 * @meta_sg_nents: number of entries in meta_sg 2469 * @meta_sg_offset: offset in bytes into meta_sg 2470 * @page_size: page vector desired page size 2471 * 2472 * Constraints: 2473 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2474 * 2475 * Return: 0 on success. 2476 * 2477 * After this completes successfully, the memory region 2478 * is ready for registration. 2479 */ 2480 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2481 int data_sg_nents, unsigned int *data_sg_offset, 2482 struct scatterlist *meta_sg, int meta_sg_nents, 2483 unsigned int *meta_sg_offset, unsigned int page_size) 2484 { 2485 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2486 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2487 return -EOPNOTSUPP; 2488 2489 mr->page_size = page_size; 2490 2491 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2492 data_sg_offset, meta_sg, 2493 meta_sg_nents, meta_sg_offset); 2494 } 2495 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2496 2497 /** 2498 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2499 * and set it the memory region. 2500 * @mr: memory region 2501 * @sg: dma mapped scatterlist 2502 * @sg_nents: number of entries in sg 2503 * @sg_offset: offset in bytes into sg 2504 * @page_size: page vector desired page size 2505 * 2506 * Constraints: 2507 * - The first sg element is allowed to have an offset. 2508 * - Each sg element must either be aligned to page_size or virtually 2509 * contiguous to the previous element. In case an sg element has a 2510 * non-contiguous offset, the mapping prefix will not include it. 2511 * - The last sg element is allowed to have length less than page_size. 2512 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2513 * then only max_num_sg entries will be mapped. 2514 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2515 * constraints holds and the page_size argument is ignored. 2516 * 2517 * Returns the number of sg elements that were mapped to the memory region. 2518 * 2519 * After this completes successfully, the memory region 2520 * is ready for registration. 2521 */ 2522 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2523 unsigned int *sg_offset, unsigned int page_size) 2524 { 2525 if (unlikely(!mr->device->ops.map_mr_sg)) 2526 return -EOPNOTSUPP; 2527 2528 mr->page_size = page_size; 2529 2530 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2531 } 2532 EXPORT_SYMBOL(ib_map_mr_sg); 2533 2534 /** 2535 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2536 * to a page vector 2537 * @mr: memory region 2538 * @sgl: dma mapped scatterlist 2539 * @sg_nents: number of entries in sg 2540 * @sg_offset_p: IN: start offset in bytes into sg 2541 * OUT: offset in bytes for element n of the sg of the first 2542 * byte that has not been processed where n is the return 2543 * value of this function. 2544 * @set_page: driver page assignment function pointer 2545 * 2546 * Core service helper for drivers to convert the largest 2547 * prefix of given sg list to a page vector. The sg list 2548 * prefix converted is the prefix that meet the requirements 2549 * of ib_map_mr_sg. 2550 * 2551 * Returns the number of sg elements that were assigned to 2552 * a page vector. 2553 */ 2554 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2555 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2556 { 2557 struct scatterlist *sg; 2558 u64 last_end_dma_addr = 0; 2559 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2560 unsigned int last_page_off = 0; 2561 u64 page_mask = ~((u64)mr->page_size - 1); 2562 int i, ret; 2563 2564 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2565 return -EINVAL; 2566 2567 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2568 mr->length = 0; 2569 2570 for_each_sg(sgl, sg, sg_nents, i) { 2571 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2572 u64 prev_addr = dma_addr; 2573 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2574 u64 end_dma_addr = dma_addr + dma_len; 2575 u64 page_addr = dma_addr & page_mask; 2576 2577 /* 2578 * For the second and later elements, check whether either the 2579 * end of element i-1 or the start of element i is not aligned 2580 * on a page boundary. 2581 */ 2582 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2583 /* Stop mapping if there is a gap. */ 2584 if (last_end_dma_addr != dma_addr) 2585 break; 2586 2587 /* 2588 * Coalesce this element with the last. If it is small 2589 * enough just update mr->length. Otherwise start 2590 * mapping from the next page. 2591 */ 2592 goto next_page; 2593 } 2594 2595 do { 2596 ret = set_page(mr, page_addr); 2597 if (unlikely(ret < 0)) { 2598 sg_offset = prev_addr - sg_dma_address(sg); 2599 mr->length += prev_addr - dma_addr; 2600 if (sg_offset_p) 2601 *sg_offset_p = sg_offset; 2602 return i || sg_offset ? i : ret; 2603 } 2604 prev_addr = page_addr; 2605 next_page: 2606 page_addr += mr->page_size; 2607 } while (page_addr < end_dma_addr); 2608 2609 mr->length += dma_len; 2610 last_end_dma_addr = end_dma_addr; 2611 last_page_off = end_dma_addr & ~page_mask; 2612 2613 sg_offset = 0; 2614 } 2615 2616 if (sg_offset_p) 2617 *sg_offset_p = 0; 2618 return i; 2619 } 2620 EXPORT_SYMBOL(ib_sg_to_pages); 2621 2622 struct ib_drain_cqe { 2623 struct ib_cqe cqe; 2624 struct completion done; 2625 }; 2626 2627 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2628 { 2629 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2630 cqe); 2631 2632 complete(&cqe->done); 2633 } 2634 2635 /* 2636 * Post a WR and block until its completion is reaped for the SQ. 2637 */ 2638 static void __ib_drain_sq(struct ib_qp *qp) 2639 { 2640 struct ib_cq *cq = qp->send_cq; 2641 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2642 struct ib_drain_cqe sdrain; 2643 struct ib_rdma_wr swr = { 2644 .wr = { 2645 .next = NULL, 2646 { .wr_cqe = &sdrain.cqe, }, 2647 .opcode = IB_WR_RDMA_WRITE, 2648 }, 2649 }; 2650 int ret; 2651 2652 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2653 if (ret) { 2654 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2655 return; 2656 } 2657 2658 sdrain.cqe.done = ib_drain_qp_done; 2659 init_completion(&sdrain.done); 2660 2661 ret = ib_post_send(qp, &swr.wr, NULL); 2662 if (ret) { 2663 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2664 return; 2665 } 2666 2667 if (cq->poll_ctx == IB_POLL_DIRECT) 2668 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2669 ib_process_cq_direct(cq, -1); 2670 else 2671 wait_for_completion(&sdrain.done); 2672 } 2673 2674 /* 2675 * Post a WR and block until its completion is reaped for the RQ. 2676 */ 2677 static void __ib_drain_rq(struct ib_qp *qp) 2678 { 2679 struct ib_cq *cq = qp->recv_cq; 2680 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2681 struct ib_drain_cqe rdrain; 2682 struct ib_recv_wr rwr = {}; 2683 int ret; 2684 2685 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2686 if (ret) { 2687 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2688 return; 2689 } 2690 2691 rwr.wr_cqe = &rdrain.cqe; 2692 rdrain.cqe.done = ib_drain_qp_done; 2693 init_completion(&rdrain.done); 2694 2695 ret = ib_post_recv(qp, &rwr, NULL); 2696 if (ret) { 2697 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2698 return; 2699 } 2700 2701 if (cq->poll_ctx == IB_POLL_DIRECT) 2702 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2703 ib_process_cq_direct(cq, -1); 2704 else 2705 wait_for_completion(&rdrain.done); 2706 } 2707 2708 /** 2709 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2710 * application. 2711 * @qp: queue pair to drain 2712 * 2713 * If the device has a provider-specific drain function, then 2714 * call that. Otherwise call the generic drain function 2715 * __ib_drain_sq(). 2716 * 2717 * The caller must: 2718 * 2719 * ensure there is room in the CQ and SQ for the drain work request and 2720 * completion. 2721 * 2722 * allocate the CQ using ib_alloc_cq(). 2723 * 2724 * ensure that there are no other contexts that are posting WRs concurrently. 2725 * Otherwise the drain is not guaranteed. 2726 */ 2727 void ib_drain_sq(struct ib_qp *qp) 2728 { 2729 if (qp->device->ops.drain_sq) 2730 qp->device->ops.drain_sq(qp); 2731 else 2732 __ib_drain_sq(qp); 2733 } 2734 EXPORT_SYMBOL(ib_drain_sq); 2735 2736 /** 2737 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2738 * application. 2739 * @qp: queue pair to drain 2740 * 2741 * If the device has a provider-specific drain function, then 2742 * call that. Otherwise call the generic drain function 2743 * __ib_drain_rq(). 2744 * 2745 * The caller must: 2746 * 2747 * ensure there is room in the CQ and RQ for the drain work request and 2748 * completion. 2749 * 2750 * allocate the CQ using ib_alloc_cq(). 2751 * 2752 * ensure that there are no other contexts that are posting WRs concurrently. 2753 * Otherwise the drain is not guaranteed. 2754 */ 2755 void ib_drain_rq(struct ib_qp *qp) 2756 { 2757 if (qp->device->ops.drain_rq) 2758 qp->device->ops.drain_rq(qp); 2759 else 2760 __ib_drain_rq(qp); 2761 } 2762 EXPORT_SYMBOL(ib_drain_rq); 2763 2764 /** 2765 * ib_drain_qp() - Block until all CQEs have been consumed by the 2766 * application on both the RQ and SQ. 2767 * @qp: queue pair to drain 2768 * 2769 * The caller must: 2770 * 2771 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2772 * and completions. 2773 * 2774 * allocate the CQs using ib_alloc_cq(). 2775 * 2776 * ensure that there are no other contexts that are posting WRs concurrently. 2777 * Otherwise the drain is not guaranteed. 2778 */ 2779 void ib_drain_qp(struct ib_qp *qp) 2780 { 2781 ib_drain_sq(qp); 2782 if (!qp->srq) 2783 ib_drain_rq(qp); 2784 } 2785 EXPORT_SYMBOL(ib_drain_qp); 2786 2787 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 2788 enum rdma_netdev_t type, const char *name, 2789 unsigned char name_assign_type, 2790 void (*setup)(struct net_device *)) 2791 { 2792 struct rdma_netdev_alloc_params params; 2793 struct net_device *netdev; 2794 int rc; 2795 2796 if (!device->ops.rdma_netdev_get_params) 2797 return ERR_PTR(-EOPNOTSUPP); 2798 2799 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2800 ¶ms); 2801 if (rc) 2802 return ERR_PTR(rc); 2803 2804 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2805 setup, params.txqs, params.rxqs); 2806 if (!netdev) 2807 return ERR_PTR(-ENOMEM); 2808 2809 return netdev; 2810 } 2811 EXPORT_SYMBOL(rdma_alloc_netdev); 2812 2813 int rdma_init_netdev(struct ib_device *device, u8 port_num, 2814 enum rdma_netdev_t type, const char *name, 2815 unsigned char name_assign_type, 2816 void (*setup)(struct net_device *), 2817 struct net_device *netdev) 2818 { 2819 struct rdma_netdev_alloc_params params; 2820 int rc; 2821 2822 if (!device->ops.rdma_netdev_get_params) 2823 return -EOPNOTSUPP; 2824 2825 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2826 ¶ms); 2827 if (rc) 2828 return rc; 2829 2830 return params.initialize_rdma_netdev(device, port_num, 2831 netdev, params.param); 2832 } 2833 EXPORT_SYMBOL(rdma_init_netdev); 2834 2835 void __rdma_block_iter_start(struct ib_block_iter *biter, 2836 struct scatterlist *sglist, unsigned int nents, 2837 unsigned long pgsz) 2838 { 2839 memset(biter, 0, sizeof(struct ib_block_iter)); 2840 biter->__sg = sglist; 2841 biter->__sg_nents = nents; 2842 2843 /* Driver provides best block size to use */ 2844 biter->__pg_bit = __fls(pgsz); 2845 } 2846 EXPORT_SYMBOL(__rdma_block_iter_start); 2847 2848 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2849 { 2850 unsigned int block_offset; 2851 2852 if (!biter->__sg_nents || !biter->__sg) 2853 return false; 2854 2855 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2856 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2857 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2858 2859 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2860 biter->__sg_advance = 0; 2861 biter->__sg = sg_next(biter->__sg); 2862 biter->__sg_nents--; 2863 } 2864 2865 return true; 2866 } 2867 EXPORT_SYMBOL(__rdma_block_iter_next); 2868