xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision a9d85efb)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48 
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54 
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57 
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59 			       struct rdma_ah_attr *ah_attr);
60 
61 static const char * const ib_events[] = {
62 	[IB_EVENT_CQ_ERR]		= "CQ error",
63 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
64 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
65 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
66 	[IB_EVENT_COMM_EST]		= "communication established",
67 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
68 	[IB_EVENT_PATH_MIG]		= "path migration successful",
69 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
70 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
71 	[IB_EVENT_PORT_ACTIVE]		= "port active",
72 	[IB_EVENT_PORT_ERR]		= "port error",
73 	[IB_EVENT_LID_CHANGE]		= "LID change",
74 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
75 	[IB_EVENT_SM_CHANGE]		= "SM change",
76 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
77 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
78 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
79 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
80 	[IB_EVENT_GID_CHANGE]		= "GID changed",
81 };
82 
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85 	size_t index = event;
86 
87 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88 			ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91 
92 static const char * const wc_statuses[] = {
93 	[IB_WC_SUCCESS]			= "success",
94 	[IB_WC_LOC_LEN_ERR]		= "local length error",
95 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
96 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
97 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
98 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
99 	[IB_WC_MW_BIND_ERR]		= "memory bind operation error",
100 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
101 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
102 	[IB_WC_REM_INV_REQ_ERR]		= "remote invalid request error",
103 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
104 	[IB_WC_REM_OP_ERR]		= "remote operation error",
105 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
106 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
107 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
108 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
109 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
110 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
111 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
112 	[IB_WC_FATAL_ERR]		= "fatal error",
113 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
114 	[IB_WC_GENERAL_ERR]		= "general error",
115 };
116 
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119 	size_t index = status;
120 
121 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122 			wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125 
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128 	switch (rate) {
129 	case IB_RATE_2_5_GBPS: return   1;
130 	case IB_RATE_5_GBPS:   return   2;
131 	case IB_RATE_10_GBPS:  return   4;
132 	case IB_RATE_20_GBPS:  return   8;
133 	case IB_RATE_30_GBPS:  return  12;
134 	case IB_RATE_40_GBPS:  return  16;
135 	case IB_RATE_60_GBPS:  return  24;
136 	case IB_RATE_80_GBPS:  return  32;
137 	case IB_RATE_120_GBPS: return  48;
138 	case IB_RATE_14_GBPS:  return   6;
139 	case IB_RATE_56_GBPS:  return  22;
140 	case IB_RATE_112_GBPS: return  45;
141 	case IB_RATE_168_GBPS: return  67;
142 	case IB_RATE_25_GBPS:  return  10;
143 	case IB_RATE_100_GBPS: return  40;
144 	case IB_RATE_200_GBPS: return  80;
145 	case IB_RATE_300_GBPS: return 120;
146 	case IB_RATE_28_GBPS:  return  11;
147 	case IB_RATE_50_GBPS:  return  20;
148 	case IB_RATE_400_GBPS: return 160;
149 	case IB_RATE_600_GBPS: return 240;
150 	default:	       return  -1;
151 	}
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154 
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157 	switch (mult) {
158 	case 1:   return IB_RATE_2_5_GBPS;
159 	case 2:   return IB_RATE_5_GBPS;
160 	case 4:   return IB_RATE_10_GBPS;
161 	case 8:   return IB_RATE_20_GBPS;
162 	case 12:  return IB_RATE_30_GBPS;
163 	case 16:  return IB_RATE_40_GBPS;
164 	case 24:  return IB_RATE_60_GBPS;
165 	case 32:  return IB_RATE_80_GBPS;
166 	case 48:  return IB_RATE_120_GBPS;
167 	case 6:   return IB_RATE_14_GBPS;
168 	case 22:  return IB_RATE_56_GBPS;
169 	case 45:  return IB_RATE_112_GBPS;
170 	case 67:  return IB_RATE_168_GBPS;
171 	case 10:  return IB_RATE_25_GBPS;
172 	case 40:  return IB_RATE_100_GBPS;
173 	case 80:  return IB_RATE_200_GBPS;
174 	case 120: return IB_RATE_300_GBPS;
175 	case 11:  return IB_RATE_28_GBPS;
176 	case 20:  return IB_RATE_50_GBPS;
177 	case 160: return IB_RATE_400_GBPS;
178 	case 240: return IB_RATE_600_GBPS;
179 	default:  return IB_RATE_PORT_CURRENT;
180 	}
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183 
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186 	switch (rate) {
187 	case IB_RATE_2_5_GBPS: return 2500;
188 	case IB_RATE_5_GBPS:   return 5000;
189 	case IB_RATE_10_GBPS:  return 10000;
190 	case IB_RATE_20_GBPS:  return 20000;
191 	case IB_RATE_30_GBPS:  return 30000;
192 	case IB_RATE_40_GBPS:  return 40000;
193 	case IB_RATE_60_GBPS:  return 60000;
194 	case IB_RATE_80_GBPS:  return 80000;
195 	case IB_RATE_120_GBPS: return 120000;
196 	case IB_RATE_14_GBPS:  return 14062;
197 	case IB_RATE_56_GBPS:  return 56250;
198 	case IB_RATE_112_GBPS: return 112500;
199 	case IB_RATE_168_GBPS: return 168750;
200 	case IB_RATE_25_GBPS:  return 25781;
201 	case IB_RATE_100_GBPS: return 103125;
202 	case IB_RATE_200_GBPS: return 206250;
203 	case IB_RATE_300_GBPS: return 309375;
204 	case IB_RATE_28_GBPS:  return 28125;
205 	case IB_RATE_50_GBPS:  return 53125;
206 	case IB_RATE_400_GBPS: return 425000;
207 	case IB_RATE_600_GBPS: return 637500;
208 	default:	       return -1;
209 	}
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212 
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
215 {
216 
217 	if (node_type == RDMA_NODE_USNIC)
218 		return RDMA_TRANSPORT_USNIC;
219 	if (node_type == RDMA_NODE_USNIC_UDP)
220 		return RDMA_TRANSPORT_USNIC_UDP;
221 	if (node_type == RDMA_NODE_RNIC)
222 		return RDMA_TRANSPORT_IWARP;
223 	if (node_type == RDMA_NODE_UNSPECIFIED)
224 		return RDMA_TRANSPORT_UNSPECIFIED;
225 
226 	return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229 
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
231 					      u32 port_num)
232 {
233 	enum rdma_transport_type lt;
234 	if (device->ops.get_link_layer)
235 		return device->ops.get_link_layer(device, port_num);
236 
237 	lt = rdma_node_get_transport(device->node_type);
238 	if (lt == RDMA_TRANSPORT_IB)
239 		return IB_LINK_LAYER_INFINIBAND;
240 
241 	return IB_LINK_LAYER_ETHERNET;
242 }
243 EXPORT_SYMBOL(rdma_port_get_link_layer);
244 
245 /* Protection domains */
246 
247 /**
248  * __ib_alloc_pd - Allocates an unused protection domain.
249  * @device: The device on which to allocate the protection domain.
250  * @flags: protection domain flags
251  * @caller: caller's build-time module name
252  *
253  * A protection domain object provides an association between QPs, shared
254  * receive queues, address handles, memory regions, and memory windows.
255  *
256  * Every PD has a local_dma_lkey which can be used as the lkey value for local
257  * memory operations.
258  */
259 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
260 		const char *caller)
261 {
262 	struct ib_pd *pd;
263 	int mr_access_flags = 0;
264 	int ret;
265 
266 	pd = rdma_zalloc_drv_obj(device, ib_pd);
267 	if (!pd)
268 		return ERR_PTR(-ENOMEM);
269 
270 	pd->device = device;
271 	pd->uobject = NULL;
272 	pd->__internal_mr = NULL;
273 	atomic_set(&pd->usecnt, 0);
274 	pd->flags = flags;
275 
276 	rdma_restrack_new(&pd->res, RDMA_RESTRACK_PD);
277 	rdma_restrack_set_name(&pd->res, caller);
278 
279 	ret = device->ops.alloc_pd(pd, NULL);
280 	if (ret) {
281 		rdma_restrack_put(&pd->res);
282 		kfree(pd);
283 		return ERR_PTR(ret);
284 	}
285 	rdma_restrack_add(&pd->res);
286 
287 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
288 		pd->local_dma_lkey = device->local_dma_lkey;
289 	else
290 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
291 
292 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
293 		pr_warn("%s: enabling unsafe global rkey\n", caller);
294 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
295 	}
296 
297 	if (mr_access_flags) {
298 		struct ib_mr *mr;
299 
300 		mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
301 		if (IS_ERR(mr)) {
302 			ib_dealloc_pd(pd);
303 			return ERR_CAST(mr);
304 		}
305 
306 		mr->device	= pd->device;
307 		mr->pd		= pd;
308 		mr->type        = IB_MR_TYPE_DMA;
309 		mr->uobject	= NULL;
310 		mr->need_inval	= false;
311 
312 		pd->__internal_mr = mr;
313 
314 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
315 			pd->local_dma_lkey = pd->__internal_mr->lkey;
316 
317 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
318 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
319 	}
320 
321 	return pd;
322 }
323 EXPORT_SYMBOL(__ib_alloc_pd);
324 
325 /**
326  * ib_dealloc_pd_user - Deallocates a protection domain.
327  * @pd: The protection domain to deallocate.
328  * @udata: Valid user data or NULL for kernel object
329  *
330  * It is an error to call this function while any resources in the pd still
331  * exist.  The caller is responsible to synchronously destroy them and
332  * guarantee no new allocations will happen.
333  */
334 int ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
335 {
336 	int ret;
337 
338 	if (pd->__internal_mr) {
339 		ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
340 		WARN_ON(ret);
341 		pd->__internal_mr = NULL;
342 	}
343 
344 	/* uverbs manipulates usecnt with proper locking, while the kabi
345 	 * requires the caller to guarantee we can't race here.
346 	 */
347 	WARN_ON(atomic_read(&pd->usecnt));
348 
349 	ret = pd->device->ops.dealloc_pd(pd, udata);
350 	if (ret)
351 		return ret;
352 
353 	rdma_restrack_del(&pd->res);
354 	kfree(pd);
355 	return ret;
356 }
357 EXPORT_SYMBOL(ib_dealloc_pd_user);
358 
359 /* Address handles */
360 
361 /**
362  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
363  * @dest:       Pointer to destination ah_attr. Contents of the destination
364  *              pointer is assumed to be invalid and attribute are overwritten.
365  * @src:        Pointer to source ah_attr.
366  */
367 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
368 		       const struct rdma_ah_attr *src)
369 {
370 	*dest = *src;
371 	if (dest->grh.sgid_attr)
372 		rdma_hold_gid_attr(dest->grh.sgid_attr);
373 }
374 EXPORT_SYMBOL(rdma_copy_ah_attr);
375 
376 /**
377  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
378  * @old:        Pointer to existing ah_attr which needs to be replaced.
379  *              old is assumed to be valid or zero'd
380  * @new:        Pointer to the new ah_attr.
381  *
382  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
383  * old the ah_attr is valid; after that it copies the new attribute and holds
384  * the reference to the replaced ah_attr.
385  */
386 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
387 			  const struct rdma_ah_attr *new)
388 {
389 	rdma_destroy_ah_attr(old);
390 	*old = *new;
391 	if (old->grh.sgid_attr)
392 		rdma_hold_gid_attr(old->grh.sgid_attr);
393 }
394 EXPORT_SYMBOL(rdma_replace_ah_attr);
395 
396 /**
397  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
398  * @dest:       Pointer to destination ah_attr to copy to.
399  *              dest is assumed to be valid or zero'd
400  * @src:        Pointer to the new ah_attr.
401  *
402  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
403  * if it is valid. This also transfers ownership of internal references from
404  * src to dest, making src invalid in the process. No new reference of the src
405  * ah_attr is taken.
406  */
407 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
408 {
409 	rdma_destroy_ah_attr(dest);
410 	*dest = *src;
411 	src->grh.sgid_attr = NULL;
412 }
413 EXPORT_SYMBOL(rdma_move_ah_attr);
414 
415 /*
416  * Validate that the rdma_ah_attr is valid for the device before passing it
417  * off to the driver.
418  */
419 static int rdma_check_ah_attr(struct ib_device *device,
420 			      struct rdma_ah_attr *ah_attr)
421 {
422 	if (!rdma_is_port_valid(device, ah_attr->port_num))
423 		return -EINVAL;
424 
425 	if ((rdma_is_grh_required(device, ah_attr->port_num) ||
426 	     ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
427 	    !(ah_attr->ah_flags & IB_AH_GRH))
428 		return -EINVAL;
429 
430 	if (ah_attr->grh.sgid_attr) {
431 		/*
432 		 * Make sure the passed sgid_attr is consistent with the
433 		 * parameters
434 		 */
435 		if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
436 		    ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
437 			return -EINVAL;
438 	}
439 	return 0;
440 }
441 
442 /*
443  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
444  * On success the caller is responsible to call rdma_unfill_sgid_attr().
445  */
446 static int rdma_fill_sgid_attr(struct ib_device *device,
447 			       struct rdma_ah_attr *ah_attr,
448 			       const struct ib_gid_attr **old_sgid_attr)
449 {
450 	const struct ib_gid_attr *sgid_attr;
451 	struct ib_global_route *grh;
452 	int ret;
453 
454 	*old_sgid_attr = ah_attr->grh.sgid_attr;
455 
456 	ret = rdma_check_ah_attr(device, ah_attr);
457 	if (ret)
458 		return ret;
459 
460 	if (!(ah_attr->ah_flags & IB_AH_GRH))
461 		return 0;
462 
463 	grh = rdma_ah_retrieve_grh(ah_attr);
464 	if (grh->sgid_attr)
465 		return 0;
466 
467 	sgid_attr =
468 		rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
469 	if (IS_ERR(sgid_attr))
470 		return PTR_ERR(sgid_attr);
471 
472 	/* Move ownerhip of the kref into the ah_attr */
473 	grh->sgid_attr = sgid_attr;
474 	return 0;
475 }
476 
477 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
478 				  const struct ib_gid_attr *old_sgid_attr)
479 {
480 	/*
481 	 * Fill didn't change anything, the caller retains ownership of
482 	 * whatever it passed
483 	 */
484 	if (ah_attr->grh.sgid_attr == old_sgid_attr)
485 		return;
486 
487 	/*
488 	 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
489 	 * doesn't see any change in the rdma_ah_attr. If we get here
490 	 * old_sgid_attr is NULL.
491 	 */
492 	rdma_destroy_ah_attr(ah_attr);
493 }
494 
495 static const struct ib_gid_attr *
496 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
497 		      const struct ib_gid_attr *old_attr)
498 {
499 	if (old_attr)
500 		rdma_put_gid_attr(old_attr);
501 	if (ah_attr->ah_flags & IB_AH_GRH) {
502 		rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
503 		return ah_attr->grh.sgid_attr;
504 	}
505 	return NULL;
506 }
507 
508 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
509 				     struct rdma_ah_attr *ah_attr,
510 				     u32 flags,
511 				     struct ib_udata *udata,
512 				     struct net_device *xmit_slave)
513 {
514 	struct rdma_ah_init_attr init_attr = {};
515 	struct ib_device *device = pd->device;
516 	struct ib_ah *ah;
517 	int ret;
518 
519 	might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
520 
521 	if (!udata && !device->ops.create_ah)
522 		return ERR_PTR(-EOPNOTSUPP);
523 
524 	ah = rdma_zalloc_drv_obj_gfp(
525 		device, ib_ah,
526 		(flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
527 	if (!ah)
528 		return ERR_PTR(-ENOMEM);
529 
530 	ah->device = device;
531 	ah->pd = pd;
532 	ah->type = ah_attr->type;
533 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
534 	init_attr.ah_attr = ah_attr;
535 	init_attr.flags = flags;
536 	init_attr.xmit_slave = xmit_slave;
537 
538 	if (udata)
539 		ret = device->ops.create_user_ah(ah, &init_attr, udata);
540 	else
541 		ret = device->ops.create_ah(ah, &init_attr, NULL);
542 	if (ret) {
543 		kfree(ah);
544 		return ERR_PTR(ret);
545 	}
546 
547 	atomic_inc(&pd->usecnt);
548 	return ah;
549 }
550 
551 /**
552  * rdma_create_ah - Creates an address handle for the
553  * given address vector.
554  * @pd: The protection domain associated with the address handle.
555  * @ah_attr: The attributes of the address vector.
556  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
557  *
558  * It returns 0 on success and returns appropriate error code on error.
559  * The address handle is used to reference a local or global destination
560  * in all UD QP post sends.
561  */
562 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
563 			     u32 flags)
564 {
565 	const struct ib_gid_attr *old_sgid_attr;
566 	struct net_device *slave;
567 	struct ib_ah *ah;
568 	int ret;
569 
570 	ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
571 	if (ret)
572 		return ERR_PTR(ret);
573 	slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
574 					   (flags & RDMA_CREATE_AH_SLEEPABLE) ?
575 					   GFP_KERNEL : GFP_ATOMIC);
576 	if (IS_ERR(slave)) {
577 		rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
578 		return (void *)slave;
579 	}
580 	ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
581 	rdma_lag_put_ah_roce_slave(slave);
582 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
583 	return ah;
584 }
585 EXPORT_SYMBOL(rdma_create_ah);
586 
587 /**
588  * rdma_create_user_ah - Creates an address handle for the
589  * given address vector.
590  * It resolves destination mac address for ah attribute of RoCE type.
591  * @pd: The protection domain associated with the address handle.
592  * @ah_attr: The attributes of the address vector.
593  * @udata: pointer to user's input output buffer information need by
594  *         provider driver.
595  *
596  * It returns 0 on success and returns appropriate error code on error.
597  * The address handle is used to reference a local or global destination
598  * in all UD QP post sends.
599  */
600 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
601 				  struct rdma_ah_attr *ah_attr,
602 				  struct ib_udata *udata)
603 {
604 	const struct ib_gid_attr *old_sgid_attr;
605 	struct ib_ah *ah;
606 	int err;
607 
608 	err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
609 	if (err)
610 		return ERR_PTR(err);
611 
612 	if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
613 		err = ib_resolve_eth_dmac(pd->device, ah_attr);
614 		if (err) {
615 			ah = ERR_PTR(err);
616 			goto out;
617 		}
618 	}
619 
620 	ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
621 			     udata, NULL);
622 
623 out:
624 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
625 	return ah;
626 }
627 EXPORT_SYMBOL(rdma_create_user_ah);
628 
629 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
630 {
631 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
632 	struct iphdr ip4h_checked;
633 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
634 
635 	/* If it's IPv6, the version must be 6, otherwise, the first
636 	 * 20 bytes (before the IPv4 header) are garbled.
637 	 */
638 	if (ip6h->version != 6)
639 		return (ip4h->version == 4) ? 4 : 0;
640 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
641 
642 	/* RoCE v2 requires no options, thus header length
643 	 * must be 5 words
644 	 */
645 	if (ip4h->ihl != 5)
646 		return 6;
647 
648 	/* Verify checksum.
649 	 * We can't write on scattered buffers so we need to copy to
650 	 * temp buffer.
651 	 */
652 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
653 	ip4h_checked.check = 0;
654 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
655 	/* if IPv4 header checksum is OK, believe it */
656 	if (ip4h->check == ip4h_checked.check)
657 		return 4;
658 	return 6;
659 }
660 EXPORT_SYMBOL(ib_get_rdma_header_version);
661 
662 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
663 						     u32 port_num,
664 						     const struct ib_grh *grh)
665 {
666 	int grh_version;
667 
668 	if (rdma_protocol_ib(device, port_num))
669 		return RDMA_NETWORK_IB;
670 
671 	grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
672 
673 	if (grh_version == 4)
674 		return RDMA_NETWORK_IPV4;
675 
676 	if (grh->next_hdr == IPPROTO_UDP)
677 		return RDMA_NETWORK_IPV6;
678 
679 	return RDMA_NETWORK_ROCE_V1;
680 }
681 
682 struct find_gid_index_context {
683 	u16 vlan_id;
684 	enum ib_gid_type gid_type;
685 };
686 
687 static bool find_gid_index(const union ib_gid *gid,
688 			   const struct ib_gid_attr *gid_attr,
689 			   void *context)
690 {
691 	struct find_gid_index_context *ctx = context;
692 	u16 vlan_id = 0xffff;
693 	int ret;
694 
695 	if (ctx->gid_type != gid_attr->gid_type)
696 		return false;
697 
698 	ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
699 	if (ret)
700 		return false;
701 
702 	return ctx->vlan_id == vlan_id;
703 }
704 
705 static const struct ib_gid_attr *
706 get_sgid_attr_from_eth(struct ib_device *device, u32 port_num,
707 		       u16 vlan_id, const union ib_gid *sgid,
708 		       enum ib_gid_type gid_type)
709 {
710 	struct find_gid_index_context context = {.vlan_id = vlan_id,
711 						 .gid_type = gid_type};
712 
713 	return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
714 				       &context);
715 }
716 
717 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
718 			      enum rdma_network_type net_type,
719 			      union ib_gid *sgid, union ib_gid *dgid)
720 {
721 	struct sockaddr_in  src_in;
722 	struct sockaddr_in  dst_in;
723 	__be32 src_saddr, dst_saddr;
724 
725 	if (!sgid || !dgid)
726 		return -EINVAL;
727 
728 	if (net_type == RDMA_NETWORK_IPV4) {
729 		memcpy(&src_in.sin_addr.s_addr,
730 		       &hdr->roce4grh.saddr, 4);
731 		memcpy(&dst_in.sin_addr.s_addr,
732 		       &hdr->roce4grh.daddr, 4);
733 		src_saddr = src_in.sin_addr.s_addr;
734 		dst_saddr = dst_in.sin_addr.s_addr;
735 		ipv6_addr_set_v4mapped(src_saddr,
736 				       (struct in6_addr *)sgid);
737 		ipv6_addr_set_v4mapped(dst_saddr,
738 				       (struct in6_addr *)dgid);
739 		return 0;
740 	} else if (net_type == RDMA_NETWORK_IPV6 ||
741 		   net_type == RDMA_NETWORK_IB || RDMA_NETWORK_ROCE_V1) {
742 		*dgid = hdr->ibgrh.dgid;
743 		*sgid = hdr->ibgrh.sgid;
744 		return 0;
745 	} else {
746 		return -EINVAL;
747 	}
748 }
749 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
750 
751 /* Resolve destination mac address and hop limit for unicast destination
752  * GID entry, considering the source GID entry as well.
753  * ah_attribute must have have valid port_num, sgid_index.
754  */
755 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
756 				       struct rdma_ah_attr *ah_attr)
757 {
758 	struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
759 	const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
760 	int hop_limit = 0xff;
761 	int ret = 0;
762 
763 	/* If destination is link local and source GID is RoCEv1,
764 	 * IP stack is not used.
765 	 */
766 	if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
767 	    sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
768 		rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
769 				ah_attr->roce.dmac);
770 		return ret;
771 	}
772 
773 	ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
774 					   ah_attr->roce.dmac,
775 					   sgid_attr, &hop_limit);
776 
777 	grh->hop_limit = hop_limit;
778 	return ret;
779 }
780 
781 /*
782  * This function initializes address handle attributes from the incoming packet.
783  * Incoming packet has dgid of the receiver node on which this code is
784  * getting executed and, sgid contains the GID of the sender.
785  *
786  * When resolving mac address of destination, the arrived dgid is used
787  * as sgid and, sgid is used as dgid because sgid contains destinations
788  * GID whom to respond to.
789  *
790  * On success the caller is responsible to call rdma_destroy_ah_attr on the
791  * attr.
792  */
793 int ib_init_ah_attr_from_wc(struct ib_device *device, u32 port_num,
794 			    const struct ib_wc *wc, const struct ib_grh *grh,
795 			    struct rdma_ah_attr *ah_attr)
796 {
797 	u32 flow_class;
798 	int ret;
799 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
800 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
801 	const struct ib_gid_attr *sgid_attr;
802 	int hoplimit = 0xff;
803 	union ib_gid dgid;
804 	union ib_gid sgid;
805 
806 	might_sleep();
807 
808 	memset(ah_attr, 0, sizeof *ah_attr);
809 	ah_attr->type = rdma_ah_find_type(device, port_num);
810 	if (rdma_cap_eth_ah(device, port_num)) {
811 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
812 			net_type = wc->network_hdr_type;
813 		else
814 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
815 		gid_type = ib_network_to_gid_type(net_type);
816 	}
817 	ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
818 					&sgid, &dgid);
819 	if (ret)
820 		return ret;
821 
822 	rdma_ah_set_sl(ah_attr, wc->sl);
823 	rdma_ah_set_port_num(ah_attr, port_num);
824 
825 	if (rdma_protocol_roce(device, port_num)) {
826 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
827 				wc->vlan_id : 0xffff;
828 
829 		if (!(wc->wc_flags & IB_WC_GRH))
830 			return -EPROTOTYPE;
831 
832 		sgid_attr = get_sgid_attr_from_eth(device, port_num,
833 						   vlan_id, &dgid,
834 						   gid_type);
835 		if (IS_ERR(sgid_attr))
836 			return PTR_ERR(sgid_attr);
837 
838 		flow_class = be32_to_cpu(grh->version_tclass_flow);
839 		rdma_move_grh_sgid_attr(ah_attr,
840 					&sgid,
841 					flow_class & 0xFFFFF,
842 					hoplimit,
843 					(flow_class >> 20) & 0xFF,
844 					sgid_attr);
845 
846 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
847 		if (ret)
848 			rdma_destroy_ah_attr(ah_attr);
849 
850 		return ret;
851 	} else {
852 		rdma_ah_set_dlid(ah_attr, wc->slid);
853 		rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
854 
855 		if ((wc->wc_flags & IB_WC_GRH) == 0)
856 			return 0;
857 
858 		if (dgid.global.interface_id !=
859 					cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
860 			sgid_attr = rdma_find_gid_by_port(
861 				device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
862 		} else
863 			sgid_attr = rdma_get_gid_attr(device, port_num, 0);
864 
865 		if (IS_ERR(sgid_attr))
866 			return PTR_ERR(sgid_attr);
867 		flow_class = be32_to_cpu(grh->version_tclass_flow);
868 		rdma_move_grh_sgid_attr(ah_attr,
869 					&sgid,
870 					flow_class & 0xFFFFF,
871 					hoplimit,
872 					(flow_class >> 20) & 0xFF,
873 					sgid_attr);
874 
875 		return 0;
876 	}
877 }
878 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
879 
880 /**
881  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
882  * of the reference
883  *
884  * @attr:	Pointer to AH attribute structure
885  * @dgid:	Destination GID
886  * @flow_label:	Flow label
887  * @hop_limit:	Hop limit
888  * @traffic_class: traffic class
889  * @sgid_attr:	Pointer to SGID attribute
890  *
891  * This takes ownership of the sgid_attr reference. The caller must ensure
892  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
893  * calling this function.
894  */
895 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
896 			     u32 flow_label, u8 hop_limit, u8 traffic_class,
897 			     const struct ib_gid_attr *sgid_attr)
898 {
899 	rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
900 			traffic_class);
901 	attr->grh.sgid_attr = sgid_attr;
902 }
903 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
904 
905 /**
906  * rdma_destroy_ah_attr - Release reference to SGID attribute of
907  * ah attribute.
908  * @ah_attr: Pointer to ah attribute
909  *
910  * Release reference to the SGID attribute of the ah attribute if it is
911  * non NULL. It is safe to call this multiple times, and safe to call it on
912  * a zero initialized ah_attr.
913  */
914 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
915 {
916 	if (ah_attr->grh.sgid_attr) {
917 		rdma_put_gid_attr(ah_attr->grh.sgid_attr);
918 		ah_attr->grh.sgid_attr = NULL;
919 	}
920 }
921 EXPORT_SYMBOL(rdma_destroy_ah_attr);
922 
923 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
924 				   const struct ib_grh *grh, u32 port_num)
925 {
926 	struct rdma_ah_attr ah_attr;
927 	struct ib_ah *ah;
928 	int ret;
929 
930 	ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
931 	if (ret)
932 		return ERR_PTR(ret);
933 
934 	ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
935 
936 	rdma_destroy_ah_attr(&ah_attr);
937 	return ah;
938 }
939 EXPORT_SYMBOL(ib_create_ah_from_wc);
940 
941 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
942 {
943 	const struct ib_gid_attr *old_sgid_attr;
944 	int ret;
945 
946 	if (ah->type != ah_attr->type)
947 		return -EINVAL;
948 
949 	ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
950 	if (ret)
951 		return ret;
952 
953 	ret = ah->device->ops.modify_ah ?
954 		ah->device->ops.modify_ah(ah, ah_attr) :
955 		-EOPNOTSUPP;
956 
957 	ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
958 	rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
959 	return ret;
960 }
961 EXPORT_SYMBOL(rdma_modify_ah);
962 
963 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
964 {
965 	ah_attr->grh.sgid_attr = NULL;
966 
967 	return ah->device->ops.query_ah ?
968 		ah->device->ops.query_ah(ah, ah_attr) :
969 		-EOPNOTSUPP;
970 }
971 EXPORT_SYMBOL(rdma_query_ah);
972 
973 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
974 {
975 	const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
976 	struct ib_pd *pd;
977 	int ret;
978 
979 	might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
980 
981 	pd = ah->pd;
982 
983 	ret = ah->device->ops.destroy_ah(ah, flags);
984 	if (ret)
985 		return ret;
986 
987 	atomic_dec(&pd->usecnt);
988 	if (sgid_attr)
989 		rdma_put_gid_attr(sgid_attr);
990 
991 	kfree(ah);
992 	return ret;
993 }
994 EXPORT_SYMBOL(rdma_destroy_ah_user);
995 
996 /* Shared receive queues */
997 
998 /**
999  * ib_create_srq_user - Creates a SRQ associated with the specified protection
1000  *   domain.
1001  * @pd: The protection domain associated with the SRQ.
1002  * @srq_init_attr: A list of initial attributes required to create the
1003  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
1004  *   the actual capabilities of the created SRQ.
1005  * @uobject: uobject pointer if this is not a kernel SRQ
1006  * @udata: udata pointer if this is not a kernel SRQ
1007  *
1008  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
1009  * requested size of the SRQ, and set to the actual values allocated
1010  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
1011  * will always be at least as large as the requested values.
1012  */
1013 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1014 				  struct ib_srq_init_attr *srq_init_attr,
1015 				  struct ib_usrq_object *uobject,
1016 				  struct ib_udata *udata)
1017 {
1018 	struct ib_srq *srq;
1019 	int ret;
1020 
1021 	srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1022 	if (!srq)
1023 		return ERR_PTR(-ENOMEM);
1024 
1025 	srq->device = pd->device;
1026 	srq->pd = pd;
1027 	srq->event_handler = srq_init_attr->event_handler;
1028 	srq->srq_context = srq_init_attr->srq_context;
1029 	srq->srq_type = srq_init_attr->srq_type;
1030 	srq->uobject = uobject;
1031 
1032 	if (ib_srq_has_cq(srq->srq_type)) {
1033 		srq->ext.cq = srq_init_attr->ext.cq;
1034 		atomic_inc(&srq->ext.cq->usecnt);
1035 	}
1036 	if (srq->srq_type == IB_SRQT_XRC) {
1037 		srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1038 		if (srq->ext.xrc.xrcd)
1039 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1040 	}
1041 	atomic_inc(&pd->usecnt);
1042 
1043 	rdma_restrack_new(&srq->res, RDMA_RESTRACK_SRQ);
1044 	rdma_restrack_parent_name(&srq->res, &pd->res);
1045 
1046 	ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1047 	if (ret) {
1048 		rdma_restrack_put(&srq->res);
1049 		atomic_dec(&srq->pd->usecnt);
1050 		if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1051 			atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1052 		if (ib_srq_has_cq(srq->srq_type))
1053 			atomic_dec(&srq->ext.cq->usecnt);
1054 		kfree(srq);
1055 		return ERR_PTR(ret);
1056 	}
1057 
1058 	rdma_restrack_add(&srq->res);
1059 
1060 	return srq;
1061 }
1062 EXPORT_SYMBOL(ib_create_srq_user);
1063 
1064 int ib_modify_srq(struct ib_srq *srq,
1065 		  struct ib_srq_attr *srq_attr,
1066 		  enum ib_srq_attr_mask srq_attr_mask)
1067 {
1068 	return srq->device->ops.modify_srq ?
1069 		srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1070 					    NULL) : -EOPNOTSUPP;
1071 }
1072 EXPORT_SYMBOL(ib_modify_srq);
1073 
1074 int ib_query_srq(struct ib_srq *srq,
1075 		 struct ib_srq_attr *srq_attr)
1076 {
1077 	return srq->device->ops.query_srq ?
1078 		srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1079 }
1080 EXPORT_SYMBOL(ib_query_srq);
1081 
1082 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1083 {
1084 	int ret;
1085 
1086 	if (atomic_read(&srq->usecnt))
1087 		return -EBUSY;
1088 
1089 	ret = srq->device->ops.destroy_srq(srq, udata);
1090 	if (ret)
1091 		return ret;
1092 
1093 	atomic_dec(&srq->pd->usecnt);
1094 	if (srq->srq_type == IB_SRQT_XRC && srq->ext.xrc.xrcd)
1095 		atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1096 	if (ib_srq_has_cq(srq->srq_type))
1097 		atomic_dec(&srq->ext.cq->usecnt);
1098 	rdma_restrack_del(&srq->res);
1099 	kfree(srq);
1100 
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(ib_destroy_srq_user);
1104 
1105 /* Queue pairs */
1106 
1107 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1108 {
1109 	struct ib_qp *qp = context;
1110 	unsigned long flags;
1111 
1112 	spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1113 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1114 		if (event->element.qp->event_handler)
1115 			event->element.qp->event_handler(event, event->element.qp->qp_context);
1116 	spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1117 }
1118 
1119 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1120 				  void (*event_handler)(struct ib_event *, void *),
1121 				  void *qp_context)
1122 {
1123 	struct ib_qp *qp;
1124 	unsigned long flags;
1125 	int err;
1126 
1127 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
1128 	if (!qp)
1129 		return ERR_PTR(-ENOMEM);
1130 
1131 	qp->real_qp = real_qp;
1132 	err = ib_open_shared_qp_security(qp, real_qp->device);
1133 	if (err) {
1134 		kfree(qp);
1135 		return ERR_PTR(err);
1136 	}
1137 
1138 	qp->real_qp = real_qp;
1139 	atomic_inc(&real_qp->usecnt);
1140 	qp->device = real_qp->device;
1141 	qp->event_handler = event_handler;
1142 	qp->qp_context = qp_context;
1143 	qp->qp_num = real_qp->qp_num;
1144 	qp->qp_type = real_qp->qp_type;
1145 
1146 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1147 	list_add(&qp->open_list, &real_qp->open_list);
1148 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1149 
1150 	return qp;
1151 }
1152 
1153 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1154 			 struct ib_qp_open_attr *qp_open_attr)
1155 {
1156 	struct ib_qp *qp, *real_qp;
1157 
1158 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1159 		return ERR_PTR(-EINVAL);
1160 
1161 	down_read(&xrcd->tgt_qps_rwsem);
1162 	real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1163 	if (!real_qp) {
1164 		up_read(&xrcd->tgt_qps_rwsem);
1165 		return ERR_PTR(-EINVAL);
1166 	}
1167 	qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1168 			  qp_open_attr->qp_context);
1169 	up_read(&xrcd->tgt_qps_rwsem);
1170 	return qp;
1171 }
1172 EXPORT_SYMBOL(ib_open_qp);
1173 
1174 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1175 					struct ib_qp_init_attr *qp_init_attr)
1176 {
1177 	struct ib_qp *real_qp = qp;
1178 	int err;
1179 
1180 	qp->event_handler = __ib_shared_qp_event_handler;
1181 	qp->qp_context = qp;
1182 	qp->pd = NULL;
1183 	qp->send_cq = qp->recv_cq = NULL;
1184 	qp->srq = NULL;
1185 	qp->xrcd = qp_init_attr->xrcd;
1186 	atomic_inc(&qp_init_attr->xrcd->usecnt);
1187 	INIT_LIST_HEAD(&qp->open_list);
1188 
1189 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1190 			  qp_init_attr->qp_context);
1191 	if (IS_ERR(qp))
1192 		return qp;
1193 
1194 	err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1195 			      real_qp, GFP_KERNEL));
1196 	if (err) {
1197 		ib_close_qp(qp);
1198 		return ERR_PTR(err);
1199 	}
1200 	return qp;
1201 }
1202 
1203 static struct ib_qp *create_qp(struct ib_device *dev, struct ib_pd *pd,
1204 			       struct ib_qp_init_attr *attr,
1205 			       struct ib_udata *udata,
1206 			       struct ib_uqp_object *uobj, const char *caller)
1207 {
1208 	struct ib_udata dummy = {};
1209 	struct ib_qp *qp;
1210 	int ret;
1211 
1212 	if (!dev->ops.create_qp)
1213 		return ERR_PTR(-EOPNOTSUPP);
1214 
1215 	qp = rdma_zalloc_drv_obj_numa(dev, ib_qp);
1216 	if (!qp)
1217 		return ERR_PTR(-ENOMEM);
1218 
1219 	qp->device = dev;
1220 	qp->pd = pd;
1221 	qp->uobject = uobj;
1222 	qp->real_qp = qp;
1223 
1224 	qp->qp_type = attr->qp_type;
1225 	qp->rwq_ind_tbl = attr->rwq_ind_tbl;
1226 	qp->srq = attr->srq;
1227 	qp->event_handler = attr->event_handler;
1228 	qp->port = attr->port_num;
1229 	qp->qp_context = attr->qp_context;
1230 
1231 	spin_lock_init(&qp->mr_lock);
1232 	INIT_LIST_HEAD(&qp->rdma_mrs);
1233 	INIT_LIST_HEAD(&qp->sig_mrs);
1234 
1235 	rdma_restrack_new(&qp->res, RDMA_RESTRACK_QP);
1236 	WARN_ONCE(!udata && !caller, "Missing kernel QP owner");
1237 	rdma_restrack_set_name(&qp->res, udata ? NULL : caller);
1238 	ret = dev->ops.create_qp(qp, attr, udata);
1239 	if (ret)
1240 		goto err_create;
1241 
1242 	/*
1243 	 * TODO: The mlx4 internally overwrites send_cq and recv_cq.
1244 	 * Unfortunately, it is not an easy task to fix that driver.
1245 	 */
1246 	qp->send_cq = attr->send_cq;
1247 	qp->recv_cq = attr->recv_cq;
1248 
1249 	ret = ib_create_qp_security(qp, dev);
1250 	if (ret)
1251 		goto err_security;
1252 
1253 	rdma_restrack_add(&qp->res);
1254 	return qp;
1255 
1256 err_security:
1257 	qp->device->ops.destroy_qp(qp, udata ? &dummy : NULL);
1258 err_create:
1259 	rdma_restrack_put(&qp->res);
1260 	kfree(qp);
1261 	return ERR_PTR(ret);
1262 
1263 }
1264 
1265 /**
1266  * ib_create_qp_user - Creates a QP associated with the specified protection
1267  *   domain.
1268  * @dev: IB device
1269  * @pd: The protection domain associated with the QP.
1270  * @attr: A list of initial attributes required to create the
1271  *   QP.  If QP creation succeeds, then the attributes are updated to
1272  *   the actual capabilities of the created QP.
1273  * @udata: User data
1274  * @uobj: uverbs obect
1275  * @caller: caller's build-time module name
1276  */
1277 struct ib_qp *ib_create_qp_user(struct ib_device *dev, struct ib_pd *pd,
1278 				struct ib_qp_init_attr *attr,
1279 				struct ib_udata *udata,
1280 				struct ib_uqp_object *uobj, const char *caller)
1281 {
1282 	struct ib_qp *qp, *xrc_qp;
1283 
1284 	if (attr->qp_type == IB_QPT_XRC_TGT)
1285 		qp = create_qp(dev, pd, attr, NULL, NULL, caller);
1286 	else
1287 		qp = create_qp(dev, pd, attr, udata, uobj, NULL);
1288 	if (attr->qp_type != IB_QPT_XRC_TGT || IS_ERR(qp))
1289 		return qp;
1290 
1291 	xrc_qp = create_xrc_qp_user(qp, attr);
1292 	if (IS_ERR(xrc_qp)) {
1293 		ib_destroy_qp(qp);
1294 		return xrc_qp;
1295 	}
1296 
1297 	xrc_qp->uobject = uobj;
1298 	return xrc_qp;
1299 }
1300 EXPORT_SYMBOL(ib_create_qp_user);
1301 
1302 void ib_qp_usecnt_inc(struct ib_qp *qp)
1303 {
1304 	if (qp->pd)
1305 		atomic_inc(&qp->pd->usecnt);
1306 	if (qp->send_cq)
1307 		atomic_inc(&qp->send_cq->usecnt);
1308 	if (qp->recv_cq)
1309 		atomic_inc(&qp->recv_cq->usecnt);
1310 	if (qp->srq)
1311 		atomic_inc(&qp->srq->usecnt);
1312 	if (qp->rwq_ind_tbl)
1313 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
1314 }
1315 EXPORT_SYMBOL(ib_qp_usecnt_inc);
1316 
1317 void ib_qp_usecnt_dec(struct ib_qp *qp)
1318 {
1319 	if (qp->rwq_ind_tbl)
1320 		atomic_dec(&qp->rwq_ind_tbl->usecnt);
1321 	if (qp->srq)
1322 		atomic_dec(&qp->srq->usecnt);
1323 	if (qp->recv_cq)
1324 		atomic_dec(&qp->recv_cq->usecnt);
1325 	if (qp->send_cq)
1326 		atomic_dec(&qp->send_cq->usecnt);
1327 	if (qp->pd)
1328 		atomic_dec(&qp->pd->usecnt);
1329 }
1330 EXPORT_SYMBOL(ib_qp_usecnt_dec);
1331 
1332 struct ib_qp *ib_create_qp_kernel(struct ib_pd *pd,
1333 				  struct ib_qp_init_attr *qp_init_attr,
1334 				  const char *caller)
1335 {
1336 	struct ib_device *device = pd->device;
1337 	struct ib_qp *qp;
1338 	int ret;
1339 
1340 	/*
1341 	 * If the callers is using the RDMA API calculate the resources
1342 	 * needed for the RDMA READ/WRITE operations.
1343 	 *
1344 	 * Note that these callers need to pass in a port number.
1345 	 */
1346 	if (qp_init_attr->cap.max_rdma_ctxs)
1347 		rdma_rw_init_qp(device, qp_init_attr);
1348 
1349 	qp = create_qp(device, pd, qp_init_attr, NULL, NULL, caller);
1350 	if (IS_ERR(qp))
1351 		return qp;
1352 
1353 	ib_qp_usecnt_inc(qp);
1354 
1355 	if (qp_init_attr->cap.max_rdma_ctxs) {
1356 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
1357 		if (ret)
1358 			goto err;
1359 	}
1360 
1361 	/*
1362 	 * Note: all hw drivers guarantee that max_send_sge is lower than
1363 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1364 	 * max_send_sge <= max_sge_rd.
1365 	 */
1366 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1367 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1368 				 device->attrs.max_sge_rd);
1369 	if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1370 		qp->integrity_en = true;
1371 
1372 	return qp;
1373 
1374 err:
1375 	ib_destroy_qp(qp);
1376 	return ERR_PTR(ret);
1377 
1378 }
1379 EXPORT_SYMBOL(ib_create_qp_kernel);
1380 
1381 static const struct {
1382 	int			valid;
1383 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
1384 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
1385 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1386 	[IB_QPS_RESET] = {
1387 		[IB_QPS_RESET] = { .valid = 1 },
1388 		[IB_QPS_INIT]  = {
1389 			.valid = 1,
1390 			.req_param = {
1391 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1392 						IB_QP_PORT			|
1393 						IB_QP_QKEY),
1394 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
1395 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1396 						IB_QP_PORT			|
1397 						IB_QP_ACCESS_FLAGS),
1398 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1399 						IB_QP_PORT			|
1400 						IB_QP_ACCESS_FLAGS),
1401 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1402 						IB_QP_PORT			|
1403 						IB_QP_ACCESS_FLAGS),
1404 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1405 						IB_QP_PORT			|
1406 						IB_QP_ACCESS_FLAGS),
1407 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1408 						IB_QP_QKEY),
1409 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1410 						IB_QP_QKEY),
1411 			}
1412 		},
1413 	},
1414 	[IB_QPS_INIT]  = {
1415 		[IB_QPS_RESET] = { .valid = 1 },
1416 		[IB_QPS_ERR] =   { .valid = 1 },
1417 		[IB_QPS_INIT]  = {
1418 			.valid = 1,
1419 			.opt_param = {
1420 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1421 						IB_QP_PORT			|
1422 						IB_QP_QKEY),
1423 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
1424 						IB_QP_PORT			|
1425 						IB_QP_ACCESS_FLAGS),
1426 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
1427 						IB_QP_PORT			|
1428 						IB_QP_ACCESS_FLAGS),
1429 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
1430 						IB_QP_PORT			|
1431 						IB_QP_ACCESS_FLAGS),
1432 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
1433 						IB_QP_PORT			|
1434 						IB_QP_ACCESS_FLAGS),
1435 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1436 						IB_QP_QKEY),
1437 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1438 						IB_QP_QKEY),
1439 			}
1440 		},
1441 		[IB_QPS_RTR]   = {
1442 			.valid = 1,
1443 			.req_param = {
1444 				[IB_QPT_UC]  = (IB_QP_AV			|
1445 						IB_QP_PATH_MTU			|
1446 						IB_QP_DEST_QPN			|
1447 						IB_QP_RQ_PSN),
1448 				[IB_QPT_RC]  = (IB_QP_AV			|
1449 						IB_QP_PATH_MTU			|
1450 						IB_QP_DEST_QPN			|
1451 						IB_QP_RQ_PSN			|
1452 						IB_QP_MAX_DEST_RD_ATOMIC	|
1453 						IB_QP_MIN_RNR_TIMER),
1454 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
1455 						IB_QP_PATH_MTU			|
1456 						IB_QP_DEST_QPN			|
1457 						IB_QP_RQ_PSN),
1458 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
1459 						IB_QP_PATH_MTU			|
1460 						IB_QP_DEST_QPN			|
1461 						IB_QP_RQ_PSN			|
1462 						IB_QP_MAX_DEST_RD_ATOMIC	|
1463 						IB_QP_MIN_RNR_TIMER),
1464 			},
1465 			.opt_param = {
1466 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1467 						 IB_QP_QKEY),
1468 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
1469 						 IB_QP_ACCESS_FLAGS		|
1470 						 IB_QP_PKEY_INDEX),
1471 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
1472 						 IB_QP_ACCESS_FLAGS		|
1473 						 IB_QP_PKEY_INDEX),
1474 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
1475 						 IB_QP_ACCESS_FLAGS		|
1476 						 IB_QP_PKEY_INDEX),
1477 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
1478 						 IB_QP_ACCESS_FLAGS		|
1479 						 IB_QP_PKEY_INDEX),
1480 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1481 						 IB_QP_QKEY),
1482 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1483 						 IB_QP_QKEY),
1484 			 },
1485 		},
1486 	},
1487 	[IB_QPS_RTR]   = {
1488 		[IB_QPS_RESET] = { .valid = 1 },
1489 		[IB_QPS_ERR] =   { .valid = 1 },
1490 		[IB_QPS_RTS]   = {
1491 			.valid = 1,
1492 			.req_param = {
1493 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
1494 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
1495 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
1496 						IB_QP_RETRY_CNT			|
1497 						IB_QP_RNR_RETRY			|
1498 						IB_QP_SQ_PSN			|
1499 						IB_QP_MAX_QP_RD_ATOMIC),
1500 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
1501 						IB_QP_RETRY_CNT			|
1502 						IB_QP_RNR_RETRY			|
1503 						IB_QP_SQ_PSN			|
1504 						IB_QP_MAX_QP_RD_ATOMIC),
1505 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
1506 						IB_QP_SQ_PSN),
1507 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
1508 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
1509 			},
1510 			.opt_param = {
1511 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
1512 						 IB_QP_QKEY),
1513 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
1514 						 IB_QP_ALT_PATH			|
1515 						 IB_QP_ACCESS_FLAGS		|
1516 						 IB_QP_PATH_MIG_STATE),
1517 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1518 						 IB_QP_ALT_PATH			|
1519 						 IB_QP_ACCESS_FLAGS		|
1520 						 IB_QP_MIN_RNR_TIMER		|
1521 						 IB_QP_PATH_MIG_STATE),
1522 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1523 						 IB_QP_ALT_PATH			|
1524 						 IB_QP_ACCESS_FLAGS		|
1525 						 IB_QP_PATH_MIG_STATE),
1526 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1527 						 IB_QP_ALT_PATH			|
1528 						 IB_QP_ACCESS_FLAGS		|
1529 						 IB_QP_MIN_RNR_TIMER		|
1530 						 IB_QP_PATH_MIG_STATE),
1531 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1532 						 IB_QP_QKEY),
1533 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1534 						 IB_QP_QKEY),
1535 				 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1536 			 }
1537 		}
1538 	},
1539 	[IB_QPS_RTS]   = {
1540 		[IB_QPS_RESET] = { .valid = 1 },
1541 		[IB_QPS_ERR] =   { .valid = 1 },
1542 		[IB_QPS_RTS]   = {
1543 			.valid = 1,
1544 			.opt_param = {
1545 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1546 						IB_QP_QKEY),
1547 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1548 						IB_QP_ACCESS_FLAGS		|
1549 						IB_QP_ALT_PATH			|
1550 						IB_QP_PATH_MIG_STATE),
1551 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1552 						IB_QP_ACCESS_FLAGS		|
1553 						IB_QP_ALT_PATH			|
1554 						IB_QP_PATH_MIG_STATE		|
1555 						IB_QP_MIN_RNR_TIMER),
1556 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1557 						IB_QP_ACCESS_FLAGS		|
1558 						IB_QP_ALT_PATH			|
1559 						IB_QP_PATH_MIG_STATE),
1560 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1561 						IB_QP_ACCESS_FLAGS		|
1562 						IB_QP_ALT_PATH			|
1563 						IB_QP_PATH_MIG_STATE		|
1564 						IB_QP_MIN_RNR_TIMER),
1565 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1566 						IB_QP_QKEY),
1567 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1568 						IB_QP_QKEY),
1569 				[IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1570 			}
1571 		},
1572 		[IB_QPS_SQD]   = {
1573 			.valid = 1,
1574 			.opt_param = {
1575 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1576 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1577 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1578 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1579 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1580 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1581 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1582 			}
1583 		},
1584 	},
1585 	[IB_QPS_SQD]   = {
1586 		[IB_QPS_RESET] = { .valid = 1 },
1587 		[IB_QPS_ERR] =   { .valid = 1 },
1588 		[IB_QPS_RTS]   = {
1589 			.valid = 1,
1590 			.opt_param = {
1591 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1592 						IB_QP_QKEY),
1593 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1594 						IB_QP_ALT_PATH			|
1595 						IB_QP_ACCESS_FLAGS		|
1596 						IB_QP_PATH_MIG_STATE),
1597 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1598 						IB_QP_ALT_PATH			|
1599 						IB_QP_ACCESS_FLAGS		|
1600 						IB_QP_MIN_RNR_TIMER		|
1601 						IB_QP_PATH_MIG_STATE),
1602 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1603 						IB_QP_ALT_PATH			|
1604 						IB_QP_ACCESS_FLAGS		|
1605 						IB_QP_PATH_MIG_STATE),
1606 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1607 						IB_QP_ALT_PATH			|
1608 						IB_QP_ACCESS_FLAGS		|
1609 						IB_QP_MIN_RNR_TIMER		|
1610 						IB_QP_PATH_MIG_STATE),
1611 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1612 						IB_QP_QKEY),
1613 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1614 						IB_QP_QKEY),
1615 			}
1616 		},
1617 		[IB_QPS_SQD]   = {
1618 			.valid = 1,
1619 			.opt_param = {
1620 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1621 						IB_QP_QKEY),
1622 				[IB_QPT_UC]  = (IB_QP_AV			|
1623 						IB_QP_ALT_PATH			|
1624 						IB_QP_ACCESS_FLAGS		|
1625 						IB_QP_PKEY_INDEX		|
1626 						IB_QP_PATH_MIG_STATE),
1627 				[IB_QPT_RC]  = (IB_QP_PORT			|
1628 						IB_QP_AV			|
1629 						IB_QP_TIMEOUT			|
1630 						IB_QP_RETRY_CNT			|
1631 						IB_QP_RNR_RETRY			|
1632 						IB_QP_MAX_QP_RD_ATOMIC		|
1633 						IB_QP_MAX_DEST_RD_ATOMIC	|
1634 						IB_QP_ALT_PATH			|
1635 						IB_QP_ACCESS_FLAGS		|
1636 						IB_QP_PKEY_INDEX		|
1637 						IB_QP_MIN_RNR_TIMER		|
1638 						IB_QP_PATH_MIG_STATE),
1639 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1640 						IB_QP_AV			|
1641 						IB_QP_TIMEOUT			|
1642 						IB_QP_RETRY_CNT			|
1643 						IB_QP_RNR_RETRY			|
1644 						IB_QP_MAX_QP_RD_ATOMIC		|
1645 						IB_QP_ALT_PATH			|
1646 						IB_QP_ACCESS_FLAGS		|
1647 						IB_QP_PKEY_INDEX		|
1648 						IB_QP_PATH_MIG_STATE),
1649 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1650 						IB_QP_AV			|
1651 						IB_QP_TIMEOUT			|
1652 						IB_QP_MAX_DEST_RD_ATOMIC	|
1653 						IB_QP_ALT_PATH			|
1654 						IB_QP_ACCESS_FLAGS		|
1655 						IB_QP_PKEY_INDEX		|
1656 						IB_QP_MIN_RNR_TIMER		|
1657 						IB_QP_PATH_MIG_STATE),
1658 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1659 						IB_QP_QKEY),
1660 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1661 						IB_QP_QKEY),
1662 			}
1663 		}
1664 	},
1665 	[IB_QPS_SQE]   = {
1666 		[IB_QPS_RESET] = { .valid = 1 },
1667 		[IB_QPS_ERR] =   { .valid = 1 },
1668 		[IB_QPS_RTS]   = {
1669 			.valid = 1,
1670 			.opt_param = {
1671 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1672 						IB_QP_QKEY),
1673 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1674 						IB_QP_ACCESS_FLAGS),
1675 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1676 						IB_QP_QKEY),
1677 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1678 						IB_QP_QKEY),
1679 			}
1680 		}
1681 	},
1682 	[IB_QPS_ERR] = {
1683 		[IB_QPS_RESET] = { .valid = 1 },
1684 		[IB_QPS_ERR] =   { .valid = 1 }
1685 	}
1686 };
1687 
1688 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1689 			enum ib_qp_type type, enum ib_qp_attr_mask mask)
1690 {
1691 	enum ib_qp_attr_mask req_param, opt_param;
1692 
1693 	if (mask & IB_QP_CUR_STATE  &&
1694 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1695 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1696 		return false;
1697 
1698 	if (!qp_state_table[cur_state][next_state].valid)
1699 		return false;
1700 
1701 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1702 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1703 
1704 	if ((mask & req_param) != req_param)
1705 		return false;
1706 
1707 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1708 		return false;
1709 
1710 	return true;
1711 }
1712 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1713 
1714 /**
1715  * ib_resolve_eth_dmac - Resolve destination mac address
1716  * @device:		Device to consider
1717  * @ah_attr:		address handle attribute which describes the
1718  *			source and destination parameters
1719  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1720  * returns 0 on success or appropriate error code. It initializes the
1721  * necessary ah_attr fields when call is successful.
1722  */
1723 static int ib_resolve_eth_dmac(struct ib_device *device,
1724 			       struct rdma_ah_attr *ah_attr)
1725 {
1726 	int ret = 0;
1727 
1728 	if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1729 		if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1730 			__be32 addr = 0;
1731 
1732 			memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1733 			ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1734 		} else {
1735 			ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1736 					(char *)ah_attr->roce.dmac);
1737 		}
1738 	} else {
1739 		ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1740 	}
1741 	return ret;
1742 }
1743 
1744 static bool is_qp_type_connected(const struct ib_qp *qp)
1745 {
1746 	return (qp->qp_type == IB_QPT_UC ||
1747 		qp->qp_type == IB_QPT_RC ||
1748 		qp->qp_type == IB_QPT_XRC_INI ||
1749 		qp->qp_type == IB_QPT_XRC_TGT);
1750 }
1751 
1752 /*
1753  * IB core internal function to perform QP attributes modification.
1754  */
1755 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1756 			 int attr_mask, struct ib_udata *udata)
1757 {
1758 	u32 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1759 	const struct ib_gid_attr *old_sgid_attr_av;
1760 	const struct ib_gid_attr *old_sgid_attr_alt_av;
1761 	int ret;
1762 
1763 	attr->xmit_slave = NULL;
1764 	if (attr_mask & IB_QP_AV) {
1765 		ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1766 					  &old_sgid_attr_av);
1767 		if (ret)
1768 			return ret;
1769 
1770 		if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1771 		    is_qp_type_connected(qp)) {
1772 			struct net_device *slave;
1773 
1774 			/*
1775 			 * If the user provided the qp_attr then we have to
1776 			 * resolve it. Kerne users have to provide already
1777 			 * resolved rdma_ah_attr's.
1778 			 */
1779 			if (udata) {
1780 				ret = ib_resolve_eth_dmac(qp->device,
1781 							  &attr->ah_attr);
1782 				if (ret)
1783 					goto out_av;
1784 			}
1785 			slave = rdma_lag_get_ah_roce_slave(qp->device,
1786 							   &attr->ah_attr,
1787 							   GFP_KERNEL);
1788 			if (IS_ERR(slave)) {
1789 				ret = PTR_ERR(slave);
1790 				goto out_av;
1791 			}
1792 			attr->xmit_slave = slave;
1793 		}
1794 	}
1795 	if (attr_mask & IB_QP_ALT_PATH) {
1796 		/*
1797 		 * FIXME: This does not track the migration state, so if the
1798 		 * user loads a new alternate path after the HW has migrated
1799 		 * from primary->alternate we will keep the wrong
1800 		 * references. This is OK for IB because the reference
1801 		 * counting does not serve any functional purpose.
1802 		 */
1803 		ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1804 					  &old_sgid_attr_alt_av);
1805 		if (ret)
1806 			goto out_av;
1807 
1808 		/*
1809 		 * Today the core code can only handle alternate paths and APM
1810 		 * for IB. Ban them in roce mode.
1811 		 */
1812 		if (!(rdma_protocol_ib(qp->device,
1813 				       attr->alt_ah_attr.port_num) &&
1814 		      rdma_protocol_ib(qp->device, port))) {
1815 			ret = -EINVAL;
1816 			goto out;
1817 		}
1818 	}
1819 
1820 	if (rdma_ib_or_roce(qp->device, port)) {
1821 		if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1822 			dev_warn(&qp->device->dev,
1823 				 "%s rq_psn overflow, masking to 24 bits\n",
1824 				 __func__);
1825 			attr->rq_psn &= 0xffffff;
1826 		}
1827 
1828 		if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1829 			dev_warn(&qp->device->dev,
1830 				 " %s sq_psn overflow, masking to 24 bits\n",
1831 				 __func__);
1832 			attr->sq_psn &= 0xffffff;
1833 		}
1834 	}
1835 
1836 	/*
1837 	 * Bind this qp to a counter automatically based on the rdma counter
1838 	 * rules. This only set in RST2INIT with port specified
1839 	 */
1840 	if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1841 	    ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1842 		rdma_counter_bind_qp_auto(qp, attr->port_num);
1843 
1844 	ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1845 	if (ret)
1846 		goto out;
1847 
1848 	if (attr_mask & IB_QP_PORT)
1849 		qp->port = attr->port_num;
1850 	if (attr_mask & IB_QP_AV)
1851 		qp->av_sgid_attr =
1852 			rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1853 	if (attr_mask & IB_QP_ALT_PATH)
1854 		qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1855 			&attr->alt_ah_attr, qp->alt_path_sgid_attr);
1856 
1857 out:
1858 	if (attr_mask & IB_QP_ALT_PATH)
1859 		rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1860 out_av:
1861 	if (attr_mask & IB_QP_AV) {
1862 		rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1863 		rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1864 	}
1865 	return ret;
1866 }
1867 
1868 /**
1869  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1870  * @ib_qp: The QP to modify.
1871  * @attr: On input, specifies the QP attributes to modify.  On output,
1872  *   the current values of selected QP attributes are returned.
1873  * @attr_mask: A bit-mask used to specify which attributes of the QP
1874  *   are being modified.
1875  * @udata: pointer to user's input output buffer information
1876  *   are being modified.
1877  * It returns 0 on success and returns appropriate error code on error.
1878  */
1879 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1880 			    int attr_mask, struct ib_udata *udata)
1881 {
1882 	return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1883 }
1884 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1885 
1886 int ib_get_eth_speed(struct ib_device *dev, u32 port_num, u16 *speed, u8 *width)
1887 {
1888 	int rc;
1889 	u32 netdev_speed;
1890 	struct net_device *netdev;
1891 	struct ethtool_link_ksettings lksettings;
1892 
1893 	if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1894 		return -EINVAL;
1895 
1896 	netdev = ib_device_get_netdev(dev, port_num);
1897 	if (!netdev)
1898 		return -ENODEV;
1899 
1900 	rtnl_lock();
1901 	rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1902 	rtnl_unlock();
1903 
1904 	dev_put(netdev);
1905 
1906 	if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1907 		netdev_speed = lksettings.base.speed;
1908 	} else {
1909 		netdev_speed = SPEED_1000;
1910 		pr_warn("%s speed is unknown, defaulting to %u\n", netdev->name,
1911 			netdev_speed);
1912 	}
1913 
1914 	if (netdev_speed <= SPEED_1000) {
1915 		*width = IB_WIDTH_1X;
1916 		*speed = IB_SPEED_SDR;
1917 	} else if (netdev_speed <= SPEED_10000) {
1918 		*width = IB_WIDTH_1X;
1919 		*speed = IB_SPEED_FDR10;
1920 	} else if (netdev_speed <= SPEED_20000) {
1921 		*width = IB_WIDTH_4X;
1922 		*speed = IB_SPEED_DDR;
1923 	} else if (netdev_speed <= SPEED_25000) {
1924 		*width = IB_WIDTH_1X;
1925 		*speed = IB_SPEED_EDR;
1926 	} else if (netdev_speed <= SPEED_40000) {
1927 		*width = IB_WIDTH_4X;
1928 		*speed = IB_SPEED_FDR10;
1929 	} else {
1930 		*width = IB_WIDTH_4X;
1931 		*speed = IB_SPEED_EDR;
1932 	}
1933 
1934 	return 0;
1935 }
1936 EXPORT_SYMBOL(ib_get_eth_speed);
1937 
1938 int ib_modify_qp(struct ib_qp *qp,
1939 		 struct ib_qp_attr *qp_attr,
1940 		 int qp_attr_mask)
1941 {
1942 	return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1943 }
1944 EXPORT_SYMBOL(ib_modify_qp);
1945 
1946 int ib_query_qp(struct ib_qp *qp,
1947 		struct ib_qp_attr *qp_attr,
1948 		int qp_attr_mask,
1949 		struct ib_qp_init_attr *qp_init_attr)
1950 {
1951 	qp_attr->ah_attr.grh.sgid_attr = NULL;
1952 	qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1953 
1954 	return qp->device->ops.query_qp ?
1955 		qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1956 					 qp_init_attr) : -EOPNOTSUPP;
1957 }
1958 EXPORT_SYMBOL(ib_query_qp);
1959 
1960 int ib_close_qp(struct ib_qp *qp)
1961 {
1962 	struct ib_qp *real_qp;
1963 	unsigned long flags;
1964 
1965 	real_qp = qp->real_qp;
1966 	if (real_qp == qp)
1967 		return -EINVAL;
1968 
1969 	spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1970 	list_del(&qp->open_list);
1971 	spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1972 
1973 	atomic_dec(&real_qp->usecnt);
1974 	if (qp->qp_sec)
1975 		ib_close_shared_qp_security(qp->qp_sec);
1976 	kfree(qp);
1977 
1978 	return 0;
1979 }
1980 EXPORT_SYMBOL(ib_close_qp);
1981 
1982 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1983 {
1984 	struct ib_xrcd *xrcd;
1985 	struct ib_qp *real_qp;
1986 	int ret;
1987 
1988 	real_qp = qp->real_qp;
1989 	xrcd = real_qp->xrcd;
1990 	down_write(&xrcd->tgt_qps_rwsem);
1991 	ib_close_qp(qp);
1992 	if (atomic_read(&real_qp->usecnt) == 0)
1993 		xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1994 	else
1995 		real_qp = NULL;
1996 	up_write(&xrcd->tgt_qps_rwsem);
1997 
1998 	if (real_qp) {
1999 		ret = ib_destroy_qp(real_qp);
2000 		if (!ret)
2001 			atomic_dec(&xrcd->usecnt);
2002 	}
2003 
2004 	return 0;
2005 }
2006 
2007 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
2008 {
2009 	const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
2010 	const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
2011 	struct ib_qp_security *sec;
2012 	int ret;
2013 
2014 	WARN_ON_ONCE(qp->mrs_used > 0);
2015 
2016 	if (atomic_read(&qp->usecnt))
2017 		return -EBUSY;
2018 
2019 	if (qp->real_qp != qp)
2020 		return __ib_destroy_shared_qp(qp);
2021 
2022 	sec  = qp->qp_sec;
2023 	if (sec)
2024 		ib_destroy_qp_security_begin(sec);
2025 
2026 	if (!qp->uobject)
2027 		rdma_rw_cleanup_mrs(qp);
2028 
2029 	rdma_counter_unbind_qp(qp, true);
2030 	ret = qp->device->ops.destroy_qp(qp, udata);
2031 	if (ret) {
2032 		if (sec)
2033 			ib_destroy_qp_security_abort(sec);
2034 		return ret;
2035 	}
2036 
2037 	if (alt_path_sgid_attr)
2038 		rdma_put_gid_attr(alt_path_sgid_attr);
2039 	if (av_sgid_attr)
2040 		rdma_put_gid_attr(av_sgid_attr);
2041 
2042 	ib_qp_usecnt_dec(qp);
2043 	if (sec)
2044 		ib_destroy_qp_security_end(sec);
2045 
2046 	rdma_restrack_del(&qp->res);
2047 	kfree(qp);
2048 	return ret;
2049 }
2050 EXPORT_SYMBOL(ib_destroy_qp_user);
2051 
2052 /* Completion queues */
2053 
2054 struct ib_cq *__ib_create_cq(struct ib_device *device,
2055 			     ib_comp_handler comp_handler,
2056 			     void (*event_handler)(struct ib_event *, void *),
2057 			     void *cq_context,
2058 			     const struct ib_cq_init_attr *cq_attr,
2059 			     const char *caller)
2060 {
2061 	struct ib_cq *cq;
2062 	int ret;
2063 
2064 	cq = rdma_zalloc_drv_obj(device, ib_cq);
2065 	if (!cq)
2066 		return ERR_PTR(-ENOMEM);
2067 
2068 	cq->device = device;
2069 	cq->uobject = NULL;
2070 	cq->comp_handler = comp_handler;
2071 	cq->event_handler = event_handler;
2072 	cq->cq_context = cq_context;
2073 	atomic_set(&cq->usecnt, 0);
2074 
2075 	rdma_restrack_new(&cq->res, RDMA_RESTRACK_CQ);
2076 	rdma_restrack_set_name(&cq->res, caller);
2077 
2078 	ret = device->ops.create_cq(cq, cq_attr, NULL);
2079 	if (ret) {
2080 		rdma_restrack_put(&cq->res);
2081 		kfree(cq);
2082 		return ERR_PTR(ret);
2083 	}
2084 
2085 	rdma_restrack_add(&cq->res);
2086 	return cq;
2087 }
2088 EXPORT_SYMBOL(__ib_create_cq);
2089 
2090 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2091 {
2092 	if (cq->shared)
2093 		return -EOPNOTSUPP;
2094 
2095 	return cq->device->ops.modify_cq ?
2096 		cq->device->ops.modify_cq(cq, cq_count,
2097 					  cq_period) : -EOPNOTSUPP;
2098 }
2099 EXPORT_SYMBOL(rdma_set_cq_moderation);
2100 
2101 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2102 {
2103 	int ret;
2104 
2105 	if (WARN_ON_ONCE(cq->shared))
2106 		return -EOPNOTSUPP;
2107 
2108 	if (atomic_read(&cq->usecnt))
2109 		return -EBUSY;
2110 
2111 	ret = cq->device->ops.destroy_cq(cq, udata);
2112 	if (ret)
2113 		return ret;
2114 
2115 	rdma_restrack_del(&cq->res);
2116 	kfree(cq);
2117 	return ret;
2118 }
2119 EXPORT_SYMBOL(ib_destroy_cq_user);
2120 
2121 int ib_resize_cq(struct ib_cq *cq, int cqe)
2122 {
2123 	if (cq->shared)
2124 		return -EOPNOTSUPP;
2125 
2126 	return cq->device->ops.resize_cq ?
2127 		cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2128 }
2129 EXPORT_SYMBOL(ib_resize_cq);
2130 
2131 /* Memory regions */
2132 
2133 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2134 			     u64 virt_addr, int access_flags)
2135 {
2136 	struct ib_mr *mr;
2137 
2138 	if (access_flags & IB_ACCESS_ON_DEMAND) {
2139 		if (!(pd->device->attrs.device_cap_flags &
2140 		      IB_DEVICE_ON_DEMAND_PAGING)) {
2141 			pr_debug("ODP support not available\n");
2142 			return ERR_PTR(-EINVAL);
2143 		}
2144 	}
2145 
2146 	mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2147 					 access_flags, NULL);
2148 
2149 	if (IS_ERR(mr))
2150 		return mr;
2151 
2152 	mr->device = pd->device;
2153 	mr->pd = pd;
2154 	mr->dm = NULL;
2155 	atomic_inc(&pd->usecnt);
2156 
2157 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2158 	rdma_restrack_parent_name(&mr->res, &pd->res);
2159 	rdma_restrack_add(&mr->res);
2160 
2161 	return mr;
2162 }
2163 EXPORT_SYMBOL(ib_reg_user_mr);
2164 
2165 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2166 		 u32 flags, struct ib_sge *sg_list, u32 num_sge)
2167 {
2168 	if (!pd->device->ops.advise_mr)
2169 		return -EOPNOTSUPP;
2170 
2171 	if (!num_sge)
2172 		return 0;
2173 
2174 	return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2175 					 NULL);
2176 }
2177 EXPORT_SYMBOL(ib_advise_mr);
2178 
2179 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2180 {
2181 	struct ib_pd *pd = mr->pd;
2182 	struct ib_dm *dm = mr->dm;
2183 	struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2184 	int ret;
2185 
2186 	trace_mr_dereg(mr);
2187 	rdma_restrack_del(&mr->res);
2188 	ret = mr->device->ops.dereg_mr(mr, udata);
2189 	if (!ret) {
2190 		atomic_dec(&pd->usecnt);
2191 		if (dm)
2192 			atomic_dec(&dm->usecnt);
2193 		kfree(sig_attrs);
2194 	}
2195 
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL(ib_dereg_mr_user);
2199 
2200 /**
2201  * ib_alloc_mr() - Allocates a memory region
2202  * @pd:            protection domain associated with the region
2203  * @mr_type:       memory region type
2204  * @max_num_sg:    maximum sg entries available for registration.
2205  *
2206  * Notes:
2207  * Memory registeration page/sg lists must not exceed max_num_sg.
2208  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2209  * max_num_sg * used_page_size.
2210  *
2211  */
2212 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2213 			  u32 max_num_sg)
2214 {
2215 	struct ib_mr *mr;
2216 
2217 	if (!pd->device->ops.alloc_mr) {
2218 		mr = ERR_PTR(-EOPNOTSUPP);
2219 		goto out;
2220 	}
2221 
2222 	if (mr_type == IB_MR_TYPE_INTEGRITY) {
2223 		WARN_ON_ONCE(1);
2224 		mr = ERR_PTR(-EINVAL);
2225 		goto out;
2226 	}
2227 
2228 	mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2229 	if (IS_ERR(mr))
2230 		goto out;
2231 
2232 	mr->device = pd->device;
2233 	mr->pd = pd;
2234 	mr->dm = NULL;
2235 	mr->uobject = NULL;
2236 	atomic_inc(&pd->usecnt);
2237 	mr->need_inval = false;
2238 	mr->type = mr_type;
2239 	mr->sig_attrs = NULL;
2240 
2241 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2242 	rdma_restrack_parent_name(&mr->res, &pd->res);
2243 	rdma_restrack_add(&mr->res);
2244 out:
2245 	trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2246 	return mr;
2247 }
2248 EXPORT_SYMBOL(ib_alloc_mr);
2249 
2250 /**
2251  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2252  * @pd:                      protection domain associated with the region
2253  * @max_num_data_sg:         maximum data sg entries available for registration
2254  * @max_num_meta_sg:         maximum metadata sg entries available for
2255  *                           registration
2256  *
2257  * Notes:
2258  * Memory registration page/sg lists must not exceed max_num_sg,
2259  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2260  *
2261  */
2262 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2263 				    u32 max_num_data_sg,
2264 				    u32 max_num_meta_sg)
2265 {
2266 	struct ib_mr *mr;
2267 	struct ib_sig_attrs *sig_attrs;
2268 
2269 	if (!pd->device->ops.alloc_mr_integrity ||
2270 	    !pd->device->ops.map_mr_sg_pi) {
2271 		mr = ERR_PTR(-EOPNOTSUPP);
2272 		goto out;
2273 	}
2274 
2275 	if (!max_num_meta_sg) {
2276 		mr = ERR_PTR(-EINVAL);
2277 		goto out;
2278 	}
2279 
2280 	sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2281 	if (!sig_attrs) {
2282 		mr = ERR_PTR(-ENOMEM);
2283 		goto out;
2284 	}
2285 
2286 	mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2287 						max_num_meta_sg);
2288 	if (IS_ERR(mr)) {
2289 		kfree(sig_attrs);
2290 		goto out;
2291 	}
2292 
2293 	mr->device = pd->device;
2294 	mr->pd = pd;
2295 	mr->dm = NULL;
2296 	mr->uobject = NULL;
2297 	atomic_inc(&pd->usecnt);
2298 	mr->need_inval = false;
2299 	mr->type = IB_MR_TYPE_INTEGRITY;
2300 	mr->sig_attrs = sig_attrs;
2301 
2302 	rdma_restrack_new(&mr->res, RDMA_RESTRACK_MR);
2303 	rdma_restrack_parent_name(&mr->res, &pd->res);
2304 	rdma_restrack_add(&mr->res);
2305 out:
2306 	trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2307 	return mr;
2308 }
2309 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2310 
2311 /* Multicast groups */
2312 
2313 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2314 {
2315 	struct ib_qp_init_attr init_attr = {};
2316 	struct ib_qp_attr attr = {};
2317 	int num_eth_ports = 0;
2318 	unsigned int port;
2319 
2320 	/* If QP state >= init, it is assigned to a port and we can check this
2321 	 * port only.
2322 	 */
2323 	if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2324 		if (attr.qp_state >= IB_QPS_INIT) {
2325 			if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2326 			    IB_LINK_LAYER_INFINIBAND)
2327 				return true;
2328 			goto lid_check;
2329 		}
2330 	}
2331 
2332 	/* Can't get a quick answer, iterate over all ports */
2333 	rdma_for_each_port(qp->device, port)
2334 		if (rdma_port_get_link_layer(qp->device, port) !=
2335 		    IB_LINK_LAYER_INFINIBAND)
2336 			num_eth_ports++;
2337 
2338 	/* If we have at lease one Ethernet port, RoCE annex declares that
2339 	 * multicast LID should be ignored. We can't tell at this step if the
2340 	 * QP belongs to an IB or Ethernet port.
2341 	 */
2342 	if (num_eth_ports)
2343 		return true;
2344 
2345 	/* If all the ports are IB, we can check according to IB spec. */
2346 lid_check:
2347 	return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2348 		 lid == be16_to_cpu(IB_LID_PERMISSIVE));
2349 }
2350 
2351 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2352 {
2353 	int ret;
2354 
2355 	if (!qp->device->ops.attach_mcast)
2356 		return -EOPNOTSUPP;
2357 
2358 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2359 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2360 		return -EINVAL;
2361 
2362 	ret = qp->device->ops.attach_mcast(qp, gid, lid);
2363 	if (!ret)
2364 		atomic_inc(&qp->usecnt);
2365 	return ret;
2366 }
2367 EXPORT_SYMBOL(ib_attach_mcast);
2368 
2369 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2370 {
2371 	int ret;
2372 
2373 	if (!qp->device->ops.detach_mcast)
2374 		return -EOPNOTSUPP;
2375 
2376 	if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2377 	    qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2378 		return -EINVAL;
2379 
2380 	ret = qp->device->ops.detach_mcast(qp, gid, lid);
2381 	if (!ret)
2382 		atomic_dec(&qp->usecnt);
2383 	return ret;
2384 }
2385 EXPORT_SYMBOL(ib_detach_mcast);
2386 
2387 /**
2388  * ib_alloc_xrcd_user - Allocates an XRC domain.
2389  * @device: The device on which to allocate the XRC domain.
2390  * @inode: inode to connect XRCD
2391  * @udata: Valid user data or NULL for kernel object
2392  */
2393 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2394 				   struct inode *inode, struct ib_udata *udata)
2395 {
2396 	struct ib_xrcd *xrcd;
2397 	int ret;
2398 
2399 	if (!device->ops.alloc_xrcd)
2400 		return ERR_PTR(-EOPNOTSUPP);
2401 
2402 	xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2403 	if (!xrcd)
2404 		return ERR_PTR(-ENOMEM);
2405 
2406 	xrcd->device = device;
2407 	xrcd->inode = inode;
2408 	atomic_set(&xrcd->usecnt, 0);
2409 	init_rwsem(&xrcd->tgt_qps_rwsem);
2410 	xa_init(&xrcd->tgt_qps);
2411 
2412 	ret = device->ops.alloc_xrcd(xrcd, udata);
2413 	if (ret)
2414 		goto err;
2415 	return xrcd;
2416 err:
2417 	kfree(xrcd);
2418 	return ERR_PTR(ret);
2419 }
2420 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2421 
2422 /**
2423  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2424  * @xrcd: The XRC domain to deallocate.
2425  * @udata: Valid user data or NULL for kernel object
2426  */
2427 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2428 {
2429 	int ret;
2430 
2431 	if (atomic_read(&xrcd->usecnt))
2432 		return -EBUSY;
2433 
2434 	WARN_ON(!xa_empty(&xrcd->tgt_qps));
2435 	ret = xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2436 	if (ret)
2437 		return ret;
2438 	kfree(xrcd);
2439 	return ret;
2440 }
2441 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2442 
2443 /**
2444  * ib_create_wq - Creates a WQ associated with the specified protection
2445  * domain.
2446  * @pd: The protection domain associated with the WQ.
2447  * @wq_attr: A list of initial attributes required to create the
2448  * WQ. If WQ creation succeeds, then the attributes are updated to
2449  * the actual capabilities of the created WQ.
2450  *
2451  * wq_attr->max_wr and wq_attr->max_sge determine
2452  * the requested size of the WQ, and set to the actual values allocated
2453  * on return.
2454  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2455  * at least as large as the requested values.
2456  */
2457 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2458 			   struct ib_wq_init_attr *wq_attr)
2459 {
2460 	struct ib_wq *wq;
2461 
2462 	if (!pd->device->ops.create_wq)
2463 		return ERR_PTR(-EOPNOTSUPP);
2464 
2465 	wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2466 	if (!IS_ERR(wq)) {
2467 		wq->event_handler = wq_attr->event_handler;
2468 		wq->wq_context = wq_attr->wq_context;
2469 		wq->wq_type = wq_attr->wq_type;
2470 		wq->cq = wq_attr->cq;
2471 		wq->device = pd->device;
2472 		wq->pd = pd;
2473 		wq->uobject = NULL;
2474 		atomic_inc(&pd->usecnt);
2475 		atomic_inc(&wq_attr->cq->usecnt);
2476 		atomic_set(&wq->usecnt, 0);
2477 	}
2478 	return wq;
2479 }
2480 EXPORT_SYMBOL(ib_create_wq);
2481 
2482 /**
2483  * ib_destroy_wq_user - Destroys the specified user WQ.
2484  * @wq: The WQ to destroy.
2485  * @udata: Valid user data
2486  */
2487 int ib_destroy_wq_user(struct ib_wq *wq, struct ib_udata *udata)
2488 {
2489 	struct ib_cq *cq = wq->cq;
2490 	struct ib_pd *pd = wq->pd;
2491 	int ret;
2492 
2493 	if (atomic_read(&wq->usecnt))
2494 		return -EBUSY;
2495 
2496 	ret = wq->device->ops.destroy_wq(wq, udata);
2497 	if (ret)
2498 		return ret;
2499 
2500 	atomic_dec(&pd->usecnt);
2501 	atomic_dec(&cq->usecnt);
2502 	return ret;
2503 }
2504 EXPORT_SYMBOL(ib_destroy_wq_user);
2505 
2506 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2507 		       struct ib_mr_status *mr_status)
2508 {
2509 	if (!mr->device->ops.check_mr_status)
2510 		return -EOPNOTSUPP;
2511 
2512 	return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2513 }
2514 EXPORT_SYMBOL(ib_check_mr_status);
2515 
2516 int ib_set_vf_link_state(struct ib_device *device, int vf, u32 port,
2517 			 int state)
2518 {
2519 	if (!device->ops.set_vf_link_state)
2520 		return -EOPNOTSUPP;
2521 
2522 	return device->ops.set_vf_link_state(device, vf, port, state);
2523 }
2524 EXPORT_SYMBOL(ib_set_vf_link_state);
2525 
2526 int ib_get_vf_config(struct ib_device *device, int vf, u32 port,
2527 		     struct ifla_vf_info *info)
2528 {
2529 	if (!device->ops.get_vf_config)
2530 		return -EOPNOTSUPP;
2531 
2532 	return device->ops.get_vf_config(device, vf, port, info);
2533 }
2534 EXPORT_SYMBOL(ib_get_vf_config);
2535 
2536 int ib_get_vf_stats(struct ib_device *device, int vf, u32 port,
2537 		    struct ifla_vf_stats *stats)
2538 {
2539 	if (!device->ops.get_vf_stats)
2540 		return -EOPNOTSUPP;
2541 
2542 	return device->ops.get_vf_stats(device, vf, port, stats);
2543 }
2544 EXPORT_SYMBOL(ib_get_vf_stats);
2545 
2546 int ib_set_vf_guid(struct ib_device *device, int vf, u32 port, u64 guid,
2547 		   int type)
2548 {
2549 	if (!device->ops.set_vf_guid)
2550 		return -EOPNOTSUPP;
2551 
2552 	return device->ops.set_vf_guid(device, vf, port, guid, type);
2553 }
2554 EXPORT_SYMBOL(ib_set_vf_guid);
2555 
2556 int ib_get_vf_guid(struct ib_device *device, int vf, u32 port,
2557 		   struct ifla_vf_guid *node_guid,
2558 		   struct ifla_vf_guid *port_guid)
2559 {
2560 	if (!device->ops.get_vf_guid)
2561 		return -EOPNOTSUPP;
2562 
2563 	return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2564 }
2565 EXPORT_SYMBOL(ib_get_vf_guid);
2566 /**
2567  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2568  *     information) and set an appropriate memory region for registration.
2569  * @mr:             memory region
2570  * @data_sg:        dma mapped scatterlist for data
2571  * @data_sg_nents:  number of entries in data_sg
2572  * @data_sg_offset: offset in bytes into data_sg
2573  * @meta_sg:        dma mapped scatterlist for metadata
2574  * @meta_sg_nents:  number of entries in meta_sg
2575  * @meta_sg_offset: offset in bytes into meta_sg
2576  * @page_size:      page vector desired page size
2577  *
2578  * Constraints:
2579  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2580  *
2581  * Return: 0 on success.
2582  *
2583  * After this completes successfully, the  memory region
2584  * is ready for registration.
2585  */
2586 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2587 		    int data_sg_nents, unsigned int *data_sg_offset,
2588 		    struct scatterlist *meta_sg, int meta_sg_nents,
2589 		    unsigned int *meta_sg_offset, unsigned int page_size)
2590 {
2591 	if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2592 		     WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2593 		return -EOPNOTSUPP;
2594 
2595 	mr->page_size = page_size;
2596 
2597 	return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2598 					    data_sg_offset, meta_sg,
2599 					    meta_sg_nents, meta_sg_offset);
2600 }
2601 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2602 
2603 /**
2604  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2605  *     and set it the memory region.
2606  * @mr:            memory region
2607  * @sg:            dma mapped scatterlist
2608  * @sg_nents:      number of entries in sg
2609  * @sg_offset:     offset in bytes into sg
2610  * @page_size:     page vector desired page size
2611  *
2612  * Constraints:
2613  *
2614  * - The first sg element is allowed to have an offset.
2615  * - Each sg element must either be aligned to page_size or virtually
2616  *   contiguous to the previous element. In case an sg element has a
2617  *   non-contiguous offset, the mapping prefix will not include it.
2618  * - The last sg element is allowed to have length less than page_size.
2619  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2620  *   then only max_num_sg entries will be mapped.
2621  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2622  *   constraints holds and the page_size argument is ignored.
2623  *
2624  * Returns the number of sg elements that were mapped to the memory region.
2625  *
2626  * After this completes successfully, the  memory region
2627  * is ready for registration.
2628  */
2629 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2630 		 unsigned int *sg_offset, unsigned int page_size)
2631 {
2632 	if (unlikely(!mr->device->ops.map_mr_sg))
2633 		return -EOPNOTSUPP;
2634 
2635 	mr->page_size = page_size;
2636 
2637 	return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2638 }
2639 EXPORT_SYMBOL(ib_map_mr_sg);
2640 
2641 /**
2642  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2643  *     to a page vector
2644  * @mr:            memory region
2645  * @sgl:           dma mapped scatterlist
2646  * @sg_nents:      number of entries in sg
2647  * @sg_offset_p:   ==== =======================================================
2648  *                 IN   start offset in bytes into sg
2649  *                 OUT  offset in bytes for element n of the sg of the first
2650  *                      byte that has not been processed where n is the return
2651  *                      value of this function.
2652  *                 ==== =======================================================
2653  * @set_page:      driver page assignment function pointer
2654  *
2655  * Core service helper for drivers to convert the largest
2656  * prefix of given sg list to a page vector. The sg list
2657  * prefix converted is the prefix that meet the requirements
2658  * of ib_map_mr_sg.
2659  *
2660  * Returns the number of sg elements that were assigned to
2661  * a page vector.
2662  */
2663 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2664 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2665 {
2666 	struct scatterlist *sg;
2667 	u64 last_end_dma_addr = 0;
2668 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2669 	unsigned int last_page_off = 0;
2670 	u64 page_mask = ~((u64)mr->page_size - 1);
2671 	int i, ret;
2672 
2673 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2674 		return -EINVAL;
2675 
2676 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2677 	mr->length = 0;
2678 
2679 	for_each_sg(sgl, sg, sg_nents, i) {
2680 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
2681 		u64 prev_addr = dma_addr;
2682 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2683 		u64 end_dma_addr = dma_addr + dma_len;
2684 		u64 page_addr = dma_addr & page_mask;
2685 
2686 		/*
2687 		 * For the second and later elements, check whether either the
2688 		 * end of element i-1 or the start of element i is not aligned
2689 		 * on a page boundary.
2690 		 */
2691 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2692 			/* Stop mapping if there is a gap. */
2693 			if (last_end_dma_addr != dma_addr)
2694 				break;
2695 
2696 			/*
2697 			 * Coalesce this element with the last. If it is small
2698 			 * enough just update mr->length. Otherwise start
2699 			 * mapping from the next page.
2700 			 */
2701 			goto next_page;
2702 		}
2703 
2704 		do {
2705 			ret = set_page(mr, page_addr);
2706 			if (unlikely(ret < 0)) {
2707 				sg_offset = prev_addr - sg_dma_address(sg);
2708 				mr->length += prev_addr - dma_addr;
2709 				if (sg_offset_p)
2710 					*sg_offset_p = sg_offset;
2711 				return i || sg_offset ? i : ret;
2712 			}
2713 			prev_addr = page_addr;
2714 next_page:
2715 			page_addr += mr->page_size;
2716 		} while (page_addr < end_dma_addr);
2717 
2718 		mr->length += dma_len;
2719 		last_end_dma_addr = end_dma_addr;
2720 		last_page_off = end_dma_addr & ~page_mask;
2721 
2722 		sg_offset = 0;
2723 	}
2724 
2725 	if (sg_offset_p)
2726 		*sg_offset_p = 0;
2727 	return i;
2728 }
2729 EXPORT_SYMBOL(ib_sg_to_pages);
2730 
2731 struct ib_drain_cqe {
2732 	struct ib_cqe cqe;
2733 	struct completion done;
2734 };
2735 
2736 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2737 {
2738 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2739 						cqe);
2740 
2741 	complete(&cqe->done);
2742 }
2743 
2744 /*
2745  * Post a WR and block until its completion is reaped for the SQ.
2746  */
2747 static void __ib_drain_sq(struct ib_qp *qp)
2748 {
2749 	struct ib_cq *cq = qp->send_cq;
2750 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2751 	struct ib_drain_cqe sdrain;
2752 	struct ib_rdma_wr swr = {
2753 		.wr = {
2754 			.next = NULL,
2755 			{ .wr_cqe	= &sdrain.cqe, },
2756 			.opcode	= IB_WR_RDMA_WRITE,
2757 		},
2758 	};
2759 	int ret;
2760 
2761 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2762 	if (ret) {
2763 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2764 		return;
2765 	}
2766 
2767 	sdrain.cqe.done = ib_drain_qp_done;
2768 	init_completion(&sdrain.done);
2769 
2770 	ret = ib_post_send(qp, &swr.wr, NULL);
2771 	if (ret) {
2772 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2773 		return;
2774 	}
2775 
2776 	if (cq->poll_ctx == IB_POLL_DIRECT)
2777 		while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2778 			ib_process_cq_direct(cq, -1);
2779 	else
2780 		wait_for_completion(&sdrain.done);
2781 }
2782 
2783 /*
2784  * Post a WR and block until its completion is reaped for the RQ.
2785  */
2786 static void __ib_drain_rq(struct ib_qp *qp)
2787 {
2788 	struct ib_cq *cq = qp->recv_cq;
2789 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2790 	struct ib_drain_cqe rdrain;
2791 	struct ib_recv_wr rwr = {};
2792 	int ret;
2793 
2794 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2795 	if (ret) {
2796 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2797 		return;
2798 	}
2799 
2800 	rwr.wr_cqe = &rdrain.cqe;
2801 	rdrain.cqe.done = ib_drain_qp_done;
2802 	init_completion(&rdrain.done);
2803 
2804 	ret = ib_post_recv(qp, &rwr, NULL);
2805 	if (ret) {
2806 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2807 		return;
2808 	}
2809 
2810 	if (cq->poll_ctx == IB_POLL_DIRECT)
2811 		while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2812 			ib_process_cq_direct(cq, -1);
2813 	else
2814 		wait_for_completion(&rdrain.done);
2815 }
2816 
2817 /**
2818  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2819  *		   application.
2820  * @qp:            queue pair to drain
2821  *
2822  * If the device has a provider-specific drain function, then
2823  * call that.  Otherwise call the generic drain function
2824  * __ib_drain_sq().
2825  *
2826  * The caller must:
2827  *
2828  * ensure there is room in the CQ and SQ for the drain work request and
2829  * completion.
2830  *
2831  * allocate the CQ using ib_alloc_cq().
2832  *
2833  * ensure that there are no other contexts that are posting WRs concurrently.
2834  * Otherwise the drain is not guaranteed.
2835  */
2836 void ib_drain_sq(struct ib_qp *qp)
2837 {
2838 	if (qp->device->ops.drain_sq)
2839 		qp->device->ops.drain_sq(qp);
2840 	else
2841 		__ib_drain_sq(qp);
2842 	trace_cq_drain_complete(qp->send_cq);
2843 }
2844 EXPORT_SYMBOL(ib_drain_sq);
2845 
2846 /**
2847  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2848  *		   application.
2849  * @qp:            queue pair to drain
2850  *
2851  * If the device has a provider-specific drain function, then
2852  * call that.  Otherwise call the generic drain function
2853  * __ib_drain_rq().
2854  *
2855  * The caller must:
2856  *
2857  * ensure there is room in the CQ and RQ for the drain work request and
2858  * completion.
2859  *
2860  * allocate the CQ using ib_alloc_cq().
2861  *
2862  * ensure that there are no other contexts that are posting WRs concurrently.
2863  * Otherwise the drain is not guaranteed.
2864  */
2865 void ib_drain_rq(struct ib_qp *qp)
2866 {
2867 	if (qp->device->ops.drain_rq)
2868 		qp->device->ops.drain_rq(qp);
2869 	else
2870 		__ib_drain_rq(qp);
2871 	trace_cq_drain_complete(qp->recv_cq);
2872 }
2873 EXPORT_SYMBOL(ib_drain_rq);
2874 
2875 /**
2876  * ib_drain_qp() - Block until all CQEs have been consumed by the
2877  *		   application on both the RQ and SQ.
2878  * @qp:            queue pair to drain
2879  *
2880  * The caller must:
2881  *
2882  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2883  * and completions.
2884  *
2885  * allocate the CQs using ib_alloc_cq().
2886  *
2887  * ensure that there are no other contexts that are posting WRs concurrently.
2888  * Otherwise the drain is not guaranteed.
2889  */
2890 void ib_drain_qp(struct ib_qp *qp)
2891 {
2892 	ib_drain_sq(qp);
2893 	if (!qp->srq)
2894 		ib_drain_rq(qp);
2895 }
2896 EXPORT_SYMBOL(ib_drain_qp);
2897 
2898 struct net_device *rdma_alloc_netdev(struct ib_device *device, u32 port_num,
2899 				     enum rdma_netdev_t type, const char *name,
2900 				     unsigned char name_assign_type,
2901 				     void (*setup)(struct net_device *))
2902 {
2903 	struct rdma_netdev_alloc_params params;
2904 	struct net_device *netdev;
2905 	int rc;
2906 
2907 	if (!device->ops.rdma_netdev_get_params)
2908 		return ERR_PTR(-EOPNOTSUPP);
2909 
2910 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2911 						&params);
2912 	if (rc)
2913 		return ERR_PTR(rc);
2914 
2915 	netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2916 				  setup, params.txqs, params.rxqs);
2917 	if (!netdev)
2918 		return ERR_PTR(-ENOMEM);
2919 
2920 	return netdev;
2921 }
2922 EXPORT_SYMBOL(rdma_alloc_netdev);
2923 
2924 int rdma_init_netdev(struct ib_device *device, u32 port_num,
2925 		     enum rdma_netdev_t type, const char *name,
2926 		     unsigned char name_assign_type,
2927 		     void (*setup)(struct net_device *),
2928 		     struct net_device *netdev)
2929 {
2930 	struct rdma_netdev_alloc_params params;
2931 	int rc;
2932 
2933 	if (!device->ops.rdma_netdev_get_params)
2934 		return -EOPNOTSUPP;
2935 
2936 	rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2937 						&params);
2938 	if (rc)
2939 		return rc;
2940 
2941 	return params.initialize_rdma_netdev(device, port_num,
2942 					     netdev, params.param);
2943 }
2944 EXPORT_SYMBOL(rdma_init_netdev);
2945 
2946 void __rdma_block_iter_start(struct ib_block_iter *biter,
2947 			     struct scatterlist *sglist, unsigned int nents,
2948 			     unsigned long pgsz)
2949 {
2950 	memset(biter, 0, sizeof(struct ib_block_iter));
2951 	biter->__sg = sglist;
2952 	biter->__sg_nents = nents;
2953 
2954 	/* Driver provides best block size to use */
2955 	biter->__pg_bit = __fls(pgsz);
2956 }
2957 EXPORT_SYMBOL(__rdma_block_iter_start);
2958 
2959 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2960 {
2961 	unsigned int block_offset;
2962 
2963 	if (!biter->__sg_nents || !biter->__sg)
2964 		return false;
2965 
2966 	biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2967 	block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2968 	biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2969 
2970 	if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2971 		biter->__sg_advance = 0;
2972 		biter->__sg = sg_next(biter->__sg);
2973 		biter->__sg_nents--;
2974 	}
2975 
2976 	return true;
2977 }
2978 EXPORT_SYMBOL(__rdma_block_iter_next);
2979