1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static const char * const ib_events[] = { 57 [IB_EVENT_CQ_ERR] = "CQ error", 58 [IB_EVENT_QP_FATAL] = "QP fatal error", 59 [IB_EVENT_QP_REQ_ERR] = "QP request error", 60 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 61 [IB_EVENT_COMM_EST] = "communication established", 62 [IB_EVENT_SQ_DRAINED] = "send queue drained", 63 [IB_EVENT_PATH_MIG] = "path migration successful", 64 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 65 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 66 [IB_EVENT_PORT_ACTIVE] = "port active", 67 [IB_EVENT_PORT_ERR] = "port error", 68 [IB_EVENT_LID_CHANGE] = "LID change", 69 [IB_EVENT_PKEY_CHANGE] = "P_key change", 70 [IB_EVENT_SM_CHANGE] = "SM change", 71 [IB_EVENT_SRQ_ERR] = "SRQ error", 72 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 73 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 74 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 75 [IB_EVENT_GID_CHANGE] = "GID changed", 76 }; 77 78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 79 { 80 size_t index = event; 81 82 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 83 ib_events[index] : "unrecognized event"; 84 } 85 EXPORT_SYMBOL(ib_event_msg); 86 87 static const char * const wc_statuses[] = { 88 [IB_WC_SUCCESS] = "success", 89 [IB_WC_LOC_LEN_ERR] = "local length error", 90 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 91 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 92 [IB_WC_LOC_PROT_ERR] = "local protection error", 93 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 94 [IB_WC_MW_BIND_ERR] = "memory management operation error", 95 [IB_WC_BAD_RESP_ERR] = "bad response error", 96 [IB_WC_LOC_ACCESS_ERR] = "local access error", 97 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 98 [IB_WC_REM_ACCESS_ERR] = "remote access error", 99 [IB_WC_REM_OP_ERR] = "remote operation error", 100 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 101 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 102 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 103 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 104 [IB_WC_REM_ABORT_ERR] = "operation aborted", 105 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 106 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 107 [IB_WC_FATAL_ERR] = "fatal error", 108 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 109 [IB_WC_GENERAL_ERR] = "general error", 110 }; 111 112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 113 { 114 size_t index = status; 115 116 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 117 wc_statuses[index] : "unrecognized status"; 118 } 119 EXPORT_SYMBOL(ib_wc_status_msg); 120 121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 122 { 123 switch (rate) { 124 case IB_RATE_2_5_GBPS: return 1; 125 case IB_RATE_5_GBPS: return 2; 126 case IB_RATE_10_GBPS: return 4; 127 case IB_RATE_20_GBPS: return 8; 128 case IB_RATE_30_GBPS: return 12; 129 case IB_RATE_40_GBPS: return 16; 130 case IB_RATE_60_GBPS: return 24; 131 case IB_RATE_80_GBPS: return 32; 132 case IB_RATE_120_GBPS: return 48; 133 default: return -1; 134 } 135 } 136 EXPORT_SYMBOL(ib_rate_to_mult); 137 138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 139 { 140 switch (mult) { 141 case 1: return IB_RATE_2_5_GBPS; 142 case 2: return IB_RATE_5_GBPS; 143 case 4: return IB_RATE_10_GBPS; 144 case 8: return IB_RATE_20_GBPS; 145 case 12: return IB_RATE_30_GBPS; 146 case 16: return IB_RATE_40_GBPS; 147 case 24: return IB_RATE_60_GBPS; 148 case 32: return IB_RATE_80_GBPS; 149 case 48: return IB_RATE_120_GBPS; 150 default: return IB_RATE_PORT_CURRENT; 151 } 152 } 153 EXPORT_SYMBOL(mult_to_ib_rate); 154 155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 156 { 157 switch (rate) { 158 case IB_RATE_2_5_GBPS: return 2500; 159 case IB_RATE_5_GBPS: return 5000; 160 case IB_RATE_10_GBPS: return 10000; 161 case IB_RATE_20_GBPS: return 20000; 162 case IB_RATE_30_GBPS: return 30000; 163 case IB_RATE_40_GBPS: return 40000; 164 case IB_RATE_60_GBPS: return 60000; 165 case IB_RATE_80_GBPS: return 80000; 166 case IB_RATE_120_GBPS: return 120000; 167 case IB_RATE_14_GBPS: return 14062; 168 case IB_RATE_56_GBPS: return 56250; 169 case IB_RATE_112_GBPS: return 112500; 170 case IB_RATE_168_GBPS: return 168750; 171 case IB_RATE_25_GBPS: return 25781; 172 case IB_RATE_100_GBPS: return 103125; 173 case IB_RATE_200_GBPS: return 206250; 174 case IB_RATE_300_GBPS: return 309375; 175 default: return -1; 176 } 177 } 178 EXPORT_SYMBOL(ib_rate_to_mbps); 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(enum rdma_node_type node_type) 182 { 183 switch (node_type) { 184 case RDMA_NODE_IB_CA: 185 case RDMA_NODE_IB_SWITCH: 186 case RDMA_NODE_IB_ROUTER: 187 return RDMA_TRANSPORT_IB; 188 case RDMA_NODE_RNIC: 189 return RDMA_TRANSPORT_IWARP; 190 case RDMA_NODE_USNIC: 191 return RDMA_TRANSPORT_USNIC; 192 case RDMA_NODE_USNIC_UDP: 193 return RDMA_TRANSPORT_USNIC_UDP; 194 default: 195 BUG(); 196 return 0; 197 } 198 } 199 EXPORT_SYMBOL(rdma_node_get_transport); 200 201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 202 { 203 if (device->get_link_layer) 204 return device->get_link_layer(device, port_num); 205 206 switch (rdma_node_get_transport(device->node_type)) { 207 case RDMA_TRANSPORT_IB: 208 return IB_LINK_LAYER_INFINIBAND; 209 case RDMA_TRANSPORT_IWARP: 210 case RDMA_TRANSPORT_USNIC: 211 case RDMA_TRANSPORT_USNIC_UDP: 212 return IB_LINK_LAYER_ETHERNET; 213 default: 214 return IB_LINK_LAYER_UNSPECIFIED; 215 } 216 } 217 EXPORT_SYMBOL(rdma_port_get_link_layer); 218 219 /* Protection domains */ 220 221 /** 222 * ib_alloc_pd - Allocates an unused protection domain. 223 * @device: The device on which to allocate the protection domain. 224 * 225 * A protection domain object provides an association between QPs, shared 226 * receive queues, address handles, memory regions, and memory windows. 227 * 228 * Every PD has a local_dma_lkey which can be used as the lkey value for local 229 * memory operations. 230 */ 231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 232 const char *caller) 233 { 234 struct ib_pd *pd; 235 int mr_access_flags = 0; 236 237 pd = device->alloc_pd(device, NULL, NULL); 238 if (IS_ERR(pd)) 239 return pd; 240 241 pd->device = device; 242 pd->uobject = NULL; 243 pd->__internal_mr = NULL; 244 atomic_set(&pd->usecnt, 0); 245 pd->flags = flags; 246 247 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 248 pd->local_dma_lkey = device->local_dma_lkey; 249 else 250 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 251 252 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 253 pr_warn("%s: enabling unsafe global rkey\n", caller); 254 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 255 } 256 257 if (mr_access_flags) { 258 struct ib_mr *mr; 259 260 mr = pd->device->get_dma_mr(pd, mr_access_flags); 261 if (IS_ERR(mr)) { 262 ib_dealloc_pd(pd); 263 return ERR_CAST(mr); 264 } 265 266 mr->device = pd->device; 267 mr->pd = pd; 268 mr->uobject = NULL; 269 mr->need_inval = false; 270 271 pd->__internal_mr = mr; 272 273 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 274 pd->local_dma_lkey = pd->__internal_mr->lkey; 275 276 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 277 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 278 } 279 280 return pd; 281 } 282 EXPORT_SYMBOL(__ib_alloc_pd); 283 284 /** 285 * ib_dealloc_pd - Deallocates a protection domain. 286 * @pd: The protection domain to deallocate. 287 * 288 * It is an error to call this function while any resources in the pd still 289 * exist. The caller is responsible to synchronously destroy them and 290 * guarantee no new allocations will happen. 291 */ 292 void ib_dealloc_pd(struct ib_pd *pd) 293 { 294 int ret; 295 296 if (pd->__internal_mr) { 297 ret = pd->device->dereg_mr(pd->__internal_mr); 298 WARN_ON(ret); 299 pd->__internal_mr = NULL; 300 } 301 302 /* uverbs manipulates usecnt with proper locking, while the kabi 303 requires the caller to guarantee we can't race here. */ 304 WARN_ON(atomic_read(&pd->usecnt)); 305 306 /* Making delalloc_pd a void return is a WIP, no driver should return 307 an error here. */ 308 ret = pd->device->dealloc_pd(pd); 309 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 310 } 311 EXPORT_SYMBOL(ib_dealloc_pd); 312 313 /* Address handles */ 314 315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) 316 { 317 struct ib_ah *ah; 318 319 ah = pd->device->create_ah(pd, ah_attr, NULL); 320 321 if (!IS_ERR(ah)) { 322 ah->device = pd->device; 323 ah->pd = pd; 324 ah->uobject = NULL; 325 ah->type = ah_attr->type; 326 atomic_inc(&pd->usecnt); 327 } 328 329 return ah; 330 } 331 EXPORT_SYMBOL(rdma_create_ah); 332 333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 334 { 335 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 336 struct iphdr ip4h_checked; 337 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 338 339 /* If it's IPv6, the version must be 6, otherwise, the first 340 * 20 bytes (before the IPv4 header) are garbled. 341 */ 342 if (ip6h->version != 6) 343 return (ip4h->version == 4) ? 4 : 0; 344 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 345 346 /* RoCE v2 requires no options, thus header length 347 * must be 5 words 348 */ 349 if (ip4h->ihl != 5) 350 return 6; 351 352 /* Verify checksum. 353 * We can't write on scattered buffers so we need to copy to 354 * temp buffer. 355 */ 356 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 357 ip4h_checked.check = 0; 358 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 359 /* if IPv4 header checksum is OK, believe it */ 360 if (ip4h->check == ip4h_checked.check) 361 return 4; 362 return 6; 363 } 364 EXPORT_SYMBOL(ib_get_rdma_header_version); 365 366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 367 u8 port_num, 368 const struct ib_grh *grh) 369 { 370 int grh_version; 371 372 if (rdma_protocol_ib(device, port_num)) 373 return RDMA_NETWORK_IB; 374 375 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 376 377 if (grh_version == 4) 378 return RDMA_NETWORK_IPV4; 379 380 if (grh->next_hdr == IPPROTO_UDP) 381 return RDMA_NETWORK_IPV6; 382 383 return RDMA_NETWORK_ROCE_V1; 384 } 385 386 struct find_gid_index_context { 387 u16 vlan_id; 388 enum ib_gid_type gid_type; 389 }; 390 391 static bool find_gid_index(const union ib_gid *gid, 392 const struct ib_gid_attr *gid_attr, 393 void *context) 394 { 395 struct find_gid_index_context *ctx = 396 (struct find_gid_index_context *)context; 397 398 if (ctx->gid_type != gid_attr->gid_type) 399 return false; 400 401 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 402 (is_vlan_dev(gid_attr->ndev) && 403 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 404 return false; 405 406 return true; 407 } 408 409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 410 u16 vlan_id, const union ib_gid *sgid, 411 enum ib_gid_type gid_type, 412 u16 *gid_index) 413 { 414 struct find_gid_index_context context = {.vlan_id = vlan_id, 415 .gid_type = gid_type}; 416 417 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 418 &context, gid_index); 419 } 420 421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 422 enum rdma_network_type net_type, 423 union ib_gid *sgid, union ib_gid *dgid) 424 { 425 struct sockaddr_in src_in; 426 struct sockaddr_in dst_in; 427 __be32 src_saddr, dst_saddr; 428 429 if (!sgid || !dgid) 430 return -EINVAL; 431 432 if (net_type == RDMA_NETWORK_IPV4) { 433 memcpy(&src_in.sin_addr.s_addr, 434 &hdr->roce4grh.saddr, 4); 435 memcpy(&dst_in.sin_addr.s_addr, 436 &hdr->roce4grh.daddr, 4); 437 src_saddr = src_in.sin_addr.s_addr; 438 dst_saddr = dst_in.sin_addr.s_addr; 439 ipv6_addr_set_v4mapped(src_saddr, 440 (struct in6_addr *)sgid); 441 ipv6_addr_set_v4mapped(dst_saddr, 442 (struct in6_addr *)dgid); 443 return 0; 444 } else if (net_type == RDMA_NETWORK_IPV6 || 445 net_type == RDMA_NETWORK_IB) { 446 *dgid = hdr->ibgrh.dgid; 447 *sgid = hdr->ibgrh.sgid; 448 return 0; 449 } else { 450 return -EINVAL; 451 } 452 } 453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 454 455 /* 456 * This function creates ah from the incoming packet. 457 * Incoming packet has dgid of the receiver node on which this code is 458 * getting executed and, sgid contains the GID of the sender. 459 * 460 * When resolving mac address of destination, the arrived dgid is used 461 * as sgid and, sgid is used as dgid because sgid contains destinations 462 * GID whom to respond to. 463 * 464 * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the 465 * position of arguments dgid and sgid do not match the order of the 466 * parameters. 467 */ 468 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 469 const struct ib_wc *wc, const struct ib_grh *grh, 470 struct rdma_ah_attr *ah_attr) 471 { 472 u32 flow_class; 473 u16 gid_index; 474 int ret; 475 enum rdma_network_type net_type = RDMA_NETWORK_IB; 476 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 477 int hoplimit = 0xff; 478 union ib_gid dgid; 479 union ib_gid sgid; 480 481 memset(ah_attr, 0, sizeof *ah_attr); 482 ah_attr->type = rdma_ah_find_type(device, port_num); 483 if (rdma_cap_eth_ah(device, port_num)) { 484 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 485 net_type = wc->network_hdr_type; 486 else 487 net_type = ib_get_net_type_by_grh(device, port_num, grh); 488 gid_type = ib_network_to_gid_type(net_type); 489 } 490 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 491 &sgid, &dgid); 492 if (ret) 493 return ret; 494 495 if (rdma_protocol_roce(device, port_num)) { 496 int if_index = 0; 497 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 498 wc->vlan_id : 0xffff; 499 struct net_device *idev; 500 struct net_device *resolved_dev; 501 502 if (!(wc->wc_flags & IB_WC_GRH)) 503 return -EPROTOTYPE; 504 505 if (!device->get_netdev) 506 return -EOPNOTSUPP; 507 508 idev = device->get_netdev(device, port_num); 509 if (!idev) 510 return -ENODEV; 511 512 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, 513 ah_attr->roce.dmac, 514 wc->wc_flags & IB_WC_WITH_VLAN ? 515 NULL : &vlan_id, 516 &if_index, &hoplimit); 517 if (ret) { 518 dev_put(idev); 519 return ret; 520 } 521 522 resolved_dev = dev_get_by_index(&init_net, if_index); 523 rcu_read_lock(); 524 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, 525 resolved_dev)) 526 ret = -EHOSTUNREACH; 527 rcu_read_unlock(); 528 dev_put(idev); 529 dev_put(resolved_dev); 530 if (ret) 531 return ret; 532 533 ret = get_sgid_index_from_eth(device, port_num, vlan_id, 534 &dgid, gid_type, &gid_index); 535 if (ret) 536 return ret; 537 } 538 539 rdma_ah_set_dlid(ah_attr, wc->slid); 540 rdma_ah_set_sl(ah_attr, wc->sl); 541 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 542 rdma_ah_set_port_num(ah_attr, port_num); 543 544 if (wc->wc_flags & IB_WC_GRH) { 545 if (!rdma_cap_eth_ah(device, port_num)) { 546 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 547 ret = ib_find_cached_gid_by_port(device, &dgid, 548 IB_GID_TYPE_IB, 549 port_num, NULL, 550 &gid_index); 551 if (ret) 552 return ret; 553 } else { 554 gid_index = 0; 555 } 556 } 557 558 flow_class = be32_to_cpu(grh->version_tclass_flow); 559 rdma_ah_set_grh(ah_attr, &sgid, 560 flow_class & 0xFFFFF, 561 (u8)gid_index, hoplimit, 562 (flow_class >> 20) & 0xFF); 563 564 } 565 return 0; 566 } 567 EXPORT_SYMBOL(ib_init_ah_from_wc); 568 569 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 570 const struct ib_grh *grh, u8 port_num) 571 { 572 struct rdma_ah_attr ah_attr; 573 int ret; 574 575 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); 576 if (ret) 577 return ERR_PTR(ret); 578 579 return rdma_create_ah(pd, &ah_attr); 580 } 581 EXPORT_SYMBOL(ib_create_ah_from_wc); 582 583 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 584 { 585 if (ah->type != ah_attr->type) 586 return -EINVAL; 587 588 return ah->device->modify_ah ? 589 ah->device->modify_ah(ah, ah_attr) : 590 -ENOSYS; 591 } 592 EXPORT_SYMBOL(rdma_modify_ah); 593 594 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 595 { 596 return ah->device->query_ah ? 597 ah->device->query_ah(ah, ah_attr) : 598 -ENOSYS; 599 } 600 EXPORT_SYMBOL(rdma_query_ah); 601 602 int rdma_destroy_ah(struct ib_ah *ah) 603 { 604 struct ib_pd *pd; 605 int ret; 606 607 pd = ah->pd; 608 ret = ah->device->destroy_ah(ah); 609 if (!ret) 610 atomic_dec(&pd->usecnt); 611 612 return ret; 613 } 614 EXPORT_SYMBOL(rdma_destroy_ah); 615 616 /* Shared receive queues */ 617 618 struct ib_srq *ib_create_srq(struct ib_pd *pd, 619 struct ib_srq_init_attr *srq_init_attr) 620 { 621 struct ib_srq *srq; 622 623 if (!pd->device->create_srq) 624 return ERR_PTR(-ENOSYS); 625 626 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 627 628 if (!IS_ERR(srq)) { 629 srq->device = pd->device; 630 srq->pd = pd; 631 srq->uobject = NULL; 632 srq->event_handler = srq_init_attr->event_handler; 633 srq->srq_context = srq_init_attr->srq_context; 634 srq->srq_type = srq_init_attr->srq_type; 635 if (srq->srq_type == IB_SRQT_XRC) { 636 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 637 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq; 638 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 639 atomic_inc(&srq->ext.xrc.cq->usecnt); 640 } 641 atomic_inc(&pd->usecnt); 642 atomic_set(&srq->usecnt, 0); 643 } 644 645 return srq; 646 } 647 EXPORT_SYMBOL(ib_create_srq); 648 649 int ib_modify_srq(struct ib_srq *srq, 650 struct ib_srq_attr *srq_attr, 651 enum ib_srq_attr_mask srq_attr_mask) 652 { 653 return srq->device->modify_srq ? 654 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 655 -ENOSYS; 656 } 657 EXPORT_SYMBOL(ib_modify_srq); 658 659 int ib_query_srq(struct ib_srq *srq, 660 struct ib_srq_attr *srq_attr) 661 { 662 return srq->device->query_srq ? 663 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 664 } 665 EXPORT_SYMBOL(ib_query_srq); 666 667 int ib_destroy_srq(struct ib_srq *srq) 668 { 669 struct ib_pd *pd; 670 enum ib_srq_type srq_type; 671 struct ib_xrcd *uninitialized_var(xrcd); 672 struct ib_cq *uninitialized_var(cq); 673 int ret; 674 675 if (atomic_read(&srq->usecnt)) 676 return -EBUSY; 677 678 pd = srq->pd; 679 srq_type = srq->srq_type; 680 if (srq_type == IB_SRQT_XRC) { 681 xrcd = srq->ext.xrc.xrcd; 682 cq = srq->ext.xrc.cq; 683 } 684 685 ret = srq->device->destroy_srq(srq); 686 if (!ret) { 687 atomic_dec(&pd->usecnt); 688 if (srq_type == IB_SRQT_XRC) { 689 atomic_dec(&xrcd->usecnt); 690 atomic_dec(&cq->usecnt); 691 } 692 } 693 694 return ret; 695 } 696 EXPORT_SYMBOL(ib_destroy_srq); 697 698 /* Queue pairs */ 699 700 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 701 { 702 struct ib_qp *qp = context; 703 unsigned long flags; 704 705 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 706 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 707 if (event->element.qp->event_handler) 708 event->element.qp->event_handler(event, event->element.qp->qp_context); 709 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 710 } 711 712 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 713 { 714 mutex_lock(&xrcd->tgt_qp_mutex); 715 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 716 mutex_unlock(&xrcd->tgt_qp_mutex); 717 } 718 719 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 720 void (*event_handler)(struct ib_event *, void *), 721 void *qp_context) 722 { 723 struct ib_qp *qp; 724 unsigned long flags; 725 int err; 726 727 qp = kzalloc(sizeof *qp, GFP_KERNEL); 728 if (!qp) 729 return ERR_PTR(-ENOMEM); 730 731 qp->real_qp = real_qp; 732 err = ib_open_shared_qp_security(qp, real_qp->device); 733 if (err) { 734 kfree(qp); 735 return ERR_PTR(err); 736 } 737 738 qp->real_qp = real_qp; 739 atomic_inc(&real_qp->usecnt); 740 qp->device = real_qp->device; 741 qp->event_handler = event_handler; 742 qp->qp_context = qp_context; 743 qp->qp_num = real_qp->qp_num; 744 qp->qp_type = real_qp->qp_type; 745 746 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 747 list_add(&qp->open_list, &real_qp->open_list); 748 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 749 750 return qp; 751 } 752 753 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 754 struct ib_qp_open_attr *qp_open_attr) 755 { 756 struct ib_qp *qp, *real_qp; 757 758 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 759 return ERR_PTR(-EINVAL); 760 761 qp = ERR_PTR(-EINVAL); 762 mutex_lock(&xrcd->tgt_qp_mutex); 763 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 764 if (real_qp->qp_num == qp_open_attr->qp_num) { 765 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 766 qp_open_attr->qp_context); 767 break; 768 } 769 } 770 mutex_unlock(&xrcd->tgt_qp_mutex); 771 return qp; 772 } 773 EXPORT_SYMBOL(ib_open_qp); 774 775 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 776 struct ib_qp_init_attr *qp_init_attr) 777 { 778 struct ib_qp *real_qp = qp; 779 780 qp->event_handler = __ib_shared_qp_event_handler; 781 qp->qp_context = qp; 782 qp->pd = NULL; 783 qp->send_cq = qp->recv_cq = NULL; 784 qp->srq = NULL; 785 qp->xrcd = qp_init_attr->xrcd; 786 atomic_inc(&qp_init_attr->xrcd->usecnt); 787 INIT_LIST_HEAD(&qp->open_list); 788 789 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 790 qp_init_attr->qp_context); 791 if (!IS_ERR(qp)) 792 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 793 else 794 real_qp->device->destroy_qp(real_qp); 795 return qp; 796 } 797 798 struct ib_qp *ib_create_qp(struct ib_pd *pd, 799 struct ib_qp_init_attr *qp_init_attr) 800 { 801 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 802 struct ib_qp *qp; 803 int ret; 804 805 if (qp_init_attr->rwq_ind_tbl && 806 (qp_init_attr->recv_cq || 807 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 808 qp_init_attr->cap.max_recv_sge)) 809 return ERR_PTR(-EINVAL); 810 811 /* 812 * If the callers is using the RDMA API calculate the resources 813 * needed for the RDMA READ/WRITE operations. 814 * 815 * Note that these callers need to pass in a port number. 816 */ 817 if (qp_init_attr->cap.max_rdma_ctxs) 818 rdma_rw_init_qp(device, qp_init_attr); 819 820 qp = device->create_qp(pd, qp_init_attr, NULL); 821 if (IS_ERR(qp)) 822 return qp; 823 824 ret = ib_create_qp_security(qp, device); 825 if (ret) { 826 ib_destroy_qp(qp); 827 return ERR_PTR(ret); 828 } 829 830 qp->device = device; 831 qp->real_qp = qp; 832 qp->uobject = NULL; 833 qp->qp_type = qp_init_attr->qp_type; 834 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 835 836 atomic_set(&qp->usecnt, 0); 837 qp->mrs_used = 0; 838 spin_lock_init(&qp->mr_lock); 839 INIT_LIST_HEAD(&qp->rdma_mrs); 840 INIT_LIST_HEAD(&qp->sig_mrs); 841 842 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 843 return ib_create_xrc_qp(qp, qp_init_attr); 844 845 qp->event_handler = qp_init_attr->event_handler; 846 qp->qp_context = qp_init_attr->qp_context; 847 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 848 qp->recv_cq = NULL; 849 qp->srq = NULL; 850 } else { 851 qp->recv_cq = qp_init_attr->recv_cq; 852 if (qp_init_attr->recv_cq) 853 atomic_inc(&qp_init_attr->recv_cq->usecnt); 854 qp->srq = qp_init_attr->srq; 855 if (qp->srq) 856 atomic_inc(&qp_init_attr->srq->usecnt); 857 } 858 859 qp->pd = pd; 860 qp->send_cq = qp_init_attr->send_cq; 861 qp->xrcd = NULL; 862 863 atomic_inc(&pd->usecnt); 864 if (qp_init_attr->send_cq) 865 atomic_inc(&qp_init_attr->send_cq->usecnt); 866 if (qp_init_attr->rwq_ind_tbl) 867 atomic_inc(&qp->rwq_ind_tbl->usecnt); 868 869 if (qp_init_attr->cap.max_rdma_ctxs) { 870 ret = rdma_rw_init_mrs(qp, qp_init_attr); 871 if (ret) { 872 pr_err("failed to init MR pool ret= %d\n", ret); 873 ib_destroy_qp(qp); 874 return ERR_PTR(ret); 875 } 876 } 877 878 /* 879 * Note: all hw drivers guarantee that max_send_sge is lower than 880 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 881 * max_send_sge <= max_sge_rd. 882 */ 883 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 884 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 885 device->attrs.max_sge_rd); 886 887 return qp; 888 } 889 EXPORT_SYMBOL(ib_create_qp); 890 891 static const struct { 892 int valid; 893 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 894 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 895 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 896 [IB_QPS_RESET] = { 897 [IB_QPS_RESET] = { .valid = 1 }, 898 [IB_QPS_INIT] = { 899 .valid = 1, 900 .req_param = { 901 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 902 IB_QP_PORT | 903 IB_QP_QKEY), 904 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 905 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 906 IB_QP_PORT | 907 IB_QP_ACCESS_FLAGS), 908 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 909 IB_QP_PORT | 910 IB_QP_ACCESS_FLAGS), 911 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 912 IB_QP_PORT | 913 IB_QP_ACCESS_FLAGS), 914 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 915 IB_QP_PORT | 916 IB_QP_ACCESS_FLAGS), 917 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 918 IB_QP_QKEY), 919 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 920 IB_QP_QKEY), 921 } 922 }, 923 }, 924 [IB_QPS_INIT] = { 925 [IB_QPS_RESET] = { .valid = 1 }, 926 [IB_QPS_ERR] = { .valid = 1 }, 927 [IB_QPS_INIT] = { 928 .valid = 1, 929 .opt_param = { 930 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 931 IB_QP_PORT | 932 IB_QP_QKEY), 933 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 934 IB_QP_PORT | 935 IB_QP_ACCESS_FLAGS), 936 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 937 IB_QP_PORT | 938 IB_QP_ACCESS_FLAGS), 939 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 940 IB_QP_PORT | 941 IB_QP_ACCESS_FLAGS), 942 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 943 IB_QP_PORT | 944 IB_QP_ACCESS_FLAGS), 945 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 946 IB_QP_QKEY), 947 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 948 IB_QP_QKEY), 949 } 950 }, 951 [IB_QPS_RTR] = { 952 .valid = 1, 953 .req_param = { 954 [IB_QPT_UC] = (IB_QP_AV | 955 IB_QP_PATH_MTU | 956 IB_QP_DEST_QPN | 957 IB_QP_RQ_PSN), 958 [IB_QPT_RC] = (IB_QP_AV | 959 IB_QP_PATH_MTU | 960 IB_QP_DEST_QPN | 961 IB_QP_RQ_PSN | 962 IB_QP_MAX_DEST_RD_ATOMIC | 963 IB_QP_MIN_RNR_TIMER), 964 [IB_QPT_XRC_INI] = (IB_QP_AV | 965 IB_QP_PATH_MTU | 966 IB_QP_DEST_QPN | 967 IB_QP_RQ_PSN), 968 [IB_QPT_XRC_TGT] = (IB_QP_AV | 969 IB_QP_PATH_MTU | 970 IB_QP_DEST_QPN | 971 IB_QP_RQ_PSN | 972 IB_QP_MAX_DEST_RD_ATOMIC | 973 IB_QP_MIN_RNR_TIMER), 974 }, 975 .opt_param = { 976 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 977 IB_QP_QKEY), 978 [IB_QPT_UC] = (IB_QP_ALT_PATH | 979 IB_QP_ACCESS_FLAGS | 980 IB_QP_PKEY_INDEX), 981 [IB_QPT_RC] = (IB_QP_ALT_PATH | 982 IB_QP_ACCESS_FLAGS | 983 IB_QP_PKEY_INDEX), 984 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 985 IB_QP_ACCESS_FLAGS | 986 IB_QP_PKEY_INDEX), 987 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 988 IB_QP_ACCESS_FLAGS | 989 IB_QP_PKEY_INDEX), 990 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 991 IB_QP_QKEY), 992 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 993 IB_QP_QKEY), 994 }, 995 }, 996 }, 997 [IB_QPS_RTR] = { 998 [IB_QPS_RESET] = { .valid = 1 }, 999 [IB_QPS_ERR] = { .valid = 1 }, 1000 [IB_QPS_RTS] = { 1001 .valid = 1, 1002 .req_param = { 1003 [IB_QPT_UD] = IB_QP_SQ_PSN, 1004 [IB_QPT_UC] = IB_QP_SQ_PSN, 1005 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1006 IB_QP_RETRY_CNT | 1007 IB_QP_RNR_RETRY | 1008 IB_QP_SQ_PSN | 1009 IB_QP_MAX_QP_RD_ATOMIC), 1010 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1011 IB_QP_RETRY_CNT | 1012 IB_QP_RNR_RETRY | 1013 IB_QP_SQ_PSN | 1014 IB_QP_MAX_QP_RD_ATOMIC), 1015 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1016 IB_QP_SQ_PSN), 1017 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1018 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1019 }, 1020 .opt_param = { 1021 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1022 IB_QP_QKEY), 1023 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1024 IB_QP_ALT_PATH | 1025 IB_QP_ACCESS_FLAGS | 1026 IB_QP_PATH_MIG_STATE), 1027 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1028 IB_QP_ALT_PATH | 1029 IB_QP_ACCESS_FLAGS | 1030 IB_QP_MIN_RNR_TIMER | 1031 IB_QP_PATH_MIG_STATE), 1032 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1033 IB_QP_ALT_PATH | 1034 IB_QP_ACCESS_FLAGS | 1035 IB_QP_PATH_MIG_STATE), 1036 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1037 IB_QP_ALT_PATH | 1038 IB_QP_ACCESS_FLAGS | 1039 IB_QP_MIN_RNR_TIMER | 1040 IB_QP_PATH_MIG_STATE), 1041 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1042 IB_QP_QKEY), 1043 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1044 IB_QP_QKEY), 1045 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1046 } 1047 } 1048 }, 1049 [IB_QPS_RTS] = { 1050 [IB_QPS_RESET] = { .valid = 1 }, 1051 [IB_QPS_ERR] = { .valid = 1 }, 1052 [IB_QPS_RTS] = { 1053 .valid = 1, 1054 .opt_param = { 1055 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1056 IB_QP_QKEY), 1057 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1058 IB_QP_ACCESS_FLAGS | 1059 IB_QP_ALT_PATH | 1060 IB_QP_PATH_MIG_STATE), 1061 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1062 IB_QP_ACCESS_FLAGS | 1063 IB_QP_ALT_PATH | 1064 IB_QP_PATH_MIG_STATE | 1065 IB_QP_MIN_RNR_TIMER), 1066 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1067 IB_QP_ACCESS_FLAGS | 1068 IB_QP_ALT_PATH | 1069 IB_QP_PATH_MIG_STATE), 1070 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1071 IB_QP_ACCESS_FLAGS | 1072 IB_QP_ALT_PATH | 1073 IB_QP_PATH_MIG_STATE | 1074 IB_QP_MIN_RNR_TIMER), 1075 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1076 IB_QP_QKEY), 1077 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1078 IB_QP_QKEY), 1079 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1080 } 1081 }, 1082 [IB_QPS_SQD] = { 1083 .valid = 1, 1084 .opt_param = { 1085 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1086 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1087 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1088 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1089 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1090 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1091 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1092 } 1093 }, 1094 }, 1095 [IB_QPS_SQD] = { 1096 [IB_QPS_RESET] = { .valid = 1 }, 1097 [IB_QPS_ERR] = { .valid = 1 }, 1098 [IB_QPS_RTS] = { 1099 .valid = 1, 1100 .opt_param = { 1101 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1102 IB_QP_QKEY), 1103 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1104 IB_QP_ALT_PATH | 1105 IB_QP_ACCESS_FLAGS | 1106 IB_QP_PATH_MIG_STATE), 1107 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1108 IB_QP_ALT_PATH | 1109 IB_QP_ACCESS_FLAGS | 1110 IB_QP_MIN_RNR_TIMER | 1111 IB_QP_PATH_MIG_STATE), 1112 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1113 IB_QP_ALT_PATH | 1114 IB_QP_ACCESS_FLAGS | 1115 IB_QP_PATH_MIG_STATE), 1116 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1117 IB_QP_ALT_PATH | 1118 IB_QP_ACCESS_FLAGS | 1119 IB_QP_MIN_RNR_TIMER | 1120 IB_QP_PATH_MIG_STATE), 1121 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1122 IB_QP_QKEY), 1123 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1124 IB_QP_QKEY), 1125 } 1126 }, 1127 [IB_QPS_SQD] = { 1128 .valid = 1, 1129 .opt_param = { 1130 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1131 IB_QP_QKEY), 1132 [IB_QPT_UC] = (IB_QP_AV | 1133 IB_QP_ALT_PATH | 1134 IB_QP_ACCESS_FLAGS | 1135 IB_QP_PKEY_INDEX | 1136 IB_QP_PATH_MIG_STATE), 1137 [IB_QPT_RC] = (IB_QP_PORT | 1138 IB_QP_AV | 1139 IB_QP_TIMEOUT | 1140 IB_QP_RETRY_CNT | 1141 IB_QP_RNR_RETRY | 1142 IB_QP_MAX_QP_RD_ATOMIC | 1143 IB_QP_MAX_DEST_RD_ATOMIC | 1144 IB_QP_ALT_PATH | 1145 IB_QP_ACCESS_FLAGS | 1146 IB_QP_PKEY_INDEX | 1147 IB_QP_MIN_RNR_TIMER | 1148 IB_QP_PATH_MIG_STATE), 1149 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1150 IB_QP_AV | 1151 IB_QP_TIMEOUT | 1152 IB_QP_RETRY_CNT | 1153 IB_QP_RNR_RETRY | 1154 IB_QP_MAX_QP_RD_ATOMIC | 1155 IB_QP_ALT_PATH | 1156 IB_QP_ACCESS_FLAGS | 1157 IB_QP_PKEY_INDEX | 1158 IB_QP_PATH_MIG_STATE), 1159 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1160 IB_QP_AV | 1161 IB_QP_TIMEOUT | 1162 IB_QP_MAX_DEST_RD_ATOMIC | 1163 IB_QP_ALT_PATH | 1164 IB_QP_ACCESS_FLAGS | 1165 IB_QP_PKEY_INDEX | 1166 IB_QP_MIN_RNR_TIMER | 1167 IB_QP_PATH_MIG_STATE), 1168 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1169 IB_QP_QKEY), 1170 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1171 IB_QP_QKEY), 1172 } 1173 } 1174 }, 1175 [IB_QPS_SQE] = { 1176 [IB_QPS_RESET] = { .valid = 1 }, 1177 [IB_QPS_ERR] = { .valid = 1 }, 1178 [IB_QPS_RTS] = { 1179 .valid = 1, 1180 .opt_param = { 1181 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1182 IB_QP_QKEY), 1183 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1184 IB_QP_ACCESS_FLAGS), 1185 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1186 IB_QP_QKEY), 1187 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1188 IB_QP_QKEY), 1189 } 1190 } 1191 }, 1192 [IB_QPS_ERR] = { 1193 [IB_QPS_RESET] = { .valid = 1 }, 1194 [IB_QPS_ERR] = { .valid = 1 } 1195 } 1196 }; 1197 1198 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1199 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1200 enum rdma_link_layer ll) 1201 { 1202 enum ib_qp_attr_mask req_param, opt_param; 1203 1204 if (cur_state < 0 || cur_state > IB_QPS_ERR || 1205 next_state < 0 || next_state > IB_QPS_ERR) 1206 return 0; 1207 1208 if (mask & IB_QP_CUR_STATE && 1209 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1210 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1211 return 0; 1212 1213 if (!qp_state_table[cur_state][next_state].valid) 1214 return 0; 1215 1216 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1217 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1218 1219 if ((mask & req_param) != req_param) 1220 return 0; 1221 1222 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1223 return 0; 1224 1225 return 1; 1226 } 1227 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1228 1229 int ib_resolve_eth_dmac(struct ib_device *device, 1230 struct rdma_ah_attr *ah_attr) 1231 { 1232 int ret = 0; 1233 struct ib_global_route *grh; 1234 1235 if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) 1236 return -EINVAL; 1237 1238 if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE) 1239 return 0; 1240 1241 grh = rdma_ah_retrieve_grh(ah_attr); 1242 1243 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) { 1244 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 1245 ah_attr->roce.dmac); 1246 } else { 1247 union ib_gid sgid; 1248 struct ib_gid_attr sgid_attr; 1249 int ifindex; 1250 int hop_limit; 1251 1252 ret = ib_query_gid(device, 1253 rdma_ah_get_port_num(ah_attr), 1254 grh->sgid_index, 1255 &sgid, &sgid_attr); 1256 1257 if (ret || !sgid_attr.ndev) { 1258 if (!ret) 1259 ret = -ENXIO; 1260 goto out; 1261 } 1262 1263 ifindex = sgid_attr.ndev->ifindex; 1264 1265 ret = 1266 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, 1267 ah_attr->roce.dmac, 1268 NULL, &ifindex, &hop_limit); 1269 1270 dev_put(sgid_attr.ndev); 1271 1272 grh->hop_limit = hop_limit; 1273 } 1274 out: 1275 return ret; 1276 } 1277 EXPORT_SYMBOL(ib_resolve_eth_dmac); 1278 1279 /** 1280 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1281 * @qp: The QP to modify. 1282 * @attr: On input, specifies the QP attributes to modify. On output, 1283 * the current values of selected QP attributes are returned. 1284 * @attr_mask: A bit-mask used to specify which attributes of the QP 1285 * are being modified. 1286 * @udata: pointer to user's input output buffer information 1287 * are being modified. 1288 * It returns 0 on success and returns appropriate error code on error. 1289 */ 1290 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr, 1291 int attr_mask, struct ib_udata *udata) 1292 { 1293 int ret; 1294 1295 if (attr_mask & IB_QP_AV) { 1296 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1297 if (ret) 1298 return ret; 1299 } 1300 return ib_security_modify_qp(qp, attr, attr_mask, udata); 1301 } 1302 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1303 1304 int ib_modify_qp(struct ib_qp *qp, 1305 struct ib_qp_attr *qp_attr, 1306 int qp_attr_mask) 1307 { 1308 return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL); 1309 } 1310 EXPORT_SYMBOL(ib_modify_qp); 1311 1312 int ib_query_qp(struct ib_qp *qp, 1313 struct ib_qp_attr *qp_attr, 1314 int qp_attr_mask, 1315 struct ib_qp_init_attr *qp_init_attr) 1316 { 1317 return qp->device->query_qp ? 1318 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1319 -ENOSYS; 1320 } 1321 EXPORT_SYMBOL(ib_query_qp); 1322 1323 int ib_close_qp(struct ib_qp *qp) 1324 { 1325 struct ib_qp *real_qp; 1326 unsigned long flags; 1327 1328 real_qp = qp->real_qp; 1329 if (real_qp == qp) 1330 return -EINVAL; 1331 1332 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1333 list_del(&qp->open_list); 1334 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1335 1336 atomic_dec(&real_qp->usecnt); 1337 ib_close_shared_qp_security(qp->qp_sec); 1338 kfree(qp); 1339 1340 return 0; 1341 } 1342 EXPORT_SYMBOL(ib_close_qp); 1343 1344 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1345 { 1346 struct ib_xrcd *xrcd; 1347 struct ib_qp *real_qp; 1348 int ret; 1349 1350 real_qp = qp->real_qp; 1351 xrcd = real_qp->xrcd; 1352 1353 mutex_lock(&xrcd->tgt_qp_mutex); 1354 ib_close_qp(qp); 1355 if (atomic_read(&real_qp->usecnt) == 0) 1356 list_del(&real_qp->xrcd_list); 1357 else 1358 real_qp = NULL; 1359 mutex_unlock(&xrcd->tgt_qp_mutex); 1360 1361 if (real_qp) { 1362 ret = ib_destroy_qp(real_qp); 1363 if (!ret) 1364 atomic_dec(&xrcd->usecnt); 1365 else 1366 __ib_insert_xrcd_qp(xrcd, real_qp); 1367 } 1368 1369 return 0; 1370 } 1371 1372 int ib_destroy_qp(struct ib_qp *qp) 1373 { 1374 struct ib_pd *pd; 1375 struct ib_cq *scq, *rcq; 1376 struct ib_srq *srq; 1377 struct ib_rwq_ind_table *ind_tbl; 1378 struct ib_qp_security *sec; 1379 int ret; 1380 1381 WARN_ON_ONCE(qp->mrs_used > 0); 1382 1383 if (atomic_read(&qp->usecnt)) 1384 return -EBUSY; 1385 1386 if (qp->real_qp != qp) 1387 return __ib_destroy_shared_qp(qp); 1388 1389 pd = qp->pd; 1390 scq = qp->send_cq; 1391 rcq = qp->recv_cq; 1392 srq = qp->srq; 1393 ind_tbl = qp->rwq_ind_tbl; 1394 sec = qp->qp_sec; 1395 if (sec) 1396 ib_destroy_qp_security_begin(sec); 1397 1398 if (!qp->uobject) 1399 rdma_rw_cleanup_mrs(qp); 1400 1401 ret = qp->device->destroy_qp(qp); 1402 if (!ret) { 1403 if (pd) 1404 atomic_dec(&pd->usecnt); 1405 if (scq) 1406 atomic_dec(&scq->usecnt); 1407 if (rcq) 1408 atomic_dec(&rcq->usecnt); 1409 if (srq) 1410 atomic_dec(&srq->usecnt); 1411 if (ind_tbl) 1412 atomic_dec(&ind_tbl->usecnt); 1413 if (sec) 1414 ib_destroy_qp_security_end(sec); 1415 } else { 1416 if (sec) 1417 ib_destroy_qp_security_abort(sec); 1418 } 1419 1420 return ret; 1421 } 1422 EXPORT_SYMBOL(ib_destroy_qp); 1423 1424 /* Completion queues */ 1425 1426 struct ib_cq *ib_create_cq(struct ib_device *device, 1427 ib_comp_handler comp_handler, 1428 void (*event_handler)(struct ib_event *, void *), 1429 void *cq_context, 1430 const struct ib_cq_init_attr *cq_attr) 1431 { 1432 struct ib_cq *cq; 1433 1434 cq = device->create_cq(device, cq_attr, NULL, NULL); 1435 1436 if (!IS_ERR(cq)) { 1437 cq->device = device; 1438 cq->uobject = NULL; 1439 cq->comp_handler = comp_handler; 1440 cq->event_handler = event_handler; 1441 cq->cq_context = cq_context; 1442 atomic_set(&cq->usecnt, 0); 1443 } 1444 1445 return cq; 1446 } 1447 EXPORT_SYMBOL(ib_create_cq); 1448 1449 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1450 { 1451 return cq->device->modify_cq ? 1452 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1453 } 1454 EXPORT_SYMBOL(ib_modify_cq); 1455 1456 int ib_destroy_cq(struct ib_cq *cq) 1457 { 1458 if (atomic_read(&cq->usecnt)) 1459 return -EBUSY; 1460 1461 return cq->device->destroy_cq(cq); 1462 } 1463 EXPORT_SYMBOL(ib_destroy_cq); 1464 1465 int ib_resize_cq(struct ib_cq *cq, int cqe) 1466 { 1467 return cq->device->resize_cq ? 1468 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1469 } 1470 EXPORT_SYMBOL(ib_resize_cq); 1471 1472 /* Memory regions */ 1473 1474 int ib_dereg_mr(struct ib_mr *mr) 1475 { 1476 struct ib_pd *pd = mr->pd; 1477 int ret; 1478 1479 ret = mr->device->dereg_mr(mr); 1480 if (!ret) 1481 atomic_dec(&pd->usecnt); 1482 1483 return ret; 1484 } 1485 EXPORT_SYMBOL(ib_dereg_mr); 1486 1487 /** 1488 * ib_alloc_mr() - Allocates a memory region 1489 * @pd: protection domain associated with the region 1490 * @mr_type: memory region type 1491 * @max_num_sg: maximum sg entries available for registration. 1492 * 1493 * Notes: 1494 * Memory registeration page/sg lists must not exceed max_num_sg. 1495 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1496 * max_num_sg * used_page_size. 1497 * 1498 */ 1499 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1500 enum ib_mr_type mr_type, 1501 u32 max_num_sg) 1502 { 1503 struct ib_mr *mr; 1504 1505 if (!pd->device->alloc_mr) 1506 return ERR_PTR(-ENOSYS); 1507 1508 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1509 if (!IS_ERR(mr)) { 1510 mr->device = pd->device; 1511 mr->pd = pd; 1512 mr->uobject = NULL; 1513 atomic_inc(&pd->usecnt); 1514 mr->need_inval = false; 1515 } 1516 1517 return mr; 1518 } 1519 EXPORT_SYMBOL(ib_alloc_mr); 1520 1521 /* "Fast" memory regions */ 1522 1523 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1524 int mr_access_flags, 1525 struct ib_fmr_attr *fmr_attr) 1526 { 1527 struct ib_fmr *fmr; 1528 1529 if (!pd->device->alloc_fmr) 1530 return ERR_PTR(-ENOSYS); 1531 1532 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1533 if (!IS_ERR(fmr)) { 1534 fmr->device = pd->device; 1535 fmr->pd = pd; 1536 atomic_inc(&pd->usecnt); 1537 } 1538 1539 return fmr; 1540 } 1541 EXPORT_SYMBOL(ib_alloc_fmr); 1542 1543 int ib_unmap_fmr(struct list_head *fmr_list) 1544 { 1545 struct ib_fmr *fmr; 1546 1547 if (list_empty(fmr_list)) 1548 return 0; 1549 1550 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1551 return fmr->device->unmap_fmr(fmr_list); 1552 } 1553 EXPORT_SYMBOL(ib_unmap_fmr); 1554 1555 int ib_dealloc_fmr(struct ib_fmr *fmr) 1556 { 1557 struct ib_pd *pd; 1558 int ret; 1559 1560 pd = fmr->pd; 1561 ret = fmr->device->dealloc_fmr(fmr); 1562 if (!ret) 1563 atomic_dec(&pd->usecnt); 1564 1565 return ret; 1566 } 1567 EXPORT_SYMBOL(ib_dealloc_fmr); 1568 1569 /* Multicast groups */ 1570 1571 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1572 { 1573 int ret; 1574 1575 if (!qp->device->attach_mcast) 1576 return -ENOSYS; 1577 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || 1578 lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 1579 lid == be16_to_cpu(IB_LID_PERMISSIVE)) 1580 return -EINVAL; 1581 1582 ret = qp->device->attach_mcast(qp, gid, lid); 1583 if (!ret) 1584 atomic_inc(&qp->usecnt); 1585 return ret; 1586 } 1587 EXPORT_SYMBOL(ib_attach_mcast); 1588 1589 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1590 { 1591 int ret; 1592 1593 if (!qp->device->detach_mcast) 1594 return -ENOSYS; 1595 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD || 1596 lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 1597 lid == be16_to_cpu(IB_LID_PERMISSIVE)) 1598 return -EINVAL; 1599 1600 ret = qp->device->detach_mcast(qp, gid, lid); 1601 if (!ret) 1602 atomic_dec(&qp->usecnt); 1603 return ret; 1604 } 1605 EXPORT_SYMBOL(ib_detach_mcast); 1606 1607 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) 1608 { 1609 struct ib_xrcd *xrcd; 1610 1611 if (!device->alloc_xrcd) 1612 return ERR_PTR(-ENOSYS); 1613 1614 xrcd = device->alloc_xrcd(device, NULL, NULL); 1615 if (!IS_ERR(xrcd)) { 1616 xrcd->device = device; 1617 xrcd->inode = NULL; 1618 atomic_set(&xrcd->usecnt, 0); 1619 mutex_init(&xrcd->tgt_qp_mutex); 1620 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1621 } 1622 1623 return xrcd; 1624 } 1625 EXPORT_SYMBOL(ib_alloc_xrcd); 1626 1627 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1628 { 1629 struct ib_qp *qp; 1630 int ret; 1631 1632 if (atomic_read(&xrcd->usecnt)) 1633 return -EBUSY; 1634 1635 while (!list_empty(&xrcd->tgt_qp_list)) { 1636 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1637 ret = ib_destroy_qp(qp); 1638 if (ret) 1639 return ret; 1640 } 1641 1642 return xrcd->device->dealloc_xrcd(xrcd); 1643 } 1644 EXPORT_SYMBOL(ib_dealloc_xrcd); 1645 1646 /** 1647 * ib_create_wq - Creates a WQ associated with the specified protection 1648 * domain. 1649 * @pd: The protection domain associated with the WQ. 1650 * @wq_init_attr: A list of initial attributes required to create the 1651 * WQ. If WQ creation succeeds, then the attributes are updated to 1652 * the actual capabilities of the created WQ. 1653 * 1654 * wq_init_attr->max_wr and wq_init_attr->max_sge determine 1655 * the requested size of the WQ, and set to the actual values allocated 1656 * on return. 1657 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 1658 * at least as large as the requested values. 1659 */ 1660 struct ib_wq *ib_create_wq(struct ib_pd *pd, 1661 struct ib_wq_init_attr *wq_attr) 1662 { 1663 struct ib_wq *wq; 1664 1665 if (!pd->device->create_wq) 1666 return ERR_PTR(-ENOSYS); 1667 1668 wq = pd->device->create_wq(pd, wq_attr, NULL); 1669 if (!IS_ERR(wq)) { 1670 wq->event_handler = wq_attr->event_handler; 1671 wq->wq_context = wq_attr->wq_context; 1672 wq->wq_type = wq_attr->wq_type; 1673 wq->cq = wq_attr->cq; 1674 wq->device = pd->device; 1675 wq->pd = pd; 1676 wq->uobject = NULL; 1677 atomic_inc(&pd->usecnt); 1678 atomic_inc(&wq_attr->cq->usecnt); 1679 atomic_set(&wq->usecnt, 0); 1680 } 1681 return wq; 1682 } 1683 EXPORT_SYMBOL(ib_create_wq); 1684 1685 /** 1686 * ib_destroy_wq - Destroys the specified WQ. 1687 * @wq: The WQ to destroy. 1688 */ 1689 int ib_destroy_wq(struct ib_wq *wq) 1690 { 1691 int err; 1692 struct ib_cq *cq = wq->cq; 1693 struct ib_pd *pd = wq->pd; 1694 1695 if (atomic_read(&wq->usecnt)) 1696 return -EBUSY; 1697 1698 err = wq->device->destroy_wq(wq); 1699 if (!err) { 1700 atomic_dec(&pd->usecnt); 1701 atomic_dec(&cq->usecnt); 1702 } 1703 return err; 1704 } 1705 EXPORT_SYMBOL(ib_destroy_wq); 1706 1707 /** 1708 * ib_modify_wq - Modifies the specified WQ. 1709 * @wq: The WQ to modify. 1710 * @wq_attr: On input, specifies the WQ attributes to modify. 1711 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 1712 * are being modified. 1713 * On output, the current values of selected WQ attributes are returned. 1714 */ 1715 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 1716 u32 wq_attr_mask) 1717 { 1718 int err; 1719 1720 if (!wq->device->modify_wq) 1721 return -ENOSYS; 1722 1723 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); 1724 return err; 1725 } 1726 EXPORT_SYMBOL(ib_modify_wq); 1727 1728 /* 1729 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 1730 * @device: The device on which to create the rwq indirection table. 1731 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 1732 * create the Indirection Table. 1733 * 1734 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 1735 * than the created ib_rwq_ind_table object and the caller is responsible 1736 * for its memory allocation/free. 1737 */ 1738 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 1739 struct ib_rwq_ind_table_init_attr *init_attr) 1740 { 1741 struct ib_rwq_ind_table *rwq_ind_table; 1742 int i; 1743 u32 table_size; 1744 1745 if (!device->create_rwq_ind_table) 1746 return ERR_PTR(-ENOSYS); 1747 1748 table_size = (1 << init_attr->log_ind_tbl_size); 1749 rwq_ind_table = device->create_rwq_ind_table(device, 1750 init_attr, NULL); 1751 if (IS_ERR(rwq_ind_table)) 1752 return rwq_ind_table; 1753 1754 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 1755 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 1756 rwq_ind_table->device = device; 1757 rwq_ind_table->uobject = NULL; 1758 atomic_set(&rwq_ind_table->usecnt, 0); 1759 1760 for (i = 0; i < table_size; i++) 1761 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 1762 1763 return rwq_ind_table; 1764 } 1765 EXPORT_SYMBOL(ib_create_rwq_ind_table); 1766 1767 /* 1768 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 1769 * @wq_ind_table: The Indirection Table to destroy. 1770 */ 1771 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 1772 { 1773 int err, i; 1774 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 1775 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 1776 1777 if (atomic_read(&rwq_ind_table->usecnt)) 1778 return -EBUSY; 1779 1780 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); 1781 if (!err) { 1782 for (i = 0; i < table_size; i++) 1783 atomic_dec(&ind_tbl[i]->usecnt); 1784 } 1785 1786 return err; 1787 } 1788 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 1789 1790 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1791 struct ib_flow_attr *flow_attr, 1792 int domain) 1793 { 1794 struct ib_flow *flow_id; 1795 if (!qp->device->create_flow) 1796 return ERR_PTR(-ENOSYS); 1797 1798 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1799 if (!IS_ERR(flow_id)) { 1800 atomic_inc(&qp->usecnt); 1801 flow_id->qp = qp; 1802 } 1803 return flow_id; 1804 } 1805 EXPORT_SYMBOL(ib_create_flow); 1806 1807 int ib_destroy_flow(struct ib_flow *flow_id) 1808 { 1809 int err; 1810 struct ib_qp *qp = flow_id->qp; 1811 1812 err = qp->device->destroy_flow(flow_id); 1813 if (!err) 1814 atomic_dec(&qp->usecnt); 1815 return err; 1816 } 1817 EXPORT_SYMBOL(ib_destroy_flow); 1818 1819 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 1820 struct ib_mr_status *mr_status) 1821 { 1822 return mr->device->check_mr_status ? 1823 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 1824 } 1825 EXPORT_SYMBOL(ib_check_mr_status); 1826 1827 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 1828 int state) 1829 { 1830 if (!device->set_vf_link_state) 1831 return -ENOSYS; 1832 1833 return device->set_vf_link_state(device, vf, port, state); 1834 } 1835 EXPORT_SYMBOL(ib_set_vf_link_state); 1836 1837 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 1838 struct ifla_vf_info *info) 1839 { 1840 if (!device->get_vf_config) 1841 return -ENOSYS; 1842 1843 return device->get_vf_config(device, vf, port, info); 1844 } 1845 EXPORT_SYMBOL(ib_get_vf_config); 1846 1847 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 1848 struct ifla_vf_stats *stats) 1849 { 1850 if (!device->get_vf_stats) 1851 return -ENOSYS; 1852 1853 return device->get_vf_stats(device, vf, port, stats); 1854 } 1855 EXPORT_SYMBOL(ib_get_vf_stats); 1856 1857 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 1858 int type) 1859 { 1860 if (!device->set_vf_guid) 1861 return -ENOSYS; 1862 1863 return device->set_vf_guid(device, vf, port, guid, type); 1864 } 1865 EXPORT_SYMBOL(ib_set_vf_guid); 1866 1867 /** 1868 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 1869 * and set it the memory region. 1870 * @mr: memory region 1871 * @sg: dma mapped scatterlist 1872 * @sg_nents: number of entries in sg 1873 * @sg_offset: offset in bytes into sg 1874 * @page_size: page vector desired page size 1875 * 1876 * Constraints: 1877 * - The first sg element is allowed to have an offset. 1878 * - Each sg element must either be aligned to page_size or virtually 1879 * contiguous to the previous element. In case an sg element has a 1880 * non-contiguous offset, the mapping prefix will not include it. 1881 * - The last sg element is allowed to have length less than page_size. 1882 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 1883 * then only max_num_sg entries will be mapped. 1884 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 1885 * constraints holds and the page_size argument is ignored. 1886 * 1887 * Returns the number of sg elements that were mapped to the memory region. 1888 * 1889 * After this completes successfully, the memory region 1890 * is ready for registration. 1891 */ 1892 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 1893 unsigned int *sg_offset, unsigned int page_size) 1894 { 1895 if (unlikely(!mr->device->map_mr_sg)) 1896 return -ENOSYS; 1897 1898 mr->page_size = page_size; 1899 1900 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 1901 } 1902 EXPORT_SYMBOL(ib_map_mr_sg); 1903 1904 /** 1905 * ib_sg_to_pages() - Convert the largest prefix of a sg list 1906 * to a page vector 1907 * @mr: memory region 1908 * @sgl: dma mapped scatterlist 1909 * @sg_nents: number of entries in sg 1910 * @sg_offset_p: IN: start offset in bytes into sg 1911 * OUT: offset in bytes for element n of the sg of the first 1912 * byte that has not been processed where n is the return 1913 * value of this function. 1914 * @set_page: driver page assignment function pointer 1915 * 1916 * Core service helper for drivers to convert the largest 1917 * prefix of given sg list to a page vector. The sg list 1918 * prefix converted is the prefix that meet the requirements 1919 * of ib_map_mr_sg. 1920 * 1921 * Returns the number of sg elements that were assigned to 1922 * a page vector. 1923 */ 1924 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 1925 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 1926 { 1927 struct scatterlist *sg; 1928 u64 last_end_dma_addr = 0; 1929 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 1930 unsigned int last_page_off = 0; 1931 u64 page_mask = ~((u64)mr->page_size - 1); 1932 int i, ret; 1933 1934 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 1935 return -EINVAL; 1936 1937 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 1938 mr->length = 0; 1939 1940 for_each_sg(sgl, sg, sg_nents, i) { 1941 u64 dma_addr = sg_dma_address(sg) + sg_offset; 1942 u64 prev_addr = dma_addr; 1943 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 1944 u64 end_dma_addr = dma_addr + dma_len; 1945 u64 page_addr = dma_addr & page_mask; 1946 1947 /* 1948 * For the second and later elements, check whether either the 1949 * end of element i-1 or the start of element i is not aligned 1950 * on a page boundary. 1951 */ 1952 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 1953 /* Stop mapping if there is a gap. */ 1954 if (last_end_dma_addr != dma_addr) 1955 break; 1956 1957 /* 1958 * Coalesce this element with the last. If it is small 1959 * enough just update mr->length. Otherwise start 1960 * mapping from the next page. 1961 */ 1962 goto next_page; 1963 } 1964 1965 do { 1966 ret = set_page(mr, page_addr); 1967 if (unlikely(ret < 0)) { 1968 sg_offset = prev_addr - sg_dma_address(sg); 1969 mr->length += prev_addr - dma_addr; 1970 if (sg_offset_p) 1971 *sg_offset_p = sg_offset; 1972 return i || sg_offset ? i : ret; 1973 } 1974 prev_addr = page_addr; 1975 next_page: 1976 page_addr += mr->page_size; 1977 } while (page_addr < end_dma_addr); 1978 1979 mr->length += dma_len; 1980 last_end_dma_addr = end_dma_addr; 1981 last_page_off = end_dma_addr & ~page_mask; 1982 1983 sg_offset = 0; 1984 } 1985 1986 if (sg_offset_p) 1987 *sg_offset_p = 0; 1988 return i; 1989 } 1990 EXPORT_SYMBOL(ib_sg_to_pages); 1991 1992 struct ib_drain_cqe { 1993 struct ib_cqe cqe; 1994 struct completion done; 1995 }; 1996 1997 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 1998 { 1999 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2000 cqe); 2001 2002 complete(&cqe->done); 2003 } 2004 2005 /* 2006 * Post a WR and block until its completion is reaped for the SQ. 2007 */ 2008 static void __ib_drain_sq(struct ib_qp *qp) 2009 { 2010 struct ib_cq *cq = qp->send_cq; 2011 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2012 struct ib_drain_cqe sdrain; 2013 struct ib_send_wr swr = {}, *bad_swr; 2014 int ret; 2015 2016 swr.wr_cqe = &sdrain.cqe; 2017 sdrain.cqe.done = ib_drain_qp_done; 2018 init_completion(&sdrain.done); 2019 2020 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2021 if (ret) { 2022 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2023 return; 2024 } 2025 2026 ret = ib_post_send(qp, &swr, &bad_swr); 2027 if (ret) { 2028 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2029 return; 2030 } 2031 2032 if (cq->poll_ctx == IB_POLL_DIRECT) 2033 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2034 ib_process_cq_direct(cq, -1); 2035 else 2036 wait_for_completion(&sdrain.done); 2037 } 2038 2039 /* 2040 * Post a WR and block until its completion is reaped for the RQ. 2041 */ 2042 static void __ib_drain_rq(struct ib_qp *qp) 2043 { 2044 struct ib_cq *cq = qp->recv_cq; 2045 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2046 struct ib_drain_cqe rdrain; 2047 struct ib_recv_wr rwr = {}, *bad_rwr; 2048 int ret; 2049 2050 rwr.wr_cqe = &rdrain.cqe; 2051 rdrain.cqe.done = ib_drain_qp_done; 2052 init_completion(&rdrain.done); 2053 2054 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2055 if (ret) { 2056 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2057 return; 2058 } 2059 2060 ret = ib_post_recv(qp, &rwr, &bad_rwr); 2061 if (ret) { 2062 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2063 return; 2064 } 2065 2066 if (cq->poll_ctx == IB_POLL_DIRECT) 2067 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2068 ib_process_cq_direct(cq, -1); 2069 else 2070 wait_for_completion(&rdrain.done); 2071 } 2072 2073 /** 2074 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2075 * application. 2076 * @qp: queue pair to drain 2077 * 2078 * If the device has a provider-specific drain function, then 2079 * call that. Otherwise call the generic drain function 2080 * __ib_drain_sq(). 2081 * 2082 * The caller must: 2083 * 2084 * ensure there is room in the CQ and SQ for the drain work request and 2085 * completion. 2086 * 2087 * allocate the CQ using ib_alloc_cq(). 2088 * 2089 * ensure that there are no other contexts that are posting WRs concurrently. 2090 * Otherwise the drain is not guaranteed. 2091 */ 2092 void ib_drain_sq(struct ib_qp *qp) 2093 { 2094 if (qp->device->drain_sq) 2095 qp->device->drain_sq(qp); 2096 else 2097 __ib_drain_sq(qp); 2098 } 2099 EXPORT_SYMBOL(ib_drain_sq); 2100 2101 /** 2102 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2103 * application. 2104 * @qp: queue pair to drain 2105 * 2106 * If the device has a provider-specific drain function, then 2107 * call that. Otherwise call the generic drain function 2108 * __ib_drain_rq(). 2109 * 2110 * The caller must: 2111 * 2112 * ensure there is room in the CQ and RQ for the drain work request and 2113 * completion. 2114 * 2115 * allocate the CQ using ib_alloc_cq(). 2116 * 2117 * ensure that there are no other contexts that are posting WRs concurrently. 2118 * Otherwise the drain is not guaranteed. 2119 */ 2120 void ib_drain_rq(struct ib_qp *qp) 2121 { 2122 if (qp->device->drain_rq) 2123 qp->device->drain_rq(qp); 2124 else 2125 __ib_drain_rq(qp); 2126 } 2127 EXPORT_SYMBOL(ib_drain_rq); 2128 2129 /** 2130 * ib_drain_qp() - Block until all CQEs have been consumed by the 2131 * application on both the RQ and SQ. 2132 * @qp: queue pair to drain 2133 * 2134 * The caller must: 2135 * 2136 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2137 * and completions. 2138 * 2139 * allocate the CQs using ib_alloc_cq(). 2140 * 2141 * ensure that there are no other contexts that are posting WRs concurrently. 2142 * Otherwise the drain is not guaranteed. 2143 */ 2144 void ib_drain_qp(struct ib_qp *qp) 2145 { 2146 ib_drain_sq(qp); 2147 if (!qp->srq) 2148 ib_drain_rq(qp); 2149 } 2150 EXPORT_SYMBOL(ib_drain_qp); 2151