xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision c8dbaa22)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 
56 static const char * const ib_events[] = {
57 	[IB_EVENT_CQ_ERR]		= "CQ error",
58 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
59 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
60 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
61 	[IB_EVENT_COMM_EST]		= "communication established",
62 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
63 	[IB_EVENT_PATH_MIG]		= "path migration successful",
64 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
65 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
66 	[IB_EVENT_PORT_ACTIVE]		= "port active",
67 	[IB_EVENT_PORT_ERR]		= "port error",
68 	[IB_EVENT_LID_CHANGE]		= "LID change",
69 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
70 	[IB_EVENT_SM_CHANGE]		= "SM change",
71 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
72 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
73 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
74 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
75 	[IB_EVENT_GID_CHANGE]		= "GID changed",
76 };
77 
78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80 	size_t index = event;
81 
82 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83 			ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86 
87 static const char * const wc_statuses[] = {
88 	[IB_WC_SUCCESS]			= "success",
89 	[IB_WC_LOC_LEN_ERR]		= "local length error",
90 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
91 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
92 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
93 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
94 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
95 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
96 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
97 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
98 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
99 	[IB_WC_REM_OP_ERR]		= "remote operation error",
100 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
101 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
102 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
103 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
104 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
105 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
106 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
107 	[IB_WC_FATAL_ERR]		= "fatal error",
108 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
109 	[IB_WC_GENERAL_ERR]		= "general error",
110 };
111 
112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114 	size_t index = status;
115 
116 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117 			wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120 
121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123 	switch (rate) {
124 	case IB_RATE_2_5_GBPS: return  1;
125 	case IB_RATE_5_GBPS:   return  2;
126 	case IB_RATE_10_GBPS:  return  4;
127 	case IB_RATE_20_GBPS:  return  8;
128 	case IB_RATE_30_GBPS:  return 12;
129 	case IB_RATE_40_GBPS:  return 16;
130 	case IB_RATE_60_GBPS:  return 24;
131 	case IB_RATE_80_GBPS:  return 32;
132 	case IB_RATE_120_GBPS: return 48;
133 	default:	       return -1;
134 	}
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137 
138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140 	switch (mult) {
141 	case 1:  return IB_RATE_2_5_GBPS;
142 	case 2:  return IB_RATE_5_GBPS;
143 	case 4:  return IB_RATE_10_GBPS;
144 	case 8:  return IB_RATE_20_GBPS;
145 	case 12: return IB_RATE_30_GBPS;
146 	case 16: return IB_RATE_40_GBPS;
147 	case 24: return IB_RATE_60_GBPS;
148 	case 32: return IB_RATE_80_GBPS;
149 	case 48: return IB_RATE_120_GBPS;
150 	default: return IB_RATE_PORT_CURRENT;
151 	}
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154 
155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157 	switch (rate) {
158 	case IB_RATE_2_5_GBPS: return 2500;
159 	case IB_RATE_5_GBPS:   return 5000;
160 	case IB_RATE_10_GBPS:  return 10000;
161 	case IB_RATE_20_GBPS:  return 20000;
162 	case IB_RATE_30_GBPS:  return 30000;
163 	case IB_RATE_40_GBPS:  return 40000;
164 	case IB_RATE_60_GBPS:  return 60000;
165 	case IB_RATE_80_GBPS:  return 80000;
166 	case IB_RATE_120_GBPS: return 120000;
167 	case IB_RATE_14_GBPS:  return 14062;
168 	case IB_RATE_56_GBPS:  return 56250;
169 	case IB_RATE_112_GBPS: return 112500;
170 	case IB_RATE_168_GBPS: return 168750;
171 	case IB_RATE_25_GBPS:  return 25781;
172 	case IB_RATE_100_GBPS: return 103125;
173 	case IB_RATE_200_GBPS: return 206250;
174 	case IB_RATE_300_GBPS: return 309375;
175 	default:	       return -1;
176 	}
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179 
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183 	switch (node_type) {
184 	case RDMA_NODE_IB_CA:
185 	case RDMA_NODE_IB_SWITCH:
186 	case RDMA_NODE_IB_ROUTER:
187 		return RDMA_TRANSPORT_IB;
188 	case RDMA_NODE_RNIC:
189 		return RDMA_TRANSPORT_IWARP;
190 	case RDMA_NODE_USNIC:
191 		return RDMA_TRANSPORT_USNIC;
192 	case RDMA_NODE_USNIC_UDP:
193 		return RDMA_TRANSPORT_USNIC_UDP;
194 	default:
195 		BUG();
196 		return 0;
197 	}
198 }
199 EXPORT_SYMBOL(rdma_node_get_transport);
200 
201 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
202 {
203 	if (device->get_link_layer)
204 		return device->get_link_layer(device, port_num);
205 
206 	switch (rdma_node_get_transport(device->node_type)) {
207 	case RDMA_TRANSPORT_IB:
208 		return IB_LINK_LAYER_INFINIBAND;
209 	case RDMA_TRANSPORT_IWARP:
210 	case RDMA_TRANSPORT_USNIC:
211 	case RDMA_TRANSPORT_USNIC_UDP:
212 		return IB_LINK_LAYER_ETHERNET;
213 	default:
214 		return IB_LINK_LAYER_UNSPECIFIED;
215 	}
216 }
217 EXPORT_SYMBOL(rdma_port_get_link_layer);
218 
219 /* Protection domains */
220 
221 /**
222  * ib_alloc_pd - Allocates an unused protection domain.
223  * @device: The device on which to allocate the protection domain.
224  *
225  * A protection domain object provides an association between QPs, shared
226  * receive queues, address handles, memory regions, and memory windows.
227  *
228  * Every PD has a local_dma_lkey which can be used as the lkey value for local
229  * memory operations.
230  */
231 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
232 		const char *caller)
233 {
234 	struct ib_pd *pd;
235 	int mr_access_flags = 0;
236 
237 	pd = device->alloc_pd(device, NULL, NULL);
238 	if (IS_ERR(pd))
239 		return pd;
240 
241 	pd->device = device;
242 	pd->uobject = NULL;
243 	pd->__internal_mr = NULL;
244 	atomic_set(&pd->usecnt, 0);
245 	pd->flags = flags;
246 
247 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
248 		pd->local_dma_lkey = device->local_dma_lkey;
249 	else
250 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
251 
252 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
253 		pr_warn("%s: enabling unsafe global rkey\n", caller);
254 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
255 	}
256 
257 	if (mr_access_flags) {
258 		struct ib_mr *mr;
259 
260 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
261 		if (IS_ERR(mr)) {
262 			ib_dealloc_pd(pd);
263 			return ERR_CAST(mr);
264 		}
265 
266 		mr->device	= pd->device;
267 		mr->pd		= pd;
268 		mr->uobject	= NULL;
269 		mr->need_inval	= false;
270 
271 		pd->__internal_mr = mr;
272 
273 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
274 			pd->local_dma_lkey = pd->__internal_mr->lkey;
275 
276 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
277 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
278 	}
279 
280 	return pd;
281 }
282 EXPORT_SYMBOL(__ib_alloc_pd);
283 
284 /**
285  * ib_dealloc_pd - Deallocates a protection domain.
286  * @pd: The protection domain to deallocate.
287  *
288  * It is an error to call this function while any resources in the pd still
289  * exist.  The caller is responsible to synchronously destroy them and
290  * guarantee no new allocations will happen.
291  */
292 void ib_dealloc_pd(struct ib_pd *pd)
293 {
294 	int ret;
295 
296 	if (pd->__internal_mr) {
297 		ret = pd->device->dereg_mr(pd->__internal_mr);
298 		WARN_ON(ret);
299 		pd->__internal_mr = NULL;
300 	}
301 
302 	/* uverbs manipulates usecnt with proper locking, while the kabi
303 	   requires the caller to guarantee we can't race here. */
304 	WARN_ON(atomic_read(&pd->usecnt));
305 
306 	/* Making delalloc_pd a void return is a WIP, no driver should return
307 	   an error here. */
308 	ret = pd->device->dealloc_pd(pd);
309 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
310 }
311 EXPORT_SYMBOL(ib_dealloc_pd);
312 
313 /* Address handles */
314 
315 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
316 {
317 	struct ib_ah *ah;
318 
319 	ah = pd->device->create_ah(pd, ah_attr, NULL);
320 
321 	if (!IS_ERR(ah)) {
322 		ah->device  = pd->device;
323 		ah->pd      = pd;
324 		ah->uobject = NULL;
325 		ah->type    = ah_attr->type;
326 		atomic_inc(&pd->usecnt);
327 	}
328 
329 	return ah;
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332 
333 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
334 {
335 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
336 	struct iphdr ip4h_checked;
337 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
338 
339 	/* If it's IPv6, the version must be 6, otherwise, the first
340 	 * 20 bytes (before the IPv4 header) are garbled.
341 	 */
342 	if (ip6h->version != 6)
343 		return (ip4h->version == 4) ? 4 : 0;
344 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
345 
346 	/* RoCE v2 requires no options, thus header length
347 	 * must be 5 words
348 	 */
349 	if (ip4h->ihl != 5)
350 		return 6;
351 
352 	/* Verify checksum.
353 	 * We can't write on scattered buffers so we need to copy to
354 	 * temp buffer.
355 	 */
356 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
357 	ip4h_checked.check = 0;
358 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
359 	/* if IPv4 header checksum is OK, believe it */
360 	if (ip4h->check == ip4h_checked.check)
361 		return 4;
362 	return 6;
363 }
364 EXPORT_SYMBOL(ib_get_rdma_header_version);
365 
366 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
367 						     u8 port_num,
368 						     const struct ib_grh *grh)
369 {
370 	int grh_version;
371 
372 	if (rdma_protocol_ib(device, port_num))
373 		return RDMA_NETWORK_IB;
374 
375 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
376 
377 	if (grh_version == 4)
378 		return RDMA_NETWORK_IPV4;
379 
380 	if (grh->next_hdr == IPPROTO_UDP)
381 		return RDMA_NETWORK_IPV6;
382 
383 	return RDMA_NETWORK_ROCE_V1;
384 }
385 
386 struct find_gid_index_context {
387 	u16 vlan_id;
388 	enum ib_gid_type gid_type;
389 };
390 
391 static bool find_gid_index(const union ib_gid *gid,
392 			   const struct ib_gid_attr *gid_attr,
393 			   void *context)
394 {
395 	struct find_gid_index_context *ctx =
396 		(struct find_gid_index_context *)context;
397 
398 	if (ctx->gid_type != gid_attr->gid_type)
399 		return false;
400 
401 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
402 	    (is_vlan_dev(gid_attr->ndev) &&
403 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
404 		return false;
405 
406 	return true;
407 }
408 
409 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
410 				   u16 vlan_id, const union ib_gid *sgid,
411 				   enum ib_gid_type gid_type,
412 				   u16 *gid_index)
413 {
414 	struct find_gid_index_context context = {.vlan_id = vlan_id,
415 						 .gid_type = gid_type};
416 
417 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
418 				     &context, gid_index);
419 }
420 
421 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
422 			      enum rdma_network_type net_type,
423 			      union ib_gid *sgid, union ib_gid *dgid)
424 {
425 	struct sockaddr_in  src_in;
426 	struct sockaddr_in  dst_in;
427 	__be32 src_saddr, dst_saddr;
428 
429 	if (!sgid || !dgid)
430 		return -EINVAL;
431 
432 	if (net_type == RDMA_NETWORK_IPV4) {
433 		memcpy(&src_in.sin_addr.s_addr,
434 		       &hdr->roce4grh.saddr, 4);
435 		memcpy(&dst_in.sin_addr.s_addr,
436 		       &hdr->roce4grh.daddr, 4);
437 		src_saddr = src_in.sin_addr.s_addr;
438 		dst_saddr = dst_in.sin_addr.s_addr;
439 		ipv6_addr_set_v4mapped(src_saddr,
440 				       (struct in6_addr *)sgid);
441 		ipv6_addr_set_v4mapped(dst_saddr,
442 				       (struct in6_addr *)dgid);
443 		return 0;
444 	} else if (net_type == RDMA_NETWORK_IPV6 ||
445 		   net_type == RDMA_NETWORK_IB) {
446 		*dgid = hdr->ibgrh.dgid;
447 		*sgid = hdr->ibgrh.sgid;
448 		return 0;
449 	} else {
450 		return -EINVAL;
451 	}
452 }
453 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
454 
455 /*
456  * This function creates ah from the incoming packet.
457  * Incoming packet has dgid of the receiver node on which this code is
458  * getting executed and, sgid contains the GID of the sender.
459  *
460  * When resolving mac address of destination, the arrived dgid is used
461  * as sgid and, sgid is used as dgid because sgid contains destinations
462  * GID whom to respond to.
463  *
464  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
465  * position of arguments dgid and sgid do not match the order of the
466  * parameters.
467  */
468 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
469 		       const struct ib_wc *wc, const struct ib_grh *grh,
470 		       struct rdma_ah_attr *ah_attr)
471 {
472 	u32 flow_class;
473 	u16 gid_index;
474 	int ret;
475 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
476 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
477 	int hoplimit = 0xff;
478 	union ib_gid dgid;
479 	union ib_gid sgid;
480 
481 	memset(ah_attr, 0, sizeof *ah_attr);
482 	ah_attr->type = rdma_ah_find_type(device, port_num);
483 	if (rdma_cap_eth_ah(device, port_num)) {
484 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
485 			net_type = wc->network_hdr_type;
486 		else
487 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
488 		gid_type = ib_network_to_gid_type(net_type);
489 	}
490 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
491 					&sgid, &dgid);
492 	if (ret)
493 		return ret;
494 
495 	if (rdma_protocol_roce(device, port_num)) {
496 		int if_index = 0;
497 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
498 				wc->vlan_id : 0xffff;
499 		struct net_device *idev;
500 		struct net_device *resolved_dev;
501 
502 		if (!(wc->wc_flags & IB_WC_GRH))
503 			return -EPROTOTYPE;
504 
505 		if (!device->get_netdev)
506 			return -EOPNOTSUPP;
507 
508 		idev = device->get_netdev(device, port_num);
509 		if (!idev)
510 			return -ENODEV;
511 
512 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
513 						   ah_attr->roce.dmac,
514 						   wc->wc_flags & IB_WC_WITH_VLAN ?
515 						   NULL : &vlan_id,
516 						   &if_index, &hoplimit);
517 		if (ret) {
518 			dev_put(idev);
519 			return ret;
520 		}
521 
522 		resolved_dev = dev_get_by_index(&init_net, if_index);
523 		rcu_read_lock();
524 		if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
525 								   resolved_dev))
526 			ret = -EHOSTUNREACH;
527 		rcu_read_unlock();
528 		dev_put(idev);
529 		dev_put(resolved_dev);
530 		if (ret)
531 			return ret;
532 
533 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
534 					      &dgid, gid_type, &gid_index);
535 		if (ret)
536 			return ret;
537 	}
538 
539 	rdma_ah_set_dlid(ah_attr, wc->slid);
540 	rdma_ah_set_sl(ah_attr, wc->sl);
541 	rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
542 	rdma_ah_set_port_num(ah_attr, port_num);
543 
544 	if (wc->wc_flags & IB_WC_GRH) {
545 		if (!rdma_cap_eth_ah(device, port_num)) {
546 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
547 				ret = ib_find_cached_gid_by_port(device, &dgid,
548 								 IB_GID_TYPE_IB,
549 								 port_num, NULL,
550 								 &gid_index);
551 				if (ret)
552 					return ret;
553 			} else {
554 				gid_index = 0;
555 			}
556 		}
557 
558 		flow_class = be32_to_cpu(grh->version_tclass_flow);
559 		rdma_ah_set_grh(ah_attr, &sgid,
560 				flow_class & 0xFFFFF,
561 				(u8)gid_index, hoplimit,
562 				(flow_class >> 20) & 0xFF);
563 
564 	}
565 	return 0;
566 }
567 EXPORT_SYMBOL(ib_init_ah_from_wc);
568 
569 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
570 				   const struct ib_grh *grh, u8 port_num)
571 {
572 	struct rdma_ah_attr ah_attr;
573 	int ret;
574 
575 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
576 	if (ret)
577 		return ERR_PTR(ret);
578 
579 	return rdma_create_ah(pd, &ah_attr);
580 }
581 EXPORT_SYMBOL(ib_create_ah_from_wc);
582 
583 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
584 {
585 	if (ah->type != ah_attr->type)
586 		return -EINVAL;
587 
588 	return ah->device->modify_ah ?
589 		ah->device->modify_ah(ah, ah_attr) :
590 		-ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_modify_ah);
593 
594 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
595 {
596 	return ah->device->query_ah ?
597 		ah->device->query_ah(ah, ah_attr) :
598 		-ENOSYS;
599 }
600 EXPORT_SYMBOL(rdma_query_ah);
601 
602 int rdma_destroy_ah(struct ib_ah *ah)
603 {
604 	struct ib_pd *pd;
605 	int ret;
606 
607 	pd = ah->pd;
608 	ret = ah->device->destroy_ah(ah);
609 	if (!ret)
610 		atomic_dec(&pd->usecnt);
611 
612 	return ret;
613 }
614 EXPORT_SYMBOL(rdma_destroy_ah);
615 
616 /* Shared receive queues */
617 
618 struct ib_srq *ib_create_srq(struct ib_pd *pd,
619 			     struct ib_srq_init_attr *srq_init_attr)
620 {
621 	struct ib_srq *srq;
622 
623 	if (!pd->device->create_srq)
624 		return ERR_PTR(-ENOSYS);
625 
626 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
627 
628 	if (!IS_ERR(srq)) {
629 		srq->device    	   = pd->device;
630 		srq->pd        	   = pd;
631 		srq->uobject       = NULL;
632 		srq->event_handler = srq_init_attr->event_handler;
633 		srq->srq_context   = srq_init_attr->srq_context;
634 		srq->srq_type      = srq_init_attr->srq_type;
635 		if (srq->srq_type == IB_SRQT_XRC) {
636 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
637 			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
638 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
639 			atomic_inc(&srq->ext.xrc.cq->usecnt);
640 		}
641 		atomic_inc(&pd->usecnt);
642 		atomic_set(&srq->usecnt, 0);
643 	}
644 
645 	return srq;
646 }
647 EXPORT_SYMBOL(ib_create_srq);
648 
649 int ib_modify_srq(struct ib_srq *srq,
650 		  struct ib_srq_attr *srq_attr,
651 		  enum ib_srq_attr_mask srq_attr_mask)
652 {
653 	return srq->device->modify_srq ?
654 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
655 		-ENOSYS;
656 }
657 EXPORT_SYMBOL(ib_modify_srq);
658 
659 int ib_query_srq(struct ib_srq *srq,
660 		 struct ib_srq_attr *srq_attr)
661 {
662 	return srq->device->query_srq ?
663 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
664 }
665 EXPORT_SYMBOL(ib_query_srq);
666 
667 int ib_destroy_srq(struct ib_srq *srq)
668 {
669 	struct ib_pd *pd;
670 	enum ib_srq_type srq_type;
671 	struct ib_xrcd *uninitialized_var(xrcd);
672 	struct ib_cq *uninitialized_var(cq);
673 	int ret;
674 
675 	if (atomic_read(&srq->usecnt))
676 		return -EBUSY;
677 
678 	pd = srq->pd;
679 	srq_type = srq->srq_type;
680 	if (srq_type == IB_SRQT_XRC) {
681 		xrcd = srq->ext.xrc.xrcd;
682 		cq = srq->ext.xrc.cq;
683 	}
684 
685 	ret = srq->device->destroy_srq(srq);
686 	if (!ret) {
687 		atomic_dec(&pd->usecnt);
688 		if (srq_type == IB_SRQT_XRC) {
689 			atomic_dec(&xrcd->usecnt);
690 			atomic_dec(&cq->usecnt);
691 		}
692 	}
693 
694 	return ret;
695 }
696 EXPORT_SYMBOL(ib_destroy_srq);
697 
698 /* Queue pairs */
699 
700 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
701 {
702 	struct ib_qp *qp = context;
703 	unsigned long flags;
704 
705 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
706 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
707 		if (event->element.qp->event_handler)
708 			event->element.qp->event_handler(event, event->element.qp->qp_context);
709 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
710 }
711 
712 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
713 {
714 	mutex_lock(&xrcd->tgt_qp_mutex);
715 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
716 	mutex_unlock(&xrcd->tgt_qp_mutex);
717 }
718 
719 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
720 				  void (*event_handler)(struct ib_event *, void *),
721 				  void *qp_context)
722 {
723 	struct ib_qp *qp;
724 	unsigned long flags;
725 	int err;
726 
727 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
728 	if (!qp)
729 		return ERR_PTR(-ENOMEM);
730 
731 	qp->real_qp = real_qp;
732 	err = ib_open_shared_qp_security(qp, real_qp->device);
733 	if (err) {
734 		kfree(qp);
735 		return ERR_PTR(err);
736 	}
737 
738 	qp->real_qp = real_qp;
739 	atomic_inc(&real_qp->usecnt);
740 	qp->device = real_qp->device;
741 	qp->event_handler = event_handler;
742 	qp->qp_context = qp_context;
743 	qp->qp_num = real_qp->qp_num;
744 	qp->qp_type = real_qp->qp_type;
745 
746 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
747 	list_add(&qp->open_list, &real_qp->open_list);
748 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
749 
750 	return qp;
751 }
752 
753 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
754 			 struct ib_qp_open_attr *qp_open_attr)
755 {
756 	struct ib_qp *qp, *real_qp;
757 
758 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
759 		return ERR_PTR(-EINVAL);
760 
761 	qp = ERR_PTR(-EINVAL);
762 	mutex_lock(&xrcd->tgt_qp_mutex);
763 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
764 		if (real_qp->qp_num == qp_open_attr->qp_num) {
765 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
766 					  qp_open_attr->qp_context);
767 			break;
768 		}
769 	}
770 	mutex_unlock(&xrcd->tgt_qp_mutex);
771 	return qp;
772 }
773 EXPORT_SYMBOL(ib_open_qp);
774 
775 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
776 		struct ib_qp_init_attr *qp_init_attr)
777 {
778 	struct ib_qp *real_qp = qp;
779 
780 	qp->event_handler = __ib_shared_qp_event_handler;
781 	qp->qp_context = qp;
782 	qp->pd = NULL;
783 	qp->send_cq = qp->recv_cq = NULL;
784 	qp->srq = NULL;
785 	qp->xrcd = qp_init_attr->xrcd;
786 	atomic_inc(&qp_init_attr->xrcd->usecnt);
787 	INIT_LIST_HEAD(&qp->open_list);
788 
789 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
790 			  qp_init_attr->qp_context);
791 	if (!IS_ERR(qp))
792 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
793 	else
794 		real_qp->device->destroy_qp(real_qp);
795 	return qp;
796 }
797 
798 struct ib_qp *ib_create_qp(struct ib_pd *pd,
799 			   struct ib_qp_init_attr *qp_init_attr)
800 {
801 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
802 	struct ib_qp *qp;
803 	int ret;
804 
805 	if (qp_init_attr->rwq_ind_tbl &&
806 	    (qp_init_attr->recv_cq ||
807 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
808 	    qp_init_attr->cap.max_recv_sge))
809 		return ERR_PTR(-EINVAL);
810 
811 	/*
812 	 * If the callers is using the RDMA API calculate the resources
813 	 * needed for the RDMA READ/WRITE operations.
814 	 *
815 	 * Note that these callers need to pass in a port number.
816 	 */
817 	if (qp_init_attr->cap.max_rdma_ctxs)
818 		rdma_rw_init_qp(device, qp_init_attr);
819 
820 	qp = device->create_qp(pd, qp_init_attr, NULL);
821 	if (IS_ERR(qp))
822 		return qp;
823 
824 	ret = ib_create_qp_security(qp, device);
825 	if (ret) {
826 		ib_destroy_qp(qp);
827 		return ERR_PTR(ret);
828 	}
829 
830 	qp->device     = device;
831 	qp->real_qp    = qp;
832 	qp->uobject    = NULL;
833 	qp->qp_type    = qp_init_attr->qp_type;
834 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
835 
836 	atomic_set(&qp->usecnt, 0);
837 	qp->mrs_used = 0;
838 	spin_lock_init(&qp->mr_lock);
839 	INIT_LIST_HEAD(&qp->rdma_mrs);
840 	INIT_LIST_HEAD(&qp->sig_mrs);
841 
842 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
843 		return ib_create_xrc_qp(qp, qp_init_attr);
844 
845 	qp->event_handler = qp_init_attr->event_handler;
846 	qp->qp_context = qp_init_attr->qp_context;
847 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
848 		qp->recv_cq = NULL;
849 		qp->srq = NULL;
850 	} else {
851 		qp->recv_cq = qp_init_attr->recv_cq;
852 		if (qp_init_attr->recv_cq)
853 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
854 		qp->srq = qp_init_attr->srq;
855 		if (qp->srq)
856 			atomic_inc(&qp_init_attr->srq->usecnt);
857 	}
858 
859 	qp->pd	    = pd;
860 	qp->send_cq = qp_init_attr->send_cq;
861 	qp->xrcd    = NULL;
862 
863 	atomic_inc(&pd->usecnt);
864 	if (qp_init_attr->send_cq)
865 		atomic_inc(&qp_init_attr->send_cq->usecnt);
866 	if (qp_init_attr->rwq_ind_tbl)
867 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
868 
869 	if (qp_init_attr->cap.max_rdma_ctxs) {
870 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
871 		if (ret) {
872 			pr_err("failed to init MR pool ret= %d\n", ret);
873 			ib_destroy_qp(qp);
874 			return ERR_PTR(ret);
875 		}
876 	}
877 
878 	/*
879 	 * Note: all hw drivers guarantee that max_send_sge is lower than
880 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
881 	 * max_send_sge <= max_sge_rd.
882 	 */
883 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
884 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
885 				 device->attrs.max_sge_rd);
886 
887 	return qp;
888 }
889 EXPORT_SYMBOL(ib_create_qp);
890 
891 static const struct {
892 	int			valid;
893 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
894 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
895 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
896 	[IB_QPS_RESET] = {
897 		[IB_QPS_RESET] = { .valid = 1 },
898 		[IB_QPS_INIT]  = {
899 			.valid = 1,
900 			.req_param = {
901 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
902 						IB_QP_PORT			|
903 						IB_QP_QKEY),
904 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
905 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
906 						IB_QP_PORT			|
907 						IB_QP_ACCESS_FLAGS),
908 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
909 						IB_QP_PORT			|
910 						IB_QP_ACCESS_FLAGS),
911 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
912 						IB_QP_PORT			|
913 						IB_QP_ACCESS_FLAGS),
914 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
915 						IB_QP_PORT			|
916 						IB_QP_ACCESS_FLAGS),
917 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
918 						IB_QP_QKEY),
919 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
920 						IB_QP_QKEY),
921 			}
922 		},
923 	},
924 	[IB_QPS_INIT]  = {
925 		[IB_QPS_RESET] = { .valid = 1 },
926 		[IB_QPS_ERR] =   { .valid = 1 },
927 		[IB_QPS_INIT]  = {
928 			.valid = 1,
929 			.opt_param = {
930 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
931 						IB_QP_PORT			|
932 						IB_QP_QKEY),
933 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
934 						IB_QP_PORT			|
935 						IB_QP_ACCESS_FLAGS),
936 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
937 						IB_QP_PORT			|
938 						IB_QP_ACCESS_FLAGS),
939 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
940 						IB_QP_PORT			|
941 						IB_QP_ACCESS_FLAGS),
942 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
943 						IB_QP_PORT			|
944 						IB_QP_ACCESS_FLAGS),
945 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
946 						IB_QP_QKEY),
947 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
948 						IB_QP_QKEY),
949 			}
950 		},
951 		[IB_QPS_RTR]   = {
952 			.valid = 1,
953 			.req_param = {
954 				[IB_QPT_UC]  = (IB_QP_AV			|
955 						IB_QP_PATH_MTU			|
956 						IB_QP_DEST_QPN			|
957 						IB_QP_RQ_PSN),
958 				[IB_QPT_RC]  = (IB_QP_AV			|
959 						IB_QP_PATH_MTU			|
960 						IB_QP_DEST_QPN			|
961 						IB_QP_RQ_PSN			|
962 						IB_QP_MAX_DEST_RD_ATOMIC	|
963 						IB_QP_MIN_RNR_TIMER),
964 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
965 						IB_QP_PATH_MTU			|
966 						IB_QP_DEST_QPN			|
967 						IB_QP_RQ_PSN),
968 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
969 						IB_QP_PATH_MTU			|
970 						IB_QP_DEST_QPN			|
971 						IB_QP_RQ_PSN			|
972 						IB_QP_MAX_DEST_RD_ATOMIC	|
973 						IB_QP_MIN_RNR_TIMER),
974 			},
975 			.opt_param = {
976 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
977 						 IB_QP_QKEY),
978 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
979 						 IB_QP_ACCESS_FLAGS		|
980 						 IB_QP_PKEY_INDEX),
981 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
982 						 IB_QP_ACCESS_FLAGS		|
983 						 IB_QP_PKEY_INDEX),
984 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
985 						 IB_QP_ACCESS_FLAGS		|
986 						 IB_QP_PKEY_INDEX),
987 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
988 						 IB_QP_ACCESS_FLAGS		|
989 						 IB_QP_PKEY_INDEX),
990 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
991 						 IB_QP_QKEY),
992 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
993 						 IB_QP_QKEY),
994 			 },
995 		},
996 	},
997 	[IB_QPS_RTR]   = {
998 		[IB_QPS_RESET] = { .valid = 1 },
999 		[IB_QPS_ERR] =   { .valid = 1 },
1000 		[IB_QPS_RTS]   = {
1001 			.valid = 1,
1002 			.req_param = {
1003 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1004 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1005 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1006 						IB_QP_RETRY_CNT			|
1007 						IB_QP_RNR_RETRY			|
1008 						IB_QP_SQ_PSN			|
1009 						IB_QP_MAX_QP_RD_ATOMIC),
1010 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1011 						IB_QP_RETRY_CNT			|
1012 						IB_QP_RNR_RETRY			|
1013 						IB_QP_SQ_PSN			|
1014 						IB_QP_MAX_QP_RD_ATOMIC),
1015 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1016 						IB_QP_SQ_PSN),
1017 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1018 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1019 			},
1020 			.opt_param = {
1021 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1022 						 IB_QP_QKEY),
1023 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1024 						 IB_QP_ALT_PATH			|
1025 						 IB_QP_ACCESS_FLAGS		|
1026 						 IB_QP_PATH_MIG_STATE),
1027 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1028 						 IB_QP_ALT_PATH			|
1029 						 IB_QP_ACCESS_FLAGS		|
1030 						 IB_QP_MIN_RNR_TIMER		|
1031 						 IB_QP_PATH_MIG_STATE),
1032 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1033 						 IB_QP_ALT_PATH			|
1034 						 IB_QP_ACCESS_FLAGS		|
1035 						 IB_QP_PATH_MIG_STATE),
1036 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1037 						 IB_QP_ALT_PATH			|
1038 						 IB_QP_ACCESS_FLAGS		|
1039 						 IB_QP_MIN_RNR_TIMER		|
1040 						 IB_QP_PATH_MIG_STATE),
1041 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1042 						 IB_QP_QKEY),
1043 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1044 						 IB_QP_QKEY),
1045 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1046 			 }
1047 		}
1048 	},
1049 	[IB_QPS_RTS]   = {
1050 		[IB_QPS_RESET] = { .valid = 1 },
1051 		[IB_QPS_ERR] =   { .valid = 1 },
1052 		[IB_QPS_RTS]   = {
1053 			.valid = 1,
1054 			.opt_param = {
1055 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1056 						IB_QP_QKEY),
1057 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1058 						IB_QP_ACCESS_FLAGS		|
1059 						IB_QP_ALT_PATH			|
1060 						IB_QP_PATH_MIG_STATE),
1061 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1062 						IB_QP_ACCESS_FLAGS		|
1063 						IB_QP_ALT_PATH			|
1064 						IB_QP_PATH_MIG_STATE		|
1065 						IB_QP_MIN_RNR_TIMER),
1066 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1067 						IB_QP_ACCESS_FLAGS		|
1068 						IB_QP_ALT_PATH			|
1069 						IB_QP_PATH_MIG_STATE),
1070 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1071 						IB_QP_ACCESS_FLAGS		|
1072 						IB_QP_ALT_PATH			|
1073 						IB_QP_PATH_MIG_STATE		|
1074 						IB_QP_MIN_RNR_TIMER),
1075 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1076 						IB_QP_QKEY),
1077 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1078 						IB_QP_QKEY),
1079 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1080 			}
1081 		},
1082 		[IB_QPS_SQD]   = {
1083 			.valid = 1,
1084 			.opt_param = {
1085 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1086 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1087 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1088 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1089 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1090 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1091 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1092 			}
1093 		},
1094 	},
1095 	[IB_QPS_SQD]   = {
1096 		[IB_QPS_RESET] = { .valid = 1 },
1097 		[IB_QPS_ERR] =   { .valid = 1 },
1098 		[IB_QPS_RTS]   = {
1099 			.valid = 1,
1100 			.opt_param = {
1101 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1102 						IB_QP_QKEY),
1103 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1104 						IB_QP_ALT_PATH			|
1105 						IB_QP_ACCESS_FLAGS		|
1106 						IB_QP_PATH_MIG_STATE),
1107 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1108 						IB_QP_ALT_PATH			|
1109 						IB_QP_ACCESS_FLAGS		|
1110 						IB_QP_MIN_RNR_TIMER		|
1111 						IB_QP_PATH_MIG_STATE),
1112 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1113 						IB_QP_ALT_PATH			|
1114 						IB_QP_ACCESS_FLAGS		|
1115 						IB_QP_PATH_MIG_STATE),
1116 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1117 						IB_QP_ALT_PATH			|
1118 						IB_QP_ACCESS_FLAGS		|
1119 						IB_QP_MIN_RNR_TIMER		|
1120 						IB_QP_PATH_MIG_STATE),
1121 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1122 						IB_QP_QKEY),
1123 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1124 						IB_QP_QKEY),
1125 			}
1126 		},
1127 		[IB_QPS_SQD]   = {
1128 			.valid = 1,
1129 			.opt_param = {
1130 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1131 						IB_QP_QKEY),
1132 				[IB_QPT_UC]  = (IB_QP_AV			|
1133 						IB_QP_ALT_PATH			|
1134 						IB_QP_ACCESS_FLAGS		|
1135 						IB_QP_PKEY_INDEX		|
1136 						IB_QP_PATH_MIG_STATE),
1137 				[IB_QPT_RC]  = (IB_QP_PORT			|
1138 						IB_QP_AV			|
1139 						IB_QP_TIMEOUT			|
1140 						IB_QP_RETRY_CNT			|
1141 						IB_QP_RNR_RETRY			|
1142 						IB_QP_MAX_QP_RD_ATOMIC		|
1143 						IB_QP_MAX_DEST_RD_ATOMIC	|
1144 						IB_QP_ALT_PATH			|
1145 						IB_QP_ACCESS_FLAGS		|
1146 						IB_QP_PKEY_INDEX		|
1147 						IB_QP_MIN_RNR_TIMER		|
1148 						IB_QP_PATH_MIG_STATE),
1149 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1150 						IB_QP_AV			|
1151 						IB_QP_TIMEOUT			|
1152 						IB_QP_RETRY_CNT			|
1153 						IB_QP_RNR_RETRY			|
1154 						IB_QP_MAX_QP_RD_ATOMIC		|
1155 						IB_QP_ALT_PATH			|
1156 						IB_QP_ACCESS_FLAGS		|
1157 						IB_QP_PKEY_INDEX		|
1158 						IB_QP_PATH_MIG_STATE),
1159 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1160 						IB_QP_AV			|
1161 						IB_QP_TIMEOUT			|
1162 						IB_QP_MAX_DEST_RD_ATOMIC	|
1163 						IB_QP_ALT_PATH			|
1164 						IB_QP_ACCESS_FLAGS		|
1165 						IB_QP_PKEY_INDEX		|
1166 						IB_QP_MIN_RNR_TIMER		|
1167 						IB_QP_PATH_MIG_STATE),
1168 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1169 						IB_QP_QKEY),
1170 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1171 						IB_QP_QKEY),
1172 			}
1173 		}
1174 	},
1175 	[IB_QPS_SQE]   = {
1176 		[IB_QPS_RESET] = { .valid = 1 },
1177 		[IB_QPS_ERR] =   { .valid = 1 },
1178 		[IB_QPS_RTS]   = {
1179 			.valid = 1,
1180 			.opt_param = {
1181 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1182 						IB_QP_QKEY),
1183 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1184 						IB_QP_ACCESS_FLAGS),
1185 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1186 						IB_QP_QKEY),
1187 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1188 						IB_QP_QKEY),
1189 			}
1190 		}
1191 	},
1192 	[IB_QPS_ERR] = {
1193 		[IB_QPS_RESET] = { .valid = 1 },
1194 		[IB_QPS_ERR] =   { .valid = 1 }
1195 	}
1196 };
1197 
1198 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1199 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1200 		       enum rdma_link_layer ll)
1201 {
1202 	enum ib_qp_attr_mask req_param, opt_param;
1203 
1204 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1205 	    next_state < 0 || next_state > IB_QPS_ERR)
1206 		return 0;
1207 
1208 	if (mask & IB_QP_CUR_STATE  &&
1209 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1210 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1211 		return 0;
1212 
1213 	if (!qp_state_table[cur_state][next_state].valid)
1214 		return 0;
1215 
1216 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1217 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1218 
1219 	if ((mask & req_param) != req_param)
1220 		return 0;
1221 
1222 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1223 		return 0;
1224 
1225 	return 1;
1226 }
1227 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1228 
1229 int ib_resolve_eth_dmac(struct ib_device *device,
1230 			struct rdma_ah_attr *ah_attr)
1231 {
1232 	int           ret = 0;
1233 	struct ib_global_route *grh;
1234 
1235 	if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1236 		return -EINVAL;
1237 
1238 	if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1239 		return 0;
1240 
1241 	grh = rdma_ah_retrieve_grh(ah_attr);
1242 
1243 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1244 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1245 				ah_attr->roce.dmac);
1246 	} else {
1247 		union ib_gid		sgid;
1248 		struct ib_gid_attr	sgid_attr;
1249 		int			ifindex;
1250 		int			hop_limit;
1251 
1252 		ret = ib_query_gid(device,
1253 				   rdma_ah_get_port_num(ah_attr),
1254 				   grh->sgid_index,
1255 				   &sgid, &sgid_attr);
1256 
1257 		if (ret || !sgid_attr.ndev) {
1258 			if (!ret)
1259 				ret = -ENXIO;
1260 			goto out;
1261 		}
1262 
1263 		ifindex = sgid_attr.ndev->ifindex;
1264 
1265 		ret =
1266 		rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1267 					     ah_attr->roce.dmac,
1268 					     NULL, &ifindex, &hop_limit);
1269 
1270 		dev_put(sgid_attr.ndev);
1271 
1272 		grh->hop_limit = hop_limit;
1273 	}
1274 out:
1275 	return ret;
1276 }
1277 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1278 
1279 /**
1280  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1281  * @qp: The QP to modify.
1282  * @attr: On input, specifies the QP attributes to modify.  On output,
1283  *   the current values of selected QP attributes are returned.
1284  * @attr_mask: A bit-mask used to specify which attributes of the QP
1285  *   are being modified.
1286  * @udata: pointer to user's input output buffer information
1287  *   are being modified.
1288  * It returns 0 on success and returns appropriate error code on error.
1289  */
1290 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1291 			    int attr_mask, struct ib_udata *udata)
1292 {
1293 	int ret;
1294 
1295 	if (attr_mask & IB_QP_AV) {
1296 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1297 		if (ret)
1298 			return ret;
1299 	}
1300 	return ib_security_modify_qp(qp, attr, attr_mask, udata);
1301 }
1302 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1303 
1304 int ib_modify_qp(struct ib_qp *qp,
1305 		 struct ib_qp_attr *qp_attr,
1306 		 int qp_attr_mask)
1307 {
1308 	return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1309 }
1310 EXPORT_SYMBOL(ib_modify_qp);
1311 
1312 int ib_query_qp(struct ib_qp *qp,
1313 		struct ib_qp_attr *qp_attr,
1314 		int qp_attr_mask,
1315 		struct ib_qp_init_attr *qp_init_attr)
1316 {
1317 	return qp->device->query_qp ?
1318 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1319 		-ENOSYS;
1320 }
1321 EXPORT_SYMBOL(ib_query_qp);
1322 
1323 int ib_close_qp(struct ib_qp *qp)
1324 {
1325 	struct ib_qp *real_qp;
1326 	unsigned long flags;
1327 
1328 	real_qp = qp->real_qp;
1329 	if (real_qp == qp)
1330 		return -EINVAL;
1331 
1332 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1333 	list_del(&qp->open_list);
1334 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1335 
1336 	atomic_dec(&real_qp->usecnt);
1337 	ib_close_shared_qp_security(qp->qp_sec);
1338 	kfree(qp);
1339 
1340 	return 0;
1341 }
1342 EXPORT_SYMBOL(ib_close_qp);
1343 
1344 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1345 {
1346 	struct ib_xrcd *xrcd;
1347 	struct ib_qp *real_qp;
1348 	int ret;
1349 
1350 	real_qp = qp->real_qp;
1351 	xrcd = real_qp->xrcd;
1352 
1353 	mutex_lock(&xrcd->tgt_qp_mutex);
1354 	ib_close_qp(qp);
1355 	if (atomic_read(&real_qp->usecnt) == 0)
1356 		list_del(&real_qp->xrcd_list);
1357 	else
1358 		real_qp = NULL;
1359 	mutex_unlock(&xrcd->tgt_qp_mutex);
1360 
1361 	if (real_qp) {
1362 		ret = ib_destroy_qp(real_qp);
1363 		if (!ret)
1364 			atomic_dec(&xrcd->usecnt);
1365 		else
1366 			__ib_insert_xrcd_qp(xrcd, real_qp);
1367 	}
1368 
1369 	return 0;
1370 }
1371 
1372 int ib_destroy_qp(struct ib_qp *qp)
1373 {
1374 	struct ib_pd *pd;
1375 	struct ib_cq *scq, *rcq;
1376 	struct ib_srq *srq;
1377 	struct ib_rwq_ind_table *ind_tbl;
1378 	struct ib_qp_security *sec;
1379 	int ret;
1380 
1381 	WARN_ON_ONCE(qp->mrs_used > 0);
1382 
1383 	if (atomic_read(&qp->usecnt))
1384 		return -EBUSY;
1385 
1386 	if (qp->real_qp != qp)
1387 		return __ib_destroy_shared_qp(qp);
1388 
1389 	pd   = qp->pd;
1390 	scq  = qp->send_cq;
1391 	rcq  = qp->recv_cq;
1392 	srq  = qp->srq;
1393 	ind_tbl = qp->rwq_ind_tbl;
1394 	sec  = qp->qp_sec;
1395 	if (sec)
1396 		ib_destroy_qp_security_begin(sec);
1397 
1398 	if (!qp->uobject)
1399 		rdma_rw_cleanup_mrs(qp);
1400 
1401 	ret = qp->device->destroy_qp(qp);
1402 	if (!ret) {
1403 		if (pd)
1404 			atomic_dec(&pd->usecnt);
1405 		if (scq)
1406 			atomic_dec(&scq->usecnt);
1407 		if (rcq)
1408 			atomic_dec(&rcq->usecnt);
1409 		if (srq)
1410 			atomic_dec(&srq->usecnt);
1411 		if (ind_tbl)
1412 			atomic_dec(&ind_tbl->usecnt);
1413 		if (sec)
1414 			ib_destroy_qp_security_end(sec);
1415 	} else {
1416 		if (sec)
1417 			ib_destroy_qp_security_abort(sec);
1418 	}
1419 
1420 	return ret;
1421 }
1422 EXPORT_SYMBOL(ib_destroy_qp);
1423 
1424 /* Completion queues */
1425 
1426 struct ib_cq *ib_create_cq(struct ib_device *device,
1427 			   ib_comp_handler comp_handler,
1428 			   void (*event_handler)(struct ib_event *, void *),
1429 			   void *cq_context,
1430 			   const struct ib_cq_init_attr *cq_attr)
1431 {
1432 	struct ib_cq *cq;
1433 
1434 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1435 
1436 	if (!IS_ERR(cq)) {
1437 		cq->device        = device;
1438 		cq->uobject       = NULL;
1439 		cq->comp_handler  = comp_handler;
1440 		cq->event_handler = event_handler;
1441 		cq->cq_context    = cq_context;
1442 		atomic_set(&cq->usecnt, 0);
1443 	}
1444 
1445 	return cq;
1446 }
1447 EXPORT_SYMBOL(ib_create_cq);
1448 
1449 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1450 {
1451 	return cq->device->modify_cq ?
1452 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1453 }
1454 EXPORT_SYMBOL(ib_modify_cq);
1455 
1456 int ib_destroy_cq(struct ib_cq *cq)
1457 {
1458 	if (atomic_read(&cq->usecnt))
1459 		return -EBUSY;
1460 
1461 	return cq->device->destroy_cq(cq);
1462 }
1463 EXPORT_SYMBOL(ib_destroy_cq);
1464 
1465 int ib_resize_cq(struct ib_cq *cq, int cqe)
1466 {
1467 	return cq->device->resize_cq ?
1468 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1469 }
1470 EXPORT_SYMBOL(ib_resize_cq);
1471 
1472 /* Memory regions */
1473 
1474 int ib_dereg_mr(struct ib_mr *mr)
1475 {
1476 	struct ib_pd *pd = mr->pd;
1477 	int ret;
1478 
1479 	ret = mr->device->dereg_mr(mr);
1480 	if (!ret)
1481 		atomic_dec(&pd->usecnt);
1482 
1483 	return ret;
1484 }
1485 EXPORT_SYMBOL(ib_dereg_mr);
1486 
1487 /**
1488  * ib_alloc_mr() - Allocates a memory region
1489  * @pd:            protection domain associated with the region
1490  * @mr_type:       memory region type
1491  * @max_num_sg:    maximum sg entries available for registration.
1492  *
1493  * Notes:
1494  * Memory registeration page/sg lists must not exceed max_num_sg.
1495  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1496  * max_num_sg * used_page_size.
1497  *
1498  */
1499 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1500 			  enum ib_mr_type mr_type,
1501 			  u32 max_num_sg)
1502 {
1503 	struct ib_mr *mr;
1504 
1505 	if (!pd->device->alloc_mr)
1506 		return ERR_PTR(-ENOSYS);
1507 
1508 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1509 	if (!IS_ERR(mr)) {
1510 		mr->device  = pd->device;
1511 		mr->pd      = pd;
1512 		mr->uobject = NULL;
1513 		atomic_inc(&pd->usecnt);
1514 		mr->need_inval = false;
1515 	}
1516 
1517 	return mr;
1518 }
1519 EXPORT_SYMBOL(ib_alloc_mr);
1520 
1521 /* "Fast" memory regions */
1522 
1523 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1524 			    int mr_access_flags,
1525 			    struct ib_fmr_attr *fmr_attr)
1526 {
1527 	struct ib_fmr *fmr;
1528 
1529 	if (!pd->device->alloc_fmr)
1530 		return ERR_PTR(-ENOSYS);
1531 
1532 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1533 	if (!IS_ERR(fmr)) {
1534 		fmr->device = pd->device;
1535 		fmr->pd     = pd;
1536 		atomic_inc(&pd->usecnt);
1537 	}
1538 
1539 	return fmr;
1540 }
1541 EXPORT_SYMBOL(ib_alloc_fmr);
1542 
1543 int ib_unmap_fmr(struct list_head *fmr_list)
1544 {
1545 	struct ib_fmr *fmr;
1546 
1547 	if (list_empty(fmr_list))
1548 		return 0;
1549 
1550 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1551 	return fmr->device->unmap_fmr(fmr_list);
1552 }
1553 EXPORT_SYMBOL(ib_unmap_fmr);
1554 
1555 int ib_dealloc_fmr(struct ib_fmr *fmr)
1556 {
1557 	struct ib_pd *pd;
1558 	int ret;
1559 
1560 	pd = fmr->pd;
1561 	ret = fmr->device->dealloc_fmr(fmr);
1562 	if (!ret)
1563 		atomic_dec(&pd->usecnt);
1564 
1565 	return ret;
1566 }
1567 EXPORT_SYMBOL(ib_dealloc_fmr);
1568 
1569 /* Multicast groups */
1570 
1571 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1572 {
1573 	int ret;
1574 
1575 	if (!qp->device->attach_mcast)
1576 		return -ENOSYS;
1577 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1578 	    lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1579 	    lid == be16_to_cpu(IB_LID_PERMISSIVE))
1580 		return -EINVAL;
1581 
1582 	ret = qp->device->attach_mcast(qp, gid, lid);
1583 	if (!ret)
1584 		atomic_inc(&qp->usecnt);
1585 	return ret;
1586 }
1587 EXPORT_SYMBOL(ib_attach_mcast);
1588 
1589 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1590 {
1591 	int ret;
1592 
1593 	if (!qp->device->detach_mcast)
1594 		return -ENOSYS;
1595 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD ||
1596 	    lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1597 	    lid == be16_to_cpu(IB_LID_PERMISSIVE))
1598 		return -EINVAL;
1599 
1600 	ret = qp->device->detach_mcast(qp, gid, lid);
1601 	if (!ret)
1602 		atomic_dec(&qp->usecnt);
1603 	return ret;
1604 }
1605 EXPORT_SYMBOL(ib_detach_mcast);
1606 
1607 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1608 {
1609 	struct ib_xrcd *xrcd;
1610 
1611 	if (!device->alloc_xrcd)
1612 		return ERR_PTR(-ENOSYS);
1613 
1614 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1615 	if (!IS_ERR(xrcd)) {
1616 		xrcd->device = device;
1617 		xrcd->inode = NULL;
1618 		atomic_set(&xrcd->usecnt, 0);
1619 		mutex_init(&xrcd->tgt_qp_mutex);
1620 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1621 	}
1622 
1623 	return xrcd;
1624 }
1625 EXPORT_SYMBOL(ib_alloc_xrcd);
1626 
1627 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1628 {
1629 	struct ib_qp *qp;
1630 	int ret;
1631 
1632 	if (atomic_read(&xrcd->usecnt))
1633 		return -EBUSY;
1634 
1635 	while (!list_empty(&xrcd->tgt_qp_list)) {
1636 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1637 		ret = ib_destroy_qp(qp);
1638 		if (ret)
1639 			return ret;
1640 	}
1641 
1642 	return xrcd->device->dealloc_xrcd(xrcd);
1643 }
1644 EXPORT_SYMBOL(ib_dealloc_xrcd);
1645 
1646 /**
1647  * ib_create_wq - Creates a WQ associated with the specified protection
1648  * domain.
1649  * @pd: The protection domain associated with the WQ.
1650  * @wq_init_attr: A list of initial attributes required to create the
1651  * WQ. If WQ creation succeeds, then the attributes are updated to
1652  * the actual capabilities of the created WQ.
1653  *
1654  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1655  * the requested size of the WQ, and set to the actual values allocated
1656  * on return.
1657  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1658  * at least as large as the requested values.
1659  */
1660 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1661 			   struct ib_wq_init_attr *wq_attr)
1662 {
1663 	struct ib_wq *wq;
1664 
1665 	if (!pd->device->create_wq)
1666 		return ERR_PTR(-ENOSYS);
1667 
1668 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1669 	if (!IS_ERR(wq)) {
1670 		wq->event_handler = wq_attr->event_handler;
1671 		wq->wq_context = wq_attr->wq_context;
1672 		wq->wq_type = wq_attr->wq_type;
1673 		wq->cq = wq_attr->cq;
1674 		wq->device = pd->device;
1675 		wq->pd = pd;
1676 		wq->uobject = NULL;
1677 		atomic_inc(&pd->usecnt);
1678 		atomic_inc(&wq_attr->cq->usecnt);
1679 		atomic_set(&wq->usecnt, 0);
1680 	}
1681 	return wq;
1682 }
1683 EXPORT_SYMBOL(ib_create_wq);
1684 
1685 /**
1686  * ib_destroy_wq - Destroys the specified WQ.
1687  * @wq: The WQ to destroy.
1688  */
1689 int ib_destroy_wq(struct ib_wq *wq)
1690 {
1691 	int err;
1692 	struct ib_cq *cq = wq->cq;
1693 	struct ib_pd *pd = wq->pd;
1694 
1695 	if (atomic_read(&wq->usecnt))
1696 		return -EBUSY;
1697 
1698 	err = wq->device->destroy_wq(wq);
1699 	if (!err) {
1700 		atomic_dec(&pd->usecnt);
1701 		atomic_dec(&cq->usecnt);
1702 	}
1703 	return err;
1704 }
1705 EXPORT_SYMBOL(ib_destroy_wq);
1706 
1707 /**
1708  * ib_modify_wq - Modifies the specified WQ.
1709  * @wq: The WQ to modify.
1710  * @wq_attr: On input, specifies the WQ attributes to modify.
1711  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1712  *   are being modified.
1713  * On output, the current values of selected WQ attributes are returned.
1714  */
1715 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1716 		 u32 wq_attr_mask)
1717 {
1718 	int err;
1719 
1720 	if (!wq->device->modify_wq)
1721 		return -ENOSYS;
1722 
1723 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1724 	return err;
1725 }
1726 EXPORT_SYMBOL(ib_modify_wq);
1727 
1728 /*
1729  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1730  * @device: The device on which to create the rwq indirection table.
1731  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1732  * create the Indirection Table.
1733  *
1734  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1735  *	than the created ib_rwq_ind_table object and the caller is responsible
1736  *	for its memory allocation/free.
1737  */
1738 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1739 						 struct ib_rwq_ind_table_init_attr *init_attr)
1740 {
1741 	struct ib_rwq_ind_table *rwq_ind_table;
1742 	int i;
1743 	u32 table_size;
1744 
1745 	if (!device->create_rwq_ind_table)
1746 		return ERR_PTR(-ENOSYS);
1747 
1748 	table_size = (1 << init_attr->log_ind_tbl_size);
1749 	rwq_ind_table = device->create_rwq_ind_table(device,
1750 				init_attr, NULL);
1751 	if (IS_ERR(rwq_ind_table))
1752 		return rwq_ind_table;
1753 
1754 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1755 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1756 	rwq_ind_table->device = device;
1757 	rwq_ind_table->uobject = NULL;
1758 	atomic_set(&rwq_ind_table->usecnt, 0);
1759 
1760 	for (i = 0; i < table_size; i++)
1761 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1762 
1763 	return rwq_ind_table;
1764 }
1765 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1766 
1767 /*
1768  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1769  * @wq_ind_table: The Indirection Table to destroy.
1770 */
1771 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1772 {
1773 	int err, i;
1774 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1775 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1776 
1777 	if (atomic_read(&rwq_ind_table->usecnt))
1778 		return -EBUSY;
1779 
1780 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1781 	if (!err) {
1782 		for (i = 0; i < table_size; i++)
1783 			atomic_dec(&ind_tbl[i]->usecnt);
1784 	}
1785 
1786 	return err;
1787 }
1788 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1789 
1790 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1791 			       struct ib_flow_attr *flow_attr,
1792 			       int domain)
1793 {
1794 	struct ib_flow *flow_id;
1795 	if (!qp->device->create_flow)
1796 		return ERR_PTR(-ENOSYS);
1797 
1798 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1799 	if (!IS_ERR(flow_id)) {
1800 		atomic_inc(&qp->usecnt);
1801 		flow_id->qp = qp;
1802 	}
1803 	return flow_id;
1804 }
1805 EXPORT_SYMBOL(ib_create_flow);
1806 
1807 int ib_destroy_flow(struct ib_flow *flow_id)
1808 {
1809 	int err;
1810 	struct ib_qp *qp = flow_id->qp;
1811 
1812 	err = qp->device->destroy_flow(flow_id);
1813 	if (!err)
1814 		atomic_dec(&qp->usecnt);
1815 	return err;
1816 }
1817 EXPORT_SYMBOL(ib_destroy_flow);
1818 
1819 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1820 		       struct ib_mr_status *mr_status)
1821 {
1822 	return mr->device->check_mr_status ?
1823 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1824 }
1825 EXPORT_SYMBOL(ib_check_mr_status);
1826 
1827 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1828 			 int state)
1829 {
1830 	if (!device->set_vf_link_state)
1831 		return -ENOSYS;
1832 
1833 	return device->set_vf_link_state(device, vf, port, state);
1834 }
1835 EXPORT_SYMBOL(ib_set_vf_link_state);
1836 
1837 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1838 		     struct ifla_vf_info *info)
1839 {
1840 	if (!device->get_vf_config)
1841 		return -ENOSYS;
1842 
1843 	return device->get_vf_config(device, vf, port, info);
1844 }
1845 EXPORT_SYMBOL(ib_get_vf_config);
1846 
1847 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1848 		    struct ifla_vf_stats *stats)
1849 {
1850 	if (!device->get_vf_stats)
1851 		return -ENOSYS;
1852 
1853 	return device->get_vf_stats(device, vf, port, stats);
1854 }
1855 EXPORT_SYMBOL(ib_get_vf_stats);
1856 
1857 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1858 		   int type)
1859 {
1860 	if (!device->set_vf_guid)
1861 		return -ENOSYS;
1862 
1863 	return device->set_vf_guid(device, vf, port, guid, type);
1864 }
1865 EXPORT_SYMBOL(ib_set_vf_guid);
1866 
1867 /**
1868  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1869  *     and set it the memory region.
1870  * @mr:            memory region
1871  * @sg:            dma mapped scatterlist
1872  * @sg_nents:      number of entries in sg
1873  * @sg_offset:     offset in bytes into sg
1874  * @page_size:     page vector desired page size
1875  *
1876  * Constraints:
1877  * - The first sg element is allowed to have an offset.
1878  * - Each sg element must either be aligned to page_size or virtually
1879  *   contiguous to the previous element. In case an sg element has a
1880  *   non-contiguous offset, the mapping prefix will not include it.
1881  * - The last sg element is allowed to have length less than page_size.
1882  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1883  *   then only max_num_sg entries will be mapped.
1884  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1885  *   constraints holds and the page_size argument is ignored.
1886  *
1887  * Returns the number of sg elements that were mapped to the memory region.
1888  *
1889  * After this completes successfully, the  memory region
1890  * is ready for registration.
1891  */
1892 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1893 		 unsigned int *sg_offset, unsigned int page_size)
1894 {
1895 	if (unlikely(!mr->device->map_mr_sg))
1896 		return -ENOSYS;
1897 
1898 	mr->page_size = page_size;
1899 
1900 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1901 }
1902 EXPORT_SYMBOL(ib_map_mr_sg);
1903 
1904 /**
1905  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1906  *     to a page vector
1907  * @mr:            memory region
1908  * @sgl:           dma mapped scatterlist
1909  * @sg_nents:      number of entries in sg
1910  * @sg_offset_p:   IN:  start offset in bytes into sg
1911  *                 OUT: offset in bytes for element n of the sg of the first
1912  *                      byte that has not been processed where n is the return
1913  *                      value of this function.
1914  * @set_page:      driver page assignment function pointer
1915  *
1916  * Core service helper for drivers to convert the largest
1917  * prefix of given sg list to a page vector. The sg list
1918  * prefix converted is the prefix that meet the requirements
1919  * of ib_map_mr_sg.
1920  *
1921  * Returns the number of sg elements that were assigned to
1922  * a page vector.
1923  */
1924 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1925 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1926 {
1927 	struct scatterlist *sg;
1928 	u64 last_end_dma_addr = 0;
1929 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1930 	unsigned int last_page_off = 0;
1931 	u64 page_mask = ~((u64)mr->page_size - 1);
1932 	int i, ret;
1933 
1934 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1935 		return -EINVAL;
1936 
1937 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1938 	mr->length = 0;
1939 
1940 	for_each_sg(sgl, sg, sg_nents, i) {
1941 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1942 		u64 prev_addr = dma_addr;
1943 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1944 		u64 end_dma_addr = dma_addr + dma_len;
1945 		u64 page_addr = dma_addr & page_mask;
1946 
1947 		/*
1948 		 * For the second and later elements, check whether either the
1949 		 * end of element i-1 or the start of element i is not aligned
1950 		 * on a page boundary.
1951 		 */
1952 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1953 			/* Stop mapping if there is a gap. */
1954 			if (last_end_dma_addr != dma_addr)
1955 				break;
1956 
1957 			/*
1958 			 * Coalesce this element with the last. If it is small
1959 			 * enough just update mr->length. Otherwise start
1960 			 * mapping from the next page.
1961 			 */
1962 			goto next_page;
1963 		}
1964 
1965 		do {
1966 			ret = set_page(mr, page_addr);
1967 			if (unlikely(ret < 0)) {
1968 				sg_offset = prev_addr - sg_dma_address(sg);
1969 				mr->length += prev_addr - dma_addr;
1970 				if (sg_offset_p)
1971 					*sg_offset_p = sg_offset;
1972 				return i || sg_offset ? i : ret;
1973 			}
1974 			prev_addr = page_addr;
1975 next_page:
1976 			page_addr += mr->page_size;
1977 		} while (page_addr < end_dma_addr);
1978 
1979 		mr->length += dma_len;
1980 		last_end_dma_addr = end_dma_addr;
1981 		last_page_off = end_dma_addr & ~page_mask;
1982 
1983 		sg_offset = 0;
1984 	}
1985 
1986 	if (sg_offset_p)
1987 		*sg_offset_p = 0;
1988 	return i;
1989 }
1990 EXPORT_SYMBOL(ib_sg_to_pages);
1991 
1992 struct ib_drain_cqe {
1993 	struct ib_cqe cqe;
1994 	struct completion done;
1995 };
1996 
1997 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1998 {
1999 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2000 						cqe);
2001 
2002 	complete(&cqe->done);
2003 }
2004 
2005 /*
2006  * Post a WR and block until its completion is reaped for the SQ.
2007  */
2008 static void __ib_drain_sq(struct ib_qp *qp)
2009 {
2010 	struct ib_cq *cq = qp->send_cq;
2011 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2012 	struct ib_drain_cqe sdrain;
2013 	struct ib_send_wr swr = {}, *bad_swr;
2014 	int ret;
2015 
2016 	swr.wr_cqe = &sdrain.cqe;
2017 	sdrain.cqe.done = ib_drain_qp_done;
2018 	init_completion(&sdrain.done);
2019 
2020 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2021 	if (ret) {
2022 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2023 		return;
2024 	}
2025 
2026 	ret = ib_post_send(qp, &swr, &bad_swr);
2027 	if (ret) {
2028 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2029 		return;
2030 	}
2031 
2032 	if (cq->poll_ctx == IB_POLL_DIRECT)
2033 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2034 			ib_process_cq_direct(cq, -1);
2035 	else
2036 		wait_for_completion(&sdrain.done);
2037 }
2038 
2039 /*
2040  * Post a WR and block until its completion is reaped for the RQ.
2041  */
2042 static void __ib_drain_rq(struct ib_qp *qp)
2043 {
2044 	struct ib_cq *cq = qp->recv_cq;
2045 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2046 	struct ib_drain_cqe rdrain;
2047 	struct ib_recv_wr rwr = {}, *bad_rwr;
2048 	int ret;
2049 
2050 	rwr.wr_cqe = &rdrain.cqe;
2051 	rdrain.cqe.done = ib_drain_qp_done;
2052 	init_completion(&rdrain.done);
2053 
2054 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2055 	if (ret) {
2056 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2057 		return;
2058 	}
2059 
2060 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2061 	if (ret) {
2062 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2063 		return;
2064 	}
2065 
2066 	if (cq->poll_ctx == IB_POLL_DIRECT)
2067 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2068 			ib_process_cq_direct(cq, -1);
2069 	else
2070 		wait_for_completion(&rdrain.done);
2071 }
2072 
2073 /**
2074  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2075  *		   application.
2076  * @qp:            queue pair to drain
2077  *
2078  * If the device has a provider-specific drain function, then
2079  * call that.  Otherwise call the generic drain function
2080  * __ib_drain_sq().
2081  *
2082  * The caller must:
2083  *
2084  * ensure there is room in the CQ and SQ for the drain work request and
2085  * completion.
2086  *
2087  * allocate the CQ using ib_alloc_cq().
2088  *
2089  * ensure that there are no other contexts that are posting WRs concurrently.
2090  * Otherwise the drain is not guaranteed.
2091  */
2092 void ib_drain_sq(struct ib_qp *qp)
2093 {
2094 	if (qp->device->drain_sq)
2095 		qp->device->drain_sq(qp);
2096 	else
2097 		__ib_drain_sq(qp);
2098 }
2099 EXPORT_SYMBOL(ib_drain_sq);
2100 
2101 /**
2102  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2103  *		   application.
2104  * @qp:            queue pair to drain
2105  *
2106  * If the device has a provider-specific drain function, then
2107  * call that.  Otherwise call the generic drain function
2108  * __ib_drain_rq().
2109  *
2110  * The caller must:
2111  *
2112  * ensure there is room in the CQ and RQ for the drain work request and
2113  * completion.
2114  *
2115  * allocate the CQ using ib_alloc_cq().
2116  *
2117  * ensure that there are no other contexts that are posting WRs concurrently.
2118  * Otherwise the drain is not guaranteed.
2119  */
2120 void ib_drain_rq(struct ib_qp *qp)
2121 {
2122 	if (qp->device->drain_rq)
2123 		qp->device->drain_rq(qp);
2124 	else
2125 		__ib_drain_rq(qp);
2126 }
2127 EXPORT_SYMBOL(ib_drain_rq);
2128 
2129 /**
2130  * ib_drain_qp() - Block until all CQEs have been consumed by the
2131  *		   application on both the RQ and SQ.
2132  * @qp:            queue pair to drain
2133  *
2134  * The caller must:
2135  *
2136  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2137  * and completions.
2138  *
2139  * allocate the CQs using ib_alloc_cq().
2140  *
2141  * ensure that there are no other contexts that are posting WRs concurrently.
2142  * Otherwise the drain is not guaranteed.
2143  */
2144 void ib_drain_qp(struct ib_qp *qp)
2145 {
2146 	ib_drain_sq(qp);
2147 	if (!qp->srq)
2148 		ib_drain_rq(qp);
2149 }
2150 EXPORT_SYMBOL(ib_drain_qp);
2151