xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision bf070bb0)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 
54 #include "core_priv.h"
55 
56 static int ib_resolve_eth_dmac(struct ib_device *device,
57 			       struct rdma_ah_attr *ah_attr);
58 
59 static const char * const ib_events[] = {
60 	[IB_EVENT_CQ_ERR]		= "CQ error",
61 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
62 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
63 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
64 	[IB_EVENT_COMM_EST]		= "communication established",
65 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
66 	[IB_EVENT_PATH_MIG]		= "path migration successful",
67 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
68 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
69 	[IB_EVENT_PORT_ACTIVE]		= "port active",
70 	[IB_EVENT_PORT_ERR]		= "port error",
71 	[IB_EVENT_LID_CHANGE]		= "LID change",
72 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
73 	[IB_EVENT_SM_CHANGE]		= "SM change",
74 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
75 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
76 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
77 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
78 	[IB_EVENT_GID_CHANGE]		= "GID changed",
79 };
80 
81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
82 {
83 	size_t index = event;
84 
85 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
86 			ib_events[index] : "unrecognized event";
87 }
88 EXPORT_SYMBOL(ib_event_msg);
89 
90 static const char * const wc_statuses[] = {
91 	[IB_WC_SUCCESS]			= "success",
92 	[IB_WC_LOC_LEN_ERR]		= "local length error",
93 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
94 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
95 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
96 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
97 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
98 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
99 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
100 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
101 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
102 	[IB_WC_REM_OP_ERR]		= "remote operation error",
103 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
104 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
105 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
106 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
107 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
108 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
109 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
110 	[IB_WC_FATAL_ERR]		= "fatal error",
111 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
112 	[IB_WC_GENERAL_ERR]		= "general error",
113 };
114 
115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
116 {
117 	size_t index = status;
118 
119 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
120 			wc_statuses[index] : "unrecognized status";
121 }
122 EXPORT_SYMBOL(ib_wc_status_msg);
123 
124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
125 {
126 	switch (rate) {
127 	case IB_RATE_2_5_GBPS: return  1;
128 	case IB_RATE_5_GBPS:   return  2;
129 	case IB_RATE_10_GBPS:  return  4;
130 	case IB_RATE_20_GBPS:  return  8;
131 	case IB_RATE_30_GBPS:  return 12;
132 	case IB_RATE_40_GBPS:  return 16;
133 	case IB_RATE_60_GBPS:  return 24;
134 	case IB_RATE_80_GBPS:  return 32;
135 	case IB_RATE_120_GBPS: return 48;
136 	default:	       return -1;
137 	}
138 }
139 EXPORT_SYMBOL(ib_rate_to_mult);
140 
141 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
142 {
143 	switch (mult) {
144 	case 1:  return IB_RATE_2_5_GBPS;
145 	case 2:  return IB_RATE_5_GBPS;
146 	case 4:  return IB_RATE_10_GBPS;
147 	case 8:  return IB_RATE_20_GBPS;
148 	case 12: return IB_RATE_30_GBPS;
149 	case 16: return IB_RATE_40_GBPS;
150 	case 24: return IB_RATE_60_GBPS;
151 	case 32: return IB_RATE_80_GBPS;
152 	case 48: return IB_RATE_120_GBPS;
153 	default: return IB_RATE_PORT_CURRENT;
154 	}
155 }
156 EXPORT_SYMBOL(mult_to_ib_rate);
157 
158 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
159 {
160 	switch (rate) {
161 	case IB_RATE_2_5_GBPS: return 2500;
162 	case IB_RATE_5_GBPS:   return 5000;
163 	case IB_RATE_10_GBPS:  return 10000;
164 	case IB_RATE_20_GBPS:  return 20000;
165 	case IB_RATE_30_GBPS:  return 30000;
166 	case IB_RATE_40_GBPS:  return 40000;
167 	case IB_RATE_60_GBPS:  return 60000;
168 	case IB_RATE_80_GBPS:  return 80000;
169 	case IB_RATE_120_GBPS: return 120000;
170 	case IB_RATE_14_GBPS:  return 14062;
171 	case IB_RATE_56_GBPS:  return 56250;
172 	case IB_RATE_112_GBPS: return 112500;
173 	case IB_RATE_168_GBPS: return 168750;
174 	case IB_RATE_25_GBPS:  return 25781;
175 	case IB_RATE_100_GBPS: return 103125;
176 	case IB_RATE_200_GBPS: return 206250;
177 	case IB_RATE_300_GBPS: return 309375;
178 	default:	       return -1;
179 	}
180 }
181 EXPORT_SYMBOL(ib_rate_to_mbps);
182 
183 __attribute_const__ enum rdma_transport_type
184 rdma_node_get_transport(enum rdma_node_type node_type)
185 {
186 
187 	if (node_type == RDMA_NODE_USNIC)
188 		return RDMA_TRANSPORT_USNIC;
189 	if (node_type == RDMA_NODE_USNIC_UDP)
190 		return RDMA_TRANSPORT_USNIC_UDP;
191 	if (node_type == RDMA_NODE_RNIC)
192 		return RDMA_TRANSPORT_IWARP;
193 
194 	return RDMA_TRANSPORT_IB;
195 }
196 EXPORT_SYMBOL(rdma_node_get_transport);
197 
198 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
199 {
200 	enum rdma_transport_type lt;
201 	if (device->get_link_layer)
202 		return device->get_link_layer(device, port_num);
203 
204 	lt = rdma_node_get_transport(device->node_type);
205 	if (lt == RDMA_TRANSPORT_IB)
206 		return IB_LINK_LAYER_INFINIBAND;
207 
208 	return IB_LINK_LAYER_ETHERNET;
209 }
210 EXPORT_SYMBOL(rdma_port_get_link_layer);
211 
212 /* Protection domains */
213 
214 /**
215  * ib_alloc_pd - Allocates an unused protection domain.
216  * @device: The device on which to allocate the protection domain.
217  *
218  * A protection domain object provides an association between QPs, shared
219  * receive queues, address handles, memory regions, and memory windows.
220  *
221  * Every PD has a local_dma_lkey which can be used as the lkey value for local
222  * memory operations.
223  */
224 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
225 		const char *caller)
226 {
227 	struct ib_pd *pd;
228 	int mr_access_flags = 0;
229 
230 	pd = device->alloc_pd(device, NULL, NULL);
231 	if (IS_ERR(pd))
232 		return pd;
233 
234 	pd->device = device;
235 	pd->uobject = NULL;
236 	pd->__internal_mr = NULL;
237 	atomic_set(&pd->usecnt, 0);
238 	pd->flags = flags;
239 
240 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
241 		pd->local_dma_lkey = device->local_dma_lkey;
242 	else
243 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
244 
245 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
246 		pr_warn("%s: enabling unsafe global rkey\n", caller);
247 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
248 	}
249 
250 	if (mr_access_flags) {
251 		struct ib_mr *mr;
252 
253 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
254 		if (IS_ERR(mr)) {
255 			ib_dealloc_pd(pd);
256 			return ERR_CAST(mr);
257 		}
258 
259 		mr->device	= pd->device;
260 		mr->pd		= pd;
261 		mr->uobject	= NULL;
262 		mr->need_inval	= false;
263 
264 		pd->__internal_mr = mr;
265 
266 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
267 			pd->local_dma_lkey = pd->__internal_mr->lkey;
268 
269 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
270 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
271 	}
272 
273 	return pd;
274 }
275 EXPORT_SYMBOL(__ib_alloc_pd);
276 
277 /**
278  * ib_dealloc_pd - Deallocates a protection domain.
279  * @pd: The protection domain to deallocate.
280  *
281  * It is an error to call this function while any resources in the pd still
282  * exist.  The caller is responsible to synchronously destroy them and
283  * guarantee no new allocations will happen.
284  */
285 void ib_dealloc_pd(struct ib_pd *pd)
286 {
287 	int ret;
288 
289 	if (pd->__internal_mr) {
290 		ret = pd->device->dereg_mr(pd->__internal_mr);
291 		WARN_ON(ret);
292 		pd->__internal_mr = NULL;
293 	}
294 
295 	/* uverbs manipulates usecnt with proper locking, while the kabi
296 	   requires the caller to guarantee we can't race here. */
297 	WARN_ON(atomic_read(&pd->usecnt));
298 
299 	/* Making delalloc_pd a void return is a WIP, no driver should return
300 	   an error here. */
301 	ret = pd->device->dealloc_pd(pd);
302 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
303 }
304 EXPORT_SYMBOL(ib_dealloc_pd);
305 
306 /* Address handles */
307 
308 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
309 				     struct rdma_ah_attr *ah_attr,
310 				     struct ib_udata *udata)
311 {
312 	struct ib_ah *ah;
313 
314 	ah = pd->device->create_ah(pd, ah_attr, udata);
315 
316 	if (!IS_ERR(ah)) {
317 		ah->device  = pd->device;
318 		ah->pd      = pd;
319 		ah->uobject = NULL;
320 		ah->type    = ah_attr->type;
321 		atomic_inc(&pd->usecnt);
322 	}
323 
324 	return ah;
325 }
326 
327 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
328 {
329 	return _rdma_create_ah(pd, ah_attr, NULL);
330 }
331 EXPORT_SYMBOL(rdma_create_ah);
332 
333 /**
334  * rdma_create_user_ah - Creates an address handle for the
335  * given address vector.
336  * It resolves destination mac address for ah attribute of RoCE type.
337  * @pd: The protection domain associated with the address handle.
338  * @ah_attr: The attributes of the address vector.
339  * @udata: pointer to user's input output buffer information need by
340  *         provider driver.
341  *
342  * It returns 0 on success and returns appropriate error code on error.
343  * The address handle is used to reference a local or global destination
344  * in all UD QP post sends.
345  */
346 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
347 				  struct rdma_ah_attr *ah_attr,
348 				  struct ib_udata *udata)
349 {
350 	int err;
351 
352 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
353 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
354 		if (err)
355 			return ERR_PTR(err);
356 	}
357 
358 	return _rdma_create_ah(pd, ah_attr, udata);
359 }
360 EXPORT_SYMBOL(rdma_create_user_ah);
361 
362 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
363 {
364 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
365 	struct iphdr ip4h_checked;
366 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
367 
368 	/* If it's IPv6, the version must be 6, otherwise, the first
369 	 * 20 bytes (before the IPv4 header) are garbled.
370 	 */
371 	if (ip6h->version != 6)
372 		return (ip4h->version == 4) ? 4 : 0;
373 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
374 
375 	/* RoCE v2 requires no options, thus header length
376 	 * must be 5 words
377 	 */
378 	if (ip4h->ihl != 5)
379 		return 6;
380 
381 	/* Verify checksum.
382 	 * We can't write on scattered buffers so we need to copy to
383 	 * temp buffer.
384 	 */
385 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
386 	ip4h_checked.check = 0;
387 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
388 	/* if IPv4 header checksum is OK, believe it */
389 	if (ip4h->check == ip4h_checked.check)
390 		return 4;
391 	return 6;
392 }
393 EXPORT_SYMBOL(ib_get_rdma_header_version);
394 
395 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
396 						     u8 port_num,
397 						     const struct ib_grh *grh)
398 {
399 	int grh_version;
400 
401 	if (rdma_protocol_ib(device, port_num))
402 		return RDMA_NETWORK_IB;
403 
404 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
405 
406 	if (grh_version == 4)
407 		return RDMA_NETWORK_IPV4;
408 
409 	if (grh->next_hdr == IPPROTO_UDP)
410 		return RDMA_NETWORK_IPV6;
411 
412 	return RDMA_NETWORK_ROCE_V1;
413 }
414 
415 struct find_gid_index_context {
416 	u16 vlan_id;
417 	enum ib_gid_type gid_type;
418 };
419 
420 static bool find_gid_index(const union ib_gid *gid,
421 			   const struct ib_gid_attr *gid_attr,
422 			   void *context)
423 {
424 	struct find_gid_index_context *ctx =
425 		(struct find_gid_index_context *)context;
426 
427 	if (ctx->gid_type != gid_attr->gid_type)
428 		return false;
429 
430 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
431 	    (is_vlan_dev(gid_attr->ndev) &&
432 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
433 		return false;
434 
435 	return true;
436 }
437 
438 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
439 				   u16 vlan_id, const union ib_gid *sgid,
440 				   enum ib_gid_type gid_type,
441 				   u16 *gid_index)
442 {
443 	struct find_gid_index_context context = {.vlan_id = vlan_id,
444 						 .gid_type = gid_type};
445 
446 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
447 				     &context, gid_index);
448 }
449 
450 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
451 			      enum rdma_network_type net_type,
452 			      union ib_gid *sgid, union ib_gid *dgid)
453 {
454 	struct sockaddr_in  src_in;
455 	struct sockaddr_in  dst_in;
456 	__be32 src_saddr, dst_saddr;
457 
458 	if (!sgid || !dgid)
459 		return -EINVAL;
460 
461 	if (net_type == RDMA_NETWORK_IPV4) {
462 		memcpy(&src_in.sin_addr.s_addr,
463 		       &hdr->roce4grh.saddr, 4);
464 		memcpy(&dst_in.sin_addr.s_addr,
465 		       &hdr->roce4grh.daddr, 4);
466 		src_saddr = src_in.sin_addr.s_addr;
467 		dst_saddr = dst_in.sin_addr.s_addr;
468 		ipv6_addr_set_v4mapped(src_saddr,
469 				       (struct in6_addr *)sgid);
470 		ipv6_addr_set_v4mapped(dst_saddr,
471 				       (struct in6_addr *)dgid);
472 		return 0;
473 	} else if (net_type == RDMA_NETWORK_IPV6 ||
474 		   net_type == RDMA_NETWORK_IB) {
475 		*dgid = hdr->ibgrh.dgid;
476 		*sgid = hdr->ibgrh.sgid;
477 		return 0;
478 	} else {
479 		return -EINVAL;
480 	}
481 }
482 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
483 
484 /*
485  * This function creates ah from the incoming packet.
486  * Incoming packet has dgid of the receiver node on which this code is
487  * getting executed and, sgid contains the GID of the sender.
488  *
489  * When resolving mac address of destination, the arrived dgid is used
490  * as sgid and, sgid is used as dgid because sgid contains destinations
491  * GID whom to respond to.
492  *
493  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
494  * position of arguments dgid and sgid do not match the order of the
495  * parameters.
496  */
497 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
498 		       const struct ib_wc *wc, const struct ib_grh *grh,
499 		       struct rdma_ah_attr *ah_attr)
500 {
501 	u32 flow_class;
502 	u16 gid_index;
503 	int ret;
504 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
505 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
506 	int hoplimit = 0xff;
507 	union ib_gid dgid;
508 	union ib_gid sgid;
509 
510 	might_sleep();
511 
512 	memset(ah_attr, 0, sizeof *ah_attr);
513 	ah_attr->type = rdma_ah_find_type(device, port_num);
514 	if (rdma_cap_eth_ah(device, port_num)) {
515 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
516 			net_type = wc->network_hdr_type;
517 		else
518 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
519 		gid_type = ib_network_to_gid_type(net_type);
520 	}
521 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
522 					&sgid, &dgid);
523 	if (ret)
524 		return ret;
525 
526 	if (rdma_protocol_roce(device, port_num)) {
527 		int if_index = 0;
528 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
529 				wc->vlan_id : 0xffff;
530 		struct net_device *idev;
531 		struct net_device *resolved_dev;
532 
533 		if (!(wc->wc_flags & IB_WC_GRH))
534 			return -EPROTOTYPE;
535 
536 		if (!device->get_netdev)
537 			return -EOPNOTSUPP;
538 
539 		idev = device->get_netdev(device, port_num);
540 		if (!idev)
541 			return -ENODEV;
542 
543 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
544 						   ah_attr->roce.dmac,
545 						   wc->wc_flags & IB_WC_WITH_VLAN ?
546 						   NULL : &vlan_id,
547 						   &if_index, &hoplimit);
548 		if (ret) {
549 			dev_put(idev);
550 			return ret;
551 		}
552 
553 		resolved_dev = dev_get_by_index(&init_net, if_index);
554 		rcu_read_lock();
555 		if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
556 								   resolved_dev))
557 			ret = -EHOSTUNREACH;
558 		rcu_read_unlock();
559 		dev_put(idev);
560 		dev_put(resolved_dev);
561 		if (ret)
562 			return ret;
563 
564 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
565 					      &dgid, gid_type, &gid_index);
566 		if (ret)
567 			return ret;
568 	}
569 
570 	rdma_ah_set_dlid(ah_attr, wc->slid);
571 	rdma_ah_set_sl(ah_attr, wc->sl);
572 	rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
573 	rdma_ah_set_port_num(ah_attr, port_num);
574 
575 	if (wc->wc_flags & IB_WC_GRH) {
576 		if (!rdma_cap_eth_ah(device, port_num)) {
577 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
578 				ret = ib_find_cached_gid_by_port(device, &dgid,
579 								 IB_GID_TYPE_IB,
580 								 port_num, NULL,
581 								 &gid_index);
582 				if (ret)
583 					return ret;
584 			} else {
585 				gid_index = 0;
586 			}
587 		}
588 
589 		flow_class = be32_to_cpu(grh->version_tclass_flow);
590 		rdma_ah_set_grh(ah_attr, &sgid,
591 				flow_class & 0xFFFFF,
592 				(u8)gid_index, hoplimit,
593 				(flow_class >> 20) & 0xFF);
594 
595 	}
596 	return 0;
597 }
598 EXPORT_SYMBOL(ib_init_ah_from_wc);
599 
600 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
601 				   const struct ib_grh *grh, u8 port_num)
602 {
603 	struct rdma_ah_attr ah_attr;
604 	int ret;
605 
606 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
607 	if (ret)
608 		return ERR_PTR(ret);
609 
610 	return rdma_create_ah(pd, &ah_attr);
611 }
612 EXPORT_SYMBOL(ib_create_ah_from_wc);
613 
614 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
615 {
616 	if (ah->type != ah_attr->type)
617 		return -EINVAL;
618 
619 	return ah->device->modify_ah ?
620 		ah->device->modify_ah(ah, ah_attr) :
621 		-ENOSYS;
622 }
623 EXPORT_SYMBOL(rdma_modify_ah);
624 
625 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
626 {
627 	return ah->device->query_ah ?
628 		ah->device->query_ah(ah, ah_attr) :
629 		-ENOSYS;
630 }
631 EXPORT_SYMBOL(rdma_query_ah);
632 
633 int rdma_destroy_ah(struct ib_ah *ah)
634 {
635 	struct ib_pd *pd;
636 	int ret;
637 
638 	pd = ah->pd;
639 	ret = ah->device->destroy_ah(ah);
640 	if (!ret)
641 		atomic_dec(&pd->usecnt);
642 
643 	return ret;
644 }
645 EXPORT_SYMBOL(rdma_destroy_ah);
646 
647 /* Shared receive queues */
648 
649 struct ib_srq *ib_create_srq(struct ib_pd *pd,
650 			     struct ib_srq_init_attr *srq_init_attr)
651 {
652 	struct ib_srq *srq;
653 
654 	if (!pd->device->create_srq)
655 		return ERR_PTR(-ENOSYS);
656 
657 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
658 
659 	if (!IS_ERR(srq)) {
660 		srq->device    	   = pd->device;
661 		srq->pd        	   = pd;
662 		srq->uobject       = NULL;
663 		srq->event_handler = srq_init_attr->event_handler;
664 		srq->srq_context   = srq_init_attr->srq_context;
665 		srq->srq_type      = srq_init_attr->srq_type;
666 		if (ib_srq_has_cq(srq->srq_type)) {
667 			srq->ext.cq   = srq_init_attr->ext.cq;
668 			atomic_inc(&srq->ext.cq->usecnt);
669 		}
670 		if (srq->srq_type == IB_SRQT_XRC) {
671 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
672 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
673 		}
674 		atomic_inc(&pd->usecnt);
675 		atomic_set(&srq->usecnt, 0);
676 	}
677 
678 	return srq;
679 }
680 EXPORT_SYMBOL(ib_create_srq);
681 
682 int ib_modify_srq(struct ib_srq *srq,
683 		  struct ib_srq_attr *srq_attr,
684 		  enum ib_srq_attr_mask srq_attr_mask)
685 {
686 	return srq->device->modify_srq ?
687 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
688 		-ENOSYS;
689 }
690 EXPORT_SYMBOL(ib_modify_srq);
691 
692 int ib_query_srq(struct ib_srq *srq,
693 		 struct ib_srq_attr *srq_attr)
694 {
695 	return srq->device->query_srq ?
696 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
697 }
698 EXPORT_SYMBOL(ib_query_srq);
699 
700 int ib_destroy_srq(struct ib_srq *srq)
701 {
702 	struct ib_pd *pd;
703 	enum ib_srq_type srq_type;
704 	struct ib_xrcd *uninitialized_var(xrcd);
705 	struct ib_cq *uninitialized_var(cq);
706 	int ret;
707 
708 	if (atomic_read(&srq->usecnt))
709 		return -EBUSY;
710 
711 	pd = srq->pd;
712 	srq_type = srq->srq_type;
713 	if (ib_srq_has_cq(srq_type))
714 		cq = srq->ext.cq;
715 	if (srq_type == IB_SRQT_XRC)
716 		xrcd = srq->ext.xrc.xrcd;
717 
718 	ret = srq->device->destroy_srq(srq);
719 	if (!ret) {
720 		atomic_dec(&pd->usecnt);
721 		if (srq_type == IB_SRQT_XRC)
722 			atomic_dec(&xrcd->usecnt);
723 		if (ib_srq_has_cq(srq_type))
724 			atomic_dec(&cq->usecnt);
725 	}
726 
727 	return ret;
728 }
729 EXPORT_SYMBOL(ib_destroy_srq);
730 
731 /* Queue pairs */
732 
733 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
734 {
735 	struct ib_qp *qp = context;
736 	unsigned long flags;
737 
738 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
739 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
740 		if (event->element.qp->event_handler)
741 			event->element.qp->event_handler(event, event->element.qp->qp_context);
742 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
743 }
744 
745 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
746 {
747 	mutex_lock(&xrcd->tgt_qp_mutex);
748 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
749 	mutex_unlock(&xrcd->tgt_qp_mutex);
750 }
751 
752 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
753 				  void (*event_handler)(struct ib_event *, void *),
754 				  void *qp_context)
755 {
756 	struct ib_qp *qp;
757 	unsigned long flags;
758 	int err;
759 
760 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
761 	if (!qp)
762 		return ERR_PTR(-ENOMEM);
763 
764 	qp->real_qp = real_qp;
765 	err = ib_open_shared_qp_security(qp, real_qp->device);
766 	if (err) {
767 		kfree(qp);
768 		return ERR_PTR(err);
769 	}
770 
771 	qp->real_qp = real_qp;
772 	atomic_inc(&real_qp->usecnt);
773 	qp->device = real_qp->device;
774 	qp->event_handler = event_handler;
775 	qp->qp_context = qp_context;
776 	qp->qp_num = real_qp->qp_num;
777 	qp->qp_type = real_qp->qp_type;
778 
779 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
780 	list_add(&qp->open_list, &real_qp->open_list);
781 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
782 
783 	return qp;
784 }
785 
786 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
787 			 struct ib_qp_open_attr *qp_open_attr)
788 {
789 	struct ib_qp *qp, *real_qp;
790 
791 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
792 		return ERR_PTR(-EINVAL);
793 
794 	qp = ERR_PTR(-EINVAL);
795 	mutex_lock(&xrcd->tgt_qp_mutex);
796 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
797 		if (real_qp->qp_num == qp_open_attr->qp_num) {
798 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
799 					  qp_open_attr->qp_context);
800 			break;
801 		}
802 	}
803 	mutex_unlock(&xrcd->tgt_qp_mutex);
804 	return qp;
805 }
806 EXPORT_SYMBOL(ib_open_qp);
807 
808 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
809 		struct ib_qp_init_attr *qp_init_attr)
810 {
811 	struct ib_qp *real_qp = qp;
812 
813 	qp->event_handler = __ib_shared_qp_event_handler;
814 	qp->qp_context = qp;
815 	qp->pd = NULL;
816 	qp->send_cq = qp->recv_cq = NULL;
817 	qp->srq = NULL;
818 	qp->xrcd = qp_init_attr->xrcd;
819 	atomic_inc(&qp_init_attr->xrcd->usecnt);
820 	INIT_LIST_HEAD(&qp->open_list);
821 
822 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
823 			  qp_init_attr->qp_context);
824 	if (!IS_ERR(qp))
825 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
826 	else
827 		real_qp->device->destroy_qp(real_qp);
828 	return qp;
829 }
830 
831 struct ib_qp *ib_create_qp(struct ib_pd *pd,
832 			   struct ib_qp_init_attr *qp_init_attr)
833 {
834 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
835 	struct ib_qp *qp;
836 	int ret;
837 
838 	if (qp_init_attr->rwq_ind_tbl &&
839 	    (qp_init_attr->recv_cq ||
840 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
841 	    qp_init_attr->cap.max_recv_sge))
842 		return ERR_PTR(-EINVAL);
843 
844 	/*
845 	 * If the callers is using the RDMA API calculate the resources
846 	 * needed for the RDMA READ/WRITE operations.
847 	 *
848 	 * Note that these callers need to pass in a port number.
849 	 */
850 	if (qp_init_attr->cap.max_rdma_ctxs)
851 		rdma_rw_init_qp(device, qp_init_attr);
852 
853 	qp = device->create_qp(pd, qp_init_attr, NULL);
854 	if (IS_ERR(qp))
855 		return qp;
856 
857 	ret = ib_create_qp_security(qp, device);
858 	if (ret) {
859 		ib_destroy_qp(qp);
860 		return ERR_PTR(ret);
861 	}
862 
863 	qp->device     = device;
864 	qp->real_qp    = qp;
865 	qp->uobject    = NULL;
866 	qp->qp_type    = qp_init_attr->qp_type;
867 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
868 
869 	atomic_set(&qp->usecnt, 0);
870 	qp->mrs_used = 0;
871 	spin_lock_init(&qp->mr_lock);
872 	INIT_LIST_HEAD(&qp->rdma_mrs);
873 	INIT_LIST_HEAD(&qp->sig_mrs);
874 	qp->port = 0;
875 
876 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
877 		return ib_create_xrc_qp(qp, qp_init_attr);
878 
879 	qp->event_handler = qp_init_attr->event_handler;
880 	qp->qp_context = qp_init_attr->qp_context;
881 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
882 		qp->recv_cq = NULL;
883 		qp->srq = NULL;
884 	} else {
885 		qp->recv_cq = qp_init_attr->recv_cq;
886 		if (qp_init_attr->recv_cq)
887 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
888 		qp->srq = qp_init_attr->srq;
889 		if (qp->srq)
890 			atomic_inc(&qp_init_attr->srq->usecnt);
891 	}
892 
893 	qp->pd	    = pd;
894 	qp->send_cq = qp_init_attr->send_cq;
895 	qp->xrcd    = NULL;
896 
897 	atomic_inc(&pd->usecnt);
898 	if (qp_init_attr->send_cq)
899 		atomic_inc(&qp_init_attr->send_cq->usecnt);
900 	if (qp_init_attr->rwq_ind_tbl)
901 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
902 
903 	if (qp_init_attr->cap.max_rdma_ctxs) {
904 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
905 		if (ret) {
906 			pr_err("failed to init MR pool ret= %d\n", ret);
907 			ib_destroy_qp(qp);
908 			return ERR_PTR(ret);
909 		}
910 	}
911 
912 	/*
913 	 * Note: all hw drivers guarantee that max_send_sge is lower than
914 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
915 	 * max_send_sge <= max_sge_rd.
916 	 */
917 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
918 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
919 				 device->attrs.max_sge_rd);
920 
921 	return qp;
922 }
923 EXPORT_SYMBOL(ib_create_qp);
924 
925 static const struct {
926 	int			valid;
927 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
928 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
929 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
930 	[IB_QPS_RESET] = {
931 		[IB_QPS_RESET] = { .valid = 1 },
932 		[IB_QPS_INIT]  = {
933 			.valid = 1,
934 			.req_param = {
935 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
936 						IB_QP_PORT			|
937 						IB_QP_QKEY),
938 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
939 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
940 						IB_QP_PORT			|
941 						IB_QP_ACCESS_FLAGS),
942 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
943 						IB_QP_PORT			|
944 						IB_QP_ACCESS_FLAGS),
945 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
946 						IB_QP_PORT			|
947 						IB_QP_ACCESS_FLAGS),
948 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
949 						IB_QP_PORT			|
950 						IB_QP_ACCESS_FLAGS),
951 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
952 						IB_QP_QKEY),
953 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
954 						IB_QP_QKEY),
955 			}
956 		},
957 	},
958 	[IB_QPS_INIT]  = {
959 		[IB_QPS_RESET] = { .valid = 1 },
960 		[IB_QPS_ERR] =   { .valid = 1 },
961 		[IB_QPS_INIT]  = {
962 			.valid = 1,
963 			.opt_param = {
964 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
965 						IB_QP_PORT			|
966 						IB_QP_QKEY),
967 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
968 						IB_QP_PORT			|
969 						IB_QP_ACCESS_FLAGS),
970 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
971 						IB_QP_PORT			|
972 						IB_QP_ACCESS_FLAGS),
973 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
974 						IB_QP_PORT			|
975 						IB_QP_ACCESS_FLAGS),
976 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
977 						IB_QP_PORT			|
978 						IB_QP_ACCESS_FLAGS),
979 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
980 						IB_QP_QKEY),
981 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
982 						IB_QP_QKEY),
983 			}
984 		},
985 		[IB_QPS_RTR]   = {
986 			.valid = 1,
987 			.req_param = {
988 				[IB_QPT_UC]  = (IB_QP_AV			|
989 						IB_QP_PATH_MTU			|
990 						IB_QP_DEST_QPN			|
991 						IB_QP_RQ_PSN),
992 				[IB_QPT_RC]  = (IB_QP_AV			|
993 						IB_QP_PATH_MTU			|
994 						IB_QP_DEST_QPN			|
995 						IB_QP_RQ_PSN			|
996 						IB_QP_MAX_DEST_RD_ATOMIC	|
997 						IB_QP_MIN_RNR_TIMER),
998 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
999 						IB_QP_PATH_MTU			|
1000 						IB_QP_DEST_QPN			|
1001 						IB_QP_RQ_PSN),
1002 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1003 						IB_QP_PATH_MTU			|
1004 						IB_QP_DEST_QPN			|
1005 						IB_QP_RQ_PSN			|
1006 						IB_QP_MAX_DEST_RD_ATOMIC	|
1007 						IB_QP_MIN_RNR_TIMER),
1008 			},
1009 			.opt_param = {
1010 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1011 						 IB_QP_QKEY),
1012 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1013 						 IB_QP_ACCESS_FLAGS		|
1014 						 IB_QP_PKEY_INDEX),
1015 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1016 						 IB_QP_ACCESS_FLAGS		|
1017 						 IB_QP_PKEY_INDEX),
1018 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1019 						 IB_QP_ACCESS_FLAGS		|
1020 						 IB_QP_PKEY_INDEX),
1021 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1022 						 IB_QP_ACCESS_FLAGS		|
1023 						 IB_QP_PKEY_INDEX),
1024 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1025 						 IB_QP_QKEY),
1026 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1027 						 IB_QP_QKEY),
1028 			 },
1029 		},
1030 	},
1031 	[IB_QPS_RTR]   = {
1032 		[IB_QPS_RESET] = { .valid = 1 },
1033 		[IB_QPS_ERR] =   { .valid = 1 },
1034 		[IB_QPS_RTS]   = {
1035 			.valid = 1,
1036 			.req_param = {
1037 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1038 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1039 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1040 						IB_QP_RETRY_CNT			|
1041 						IB_QP_RNR_RETRY			|
1042 						IB_QP_SQ_PSN			|
1043 						IB_QP_MAX_QP_RD_ATOMIC),
1044 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1045 						IB_QP_RETRY_CNT			|
1046 						IB_QP_RNR_RETRY			|
1047 						IB_QP_SQ_PSN			|
1048 						IB_QP_MAX_QP_RD_ATOMIC),
1049 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1050 						IB_QP_SQ_PSN),
1051 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1052 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1053 			},
1054 			.opt_param = {
1055 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1056 						 IB_QP_QKEY),
1057 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1058 						 IB_QP_ALT_PATH			|
1059 						 IB_QP_ACCESS_FLAGS		|
1060 						 IB_QP_PATH_MIG_STATE),
1061 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1062 						 IB_QP_ALT_PATH			|
1063 						 IB_QP_ACCESS_FLAGS		|
1064 						 IB_QP_MIN_RNR_TIMER		|
1065 						 IB_QP_PATH_MIG_STATE),
1066 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1067 						 IB_QP_ALT_PATH			|
1068 						 IB_QP_ACCESS_FLAGS		|
1069 						 IB_QP_PATH_MIG_STATE),
1070 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1071 						 IB_QP_ALT_PATH			|
1072 						 IB_QP_ACCESS_FLAGS		|
1073 						 IB_QP_MIN_RNR_TIMER		|
1074 						 IB_QP_PATH_MIG_STATE),
1075 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1076 						 IB_QP_QKEY),
1077 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1078 						 IB_QP_QKEY),
1079 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1080 			 }
1081 		}
1082 	},
1083 	[IB_QPS_RTS]   = {
1084 		[IB_QPS_RESET] = { .valid = 1 },
1085 		[IB_QPS_ERR] =   { .valid = 1 },
1086 		[IB_QPS_RTS]   = {
1087 			.valid = 1,
1088 			.opt_param = {
1089 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1090 						IB_QP_QKEY),
1091 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1092 						IB_QP_ACCESS_FLAGS		|
1093 						IB_QP_ALT_PATH			|
1094 						IB_QP_PATH_MIG_STATE),
1095 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1096 						IB_QP_ACCESS_FLAGS		|
1097 						IB_QP_ALT_PATH			|
1098 						IB_QP_PATH_MIG_STATE		|
1099 						IB_QP_MIN_RNR_TIMER),
1100 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1101 						IB_QP_ACCESS_FLAGS		|
1102 						IB_QP_ALT_PATH			|
1103 						IB_QP_PATH_MIG_STATE),
1104 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1105 						IB_QP_ACCESS_FLAGS		|
1106 						IB_QP_ALT_PATH			|
1107 						IB_QP_PATH_MIG_STATE		|
1108 						IB_QP_MIN_RNR_TIMER),
1109 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1110 						IB_QP_QKEY),
1111 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1112 						IB_QP_QKEY),
1113 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1114 			}
1115 		},
1116 		[IB_QPS_SQD]   = {
1117 			.valid = 1,
1118 			.opt_param = {
1119 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1120 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1121 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1122 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1123 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1124 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1125 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1126 			}
1127 		},
1128 	},
1129 	[IB_QPS_SQD]   = {
1130 		[IB_QPS_RESET] = { .valid = 1 },
1131 		[IB_QPS_ERR] =   { .valid = 1 },
1132 		[IB_QPS_RTS]   = {
1133 			.valid = 1,
1134 			.opt_param = {
1135 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1136 						IB_QP_QKEY),
1137 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1138 						IB_QP_ALT_PATH			|
1139 						IB_QP_ACCESS_FLAGS		|
1140 						IB_QP_PATH_MIG_STATE),
1141 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1142 						IB_QP_ALT_PATH			|
1143 						IB_QP_ACCESS_FLAGS		|
1144 						IB_QP_MIN_RNR_TIMER		|
1145 						IB_QP_PATH_MIG_STATE),
1146 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1147 						IB_QP_ALT_PATH			|
1148 						IB_QP_ACCESS_FLAGS		|
1149 						IB_QP_PATH_MIG_STATE),
1150 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1151 						IB_QP_ALT_PATH			|
1152 						IB_QP_ACCESS_FLAGS		|
1153 						IB_QP_MIN_RNR_TIMER		|
1154 						IB_QP_PATH_MIG_STATE),
1155 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1156 						IB_QP_QKEY),
1157 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1158 						IB_QP_QKEY),
1159 			}
1160 		},
1161 		[IB_QPS_SQD]   = {
1162 			.valid = 1,
1163 			.opt_param = {
1164 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1165 						IB_QP_QKEY),
1166 				[IB_QPT_UC]  = (IB_QP_AV			|
1167 						IB_QP_ALT_PATH			|
1168 						IB_QP_ACCESS_FLAGS		|
1169 						IB_QP_PKEY_INDEX		|
1170 						IB_QP_PATH_MIG_STATE),
1171 				[IB_QPT_RC]  = (IB_QP_PORT			|
1172 						IB_QP_AV			|
1173 						IB_QP_TIMEOUT			|
1174 						IB_QP_RETRY_CNT			|
1175 						IB_QP_RNR_RETRY			|
1176 						IB_QP_MAX_QP_RD_ATOMIC		|
1177 						IB_QP_MAX_DEST_RD_ATOMIC	|
1178 						IB_QP_ALT_PATH			|
1179 						IB_QP_ACCESS_FLAGS		|
1180 						IB_QP_PKEY_INDEX		|
1181 						IB_QP_MIN_RNR_TIMER		|
1182 						IB_QP_PATH_MIG_STATE),
1183 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1184 						IB_QP_AV			|
1185 						IB_QP_TIMEOUT			|
1186 						IB_QP_RETRY_CNT			|
1187 						IB_QP_RNR_RETRY			|
1188 						IB_QP_MAX_QP_RD_ATOMIC		|
1189 						IB_QP_ALT_PATH			|
1190 						IB_QP_ACCESS_FLAGS		|
1191 						IB_QP_PKEY_INDEX		|
1192 						IB_QP_PATH_MIG_STATE),
1193 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1194 						IB_QP_AV			|
1195 						IB_QP_TIMEOUT			|
1196 						IB_QP_MAX_DEST_RD_ATOMIC	|
1197 						IB_QP_ALT_PATH			|
1198 						IB_QP_ACCESS_FLAGS		|
1199 						IB_QP_PKEY_INDEX		|
1200 						IB_QP_MIN_RNR_TIMER		|
1201 						IB_QP_PATH_MIG_STATE),
1202 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1203 						IB_QP_QKEY),
1204 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1205 						IB_QP_QKEY),
1206 			}
1207 		}
1208 	},
1209 	[IB_QPS_SQE]   = {
1210 		[IB_QPS_RESET] = { .valid = 1 },
1211 		[IB_QPS_ERR] =   { .valid = 1 },
1212 		[IB_QPS_RTS]   = {
1213 			.valid = 1,
1214 			.opt_param = {
1215 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1216 						IB_QP_QKEY),
1217 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1218 						IB_QP_ACCESS_FLAGS),
1219 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1220 						IB_QP_QKEY),
1221 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1222 						IB_QP_QKEY),
1223 			}
1224 		}
1225 	},
1226 	[IB_QPS_ERR] = {
1227 		[IB_QPS_RESET] = { .valid = 1 },
1228 		[IB_QPS_ERR] =   { .valid = 1 }
1229 	}
1230 };
1231 
1232 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1233 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1234 		       enum rdma_link_layer ll)
1235 {
1236 	enum ib_qp_attr_mask req_param, opt_param;
1237 
1238 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1239 	    next_state < 0 || next_state > IB_QPS_ERR)
1240 		return 0;
1241 
1242 	if (mask & IB_QP_CUR_STATE  &&
1243 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1244 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1245 		return 0;
1246 
1247 	if (!qp_state_table[cur_state][next_state].valid)
1248 		return 0;
1249 
1250 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1251 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1252 
1253 	if ((mask & req_param) != req_param)
1254 		return 0;
1255 
1256 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1257 		return 0;
1258 
1259 	return 1;
1260 }
1261 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1262 
1263 static int ib_resolve_eth_dmac(struct ib_device *device,
1264 			       struct rdma_ah_attr *ah_attr)
1265 {
1266 	int           ret = 0;
1267 	struct ib_global_route *grh;
1268 
1269 	if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1270 		return -EINVAL;
1271 
1272 	if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1273 		return 0;
1274 
1275 	grh = rdma_ah_retrieve_grh(ah_attr);
1276 
1277 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1278 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1279 				ah_attr->roce.dmac);
1280 		return 0;
1281 	}
1282 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1283 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1284 			__be32 addr = 0;
1285 
1286 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1287 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1288 		} else {
1289 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1290 					(char *)ah_attr->roce.dmac);
1291 		}
1292 	} else {
1293 		union ib_gid		sgid;
1294 		struct ib_gid_attr	sgid_attr;
1295 		int			ifindex;
1296 		int			hop_limit;
1297 
1298 		ret = ib_query_gid(device,
1299 				   rdma_ah_get_port_num(ah_attr),
1300 				   grh->sgid_index,
1301 				   &sgid, &sgid_attr);
1302 
1303 		if (ret || !sgid_attr.ndev) {
1304 			if (!ret)
1305 				ret = -ENXIO;
1306 			goto out;
1307 		}
1308 
1309 		ifindex = sgid_attr.ndev->ifindex;
1310 
1311 		ret =
1312 		rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1313 					     ah_attr->roce.dmac,
1314 					     NULL, &ifindex, &hop_limit);
1315 
1316 		dev_put(sgid_attr.ndev);
1317 
1318 		grh->hop_limit = hop_limit;
1319 	}
1320 out:
1321 	return ret;
1322 }
1323 
1324 /**
1325  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1326  * @qp: The QP to modify.
1327  * @attr: On input, specifies the QP attributes to modify.  On output,
1328  *   the current values of selected QP attributes are returned.
1329  * @attr_mask: A bit-mask used to specify which attributes of the QP
1330  *   are being modified.
1331  * @udata: pointer to user's input output buffer information
1332  *   are being modified.
1333  * It returns 0 on success and returns appropriate error code on error.
1334  */
1335 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1336 			    int attr_mask, struct ib_udata *udata)
1337 {
1338 	int ret;
1339 
1340 	if (attr_mask & IB_QP_AV) {
1341 		ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1342 		if (ret)
1343 			return ret;
1344 	}
1345 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1346 	if (!ret && (attr_mask & IB_QP_PORT))
1347 		qp->port = attr->port_num;
1348 
1349 	return ret;
1350 }
1351 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1352 
1353 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1354 {
1355 	int rc;
1356 	u32 netdev_speed;
1357 	struct net_device *netdev;
1358 	struct ethtool_link_ksettings lksettings;
1359 
1360 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1361 		return -EINVAL;
1362 
1363 	if (!dev->get_netdev)
1364 		return -EOPNOTSUPP;
1365 
1366 	netdev = dev->get_netdev(dev, port_num);
1367 	if (!netdev)
1368 		return -ENODEV;
1369 
1370 	rtnl_lock();
1371 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1372 	rtnl_unlock();
1373 
1374 	dev_put(netdev);
1375 
1376 	if (!rc) {
1377 		netdev_speed = lksettings.base.speed;
1378 	} else {
1379 		netdev_speed = SPEED_1000;
1380 		pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1381 			netdev_speed);
1382 	}
1383 
1384 	if (netdev_speed <= SPEED_1000) {
1385 		*width = IB_WIDTH_1X;
1386 		*speed = IB_SPEED_SDR;
1387 	} else if (netdev_speed <= SPEED_10000) {
1388 		*width = IB_WIDTH_1X;
1389 		*speed = IB_SPEED_FDR10;
1390 	} else if (netdev_speed <= SPEED_20000) {
1391 		*width = IB_WIDTH_4X;
1392 		*speed = IB_SPEED_DDR;
1393 	} else if (netdev_speed <= SPEED_25000) {
1394 		*width = IB_WIDTH_1X;
1395 		*speed = IB_SPEED_EDR;
1396 	} else if (netdev_speed <= SPEED_40000) {
1397 		*width = IB_WIDTH_4X;
1398 		*speed = IB_SPEED_FDR10;
1399 	} else {
1400 		*width = IB_WIDTH_4X;
1401 		*speed = IB_SPEED_EDR;
1402 	}
1403 
1404 	return 0;
1405 }
1406 EXPORT_SYMBOL(ib_get_eth_speed);
1407 
1408 int ib_modify_qp(struct ib_qp *qp,
1409 		 struct ib_qp_attr *qp_attr,
1410 		 int qp_attr_mask)
1411 {
1412 	return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1413 }
1414 EXPORT_SYMBOL(ib_modify_qp);
1415 
1416 int ib_query_qp(struct ib_qp *qp,
1417 		struct ib_qp_attr *qp_attr,
1418 		int qp_attr_mask,
1419 		struct ib_qp_init_attr *qp_init_attr)
1420 {
1421 	return qp->device->query_qp ?
1422 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1423 		-ENOSYS;
1424 }
1425 EXPORT_SYMBOL(ib_query_qp);
1426 
1427 int ib_close_qp(struct ib_qp *qp)
1428 {
1429 	struct ib_qp *real_qp;
1430 	unsigned long flags;
1431 
1432 	real_qp = qp->real_qp;
1433 	if (real_qp == qp)
1434 		return -EINVAL;
1435 
1436 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1437 	list_del(&qp->open_list);
1438 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1439 
1440 	atomic_dec(&real_qp->usecnt);
1441 	ib_close_shared_qp_security(qp->qp_sec);
1442 	kfree(qp);
1443 
1444 	return 0;
1445 }
1446 EXPORT_SYMBOL(ib_close_qp);
1447 
1448 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1449 {
1450 	struct ib_xrcd *xrcd;
1451 	struct ib_qp *real_qp;
1452 	int ret;
1453 
1454 	real_qp = qp->real_qp;
1455 	xrcd = real_qp->xrcd;
1456 
1457 	mutex_lock(&xrcd->tgt_qp_mutex);
1458 	ib_close_qp(qp);
1459 	if (atomic_read(&real_qp->usecnt) == 0)
1460 		list_del(&real_qp->xrcd_list);
1461 	else
1462 		real_qp = NULL;
1463 	mutex_unlock(&xrcd->tgt_qp_mutex);
1464 
1465 	if (real_qp) {
1466 		ret = ib_destroy_qp(real_qp);
1467 		if (!ret)
1468 			atomic_dec(&xrcd->usecnt);
1469 		else
1470 			__ib_insert_xrcd_qp(xrcd, real_qp);
1471 	}
1472 
1473 	return 0;
1474 }
1475 
1476 int ib_destroy_qp(struct ib_qp *qp)
1477 {
1478 	struct ib_pd *pd;
1479 	struct ib_cq *scq, *rcq;
1480 	struct ib_srq *srq;
1481 	struct ib_rwq_ind_table *ind_tbl;
1482 	struct ib_qp_security *sec;
1483 	int ret;
1484 
1485 	WARN_ON_ONCE(qp->mrs_used > 0);
1486 
1487 	if (atomic_read(&qp->usecnt))
1488 		return -EBUSY;
1489 
1490 	if (qp->real_qp != qp)
1491 		return __ib_destroy_shared_qp(qp);
1492 
1493 	pd   = qp->pd;
1494 	scq  = qp->send_cq;
1495 	rcq  = qp->recv_cq;
1496 	srq  = qp->srq;
1497 	ind_tbl = qp->rwq_ind_tbl;
1498 	sec  = qp->qp_sec;
1499 	if (sec)
1500 		ib_destroy_qp_security_begin(sec);
1501 
1502 	if (!qp->uobject)
1503 		rdma_rw_cleanup_mrs(qp);
1504 
1505 	ret = qp->device->destroy_qp(qp);
1506 	if (!ret) {
1507 		if (pd)
1508 			atomic_dec(&pd->usecnt);
1509 		if (scq)
1510 			atomic_dec(&scq->usecnt);
1511 		if (rcq)
1512 			atomic_dec(&rcq->usecnt);
1513 		if (srq)
1514 			atomic_dec(&srq->usecnt);
1515 		if (ind_tbl)
1516 			atomic_dec(&ind_tbl->usecnt);
1517 		if (sec)
1518 			ib_destroy_qp_security_end(sec);
1519 	} else {
1520 		if (sec)
1521 			ib_destroy_qp_security_abort(sec);
1522 	}
1523 
1524 	return ret;
1525 }
1526 EXPORT_SYMBOL(ib_destroy_qp);
1527 
1528 /* Completion queues */
1529 
1530 struct ib_cq *ib_create_cq(struct ib_device *device,
1531 			   ib_comp_handler comp_handler,
1532 			   void (*event_handler)(struct ib_event *, void *),
1533 			   void *cq_context,
1534 			   const struct ib_cq_init_attr *cq_attr)
1535 {
1536 	struct ib_cq *cq;
1537 
1538 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1539 
1540 	if (!IS_ERR(cq)) {
1541 		cq->device        = device;
1542 		cq->uobject       = NULL;
1543 		cq->comp_handler  = comp_handler;
1544 		cq->event_handler = event_handler;
1545 		cq->cq_context    = cq_context;
1546 		atomic_set(&cq->usecnt, 0);
1547 	}
1548 
1549 	return cq;
1550 }
1551 EXPORT_SYMBOL(ib_create_cq);
1552 
1553 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1554 {
1555 	return cq->device->modify_cq ?
1556 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1557 }
1558 EXPORT_SYMBOL(rdma_set_cq_moderation);
1559 
1560 int ib_destroy_cq(struct ib_cq *cq)
1561 {
1562 	if (atomic_read(&cq->usecnt))
1563 		return -EBUSY;
1564 
1565 	return cq->device->destroy_cq(cq);
1566 }
1567 EXPORT_SYMBOL(ib_destroy_cq);
1568 
1569 int ib_resize_cq(struct ib_cq *cq, int cqe)
1570 {
1571 	return cq->device->resize_cq ?
1572 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1573 }
1574 EXPORT_SYMBOL(ib_resize_cq);
1575 
1576 /* Memory regions */
1577 
1578 int ib_dereg_mr(struct ib_mr *mr)
1579 {
1580 	struct ib_pd *pd = mr->pd;
1581 	int ret;
1582 
1583 	ret = mr->device->dereg_mr(mr);
1584 	if (!ret)
1585 		atomic_dec(&pd->usecnt);
1586 
1587 	return ret;
1588 }
1589 EXPORT_SYMBOL(ib_dereg_mr);
1590 
1591 /**
1592  * ib_alloc_mr() - Allocates a memory region
1593  * @pd:            protection domain associated with the region
1594  * @mr_type:       memory region type
1595  * @max_num_sg:    maximum sg entries available for registration.
1596  *
1597  * Notes:
1598  * Memory registeration page/sg lists must not exceed max_num_sg.
1599  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1600  * max_num_sg * used_page_size.
1601  *
1602  */
1603 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1604 			  enum ib_mr_type mr_type,
1605 			  u32 max_num_sg)
1606 {
1607 	struct ib_mr *mr;
1608 
1609 	if (!pd->device->alloc_mr)
1610 		return ERR_PTR(-ENOSYS);
1611 
1612 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1613 	if (!IS_ERR(mr)) {
1614 		mr->device  = pd->device;
1615 		mr->pd      = pd;
1616 		mr->uobject = NULL;
1617 		atomic_inc(&pd->usecnt);
1618 		mr->need_inval = false;
1619 	}
1620 
1621 	return mr;
1622 }
1623 EXPORT_SYMBOL(ib_alloc_mr);
1624 
1625 /* "Fast" memory regions */
1626 
1627 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1628 			    int mr_access_flags,
1629 			    struct ib_fmr_attr *fmr_attr)
1630 {
1631 	struct ib_fmr *fmr;
1632 
1633 	if (!pd->device->alloc_fmr)
1634 		return ERR_PTR(-ENOSYS);
1635 
1636 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1637 	if (!IS_ERR(fmr)) {
1638 		fmr->device = pd->device;
1639 		fmr->pd     = pd;
1640 		atomic_inc(&pd->usecnt);
1641 	}
1642 
1643 	return fmr;
1644 }
1645 EXPORT_SYMBOL(ib_alloc_fmr);
1646 
1647 int ib_unmap_fmr(struct list_head *fmr_list)
1648 {
1649 	struct ib_fmr *fmr;
1650 
1651 	if (list_empty(fmr_list))
1652 		return 0;
1653 
1654 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1655 	return fmr->device->unmap_fmr(fmr_list);
1656 }
1657 EXPORT_SYMBOL(ib_unmap_fmr);
1658 
1659 int ib_dealloc_fmr(struct ib_fmr *fmr)
1660 {
1661 	struct ib_pd *pd;
1662 	int ret;
1663 
1664 	pd = fmr->pd;
1665 	ret = fmr->device->dealloc_fmr(fmr);
1666 	if (!ret)
1667 		atomic_dec(&pd->usecnt);
1668 
1669 	return ret;
1670 }
1671 EXPORT_SYMBOL(ib_dealloc_fmr);
1672 
1673 /* Multicast groups */
1674 
1675 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1676 {
1677 	struct ib_qp_init_attr init_attr = {};
1678 	struct ib_qp_attr attr = {};
1679 	int num_eth_ports = 0;
1680 	int port;
1681 
1682 	/* If QP state >= init, it is assigned to a port and we can check this
1683 	 * port only.
1684 	 */
1685 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1686 		if (attr.qp_state >= IB_QPS_INIT) {
1687 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
1688 			    IB_LINK_LAYER_INFINIBAND)
1689 				return true;
1690 			goto lid_check;
1691 		}
1692 	}
1693 
1694 	/* Can't get a quick answer, iterate over all ports */
1695 	for (port = 0; port < qp->device->phys_port_cnt; port++)
1696 		if (rdma_port_get_link_layer(qp->device, port) !=
1697 		    IB_LINK_LAYER_INFINIBAND)
1698 			num_eth_ports++;
1699 
1700 	/* If we have at lease one Ethernet port, RoCE annex declares that
1701 	 * multicast LID should be ignored. We can't tell at this step if the
1702 	 * QP belongs to an IB or Ethernet port.
1703 	 */
1704 	if (num_eth_ports)
1705 		return true;
1706 
1707 	/* If all the ports are IB, we can check according to IB spec. */
1708 lid_check:
1709 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1710 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
1711 }
1712 
1713 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1714 {
1715 	int ret;
1716 
1717 	if (!qp->device->attach_mcast)
1718 		return -ENOSYS;
1719 
1720 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1721 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1722 		return -EINVAL;
1723 
1724 	ret = qp->device->attach_mcast(qp, gid, lid);
1725 	if (!ret)
1726 		atomic_inc(&qp->usecnt);
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL(ib_attach_mcast);
1730 
1731 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1732 {
1733 	int ret;
1734 
1735 	if (!qp->device->detach_mcast)
1736 		return -ENOSYS;
1737 
1738 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1739 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1740 		return -EINVAL;
1741 
1742 	ret = qp->device->detach_mcast(qp, gid, lid);
1743 	if (!ret)
1744 		atomic_dec(&qp->usecnt);
1745 	return ret;
1746 }
1747 EXPORT_SYMBOL(ib_detach_mcast);
1748 
1749 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1750 {
1751 	struct ib_xrcd *xrcd;
1752 
1753 	if (!device->alloc_xrcd)
1754 		return ERR_PTR(-ENOSYS);
1755 
1756 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1757 	if (!IS_ERR(xrcd)) {
1758 		xrcd->device = device;
1759 		xrcd->inode = NULL;
1760 		atomic_set(&xrcd->usecnt, 0);
1761 		mutex_init(&xrcd->tgt_qp_mutex);
1762 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1763 	}
1764 
1765 	return xrcd;
1766 }
1767 EXPORT_SYMBOL(ib_alloc_xrcd);
1768 
1769 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1770 {
1771 	struct ib_qp *qp;
1772 	int ret;
1773 
1774 	if (atomic_read(&xrcd->usecnt))
1775 		return -EBUSY;
1776 
1777 	while (!list_empty(&xrcd->tgt_qp_list)) {
1778 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1779 		ret = ib_destroy_qp(qp);
1780 		if (ret)
1781 			return ret;
1782 	}
1783 
1784 	return xrcd->device->dealloc_xrcd(xrcd);
1785 }
1786 EXPORT_SYMBOL(ib_dealloc_xrcd);
1787 
1788 /**
1789  * ib_create_wq - Creates a WQ associated with the specified protection
1790  * domain.
1791  * @pd: The protection domain associated with the WQ.
1792  * @wq_init_attr: A list of initial attributes required to create the
1793  * WQ. If WQ creation succeeds, then the attributes are updated to
1794  * the actual capabilities of the created WQ.
1795  *
1796  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1797  * the requested size of the WQ, and set to the actual values allocated
1798  * on return.
1799  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1800  * at least as large as the requested values.
1801  */
1802 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1803 			   struct ib_wq_init_attr *wq_attr)
1804 {
1805 	struct ib_wq *wq;
1806 
1807 	if (!pd->device->create_wq)
1808 		return ERR_PTR(-ENOSYS);
1809 
1810 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1811 	if (!IS_ERR(wq)) {
1812 		wq->event_handler = wq_attr->event_handler;
1813 		wq->wq_context = wq_attr->wq_context;
1814 		wq->wq_type = wq_attr->wq_type;
1815 		wq->cq = wq_attr->cq;
1816 		wq->device = pd->device;
1817 		wq->pd = pd;
1818 		wq->uobject = NULL;
1819 		atomic_inc(&pd->usecnt);
1820 		atomic_inc(&wq_attr->cq->usecnt);
1821 		atomic_set(&wq->usecnt, 0);
1822 	}
1823 	return wq;
1824 }
1825 EXPORT_SYMBOL(ib_create_wq);
1826 
1827 /**
1828  * ib_destroy_wq - Destroys the specified WQ.
1829  * @wq: The WQ to destroy.
1830  */
1831 int ib_destroy_wq(struct ib_wq *wq)
1832 {
1833 	int err;
1834 	struct ib_cq *cq = wq->cq;
1835 	struct ib_pd *pd = wq->pd;
1836 
1837 	if (atomic_read(&wq->usecnt))
1838 		return -EBUSY;
1839 
1840 	err = wq->device->destroy_wq(wq);
1841 	if (!err) {
1842 		atomic_dec(&pd->usecnt);
1843 		atomic_dec(&cq->usecnt);
1844 	}
1845 	return err;
1846 }
1847 EXPORT_SYMBOL(ib_destroy_wq);
1848 
1849 /**
1850  * ib_modify_wq - Modifies the specified WQ.
1851  * @wq: The WQ to modify.
1852  * @wq_attr: On input, specifies the WQ attributes to modify.
1853  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1854  *   are being modified.
1855  * On output, the current values of selected WQ attributes are returned.
1856  */
1857 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1858 		 u32 wq_attr_mask)
1859 {
1860 	int err;
1861 
1862 	if (!wq->device->modify_wq)
1863 		return -ENOSYS;
1864 
1865 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1866 	return err;
1867 }
1868 EXPORT_SYMBOL(ib_modify_wq);
1869 
1870 /*
1871  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1872  * @device: The device on which to create the rwq indirection table.
1873  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1874  * create the Indirection Table.
1875  *
1876  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1877  *	than the created ib_rwq_ind_table object and the caller is responsible
1878  *	for its memory allocation/free.
1879  */
1880 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1881 						 struct ib_rwq_ind_table_init_attr *init_attr)
1882 {
1883 	struct ib_rwq_ind_table *rwq_ind_table;
1884 	int i;
1885 	u32 table_size;
1886 
1887 	if (!device->create_rwq_ind_table)
1888 		return ERR_PTR(-ENOSYS);
1889 
1890 	table_size = (1 << init_attr->log_ind_tbl_size);
1891 	rwq_ind_table = device->create_rwq_ind_table(device,
1892 				init_attr, NULL);
1893 	if (IS_ERR(rwq_ind_table))
1894 		return rwq_ind_table;
1895 
1896 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1897 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1898 	rwq_ind_table->device = device;
1899 	rwq_ind_table->uobject = NULL;
1900 	atomic_set(&rwq_ind_table->usecnt, 0);
1901 
1902 	for (i = 0; i < table_size; i++)
1903 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1904 
1905 	return rwq_ind_table;
1906 }
1907 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1908 
1909 /*
1910  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1911  * @wq_ind_table: The Indirection Table to destroy.
1912 */
1913 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1914 {
1915 	int err, i;
1916 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1917 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1918 
1919 	if (atomic_read(&rwq_ind_table->usecnt))
1920 		return -EBUSY;
1921 
1922 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1923 	if (!err) {
1924 		for (i = 0; i < table_size; i++)
1925 			atomic_dec(&ind_tbl[i]->usecnt);
1926 	}
1927 
1928 	return err;
1929 }
1930 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1931 
1932 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1933 			       struct ib_flow_attr *flow_attr,
1934 			       int domain)
1935 {
1936 	struct ib_flow *flow_id;
1937 	if (!qp->device->create_flow)
1938 		return ERR_PTR(-ENOSYS);
1939 
1940 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1941 	if (!IS_ERR(flow_id)) {
1942 		atomic_inc(&qp->usecnt);
1943 		flow_id->qp = qp;
1944 	}
1945 	return flow_id;
1946 }
1947 EXPORT_SYMBOL(ib_create_flow);
1948 
1949 int ib_destroy_flow(struct ib_flow *flow_id)
1950 {
1951 	int err;
1952 	struct ib_qp *qp = flow_id->qp;
1953 
1954 	err = qp->device->destroy_flow(flow_id);
1955 	if (!err)
1956 		atomic_dec(&qp->usecnt);
1957 	return err;
1958 }
1959 EXPORT_SYMBOL(ib_destroy_flow);
1960 
1961 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1962 		       struct ib_mr_status *mr_status)
1963 {
1964 	return mr->device->check_mr_status ?
1965 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1966 }
1967 EXPORT_SYMBOL(ib_check_mr_status);
1968 
1969 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1970 			 int state)
1971 {
1972 	if (!device->set_vf_link_state)
1973 		return -ENOSYS;
1974 
1975 	return device->set_vf_link_state(device, vf, port, state);
1976 }
1977 EXPORT_SYMBOL(ib_set_vf_link_state);
1978 
1979 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1980 		     struct ifla_vf_info *info)
1981 {
1982 	if (!device->get_vf_config)
1983 		return -ENOSYS;
1984 
1985 	return device->get_vf_config(device, vf, port, info);
1986 }
1987 EXPORT_SYMBOL(ib_get_vf_config);
1988 
1989 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1990 		    struct ifla_vf_stats *stats)
1991 {
1992 	if (!device->get_vf_stats)
1993 		return -ENOSYS;
1994 
1995 	return device->get_vf_stats(device, vf, port, stats);
1996 }
1997 EXPORT_SYMBOL(ib_get_vf_stats);
1998 
1999 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2000 		   int type)
2001 {
2002 	if (!device->set_vf_guid)
2003 		return -ENOSYS;
2004 
2005 	return device->set_vf_guid(device, vf, port, guid, type);
2006 }
2007 EXPORT_SYMBOL(ib_set_vf_guid);
2008 
2009 /**
2010  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2011  *     and set it the memory region.
2012  * @mr:            memory region
2013  * @sg:            dma mapped scatterlist
2014  * @sg_nents:      number of entries in sg
2015  * @sg_offset:     offset in bytes into sg
2016  * @page_size:     page vector desired page size
2017  *
2018  * Constraints:
2019  * - The first sg element is allowed to have an offset.
2020  * - Each sg element must either be aligned to page_size or virtually
2021  *   contiguous to the previous element. In case an sg element has a
2022  *   non-contiguous offset, the mapping prefix will not include it.
2023  * - The last sg element is allowed to have length less than page_size.
2024  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2025  *   then only max_num_sg entries will be mapped.
2026  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2027  *   constraints holds and the page_size argument is ignored.
2028  *
2029  * Returns the number of sg elements that were mapped to the memory region.
2030  *
2031  * After this completes successfully, the  memory region
2032  * is ready for registration.
2033  */
2034 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2035 		 unsigned int *sg_offset, unsigned int page_size)
2036 {
2037 	if (unlikely(!mr->device->map_mr_sg))
2038 		return -ENOSYS;
2039 
2040 	mr->page_size = page_size;
2041 
2042 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2043 }
2044 EXPORT_SYMBOL(ib_map_mr_sg);
2045 
2046 /**
2047  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2048  *     to a page vector
2049  * @mr:            memory region
2050  * @sgl:           dma mapped scatterlist
2051  * @sg_nents:      number of entries in sg
2052  * @sg_offset_p:   IN:  start offset in bytes into sg
2053  *                 OUT: offset in bytes for element n of the sg of the first
2054  *                      byte that has not been processed where n is the return
2055  *                      value of this function.
2056  * @set_page:      driver page assignment function pointer
2057  *
2058  * Core service helper for drivers to convert the largest
2059  * prefix of given sg list to a page vector. The sg list
2060  * prefix converted is the prefix that meet the requirements
2061  * of ib_map_mr_sg.
2062  *
2063  * Returns the number of sg elements that were assigned to
2064  * a page vector.
2065  */
2066 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2067 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2068 {
2069 	struct scatterlist *sg;
2070 	u64 last_end_dma_addr = 0;
2071 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2072 	unsigned int last_page_off = 0;
2073 	u64 page_mask = ~((u64)mr->page_size - 1);
2074 	int i, ret;
2075 
2076 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2077 		return -EINVAL;
2078 
2079 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2080 	mr->length = 0;
2081 
2082 	for_each_sg(sgl, sg, sg_nents, i) {
2083 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2084 		u64 prev_addr = dma_addr;
2085 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2086 		u64 end_dma_addr = dma_addr + dma_len;
2087 		u64 page_addr = dma_addr & page_mask;
2088 
2089 		/*
2090 		 * For the second and later elements, check whether either the
2091 		 * end of element i-1 or the start of element i is not aligned
2092 		 * on a page boundary.
2093 		 */
2094 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2095 			/* Stop mapping if there is a gap. */
2096 			if (last_end_dma_addr != dma_addr)
2097 				break;
2098 
2099 			/*
2100 			 * Coalesce this element with the last. If it is small
2101 			 * enough just update mr->length. Otherwise start
2102 			 * mapping from the next page.
2103 			 */
2104 			goto next_page;
2105 		}
2106 
2107 		do {
2108 			ret = set_page(mr, page_addr);
2109 			if (unlikely(ret < 0)) {
2110 				sg_offset = prev_addr - sg_dma_address(sg);
2111 				mr->length += prev_addr - dma_addr;
2112 				if (sg_offset_p)
2113 					*sg_offset_p = sg_offset;
2114 				return i || sg_offset ? i : ret;
2115 			}
2116 			prev_addr = page_addr;
2117 next_page:
2118 			page_addr += mr->page_size;
2119 		} while (page_addr < end_dma_addr);
2120 
2121 		mr->length += dma_len;
2122 		last_end_dma_addr = end_dma_addr;
2123 		last_page_off = end_dma_addr & ~page_mask;
2124 
2125 		sg_offset = 0;
2126 	}
2127 
2128 	if (sg_offset_p)
2129 		*sg_offset_p = 0;
2130 	return i;
2131 }
2132 EXPORT_SYMBOL(ib_sg_to_pages);
2133 
2134 struct ib_drain_cqe {
2135 	struct ib_cqe cqe;
2136 	struct completion done;
2137 };
2138 
2139 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2140 {
2141 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2142 						cqe);
2143 
2144 	complete(&cqe->done);
2145 }
2146 
2147 /*
2148  * Post a WR and block until its completion is reaped for the SQ.
2149  */
2150 static void __ib_drain_sq(struct ib_qp *qp)
2151 {
2152 	struct ib_cq *cq = qp->send_cq;
2153 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2154 	struct ib_drain_cqe sdrain;
2155 	struct ib_send_wr swr = {}, *bad_swr;
2156 	int ret;
2157 
2158 	swr.wr_cqe = &sdrain.cqe;
2159 	sdrain.cqe.done = ib_drain_qp_done;
2160 	init_completion(&sdrain.done);
2161 
2162 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2163 	if (ret) {
2164 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2165 		return;
2166 	}
2167 
2168 	ret = ib_post_send(qp, &swr, &bad_swr);
2169 	if (ret) {
2170 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2171 		return;
2172 	}
2173 
2174 	if (cq->poll_ctx == IB_POLL_DIRECT)
2175 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2176 			ib_process_cq_direct(cq, -1);
2177 	else
2178 		wait_for_completion(&sdrain.done);
2179 }
2180 
2181 /*
2182  * Post a WR and block until its completion is reaped for the RQ.
2183  */
2184 static void __ib_drain_rq(struct ib_qp *qp)
2185 {
2186 	struct ib_cq *cq = qp->recv_cq;
2187 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2188 	struct ib_drain_cqe rdrain;
2189 	struct ib_recv_wr rwr = {}, *bad_rwr;
2190 	int ret;
2191 
2192 	rwr.wr_cqe = &rdrain.cqe;
2193 	rdrain.cqe.done = ib_drain_qp_done;
2194 	init_completion(&rdrain.done);
2195 
2196 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2197 	if (ret) {
2198 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2199 		return;
2200 	}
2201 
2202 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2203 	if (ret) {
2204 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2205 		return;
2206 	}
2207 
2208 	if (cq->poll_ctx == IB_POLL_DIRECT)
2209 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2210 			ib_process_cq_direct(cq, -1);
2211 	else
2212 		wait_for_completion(&rdrain.done);
2213 }
2214 
2215 /**
2216  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2217  *		   application.
2218  * @qp:            queue pair to drain
2219  *
2220  * If the device has a provider-specific drain function, then
2221  * call that.  Otherwise call the generic drain function
2222  * __ib_drain_sq().
2223  *
2224  * The caller must:
2225  *
2226  * ensure there is room in the CQ and SQ for the drain work request and
2227  * completion.
2228  *
2229  * allocate the CQ using ib_alloc_cq().
2230  *
2231  * ensure that there are no other contexts that are posting WRs concurrently.
2232  * Otherwise the drain is not guaranteed.
2233  */
2234 void ib_drain_sq(struct ib_qp *qp)
2235 {
2236 	if (qp->device->drain_sq)
2237 		qp->device->drain_sq(qp);
2238 	else
2239 		__ib_drain_sq(qp);
2240 }
2241 EXPORT_SYMBOL(ib_drain_sq);
2242 
2243 /**
2244  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2245  *		   application.
2246  * @qp:            queue pair to drain
2247  *
2248  * If the device has a provider-specific drain function, then
2249  * call that.  Otherwise call the generic drain function
2250  * __ib_drain_rq().
2251  *
2252  * The caller must:
2253  *
2254  * ensure there is room in the CQ and RQ for the drain work request and
2255  * completion.
2256  *
2257  * allocate the CQ using ib_alloc_cq().
2258  *
2259  * ensure that there are no other contexts that are posting WRs concurrently.
2260  * Otherwise the drain is not guaranteed.
2261  */
2262 void ib_drain_rq(struct ib_qp *qp)
2263 {
2264 	if (qp->device->drain_rq)
2265 		qp->device->drain_rq(qp);
2266 	else
2267 		__ib_drain_rq(qp);
2268 }
2269 EXPORT_SYMBOL(ib_drain_rq);
2270 
2271 /**
2272  * ib_drain_qp() - Block until all CQEs have been consumed by the
2273  *		   application on both the RQ and SQ.
2274  * @qp:            queue pair to drain
2275  *
2276  * The caller must:
2277  *
2278  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2279  * and completions.
2280  *
2281  * allocate the CQs using ib_alloc_cq().
2282  *
2283  * ensure that there are no other contexts that are posting WRs concurrently.
2284  * Otherwise the drain is not guaranteed.
2285  */
2286 void ib_drain_qp(struct ib_qp *qp)
2287 {
2288 	ib_drain_sq(qp);
2289 	if (!qp->srq)
2290 		ib_drain_rq(qp);
2291 }
2292 EXPORT_SYMBOL(ib_drain_qp);
2293