xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision a06c488d)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 
52 #include "core_priv.h"
53 
54 static const char * const ib_events[] = {
55 	[IB_EVENT_CQ_ERR]		= "CQ error",
56 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
57 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
58 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
59 	[IB_EVENT_COMM_EST]		= "communication established",
60 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
61 	[IB_EVENT_PATH_MIG]		= "path migration successful",
62 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
63 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
64 	[IB_EVENT_PORT_ACTIVE]		= "port active",
65 	[IB_EVENT_PORT_ERR]		= "port error",
66 	[IB_EVENT_LID_CHANGE]		= "LID change",
67 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
68 	[IB_EVENT_SM_CHANGE]		= "SM change",
69 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
70 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
71 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
72 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
73 	[IB_EVENT_GID_CHANGE]		= "GID changed",
74 };
75 
76 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
77 {
78 	size_t index = event;
79 
80 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
81 			ib_events[index] : "unrecognized event";
82 }
83 EXPORT_SYMBOL(ib_event_msg);
84 
85 static const char * const wc_statuses[] = {
86 	[IB_WC_SUCCESS]			= "success",
87 	[IB_WC_LOC_LEN_ERR]		= "local length error",
88 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
89 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
90 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
91 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
92 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
93 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
94 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
95 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
96 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
97 	[IB_WC_REM_OP_ERR]		= "remote operation error",
98 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
99 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
100 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
101 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
102 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
103 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
104 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
105 	[IB_WC_FATAL_ERR]		= "fatal error",
106 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
107 	[IB_WC_GENERAL_ERR]		= "general error",
108 };
109 
110 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
111 {
112 	size_t index = status;
113 
114 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
115 			wc_statuses[index] : "unrecognized status";
116 }
117 EXPORT_SYMBOL(ib_wc_status_msg);
118 
119 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
120 {
121 	switch (rate) {
122 	case IB_RATE_2_5_GBPS: return  1;
123 	case IB_RATE_5_GBPS:   return  2;
124 	case IB_RATE_10_GBPS:  return  4;
125 	case IB_RATE_20_GBPS:  return  8;
126 	case IB_RATE_30_GBPS:  return 12;
127 	case IB_RATE_40_GBPS:  return 16;
128 	case IB_RATE_60_GBPS:  return 24;
129 	case IB_RATE_80_GBPS:  return 32;
130 	case IB_RATE_120_GBPS: return 48;
131 	default:	       return -1;
132 	}
133 }
134 EXPORT_SYMBOL(ib_rate_to_mult);
135 
136 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
137 {
138 	switch (mult) {
139 	case 1:  return IB_RATE_2_5_GBPS;
140 	case 2:  return IB_RATE_5_GBPS;
141 	case 4:  return IB_RATE_10_GBPS;
142 	case 8:  return IB_RATE_20_GBPS;
143 	case 12: return IB_RATE_30_GBPS;
144 	case 16: return IB_RATE_40_GBPS;
145 	case 24: return IB_RATE_60_GBPS;
146 	case 32: return IB_RATE_80_GBPS;
147 	case 48: return IB_RATE_120_GBPS;
148 	default: return IB_RATE_PORT_CURRENT;
149 	}
150 }
151 EXPORT_SYMBOL(mult_to_ib_rate);
152 
153 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
154 {
155 	switch (rate) {
156 	case IB_RATE_2_5_GBPS: return 2500;
157 	case IB_RATE_5_GBPS:   return 5000;
158 	case IB_RATE_10_GBPS:  return 10000;
159 	case IB_RATE_20_GBPS:  return 20000;
160 	case IB_RATE_30_GBPS:  return 30000;
161 	case IB_RATE_40_GBPS:  return 40000;
162 	case IB_RATE_60_GBPS:  return 60000;
163 	case IB_RATE_80_GBPS:  return 80000;
164 	case IB_RATE_120_GBPS: return 120000;
165 	case IB_RATE_14_GBPS:  return 14062;
166 	case IB_RATE_56_GBPS:  return 56250;
167 	case IB_RATE_112_GBPS: return 112500;
168 	case IB_RATE_168_GBPS: return 168750;
169 	case IB_RATE_25_GBPS:  return 25781;
170 	case IB_RATE_100_GBPS: return 103125;
171 	case IB_RATE_200_GBPS: return 206250;
172 	case IB_RATE_300_GBPS: return 309375;
173 	default:	       return -1;
174 	}
175 }
176 EXPORT_SYMBOL(ib_rate_to_mbps);
177 
178 __attribute_const__ enum rdma_transport_type
179 rdma_node_get_transport(enum rdma_node_type node_type)
180 {
181 	switch (node_type) {
182 	case RDMA_NODE_IB_CA:
183 	case RDMA_NODE_IB_SWITCH:
184 	case RDMA_NODE_IB_ROUTER:
185 		return RDMA_TRANSPORT_IB;
186 	case RDMA_NODE_RNIC:
187 		return RDMA_TRANSPORT_IWARP;
188 	case RDMA_NODE_USNIC:
189 		return RDMA_TRANSPORT_USNIC;
190 	case RDMA_NODE_USNIC_UDP:
191 		return RDMA_TRANSPORT_USNIC_UDP;
192 	default:
193 		BUG();
194 		return 0;
195 	}
196 }
197 EXPORT_SYMBOL(rdma_node_get_transport);
198 
199 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
200 {
201 	if (device->get_link_layer)
202 		return device->get_link_layer(device, port_num);
203 
204 	switch (rdma_node_get_transport(device->node_type)) {
205 	case RDMA_TRANSPORT_IB:
206 		return IB_LINK_LAYER_INFINIBAND;
207 	case RDMA_TRANSPORT_IWARP:
208 	case RDMA_TRANSPORT_USNIC:
209 	case RDMA_TRANSPORT_USNIC_UDP:
210 		return IB_LINK_LAYER_ETHERNET;
211 	default:
212 		return IB_LINK_LAYER_UNSPECIFIED;
213 	}
214 }
215 EXPORT_SYMBOL(rdma_port_get_link_layer);
216 
217 /* Protection domains */
218 
219 /**
220  * ib_alloc_pd - Allocates an unused protection domain.
221  * @device: The device on which to allocate the protection domain.
222  *
223  * A protection domain object provides an association between QPs, shared
224  * receive queues, address handles, memory regions, and memory windows.
225  *
226  * Every PD has a local_dma_lkey which can be used as the lkey value for local
227  * memory operations.
228  */
229 struct ib_pd *ib_alloc_pd(struct ib_device *device)
230 {
231 	struct ib_pd *pd;
232 
233 	pd = device->alloc_pd(device, NULL, NULL);
234 	if (IS_ERR(pd))
235 		return pd;
236 
237 	pd->device = device;
238 	pd->uobject = NULL;
239 	pd->local_mr = NULL;
240 	atomic_set(&pd->usecnt, 0);
241 
242 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
243 		pd->local_dma_lkey = device->local_dma_lkey;
244 	else {
245 		struct ib_mr *mr;
246 
247 		mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE);
248 		if (IS_ERR(mr)) {
249 			ib_dealloc_pd(pd);
250 			return (struct ib_pd *)mr;
251 		}
252 
253 		pd->local_mr = mr;
254 		pd->local_dma_lkey = pd->local_mr->lkey;
255 	}
256 	return pd;
257 }
258 EXPORT_SYMBOL(ib_alloc_pd);
259 
260 /**
261  * ib_dealloc_pd - Deallocates a protection domain.
262  * @pd: The protection domain to deallocate.
263  *
264  * It is an error to call this function while any resources in the pd still
265  * exist.  The caller is responsible to synchronously destroy them and
266  * guarantee no new allocations will happen.
267  */
268 void ib_dealloc_pd(struct ib_pd *pd)
269 {
270 	int ret;
271 
272 	if (pd->local_mr) {
273 		ret = ib_dereg_mr(pd->local_mr);
274 		WARN_ON(ret);
275 		pd->local_mr = NULL;
276 	}
277 
278 	/* uverbs manipulates usecnt with proper locking, while the kabi
279 	   requires the caller to guarantee we can't race here. */
280 	WARN_ON(atomic_read(&pd->usecnt));
281 
282 	/* Making delalloc_pd a void return is a WIP, no driver should return
283 	   an error here. */
284 	ret = pd->device->dealloc_pd(pd);
285 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
286 }
287 EXPORT_SYMBOL(ib_dealloc_pd);
288 
289 /* Address handles */
290 
291 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
292 {
293 	struct ib_ah *ah;
294 
295 	ah = pd->device->create_ah(pd, ah_attr);
296 
297 	if (!IS_ERR(ah)) {
298 		ah->device  = pd->device;
299 		ah->pd      = pd;
300 		ah->uobject = NULL;
301 		atomic_inc(&pd->usecnt);
302 	}
303 
304 	return ah;
305 }
306 EXPORT_SYMBOL(ib_create_ah);
307 
308 static int ib_get_header_version(const union rdma_network_hdr *hdr)
309 {
310 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
311 	struct iphdr ip4h_checked;
312 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
313 
314 	/* If it's IPv6, the version must be 6, otherwise, the first
315 	 * 20 bytes (before the IPv4 header) are garbled.
316 	 */
317 	if (ip6h->version != 6)
318 		return (ip4h->version == 4) ? 4 : 0;
319 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
320 
321 	/* RoCE v2 requires no options, thus header length
322 	 * must be 5 words
323 	 */
324 	if (ip4h->ihl != 5)
325 		return 6;
326 
327 	/* Verify checksum.
328 	 * We can't write on scattered buffers so we need to copy to
329 	 * temp buffer.
330 	 */
331 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
332 	ip4h_checked.check = 0;
333 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
334 	/* if IPv4 header checksum is OK, believe it */
335 	if (ip4h->check == ip4h_checked.check)
336 		return 4;
337 	return 6;
338 }
339 
340 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
341 						     u8 port_num,
342 						     const struct ib_grh *grh)
343 {
344 	int grh_version;
345 
346 	if (rdma_protocol_ib(device, port_num))
347 		return RDMA_NETWORK_IB;
348 
349 	grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
350 
351 	if (grh_version == 4)
352 		return RDMA_NETWORK_IPV4;
353 
354 	if (grh->next_hdr == IPPROTO_UDP)
355 		return RDMA_NETWORK_IPV6;
356 
357 	return RDMA_NETWORK_ROCE_V1;
358 }
359 
360 struct find_gid_index_context {
361 	u16 vlan_id;
362 	enum ib_gid_type gid_type;
363 };
364 
365 static bool find_gid_index(const union ib_gid *gid,
366 			   const struct ib_gid_attr *gid_attr,
367 			   void *context)
368 {
369 	struct find_gid_index_context *ctx =
370 		(struct find_gid_index_context *)context;
371 
372 	if (ctx->gid_type != gid_attr->gid_type)
373 		return false;
374 
375 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
376 	    (is_vlan_dev(gid_attr->ndev) &&
377 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
378 		return false;
379 
380 	return true;
381 }
382 
383 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
384 				   u16 vlan_id, const union ib_gid *sgid,
385 				   enum ib_gid_type gid_type,
386 				   u16 *gid_index)
387 {
388 	struct find_gid_index_context context = {.vlan_id = vlan_id,
389 						 .gid_type = gid_type};
390 
391 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
392 				     &context, gid_index);
393 }
394 
395 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
396 				  enum rdma_network_type net_type,
397 				  union ib_gid *sgid, union ib_gid *dgid)
398 {
399 	struct sockaddr_in  src_in;
400 	struct sockaddr_in  dst_in;
401 	__be32 src_saddr, dst_saddr;
402 
403 	if (!sgid || !dgid)
404 		return -EINVAL;
405 
406 	if (net_type == RDMA_NETWORK_IPV4) {
407 		memcpy(&src_in.sin_addr.s_addr,
408 		       &hdr->roce4grh.saddr, 4);
409 		memcpy(&dst_in.sin_addr.s_addr,
410 		       &hdr->roce4grh.daddr, 4);
411 		src_saddr = src_in.sin_addr.s_addr;
412 		dst_saddr = dst_in.sin_addr.s_addr;
413 		ipv6_addr_set_v4mapped(src_saddr,
414 				       (struct in6_addr *)sgid);
415 		ipv6_addr_set_v4mapped(dst_saddr,
416 				       (struct in6_addr *)dgid);
417 		return 0;
418 	} else if (net_type == RDMA_NETWORK_IPV6 ||
419 		   net_type == RDMA_NETWORK_IB) {
420 		*dgid = hdr->ibgrh.dgid;
421 		*sgid = hdr->ibgrh.sgid;
422 		return 0;
423 	} else {
424 		return -EINVAL;
425 	}
426 }
427 
428 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
429 		       const struct ib_wc *wc, const struct ib_grh *grh,
430 		       struct ib_ah_attr *ah_attr)
431 {
432 	u32 flow_class;
433 	u16 gid_index;
434 	int ret;
435 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
436 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
437 	int hoplimit = 0xff;
438 	union ib_gid dgid;
439 	union ib_gid sgid;
440 
441 	memset(ah_attr, 0, sizeof *ah_attr);
442 	if (rdma_cap_eth_ah(device, port_num)) {
443 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
444 			net_type = wc->network_hdr_type;
445 		else
446 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
447 		gid_type = ib_network_to_gid_type(net_type);
448 	}
449 	ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
450 				     &sgid, &dgid);
451 	if (ret)
452 		return ret;
453 
454 	if (rdma_protocol_roce(device, port_num)) {
455 		int if_index = 0;
456 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
457 				wc->vlan_id : 0xffff;
458 		struct net_device *idev;
459 		struct net_device *resolved_dev;
460 
461 		if (!(wc->wc_flags & IB_WC_GRH))
462 			return -EPROTOTYPE;
463 
464 		if (!device->get_netdev)
465 			return -EOPNOTSUPP;
466 
467 		idev = device->get_netdev(device, port_num);
468 		if (!idev)
469 			return -ENODEV;
470 
471 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
472 						   ah_attr->dmac,
473 						   wc->wc_flags & IB_WC_WITH_VLAN ?
474 						   NULL : &vlan_id,
475 						   &if_index, &hoplimit);
476 		if (ret) {
477 			dev_put(idev);
478 			return ret;
479 		}
480 
481 		resolved_dev = dev_get_by_index(&init_net, if_index);
482 		if (resolved_dev->flags & IFF_LOOPBACK) {
483 			dev_put(resolved_dev);
484 			resolved_dev = idev;
485 			dev_hold(resolved_dev);
486 		}
487 		rcu_read_lock();
488 		if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
489 								   resolved_dev))
490 			ret = -EHOSTUNREACH;
491 		rcu_read_unlock();
492 		dev_put(idev);
493 		dev_put(resolved_dev);
494 		if (ret)
495 			return ret;
496 
497 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
498 					      &dgid, gid_type, &gid_index);
499 		if (ret)
500 			return ret;
501 	}
502 
503 	ah_attr->dlid = wc->slid;
504 	ah_attr->sl = wc->sl;
505 	ah_attr->src_path_bits = wc->dlid_path_bits;
506 	ah_attr->port_num = port_num;
507 
508 	if (wc->wc_flags & IB_WC_GRH) {
509 		ah_attr->ah_flags = IB_AH_GRH;
510 		ah_attr->grh.dgid = sgid;
511 
512 		if (!rdma_cap_eth_ah(device, port_num)) {
513 			ret = ib_find_cached_gid_by_port(device, &dgid,
514 							 IB_GID_TYPE_IB,
515 							 port_num, NULL,
516 							 &gid_index);
517 			if (ret)
518 				return ret;
519 		}
520 
521 		ah_attr->grh.sgid_index = (u8) gid_index;
522 		flow_class = be32_to_cpu(grh->version_tclass_flow);
523 		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
524 		ah_attr->grh.hop_limit = hoplimit;
525 		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
526 	}
527 	return 0;
528 }
529 EXPORT_SYMBOL(ib_init_ah_from_wc);
530 
531 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
532 				   const struct ib_grh *grh, u8 port_num)
533 {
534 	struct ib_ah_attr ah_attr;
535 	int ret;
536 
537 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
538 	if (ret)
539 		return ERR_PTR(ret);
540 
541 	return ib_create_ah(pd, &ah_attr);
542 }
543 EXPORT_SYMBOL(ib_create_ah_from_wc);
544 
545 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
546 {
547 	return ah->device->modify_ah ?
548 		ah->device->modify_ah(ah, ah_attr) :
549 		-ENOSYS;
550 }
551 EXPORT_SYMBOL(ib_modify_ah);
552 
553 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
554 {
555 	return ah->device->query_ah ?
556 		ah->device->query_ah(ah, ah_attr) :
557 		-ENOSYS;
558 }
559 EXPORT_SYMBOL(ib_query_ah);
560 
561 int ib_destroy_ah(struct ib_ah *ah)
562 {
563 	struct ib_pd *pd;
564 	int ret;
565 
566 	pd = ah->pd;
567 	ret = ah->device->destroy_ah(ah);
568 	if (!ret)
569 		atomic_dec(&pd->usecnt);
570 
571 	return ret;
572 }
573 EXPORT_SYMBOL(ib_destroy_ah);
574 
575 /* Shared receive queues */
576 
577 struct ib_srq *ib_create_srq(struct ib_pd *pd,
578 			     struct ib_srq_init_attr *srq_init_attr)
579 {
580 	struct ib_srq *srq;
581 
582 	if (!pd->device->create_srq)
583 		return ERR_PTR(-ENOSYS);
584 
585 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
586 
587 	if (!IS_ERR(srq)) {
588 		srq->device    	   = pd->device;
589 		srq->pd        	   = pd;
590 		srq->uobject       = NULL;
591 		srq->event_handler = srq_init_attr->event_handler;
592 		srq->srq_context   = srq_init_attr->srq_context;
593 		srq->srq_type      = srq_init_attr->srq_type;
594 		if (srq->srq_type == IB_SRQT_XRC) {
595 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
596 			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
597 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
598 			atomic_inc(&srq->ext.xrc.cq->usecnt);
599 		}
600 		atomic_inc(&pd->usecnt);
601 		atomic_set(&srq->usecnt, 0);
602 	}
603 
604 	return srq;
605 }
606 EXPORT_SYMBOL(ib_create_srq);
607 
608 int ib_modify_srq(struct ib_srq *srq,
609 		  struct ib_srq_attr *srq_attr,
610 		  enum ib_srq_attr_mask srq_attr_mask)
611 {
612 	return srq->device->modify_srq ?
613 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
614 		-ENOSYS;
615 }
616 EXPORT_SYMBOL(ib_modify_srq);
617 
618 int ib_query_srq(struct ib_srq *srq,
619 		 struct ib_srq_attr *srq_attr)
620 {
621 	return srq->device->query_srq ?
622 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
623 }
624 EXPORT_SYMBOL(ib_query_srq);
625 
626 int ib_destroy_srq(struct ib_srq *srq)
627 {
628 	struct ib_pd *pd;
629 	enum ib_srq_type srq_type;
630 	struct ib_xrcd *uninitialized_var(xrcd);
631 	struct ib_cq *uninitialized_var(cq);
632 	int ret;
633 
634 	if (atomic_read(&srq->usecnt))
635 		return -EBUSY;
636 
637 	pd = srq->pd;
638 	srq_type = srq->srq_type;
639 	if (srq_type == IB_SRQT_XRC) {
640 		xrcd = srq->ext.xrc.xrcd;
641 		cq = srq->ext.xrc.cq;
642 	}
643 
644 	ret = srq->device->destroy_srq(srq);
645 	if (!ret) {
646 		atomic_dec(&pd->usecnt);
647 		if (srq_type == IB_SRQT_XRC) {
648 			atomic_dec(&xrcd->usecnt);
649 			atomic_dec(&cq->usecnt);
650 		}
651 	}
652 
653 	return ret;
654 }
655 EXPORT_SYMBOL(ib_destroy_srq);
656 
657 /* Queue pairs */
658 
659 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
660 {
661 	struct ib_qp *qp = context;
662 	unsigned long flags;
663 
664 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
665 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
666 		if (event->element.qp->event_handler)
667 			event->element.qp->event_handler(event, event->element.qp->qp_context);
668 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
669 }
670 
671 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
672 {
673 	mutex_lock(&xrcd->tgt_qp_mutex);
674 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
675 	mutex_unlock(&xrcd->tgt_qp_mutex);
676 }
677 
678 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
679 				  void (*event_handler)(struct ib_event *, void *),
680 				  void *qp_context)
681 {
682 	struct ib_qp *qp;
683 	unsigned long flags;
684 
685 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
686 	if (!qp)
687 		return ERR_PTR(-ENOMEM);
688 
689 	qp->real_qp = real_qp;
690 	atomic_inc(&real_qp->usecnt);
691 	qp->device = real_qp->device;
692 	qp->event_handler = event_handler;
693 	qp->qp_context = qp_context;
694 	qp->qp_num = real_qp->qp_num;
695 	qp->qp_type = real_qp->qp_type;
696 
697 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
698 	list_add(&qp->open_list, &real_qp->open_list);
699 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
700 
701 	return qp;
702 }
703 
704 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
705 			 struct ib_qp_open_attr *qp_open_attr)
706 {
707 	struct ib_qp *qp, *real_qp;
708 
709 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
710 		return ERR_PTR(-EINVAL);
711 
712 	qp = ERR_PTR(-EINVAL);
713 	mutex_lock(&xrcd->tgt_qp_mutex);
714 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
715 		if (real_qp->qp_num == qp_open_attr->qp_num) {
716 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
717 					  qp_open_attr->qp_context);
718 			break;
719 		}
720 	}
721 	mutex_unlock(&xrcd->tgt_qp_mutex);
722 	return qp;
723 }
724 EXPORT_SYMBOL(ib_open_qp);
725 
726 struct ib_qp *ib_create_qp(struct ib_pd *pd,
727 			   struct ib_qp_init_attr *qp_init_attr)
728 {
729 	struct ib_qp *qp, *real_qp;
730 	struct ib_device *device;
731 
732 	device = pd ? pd->device : qp_init_attr->xrcd->device;
733 	qp = device->create_qp(pd, qp_init_attr, NULL);
734 
735 	if (!IS_ERR(qp)) {
736 		qp->device     = device;
737 		qp->real_qp    = qp;
738 		qp->uobject    = NULL;
739 		qp->qp_type    = qp_init_attr->qp_type;
740 
741 		atomic_set(&qp->usecnt, 0);
742 		if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
743 			qp->event_handler = __ib_shared_qp_event_handler;
744 			qp->qp_context = qp;
745 			qp->pd = NULL;
746 			qp->send_cq = qp->recv_cq = NULL;
747 			qp->srq = NULL;
748 			qp->xrcd = qp_init_attr->xrcd;
749 			atomic_inc(&qp_init_attr->xrcd->usecnt);
750 			INIT_LIST_HEAD(&qp->open_list);
751 
752 			real_qp = qp;
753 			qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
754 					  qp_init_attr->qp_context);
755 			if (!IS_ERR(qp))
756 				__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
757 			else
758 				real_qp->device->destroy_qp(real_qp);
759 		} else {
760 			qp->event_handler = qp_init_attr->event_handler;
761 			qp->qp_context = qp_init_attr->qp_context;
762 			if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
763 				qp->recv_cq = NULL;
764 				qp->srq = NULL;
765 			} else {
766 				qp->recv_cq = qp_init_attr->recv_cq;
767 				atomic_inc(&qp_init_attr->recv_cq->usecnt);
768 				qp->srq = qp_init_attr->srq;
769 				if (qp->srq)
770 					atomic_inc(&qp_init_attr->srq->usecnt);
771 			}
772 
773 			qp->pd	    = pd;
774 			qp->send_cq = qp_init_attr->send_cq;
775 			qp->xrcd    = NULL;
776 
777 			atomic_inc(&pd->usecnt);
778 			atomic_inc(&qp_init_attr->send_cq->usecnt);
779 		}
780 	}
781 
782 	return qp;
783 }
784 EXPORT_SYMBOL(ib_create_qp);
785 
786 static const struct {
787 	int			valid;
788 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
789 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
790 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
791 	[IB_QPS_RESET] = {
792 		[IB_QPS_RESET] = { .valid = 1 },
793 		[IB_QPS_INIT]  = {
794 			.valid = 1,
795 			.req_param = {
796 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
797 						IB_QP_PORT			|
798 						IB_QP_QKEY),
799 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
800 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
801 						IB_QP_PORT			|
802 						IB_QP_ACCESS_FLAGS),
803 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
804 						IB_QP_PORT			|
805 						IB_QP_ACCESS_FLAGS),
806 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
807 						IB_QP_PORT			|
808 						IB_QP_ACCESS_FLAGS),
809 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
810 						IB_QP_PORT			|
811 						IB_QP_ACCESS_FLAGS),
812 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
813 						IB_QP_QKEY),
814 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
815 						IB_QP_QKEY),
816 			}
817 		},
818 	},
819 	[IB_QPS_INIT]  = {
820 		[IB_QPS_RESET] = { .valid = 1 },
821 		[IB_QPS_ERR] =   { .valid = 1 },
822 		[IB_QPS_INIT]  = {
823 			.valid = 1,
824 			.opt_param = {
825 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
826 						IB_QP_PORT			|
827 						IB_QP_QKEY),
828 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
829 						IB_QP_PORT			|
830 						IB_QP_ACCESS_FLAGS),
831 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
832 						IB_QP_PORT			|
833 						IB_QP_ACCESS_FLAGS),
834 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
835 						IB_QP_PORT			|
836 						IB_QP_ACCESS_FLAGS),
837 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
838 						IB_QP_PORT			|
839 						IB_QP_ACCESS_FLAGS),
840 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
841 						IB_QP_QKEY),
842 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
843 						IB_QP_QKEY),
844 			}
845 		},
846 		[IB_QPS_RTR]   = {
847 			.valid = 1,
848 			.req_param = {
849 				[IB_QPT_UC]  = (IB_QP_AV			|
850 						IB_QP_PATH_MTU			|
851 						IB_QP_DEST_QPN			|
852 						IB_QP_RQ_PSN),
853 				[IB_QPT_RC]  = (IB_QP_AV			|
854 						IB_QP_PATH_MTU			|
855 						IB_QP_DEST_QPN			|
856 						IB_QP_RQ_PSN			|
857 						IB_QP_MAX_DEST_RD_ATOMIC	|
858 						IB_QP_MIN_RNR_TIMER),
859 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
860 						IB_QP_PATH_MTU			|
861 						IB_QP_DEST_QPN			|
862 						IB_QP_RQ_PSN),
863 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
864 						IB_QP_PATH_MTU			|
865 						IB_QP_DEST_QPN			|
866 						IB_QP_RQ_PSN			|
867 						IB_QP_MAX_DEST_RD_ATOMIC	|
868 						IB_QP_MIN_RNR_TIMER),
869 			},
870 			.opt_param = {
871 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
872 						 IB_QP_QKEY),
873 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
874 						 IB_QP_ACCESS_FLAGS		|
875 						 IB_QP_PKEY_INDEX),
876 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
877 						 IB_QP_ACCESS_FLAGS		|
878 						 IB_QP_PKEY_INDEX),
879 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
880 						 IB_QP_ACCESS_FLAGS		|
881 						 IB_QP_PKEY_INDEX),
882 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
883 						 IB_QP_ACCESS_FLAGS		|
884 						 IB_QP_PKEY_INDEX),
885 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
886 						 IB_QP_QKEY),
887 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
888 						 IB_QP_QKEY),
889 			 },
890 		},
891 	},
892 	[IB_QPS_RTR]   = {
893 		[IB_QPS_RESET] = { .valid = 1 },
894 		[IB_QPS_ERR] =   { .valid = 1 },
895 		[IB_QPS_RTS]   = {
896 			.valid = 1,
897 			.req_param = {
898 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
899 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
900 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
901 						IB_QP_RETRY_CNT			|
902 						IB_QP_RNR_RETRY			|
903 						IB_QP_SQ_PSN			|
904 						IB_QP_MAX_QP_RD_ATOMIC),
905 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
906 						IB_QP_RETRY_CNT			|
907 						IB_QP_RNR_RETRY			|
908 						IB_QP_SQ_PSN			|
909 						IB_QP_MAX_QP_RD_ATOMIC),
910 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
911 						IB_QP_SQ_PSN),
912 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
913 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
914 			},
915 			.opt_param = {
916 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
917 						 IB_QP_QKEY),
918 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
919 						 IB_QP_ALT_PATH			|
920 						 IB_QP_ACCESS_FLAGS		|
921 						 IB_QP_PATH_MIG_STATE),
922 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
923 						 IB_QP_ALT_PATH			|
924 						 IB_QP_ACCESS_FLAGS		|
925 						 IB_QP_MIN_RNR_TIMER		|
926 						 IB_QP_PATH_MIG_STATE),
927 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
928 						 IB_QP_ALT_PATH			|
929 						 IB_QP_ACCESS_FLAGS		|
930 						 IB_QP_PATH_MIG_STATE),
931 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
932 						 IB_QP_ALT_PATH			|
933 						 IB_QP_ACCESS_FLAGS		|
934 						 IB_QP_MIN_RNR_TIMER		|
935 						 IB_QP_PATH_MIG_STATE),
936 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
937 						 IB_QP_QKEY),
938 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
939 						 IB_QP_QKEY),
940 			 }
941 		}
942 	},
943 	[IB_QPS_RTS]   = {
944 		[IB_QPS_RESET] = { .valid = 1 },
945 		[IB_QPS_ERR] =   { .valid = 1 },
946 		[IB_QPS_RTS]   = {
947 			.valid = 1,
948 			.opt_param = {
949 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
950 						IB_QP_QKEY),
951 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
952 						IB_QP_ACCESS_FLAGS		|
953 						IB_QP_ALT_PATH			|
954 						IB_QP_PATH_MIG_STATE),
955 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
956 						IB_QP_ACCESS_FLAGS		|
957 						IB_QP_ALT_PATH			|
958 						IB_QP_PATH_MIG_STATE		|
959 						IB_QP_MIN_RNR_TIMER),
960 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
961 						IB_QP_ACCESS_FLAGS		|
962 						IB_QP_ALT_PATH			|
963 						IB_QP_PATH_MIG_STATE),
964 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
965 						IB_QP_ACCESS_FLAGS		|
966 						IB_QP_ALT_PATH			|
967 						IB_QP_PATH_MIG_STATE		|
968 						IB_QP_MIN_RNR_TIMER),
969 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
970 						IB_QP_QKEY),
971 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
972 						IB_QP_QKEY),
973 			}
974 		},
975 		[IB_QPS_SQD]   = {
976 			.valid = 1,
977 			.opt_param = {
978 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
979 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
980 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
981 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
982 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
983 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
984 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
985 			}
986 		},
987 	},
988 	[IB_QPS_SQD]   = {
989 		[IB_QPS_RESET] = { .valid = 1 },
990 		[IB_QPS_ERR] =   { .valid = 1 },
991 		[IB_QPS_RTS]   = {
992 			.valid = 1,
993 			.opt_param = {
994 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
995 						IB_QP_QKEY),
996 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
997 						IB_QP_ALT_PATH			|
998 						IB_QP_ACCESS_FLAGS		|
999 						IB_QP_PATH_MIG_STATE),
1000 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1001 						IB_QP_ALT_PATH			|
1002 						IB_QP_ACCESS_FLAGS		|
1003 						IB_QP_MIN_RNR_TIMER		|
1004 						IB_QP_PATH_MIG_STATE),
1005 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1006 						IB_QP_ALT_PATH			|
1007 						IB_QP_ACCESS_FLAGS		|
1008 						IB_QP_PATH_MIG_STATE),
1009 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1010 						IB_QP_ALT_PATH			|
1011 						IB_QP_ACCESS_FLAGS		|
1012 						IB_QP_MIN_RNR_TIMER		|
1013 						IB_QP_PATH_MIG_STATE),
1014 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1015 						IB_QP_QKEY),
1016 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1017 						IB_QP_QKEY),
1018 			}
1019 		},
1020 		[IB_QPS_SQD]   = {
1021 			.valid = 1,
1022 			.opt_param = {
1023 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1024 						IB_QP_QKEY),
1025 				[IB_QPT_UC]  = (IB_QP_AV			|
1026 						IB_QP_ALT_PATH			|
1027 						IB_QP_ACCESS_FLAGS		|
1028 						IB_QP_PKEY_INDEX		|
1029 						IB_QP_PATH_MIG_STATE),
1030 				[IB_QPT_RC]  = (IB_QP_PORT			|
1031 						IB_QP_AV			|
1032 						IB_QP_TIMEOUT			|
1033 						IB_QP_RETRY_CNT			|
1034 						IB_QP_RNR_RETRY			|
1035 						IB_QP_MAX_QP_RD_ATOMIC		|
1036 						IB_QP_MAX_DEST_RD_ATOMIC	|
1037 						IB_QP_ALT_PATH			|
1038 						IB_QP_ACCESS_FLAGS		|
1039 						IB_QP_PKEY_INDEX		|
1040 						IB_QP_MIN_RNR_TIMER		|
1041 						IB_QP_PATH_MIG_STATE),
1042 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1043 						IB_QP_AV			|
1044 						IB_QP_TIMEOUT			|
1045 						IB_QP_RETRY_CNT			|
1046 						IB_QP_RNR_RETRY			|
1047 						IB_QP_MAX_QP_RD_ATOMIC		|
1048 						IB_QP_ALT_PATH			|
1049 						IB_QP_ACCESS_FLAGS		|
1050 						IB_QP_PKEY_INDEX		|
1051 						IB_QP_PATH_MIG_STATE),
1052 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1053 						IB_QP_AV			|
1054 						IB_QP_TIMEOUT			|
1055 						IB_QP_MAX_DEST_RD_ATOMIC	|
1056 						IB_QP_ALT_PATH			|
1057 						IB_QP_ACCESS_FLAGS		|
1058 						IB_QP_PKEY_INDEX		|
1059 						IB_QP_MIN_RNR_TIMER		|
1060 						IB_QP_PATH_MIG_STATE),
1061 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1062 						IB_QP_QKEY),
1063 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1064 						IB_QP_QKEY),
1065 			}
1066 		}
1067 	},
1068 	[IB_QPS_SQE]   = {
1069 		[IB_QPS_RESET] = { .valid = 1 },
1070 		[IB_QPS_ERR] =   { .valid = 1 },
1071 		[IB_QPS_RTS]   = {
1072 			.valid = 1,
1073 			.opt_param = {
1074 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1075 						IB_QP_QKEY),
1076 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1077 						IB_QP_ACCESS_FLAGS),
1078 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1079 						IB_QP_QKEY),
1080 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1081 						IB_QP_QKEY),
1082 			}
1083 		}
1084 	},
1085 	[IB_QPS_ERR] = {
1086 		[IB_QPS_RESET] = { .valid = 1 },
1087 		[IB_QPS_ERR] =   { .valid = 1 }
1088 	}
1089 };
1090 
1091 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1092 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1093 		       enum rdma_link_layer ll)
1094 {
1095 	enum ib_qp_attr_mask req_param, opt_param;
1096 
1097 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1098 	    next_state < 0 || next_state > IB_QPS_ERR)
1099 		return 0;
1100 
1101 	if (mask & IB_QP_CUR_STATE  &&
1102 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1103 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1104 		return 0;
1105 
1106 	if (!qp_state_table[cur_state][next_state].valid)
1107 		return 0;
1108 
1109 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1110 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1111 
1112 	if ((mask & req_param) != req_param)
1113 		return 0;
1114 
1115 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1116 		return 0;
1117 
1118 	return 1;
1119 }
1120 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1121 
1122 int ib_resolve_eth_dmac(struct ib_qp *qp,
1123 			struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1124 {
1125 	int           ret = 0;
1126 
1127 	if (*qp_attr_mask & IB_QP_AV) {
1128 		if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1129 		    qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1130 			return -EINVAL;
1131 
1132 		if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1133 			return 0;
1134 
1135 		if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1136 			rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1137 					qp_attr->ah_attr.dmac);
1138 		} else {
1139 			union ib_gid		sgid;
1140 			struct ib_gid_attr	sgid_attr;
1141 			int			ifindex;
1142 			int			hop_limit;
1143 
1144 			ret = ib_query_gid(qp->device,
1145 					   qp_attr->ah_attr.port_num,
1146 					   qp_attr->ah_attr.grh.sgid_index,
1147 					   &sgid, &sgid_attr);
1148 
1149 			if (ret || !sgid_attr.ndev) {
1150 				if (!ret)
1151 					ret = -ENXIO;
1152 				goto out;
1153 			}
1154 
1155 			ifindex = sgid_attr.ndev->ifindex;
1156 
1157 			ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1158 							   &qp_attr->ah_attr.grh.dgid,
1159 							   qp_attr->ah_attr.dmac,
1160 							   NULL, &ifindex, &hop_limit);
1161 
1162 			dev_put(sgid_attr.ndev);
1163 
1164 			qp_attr->ah_attr.grh.hop_limit = hop_limit;
1165 		}
1166 	}
1167 out:
1168 	return ret;
1169 }
1170 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1171 
1172 
1173 int ib_modify_qp(struct ib_qp *qp,
1174 		 struct ib_qp_attr *qp_attr,
1175 		 int qp_attr_mask)
1176 {
1177 	int ret;
1178 
1179 	ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1180 	if (ret)
1181 		return ret;
1182 
1183 	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1184 }
1185 EXPORT_SYMBOL(ib_modify_qp);
1186 
1187 int ib_query_qp(struct ib_qp *qp,
1188 		struct ib_qp_attr *qp_attr,
1189 		int qp_attr_mask,
1190 		struct ib_qp_init_attr *qp_init_attr)
1191 {
1192 	return qp->device->query_qp ?
1193 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1194 		-ENOSYS;
1195 }
1196 EXPORT_SYMBOL(ib_query_qp);
1197 
1198 int ib_close_qp(struct ib_qp *qp)
1199 {
1200 	struct ib_qp *real_qp;
1201 	unsigned long flags;
1202 
1203 	real_qp = qp->real_qp;
1204 	if (real_qp == qp)
1205 		return -EINVAL;
1206 
1207 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1208 	list_del(&qp->open_list);
1209 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1210 
1211 	atomic_dec(&real_qp->usecnt);
1212 	kfree(qp);
1213 
1214 	return 0;
1215 }
1216 EXPORT_SYMBOL(ib_close_qp);
1217 
1218 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1219 {
1220 	struct ib_xrcd *xrcd;
1221 	struct ib_qp *real_qp;
1222 	int ret;
1223 
1224 	real_qp = qp->real_qp;
1225 	xrcd = real_qp->xrcd;
1226 
1227 	mutex_lock(&xrcd->tgt_qp_mutex);
1228 	ib_close_qp(qp);
1229 	if (atomic_read(&real_qp->usecnt) == 0)
1230 		list_del(&real_qp->xrcd_list);
1231 	else
1232 		real_qp = NULL;
1233 	mutex_unlock(&xrcd->tgt_qp_mutex);
1234 
1235 	if (real_qp) {
1236 		ret = ib_destroy_qp(real_qp);
1237 		if (!ret)
1238 			atomic_dec(&xrcd->usecnt);
1239 		else
1240 			__ib_insert_xrcd_qp(xrcd, real_qp);
1241 	}
1242 
1243 	return 0;
1244 }
1245 
1246 int ib_destroy_qp(struct ib_qp *qp)
1247 {
1248 	struct ib_pd *pd;
1249 	struct ib_cq *scq, *rcq;
1250 	struct ib_srq *srq;
1251 	int ret;
1252 
1253 	if (atomic_read(&qp->usecnt))
1254 		return -EBUSY;
1255 
1256 	if (qp->real_qp != qp)
1257 		return __ib_destroy_shared_qp(qp);
1258 
1259 	pd   = qp->pd;
1260 	scq  = qp->send_cq;
1261 	rcq  = qp->recv_cq;
1262 	srq  = qp->srq;
1263 
1264 	ret = qp->device->destroy_qp(qp);
1265 	if (!ret) {
1266 		if (pd)
1267 			atomic_dec(&pd->usecnt);
1268 		if (scq)
1269 			atomic_dec(&scq->usecnt);
1270 		if (rcq)
1271 			atomic_dec(&rcq->usecnt);
1272 		if (srq)
1273 			atomic_dec(&srq->usecnt);
1274 	}
1275 
1276 	return ret;
1277 }
1278 EXPORT_SYMBOL(ib_destroy_qp);
1279 
1280 /* Completion queues */
1281 
1282 struct ib_cq *ib_create_cq(struct ib_device *device,
1283 			   ib_comp_handler comp_handler,
1284 			   void (*event_handler)(struct ib_event *, void *),
1285 			   void *cq_context,
1286 			   const struct ib_cq_init_attr *cq_attr)
1287 {
1288 	struct ib_cq *cq;
1289 
1290 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1291 
1292 	if (!IS_ERR(cq)) {
1293 		cq->device        = device;
1294 		cq->uobject       = NULL;
1295 		cq->comp_handler  = comp_handler;
1296 		cq->event_handler = event_handler;
1297 		cq->cq_context    = cq_context;
1298 		atomic_set(&cq->usecnt, 0);
1299 	}
1300 
1301 	return cq;
1302 }
1303 EXPORT_SYMBOL(ib_create_cq);
1304 
1305 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1306 {
1307 	return cq->device->modify_cq ?
1308 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1309 }
1310 EXPORT_SYMBOL(ib_modify_cq);
1311 
1312 int ib_destroy_cq(struct ib_cq *cq)
1313 {
1314 	if (atomic_read(&cq->usecnt))
1315 		return -EBUSY;
1316 
1317 	return cq->device->destroy_cq(cq);
1318 }
1319 EXPORT_SYMBOL(ib_destroy_cq);
1320 
1321 int ib_resize_cq(struct ib_cq *cq, int cqe)
1322 {
1323 	return cq->device->resize_cq ?
1324 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1325 }
1326 EXPORT_SYMBOL(ib_resize_cq);
1327 
1328 /* Memory regions */
1329 
1330 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags)
1331 {
1332 	struct ib_mr *mr;
1333 	int err;
1334 
1335 	err = ib_check_mr_access(mr_access_flags);
1336 	if (err)
1337 		return ERR_PTR(err);
1338 
1339 	mr = pd->device->get_dma_mr(pd, mr_access_flags);
1340 
1341 	if (!IS_ERR(mr)) {
1342 		mr->device  = pd->device;
1343 		mr->pd      = pd;
1344 		mr->uobject = NULL;
1345 		atomic_inc(&pd->usecnt);
1346 	}
1347 
1348 	return mr;
1349 }
1350 EXPORT_SYMBOL(ib_get_dma_mr);
1351 
1352 int ib_dereg_mr(struct ib_mr *mr)
1353 {
1354 	struct ib_pd *pd = mr->pd;
1355 	int ret;
1356 
1357 	ret = mr->device->dereg_mr(mr);
1358 	if (!ret)
1359 		atomic_dec(&pd->usecnt);
1360 
1361 	return ret;
1362 }
1363 EXPORT_SYMBOL(ib_dereg_mr);
1364 
1365 /**
1366  * ib_alloc_mr() - Allocates a memory region
1367  * @pd:            protection domain associated with the region
1368  * @mr_type:       memory region type
1369  * @max_num_sg:    maximum sg entries available for registration.
1370  *
1371  * Notes:
1372  * Memory registeration page/sg lists must not exceed max_num_sg.
1373  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1374  * max_num_sg * used_page_size.
1375  *
1376  */
1377 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1378 			  enum ib_mr_type mr_type,
1379 			  u32 max_num_sg)
1380 {
1381 	struct ib_mr *mr;
1382 
1383 	if (!pd->device->alloc_mr)
1384 		return ERR_PTR(-ENOSYS);
1385 
1386 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1387 	if (!IS_ERR(mr)) {
1388 		mr->device  = pd->device;
1389 		mr->pd      = pd;
1390 		mr->uobject = NULL;
1391 		atomic_inc(&pd->usecnt);
1392 	}
1393 
1394 	return mr;
1395 }
1396 EXPORT_SYMBOL(ib_alloc_mr);
1397 
1398 /* "Fast" memory regions */
1399 
1400 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1401 			    int mr_access_flags,
1402 			    struct ib_fmr_attr *fmr_attr)
1403 {
1404 	struct ib_fmr *fmr;
1405 
1406 	if (!pd->device->alloc_fmr)
1407 		return ERR_PTR(-ENOSYS);
1408 
1409 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1410 	if (!IS_ERR(fmr)) {
1411 		fmr->device = pd->device;
1412 		fmr->pd     = pd;
1413 		atomic_inc(&pd->usecnt);
1414 	}
1415 
1416 	return fmr;
1417 }
1418 EXPORT_SYMBOL(ib_alloc_fmr);
1419 
1420 int ib_unmap_fmr(struct list_head *fmr_list)
1421 {
1422 	struct ib_fmr *fmr;
1423 
1424 	if (list_empty(fmr_list))
1425 		return 0;
1426 
1427 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1428 	return fmr->device->unmap_fmr(fmr_list);
1429 }
1430 EXPORT_SYMBOL(ib_unmap_fmr);
1431 
1432 int ib_dealloc_fmr(struct ib_fmr *fmr)
1433 {
1434 	struct ib_pd *pd;
1435 	int ret;
1436 
1437 	pd = fmr->pd;
1438 	ret = fmr->device->dealloc_fmr(fmr);
1439 	if (!ret)
1440 		atomic_dec(&pd->usecnt);
1441 
1442 	return ret;
1443 }
1444 EXPORT_SYMBOL(ib_dealloc_fmr);
1445 
1446 /* Multicast groups */
1447 
1448 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1449 {
1450 	int ret;
1451 
1452 	if (!qp->device->attach_mcast)
1453 		return -ENOSYS;
1454 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1455 		return -EINVAL;
1456 
1457 	ret = qp->device->attach_mcast(qp, gid, lid);
1458 	if (!ret)
1459 		atomic_inc(&qp->usecnt);
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(ib_attach_mcast);
1463 
1464 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1465 {
1466 	int ret;
1467 
1468 	if (!qp->device->detach_mcast)
1469 		return -ENOSYS;
1470 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1471 		return -EINVAL;
1472 
1473 	ret = qp->device->detach_mcast(qp, gid, lid);
1474 	if (!ret)
1475 		atomic_dec(&qp->usecnt);
1476 	return ret;
1477 }
1478 EXPORT_SYMBOL(ib_detach_mcast);
1479 
1480 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1481 {
1482 	struct ib_xrcd *xrcd;
1483 
1484 	if (!device->alloc_xrcd)
1485 		return ERR_PTR(-ENOSYS);
1486 
1487 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1488 	if (!IS_ERR(xrcd)) {
1489 		xrcd->device = device;
1490 		xrcd->inode = NULL;
1491 		atomic_set(&xrcd->usecnt, 0);
1492 		mutex_init(&xrcd->tgt_qp_mutex);
1493 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1494 	}
1495 
1496 	return xrcd;
1497 }
1498 EXPORT_SYMBOL(ib_alloc_xrcd);
1499 
1500 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1501 {
1502 	struct ib_qp *qp;
1503 	int ret;
1504 
1505 	if (atomic_read(&xrcd->usecnt))
1506 		return -EBUSY;
1507 
1508 	while (!list_empty(&xrcd->tgt_qp_list)) {
1509 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1510 		ret = ib_destroy_qp(qp);
1511 		if (ret)
1512 			return ret;
1513 	}
1514 
1515 	return xrcd->device->dealloc_xrcd(xrcd);
1516 }
1517 EXPORT_SYMBOL(ib_dealloc_xrcd);
1518 
1519 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1520 			       struct ib_flow_attr *flow_attr,
1521 			       int domain)
1522 {
1523 	struct ib_flow *flow_id;
1524 	if (!qp->device->create_flow)
1525 		return ERR_PTR(-ENOSYS);
1526 
1527 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1528 	if (!IS_ERR(flow_id))
1529 		atomic_inc(&qp->usecnt);
1530 	return flow_id;
1531 }
1532 EXPORT_SYMBOL(ib_create_flow);
1533 
1534 int ib_destroy_flow(struct ib_flow *flow_id)
1535 {
1536 	int err;
1537 	struct ib_qp *qp = flow_id->qp;
1538 
1539 	err = qp->device->destroy_flow(flow_id);
1540 	if (!err)
1541 		atomic_dec(&qp->usecnt);
1542 	return err;
1543 }
1544 EXPORT_SYMBOL(ib_destroy_flow);
1545 
1546 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1547 		       struct ib_mr_status *mr_status)
1548 {
1549 	return mr->device->check_mr_status ?
1550 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1551 }
1552 EXPORT_SYMBOL(ib_check_mr_status);
1553 
1554 /**
1555  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1556  *     and set it the memory region.
1557  * @mr:            memory region
1558  * @sg:            dma mapped scatterlist
1559  * @sg_nents:      number of entries in sg
1560  * @page_size:     page vector desired page size
1561  *
1562  * Constraints:
1563  * - The first sg element is allowed to have an offset.
1564  * - Each sg element must be aligned to page_size (or physically
1565  *   contiguous to the previous element). In case an sg element has a
1566  *   non contiguous offset, the mapping prefix will not include it.
1567  * - The last sg element is allowed to have length less than page_size.
1568  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1569  *   then only max_num_sg entries will be mapped.
1570  *
1571  * Returns the number of sg elements that were mapped to the memory region.
1572  *
1573  * After this completes successfully, the  memory region
1574  * is ready for registration.
1575  */
1576 int ib_map_mr_sg(struct ib_mr *mr,
1577 		 struct scatterlist *sg,
1578 		 int sg_nents,
1579 		 unsigned int page_size)
1580 {
1581 	if (unlikely(!mr->device->map_mr_sg))
1582 		return -ENOSYS;
1583 
1584 	mr->page_size = page_size;
1585 
1586 	return mr->device->map_mr_sg(mr, sg, sg_nents);
1587 }
1588 EXPORT_SYMBOL(ib_map_mr_sg);
1589 
1590 /**
1591  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1592  *     to a page vector
1593  * @mr:            memory region
1594  * @sgl:           dma mapped scatterlist
1595  * @sg_nents:      number of entries in sg
1596  * @set_page:      driver page assignment function pointer
1597  *
1598  * Core service helper for drivers to convert the largest
1599  * prefix of given sg list to a page vector. The sg list
1600  * prefix converted is the prefix that meet the requirements
1601  * of ib_map_mr_sg.
1602  *
1603  * Returns the number of sg elements that were assigned to
1604  * a page vector.
1605  */
1606 int ib_sg_to_pages(struct ib_mr *mr,
1607 		   struct scatterlist *sgl,
1608 		   int sg_nents,
1609 		   int (*set_page)(struct ib_mr *, u64))
1610 {
1611 	struct scatterlist *sg;
1612 	u64 last_end_dma_addr = 0;
1613 	unsigned int last_page_off = 0;
1614 	u64 page_mask = ~((u64)mr->page_size - 1);
1615 	int i, ret;
1616 
1617 	mr->iova = sg_dma_address(&sgl[0]);
1618 	mr->length = 0;
1619 
1620 	for_each_sg(sgl, sg, sg_nents, i) {
1621 		u64 dma_addr = sg_dma_address(sg);
1622 		unsigned int dma_len = sg_dma_len(sg);
1623 		u64 end_dma_addr = dma_addr + dma_len;
1624 		u64 page_addr = dma_addr & page_mask;
1625 
1626 		/*
1627 		 * For the second and later elements, check whether either the
1628 		 * end of element i-1 or the start of element i is not aligned
1629 		 * on a page boundary.
1630 		 */
1631 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1632 			/* Stop mapping if there is a gap. */
1633 			if (last_end_dma_addr != dma_addr)
1634 				break;
1635 
1636 			/*
1637 			 * Coalesce this element with the last. If it is small
1638 			 * enough just update mr->length. Otherwise start
1639 			 * mapping from the next page.
1640 			 */
1641 			goto next_page;
1642 		}
1643 
1644 		do {
1645 			ret = set_page(mr, page_addr);
1646 			if (unlikely(ret < 0))
1647 				return i ? : ret;
1648 next_page:
1649 			page_addr += mr->page_size;
1650 		} while (page_addr < end_dma_addr);
1651 
1652 		mr->length += dma_len;
1653 		last_end_dma_addr = end_dma_addr;
1654 		last_page_off = end_dma_addr & ~page_mask;
1655 	}
1656 
1657 	return i;
1658 }
1659 EXPORT_SYMBOL(ib_sg_to_pages);
1660