1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 48 #include <rdma/ib_verbs.h> 49 #include <rdma/ib_cache.h> 50 #include <rdma/ib_addr.h> 51 52 #include "core_priv.h" 53 54 static const char * const ib_events[] = { 55 [IB_EVENT_CQ_ERR] = "CQ error", 56 [IB_EVENT_QP_FATAL] = "QP fatal error", 57 [IB_EVENT_QP_REQ_ERR] = "QP request error", 58 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 59 [IB_EVENT_COMM_EST] = "communication established", 60 [IB_EVENT_SQ_DRAINED] = "send queue drained", 61 [IB_EVENT_PATH_MIG] = "path migration successful", 62 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 63 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 64 [IB_EVENT_PORT_ACTIVE] = "port active", 65 [IB_EVENT_PORT_ERR] = "port error", 66 [IB_EVENT_LID_CHANGE] = "LID change", 67 [IB_EVENT_PKEY_CHANGE] = "P_key change", 68 [IB_EVENT_SM_CHANGE] = "SM change", 69 [IB_EVENT_SRQ_ERR] = "SRQ error", 70 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 71 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 72 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 73 [IB_EVENT_GID_CHANGE] = "GID changed", 74 }; 75 76 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 77 { 78 size_t index = event; 79 80 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 81 ib_events[index] : "unrecognized event"; 82 } 83 EXPORT_SYMBOL(ib_event_msg); 84 85 static const char * const wc_statuses[] = { 86 [IB_WC_SUCCESS] = "success", 87 [IB_WC_LOC_LEN_ERR] = "local length error", 88 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 89 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 90 [IB_WC_LOC_PROT_ERR] = "local protection error", 91 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 92 [IB_WC_MW_BIND_ERR] = "memory management operation error", 93 [IB_WC_BAD_RESP_ERR] = "bad response error", 94 [IB_WC_LOC_ACCESS_ERR] = "local access error", 95 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 96 [IB_WC_REM_ACCESS_ERR] = "remote access error", 97 [IB_WC_REM_OP_ERR] = "remote operation error", 98 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 99 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 100 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 101 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 102 [IB_WC_REM_ABORT_ERR] = "operation aborted", 103 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 104 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 105 [IB_WC_FATAL_ERR] = "fatal error", 106 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 107 [IB_WC_GENERAL_ERR] = "general error", 108 }; 109 110 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 111 { 112 size_t index = status; 113 114 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 115 wc_statuses[index] : "unrecognized status"; 116 } 117 EXPORT_SYMBOL(ib_wc_status_msg); 118 119 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 120 { 121 switch (rate) { 122 case IB_RATE_2_5_GBPS: return 1; 123 case IB_RATE_5_GBPS: return 2; 124 case IB_RATE_10_GBPS: return 4; 125 case IB_RATE_20_GBPS: return 8; 126 case IB_RATE_30_GBPS: return 12; 127 case IB_RATE_40_GBPS: return 16; 128 case IB_RATE_60_GBPS: return 24; 129 case IB_RATE_80_GBPS: return 32; 130 case IB_RATE_120_GBPS: return 48; 131 default: return -1; 132 } 133 } 134 EXPORT_SYMBOL(ib_rate_to_mult); 135 136 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 137 { 138 switch (mult) { 139 case 1: return IB_RATE_2_5_GBPS; 140 case 2: return IB_RATE_5_GBPS; 141 case 4: return IB_RATE_10_GBPS; 142 case 8: return IB_RATE_20_GBPS; 143 case 12: return IB_RATE_30_GBPS; 144 case 16: return IB_RATE_40_GBPS; 145 case 24: return IB_RATE_60_GBPS; 146 case 32: return IB_RATE_80_GBPS; 147 case 48: return IB_RATE_120_GBPS; 148 default: return IB_RATE_PORT_CURRENT; 149 } 150 } 151 EXPORT_SYMBOL(mult_to_ib_rate); 152 153 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 154 { 155 switch (rate) { 156 case IB_RATE_2_5_GBPS: return 2500; 157 case IB_RATE_5_GBPS: return 5000; 158 case IB_RATE_10_GBPS: return 10000; 159 case IB_RATE_20_GBPS: return 20000; 160 case IB_RATE_30_GBPS: return 30000; 161 case IB_RATE_40_GBPS: return 40000; 162 case IB_RATE_60_GBPS: return 60000; 163 case IB_RATE_80_GBPS: return 80000; 164 case IB_RATE_120_GBPS: return 120000; 165 case IB_RATE_14_GBPS: return 14062; 166 case IB_RATE_56_GBPS: return 56250; 167 case IB_RATE_112_GBPS: return 112500; 168 case IB_RATE_168_GBPS: return 168750; 169 case IB_RATE_25_GBPS: return 25781; 170 case IB_RATE_100_GBPS: return 103125; 171 case IB_RATE_200_GBPS: return 206250; 172 case IB_RATE_300_GBPS: return 309375; 173 default: return -1; 174 } 175 } 176 EXPORT_SYMBOL(ib_rate_to_mbps); 177 178 __attribute_const__ enum rdma_transport_type 179 rdma_node_get_transport(enum rdma_node_type node_type) 180 { 181 switch (node_type) { 182 case RDMA_NODE_IB_CA: 183 case RDMA_NODE_IB_SWITCH: 184 case RDMA_NODE_IB_ROUTER: 185 return RDMA_TRANSPORT_IB; 186 case RDMA_NODE_RNIC: 187 return RDMA_TRANSPORT_IWARP; 188 case RDMA_NODE_USNIC: 189 return RDMA_TRANSPORT_USNIC; 190 case RDMA_NODE_USNIC_UDP: 191 return RDMA_TRANSPORT_USNIC_UDP; 192 default: 193 BUG(); 194 return 0; 195 } 196 } 197 EXPORT_SYMBOL(rdma_node_get_transport); 198 199 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 200 { 201 if (device->get_link_layer) 202 return device->get_link_layer(device, port_num); 203 204 switch (rdma_node_get_transport(device->node_type)) { 205 case RDMA_TRANSPORT_IB: 206 return IB_LINK_LAYER_INFINIBAND; 207 case RDMA_TRANSPORT_IWARP: 208 case RDMA_TRANSPORT_USNIC: 209 case RDMA_TRANSPORT_USNIC_UDP: 210 return IB_LINK_LAYER_ETHERNET; 211 default: 212 return IB_LINK_LAYER_UNSPECIFIED; 213 } 214 } 215 EXPORT_SYMBOL(rdma_port_get_link_layer); 216 217 /* Protection domains */ 218 219 /** 220 * ib_alloc_pd - Allocates an unused protection domain. 221 * @device: The device on which to allocate the protection domain. 222 * 223 * A protection domain object provides an association between QPs, shared 224 * receive queues, address handles, memory regions, and memory windows. 225 * 226 * Every PD has a local_dma_lkey which can be used as the lkey value for local 227 * memory operations. 228 */ 229 struct ib_pd *ib_alloc_pd(struct ib_device *device) 230 { 231 struct ib_pd *pd; 232 struct ib_device_attr devattr; 233 int rc; 234 235 rc = ib_query_device(device, &devattr); 236 if (rc) 237 return ERR_PTR(rc); 238 239 pd = device->alloc_pd(device, NULL, NULL); 240 if (IS_ERR(pd)) 241 return pd; 242 243 pd->device = device; 244 pd->uobject = NULL; 245 pd->local_mr = NULL; 246 atomic_set(&pd->usecnt, 0); 247 248 if (devattr.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 249 pd->local_dma_lkey = device->local_dma_lkey; 250 else { 251 struct ib_mr *mr; 252 253 mr = ib_get_dma_mr(pd, IB_ACCESS_LOCAL_WRITE); 254 if (IS_ERR(mr)) { 255 ib_dealloc_pd(pd); 256 return (struct ib_pd *)mr; 257 } 258 259 pd->local_mr = mr; 260 pd->local_dma_lkey = pd->local_mr->lkey; 261 } 262 return pd; 263 } 264 EXPORT_SYMBOL(ib_alloc_pd); 265 266 /** 267 * ib_dealloc_pd - Deallocates a protection domain. 268 * @pd: The protection domain to deallocate. 269 * 270 * It is an error to call this function while any resources in the pd still 271 * exist. The caller is responsible to synchronously destroy them and 272 * guarantee no new allocations will happen. 273 */ 274 void ib_dealloc_pd(struct ib_pd *pd) 275 { 276 int ret; 277 278 if (pd->local_mr) { 279 ret = ib_dereg_mr(pd->local_mr); 280 WARN_ON(ret); 281 pd->local_mr = NULL; 282 } 283 284 /* uverbs manipulates usecnt with proper locking, while the kabi 285 requires the caller to guarantee we can't race here. */ 286 WARN_ON(atomic_read(&pd->usecnt)); 287 288 /* Making delalloc_pd a void return is a WIP, no driver should return 289 an error here. */ 290 ret = pd->device->dealloc_pd(pd); 291 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 292 } 293 EXPORT_SYMBOL(ib_dealloc_pd); 294 295 /* Address handles */ 296 297 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr) 298 { 299 struct ib_ah *ah; 300 301 ah = pd->device->create_ah(pd, ah_attr); 302 303 if (!IS_ERR(ah)) { 304 ah->device = pd->device; 305 ah->pd = pd; 306 ah->uobject = NULL; 307 atomic_inc(&pd->usecnt); 308 } 309 310 return ah; 311 } 312 EXPORT_SYMBOL(ib_create_ah); 313 314 struct find_gid_index_context { 315 u16 vlan_id; 316 }; 317 318 static bool find_gid_index(const union ib_gid *gid, 319 const struct ib_gid_attr *gid_attr, 320 void *context) 321 { 322 struct find_gid_index_context *ctx = 323 (struct find_gid_index_context *)context; 324 325 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 326 (is_vlan_dev(gid_attr->ndev) && 327 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 328 return false; 329 330 return true; 331 } 332 333 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 334 u16 vlan_id, const union ib_gid *sgid, 335 u16 *gid_index) 336 { 337 struct find_gid_index_context context = {.vlan_id = vlan_id}; 338 339 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 340 &context, gid_index); 341 } 342 343 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 344 const struct ib_wc *wc, const struct ib_grh *grh, 345 struct ib_ah_attr *ah_attr) 346 { 347 u32 flow_class; 348 u16 gid_index; 349 int ret; 350 351 memset(ah_attr, 0, sizeof *ah_attr); 352 if (rdma_cap_eth_ah(device, port_num)) { 353 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 354 wc->vlan_id : 0xffff; 355 356 if (!(wc->wc_flags & IB_WC_GRH)) 357 return -EPROTOTYPE; 358 359 if (!(wc->wc_flags & IB_WC_WITH_SMAC) || 360 !(wc->wc_flags & IB_WC_WITH_VLAN)) { 361 ret = rdma_addr_find_dmac_by_grh(&grh->dgid, &grh->sgid, 362 ah_attr->dmac, 363 wc->wc_flags & IB_WC_WITH_VLAN ? 364 NULL : &vlan_id, 365 0); 366 if (ret) 367 return ret; 368 } 369 370 ret = get_sgid_index_from_eth(device, port_num, vlan_id, 371 &grh->dgid, &gid_index); 372 if (ret) 373 return ret; 374 375 if (wc->wc_flags & IB_WC_WITH_SMAC) 376 memcpy(ah_attr->dmac, wc->smac, ETH_ALEN); 377 } 378 379 ah_attr->dlid = wc->slid; 380 ah_attr->sl = wc->sl; 381 ah_attr->src_path_bits = wc->dlid_path_bits; 382 ah_attr->port_num = port_num; 383 384 if (wc->wc_flags & IB_WC_GRH) { 385 ah_attr->ah_flags = IB_AH_GRH; 386 ah_attr->grh.dgid = grh->sgid; 387 388 if (!rdma_cap_eth_ah(device, port_num)) { 389 ret = ib_find_cached_gid_by_port(device, &grh->dgid, 390 port_num, NULL, 391 &gid_index); 392 if (ret) 393 return ret; 394 } 395 396 ah_attr->grh.sgid_index = (u8) gid_index; 397 flow_class = be32_to_cpu(grh->version_tclass_flow); 398 ah_attr->grh.flow_label = flow_class & 0xFFFFF; 399 ah_attr->grh.hop_limit = 0xFF; 400 ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF; 401 } 402 return 0; 403 } 404 EXPORT_SYMBOL(ib_init_ah_from_wc); 405 406 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 407 const struct ib_grh *grh, u8 port_num) 408 { 409 struct ib_ah_attr ah_attr; 410 int ret; 411 412 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); 413 if (ret) 414 return ERR_PTR(ret); 415 416 return ib_create_ah(pd, &ah_attr); 417 } 418 EXPORT_SYMBOL(ib_create_ah_from_wc); 419 420 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr) 421 { 422 return ah->device->modify_ah ? 423 ah->device->modify_ah(ah, ah_attr) : 424 -ENOSYS; 425 } 426 EXPORT_SYMBOL(ib_modify_ah); 427 428 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr) 429 { 430 return ah->device->query_ah ? 431 ah->device->query_ah(ah, ah_attr) : 432 -ENOSYS; 433 } 434 EXPORT_SYMBOL(ib_query_ah); 435 436 int ib_destroy_ah(struct ib_ah *ah) 437 { 438 struct ib_pd *pd; 439 int ret; 440 441 pd = ah->pd; 442 ret = ah->device->destroy_ah(ah); 443 if (!ret) 444 atomic_dec(&pd->usecnt); 445 446 return ret; 447 } 448 EXPORT_SYMBOL(ib_destroy_ah); 449 450 /* Shared receive queues */ 451 452 struct ib_srq *ib_create_srq(struct ib_pd *pd, 453 struct ib_srq_init_attr *srq_init_attr) 454 { 455 struct ib_srq *srq; 456 457 if (!pd->device->create_srq) 458 return ERR_PTR(-ENOSYS); 459 460 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 461 462 if (!IS_ERR(srq)) { 463 srq->device = pd->device; 464 srq->pd = pd; 465 srq->uobject = NULL; 466 srq->event_handler = srq_init_attr->event_handler; 467 srq->srq_context = srq_init_attr->srq_context; 468 srq->srq_type = srq_init_attr->srq_type; 469 if (srq->srq_type == IB_SRQT_XRC) { 470 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 471 srq->ext.xrc.cq = srq_init_attr->ext.xrc.cq; 472 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 473 atomic_inc(&srq->ext.xrc.cq->usecnt); 474 } 475 atomic_inc(&pd->usecnt); 476 atomic_set(&srq->usecnt, 0); 477 } 478 479 return srq; 480 } 481 EXPORT_SYMBOL(ib_create_srq); 482 483 int ib_modify_srq(struct ib_srq *srq, 484 struct ib_srq_attr *srq_attr, 485 enum ib_srq_attr_mask srq_attr_mask) 486 { 487 return srq->device->modify_srq ? 488 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 489 -ENOSYS; 490 } 491 EXPORT_SYMBOL(ib_modify_srq); 492 493 int ib_query_srq(struct ib_srq *srq, 494 struct ib_srq_attr *srq_attr) 495 { 496 return srq->device->query_srq ? 497 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 498 } 499 EXPORT_SYMBOL(ib_query_srq); 500 501 int ib_destroy_srq(struct ib_srq *srq) 502 { 503 struct ib_pd *pd; 504 enum ib_srq_type srq_type; 505 struct ib_xrcd *uninitialized_var(xrcd); 506 struct ib_cq *uninitialized_var(cq); 507 int ret; 508 509 if (atomic_read(&srq->usecnt)) 510 return -EBUSY; 511 512 pd = srq->pd; 513 srq_type = srq->srq_type; 514 if (srq_type == IB_SRQT_XRC) { 515 xrcd = srq->ext.xrc.xrcd; 516 cq = srq->ext.xrc.cq; 517 } 518 519 ret = srq->device->destroy_srq(srq); 520 if (!ret) { 521 atomic_dec(&pd->usecnt); 522 if (srq_type == IB_SRQT_XRC) { 523 atomic_dec(&xrcd->usecnt); 524 atomic_dec(&cq->usecnt); 525 } 526 } 527 528 return ret; 529 } 530 EXPORT_SYMBOL(ib_destroy_srq); 531 532 /* Queue pairs */ 533 534 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 535 { 536 struct ib_qp *qp = context; 537 unsigned long flags; 538 539 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 540 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 541 if (event->element.qp->event_handler) 542 event->element.qp->event_handler(event, event->element.qp->qp_context); 543 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 544 } 545 546 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 547 { 548 mutex_lock(&xrcd->tgt_qp_mutex); 549 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 550 mutex_unlock(&xrcd->tgt_qp_mutex); 551 } 552 553 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 554 void (*event_handler)(struct ib_event *, void *), 555 void *qp_context) 556 { 557 struct ib_qp *qp; 558 unsigned long flags; 559 560 qp = kzalloc(sizeof *qp, GFP_KERNEL); 561 if (!qp) 562 return ERR_PTR(-ENOMEM); 563 564 qp->real_qp = real_qp; 565 atomic_inc(&real_qp->usecnt); 566 qp->device = real_qp->device; 567 qp->event_handler = event_handler; 568 qp->qp_context = qp_context; 569 qp->qp_num = real_qp->qp_num; 570 qp->qp_type = real_qp->qp_type; 571 572 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 573 list_add(&qp->open_list, &real_qp->open_list); 574 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 575 576 return qp; 577 } 578 579 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 580 struct ib_qp_open_attr *qp_open_attr) 581 { 582 struct ib_qp *qp, *real_qp; 583 584 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 585 return ERR_PTR(-EINVAL); 586 587 qp = ERR_PTR(-EINVAL); 588 mutex_lock(&xrcd->tgt_qp_mutex); 589 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 590 if (real_qp->qp_num == qp_open_attr->qp_num) { 591 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 592 qp_open_attr->qp_context); 593 break; 594 } 595 } 596 mutex_unlock(&xrcd->tgt_qp_mutex); 597 return qp; 598 } 599 EXPORT_SYMBOL(ib_open_qp); 600 601 struct ib_qp *ib_create_qp(struct ib_pd *pd, 602 struct ib_qp_init_attr *qp_init_attr) 603 { 604 struct ib_qp *qp, *real_qp; 605 struct ib_device *device; 606 607 device = pd ? pd->device : qp_init_attr->xrcd->device; 608 qp = device->create_qp(pd, qp_init_attr, NULL); 609 610 if (!IS_ERR(qp)) { 611 qp->device = device; 612 qp->real_qp = qp; 613 qp->uobject = NULL; 614 qp->qp_type = qp_init_attr->qp_type; 615 616 atomic_set(&qp->usecnt, 0); 617 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 618 qp->event_handler = __ib_shared_qp_event_handler; 619 qp->qp_context = qp; 620 qp->pd = NULL; 621 qp->send_cq = qp->recv_cq = NULL; 622 qp->srq = NULL; 623 qp->xrcd = qp_init_attr->xrcd; 624 atomic_inc(&qp_init_attr->xrcd->usecnt); 625 INIT_LIST_HEAD(&qp->open_list); 626 627 real_qp = qp; 628 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 629 qp_init_attr->qp_context); 630 if (!IS_ERR(qp)) 631 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 632 else 633 real_qp->device->destroy_qp(real_qp); 634 } else { 635 qp->event_handler = qp_init_attr->event_handler; 636 qp->qp_context = qp_init_attr->qp_context; 637 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 638 qp->recv_cq = NULL; 639 qp->srq = NULL; 640 } else { 641 qp->recv_cq = qp_init_attr->recv_cq; 642 atomic_inc(&qp_init_attr->recv_cq->usecnt); 643 qp->srq = qp_init_attr->srq; 644 if (qp->srq) 645 atomic_inc(&qp_init_attr->srq->usecnt); 646 } 647 648 qp->pd = pd; 649 qp->send_cq = qp_init_attr->send_cq; 650 qp->xrcd = NULL; 651 652 atomic_inc(&pd->usecnt); 653 atomic_inc(&qp_init_attr->send_cq->usecnt); 654 } 655 } 656 657 return qp; 658 } 659 EXPORT_SYMBOL(ib_create_qp); 660 661 static const struct { 662 int valid; 663 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 664 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 665 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 666 [IB_QPS_RESET] = { 667 [IB_QPS_RESET] = { .valid = 1 }, 668 [IB_QPS_INIT] = { 669 .valid = 1, 670 .req_param = { 671 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 672 IB_QP_PORT | 673 IB_QP_QKEY), 674 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 675 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 676 IB_QP_PORT | 677 IB_QP_ACCESS_FLAGS), 678 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 679 IB_QP_PORT | 680 IB_QP_ACCESS_FLAGS), 681 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 682 IB_QP_PORT | 683 IB_QP_ACCESS_FLAGS), 684 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 685 IB_QP_PORT | 686 IB_QP_ACCESS_FLAGS), 687 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 688 IB_QP_QKEY), 689 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 690 IB_QP_QKEY), 691 } 692 }, 693 }, 694 [IB_QPS_INIT] = { 695 [IB_QPS_RESET] = { .valid = 1 }, 696 [IB_QPS_ERR] = { .valid = 1 }, 697 [IB_QPS_INIT] = { 698 .valid = 1, 699 .opt_param = { 700 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 701 IB_QP_PORT | 702 IB_QP_QKEY), 703 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 704 IB_QP_PORT | 705 IB_QP_ACCESS_FLAGS), 706 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 707 IB_QP_PORT | 708 IB_QP_ACCESS_FLAGS), 709 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 710 IB_QP_PORT | 711 IB_QP_ACCESS_FLAGS), 712 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 713 IB_QP_PORT | 714 IB_QP_ACCESS_FLAGS), 715 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 716 IB_QP_QKEY), 717 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 718 IB_QP_QKEY), 719 } 720 }, 721 [IB_QPS_RTR] = { 722 .valid = 1, 723 .req_param = { 724 [IB_QPT_UC] = (IB_QP_AV | 725 IB_QP_PATH_MTU | 726 IB_QP_DEST_QPN | 727 IB_QP_RQ_PSN), 728 [IB_QPT_RC] = (IB_QP_AV | 729 IB_QP_PATH_MTU | 730 IB_QP_DEST_QPN | 731 IB_QP_RQ_PSN | 732 IB_QP_MAX_DEST_RD_ATOMIC | 733 IB_QP_MIN_RNR_TIMER), 734 [IB_QPT_XRC_INI] = (IB_QP_AV | 735 IB_QP_PATH_MTU | 736 IB_QP_DEST_QPN | 737 IB_QP_RQ_PSN), 738 [IB_QPT_XRC_TGT] = (IB_QP_AV | 739 IB_QP_PATH_MTU | 740 IB_QP_DEST_QPN | 741 IB_QP_RQ_PSN | 742 IB_QP_MAX_DEST_RD_ATOMIC | 743 IB_QP_MIN_RNR_TIMER), 744 }, 745 .opt_param = { 746 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 747 IB_QP_QKEY), 748 [IB_QPT_UC] = (IB_QP_ALT_PATH | 749 IB_QP_ACCESS_FLAGS | 750 IB_QP_PKEY_INDEX), 751 [IB_QPT_RC] = (IB_QP_ALT_PATH | 752 IB_QP_ACCESS_FLAGS | 753 IB_QP_PKEY_INDEX), 754 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 755 IB_QP_ACCESS_FLAGS | 756 IB_QP_PKEY_INDEX), 757 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 758 IB_QP_ACCESS_FLAGS | 759 IB_QP_PKEY_INDEX), 760 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 761 IB_QP_QKEY), 762 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 763 IB_QP_QKEY), 764 }, 765 }, 766 }, 767 [IB_QPS_RTR] = { 768 [IB_QPS_RESET] = { .valid = 1 }, 769 [IB_QPS_ERR] = { .valid = 1 }, 770 [IB_QPS_RTS] = { 771 .valid = 1, 772 .req_param = { 773 [IB_QPT_UD] = IB_QP_SQ_PSN, 774 [IB_QPT_UC] = IB_QP_SQ_PSN, 775 [IB_QPT_RC] = (IB_QP_TIMEOUT | 776 IB_QP_RETRY_CNT | 777 IB_QP_RNR_RETRY | 778 IB_QP_SQ_PSN | 779 IB_QP_MAX_QP_RD_ATOMIC), 780 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 781 IB_QP_RETRY_CNT | 782 IB_QP_RNR_RETRY | 783 IB_QP_SQ_PSN | 784 IB_QP_MAX_QP_RD_ATOMIC), 785 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 786 IB_QP_SQ_PSN), 787 [IB_QPT_SMI] = IB_QP_SQ_PSN, 788 [IB_QPT_GSI] = IB_QP_SQ_PSN, 789 }, 790 .opt_param = { 791 [IB_QPT_UD] = (IB_QP_CUR_STATE | 792 IB_QP_QKEY), 793 [IB_QPT_UC] = (IB_QP_CUR_STATE | 794 IB_QP_ALT_PATH | 795 IB_QP_ACCESS_FLAGS | 796 IB_QP_PATH_MIG_STATE), 797 [IB_QPT_RC] = (IB_QP_CUR_STATE | 798 IB_QP_ALT_PATH | 799 IB_QP_ACCESS_FLAGS | 800 IB_QP_MIN_RNR_TIMER | 801 IB_QP_PATH_MIG_STATE), 802 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 803 IB_QP_ALT_PATH | 804 IB_QP_ACCESS_FLAGS | 805 IB_QP_PATH_MIG_STATE), 806 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 807 IB_QP_ALT_PATH | 808 IB_QP_ACCESS_FLAGS | 809 IB_QP_MIN_RNR_TIMER | 810 IB_QP_PATH_MIG_STATE), 811 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 812 IB_QP_QKEY), 813 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 814 IB_QP_QKEY), 815 } 816 } 817 }, 818 [IB_QPS_RTS] = { 819 [IB_QPS_RESET] = { .valid = 1 }, 820 [IB_QPS_ERR] = { .valid = 1 }, 821 [IB_QPS_RTS] = { 822 .valid = 1, 823 .opt_param = { 824 [IB_QPT_UD] = (IB_QP_CUR_STATE | 825 IB_QP_QKEY), 826 [IB_QPT_UC] = (IB_QP_CUR_STATE | 827 IB_QP_ACCESS_FLAGS | 828 IB_QP_ALT_PATH | 829 IB_QP_PATH_MIG_STATE), 830 [IB_QPT_RC] = (IB_QP_CUR_STATE | 831 IB_QP_ACCESS_FLAGS | 832 IB_QP_ALT_PATH | 833 IB_QP_PATH_MIG_STATE | 834 IB_QP_MIN_RNR_TIMER), 835 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 836 IB_QP_ACCESS_FLAGS | 837 IB_QP_ALT_PATH | 838 IB_QP_PATH_MIG_STATE), 839 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 840 IB_QP_ACCESS_FLAGS | 841 IB_QP_ALT_PATH | 842 IB_QP_PATH_MIG_STATE | 843 IB_QP_MIN_RNR_TIMER), 844 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 845 IB_QP_QKEY), 846 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 847 IB_QP_QKEY), 848 } 849 }, 850 [IB_QPS_SQD] = { 851 .valid = 1, 852 .opt_param = { 853 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 854 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 855 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 856 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 857 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 858 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 859 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 860 } 861 }, 862 }, 863 [IB_QPS_SQD] = { 864 [IB_QPS_RESET] = { .valid = 1 }, 865 [IB_QPS_ERR] = { .valid = 1 }, 866 [IB_QPS_RTS] = { 867 .valid = 1, 868 .opt_param = { 869 [IB_QPT_UD] = (IB_QP_CUR_STATE | 870 IB_QP_QKEY), 871 [IB_QPT_UC] = (IB_QP_CUR_STATE | 872 IB_QP_ALT_PATH | 873 IB_QP_ACCESS_FLAGS | 874 IB_QP_PATH_MIG_STATE), 875 [IB_QPT_RC] = (IB_QP_CUR_STATE | 876 IB_QP_ALT_PATH | 877 IB_QP_ACCESS_FLAGS | 878 IB_QP_MIN_RNR_TIMER | 879 IB_QP_PATH_MIG_STATE), 880 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 881 IB_QP_ALT_PATH | 882 IB_QP_ACCESS_FLAGS | 883 IB_QP_PATH_MIG_STATE), 884 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 885 IB_QP_ALT_PATH | 886 IB_QP_ACCESS_FLAGS | 887 IB_QP_MIN_RNR_TIMER | 888 IB_QP_PATH_MIG_STATE), 889 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 890 IB_QP_QKEY), 891 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 892 IB_QP_QKEY), 893 } 894 }, 895 [IB_QPS_SQD] = { 896 .valid = 1, 897 .opt_param = { 898 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 899 IB_QP_QKEY), 900 [IB_QPT_UC] = (IB_QP_AV | 901 IB_QP_ALT_PATH | 902 IB_QP_ACCESS_FLAGS | 903 IB_QP_PKEY_INDEX | 904 IB_QP_PATH_MIG_STATE), 905 [IB_QPT_RC] = (IB_QP_PORT | 906 IB_QP_AV | 907 IB_QP_TIMEOUT | 908 IB_QP_RETRY_CNT | 909 IB_QP_RNR_RETRY | 910 IB_QP_MAX_QP_RD_ATOMIC | 911 IB_QP_MAX_DEST_RD_ATOMIC | 912 IB_QP_ALT_PATH | 913 IB_QP_ACCESS_FLAGS | 914 IB_QP_PKEY_INDEX | 915 IB_QP_MIN_RNR_TIMER | 916 IB_QP_PATH_MIG_STATE), 917 [IB_QPT_XRC_INI] = (IB_QP_PORT | 918 IB_QP_AV | 919 IB_QP_TIMEOUT | 920 IB_QP_RETRY_CNT | 921 IB_QP_RNR_RETRY | 922 IB_QP_MAX_QP_RD_ATOMIC | 923 IB_QP_ALT_PATH | 924 IB_QP_ACCESS_FLAGS | 925 IB_QP_PKEY_INDEX | 926 IB_QP_PATH_MIG_STATE), 927 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 928 IB_QP_AV | 929 IB_QP_TIMEOUT | 930 IB_QP_MAX_DEST_RD_ATOMIC | 931 IB_QP_ALT_PATH | 932 IB_QP_ACCESS_FLAGS | 933 IB_QP_PKEY_INDEX | 934 IB_QP_MIN_RNR_TIMER | 935 IB_QP_PATH_MIG_STATE), 936 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 937 IB_QP_QKEY), 938 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 939 IB_QP_QKEY), 940 } 941 } 942 }, 943 [IB_QPS_SQE] = { 944 [IB_QPS_RESET] = { .valid = 1 }, 945 [IB_QPS_ERR] = { .valid = 1 }, 946 [IB_QPS_RTS] = { 947 .valid = 1, 948 .opt_param = { 949 [IB_QPT_UD] = (IB_QP_CUR_STATE | 950 IB_QP_QKEY), 951 [IB_QPT_UC] = (IB_QP_CUR_STATE | 952 IB_QP_ACCESS_FLAGS), 953 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 954 IB_QP_QKEY), 955 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 956 IB_QP_QKEY), 957 } 958 } 959 }, 960 [IB_QPS_ERR] = { 961 [IB_QPS_RESET] = { .valid = 1 }, 962 [IB_QPS_ERR] = { .valid = 1 } 963 } 964 }; 965 966 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 967 enum ib_qp_type type, enum ib_qp_attr_mask mask, 968 enum rdma_link_layer ll) 969 { 970 enum ib_qp_attr_mask req_param, opt_param; 971 972 if (cur_state < 0 || cur_state > IB_QPS_ERR || 973 next_state < 0 || next_state > IB_QPS_ERR) 974 return 0; 975 976 if (mask & IB_QP_CUR_STATE && 977 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 978 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 979 return 0; 980 981 if (!qp_state_table[cur_state][next_state].valid) 982 return 0; 983 984 req_param = qp_state_table[cur_state][next_state].req_param[type]; 985 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 986 987 if ((mask & req_param) != req_param) 988 return 0; 989 990 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 991 return 0; 992 993 return 1; 994 } 995 EXPORT_SYMBOL(ib_modify_qp_is_ok); 996 997 int ib_resolve_eth_dmac(struct ib_qp *qp, 998 struct ib_qp_attr *qp_attr, int *qp_attr_mask) 999 { 1000 int ret = 0; 1001 1002 if (*qp_attr_mask & IB_QP_AV) { 1003 if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) || 1004 qp_attr->ah_attr.port_num > rdma_end_port(qp->device)) 1005 return -EINVAL; 1006 1007 if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num)) 1008 return 0; 1009 1010 if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) { 1011 rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw, 1012 qp_attr->ah_attr.dmac); 1013 } else { 1014 union ib_gid sgid; 1015 struct ib_gid_attr sgid_attr; 1016 int ifindex; 1017 1018 ret = ib_query_gid(qp->device, 1019 qp_attr->ah_attr.port_num, 1020 qp_attr->ah_attr.grh.sgid_index, 1021 &sgid, &sgid_attr); 1022 1023 if (ret || !sgid_attr.ndev) { 1024 if (!ret) 1025 ret = -ENXIO; 1026 goto out; 1027 } 1028 1029 ifindex = sgid_attr.ndev->ifindex; 1030 1031 ret = rdma_addr_find_dmac_by_grh(&sgid, 1032 &qp_attr->ah_attr.grh.dgid, 1033 qp_attr->ah_attr.dmac, 1034 NULL, ifindex); 1035 1036 dev_put(sgid_attr.ndev); 1037 } 1038 } 1039 out: 1040 return ret; 1041 } 1042 EXPORT_SYMBOL(ib_resolve_eth_dmac); 1043 1044 1045 int ib_modify_qp(struct ib_qp *qp, 1046 struct ib_qp_attr *qp_attr, 1047 int qp_attr_mask) 1048 { 1049 int ret; 1050 1051 ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask); 1052 if (ret) 1053 return ret; 1054 1055 return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1056 } 1057 EXPORT_SYMBOL(ib_modify_qp); 1058 1059 int ib_query_qp(struct ib_qp *qp, 1060 struct ib_qp_attr *qp_attr, 1061 int qp_attr_mask, 1062 struct ib_qp_init_attr *qp_init_attr) 1063 { 1064 return qp->device->query_qp ? 1065 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1066 -ENOSYS; 1067 } 1068 EXPORT_SYMBOL(ib_query_qp); 1069 1070 int ib_close_qp(struct ib_qp *qp) 1071 { 1072 struct ib_qp *real_qp; 1073 unsigned long flags; 1074 1075 real_qp = qp->real_qp; 1076 if (real_qp == qp) 1077 return -EINVAL; 1078 1079 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1080 list_del(&qp->open_list); 1081 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1082 1083 atomic_dec(&real_qp->usecnt); 1084 kfree(qp); 1085 1086 return 0; 1087 } 1088 EXPORT_SYMBOL(ib_close_qp); 1089 1090 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1091 { 1092 struct ib_xrcd *xrcd; 1093 struct ib_qp *real_qp; 1094 int ret; 1095 1096 real_qp = qp->real_qp; 1097 xrcd = real_qp->xrcd; 1098 1099 mutex_lock(&xrcd->tgt_qp_mutex); 1100 ib_close_qp(qp); 1101 if (atomic_read(&real_qp->usecnt) == 0) 1102 list_del(&real_qp->xrcd_list); 1103 else 1104 real_qp = NULL; 1105 mutex_unlock(&xrcd->tgt_qp_mutex); 1106 1107 if (real_qp) { 1108 ret = ib_destroy_qp(real_qp); 1109 if (!ret) 1110 atomic_dec(&xrcd->usecnt); 1111 else 1112 __ib_insert_xrcd_qp(xrcd, real_qp); 1113 } 1114 1115 return 0; 1116 } 1117 1118 int ib_destroy_qp(struct ib_qp *qp) 1119 { 1120 struct ib_pd *pd; 1121 struct ib_cq *scq, *rcq; 1122 struct ib_srq *srq; 1123 int ret; 1124 1125 if (atomic_read(&qp->usecnt)) 1126 return -EBUSY; 1127 1128 if (qp->real_qp != qp) 1129 return __ib_destroy_shared_qp(qp); 1130 1131 pd = qp->pd; 1132 scq = qp->send_cq; 1133 rcq = qp->recv_cq; 1134 srq = qp->srq; 1135 1136 ret = qp->device->destroy_qp(qp); 1137 if (!ret) { 1138 if (pd) 1139 atomic_dec(&pd->usecnt); 1140 if (scq) 1141 atomic_dec(&scq->usecnt); 1142 if (rcq) 1143 atomic_dec(&rcq->usecnt); 1144 if (srq) 1145 atomic_dec(&srq->usecnt); 1146 } 1147 1148 return ret; 1149 } 1150 EXPORT_SYMBOL(ib_destroy_qp); 1151 1152 /* Completion queues */ 1153 1154 struct ib_cq *ib_create_cq(struct ib_device *device, 1155 ib_comp_handler comp_handler, 1156 void (*event_handler)(struct ib_event *, void *), 1157 void *cq_context, 1158 const struct ib_cq_init_attr *cq_attr) 1159 { 1160 struct ib_cq *cq; 1161 1162 cq = device->create_cq(device, cq_attr, NULL, NULL); 1163 1164 if (!IS_ERR(cq)) { 1165 cq->device = device; 1166 cq->uobject = NULL; 1167 cq->comp_handler = comp_handler; 1168 cq->event_handler = event_handler; 1169 cq->cq_context = cq_context; 1170 atomic_set(&cq->usecnt, 0); 1171 } 1172 1173 return cq; 1174 } 1175 EXPORT_SYMBOL(ib_create_cq); 1176 1177 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1178 { 1179 return cq->device->modify_cq ? 1180 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1181 } 1182 EXPORT_SYMBOL(ib_modify_cq); 1183 1184 int ib_destroy_cq(struct ib_cq *cq) 1185 { 1186 if (atomic_read(&cq->usecnt)) 1187 return -EBUSY; 1188 1189 return cq->device->destroy_cq(cq); 1190 } 1191 EXPORT_SYMBOL(ib_destroy_cq); 1192 1193 int ib_resize_cq(struct ib_cq *cq, int cqe) 1194 { 1195 return cq->device->resize_cq ? 1196 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1197 } 1198 EXPORT_SYMBOL(ib_resize_cq); 1199 1200 /* Memory regions */ 1201 1202 struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags) 1203 { 1204 struct ib_mr *mr; 1205 int err; 1206 1207 err = ib_check_mr_access(mr_access_flags); 1208 if (err) 1209 return ERR_PTR(err); 1210 1211 mr = pd->device->get_dma_mr(pd, mr_access_flags); 1212 1213 if (!IS_ERR(mr)) { 1214 mr->device = pd->device; 1215 mr->pd = pd; 1216 mr->uobject = NULL; 1217 atomic_inc(&pd->usecnt); 1218 atomic_set(&mr->usecnt, 0); 1219 } 1220 1221 return mr; 1222 } 1223 EXPORT_SYMBOL(ib_get_dma_mr); 1224 1225 int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr) 1226 { 1227 return mr->device->query_mr ? 1228 mr->device->query_mr(mr, mr_attr) : -ENOSYS; 1229 } 1230 EXPORT_SYMBOL(ib_query_mr); 1231 1232 int ib_dereg_mr(struct ib_mr *mr) 1233 { 1234 struct ib_pd *pd; 1235 int ret; 1236 1237 if (atomic_read(&mr->usecnt)) 1238 return -EBUSY; 1239 1240 pd = mr->pd; 1241 ret = mr->device->dereg_mr(mr); 1242 if (!ret) 1243 atomic_dec(&pd->usecnt); 1244 1245 return ret; 1246 } 1247 EXPORT_SYMBOL(ib_dereg_mr); 1248 1249 /** 1250 * ib_alloc_mr() - Allocates a memory region 1251 * @pd: protection domain associated with the region 1252 * @mr_type: memory region type 1253 * @max_num_sg: maximum sg entries available for registration. 1254 * 1255 * Notes: 1256 * Memory registeration page/sg lists must not exceed max_num_sg. 1257 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1258 * max_num_sg * used_page_size. 1259 * 1260 */ 1261 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1262 enum ib_mr_type mr_type, 1263 u32 max_num_sg) 1264 { 1265 struct ib_mr *mr; 1266 1267 if (!pd->device->alloc_mr) 1268 return ERR_PTR(-ENOSYS); 1269 1270 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1271 if (!IS_ERR(mr)) { 1272 mr->device = pd->device; 1273 mr->pd = pd; 1274 mr->uobject = NULL; 1275 atomic_inc(&pd->usecnt); 1276 atomic_set(&mr->usecnt, 0); 1277 } 1278 1279 return mr; 1280 } 1281 EXPORT_SYMBOL(ib_alloc_mr); 1282 1283 /* Memory windows */ 1284 1285 struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type) 1286 { 1287 struct ib_mw *mw; 1288 1289 if (!pd->device->alloc_mw) 1290 return ERR_PTR(-ENOSYS); 1291 1292 mw = pd->device->alloc_mw(pd, type); 1293 if (!IS_ERR(mw)) { 1294 mw->device = pd->device; 1295 mw->pd = pd; 1296 mw->uobject = NULL; 1297 mw->type = type; 1298 atomic_inc(&pd->usecnt); 1299 } 1300 1301 return mw; 1302 } 1303 EXPORT_SYMBOL(ib_alloc_mw); 1304 1305 int ib_dealloc_mw(struct ib_mw *mw) 1306 { 1307 struct ib_pd *pd; 1308 int ret; 1309 1310 pd = mw->pd; 1311 ret = mw->device->dealloc_mw(mw); 1312 if (!ret) 1313 atomic_dec(&pd->usecnt); 1314 1315 return ret; 1316 } 1317 EXPORT_SYMBOL(ib_dealloc_mw); 1318 1319 /* "Fast" memory regions */ 1320 1321 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1322 int mr_access_flags, 1323 struct ib_fmr_attr *fmr_attr) 1324 { 1325 struct ib_fmr *fmr; 1326 1327 if (!pd->device->alloc_fmr) 1328 return ERR_PTR(-ENOSYS); 1329 1330 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1331 if (!IS_ERR(fmr)) { 1332 fmr->device = pd->device; 1333 fmr->pd = pd; 1334 atomic_inc(&pd->usecnt); 1335 } 1336 1337 return fmr; 1338 } 1339 EXPORT_SYMBOL(ib_alloc_fmr); 1340 1341 int ib_unmap_fmr(struct list_head *fmr_list) 1342 { 1343 struct ib_fmr *fmr; 1344 1345 if (list_empty(fmr_list)) 1346 return 0; 1347 1348 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1349 return fmr->device->unmap_fmr(fmr_list); 1350 } 1351 EXPORT_SYMBOL(ib_unmap_fmr); 1352 1353 int ib_dealloc_fmr(struct ib_fmr *fmr) 1354 { 1355 struct ib_pd *pd; 1356 int ret; 1357 1358 pd = fmr->pd; 1359 ret = fmr->device->dealloc_fmr(fmr); 1360 if (!ret) 1361 atomic_dec(&pd->usecnt); 1362 1363 return ret; 1364 } 1365 EXPORT_SYMBOL(ib_dealloc_fmr); 1366 1367 /* Multicast groups */ 1368 1369 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1370 { 1371 int ret; 1372 1373 if (!qp->device->attach_mcast) 1374 return -ENOSYS; 1375 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD) 1376 return -EINVAL; 1377 1378 ret = qp->device->attach_mcast(qp, gid, lid); 1379 if (!ret) 1380 atomic_inc(&qp->usecnt); 1381 return ret; 1382 } 1383 EXPORT_SYMBOL(ib_attach_mcast); 1384 1385 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1386 { 1387 int ret; 1388 1389 if (!qp->device->detach_mcast) 1390 return -ENOSYS; 1391 if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD) 1392 return -EINVAL; 1393 1394 ret = qp->device->detach_mcast(qp, gid, lid); 1395 if (!ret) 1396 atomic_dec(&qp->usecnt); 1397 return ret; 1398 } 1399 EXPORT_SYMBOL(ib_detach_mcast); 1400 1401 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) 1402 { 1403 struct ib_xrcd *xrcd; 1404 1405 if (!device->alloc_xrcd) 1406 return ERR_PTR(-ENOSYS); 1407 1408 xrcd = device->alloc_xrcd(device, NULL, NULL); 1409 if (!IS_ERR(xrcd)) { 1410 xrcd->device = device; 1411 xrcd->inode = NULL; 1412 atomic_set(&xrcd->usecnt, 0); 1413 mutex_init(&xrcd->tgt_qp_mutex); 1414 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1415 } 1416 1417 return xrcd; 1418 } 1419 EXPORT_SYMBOL(ib_alloc_xrcd); 1420 1421 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1422 { 1423 struct ib_qp *qp; 1424 int ret; 1425 1426 if (atomic_read(&xrcd->usecnt)) 1427 return -EBUSY; 1428 1429 while (!list_empty(&xrcd->tgt_qp_list)) { 1430 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1431 ret = ib_destroy_qp(qp); 1432 if (ret) 1433 return ret; 1434 } 1435 1436 return xrcd->device->dealloc_xrcd(xrcd); 1437 } 1438 EXPORT_SYMBOL(ib_dealloc_xrcd); 1439 1440 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1441 struct ib_flow_attr *flow_attr, 1442 int domain) 1443 { 1444 struct ib_flow *flow_id; 1445 if (!qp->device->create_flow) 1446 return ERR_PTR(-ENOSYS); 1447 1448 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1449 if (!IS_ERR(flow_id)) 1450 atomic_inc(&qp->usecnt); 1451 return flow_id; 1452 } 1453 EXPORT_SYMBOL(ib_create_flow); 1454 1455 int ib_destroy_flow(struct ib_flow *flow_id) 1456 { 1457 int err; 1458 struct ib_qp *qp = flow_id->qp; 1459 1460 err = qp->device->destroy_flow(flow_id); 1461 if (!err) 1462 atomic_dec(&qp->usecnt); 1463 return err; 1464 } 1465 EXPORT_SYMBOL(ib_destroy_flow); 1466 1467 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 1468 struct ib_mr_status *mr_status) 1469 { 1470 return mr->device->check_mr_status ? 1471 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 1472 } 1473 EXPORT_SYMBOL(ib_check_mr_status); 1474 1475 /** 1476 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 1477 * and set it the memory region. 1478 * @mr: memory region 1479 * @sg: dma mapped scatterlist 1480 * @sg_nents: number of entries in sg 1481 * @page_size: page vector desired page size 1482 * 1483 * Constraints: 1484 * - The first sg element is allowed to have an offset. 1485 * - Each sg element must be aligned to page_size (or physically 1486 * contiguous to the previous element). In case an sg element has a 1487 * non contiguous offset, the mapping prefix will not include it. 1488 * - The last sg element is allowed to have length less than page_size. 1489 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 1490 * then only max_num_sg entries will be mapped. 1491 * 1492 * Returns the number of sg elements that were mapped to the memory region. 1493 * 1494 * After this completes successfully, the memory region 1495 * is ready for registration. 1496 */ 1497 int ib_map_mr_sg(struct ib_mr *mr, 1498 struct scatterlist *sg, 1499 int sg_nents, 1500 unsigned int page_size) 1501 { 1502 if (unlikely(!mr->device->map_mr_sg)) 1503 return -ENOSYS; 1504 1505 mr->page_size = page_size; 1506 1507 return mr->device->map_mr_sg(mr, sg, sg_nents); 1508 } 1509 EXPORT_SYMBOL(ib_map_mr_sg); 1510 1511 /** 1512 * ib_sg_to_pages() - Convert the largest prefix of a sg list 1513 * to a page vector 1514 * @mr: memory region 1515 * @sgl: dma mapped scatterlist 1516 * @sg_nents: number of entries in sg 1517 * @set_page: driver page assignment function pointer 1518 * 1519 * Core service helper for drivers to convert the largest 1520 * prefix of given sg list to a page vector. The sg list 1521 * prefix converted is the prefix that meet the requirements 1522 * of ib_map_mr_sg. 1523 * 1524 * Returns the number of sg elements that were assigned to 1525 * a page vector. 1526 */ 1527 int ib_sg_to_pages(struct ib_mr *mr, 1528 struct scatterlist *sgl, 1529 int sg_nents, 1530 int (*set_page)(struct ib_mr *, u64)) 1531 { 1532 struct scatterlist *sg; 1533 u64 last_end_dma_addr = 0, last_page_addr = 0; 1534 unsigned int last_page_off = 0; 1535 u64 page_mask = ~((u64)mr->page_size - 1); 1536 int i, ret; 1537 1538 mr->iova = sg_dma_address(&sgl[0]); 1539 mr->length = 0; 1540 1541 for_each_sg(sgl, sg, sg_nents, i) { 1542 u64 dma_addr = sg_dma_address(sg); 1543 unsigned int dma_len = sg_dma_len(sg); 1544 u64 end_dma_addr = dma_addr + dma_len; 1545 u64 page_addr = dma_addr & page_mask; 1546 1547 /* 1548 * For the second and later elements, check whether either the 1549 * end of element i-1 or the start of element i is not aligned 1550 * on a page boundary. 1551 */ 1552 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 1553 /* Stop mapping if there is a gap. */ 1554 if (last_end_dma_addr != dma_addr) 1555 break; 1556 1557 /* 1558 * Coalesce this element with the last. If it is small 1559 * enough just update mr->length. Otherwise start 1560 * mapping from the next page. 1561 */ 1562 goto next_page; 1563 } 1564 1565 do { 1566 ret = set_page(mr, page_addr); 1567 if (unlikely(ret < 0)) 1568 return i ? : ret; 1569 next_page: 1570 page_addr += mr->page_size; 1571 } while (page_addr < end_dma_addr); 1572 1573 mr->length += dma_len; 1574 last_end_dma_addr = end_dma_addr; 1575 last_page_addr = end_dma_addr & page_mask; 1576 last_page_off = end_dma_addr & ~page_mask; 1577 } 1578 1579 return i; 1580 } 1581 EXPORT_SYMBOL(ib_sg_to_pages); 1582