xref: /openbmc/linux/drivers/infiniband/core/verbs.c (revision 93032e31)
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38 
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 
48 #include <rdma/ib_verbs.h>
49 #include <rdma/ib_cache.h>
50 #include <rdma/ib_addr.h>
51 #include <rdma/rw.h>
52 
53 #include "core_priv.h"
54 
55 static const char * const ib_events[] = {
56 	[IB_EVENT_CQ_ERR]		= "CQ error",
57 	[IB_EVENT_QP_FATAL]		= "QP fatal error",
58 	[IB_EVENT_QP_REQ_ERR]		= "QP request error",
59 	[IB_EVENT_QP_ACCESS_ERR]	= "QP access error",
60 	[IB_EVENT_COMM_EST]		= "communication established",
61 	[IB_EVENT_SQ_DRAINED]		= "send queue drained",
62 	[IB_EVENT_PATH_MIG]		= "path migration successful",
63 	[IB_EVENT_PATH_MIG_ERR]		= "path migration error",
64 	[IB_EVENT_DEVICE_FATAL]		= "device fatal error",
65 	[IB_EVENT_PORT_ACTIVE]		= "port active",
66 	[IB_EVENT_PORT_ERR]		= "port error",
67 	[IB_EVENT_LID_CHANGE]		= "LID change",
68 	[IB_EVENT_PKEY_CHANGE]		= "P_key change",
69 	[IB_EVENT_SM_CHANGE]		= "SM change",
70 	[IB_EVENT_SRQ_ERR]		= "SRQ error",
71 	[IB_EVENT_SRQ_LIMIT_REACHED]	= "SRQ limit reached",
72 	[IB_EVENT_QP_LAST_WQE_REACHED]	= "last WQE reached",
73 	[IB_EVENT_CLIENT_REREGISTER]	= "client reregister",
74 	[IB_EVENT_GID_CHANGE]		= "GID changed",
75 };
76 
77 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
78 {
79 	size_t index = event;
80 
81 	return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
82 			ib_events[index] : "unrecognized event";
83 }
84 EXPORT_SYMBOL(ib_event_msg);
85 
86 static const char * const wc_statuses[] = {
87 	[IB_WC_SUCCESS]			= "success",
88 	[IB_WC_LOC_LEN_ERR]		= "local length error",
89 	[IB_WC_LOC_QP_OP_ERR]		= "local QP operation error",
90 	[IB_WC_LOC_EEC_OP_ERR]		= "local EE context operation error",
91 	[IB_WC_LOC_PROT_ERR]		= "local protection error",
92 	[IB_WC_WR_FLUSH_ERR]		= "WR flushed",
93 	[IB_WC_MW_BIND_ERR]		= "memory management operation error",
94 	[IB_WC_BAD_RESP_ERR]		= "bad response error",
95 	[IB_WC_LOC_ACCESS_ERR]		= "local access error",
96 	[IB_WC_REM_INV_REQ_ERR]		= "invalid request error",
97 	[IB_WC_REM_ACCESS_ERR]		= "remote access error",
98 	[IB_WC_REM_OP_ERR]		= "remote operation error",
99 	[IB_WC_RETRY_EXC_ERR]		= "transport retry counter exceeded",
100 	[IB_WC_RNR_RETRY_EXC_ERR]	= "RNR retry counter exceeded",
101 	[IB_WC_LOC_RDD_VIOL_ERR]	= "local RDD violation error",
102 	[IB_WC_REM_INV_RD_REQ_ERR]	= "remote invalid RD request",
103 	[IB_WC_REM_ABORT_ERR]		= "operation aborted",
104 	[IB_WC_INV_EECN_ERR]		= "invalid EE context number",
105 	[IB_WC_INV_EEC_STATE_ERR]	= "invalid EE context state",
106 	[IB_WC_FATAL_ERR]		= "fatal error",
107 	[IB_WC_RESP_TIMEOUT_ERR]	= "response timeout error",
108 	[IB_WC_GENERAL_ERR]		= "general error",
109 };
110 
111 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
112 {
113 	size_t index = status;
114 
115 	return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
116 			wc_statuses[index] : "unrecognized status";
117 }
118 EXPORT_SYMBOL(ib_wc_status_msg);
119 
120 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
121 {
122 	switch (rate) {
123 	case IB_RATE_2_5_GBPS: return  1;
124 	case IB_RATE_5_GBPS:   return  2;
125 	case IB_RATE_10_GBPS:  return  4;
126 	case IB_RATE_20_GBPS:  return  8;
127 	case IB_RATE_30_GBPS:  return 12;
128 	case IB_RATE_40_GBPS:  return 16;
129 	case IB_RATE_60_GBPS:  return 24;
130 	case IB_RATE_80_GBPS:  return 32;
131 	case IB_RATE_120_GBPS: return 48;
132 	default:	       return -1;
133 	}
134 }
135 EXPORT_SYMBOL(ib_rate_to_mult);
136 
137 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
138 {
139 	switch (mult) {
140 	case 1:  return IB_RATE_2_5_GBPS;
141 	case 2:  return IB_RATE_5_GBPS;
142 	case 4:  return IB_RATE_10_GBPS;
143 	case 8:  return IB_RATE_20_GBPS;
144 	case 12: return IB_RATE_30_GBPS;
145 	case 16: return IB_RATE_40_GBPS;
146 	case 24: return IB_RATE_60_GBPS;
147 	case 32: return IB_RATE_80_GBPS;
148 	case 48: return IB_RATE_120_GBPS;
149 	default: return IB_RATE_PORT_CURRENT;
150 	}
151 }
152 EXPORT_SYMBOL(mult_to_ib_rate);
153 
154 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
155 {
156 	switch (rate) {
157 	case IB_RATE_2_5_GBPS: return 2500;
158 	case IB_RATE_5_GBPS:   return 5000;
159 	case IB_RATE_10_GBPS:  return 10000;
160 	case IB_RATE_20_GBPS:  return 20000;
161 	case IB_RATE_30_GBPS:  return 30000;
162 	case IB_RATE_40_GBPS:  return 40000;
163 	case IB_RATE_60_GBPS:  return 60000;
164 	case IB_RATE_80_GBPS:  return 80000;
165 	case IB_RATE_120_GBPS: return 120000;
166 	case IB_RATE_14_GBPS:  return 14062;
167 	case IB_RATE_56_GBPS:  return 56250;
168 	case IB_RATE_112_GBPS: return 112500;
169 	case IB_RATE_168_GBPS: return 168750;
170 	case IB_RATE_25_GBPS:  return 25781;
171 	case IB_RATE_100_GBPS: return 103125;
172 	case IB_RATE_200_GBPS: return 206250;
173 	case IB_RATE_300_GBPS: return 309375;
174 	default:	       return -1;
175 	}
176 }
177 EXPORT_SYMBOL(ib_rate_to_mbps);
178 
179 __attribute_const__ enum rdma_transport_type
180 rdma_node_get_transport(enum rdma_node_type node_type)
181 {
182 	switch (node_type) {
183 	case RDMA_NODE_IB_CA:
184 	case RDMA_NODE_IB_SWITCH:
185 	case RDMA_NODE_IB_ROUTER:
186 		return RDMA_TRANSPORT_IB;
187 	case RDMA_NODE_RNIC:
188 		return RDMA_TRANSPORT_IWARP;
189 	case RDMA_NODE_USNIC:
190 		return RDMA_TRANSPORT_USNIC;
191 	case RDMA_NODE_USNIC_UDP:
192 		return RDMA_TRANSPORT_USNIC_UDP;
193 	default:
194 		BUG();
195 		return 0;
196 	}
197 }
198 EXPORT_SYMBOL(rdma_node_get_transport);
199 
200 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
201 {
202 	if (device->get_link_layer)
203 		return device->get_link_layer(device, port_num);
204 
205 	switch (rdma_node_get_transport(device->node_type)) {
206 	case RDMA_TRANSPORT_IB:
207 		return IB_LINK_LAYER_INFINIBAND;
208 	case RDMA_TRANSPORT_IWARP:
209 	case RDMA_TRANSPORT_USNIC:
210 	case RDMA_TRANSPORT_USNIC_UDP:
211 		return IB_LINK_LAYER_ETHERNET;
212 	default:
213 		return IB_LINK_LAYER_UNSPECIFIED;
214 	}
215 }
216 EXPORT_SYMBOL(rdma_port_get_link_layer);
217 
218 /* Protection domains */
219 
220 /**
221  * ib_alloc_pd - Allocates an unused protection domain.
222  * @device: The device on which to allocate the protection domain.
223  *
224  * A protection domain object provides an association between QPs, shared
225  * receive queues, address handles, memory regions, and memory windows.
226  *
227  * Every PD has a local_dma_lkey which can be used as the lkey value for local
228  * memory operations.
229  */
230 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
231 		const char *caller)
232 {
233 	struct ib_pd *pd;
234 	int mr_access_flags = 0;
235 
236 	pd = device->alloc_pd(device, NULL, NULL);
237 	if (IS_ERR(pd))
238 		return pd;
239 
240 	pd->device = device;
241 	pd->uobject = NULL;
242 	pd->__internal_mr = NULL;
243 	atomic_set(&pd->usecnt, 0);
244 	pd->flags = flags;
245 
246 	if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
247 		pd->local_dma_lkey = device->local_dma_lkey;
248 	else
249 		mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
250 
251 	if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
252 		pr_warn("%s: enabling unsafe global rkey\n", caller);
253 		mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
254 	}
255 
256 	if (mr_access_flags) {
257 		struct ib_mr *mr;
258 
259 		mr = pd->device->get_dma_mr(pd, mr_access_flags);
260 		if (IS_ERR(mr)) {
261 			ib_dealloc_pd(pd);
262 			return ERR_CAST(mr);
263 		}
264 
265 		mr->device	= pd->device;
266 		mr->pd		= pd;
267 		mr->uobject	= NULL;
268 		mr->need_inval	= false;
269 
270 		pd->__internal_mr = mr;
271 
272 		if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
273 			pd->local_dma_lkey = pd->__internal_mr->lkey;
274 
275 		if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
276 			pd->unsafe_global_rkey = pd->__internal_mr->rkey;
277 	}
278 
279 	return pd;
280 }
281 EXPORT_SYMBOL(__ib_alloc_pd);
282 
283 /**
284  * ib_dealloc_pd - Deallocates a protection domain.
285  * @pd: The protection domain to deallocate.
286  *
287  * It is an error to call this function while any resources in the pd still
288  * exist.  The caller is responsible to synchronously destroy them and
289  * guarantee no new allocations will happen.
290  */
291 void ib_dealloc_pd(struct ib_pd *pd)
292 {
293 	int ret;
294 
295 	if (pd->__internal_mr) {
296 		ret = pd->device->dereg_mr(pd->__internal_mr);
297 		WARN_ON(ret);
298 		pd->__internal_mr = NULL;
299 	}
300 
301 	/* uverbs manipulates usecnt with proper locking, while the kabi
302 	   requires the caller to guarantee we can't race here. */
303 	WARN_ON(atomic_read(&pd->usecnt));
304 
305 	/* Making delalloc_pd a void return is a WIP, no driver should return
306 	   an error here. */
307 	ret = pd->device->dealloc_pd(pd);
308 	WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
309 }
310 EXPORT_SYMBOL(ib_dealloc_pd);
311 
312 /* Address handles */
313 
314 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr)
315 {
316 	struct ib_ah *ah;
317 
318 	ah = pd->device->create_ah(pd, ah_attr);
319 
320 	if (!IS_ERR(ah)) {
321 		ah->device  = pd->device;
322 		ah->pd      = pd;
323 		ah->uobject = NULL;
324 		atomic_inc(&pd->usecnt);
325 	}
326 
327 	return ah;
328 }
329 EXPORT_SYMBOL(ib_create_ah);
330 
331 static int ib_get_header_version(const union rdma_network_hdr *hdr)
332 {
333 	const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
334 	struct iphdr ip4h_checked;
335 	const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
336 
337 	/* If it's IPv6, the version must be 6, otherwise, the first
338 	 * 20 bytes (before the IPv4 header) are garbled.
339 	 */
340 	if (ip6h->version != 6)
341 		return (ip4h->version == 4) ? 4 : 0;
342 	/* version may be 6 or 4 because the first 20 bytes could be garbled */
343 
344 	/* RoCE v2 requires no options, thus header length
345 	 * must be 5 words
346 	 */
347 	if (ip4h->ihl != 5)
348 		return 6;
349 
350 	/* Verify checksum.
351 	 * We can't write on scattered buffers so we need to copy to
352 	 * temp buffer.
353 	 */
354 	memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
355 	ip4h_checked.check = 0;
356 	ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
357 	/* if IPv4 header checksum is OK, believe it */
358 	if (ip4h->check == ip4h_checked.check)
359 		return 4;
360 	return 6;
361 }
362 
363 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
364 						     u8 port_num,
365 						     const struct ib_grh *grh)
366 {
367 	int grh_version;
368 
369 	if (rdma_protocol_ib(device, port_num))
370 		return RDMA_NETWORK_IB;
371 
372 	grh_version = ib_get_header_version((union rdma_network_hdr *)grh);
373 
374 	if (grh_version == 4)
375 		return RDMA_NETWORK_IPV4;
376 
377 	if (grh->next_hdr == IPPROTO_UDP)
378 		return RDMA_NETWORK_IPV6;
379 
380 	return RDMA_NETWORK_ROCE_V1;
381 }
382 
383 struct find_gid_index_context {
384 	u16 vlan_id;
385 	enum ib_gid_type gid_type;
386 };
387 
388 static bool find_gid_index(const union ib_gid *gid,
389 			   const struct ib_gid_attr *gid_attr,
390 			   void *context)
391 {
392 	struct find_gid_index_context *ctx =
393 		(struct find_gid_index_context *)context;
394 
395 	if (ctx->gid_type != gid_attr->gid_type)
396 		return false;
397 
398 	if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
399 	    (is_vlan_dev(gid_attr->ndev) &&
400 	     vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
401 		return false;
402 
403 	return true;
404 }
405 
406 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
407 				   u16 vlan_id, const union ib_gid *sgid,
408 				   enum ib_gid_type gid_type,
409 				   u16 *gid_index)
410 {
411 	struct find_gid_index_context context = {.vlan_id = vlan_id,
412 						 .gid_type = gid_type};
413 
414 	return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
415 				     &context, gid_index);
416 }
417 
418 static int get_gids_from_rdma_hdr(union rdma_network_hdr *hdr,
419 				  enum rdma_network_type net_type,
420 				  union ib_gid *sgid, union ib_gid *dgid)
421 {
422 	struct sockaddr_in  src_in;
423 	struct sockaddr_in  dst_in;
424 	__be32 src_saddr, dst_saddr;
425 
426 	if (!sgid || !dgid)
427 		return -EINVAL;
428 
429 	if (net_type == RDMA_NETWORK_IPV4) {
430 		memcpy(&src_in.sin_addr.s_addr,
431 		       &hdr->roce4grh.saddr, 4);
432 		memcpy(&dst_in.sin_addr.s_addr,
433 		       &hdr->roce4grh.daddr, 4);
434 		src_saddr = src_in.sin_addr.s_addr;
435 		dst_saddr = dst_in.sin_addr.s_addr;
436 		ipv6_addr_set_v4mapped(src_saddr,
437 				       (struct in6_addr *)sgid);
438 		ipv6_addr_set_v4mapped(dst_saddr,
439 				       (struct in6_addr *)dgid);
440 		return 0;
441 	} else if (net_type == RDMA_NETWORK_IPV6 ||
442 		   net_type == RDMA_NETWORK_IB) {
443 		*dgid = hdr->ibgrh.dgid;
444 		*sgid = hdr->ibgrh.sgid;
445 		return 0;
446 	} else {
447 		return -EINVAL;
448 	}
449 }
450 
451 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
452 		       const struct ib_wc *wc, const struct ib_grh *grh,
453 		       struct ib_ah_attr *ah_attr)
454 {
455 	u32 flow_class;
456 	u16 gid_index;
457 	int ret;
458 	enum rdma_network_type net_type = RDMA_NETWORK_IB;
459 	enum ib_gid_type gid_type = IB_GID_TYPE_IB;
460 	int hoplimit = 0xff;
461 	union ib_gid dgid;
462 	union ib_gid sgid;
463 
464 	memset(ah_attr, 0, sizeof *ah_attr);
465 	if (rdma_cap_eth_ah(device, port_num)) {
466 		if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
467 			net_type = wc->network_hdr_type;
468 		else
469 			net_type = ib_get_net_type_by_grh(device, port_num, grh);
470 		gid_type = ib_network_to_gid_type(net_type);
471 	}
472 	ret = get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
473 				     &sgid, &dgid);
474 	if (ret)
475 		return ret;
476 
477 	if (rdma_protocol_roce(device, port_num)) {
478 		int if_index = 0;
479 		u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
480 				wc->vlan_id : 0xffff;
481 		struct net_device *idev;
482 		struct net_device *resolved_dev;
483 
484 		if (!(wc->wc_flags & IB_WC_GRH))
485 			return -EPROTOTYPE;
486 
487 		if (!device->get_netdev)
488 			return -EOPNOTSUPP;
489 
490 		idev = device->get_netdev(device, port_num);
491 		if (!idev)
492 			return -ENODEV;
493 
494 		ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
495 						   ah_attr->dmac,
496 						   wc->wc_flags & IB_WC_WITH_VLAN ?
497 						   NULL : &vlan_id,
498 						   &if_index, &hoplimit);
499 		if (ret) {
500 			dev_put(idev);
501 			return ret;
502 		}
503 
504 		resolved_dev = dev_get_by_index(&init_net, if_index);
505 		if (resolved_dev->flags & IFF_LOOPBACK) {
506 			dev_put(resolved_dev);
507 			resolved_dev = idev;
508 			dev_hold(resolved_dev);
509 		}
510 		rcu_read_lock();
511 		if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
512 								   resolved_dev))
513 			ret = -EHOSTUNREACH;
514 		rcu_read_unlock();
515 		dev_put(idev);
516 		dev_put(resolved_dev);
517 		if (ret)
518 			return ret;
519 
520 		ret = get_sgid_index_from_eth(device, port_num, vlan_id,
521 					      &dgid, gid_type, &gid_index);
522 		if (ret)
523 			return ret;
524 	}
525 
526 	ah_attr->dlid = wc->slid;
527 	ah_attr->sl = wc->sl;
528 	ah_attr->src_path_bits = wc->dlid_path_bits;
529 	ah_attr->port_num = port_num;
530 
531 	if (wc->wc_flags & IB_WC_GRH) {
532 		ah_attr->ah_flags = IB_AH_GRH;
533 		ah_attr->grh.dgid = sgid;
534 
535 		if (!rdma_cap_eth_ah(device, port_num)) {
536 			if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
537 				ret = ib_find_cached_gid_by_port(device, &dgid,
538 								 IB_GID_TYPE_IB,
539 								 port_num, NULL,
540 								 &gid_index);
541 				if (ret)
542 					return ret;
543 			} else {
544 				gid_index = 0;
545 			}
546 		}
547 
548 		ah_attr->grh.sgid_index = (u8) gid_index;
549 		flow_class = be32_to_cpu(grh->version_tclass_flow);
550 		ah_attr->grh.flow_label = flow_class & 0xFFFFF;
551 		ah_attr->grh.hop_limit = hoplimit;
552 		ah_attr->grh.traffic_class = (flow_class >> 20) & 0xFF;
553 	}
554 	return 0;
555 }
556 EXPORT_SYMBOL(ib_init_ah_from_wc);
557 
558 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
559 				   const struct ib_grh *grh, u8 port_num)
560 {
561 	struct ib_ah_attr ah_attr;
562 	int ret;
563 
564 	ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
565 	if (ret)
566 		return ERR_PTR(ret);
567 
568 	return ib_create_ah(pd, &ah_attr);
569 }
570 EXPORT_SYMBOL(ib_create_ah_from_wc);
571 
572 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
573 {
574 	return ah->device->modify_ah ?
575 		ah->device->modify_ah(ah, ah_attr) :
576 		-ENOSYS;
577 }
578 EXPORT_SYMBOL(ib_modify_ah);
579 
580 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr)
581 {
582 	return ah->device->query_ah ?
583 		ah->device->query_ah(ah, ah_attr) :
584 		-ENOSYS;
585 }
586 EXPORT_SYMBOL(ib_query_ah);
587 
588 int ib_destroy_ah(struct ib_ah *ah)
589 {
590 	struct ib_pd *pd;
591 	int ret;
592 
593 	pd = ah->pd;
594 	ret = ah->device->destroy_ah(ah);
595 	if (!ret)
596 		atomic_dec(&pd->usecnt);
597 
598 	return ret;
599 }
600 EXPORT_SYMBOL(ib_destroy_ah);
601 
602 /* Shared receive queues */
603 
604 struct ib_srq *ib_create_srq(struct ib_pd *pd,
605 			     struct ib_srq_init_attr *srq_init_attr)
606 {
607 	struct ib_srq *srq;
608 
609 	if (!pd->device->create_srq)
610 		return ERR_PTR(-ENOSYS);
611 
612 	srq = pd->device->create_srq(pd, srq_init_attr, NULL);
613 
614 	if (!IS_ERR(srq)) {
615 		srq->device    	   = pd->device;
616 		srq->pd        	   = pd;
617 		srq->uobject       = NULL;
618 		srq->event_handler = srq_init_attr->event_handler;
619 		srq->srq_context   = srq_init_attr->srq_context;
620 		srq->srq_type      = srq_init_attr->srq_type;
621 		if (srq->srq_type == IB_SRQT_XRC) {
622 			srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
623 			srq->ext.xrc.cq   = srq_init_attr->ext.xrc.cq;
624 			atomic_inc(&srq->ext.xrc.xrcd->usecnt);
625 			atomic_inc(&srq->ext.xrc.cq->usecnt);
626 		}
627 		atomic_inc(&pd->usecnt);
628 		atomic_set(&srq->usecnt, 0);
629 	}
630 
631 	return srq;
632 }
633 EXPORT_SYMBOL(ib_create_srq);
634 
635 int ib_modify_srq(struct ib_srq *srq,
636 		  struct ib_srq_attr *srq_attr,
637 		  enum ib_srq_attr_mask srq_attr_mask)
638 {
639 	return srq->device->modify_srq ?
640 		srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
641 		-ENOSYS;
642 }
643 EXPORT_SYMBOL(ib_modify_srq);
644 
645 int ib_query_srq(struct ib_srq *srq,
646 		 struct ib_srq_attr *srq_attr)
647 {
648 	return srq->device->query_srq ?
649 		srq->device->query_srq(srq, srq_attr) : -ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_query_srq);
652 
653 int ib_destroy_srq(struct ib_srq *srq)
654 {
655 	struct ib_pd *pd;
656 	enum ib_srq_type srq_type;
657 	struct ib_xrcd *uninitialized_var(xrcd);
658 	struct ib_cq *uninitialized_var(cq);
659 	int ret;
660 
661 	if (atomic_read(&srq->usecnt))
662 		return -EBUSY;
663 
664 	pd = srq->pd;
665 	srq_type = srq->srq_type;
666 	if (srq_type == IB_SRQT_XRC) {
667 		xrcd = srq->ext.xrc.xrcd;
668 		cq = srq->ext.xrc.cq;
669 	}
670 
671 	ret = srq->device->destroy_srq(srq);
672 	if (!ret) {
673 		atomic_dec(&pd->usecnt);
674 		if (srq_type == IB_SRQT_XRC) {
675 			atomic_dec(&xrcd->usecnt);
676 			atomic_dec(&cq->usecnt);
677 		}
678 	}
679 
680 	return ret;
681 }
682 EXPORT_SYMBOL(ib_destroy_srq);
683 
684 /* Queue pairs */
685 
686 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
687 {
688 	struct ib_qp *qp = context;
689 	unsigned long flags;
690 
691 	spin_lock_irqsave(&qp->device->event_handler_lock, flags);
692 	list_for_each_entry(event->element.qp, &qp->open_list, open_list)
693 		if (event->element.qp->event_handler)
694 			event->element.qp->event_handler(event, event->element.qp->qp_context);
695 	spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
696 }
697 
698 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
699 {
700 	mutex_lock(&xrcd->tgt_qp_mutex);
701 	list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
702 	mutex_unlock(&xrcd->tgt_qp_mutex);
703 }
704 
705 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
706 				  void (*event_handler)(struct ib_event *, void *),
707 				  void *qp_context)
708 {
709 	struct ib_qp *qp;
710 	unsigned long flags;
711 
712 	qp = kzalloc(sizeof *qp, GFP_KERNEL);
713 	if (!qp)
714 		return ERR_PTR(-ENOMEM);
715 
716 	qp->real_qp = real_qp;
717 	atomic_inc(&real_qp->usecnt);
718 	qp->device = real_qp->device;
719 	qp->event_handler = event_handler;
720 	qp->qp_context = qp_context;
721 	qp->qp_num = real_qp->qp_num;
722 	qp->qp_type = real_qp->qp_type;
723 
724 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
725 	list_add(&qp->open_list, &real_qp->open_list);
726 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
727 
728 	return qp;
729 }
730 
731 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
732 			 struct ib_qp_open_attr *qp_open_attr)
733 {
734 	struct ib_qp *qp, *real_qp;
735 
736 	if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
737 		return ERR_PTR(-EINVAL);
738 
739 	qp = ERR_PTR(-EINVAL);
740 	mutex_lock(&xrcd->tgt_qp_mutex);
741 	list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
742 		if (real_qp->qp_num == qp_open_attr->qp_num) {
743 			qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
744 					  qp_open_attr->qp_context);
745 			break;
746 		}
747 	}
748 	mutex_unlock(&xrcd->tgt_qp_mutex);
749 	return qp;
750 }
751 EXPORT_SYMBOL(ib_open_qp);
752 
753 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
754 		struct ib_qp_init_attr *qp_init_attr)
755 {
756 	struct ib_qp *real_qp = qp;
757 
758 	qp->event_handler = __ib_shared_qp_event_handler;
759 	qp->qp_context = qp;
760 	qp->pd = NULL;
761 	qp->send_cq = qp->recv_cq = NULL;
762 	qp->srq = NULL;
763 	qp->xrcd = qp_init_attr->xrcd;
764 	atomic_inc(&qp_init_attr->xrcd->usecnt);
765 	INIT_LIST_HEAD(&qp->open_list);
766 
767 	qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
768 			  qp_init_attr->qp_context);
769 	if (!IS_ERR(qp))
770 		__ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
771 	else
772 		real_qp->device->destroy_qp(real_qp);
773 	return qp;
774 }
775 
776 struct ib_qp *ib_create_qp(struct ib_pd *pd,
777 			   struct ib_qp_init_attr *qp_init_attr)
778 {
779 	struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
780 	struct ib_qp *qp;
781 	int ret;
782 
783 	if (qp_init_attr->rwq_ind_tbl &&
784 	    (qp_init_attr->recv_cq ||
785 	    qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
786 	    qp_init_attr->cap.max_recv_sge))
787 		return ERR_PTR(-EINVAL);
788 
789 	/*
790 	 * If the callers is using the RDMA API calculate the resources
791 	 * needed for the RDMA READ/WRITE operations.
792 	 *
793 	 * Note that these callers need to pass in a port number.
794 	 */
795 	if (qp_init_attr->cap.max_rdma_ctxs)
796 		rdma_rw_init_qp(device, qp_init_attr);
797 
798 	qp = device->create_qp(pd, qp_init_attr, NULL);
799 	if (IS_ERR(qp))
800 		return qp;
801 
802 	qp->device     = device;
803 	qp->real_qp    = qp;
804 	qp->uobject    = NULL;
805 	qp->qp_type    = qp_init_attr->qp_type;
806 	qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
807 
808 	atomic_set(&qp->usecnt, 0);
809 	qp->mrs_used = 0;
810 	spin_lock_init(&qp->mr_lock);
811 	INIT_LIST_HEAD(&qp->rdma_mrs);
812 	INIT_LIST_HEAD(&qp->sig_mrs);
813 
814 	if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
815 		return ib_create_xrc_qp(qp, qp_init_attr);
816 
817 	qp->event_handler = qp_init_attr->event_handler;
818 	qp->qp_context = qp_init_attr->qp_context;
819 	if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
820 		qp->recv_cq = NULL;
821 		qp->srq = NULL;
822 	} else {
823 		qp->recv_cq = qp_init_attr->recv_cq;
824 		if (qp_init_attr->recv_cq)
825 			atomic_inc(&qp_init_attr->recv_cq->usecnt);
826 		qp->srq = qp_init_attr->srq;
827 		if (qp->srq)
828 			atomic_inc(&qp_init_attr->srq->usecnt);
829 	}
830 
831 	qp->pd	    = pd;
832 	qp->send_cq = qp_init_attr->send_cq;
833 	qp->xrcd    = NULL;
834 
835 	atomic_inc(&pd->usecnt);
836 	if (qp_init_attr->send_cq)
837 		atomic_inc(&qp_init_attr->send_cq->usecnt);
838 	if (qp_init_attr->rwq_ind_tbl)
839 		atomic_inc(&qp->rwq_ind_tbl->usecnt);
840 
841 	if (qp_init_attr->cap.max_rdma_ctxs) {
842 		ret = rdma_rw_init_mrs(qp, qp_init_attr);
843 		if (ret) {
844 			pr_err("failed to init MR pool ret= %d\n", ret);
845 			ib_destroy_qp(qp);
846 			return ERR_PTR(ret);
847 		}
848 	}
849 
850 	/*
851 	 * Note: all hw drivers guarantee that max_send_sge is lower than
852 	 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
853 	 * max_send_sge <= max_sge_rd.
854 	 */
855 	qp->max_write_sge = qp_init_attr->cap.max_send_sge;
856 	qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
857 				 device->attrs.max_sge_rd);
858 
859 	return qp;
860 }
861 EXPORT_SYMBOL(ib_create_qp);
862 
863 static const struct {
864 	int			valid;
865 	enum ib_qp_attr_mask	req_param[IB_QPT_MAX];
866 	enum ib_qp_attr_mask	opt_param[IB_QPT_MAX];
867 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
868 	[IB_QPS_RESET] = {
869 		[IB_QPS_RESET] = { .valid = 1 },
870 		[IB_QPS_INIT]  = {
871 			.valid = 1,
872 			.req_param = {
873 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
874 						IB_QP_PORT			|
875 						IB_QP_QKEY),
876 				[IB_QPT_RAW_PACKET] = IB_QP_PORT,
877 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
878 						IB_QP_PORT			|
879 						IB_QP_ACCESS_FLAGS),
880 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
881 						IB_QP_PORT			|
882 						IB_QP_ACCESS_FLAGS),
883 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
884 						IB_QP_PORT			|
885 						IB_QP_ACCESS_FLAGS),
886 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
887 						IB_QP_PORT			|
888 						IB_QP_ACCESS_FLAGS),
889 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
890 						IB_QP_QKEY),
891 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
892 						IB_QP_QKEY),
893 			}
894 		},
895 	},
896 	[IB_QPS_INIT]  = {
897 		[IB_QPS_RESET] = { .valid = 1 },
898 		[IB_QPS_ERR] =   { .valid = 1 },
899 		[IB_QPS_INIT]  = {
900 			.valid = 1,
901 			.opt_param = {
902 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
903 						IB_QP_PORT			|
904 						IB_QP_QKEY),
905 				[IB_QPT_UC]  = (IB_QP_PKEY_INDEX		|
906 						IB_QP_PORT			|
907 						IB_QP_ACCESS_FLAGS),
908 				[IB_QPT_RC]  = (IB_QP_PKEY_INDEX		|
909 						IB_QP_PORT			|
910 						IB_QP_ACCESS_FLAGS),
911 				[IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX		|
912 						IB_QP_PORT			|
913 						IB_QP_ACCESS_FLAGS),
914 				[IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX		|
915 						IB_QP_PORT			|
916 						IB_QP_ACCESS_FLAGS),
917 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
918 						IB_QP_QKEY),
919 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
920 						IB_QP_QKEY),
921 			}
922 		},
923 		[IB_QPS_RTR]   = {
924 			.valid = 1,
925 			.req_param = {
926 				[IB_QPT_UC]  = (IB_QP_AV			|
927 						IB_QP_PATH_MTU			|
928 						IB_QP_DEST_QPN			|
929 						IB_QP_RQ_PSN),
930 				[IB_QPT_RC]  = (IB_QP_AV			|
931 						IB_QP_PATH_MTU			|
932 						IB_QP_DEST_QPN			|
933 						IB_QP_RQ_PSN			|
934 						IB_QP_MAX_DEST_RD_ATOMIC	|
935 						IB_QP_MIN_RNR_TIMER),
936 				[IB_QPT_XRC_INI] = (IB_QP_AV			|
937 						IB_QP_PATH_MTU			|
938 						IB_QP_DEST_QPN			|
939 						IB_QP_RQ_PSN),
940 				[IB_QPT_XRC_TGT] = (IB_QP_AV			|
941 						IB_QP_PATH_MTU			|
942 						IB_QP_DEST_QPN			|
943 						IB_QP_RQ_PSN			|
944 						IB_QP_MAX_DEST_RD_ATOMIC	|
945 						IB_QP_MIN_RNR_TIMER),
946 			},
947 			.opt_param = {
948 				 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
949 						 IB_QP_QKEY),
950 				 [IB_QPT_UC]  = (IB_QP_ALT_PATH			|
951 						 IB_QP_ACCESS_FLAGS		|
952 						 IB_QP_PKEY_INDEX),
953 				 [IB_QPT_RC]  = (IB_QP_ALT_PATH			|
954 						 IB_QP_ACCESS_FLAGS		|
955 						 IB_QP_PKEY_INDEX),
956 				 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH		|
957 						 IB_QP_ACCESS_FLAGS		|
958 						 IB_QP_PKEY_INDEX),
959 				 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH		|
960 						 IB_QP_ACCESS_FLAGS		|
961 						 IB_QP_PKEY_INDEX),
962 				 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
963 						 IB_QP_QKEY),
964 				 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
965 						 IB_QP_QKEY),
966 			 },
967 		},
968 	},
969 	[IB_QPS_RTR]   = {
970 		[IB_QPS_RESET] = { .valid = 1 },
971 		[IB_QPS_ERR] =   { .valid = 1 },
972 		[IB_QPS_RTS]   = {
973 			.valid = 1,
974 			.req_param = {
975 				[IB_QPT_UD]  = IB_QP_SQ_PSN,
976 				[IB_QPT_UC]  = IB_QP_SQ_PSN,
977 				[IB_QPT_RC]  = (IB_QP_TIMEOUT			|
978 						IB_QP_RETRY_CNT			|
979 						IB_QP_RNR_RETRY			|
980 						IB_QP_SQ_PSN			|
981 						IB_QP_MAX_QP_RD_ATOMIC),
982 				[IB_QPT_XRC_INI] = (IB_QP_TIMEOUT		|
983 						IB_QP_RETRY_CNT			|
984 						IB_QP_RNR_RETRY			|
985 						IB_QP_SQ_PSN			|
986 						IB_QP_MAX_QP_RD_ATOMIC),
987 				[IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT		|
988 						IB_QP_SQ_PSN),
989 				[IB_QPT_SMI] = IB_QP_SQ_PSN,
990 				[IB_QPT_GSI] = IB_QP_SQ_PSN,
991 			},
992 			.opt_param = {
993 				 [IB_QPT_UD]  = (IB_QP_CUR_STATE		|
994 						 IB_QP_QKEY),
995 				 [IB_QPT_UC]  = (IB_QP_CUR_STATE		|
996 						 IB_QP_ALT_PATH			|
997 						 IB_QP_ACCESS_FLAGS		|
998 						 IB_QP_PATH_MIG_STATE),
999 				 [IB_QPT_RC]  = (IB_QP_CUR_STATE		|
1000 						 IB_QP_ALT_PATH			|
1001 						 IB_QP_ACCESS_FLAGS		|
1002 						 IB_QP_MIN_RNR_TIMER		|
1003 						 IB_QP_PATH_MIG_STATE),
1004 				 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1005 						 IB_QP_ALT_PATH			|
1006 						 IB_QP_ACCESS_FLAGS		|
1007 						 IB_QP_PATH_MIG_STATE),
1008 				 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1009 						 IB_QP_ALT_PATH			|
1010 						 IB_QP_ACCESS_FLAGS		|
1011 						 IB_QP_MIN_RNR_TIMER		|
1012 						 IB_QP_PATH_MIG_STATE),
1013 				 [IB_QPT_SMI] = (IB_QP_CUR_STATE		|
1014 						 IB_QP_QKEY),
1015 				 [IB_QPT_GSI] = (IB_QP_CUR_STATE		|
1016 						 IB_QP_QKEY),
1017 			 }
1018 		}
1019 	},
1020 	[IB_QPS_RTS]   = {
1021 		[IB_QPS_RESET] = { .valid = 1 },
1022 		[IB_QPS_ERR] =   { .valid = 1 },
1023 		[IB_QPS_RTS]   = {
1024 			.valid = 1,
1025 			.opt_param = {
1026 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1027 						IB_QP_QKEY),
1028 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1029 						IB_QP_ACCESS_FLAGS		|
1030 						IB_QP_ALT_PATH			|
1031 						IB_QP_PATH_MIG_STATE),
1032 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1033 						IB_QP_ACCESS_FLAGS		|
1034 						IB_QP_ALT_PATH			|
1035 						IB_QP_PATH_MIG_STATE		|
1036 						IB_QP_MIN_RNR_TIMER),
1037 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1038 						IB_QP_ACCESS_FLAGS		|
1039 						IB_QP_ALT_PATH			|
1040 						IB_QP_PATH_MIG_STATE),
1041 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1042 						IB_QP_ACCESS_FLAGS		|
1043 						IB_QP_ALT_PATH			|
1044 						IB_QP_PATH_MIG_STATE		|
1045 						IB_QP_MIN_RNR_TIMER),
1046 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1047 						IB_QP_QKEY),
1048 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1049 						IB_QP_QKEY),
1050 			}
1051 		},
1052 		[IB_QPS_SQD]   = {
1053 			.valid = 1,
1054 			.opt_param = {
1055 				[IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1056 				[IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1057 				[IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1058 				[IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1059 				[IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1060 				[IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1061 				[IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1062 			}
1063 		},
1064 	},
1065 	[IB_QPS_SQD]   = {
1066 		[IB_QPS_RESET] = { .valid = 1 },
1067 		[IB_QPS_ERR] =   { .valid = 1 },
1068 		[IB_QPS_RTS]   = {
1069 			.valid = 1,
1070 			.opt_param = {
1071 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1072 						IB_QP_QKEY),
1073 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1074 						IB_QP_ALT_PATH			|
1075 						IB_QP_ACCESS_FLAGS		|
1076 						IB_QP_PATH_MIG_STATE),
1077 				[IB_QPT_RC]  = (IB_QP_CUR_STATE			|
1078 						IB_QP_ALT_PATH			|
1079 						IB_QP_ACCESS_FLAGS		|
1080 						IB_QP_MIN_RNR_TIMER		|
1081 						IB_QP_PATH_MIG_STATE),
1082 				[IB_QPT_XRC_INI] = (IB_QP_CUR_STATE		|
1083 						IB_QP_ALT_PATH			|
1084 						IB_QP_ACCESS_FLAGS		|
1085 						IB_QP_PATH_MIG_STATE),
1086 				[IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE		|
1087 						IB_QP_ALT_PATH			|
1088 						IB_QP_ACCESS_FLAGS		|
1089 						IB_QP_MIN_RNR_TIMER		|
1090 						IB_QP_PATH_MIG_STATE),
1091 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1092 						IB_QP_QKEY),
1093 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1094 						IB_QP_QKEY),
1095 			}
1096 		},
1097 		[IB_QPS_SQD]   = {
1098 			.valid = 1,
1099 			.opt_param = {
1100 				[IB_QPT_UD]  = (IB_QP_PKEY_INDEX		|
1101 						IB_QP_QKEY),
1102 				[IB_QPT_UC]  = (IB_QP_AV			|
1103 						IB_QP_ALT_PATH			|
1104 						IB_QP_ACCESS_FLAGS		|
1105 						IB_QP_PKEY_INDEX		|
1106 						IB_QP_PATH_MIG_STATE),
1107 				[IB_QPT_RC]  = (IB_QP_PORT			|
1108 						IB_QP_AV			|
1109 						IB_QP_TIMEOUT			|
1110 						IB_QP_RETRY_CNT			|
1111 						IB_QP_RNR_RETRY			|
1112 						IB_QP_MAX_QP_RD_ATOMIC		|
1113 						IB_QP_MAX_DEST_RD_ATOMIC	|
1114 						IB_QP_ALT_PATH			|
1115 						IB_QP_ACCESS_FLAGS		|
1116 						IB_QP_PKEY_INDEX		|
1117 						IB_QP_MIN_RNR_TIMER		|
1118 						IB_QP_PATH_MIG_STATE),
1119 				[IB_QPT_XRC_INI] = (IB_QP_PORT			|
1120 						IB_QP_AV			|
1121 						IB_QP_TIMEOUT			|
1122 						IB_QP_RETRY_CNT			|
1123 						IB_QP_RNR_RETRY			|
1124 						IB_QP_MAX_QP_RD_ATOMIC		|
1125 						IB_QP_ALT_PATH			|
1126 						IB_QP_ACCESS_FLAGS		|
1127 						IB_QP_PKEY_INDEX		|
1128 						IB_QP_PATH_MIG_STATE),
1129 				[IB_QPT_XRC_TGT] = (IB_QP_PORT			|
1130 						IB_QP_AV			|
1131 						IB_QP_TIMEOUT			|
1132 						IB_QP_MAX_DEST_RD_ATOMIC	|
1133 						IB_QP_ALT_PATH			|
1134 						IB_QP_ACCESS_FLAGS		|
1135 						IB_QP_PKEY_INDEX		|
1136 						IB_QP_MIN_RNR_TIMER		|
1137 						IB_QP_PATH_MIG_STATE),
1138 				[IB_QPT_SMI] = (IB_QP_PKEY_INDEX		|
1139 						IB_QP_QKEY),
1140 				[IB_QPT_GSI] = (IB_QP_PKEY_INDEX		|
1141 						IB_QP_QKEY),
1142 			}
1143 		}
1144 	},
1145 	[IB_QPS_SQE]   = {
1146 		[IB_QPS_RESET] = { .valid = 1 },
1147 		[IB_QPS_ERR] =   { .valid = 1 },
1148 		[IB_QPS_RTS]   = {
1149 			.valid = 1,
1150 			.opt_param = {
1151 				[IB_QPT_UD]  = (IB_QP_CUR_STATE			|
1152 						IB_QP_QKEY),
1153 				[IB_QPT_UC]  = (IB_QP_CUR_STATE			|
1154 						IB_QP_ACCESS_FLAGS),
1155 				[IB_QPT_SMI] = (IB_QP_CUR_STATE			|
1156 						IB_QP_QKEY),
1157 				[IB_QPT_GSI] = (IB_QP_CUR_STATE			|
1158 						IB_QP_QKEY),
1159 			}
1160 		}
1161 	},
1162 	[IB_QPS_ERR] = {
1163 		[IB_QPS_RESET] = { .valid = 1 },
1164 		[IB_QPS_ERR] =   { .valid = 1 }
1165 	}
1166 };
1167 
1168 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1169 		       enum ib_qp_type type, enum ib_qp_attr_mask mask,
1170 		       enum rdma_link_layer ll)
1171 {
1172 	enum ib_qp_attr_mask req_param, opt_param;
1173 
1174 	if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1175 	    next_state < 0 || next_state > IB_QPS_ERR)
1176 		return 0;
1177 
1178 	if (mask & IB_QP_CUR_STATE  &&
1179 	    cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1180 	    cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1181 		return 0;
1182 
1183 	if (!qp_state_table[cur_state][next_state].valid)
1184 		return 0;
1185 
1186 	req_param = qp_state_table[cur_state][next_state].req_param[type];
1187 	opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1188 
1189 	if ((mask & req_param) != req_param)
1190 		return 0;
1191 
1192 	if (mask & ~(req_param | opt_param | IB_QP_STATE))
1193 		return 0;
1194 
1195 	return 1;
1196 }
1197 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1198 
1199 int ib_resolve_eth_dmac(struct ib_qp *qp,
1200 			struct ib_qp_attr *qp_attr, int *qp_attr_mask)
1201 {
1202 	int           ret = 0;
1203 
1204 	if (*qp_attr_mask & IB_QP_AV) {
1205 		if (qp_attr->ah_attr.port_num < rdma_start_port(qp->device) ||
1206 		    qp_attr->ah_attr.port_num > rdma_end_port(qp->device))
1207 			return -EINVAL;
1208 
1209 		if (!rdma_cap_eth_ah(qp->device, qp_attr->ah_attr.port_num))
1210 			return 0;
1211 
1212 		if (rdma_link_local_addr((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw)) {
1213 			rdma_get_ll_mac((struct in6_addr *)qp_attr->ah_attr.grh.dgid.raw,
1214 					qp_attr->ah_attr.dmac);
1215 		} else {
1216 			union ib_gid		sgid;
1217 			struct ib_gid_attr	sgid_attr;
1218 			int			ifindex;
1219 			int			hop_limit;
1220 
1221 			ret = ib_query_gid(qp->device,
1222 					   qp_attr->ah_attr.port_num,
1223 					   qp_attr->ah_attr.grh.sgid_index,
1224 					   &sgid, &sgid_attr);
1225 
1226 			if (ret || !sgid_attr.ndev) {
1227 				if (!ret)
1228 					ret = -ENXIO;
1229 				goto out;
1230 			}
1231 
1232 			ifindex = sgid_attr.ndev->ifindex;
1233 
1234 			ret = rdma_addr_find_l2_eth_by_grh(&sgid,
1235 							   &qp_attr->ah_attr.grh.dgid,
1236 							   qp_attr->ah_attr.dmac,
1237 							   NULL, &ifindex, &hop_limit);
1238 
1239 			dev_put(sgid_attr.ndev);
1240 
1241 			qp_attr->ah_attr.grh.hop_limit = hop_limit;
1242 		}
1243 	}
1244 out:
1245 	return ret;
1246 }
1247 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1248 
1249 
1250 int ib_modify_qp(struct ib_qp *qp,
1251 		 struct ib_qp_attr *qp_attr,
1252 		 int qp_attr_mask)
1253 {
1254 	int ret;
1255 
1256 	ret = ib_resolve_eth_dmac(qp, qp_attr, &qp_attr_mask);
1257 	if (ret)
1258 		return ret;
1259 
1260 	return qp->device->modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1261 }
1262 EXPORT_SYMBOL(ib_modify_qp);
1263 
1264 int ib_query_qp(struct ib_qp *qp,
1265 		struct ib_qp_attr *qp_attr,
1266 		int qp_attr_mask,
1267 		struct ib_qp_init_attr *qp_init_attr)
1268 {
1269 	return qp->device->query_qp ?
1270 		qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1271 		-ENOSYS;
1272 }
1273 EXPORT_SYMBOL(ib_query_qp);
1274 
1275 int ib_close_qp(struct ib_qp *qp)
1276 {
1277 	struct ib_qp *real_qp;
1278 	unsigned long flags;
1279 
1280 	real_qp = qp->real_qp;
1281 	if (real_qp == qp)
1282 		return -EINVAL;
1283 
1284 	spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1285 	list_del(&qp->open_list);
1286 	spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1287 
1288 	atomic_dec(&real_qp->usecnt);
1289 	kfree(qp);
1290 
1291 	return 0;
1292 }
1293 EXPORT_SYMBOL(ib_close_qp);
1294 
1295 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1296 {
1297 	struct ib_xrcd *xrcd;
1298 	struct ib_qp *real_qp;
1299 	int ret;
1300 
1301 	real_qp = qp->real_qp;
1302 	xrcd = real_qp->xrcd;
1303 
1304 	mutex_lock(&xrcd->tgt_qp_mutex);
1305 	ib_close_qp(qp);
1306 	if (atomic_read(&real_qp->usecnt) == 0)
1307 		list_del(&real_qp->xrcd_list);
1308 	else
1309 		real_qp = NULL;
1310 	mutex_unlock(&xrcd->tgt_qp_mutex);
1311 
1312 	if (real_qp) {
1313 		ret = ib_destroy_qp(real_qp);
1314 		if (!ret)
1315 			atomic_dec(&xrcd->usecnt);
1316 		else
1317 			__ib_insert_xrcd_qp(xrcd, real_qp);
1318 	}
1319 
1320 	return 0;
1321 }
1322 
1323 int ib_destroy_qp(struct ib_qp *qp)
1324 {
1325 	struct ib_pd *pd;
1326 	struct ib_cq *scq, *rcq;
1327 	struct ib_srq *srq;
1328 	struct ib_rwq_ind_table *ind_tbl;
1329 	int ret;
1330 
1331 	WARN_ON_ONCE(qp->mrs_used > 0);
1332 
1333 	if (atomic_read(&qp->usecnt))
1334 		return -EBUSY;
1335 
1336 	if (qp->real_qp != qp)
1337 		return __ib_destroy_shared_qp(qp);
1338 
1339 	pd   = qp->pd;
1340 	scq  = qp->send_cq;
1341 	rcq  = qp->recv_cq;
1342 	srq  = qp->srq;
1343 	ind_tbl = qp->rwq_ind_tbl;
1344 
1345 	if (!qp->uobject)
1346 		rdma_rw_cleanup_mrs(qp);
1347 
1348 	ret = qp->device->destroy_qp(qp);
1349 	if (!ret) {
1350 		if (pd)
1351 			atomic_dec(&pd->usecnt);
1352 		if (scq)
1353 			atomic_dec(&scq->usecnt);
1354 		if (rcq)
1355 			atomic_dec(&rcq->usecnt);
1356 		if (srq)
1357 			atomic_dec(&srq->usecnt);
1358 		if (ind_tbl)
1359 			atomic_dec(&ind_tbl->usecnt);
1360 	}
1361 
1362 	return ret;
1363 }
1364 EXPORT_SYMBOL(ib_destroy_qp);
1365 
1366 /* Completion queues */
1367 
1368 struct ib_cq *ib_create_cq(struct ib_device *device,
1369 			   ib_comp_handler comp_handler,
1370 			   void (*event_handler)(struct ib_event *, void *),
1371 			   void *cq_context,
1372 			   const struct ib_cq_init_attr *cq_attr)
1373 {
1374 	struct ib_cq *cq;
1375 
1376 	cq = device->create_cq(device, cq_attr, NULL, NULL);
1377 
1378 	if (!IS_ERR(cq)) {
1379 		cq->device        = device;
1380 		cq->uobject       = NULL;
1381 		cq->comp_handler  = comp_handler;
1382 		cq->event_handler = event_handler;
1383 		cq->cq_context    = cq_context;
1384 		atomic_set(&cq->usecnt, 0);
1385 	}
1386 
1387 	return cq;
1388 }
1389 EXPORT_SYMBOL(ib_create_cq);
1390 
1391 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1392 {
1393 	return cq->device->modify_cq ?
1394 		cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1395 }
1396 EXPORT_SYMBOL(ib_modify_cq);
1397 
1398 int ib_destroy_cq(struct ib_cq *cq)
1399 {
1400 	if (atomic_read(&cq->usecnt))
1401 		return -EBUSY;
1402 
1403 	return cq->device->destroy_cq(cq);
1404 }
1405 EXPORT_SYMBOL(ib_destroy_cq);
1406 
1407 int ib_resize_cq(struct ib_cq *cq, int cqe)
1408 {
1409 	return cq->device->resize_cq ?
1410 		cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1411 }
1412 EXPORT_SYMBOL(ib_resize_cq);
1413 
1414 /* Memory regions */
1415 
1416 int ib_dereg_mr(struct ib_mr *mr)
1417 {
1418 	struct ib_pd *pd = mr->pd;
1419 	int ret;
1420 
1421 	ret = mr->device->dereg_mr(mr);
1422 	if (!ret)
1423 		atomic_dec(&pd->usecnt);
1424 
1425 	return ret;
1426 }
1427 EXPORT_SYMBOL(ib_dereg_mr);
1428 
1429 /**
1430  * ib_alloc_mr() - Allocates a memory region
1431  * @pd:            protection domain associated with the region
1432  * @mr_type:       memory region type
1433  * @max_num_sg:    maximum sg entries available for registration.
1434  *
1435  * Notes:
1436  * Memory registeration page/sg lists must not exceed max_num_sg.
1437  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1438  * max_num_sg * used_page_size.
1439  *
1440  */
1441 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1442 			  enum ib_mr_type mr_type,
1443 			  u32 max_num_sg)
1444 {
1445 	struct ib_mr *mr;
1446 
1447 	if (!pd->device->alloc_mr)
1448 		return ERR_PTR(-ENOSYS);
1449 
1450 	mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1451 	if (!IS_ERR(mr)) {
1452 		mr->device  = pd->device;
1453 		mr->pd      = pd;
1454 		mr->uobject = NULL;
1455 		atomic_inc(&pd->usecnt);
1456 		mr->need_inval = false;
1457 	}
1458 
1459 	return mr;
1460 }
1461 EXPORT_SYMBOL(ib_alloc_mr);
1462 
1463 /* "Fast" memory regions */
1464 
1465 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1466 			    int mr_access_flags,
1467 			    struct ib_fmr_attr *fmr_attr)
1468 {
1469 	struct ib_fmr *fmr;
1470 
1471 	if (!pd->device->alloc_fmr)
1472 		return ERR_PTR(-ENOSYS);
1473 
1474 	fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1475 	if (!IS_ERR(fmr)) {
1476 		fmr->device = pd->device;
1477 		fmr->pd     = pd;
1478 		atomic_inc(&pd->usecnt);
1479 	}
1480 
1481 	return fmr;
1482 }
1483 EXPORT_SYMBOL(ib_alloc_fmr);
1484 
1485 int ib_unmap_fmr(struct list_head *fmr_list)
1486 {
1487 	struct ib_fmr *fmr;
1488 
1489 	if (list_empty(fmr_list))
1490 		return 0;
1491 
1492 	fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1493 	return fmr->device->unmap_fmr(fmr_list);
1494 }
1495 EXPORT_SYMBOL(ib_unmap_fmr);
1496 
1497 int ib_dealloc_fmr(struct ib_fmr *fmr)
1498 {
1499 	struct ib_pd *pd;
1500 	int ret;
1501 
1502 	pd = fmr->pd;
1503 	ret = fmr->device->dealloc_fmr(fmr);
1504 	if (!ret)
1505 		atomic_dec(&pd->usecnt);
1506 
1507 	return ret;
1508 }
1509 EXPORT_SYMBOL(ib_dealloc_fmr);
1510 
1511 /* Multicast groups */
1512 
1513 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1514 {
1515 	int ret;
1516 
1517 	if (!qp->device->attach_mcast)
1518 		return -ENOSYS;
1519 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1520 		return -EINVAL;
1521 
1522 	ret = qp->device->attach_mcast(qp, gid, lid);
1523 	if (!ret)
1524 		atomic_inc(&qp->usecnt);
1525 	return ret;
1526 }
1527 EXPORT_SYMBOL(ib_attach_mcast);
1528 
1529 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1530 {
1531 	int ret;
1532 
1533 	if (!qp->device->detach_mcast)
1534 		return -ENOSYS;
1535 	if (gid->raw[0] != 0xff || qp->qp_type != IB_QPT_UD)
1536 		return -EINVAL;
1537 
1538 	ret = qp->device->detach_mcast(qp, gid, lid);
1539 	if (!ret)
1540 		atomic_dec(&qp->usecnt);
1541 	return ret;
1542 }
1543 EXPORT_SYMBOL(ib_detach_mcast);
1544 
1545 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1546 {
1547 	struct ib_xrcd *xrcd;
1548 
1549 	if (!device->alloc_xrcd)
1550 		return ERR_PTR(-ENOSYS);
1551 
1552 	xrcd = device->alloc_xrcd(device, NULL, NULL);
1553 	if (!IS_ERR(xrcd)) {
1554 		xrcd->device = device;
1555 		xrcd->inode = NULL;
1556 		atomic_set(&xrcd->usecnt, 0);
1557 		mutex_init(&xrcd->tgt_qp_mutex);
1558 		INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1559 	}
1560 
1561 	return xrcd;
1562 }
1563 EXPORT_SYMBOL(ib_alloc_xrcd);
1564 
1565 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1566 {
1567 	struct ib_qp *qp;
1568 	int ret;
1569 
1570 	if (atomic_read(&xrcd->usecnt))
1571 		return -EBUSY;
1572 
1573 	while (!list_empty(&xrcd->tgt_qp_list)) {
1574 		qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1575 		ret = ib_destroy_qp(qp);
1576 		if (ret)
1577 			return ret;
1578 	}
1579 
1580 	return xrcd->device->dealloc_xrcd(xrcd);
1581 }
1582 EXPORT_SYMBOL(ib_dealloc_xrcd);
1583 
1584 /**
1585  * ib_create_wq - Creates a WQ associated with the specified protection
1586  * domain.
1587  * @pd: The protection domain associated with the WQ.
1588  * @wq_init_attr: A list of initial attributes required to create the
1589  * WQ. If WQ creation succeeds, then the attributes are updated to
1590  * the actual capabilities of the created WQ.
1591  *
1592  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1593  * the requested size of the WQ, and set to the actual values allocated
1594  * on return.
1595  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1596  * at least as large as the requested values.
1597  */
1598 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1599 			   struct ib_wq_init_attr *wq_attr)
1600 {
1601 	struct ib_wq *wq;
1602 
1603 	if (!pd->device->create_wq)
1604 		return ERR_PTR(-ENOSYS);
1605 
1606 	wq = pd->device->create_wq(pd, wq_attr, NULL);
1607 	if (!IS_ERR(wq)) {
1608 		wq->event_handler = wq_attr->event_handler;
1609 		wq->wq_context = wq_attr->wq_context;
1610 		wq->wq_type = wq_attr->wq_type;
1611 		wq->cq = wq_attr->cq;
1612 		wq->device = pd->device;
1613 		wq->pd = pd;
1614 		wq->uobject = NULL;
1615 		atomic_inc(&pd->usecnt);
1616 		atomic_inc(&wq_attr->cq->usecnt);
1617 		atomic_set(&wq->usecnt, 0);
1618 	}
1619 	return wq;
1620 }
1621 EXPORT_SYMBOL(ib_create_wq);
1622 
1623 /**
1624  * ib_destroy_wq - Destroys the specified WQ.
1625  * @wq: The WQ to destroy.
1626  */
1627 int ib_destroy_wq(struct ib_wq *wq)
1628 {
1629 	int err;
1630 	struct ib_cq *cq = wq->cq;
1631 	struct ib_pd *pd = wq->pd;
1632 
1633 	if (atomic_read(&wq->usecnt))
1634 		return -EBUSY;
1635 
1636 	err = wq->device->destroy_wq(wq);
1637 	if (!err) {
1638 		atomic_dec(&pd->usecnt);
1639 		atomic_dec(&cq->usecnt);
1640 	}
1641 	return err;
1642 }
1643 EXPORT_SYMBOL(ib_destroy_wq);
1644 
1645 /**
1646  * ib_modify_wq - Modifies the specified WQ.
1647  * @wq: The WQ to modify.
1648  * @wq_attr: On input, specifies the WQ attributes to modify.
1649  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1650  *   are being modified.
1651  * On output, the current values of selected WQ attributes are returned.
1652  */
1653 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1654 		 u32 wq_attr_mask)
1655 {
1656 	int err;
1657 
1658 	if (!wq->device->modify_wq)
1659 		return -ENOSYS;
1660 
1661 	err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1662 	return err;
1663 }
1664 EXPORT_SYMBOL(ib_modify_wq);
1665 
1666 /*
1667  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1668  * @device: The device on which to create the rwq indirection table.
1669  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1670  * create the Indirection Table.
1671  *
1672  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1673  *	than the created ib_rwq_ind_table object and the caller is responsible
1674  *	for its memory allocation/free.
1675  */
1676 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1677 						 struct ib_rwq_ind_table_init_attr *init_attr)
1678 {
1679 	struct ib_rwq_ind_table *rwq_ind_table;
1680 	int i;
1681 	u32 table_size;
1682 
1683 	if (!device->create_rwq_ind_table)
1684 		return ERR_PTR(-ENOSYS);
1685 
1686 	table_size = (1 << init_attr->log_ind_tbl_size);
1687 	rwq_ind_table = device->create_rwq_ind_table(device,
1688 				init_attr, NULL);
1689 	if (IS_ERR(rwq_ind_table))
1690 		return rwq_ind_table;
1691 
1692 	rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1693 	rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1694 	rwq_ind_table->device = device;
1695 	rwq_ind_table->uobject = NULL;
1696 	atomic_set(&rwq_ind_table->usecnt, 0);
1697 
1698 	for (i = 0; i < table_size; i++)
1699 		atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1700 
1701 	return rwq_ind_table;
1702 }
1703 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1704 
1705 /*
1706  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1707  * @wq_ind_table: The Indirection Table to destroy.
1708 */
1709 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1710 {
1711 	int err, i;
1712 	u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1713 	struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1714 
1715 	if (atomic_read(&rwq_ind_table->usecnt))
1716 		return -EBUSY;
1717 
1718 	err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1719 	if (!err) {
1720 		for (i = 0; i < table_size; i++)
1721 			atomic_dec(&ind_tbl[i]->usecnt);
1722 	}
1723 
1724 	return err;
1725 }
1726 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1727 
1728 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1729 			       struct ib_flow_attr *flow_attr,
1730 			       int domain)
1731 {
1732 	struct ib_flow *flow_id;
1733 	if (!qp->device->create_flow)
1734 		return ERR_PTR(-ENOSYS);
1735 
1736 	flow_id = qp->device->create_flow(qp, flow_attr, domain);
1737 	if (!IS_ERR(flow_id))
1738 		atomic_inc(&qp->usecnt);
1739 	return flow_id;
1740 }
1741 EXPORT_SYMBOL(ib_create_flow);
1742 
1743 int ib_destroy_flow(struct ib_flow *flow_id)
1744 {
1745 	int err;
1746 	struct ib_qp *qp = flow_id->qp;
1747 
1748 	err = qp->device->destroy_flow(flow_id);
1749 	if (!err)
1750 		atomic_dec(&qp->usecnt);
1751 	return err;
1752 }
1753 EXPORT_SYMBOL(ib_destroy_flow);
1754 
1755 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1756 		       struct ib_mr_status *mr_status)
1757 {
1758 	return mr->device->check_mr_status ?
1759 		mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1760 }
1761 EXPORT_SYMBOL(ib_check_mr_status);
1762 
1763 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1764 			 int state)
1765 {
1766 	if (!device->set_vf_link_state)
1767 		return -ENOSYS;
1768 
1769 	return device->set_vf_link_state(device, vf, port, state);
1770 }
1771 EXPORT_SYMBOL(ib_set_vf_link_state);
1772 
1773 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1774 		     struct ifla_vf_info *info)
1775 {
1776 	if (!device->get_vf_config)
1777 		return -ENOSYS;
1778 
1779 	return device->get_vf_config(device, vf, port, info);
1780 }
1781 EXPORT_SYMBOL(ib_get_vf_config);
1782 
1783 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1784 		    struct ifla_vf_stats *stats)
1785 {
1786 	if (!device->get_vf_stats)
1787 		return -ENOSYS;
1788 
1789 	return device->get_vf_stats(device, vf, port, stats);
1790 }
1791 EXPORT_SYMBOL(ib_get_vf_stats);
1792 
1793 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1794 		   int type)
1795 {
1796 	if (!device->set_vf_guid)
1797 		return -ENOSYS;
1798 
1799 	return device->set_vf_guid(device, vf, port, guid, type);
1800 }
1801 EXPORT_SYMBOL(ib_set_vf_guid);
1802 
1803 /**
1804  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1805  *     and set it the memory region.
1806  * @mr:            memory region
1807  * @sg:            dma mapped scatterlist
1808  * @sg_nents:      number of entries in sg
1809  * @sg_offset:     offset in bytes into sg
1810  * @page_size:     page vector desired page size
1811  *
1812  * Constraints:
1813  * - The first sg element is allowed to have an offset.
1814  * - Each sg element must either be aligned to page_size or virtually
1815  *   contiguous to the previous element. In case an sg element has a
1816  *   non-contiguous offset, the mapping prefix will not include it.
1817  * - The last sg element is allowed to have length less than page_size.
1818  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1819  *   then only max_num_sg entries will be mapped.
1820  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1821  *   constraints holds and the page_size argument is ignored.
1822  *
1823  * Returns the number of sg elements that were mapped to the memory region.
1824  *
1825  * After this completes successfully, the  memory region
1826  * is ready for registration.
1827  */
1828 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1829 		 unsigned int *sg_offset, unsigned int page_size)
1830 {
1831 	if (unlikely(!mr->device->map_mr_sg))
1832 		return -ENOSYS;
1833 
1834 	mr->page_size = page_size;
1835 
1836 	return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
1837 }
1838 EXPORT_SYMBOL(ib_map_mr_sg);
1839 
1840 /**
1841  * ib_sg_to_pages() - Convert the largest prefix of a sg list
1842  *     to a page vector
1843  * @mr:            memory region
1844  * @sgl:           dma mapped scatterlist
1845  * @sg_nents:      number of entries in sg
1846  * @sg_offset_p:   IN:  start offset in bytes into sg
1847  *                 OUT: offset in bytes for element n of the sg of the first
1848  *                      byte that has not been processed where n is the return
1849  *                      value of this function.
1850  * @set_page:      driver page assignment function pointer
1851  *
1852  * Core service helper for drivers to convert the largest
1853  * prefix of given sg list to a page vector. The sg list
1854  * prefix converted is the prefix that meet the requirements
1855  * of ib_map_mr_sg.
1856  *
1857  * Returns the number of sg elements that were assigned to
1858  * a page vector.
1859  */
1860 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
1861 		unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
1862 {
1863 	struct scatterlist *sg;
1864 	u64 last_end_dma_addr = 0;
1865 	unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
1866 	unsigned int last_page_off = 0;
1867 	u64 page_mask = ~((u64)mr->page_size - 1);
1868 	int i, ret;
1869 
1870 	if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
1871 		return -EINVAL;
1872 
1873 	mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
1874 	mr->length = 0;
1875 
1876 	for_each_sg(sgl, sg, sg_nents, i) {
1877 		u64 dma_addr = sg_dma_address(sg) + sg_offset;
1878 		u64 prev_addr = dma_addr;
1879 		unsigned int dma_len = sg_dma_len(sg) - sg_offset;
1880 		u64 end_dma_addr = dma_addr + dma_len;
1881 		u64 page_addr = dma_addr & page_mask;
1882 
1883 		/*
1884 		 * For the second and later elements, check whether either the
1885 		 * end of element i-1 or the start of element i is not aligned
1886 		 * on a page boundary.
1887 		 */
1888 		if (i && (last_page_off != 0 || page_addr != dma_addr)) {
1889 			/* Stop mapping if there is a gap. */
1890 			if (last_end_dma_addr != dma_addr)
1891 				break;
1892 
1893 			/*
1894 			 * Coalesce this element with the last. If it is small
1895 			 * enough just update mr->length. Otherwise start
1896 			 * mapping from the next page.
1897 			 */
1898 			goto next_page;
1899 		}
1900 
1901 		do {
1902 			ret = set_page(mr, page_addr);
1903 			if (unlikely(ret < 0)) {
1904 				sg_offset = prev_addr - sg_dma_address(sg);
1905 				mr->length += prev_addr - dma_addr;
1906 				if (sg_offset_p)
1907 					*sg_offset_p = sg_offset;
1908 				return i || sg_offset ? i : ret;
1909 			}
1910 			prev_addr = page_addr;
1911 next_page:
1912 			page_addr += mr->page_size;
1913 		} while (page_addr < end_dma_addr);
1914 
1915 		mr->length += dma_len;
1916 		last_end_dma_addr = end_dma_addr;
1917 		last_page_off = end_dma_addr & ~page_mask;
1918 
1919 		sg_offset = 0;
1920 	}
1921 
1922 	if (sg_offset_p)
1923 		*sg_offset_p = 0;
1924 	return i;
1925 }
1926 EXPORT_SYMBOL(ib_sg_to_pages);
1927 
1928 struct ib_drain_cqe {
1929 	struct ib_cqe cqe;
1930 	struct completion done;
1931 };
1932 
1933 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
1934 {
1935 	struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
1936 						cqe);
1937 
1938 	complete(&cqe->done);
1939 }
1940 
1941 /*
1942  * Post a WR and block until its completion is reaped for the SQ.
1943  */
1944 static void __ib_drain_sq(struct ib_qp *qp)
1945 {
1946 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1947 	struct ib_drain_cqe sdrain;
1948 	struct ib_send_wr swr = {}, *bad_swr;
1949 	int ret;
1950 
1951 	if (qp->send_cq->poll_ctx == IB_POLL_DIRECT) {
1952 		WARN_ONCE(qp->send_cq->poll_ctx == IB_POLL_DIRECT,
1953 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1954 		return;
1955 	}
1956 
1957 	swr.wr_cqe = &sdrain.cqe;
1958 	sdrain.cqe.done = ib_drain_qp_done;
1959 	init_completion(&sdrain.done);
1960 
1961 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1962 	if (ret) {
1963 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1964 		return;
1965 	}
1966 
1967 	ret = ib_post_send(qp, &swr, &bad_swr);
1968 	if (ret) {
1969 		WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
1970 		return;
1971 	}
1972 
1973 	wait_for_completion(&sdrain.done);
1974 }
1975 
1976 /*
1977  * Post a WR and block until its completion is reaped for the RQ.
1978  */
1979 static void __ib_drain_rq(struct ib_qp *qp)
1980 {
1981 	struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
1982 	struct ib_drain_cqe rdrain;
1983 	struct ib_recv_wr rwr = {}, *bad_rwr;
1984 	int ret;
1985 
1986 	if (qp->recv_cq->poll_ctx == IB_POLL_DIRECT) {
1987 		WARN_ONCE(qp->recv_cq->poll_ctx == IB_POLL_DIRECT,
1988 			  "IB_POLL_DIRECT poll_ctx not supported for drain\n");
1989 		return;
1990 	}
1991 
1992 	rwr.wr_cqe = &rdrain.cqe;
1993 	rdrain.cqe.done = ib_drain_qp_done;
1994 	init_completion(&rdrain.done);
1995 
1996 	ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
1997 	if (ret) {
1998 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
1999 		return;
2000 	}
2001 
2002 	ret = ib_post_recv(qp, &rwr, &bad_rwr);
2003 	if (ret) {
2004 		WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2005 		return;
2006 	}
2007 
2008 	wait_for_completion(&rdrain.done);
2009 }
2010 
2011 /**
2012  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2013  *		   application.
2014  * @qp:            queue pair to drain
2015  *
2016  * If the device has a provider-specific drain function, then
2017  * call that.  Otherwise call the generic drain function
2018  * __ib_drain_sq().
2019  *
2020  * The caller must:
2021  *
2022  * ensure there is room in the CQ and SQ for the drain work request and
2023  * completion.
2024  *
2025  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2026  * IB_POLL_DIRECT.
2027  *
2028  * ensure that there are no other contexts that are posting WRs concurrently.
2029  * Otherwise the drain is not guaranteed.
2030  */
2031 void ib_drain_sq(struct ib_qp *qp)
2032 {
2033 	if (qp->device->drain_sq)
2034 		qp->device->drain_sq(qp);
2035 	else
2036 		__ib_drain_sq(qp);
2037 }
2038 EXPORT_SYMBOL(ib_drain_sq);
2039 
2040 /**
2041  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2042  *		   application.
2043  * @qp:            queue pair to drain
2044  *
2045  * If the device has a provider-specific drain function, then
2046  * call that.  Otherwise call the generic drain function
2047  * __ib_drain_rq().
2048  *
2049  * The caller must:
2050  *
2051  * ensure there is room in the CQ and RQ for the drain work request and
2052  * completion.
2053  *
2054  * allocate the CQ using ib_alloc_cq() and the CQ poll context cannot be
2055  * IB_POLL_DIRECT.
2056  *
2057  * ensure that there are no other contexts that are posting WRs concurrently.
2058  * Otherwise the drain is not guaranteed.
2059  */
2060 void ib_drain_rq(struct ib_qp *qp)
2061 {
2062 	if (qp->device->drain_rq)
2063 		qp->device->drain_rq(qp);
2064 	else
2065 		__ib_drain_rq(qp);
2066 }
2067 EXPORT_SYMBOL(ib_drain_rq);
2068 
2069 /**
2070  * ib_drain_qp() - Block until all CQEs have been consumed by the
2071  *		   application on both the RQ and SQ.
2072  * @qp:            queue pair to drain
2073  *
2074  * The caller must:
2075  *
2076  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2077  * and completions.
2078  *
2079  * allocate the CQs using ib_alloc_cq() and the CQ poll context cannot be
2080  * IB_POLL_DIRECT.
2081  *
2082  * ensure that there are no other contexts that are posting WRs concurrently.
2083  * Otherwise the drain is not guaranteed.
2084  */
2085 void ib_drain_qp(struct ib_qp *qp)
2086 {
2087 	ib_drain_sq(qp);
2088 	if (!qp->srq)
2089 		ib_drain_rq(qp);
2090 }
2091 EXPORT_SYMBOL(ib_drain_qp);
2092