1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static int ib_resolve_eth_dmac(struct ib_device *device, 57 struct rdma_ah_attr *ah_attr); 58 59 static const char * const ib_events[] = { 60 [IB_EVENT_CQ_ERR] = "CQ error", 61 [IB_EVENT_QP_FATAL] = "QP fatal error", 62 [IB_EVENT_QP_REQ_ERR] = "QP request error", 63 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 64 [IB_EVENT_COMM_EST] = "communication established", 65 [IB_EVENT_SQ_DRAINED] = "send queue drained", 66 [IB_EVENT_PATH_MIG] = "path migration successful", 67 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 68 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 69 [IB_EVENT_PORT_ACTIVE] = "port active", 70 [IB_EVENT_PORT_ERR] = "port error", 71 [IB_EVENT_LID_CHANGE] = "LID change", 72 [IB_EVENT_PKEY_CHANGE] = "P_key change", 73 [IB_EVENT_SM_CHANGE] = "SM change", 74 [IB_EVENT_SRQ_ERR] = "SRQ error", 75 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 76 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 77 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 78 [IB_EVENT_GID_CHANGE] = "GID changed", 79 }; 80 81 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 82 { 83 size_t index = event; 84 85 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 86 ib_events[index] : "unrecognized event"; 87 } 88 EXPORT_SYMBOL(ib_event_msg); 89 90 static const char * const wc_statuses[] = { 91 [IB_WC_SUCCESS] = "success", 92 [IB_WC_LOC_LEN_ERR] = "local length error", 93 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 94 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 95 [IB_WC_LOC_PROT_ERR] = "local protection error", 96 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 97 [IB_WC_MW_BIND_ERR] = "memory management operation error", 98 [IB_WC_BAD_RESP_ERR] = "bad response error", 99 [IB_WC_LOC_ACCESS_ERR] = "local access error", 100 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 101 [IB_WC_REM_ACCESS_ERR] = "remote access error", 102 [IB_WC_REM_OP_ERR] = "remote operation error", 103 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 104 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 105 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 106 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 107 [IB_WC_REM_ABORT_ERR] = "operation aborted", 108 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 109 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 110 [IB_WC_FATAL_ERR] = "fatal error", 111 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 112 [IB_WC_GENERAL_ERR] = "general error", 113 }; 114 115 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 116 { 117 size_t index = status; 118 119 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 120 wc_statuses[index] : "unrecognized status"; 121 } 122 EXPORT_SYMBOL(ib_wc_status_msg); 123 124 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 125 { 126 switch (rate) { 127 case IB_RATE_2_5_GBPS: return 1; 128 case IB_RATE_5_GBPS: return 2; 129 case IB_RATE_10_GBPS: return 4; 130 case IB_RATE_20_GBPS: return 8; 131 case IB_RATE_30_GBPS: return 12; 132 case IB_RATE_40_GBPS: return 16; 133 case IB_RATE_60_GBPS: return 24; 134 case IB_RATE_80_GBPS: return 32; 135 case IB_RATE_120_GBPS: return 48; 136 case IB_RATE_14_GBPS: return 6; 137 case IB_RATE_56_GBPS: return 22; 138 case IB_RATE_112_GBPS: return 45; 139 case IB_RATE_168_GBPS: return 67; 140 case IB_RATE_25_GBPS: return 10; 141 case IB_RATE_100_GBPS: return 40; 142 case IB_RATE_200_GBPS: return 80; 143 case IB_RATE_300_GBPS: return 120; 144 case IB_RATE_28_GBPS: return 11; 145 case IB_RATE_50_GBPS: return 20; 146 case IB_RATE_400_GBPS: return 160; 147 case IB_RATE_600_GBPS: return 240; 148 default: return -1; 149 } 150 } 151 EXPORT_SYMBOL(ib_rate_to_mult); 152 153 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 154 { 155 switch (mult) { 156 case 1: return IB_RATE_2_5_GBPS; 157 case 2: return IB_RATE_5_GBPS; 158 case 4: return IB_RATE_10_GBPS; 159 case 8: return IB_RATE_20_GBPS; 160 case 12: return IB_RATE_30_GBPS; 161 case 16: return IB_RATE_40_GBPS; 162 case 24: return IB_RATE_60_GBPS; 163 case 32: return IB_RATE_80_GBPS; 164 case 48: return IB_RATE_120_GBPS; 165 case 6: return IB_RATE_14_GBPS; 166 case 22: return IB_RATE_56_GBPS; 167 case 45: return IB_RATE_112_GBPS; 168 case 67: return IB_RATE_168_GBPS; 169 case 10: return IB_RATE_25_GBPS; 170 case 40: return IB_RATE_100_GBPS; 171 case 80: return IB_RATE_200_GBPS; 172 case 120: return IB_RATE_300_GBPS; 173 case 11: return IB_RATE_28_GBPS; 174 case 20: return IB_RATE_50_GBPS; 175 case 160: return IB_RATE_400_GBPS; 176 case 240: return IB_RATE_600_GBPS; 177 default: return IB_RATE_PORT_CURRENT; 178 } 179 } 180 EXPORT_SYMBOL(mult_to_ib_rate); 181 182 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 183 { 184 switch (rate) { 185 case IB_RATE_2_5_GBPS: return 2500; 186 case IB_RATE_5_GBPS: return 5000; 187 case IB_RATE_10_GBPS: return 10000; 188 case IB_RATE_20_GBPS: return 20000; 189 case IB_RATE_30_GBPS: return 30000; 190 case IB_RATE_40_GBPS: return 40000; 191 case IB_RATE_60_GBPS: return 60000; 192 case IB_RATE_80_GBPS: return 80000; 193 case IB_RATE_120_GBPS: return 120000; 194 case IB_RATE_14_GBPS: return 14062; 195 case IB_RATE_56_GBPS: return 56250; 196 case IB_RATE_112_GBPS: return 112500; 197 case IB_RATE_168_GBPS: return 168750; 198 case IB_RATE_25_GBPS: return 25781; 199 case IB_RATE_100_GBPS: return 103125; 200 case IB_RATE_200_GBPS: return 206250; 201 case IB_RATE_300_GBPS: return 309375; 202 case IB_RATE_28_GBPS: return 28125; 203 case IB_RATE_50_GBPS: return 53125; 204 case IB_RATE_400_GBPS: return 425000; 205 case IB_RATE_600_GBPS: return 637500; 206 default: return -1; 207 } 208 } 209 EXPORT_SYMBOL(ib_rate_to_mbps); 210 211 __attribute_const__ enum rdma_transport_type 212 rdma_node_get_transport(unsigned int node_type) 213 { 214 215 if (node_type == RDMA_NODE_USNIC) 216 return RDMA_TRANSPORT_USNIC; 217 if (node_type == RDMA_NODE_USNIC_UDP) 218 return RDMA_TRANSPORT_USNIC_UDP; 219 if (node_type == RDMA_NODE_RNIC) 220 return RDMA_TRANSPORT_IWARP; 221 if (node_type == RDMA_NODE_UNSPECIFIED) 222 return RDMA_TRANSPORT_UNSPECIFIED; 223 224 return RDMA_TRANSPORT_IB; 225 } 226 EXPORT_SYMBOL(rdma_node_get_transport); 227 228 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 229 { 230 enum rdma_transport_type lt; 231 if (device->ops.get_link_layer) 232 return device->ops.get_link_layer(device, port_num); 233 234 lt = rdma_node_get_transport(device->node_type); 235 if (lt == RDMA_TRANSPORT_IB) 236 return IB_LINK_LAYER_INFINIBAND; 237 238 return IB_LINK_LAYER_ETHERNET; 239 } 240 EXPORT_SYMBOL(rdma_port_get_link_layer); 241 242 /* Protection domains */ 243 244 /** 245 * ib_alloc_pd - Allocates an unused protection domain. 246 * @device: The device on which to allocate the protection domain. 247 * 248 * A protection domain object provides an association between QPs, shared 249 * receive queues, address handles, memory regions, and memory windows. 250 * 251 * Every PD has a local_dma_lkey which can be used as the lkey value for local 252 * memory operations. 253 */ 254 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 255 const char *caller) 256 { 257 struct ib_pd *pd; 258 int mr_access_flags = 0; 259 int ret; 260 261 pd = rdma_zalloc_drv_obj(device, ib_pd); 262 if (!pd) 263 return ERR_PTR(-ENOMEM); 264 265 pd->device = device; 266 pd->uobject = NULL; 267 pd->__internal_mr = NULL; 268 atomic_set(&pd->usecnt, 0); 269 pd->flags = flags; 270 271 pd->res.type = RDMA_RESTRACK_PD; 272 rdma_restrack_set_task(&pd->res, caller); 273 274 ret = device->ops.alloc_pd(pd, NULL); 275 if (ret) { 276 kfree(pd); 277 return ERR_PTR(ret); 278 } 279 rdma_restrack_kadd(&pd->res); 280 281 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 282 pd->local_dma_lkey = device->local_dma_lkey; 283 else 284 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 285 286 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 287 pr_warn("%s: enabling unsafe global rkey\n", caller); 288 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 289 } 290 291 if (mr_access_flags) { 292 struct ib_mr *mr; 293 294 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags); 295 if (IS_ERR(mr)) { 296 ib_dealloc_pd(pd); 297 return ERR_CAST(mr); 298 } 299 300 mr->device = pd->device; 301 mr->pd = pd; 302 mr->type = IB_MR_TYPE_DMA; 303 mr->uobject = NULL; 304 mr->need_inval = false; 305 306 pd->__internal_mr = mr; 307 308 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 309 pd->local_dma_lkey = pd->__internal_mr->lkey; 310 311 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 312 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 313 } 314 315 return pd; 316 } 317 EXPORT_SYMBOL(__ib_alloc_pd); 318 319 /** 320 * ib_dealloc_pd_user - Deallocates a protection domain. 321 * @pd: The protection domain to deallocate. 322 * @udata: Valid user data or NULL for kernel object 323 * 324 * It is an error to call this function while any resources in the pd still 325 * exist. The caller is responsible to synchronously destroy them and 326 * guarantee no new allocations will happen. 327 */ 328 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata) 329 { 330 int ret; 331 332 if (pd->__internal_mr) { 333 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL); 334 WARN_ON(ret); 335 pd->__internal_mr = NULL; 336 } 337 338 /* uverbs manipulates usecnt with proper locking, while the kabi 339 requires the caller to guarantee we can't race here. */ 340 WARN_ON(atomic_read(&pd->usecnt)); 341 342 rdma_restrack_del(&pd->res); 343 pd->device->ops.dealloc_pd(pd, udata); 344 kfree(pd); 345 } 346 EXPORT_SYMBOL(ib_dealloc_pd_user); 347 348 /* Address handles */ 349 350 /** 351 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination. 352 * @dest: Pointer to destination ah_attr. Contents of the destination 353 * pointer is assumed to be invalid and attribute are overwritten. 354 * @src: Pointer to source ah_attr. 355 */ 356 void rdma_copy_ah_attr(struct rdma_ah_attr *dest, 357 const struct rdma_ah_attr *src) 358 { 359 *dest = *src; 360 if (dest->grh.sgid_attr) 361 rdma_hold_gid_attr(dest->grh.sgid_attr); 362 } 363 EXPORT_SYMBOL(rdma_copy_ah_attr); 364 365 /** 366 * rdma_replace_ah_attr - Replace valid ah_attr with new new one. 367 * @old: Pointer to existing ah_attr which needs to be replaced. 368 * old is assumed to be valid or zero'd 369 * @new: Pointer to the new ah_attr. 370 * 371 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if 372 * old the ah_attr is valid; after that it copies the new attribute and holds 373 * the reference to the replaced ah_attr. 374 */ 375 void rdma_replace_ah_attr(struct rdma_ah_attr *old, 376 const struct rdma_ah_attr *new) 377 { 378 rdma_destroy_ah_attr(old); 379 *old = *new; 380 if (old->grh.sgid_attr) 381 rdma_hold_gid_attr(old->grh.sgid_attr); 382 } 383 EXPORT_SYMBOL(rdma_replace_ah_attr); 384 385 /** 386 * rdma_move_ah_attr - Move ah_attr pointed by source to destination. 387 * @dest: Pointer to destination ah_attr to copy to. 388 * dest is assumed to be valid or zero'd 389 * @src: Pointer to the new ah_attr. 390 * 391 * rdma_move_ah_attr() first releases any reference in the destination ah_attr 392 * if it is valid. This also transfers ownership of internal references from 393 * src to dest, making src invalid in the process. No new reference of the src 394 * ah_attr is taken. 395 */ 396 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src) 397 { 398 rdma_destroy_ah_attr(dest); 399 *dest = *src; 400 src->grh.sgid_attr = NULL; 401 } 402 EXPORT_SYMBOL(rdma_move_ah_attr); 403 404 /* 405 * Validate that the rdma_ah_attr is valid for the device before passing it 406 * off to the driver. 407 */ 408 static int rdma_check_ah_attr(struct ib_device *device, 409 struct rdma_ah_attr *ah_attr) 410 { 411 if (!rdma_is_port_valid(device, ah_attr->port_num)) 412 return -EINVAL; 413 414 if ((rdma_is_grh_required(device, ah_attr->port_num) || 415 ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) && 416 !(ah_attr->ah_flags & IB_AH_GRH)) 417 return -EINVAL; 418 419 if (ah_attr->grh.sgid_attr) { 420 /* 421 * Make sure the passed sgid_attr is consistent with the 422 * parameters 423 */ 424 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index || 425 ah_attr->grh.sgid_attr->port_num != ah_attr->port_num) 426 return -EINVAL; 427 } 428 return 0; 429 } 430 431 /* 432 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in. 433 * On success the caller is responsible to call rdma_unfill_sgid_attr(). 434 */ 435 static int rdma_fill_sgid_attr(struct ib_device *device, 436 struct rdma_ah_attr *ah_attr, 437 const struct ib_gid_attr **old_sgid_attr) 438 { 439 const struct ib_gid_attr *sgid_attr; 440 struct ib_global_route *grh; 441 int ret; 442 443 *old_sgid_attr = ah_attr->grh.sgid_attr; 444 445 ret = rdma_check_ah_attr(device, ah_attr); 446 if (ret) 447 return ret; 448 449 if (!(ah_attr->ah_flags & IB_AH_GRH)) 450 return 0; 451 452 grh = rdma_ah_retrieve_grh(ah_attr); 453 if (grh->sgid_attr) 454 return 0; 455 456 sgid_attr = 457 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index); 458 if (IS_ERR(sgid_attr)) 459 return PTR_ERR(sgid_attr); 460 461 /* Move ownerhip of the kref into the ah_attr */ 462 grh->sgid_attr = sgid_attr; 463 return 0; 464 } 465 466 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr, 467 const struct ib_gid_attr *old_sgid_attr) 468 { 469 /* 470 * Fill didn't change anything, the caller retains ownership of 471 * whatever it passed 472 */ 473 if (ah_attr->grh.sgid_attr == old_sgid_attr) 474 return; 475 476 /* 477 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller 478 * doesn't see any change in the rdma_ah_attr. If we get here 479 * old_sgid_attr is NULL. 480 */ 481 rdma_destroy_ah_attr(ah_attr); 482 } 483 484 static const struct ib_gid_attr * 485 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr, 486 const struct ib_gid_attr *old_attr) 487 { 488 if (old_attr) 489 rdma_put_gid_attr(old_attr); 490 if (ah_attr->ah_flags & IB_AH_GRH) { 491 rdma_hold_gid_attr(ah_attr->grh.sgid_attr); 492 return ah_attr->grh.sgid_attr; 493 } 494 return NULL; 495 } 496 497 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd, 498 struct rdma_ah_attr *ah_attr, 499 u32 flags, 500 struct ib_udata *udata) 501 { 502 struct ib_device *device = pd->device; 503 struct ib_ah *ah; 504 int ret; 505 506 might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE); 507 508 if (!device->ops.create_ah) 509 return ERR_PTR(-EOPNOTSUPP); 510 511 ah = rdma_zalloc_drv_obj_gfp( 512 device, ib_ah, 513 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC); 514 if (!ah) 515 return ERR_PTR(-ENOMEM); 516 517 ah->device = device; 518 ah->pd = pd; 519 ah->type = ah_attr->type; 520 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL); 521 522 ret = device->ops.create_ah(ah, ah_attr, flags, udata); 523 if (ret) { 524 kfree(ah); 525 return ERR_PTR(ret); 526 } 527 528 atomic_inc(&pd->usecnt); 529 return ah; 530 } 531 532 /** 533 * rdma_create_ah - Creates an address handle for the 534 * given address vector. 535 * @pd: The protection domain associated with the address handle. 536 * @ah_attr: The attributes of the address vector. 537 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 538 * 539 * It returns 0 on success and returns appropriate error code on error. 540 * The address handle is used to reference a local or global destination 541 * in all UD QP post sends. 542 */ 543 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr, 544 u32 flags) 545 { 546 const struct ib_gid_attr *old_sgid_attr; 547 struct ib_ah *ah; 548 int ret; 549 550 ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 551 if (ret) 552 return ERR_PTR(ret); 553 554 ah = _rdma_create_ah(pd, ah_attr, flags, NULL); 555 556 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 557 return ah; 558 } 559 EXPORT_SYMBOL(rdma_create_ah); 560 561 /** 562 * rdma_create_user_ah - Creates an address handle for the 563 * given address vector. 564 * It resolves destination mac address for ah attribute of RoCE type. 565 * @pd: The protection domain associated with the address handle. 566 * @ah_attr: The attributes of the address vector. 567 * @udata: pointer to user's input output buffer information need by 568 * provider driver. 569 * 570 * It returns 0 on success and returns appropriate error code on error. 571 * The address handle is used to reference a local or global destination 572 * in all UD QP post sends. 573 */ 574 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd, 575 struct rdma_ah_attr *ah_attr, 576 struct ib_udata *udata) 577 { 578 const struct ib_gid_attr *old_sgid_attr; 579 struct ib_ah *ah; 580 int err; 581 582 err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr); 583 if (err) 584 return ERR_PTR(err); 585 586 if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) { 587 err = ib_resolve_eth_dmac(pd->device, ah_attr); 588 if (err) { 589 ah = ERR_PTR(err); 590 goto out; 591 } 592 } 593 594 ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE, udata); 595 596 out: 597 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 598 return ah; 599 } 600 EXPORT_SYMBOL(rdma_create_user_ah); 601 602 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 603 { 604 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 605 struct iphdr ip4h_checked; 606 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 607 608 /* If it's IPv6, the version must be 6, otherwise, the first 609 * 20 bytes (before the IPv4 header) are garbled. 610 */ 611 if (ip6h->version != 6) 612 return (ip4h->version == 4) ? 4 : 0; 613 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 614 615 /* RoCE v2 requires no options, thus header length 616 * must be 5 words 617 */ 618 if (ip4h->ihl != 5) 619 return 6; 620 621 /* Verify checksum. 622 * We can't write on scattered buffers so we need to copy to 623 * temp buffer. 624 */ 625 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 626 ip4h_checked.check = 0; 627 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 628 /* if IPv4 header checksum is OK, believe it */ 629 if (ip4h->check == ip4h_checked.check) 630 return 4; 631 return 6; 632 } 633 EXPORT_SYMBOL(ib_get_rdma_header_version); 634 635 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 636 u8 port_num, 637 const struct ib_grh *grh) 638 { 639 int grh_version; 640 641 if (rdma_protocol_ib(device, port_num)) 642 return RDMA_NETWORK_IB; 643 644 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 645 646 if (grh_version == 4) 647 return RDMA_NETWORK_IPV4; 648 649 if (grh->next_hdr == IPPROTO_UDP) 650 return RDMA_NETWORK_IPV6; 651 652 return RDMA_NETWORK_ROCE_V1; 653 } 654 655 struct find_gid_index_context { 656 u16 vlan_id; 657 enum ib_gid_type gid_type; 658 }; 659 660 static bool find_gid_index(const union ib_gid *gid, 661 const struct ib_gid_attr *gid_attr, 662 void *context) 663 { 664 struct find_gid_index_context *ctx = context; 665 u16 vlan_id = 0xffff; 666 int ret; 667 668 if (ctx->gid_type != gid_attr->gid_type) 669 return false; 670 671 ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL); 672 if (ret) 673 return false; 674 675 return ctx->vlan_id == vlan_id; 676 } 677 678 static const struct ib_gid_attr * 679 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num, 680 u16 vlan_id, const union ib_gid *sgid, 681 enum ib_gid_type gid_type) 682 { 683 struct find_gid_index_context context = {.vlan_id = vlan_id, 684 .gid_type = gid_type}; 685 686 return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index, 687 &context); 688 } 689 690 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 691 enum rdma_network_type net_type, 692 union ib_gid *sgid, union ib_gid *dgid) 693 { 694 struct sockaddr_in src_in; 695 struct sockaddr_in dst_in; 696 __be32 src_saddr, dst_saddr; 697 698 if (!sgid || !dgid) 699 return -EINVAL; 700 701 if (net_type == RDMA_NETWORK_IPV4) { 702 memcpy(&src_in.sin_addr.s_addr, 703 &hdr->roce4grh.saddr, 4); 704 memcpy(&dst_in.sin_addr.s_addr, 705 &hdr->roce4grh.daddr, 4); 706 src_saddr = src_in.sin_addr.s_addr; 707 dst_saddr = dst_in.sin_addr.s_addr; 708 ipv6_addr_set_v4mapped(src_saddr, 709 (struct in6_addr *)sgid); 710 ipv6_addr_set_v4mapped(dst_saddr, 711 (struct in6_addr *)dgid); 712 return 0; 713 } else if (net_type == RDMA_NETWORK_IPV6 || 714 net_type == RDMA_NETWORK_IB) { 715 *dgid = hdr->ibgrh.dgid; 716 *sgid = hdr->ibgrh.sgid; 717 return 0; 718 } else { 719 return -EINVAL; 720 } 721 } 722 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 723 724 /* Resolve destination mac address and hop limit for unicast destination 725 * GID entry, considering the source GID entry as well. 726 * ah_attribute must have have valid port_num, sgid_index. 727 */ 728 static int ib_resolve_unicast_gid_dmac(struct ib_device *device, 729 struct rdma_ah_attr *ah_attr) 730 { 731 struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr); 732 const struct ib_gid_attr *sgid_attr = grh->sgid_attr; 733 int hop_limit = 0xff; 734 int ret = 0; 735 736 /* If destination is link local and source GID is RoCEv1, 737 * IP stack is not used. 738 */ 739 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) && 740 sgid_attr->gid_type == IB_GID_TYPE_ROCE) { 741 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 742 ah_attr->roce.dmac); 743 return ret; 744 } 745 746 ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid, 747 ah_attr->roce.dmac, 748 sgid_attr, &hop_limit); 749 750 grh->hop_limit = hop_limit; 751 return ret; 752 } 753 754 /* 755 * This function initializes address handle attributes from the incoming packet. 756 * Incoming packet has dgid of the receiver node on which this code is 757 * getting executed and, sgid contains the GID of the sender. 758 * 759 * When resolving mac address of destination, the arrived dgid is used 760 * as sgid and, sgid is used as dgid because sgid contains destinations 761 * GID whom to respond to. 762 * 763 * On success the caller is responsible to call rdma_destroy_ah_attr on the 764 * attr. 765 */ 766 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num, 767 const struct ib_wc *wc, const struct ib_grh *grh, 768 struct rdma_ah_attr *ah_attr) 769 { 770 u32 flow_class; 771 int ret; 772 enum rdma_network_type net_type = RDMA_NETWORK_IB; 773 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 774 const struct ib_gid_attr *sgid_attr; 775 int hoplimit = 0xff; 776 union ib_gid dgid; 777 union ib_gid sgid; 778 779 might_sleep(); 780 781 memset(ah_attr, 0, sizeof *ah_attr); 782 ah_attr->type = rdma_ah_find_type(device, port_num); 783 if (rdma_cap_eth_ah(device, port_num)) { 784 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 785 net_type = wc->network_hdr_type; 786 else 787 net_type = ib_get_net_type_by_grh(device, port_num, grh); 788 gid_type = ib_network_to_gid_type(net_type); 789 } 790 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 791 &sgid, &dgid); 792 if (ret) 793 return ret; 794 795 rdma_ah_set_sl(ah_attr, wc->sl); 796 rdma_ah_set_port_num(ah_attr, port_num); 797 798 if (rdma_protocol_roce(device, port_num)) { 799 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 800 wc->vlan_id : 0xffff; 801 802 if (!(wc->wc_flags & IB_WC_GRH)) 803 return -EPROTOTYPE; 804 805 sgid_attr = get_sgid_attr_from_eth(device, port_num, 806 vlan_id, &dgid, 807 gid_type); 808 if (IS_ERR(sgid_attr)) 809 return PTR_ERR(sgid_attr); 810 811 flow_class = be32_to_cpu(grh->version_tclass_flow); 812 rdma_move_grh_sgid_attr(ah_attr, 813 &sgid, 814 flow_class & 0xFFFFF, 815 hoplimit, 816 (flow_class >> 20) & 0xFF, 817 sgid_attr); 818 819 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 820 if (ret) 821 rdma_destroy_ah_attr(ah_attr); 822 823 return ret; 824 } else { 825 rdma_ah_set_dlid(ah_attr, wc->slid); 826 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 827 828 if ((wc->wc_flags & IB_WC_GRH) == 0) 829 return 0; 830 831 if (dgid.global.interface_id != 832 cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 833 sgid_attr = rdma_find_gid_by_port( 834 device, &dgid, IB_GID_TYPE_IB, port_num, NULL); 835 } else 836 sgid_attr = rdma_get_gid_attr(device, port_num, 0); 837 838 if (IS_ERR(sgid_attr)) 839 return PTR_ERR(sgid_attr); 840 flow_class = be32_to_cpu(grh->version_tclass_flow); 841 rdma_move_grh_sgid_attr(ah_attr, 842 &sgid, 843 flow_class & 0xFFFFF, 844 hoplimit, 845 (flow_class >> 20) & 0xFF, 846 sgid_attr); 847 848 return 0; 849 } 850 } 851 EXPORT_SYMBOL(ib_init_ah_attr_from_wc); 852 853 /** 854 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership 855 * of the reference 856 * 857 * @attr: Pointer to AH attribute structure 858 * @dgid: Destination GID 859 * @flow_label: Flow label 860 * @hop_limit: Hop limit 861 * @traffic_class: traffic class 862 * @sgid_attr: Pointer to SGID attribute 863 * 864 * This takes ownership of the sgid_attr reference. The caller must ensure 865 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after 866 * calling this function. 867 */ 868 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid, 869 u32 flow_label, u8 hop_limit, u8 traffic_class, 870 const struct ib_gid_attr *sgid_attr) 871 { 872 rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit, 873 traffic_class); 874 attr->grh.sgid_attr = sgid_attr; 875 } 876 EXPORT_SYMBOL(rdma_move_grh_sgid_attr); 877 878 /** 879 * rdma_destroy_ah_attr - Release reference to SGID attribute of 880 * ah attribute. 881 * @ah_attr: Pointer to ah attribute 882 * 883 * Release reference to the SGID attribute of the ah attribute if it is 884 * non NULL. It is safe to call this multiple times, and safe to call it on 885 * a zero initialized ah_attr. 886 */ 887 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr) 888 { 889 if (ah_attr->grh.sgid_attr) { 890 rdma_put_gid_attr(ah_attr->grh.sgid_attr); 891 ah_attr->grh.sgid_attr = NULL; 892 } 893 } 894 EXPORT_SYMBOL(rdma_destroy_ah_attr); 895 896 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 897 const struct ib_grh *grh, u8 port_num) 898 { 899 struct rdma_ah_attr ah_attr; 900 struct ib_ah *ah; 901 int ret; 902 903 ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr); 904 if (ret) 905 return ERR_PTR(ret); 906 907 ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE); 908 909 rdma_destroy_ah_attr(&ah_attr); 910 return ah; 911 } 912 EXPORT_SYMBOL(ib_create_ah_from_wc); 913 914 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 915 { 916 const struct ib_gid_attr *old_sgid_attr; 917 int ret; 918 919 if (ah->type != ah_attr->type) 920 return -EINVAL; 921 922 ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr); 923 if (ret) 924 return ret; 925 926 ret = ah->device->ops.modify_ah ? 927 ah->device->ops.modify_ah(ah, ah_attr) : 928 -EOPNOTSUPP; 929 930 ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr); 931 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr); 932 return ret; 933 } 934 EXPORT_SYMBOL(rdma_modify_ah); 935 936 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 937 { 938 ah_attr->grh.sgid_attr = NULL; 939 940 return ah->device->ops.query_ah ? 941 ah->device->ops.query_ah(ah, ah_attr) : 942 -EOPNOTSUPP; 943 } 944 EXPORT_SYMBOL(rdma_query_ah); 945 946 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata) 947 { 948 const struct ib_gid_attr *sgid_attr = ah->sgid_attr; 949 struct ib_pd *pd; 950 951 might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE); 952 953 pd = ah->pd; 954 955 ah->device->ops.destroy_ah(ah, flags); 956 atomic_dec(&pd->usecnt); 957 if (sgid_attr) 958 rdma_put_gid_attr(sgid_attr); 959 960 kfree(ah); 961 return 0; 962 } 963 EXPORT_SYMBOL(rdma_destroy_ah_user); 964 965 /* Shared receive queues */ 966 967 struct ib_srq *ib_create_srq(struct ib_pd *pd, 968 struct ib_srq_init_attr *srq_init_attr) 969 { 970 struct ib_srq *srq; 971 int ret; 972 973 if (!pd->device->ops.create_srq) 974 return ERR_PTR(-EOPNOTSUPP); 975 976 srq = rdma_zalloc_drv_obj(pd->device, ib_srq); 977 if (!srq) 978 return ERR_PTR(-ENOMEM); 979 980 srq->device = pd->device; 981 srq->pd = pd; 982 srq->event_handler = srq_init_attr->event_handler; 983 srq->srq_context = srq_init_attr->srq_context; 984 srq->srq_type = srq_init_attr->srq_type; 985 986 if (ib_srq_has_cq(srq->srq_type)) { 987 srq->ext.cq = srq_init_attr->ext.cq; 988 atomic_inc(&srq->ext.cq->usecnt); 989 } 990 if (srq->srq_type == IB_SRQT_XRC) { 991 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 992 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 993 } 994 atomic_inc(&pd->usecnt); 995 996 ret = pd->device->ops.create_srq(srq, srq_init_attr, NULL); 997 if (ret) { 998 atomic_dec(&srq->pd->usecnt); 999 if (srq->srq_type == IB_SRQT_XRC) 1000 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1001 if (ib_srq_has_cq(srq->srq_type)) 1002 atomic_dec(&srq->ext.cq->usecnt); 1003 kfree(srq); 1004 return ERR_PTR(ret); 1005 } 1006 1007 return srq; 1008 } 1009 EXPORT_SYMBOL(ib_create_srq); 1010 1011 int ib_modify_srq(struct ib_srq *srq, 1012 struct ib_srq_attr *srq_attr, 1013 enum ib_srq_attr_mask srq_attr_mask) 1014 { 1015 return srq->device->ops.modify_srq ? 1016 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask, 1017 NULL) : -EOPNOTSUPP; 1018 } 1019 EXPORT_SYMBOL(ib_modify_srq); 1020 1021 int ib_query_srq(struct ib_srq *srq, 1022 struct ib_srq_attr *srq_attr) 1023 { 1024 return srq->device->ops.query_srq ? 1025 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP; 1026 } 1027 EXPORT_SYMBOL(ib_query_srq); 1028 1029 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata) 1030 { 1031 if (atomic_read(&srq->usecnt)) 1032 return -EBUSY; 1033 1034 srq->device->ops.destroy_srq(srq, udata); 1035 1036 atomic_dec(&srq->pd->usecnt); 1037 if (srq->srq_type == IB_SRQT_XRC) 1038 atomic_dec(&srq->ext.xrc.xrcd->usecnt); 1039 if (ib_srq_has_cq(srq->srq_type)) 1040 atomic_dec(&srq->ext.cq->usecnt); 1041 kfree(srq); 1042 1043 return 0; 1044 } 1045 EXPORT_SYMBOL(ib_destroy_srq_user); 1046 1047 /* Queue pairs */ 1048 1049 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 1050 { 1051 struct ib_qp *qp = context; 1052 unsigned long flags; 1053 1054 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 1055 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 1056 if (event->element.qp->event_handler) 1057 event->element.qp->event_handler(event, event->element.qp->qp_context); 1058 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 1059 } 1060 1061 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 1062 { 1063 mutex_lock(&xrcd->tgt_qp_mutex); 1064 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 1065 mutex_unlock(&xrcd->tgt_qp_mutex); 1066 } 1067 1068 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 1069 void (*event_handler)(struct ib_event *, void *), 1070 void *qp_context) 1071 { 1072 struct ib_qp *qp; 1073 unsigned long flags; 1074 int err; 1075 1076 qp = kzalloc(sizeof *qp, GFP_KERNEL); 1077 if (!qp) 1078 return ERR_PTR(-ENOMEM); 1079 1080 qp->real_qp = real_qp; 1081 err = ib_open_shared_qp_security(qp, real_qp->device); 1082 if (err) { 1083 kfree(qp); 1084 return ERR_PTR(err); 1085 } 1086 1087 qp->real_qp = real_qp; 1088 atomic_inc(&real_qp->usecnt); 1089 qp->device = real_qp->device; 1090 qp->event_handler = event_handler; 1091 qp->qp_context = qp_context; 1092 qp->qp_num = real_qp->qp_num; 1093 qp->qp_type = real_qp->qp_type; 1094 1095 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1096 list_add(&qp->open_list, &real_qp->open_list); 1097 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1098 1099 return qp; 1100 } 1101 1102 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 1103 struct ib_qp_open_attr *qp_open_attr) 1104 { 1105 struct ib_qp *qp, *real_qp; 1106 1107 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 1108 return ERR_PTR(-EINVAL); 1109 1110 qp = ERR_PTR(-EINVAL); 1111 mutex_lock(&xrcd->tgt_qp_mutex); 1112 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 1113 if (real_qp->qp_num == qp_open_attr->qp_num) { 1114 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 1115 qp_open_attr->qp_context); 1116 break; 1117 } 1118 } 1119 mutex_unlock(&xrcd->tgt_qp_mutex); 1120 return qp; 1121 } 1122 EXPORT_SYMBOL(ib_open_qp); 1123 1124 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp, 1125 struct ib_qp_init_attr *qp_init_attr, 1126 struct ib_udata *udata) 1127 { 1128 struct ib_qp *real_qp = qp; 1129 1130 qp->event_handler = __ib_shared_qp_event_handler; 1131 qp->qp_context = qp; 1132 qp->pd = NULL; 1133 qp->send_cq = qp->recv_cq = NULL; 1134 qp->srq = NULL; 1135 qp->xrcd = qp_init_attr->xrcd; 1136 atomic_inc(&qp_init_attr->xrcd->usecnt); 1137 INIT_LIST_HEAD(&qp->open_list); 1138 1139 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 1140 qp_init_attr->qp_context); 1141 if (IS_ERR(qp)) 1142 return qp; 1143 1144 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 1145 return qp; 1146 } 1147 1148 struct ib_qp *ib_create_qp_user(struct ib_pd *pd, 1149 struct ib_qp_init_attr *qp_init_attr, 1150 struct ib_udata *udata) 1151 { 1152 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 1153 struct ib_qp *qp; 1154 int ret; 1155 1156 if (qp_init_attr->rwq_ind_tbl && 1157 (qp_init_attr->recv_cq || 1158 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 1159 qp_init_attr->cap.max_recv_sge)) 1160 return ERR_PTR(-EINVAL); 1161 1162 if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) && 1163 !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER)) 1164 return ERR_PTR(-EINVAL); 1165 1166 /* 1167 * If the callers is using the RDMA API calculate the resources 1168 * needed for the RDMA READ/WRITE operations. 1169 * 1170 * Note that these callers need to pass in a port number. 1171 */ 1172 if (qp_init_attr->cap.max_rdma_ctxs) 1173 rdma_rw_init_qp(device, qp_init_attr); 1174 1175 qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL); 1176 if (IS_ERR(qp)) 1177 return qp; 1178 1179 ret = ib_create_qp_security(qp, device); 1180 if (ret) 1181 goto err; 1182 1183 qp->qp_type = qp_init_attr->qp_type; 1184 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 1185 1186 atomic_set(&qp->usecnt, 0); 1187 qp->mrs_used = 0; 1188 spin_lock_init(&qp->mr_lock); 1189 INIT_LIST_HEAD(&qp->rdma_mrs); 1190 INIT_LIST_HEAD(&qp->sig_mrs); 1191 qp->port = 0; 1192 1193 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) { 1194 struct ib_qp *xrc_qp = 1195 create_xrc_qp_user(qp, qp_init_attr, udata); 1196 1197 if (IS_ERR(xrc_qp)) { 1198 ret = PTR_ERR(xrc_qp); 1199 goto err; 1200 } 1201 return xrc_qp; 1202 } 1203 1204 qp->event_handler = qp_init_attr->event_handler; 1205 qp->qp_context = qp_init_attr->qp_context; 1206 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 1207 qp->recv_cq = NULL; 1208 qp->srq = NULL; 1209 } else { 1210 qp->recv_cq = qp_init_attr->recv_cq; 1211 if (qp_init_attr->recv_cq) 1212 atomic_inc(&qp_init_attr->recv_cq->usecnt); 1213 qp->srq = qp_init_attr->srq; 1214 if (qp->srq) 1215 atomic_inc(&qp_init_attr->srq->usecnt); 1216 } 1217 1218 qp->send_cq = qp_init_attr->send_cq; 1219 qp->xrcd = NULL; 1220 1221 atomic_inc(&pd->usecnt); 1222 if (qp_init_attr->send_cq) 1223 atomic_inc(&qp_init_attr->send_cq->usecnt); 1224 if (qp_init_attr->rwq_ind_tbl) 1225 atomic_inc(&qp->rwq_ind_tbl->usecnt); 1226 1227 if (qp_init_attr->cap.max_rdma_ctxs) { 1228 ret = rdma_rw_init_mrs(qp, qp_init_attr); 1229 if (ret) 1230 goto err; 1231 } 1232 1233 /* 1234 * Note: all hw drivers guarantee that max_send_sge is lower than 1235 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 1236 * max_send_sge <= max_sge_rd. 1237 */ 1238 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 1239 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 1240 device->attrs.max_sge_rd); 1241 if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) 1242 qp->integrity_en = true; 1243 1244 return qp; 1245 1246 err: 1247 ib_destroy_qp(qp); 1248 return ERR_PTR(ret); 1249 1250 } 1251 EXPORT_SYMBOL(ib_create_qp_user); 1252 1253 static const struct { 1254 int valid; 1255 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 1256 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 1257 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 1258 [IB_QPS_RESET] = { 1259 [IB_QPS_RESET] = { .valid = 1 }, 1260 [IB_QPS_INIT] = { 1261 .valid = 1, 1262 .req_param = { 1263 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1264 IB_QP_PORT | 1265 IB_QP_QKEY), 1266 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 1267 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1268 IB_QP_PORT | 1269 IB_QP_ACCESS_FLAGS), 1270 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1271 IB_QP_PORT | 1272 IB_QP_ACCESS_FLAGS), 1273 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1274 IB_QP_PORT | 1275 IB_QP_ACCESS_FLAGS), 1276 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1277 IB_QP_PORT | 1278 IB_QP_ACCESS_FLAGS), 1279 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1280 IB_QP_QKEY), 1281 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1282 IB_QP_QKEY), 1283 } 1284 }, 1285 }, 1286 [IB_QPS_INIT] = { 1287 [IB_QPS_RESET] = { .valid = 1 }, 1288 [IB_QPS_ERR] = { .valid = 1 }, 1289 [IB_QPS_INIT] = { 1290 .valid = 1, 1291 .opt_param = { 1292 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1293 IB_QP_PORT | 1294 IB_QP_QKEY), 1295 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 1296 IB_QP_PORT | 1297 IB_QP_ACCESS_FLAGS), 1298 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 1299 IB_QP_PORT | 1300 IB_QP_ACCESS_FLAGS), 1301 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 1302 IB_QP_PORT | 1303 IB_QP_ACCESS_FLAGS), 1304 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 1305 IB_QP_PORT | 1306 IB_QP_ACCESS_FLAGS), 1307 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1308 IB_QP_QKEY), 1309 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1310 IB_QP_QKEY), 1311 } 1312 }, 1313 [IB_QPS_RTR] = { 1314 .valid = 1, 1315 .req_param = { 1316 [IB_QPT_UC] = (IB_QP_AV | 1317 IB_QP_PATH_MTU | 1318 IB_QP_DEST_QPN | 1319 IB_QP_RQ_PSN), 1320 [IB_QPT_RC] = (IB_QP_AV | 1321 IB_QP_PATH_MTU | 1322 IB_QP_DEST_QPN | 1323 IB_QP_RQ_PSN | 1324 IB_QP_MAX_DEST_RD_ATOMIC | 1325 IB_QP_MIN_RNR_TIMER), 1326 [IB_QPT_XRC_INI] = (IB_QP_AV | 1327 IB_QP_PATH_MTU | 1328 IB_QP_DEST_QPN | 1329 IB_QP_RQ_PSN), 1330 [IB_QPT_XRC_TGT] = (IB_QP_AV | 1331 IB_QP_PATH_MTU | 1332 IB_QP_DEST_QPN | 1333 IB_QP_RQ_PSN | 1334 IB_QP_MAX_DEST_RD_ATOMIC | 1335 IB_QP_MIN_RNR_TIMER), 1336 }, 1337 .opt_param = { 1338 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1339 IB_QP_QKEY), 1340 [IB_QPT_UC] = (IB_QP_ALT_PATH | 1341 IB_QP_ACCESS_FLAGS | 1342 IB_QP_PKEY_INDEX), 1343 [IB_QPT_RC] = (IB_QP_ALT_PATH | 1344 IB_QP_ACCESS_FLAGS | 1345 IB_QP_PKEY_INDEX), 1346 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 1347 IB_QP_ACCESS_FLAGS | 1348 IB_QP_PKEY_INDEX), 1349 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 1350 IB_QP_ACCESS_FLAGS | 1351 IB_QP_PKEY_INDEX), 1352 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1353 IB_QP_QKEY), 1354 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1355 IB_QP_QKEY), 1356 }, 1357 }, 1358 }, 1359 [IB_QPS_RTR] = { 1360 [IB_QPS_RESET] = { .valid = 1 }, 1361 [IB_QPS_ERR] = { .valid = 1 }, 1362 [IB_QPS_RTS] = { 1363 .valid = 1, 1364 .req_param = { 1365 [IB_QPT_UD] = IB_QP_SQ_PSN, 1366 [IB_QPT_UC] = IB_QP_SQ_PSN, 1367 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1368 IB_QP_RETRY_CNT | 1369 IB_QP_RNR_RETRY | 1370 IB_QP_SQ_PSN | 1371 IB_QP_MAX_QP_RD_ATOMIC), 1372 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1373 IB_QP_RETRY_CNT | 1374 IB_QP_RNR_RETRY | 1375 IB_QP_SQ_PSN | 1376 IB_QP_MAX_QP_RD_ATOMIC), 1377 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1378 IB_QP_SQ_PSN), 1379 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1380 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1381 }, 1382 .opt_param = { 1383 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1384 IB_QP_QKEY), 1385 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1386 IB_QP_ALT_PATH | 1387 IB_QP_ACCESS_FLAGS | 1388 IB_QP_PATH_MIG_STATE), 1389 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1390 IB_QP_ALT_PATH | 1391 IB_QP_ACCESS_FLAGS | 1392 IB_QP_MIN_RNR_TIMER | 1393 IB_QP_PATH_MIG_STATE), 1394 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1395 IB_QP_ALT_PATH | 1396 IB_QP_ACCESS_FLAGS | 1397 IB_QP_PATH_MIG_STATE), 1398 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1399 IB_QP_ALT_PATH | 1400 IB_QP_ACCESS_FLAGS | 1401 IB_QP_MIN_RNR_TIMER | 1402 IB_QP_PATH_MIG_STATE), 1403 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1404 IB_QP_QKEY), 1405 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1406 IB_QP_QKEY), 1407 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1408 } 1409 } 1410 }, 1411 [IB_QPS_RTS] = { 1412 [IB_QPS_RESET] = { .valid = 1 }, 1413 [IB_QPS_ERR] = { .valid = 1 }, 1414 [IB_QPS_RTS] = { 1415 .valid = 1, 1416 .opt_param = { 1417 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1418 IB_QP_QKEY), 1419 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1420 IB_QP_ACCESS_FLAGS | 1421 IB_QP_ALT_PATH | 1422 IB_QP_PATH_MIG_STATE), 1423 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1424 IB_QP_ACCESS_FLAGS | 1425 IB_QP_ALT_PATH | 1426 IB_QP_PATH_MIG_STATE | 1427 IB_QP_MIN_RNR_TIMER), 1428 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1429 IB_QP_ACCESS_FLAGS | 1430 IB_QP_ALT_PATH | 1431 IB_QP_PATH_MIG_STATE), 1432 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1433 IB_QP_ACCESS_FLAGS | 1434 IB_QP_ALT_PATH | 1435 IB_QP_PATH_MIG_STATE | 1436 IB_QP_MIN_RNR_TIMER), 1437 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1438 IB_QP_QKEY), 1439 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1440 IB_QP_QKEY), 1441 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1442 } 1443 }, 1444 [IB_QPS_SQD] = { 1445 .valid = 1, 1446 .opt_param = { 1447 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1448 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1449 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1450 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1451 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1452 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1453 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1454 } 1455 }, 1456 }, 1457 [IB_QPS_SQD] = { 1458 [IB_QPS_RESET] = { .valid = 1 }, 1459 [IB_QPS_ERR] = { .valid = 1 }, 1460 [IB_QPS_RTS] = { 1461 .valid = 1, 1462 .opt_param = { 1463 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1464 IB_QP_QKEY), 1465 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1466 IB_QP_ALT_PATH | 1467 IB_QP_ACCESS_FLAGS | 1468 IB_QP_PATH_MIG_STATE), 1469 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1470 IB_QP_ALT_PATH | 1471 IB_QP_ACCESS_FLAGS | 1472 IB_QP_MIN_RNR_TIMER | 1473 IB_QP_PATH_MIG_STATE), 1474 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1475 IB_QP_ALT_PATH | 1476 IB_QP_ACCESS_FLAGS | 1477 IB_QP_PATH_MIG_STATE), 1478 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1479 IB_QP_ALT_PATH | 1480 IB_QP_ACCESS_FLAGS | 1481 IB_QP_MIN_RNR_TIMER | 1482 IB_QP_PATH_MIG_STATE), 1483 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1484 IB_QP_QKEY), 1485 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1486 IB_QP_QKEY), 1487 } 1488 }, 1489 [IB_QPS_SQD] = { 1490 .valid = 1, 1491 .opt_param = { 1492 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1493 IB_QP_QKEY), 1494 [IB_QPT_UC] = (IB_QP_AV | 1495 IB_QP_ALT_PATH | 1496 IB_QP_ACCESS_FLAGS | 1497 IB_QP_PKEY_INDEX | 1498 IB_QP_PATH_MIG_STATE), 1499 [IB_QPT_RC] = (IB_QP_PORT | 1500 IB_QP_AV | 1501 IB_QP_TIMEOUT | 1502 IB_QP_RETRY_CNT | 1503 IB_QP_RNR_RETRY | 1504 IB_QP_MAX_QP_RD_ATOMIC | 1505 IB_QP_MAX_DEST_RD_ATOMIC | 1506 IB_QP_ALT_PATH | 1507 IB_QP_ACCESS_FLAGS | 1508 IB_QP_PKEY_INDEX | 1509 IB_QP_MIN_RNR_TIMER | 1510 IB_QP_PATH_MIG_STATE), 1511 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1512 IB_QP_AV | 1513 IB_QP_TIMEOUT | 1514 IB_QP_RETRY_CNT | 1515 IB_QP_RNR_RETRY | 1516 IB_QP_MAX_QP_RD_ATOMIC | 1517 IB_QP_ALT_PATH | 1518 IB_QP_ACCESS_FLAGS | 1519 IB_QP_PKEY_INDEX | 1520 IB_QP_PATH_MIG_STATE), 1521 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1522 IB_QP_AV | 1523 IB_QP_TIMEOUT | 1524 IB_QP_MAX_DEST_RD_ATOMIC | 1525 IB_QP_ALT_PATH | 1526 IB_QP_ACCESS_FLAGS | 1527 IB_QP_PKEY_INDEX | 1528 IB_QP_MIN_RNR_TIMER | 1529 IB_QP_PATH_MIG_STATE), 1530 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1531 IB_QP_QKEY), 1532 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1533 IB_QP_QKEY), 1534 } 1535 } 1536 }, 1537 [IB_QPS_SQE] = { 1538 [IB_QPS_RESET] = { .valid = 1 }, 1539 [IB_QPS_ERR] = { .valid = 1 }, 1540 [IB_QPS_RTS] = { 1541 .valid = 1, 1542 .opt_param = { 1543 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1544 IB_QP_QKEY), 1545 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1546 IB_QP_ACCESS_FLAGS), 1547 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1548 IB_QP_QKEY), 1549 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1550 IB_QP_QKEY), 1551 } 1552 } 1553 }, 1554 [IB_QPS_ERR] = { 1555 [IB_QPS_RESET] = { .valid = 1 }, 1556 [IB_QPS_ERR] = { .valid = 1 } 1557 } 1558 }; 1559 1560 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1561 enum ib_qp_type type, enum ib_qp_attr_mask mask) 1562 { 1563 enum ib_qp_attr_mask req_param, opt_param; 1564 1565 if (mask & IB_QP_CUR_STATE && 1566 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1567 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1568 return false; 1569 1570 if (!qp_state_table[cur_state][next_state].valid) 1571 return false; 1572 1573 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1574 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1575 1576 if ((mask & req_param) != req_param) 1577 return false; 1578 1579 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1580 return false; 1581 1582 return true; 1583 } 1584 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1585 1586 /** 1587 * ib_resolve_eth_dmac - Resolve destination mac address 1588 * @device: Device to consider 1589 * @ah_attr: address handle attribute which describes the 1590 * source and destination parameters 1591 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It 1592 * returns 0 on success or appropriate error code. It initializes the 1593 * necessary ah_attr fields when call is successful. 1594 */ 1595 static int ib_resolve_eth_dmac(struct ib_device *device, 1596 struct rdma_ah_attr *ah_attr) 1597 { 1598 int ret = 0; 1599 1600 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1601 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1602 __be32 addr = 0; 1603 1604 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1605 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1606 } else { 1607 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1608 (char *)ah_attr->roce.dmac); 1609 } 1610 } else { 1611 ret = ib_resolve_unicast_gid_dmac(device, ah_attr); 1612 } 1613 return ret; 1614 } 1615 1616 static bool is_qp_type_connected(const struct ib_qp *qp) 1617 { 1618 return (qp->qp_type == IB_QPT_UC || 1619 qp->qp_type == IB_QPT_RC || 1620 qp->qp_type == IB_QPT_XRC_INI || 1621 qp->qp_type == IB_QPT_XRC_TGT); 1622 } 1623 1624 /** 1625 * IB core internal function to perform QP attributes modification. 1626 */ 1627 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr, 1628 int attr_mask, struct ib_udata *udata) 1629 { 1630 u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port; 1631 const struct ib_gid_attr *old_sgid_attr_av; 1632 const struct ib_gid_attr *old_sgid_attr_alt_av; 1633 int ret; 1634 1635 if (attr_mask & IB_QP_AV) { 1636 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr, 1637 &old_sgid_attr_av); 1638 if (ret) 1639 return ret; 1640 } 1641 if (attr_mask & IB_QP_ALT_PATH) { 1642 /* 1643 * FIXME: This does not track the migration state, so if the 1644 * user loads a new alternate path after the HW has migrated 1645 * from primary->alternate we will keep the wrong 1646 * references. This is OK for IB because the reference 1647 * counting does not serve any functional purpose. 1648 */ 1649 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr, 1650 &old_sgid_attr_alt_av); 1651 if (ret) 1652 goto out_av; 1653 1654 /* 1655 * Today the core code can only handle alternate paths and APM 1656 * for IB. Ban them in roce mode. 1657 */ 1658 if (!(rdma_protocol_ib(qp->device, 1659 attr->alt_ah_attr.port_num) && 1660 rdma_protocol_ib(qp->device, port))) { 1661 ret = EINVAL; 1662 goto out; 1663 } 1664 } 1665 1666 /* 1667 * If the user provided the qp_attr then we have to resolve it. Kernel 1668 * users have to provide already resolved rdma_ah_attr's 1669 */ 1670 if (udata && (attr_mask & IB_QP_AV) && 1671 attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE && 1672 is_qp_type_connected(qp)) { 1673 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1674 if (ret) 1675 goto out; 1676 } 1677 1678 if (rdma_ib_or_roce(qp->device, port)) { 1679 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) { 1680 dev_warn(&qp->device->dev, 1681 "%s rq_psn overflow, masking to 24 bits\n", 1682 __func__); 1683 attr->rq_psn &= 0xffffff; 1684 } 1685 1686 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) { 1687 dev_warn(&qp->device->dev, 1688 " %s sq_psn overflow, masking to 24 bits\n", 1689 __func__); 1690 attr->sq_psn &= 0xffffff; 1691 } 1692 } 1693 1694 /* 1695 * Bind this qp to a counter automatically based on the rdma counter 1696 * rules. This only set in RST2INIT with port specified 1697 */ 1698 if (!qp->counter && (attr_mask & IB_QP_PORT) && 1699 ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT)) 1700 rdma_counter_bind_qp_auto(qp, attr->port_num); 1701 1702 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1703 if (ret) 1704 goto out; 1705 1706 if (attr_mask & IB_QP_PORT) 1707 qp->port = attr->port_num; 1708 if (attr_mask & IB_QP_AV) 1709 qp->av_sgid_attr = 1710 rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr); 1711 if (attr_mask & IB_QP_ALT_PATH) 1712 qp->alt_path_sgid_attr = rdma_update_sgid_attr( 1713 &attr->alt_ah_attr, qp->alt_path_sgid_attr); 1714 1715 out: 1716 if (attr_mask & IB_QP_ALT_PATH) 1717 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av); 1718 out_av: 1719 if (attr_mask & IB_QP_AV) 1720 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av); 1721 return ret; 1722 } 1723 1724 /** 1725 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1726 * @ib_qp: The QP to modify. 1727 * @attr: On input, specifies the QP attributes to modify. On output, 1728 * the current values of selected QP attributes are returned. 1729 * @attr_mask: A bit-mask used to specify which attributes of the QP 1730 * are being modified. 1731 * @udata: pointer to user's input output buffer information 1732 * are being modified. 1733 * It returns 0 on success and returns appropriate error code on error. 1734 */ 1735 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr, 1736 int attr_mask, struct ib_udata *udata) 1737 { 1738 return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata); 1739 } 1740 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1741 1742 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1743 { 1744 int rc; 1745 u32 netdev_speed; 1746 struct net_device *netdev; 1747 struct ethtool_link_ksettings lksettings; 1748 1749 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1750 return -EINVAL; 1751 1752 netdev = ib_device_get_netdev(dev, port_num); 1753 if (!netdev) 1754 return -ENODEV; 1755 1756 rtnl_lock(); 1757 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1758 rtnl_unlock(); 1759 1760 dev_put(netdev); 1761 1762 if (!rc) { 1763 netdev_speed = lksettings.base.speed; 1764 } else { 1765 netdev_speed = SPEED_1000; 1766 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1767 netdev_speed); 1768 } 1769 1770 if (netdev_speed <= SPEED_1000) { 1771 *width = IB_WIDTH_1X; 1772 *speed = IB_SPEED_SDR; 1773 } else if (netdev_speed <= SPEED_10000) { 1774 *width = IB_WIDTH_1X; 1775 *speed = IB_SPEED_FDR10; 1776 } else if (netdev_speed <= SPEED_20000) { 1777 *width = IB_WIDTH_4X; 1778 *speed = IB_SPEED_DDR; 1779 } else if (netdev_speed <= SPEED_25000) { 1780 *width = IB_WIDTH_1X; 1781 *speed = IB_SPEED_EDR; 1782 } else if (netdev_speed <= SPEED_40000) { 1783 *width = IB_WIDTH_4X; 1784 *speed = IB_SPEED_FDR10; 1785 } else { 1786 *width = IB_WIDTH_4X; 1787 *speed = IB_SPEED_EDR; 1788 } 1789 1790 return 0; 1791 } 1792 EXPORT_SYMBOL(ib_get_eth_speed); 1793 1794 int ib_modify_qp(struct ib_qp *qp, 1795 struct ib_qp_attr *qp_attr, 1796 int qp_attr_mask) 1797 { 1798 return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL); 1799 } 1800 EXPORT_SYMBOL(ib_modify_qp); 1801 1802 int ib_query_qp(struct ib_qp *qp, 1803 struct ib_qp_attr *qp_attr, 1804 int qp_attr_mask, 1805 struct ib_qp_init_attr *qp_init_attr) 1806 { 1807 qp_attr->ah_attr.grh.sgid_attr = NULL; 1808 qp_attr->alt_ah_attr.grh.sgid_attr = NULL; 1809 1810 return qp->device->ops.query_qp ? 1811 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask, 1812 qp_init_attr) : -EOPNOTSUPP; 1813 } 1814 EXPORT_SYMBOL(ib_query_qp); 1815 1816 int ib_close_qp(struct ib_qp *qp) 1817 { 1818 struct ib_qp *real_qp; 1819 unsigned long flags; 1820 1821 real_qp = qp->real_qp; 1822 if (real_qp == qp) 1823 return -EINVAL; 1824 1825 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1826 list_del(&qp->open_list); 1827 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1828 1829 atomic_dec(&real_qp->usecnt); 1830 if (qp->qp_sec) 1831 ib_close_shared_qp_security(qp->qp_sec); 1832 kfree(qp); 1833 1834 return 0; 1835 } 1836 EXPORT_SYMBOL(ib_close_qp); 1837 1838 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1839 { 1840 struct ib_xrcd *xrcd; 1841 struct ib_qp *real_qp; 1842 int ret; 1843 1844 real_qp = qp->real_qp; 1845 xrcd = real_qp->xrcd; 1846 1847 mutex_lock(&xrcd->tgt_qp_mutex); 1848 ib_close_qp(qp); 1849 if (atomic_read(&real_qp->usecnt) == 0) 1850 list_del(&real_qp->xrcd_list); 1851 else 1852 real_qp = NULL; 1853 mutex_unlock(&xrcd->tgt_qp_mutex); 1854 1855 if (real_qp) { 1856 ret = ib_destroy_qp(real_qp); 1857 if (!ret) 1858 atomic_dec(&xrcd->usecnt); 1859 else 1860 __ib_insert_xrcd_qp(xrcd, real_qp); 1861 } 1862 1863 return 0; 1864 } 1865 1866 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata) 1867 { 1868 const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr; 1869 const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr; 1870 struct ib_pd *pd; 1871 struct ib_cq *scq, *rcq; 1872 struct ib_srq *srq; 1873 struct ib_rwq_ind_table *ind_tbl; 1874 struct ib_qp_security *sec; 1875 int ret; 1876 1877 WARN_ON_ONCE(qp->mrs_used > 0); 1878 1879 if (atomic_read(&qp->usecnt)) 1880 return -EBUSY; 1881 1882 if (qp->real_qp != qp) 1883 return __ib_destroy_shared_qp(qp); 1884 1885 pd = qp->pd; 1886 scq = qp->send_cq; 1887 rcq = qp->recv_cq; 1888 srq = qp->srq; 1889 ind_tbl = qp->rwq_ind_tbl; 1890 sec = qp->qp_sec; 1891 if (sec) 1892 ib_destroy_qp_security_begin(sec); 1893 1894 if (!qp->uobject) 1895 rdma_rw_cleanup_mrs(qp); 1896 1897 rdma_counter_unbind_qp(qp, true); 1898 rdma_restrack_del(&qp->res); 1899 ret = qp->device->ops.destroy_qp(qp, udata); 1900 if (!ret) { 1901 if (alt_path_sgid_attr) 1902 rdma_put_gid_attr(alt_path_sgid_attr); 1903 if (av_sgid_attr) 1904 rdma_put_gid_attr(av_sgid_attr); 1905 if (pd) 1906 atomic_dec(&pd->usecnt); 1907 if (scq) 1908 atomic_dec(&scq->usecnt); 1909 if (rcq) 1910 atomic_dec(&rcq->usecnt); 1911 if (srq) 1912 atomic_dec(&srq->usecnt); 1913 if (ind_tbl) 1914 atomic_dec(&ind_tbl->usecnt); 1915 if (sec) 1916 ib_destroy_qp_security_end(sec); 1917 } else { 1918 if (sec) 1919 ib_destroy_qp_security_abort(sec); 1920 } 1921 1922 return ret; 1923 } 1924 EXPORT_SYMBOL(ib_destroy_qp_user); 1925 1926 /* Completion queues */ 1927 1928 struct ib_cq *__ib_create_cq(struct ib_device *device, 1929 ib_comp_handler comp_handler, 1930 void (*event_handler)(struct ib_event *, void *), 1931 void *cq_context, 1932 const struct ib_cq_init_attr *cq_attr, 1933 const char *caller) 1934 { 1935 struct ib_cq *cq; 1936 int ret; 1937 1938 cq = rdma_zalloc_drv_obj(device, ib_cq); 1939 if (!cq) 1940 return ERR_PTR(-ENOMEM); 1941 1942 cq->device = device; 1943 cq->uobject = NULL; 1944 cq->comp_handler = comp_handler; 1945 cq->event_handler = event_handler; 1946 cq->cq_context = cq_context; 1947 atomic_set(&cq->usecnt, 0); 1948 cq->res.type = RDMA_RESTRACK_CQ; 1949 rdma_restrack_set_task(&cq->res, caller); 1950 1951 ret = device->ops.create_cq(cq, cq_attr, NULL); 1952 if (ret) { 1953 kfree(cq); 1954 return ERR_PTR(ret); 1955 } 1956 1957 rdma_restrack_kadd(&cq->res); 1958 return cq; 1959 } 1960 EXPORT_SYMBOL(__ib_create_cq); 1961 1962 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1963 { 1964 return cq->device->ops.modify_cq ? 1965 cq->device->ops.modify_cq(cq, cq_count, 1966 cq_period) : -EOPNOTSUPP; 1967 } 1968 EXPORT_SYMBOL(rdma_set_cq_moderation); 1969 1970 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata) 1971 { 1972 if (atomic_read(&cq->usecnt)) 1973 return -EBUSY; 1974 1975 rdma_restrack_del(&cq->res); 1976 cq->device->ops.destroy_cq(cq, udata); 1977 kfree(cq); 1978 return 0; 1979 } 1980 EXPORT_SYMBOL(ib_destroy_cq_user); 1981 1982 int ib_resize_cq(struct ib_cq *cq, int cqe) 1983 { 1984 return cq->device->ops.resize_cq ? 1985 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP; 1986 } 1987 EXPORT_SYMBOL(ib_resize_cq); 1988 1989 /* Memory regions */ 1990 1991 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata) 1992 { 1993 struct ib_pd *pd = mr->pd; 1994 struct ib_dm *dm = mr->dm; 1995 struct ib_sig_attrs *sig_attrs = mr->sig_attrs; 1996 int ret; 1997 1998 rdma_restrack_del(&mr->res); 1999 ret = mr->device->ops.dereg_mr(mr, udata); 2000 if (!ret) { 2001 atomic_dec(&pd->usecnt); 2002 if (dm) 2003 atomic_dec(&dm->usecnt); 2004 kfree(sig_attrs); 2005 } 2006 2007 return ret; 2008 } 2009 EXPORT_SYMBOL(ib_dereg_mr_user); 2010 2011 /** 2012 * ib_alloc_mr_user() - Allocates a memory region 2013 * @pd: protection domain associated with the region 2014 * @mr_type: memory region type 2015 * @max_num_sg: maximum sg entries available for registration. 2016 * @udata: user data or null for kernel objects 2017 * 2018 * Notes: 2019 * Memory registeration page/sg lists must not exceed max_num_sg. 2020 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 2021 * max_num_sg * used_page_size. 2022 * 2023 */ 2024 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 2025 u32 max_num_sg, struct ib_udata *udata) 2026 { 2027 struct ib_mr *mr; 2028 2029 if (!pd->device->ops.alloc_mr) 2030 return ERR_PTR(-EOPNOTSUPP); 2031 2032 if (WARN_ON_ONCE(mr_type == IB_MR_TYPE_INTEGRITY)) 2033 return ERR_PTR(-EINVAL); 2034 2035 mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg, udata); 2036 if (!IS_ERR(mr)) { 2037 mr->device = pd->device; 2038 mr->pd = pd; 2039 mr->dm = NULL; 2040 mr->uobject = NULL; 2041 atomic_inc(&pd->usecnt); 2042 mr->need_inval = false; 2043 mr->res.type = RDMA_RESTRACK_MR; 2044 rdma_restrack_kadd(&mr->res); 2045 mr->type = mr_type; 2046 mr->sig_attrs = NULL; 2047 } 2048 2049 return mr; 2050 } 2051 EXPORT_SYMBOL(ib_alloc_mr_user); 2052 2053 /** 2054 * ib_alloc_mr_integrity() - Allocates an integrity memory region 2055 * @pd: protection domain associated with the region 2056 * @max_num_data_sg: maximum data sg entries available for registration 2057 * @max_num_meta_sg: maximum metadata sg entries available for 2058 * registration 2059 * 2060 * Notes: 2061 * Memory registration page/sg lists must not exceed max_num_sg, 2062 * also the integrity page/sg lists must not exceed max_num_meta_sg. 2063 * 2064 */ 2065 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 2066 u32 max_num_data_sg, 2067 u32 max_num_meta_sg) 2068 { 2069 struct ib_mr *mr; 2070 struct ib_sig_attrs *sig_attrs; 2071 2072 if (!pd->device->ops.alloc_mr_integrity || 2073 !pd->device->ops.map_mr_sg_pi) 2074 return ERR_PTR(-EOPNOTSUPP); 2075 2076 if (!max_num_meta_sg) 2077 return ERR_PTR(-EINVAL); 2078 2079 sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL); 2080 if (!sig_attrs) 2081 return ERR_PTR(-ENOMEM); 2082 2083 mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg, 2084 max_num_meta_sg); 2085 if (IS_ERR(mr)) { 2086 kfree(sig_attrs); 2087 return mr; 2088 } 2089 2090 mr->device = pd->device; 2091 mr->pd = pd; 2092 mr->dm = NULL; 2093 mr->uobject = NULL; 2094 atomic_inc(&pd->usecnt); 2095 mr->need_inval = false; 2096 mr->res.type = RDMA_RESTRACK_MR; 2097 rdma_restrack_kadd(&mr->res); 2098 mr->type = IB_MR_TYPE_INTEGRITY; 2099 mr->sig_attrs = sig_attrs; 2100 2101 return mr; 2102 } 2103 EXPORT_SYMBOL(ib_alloc_mr_integrity); 2104 2105 /* "Fast" memory regions */ 2106 2107 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 2108 int mr_access_flags, 2109 struct ib_fmr_attr *fmr_attr) 2110 { 2111 struct ib_fmr *fmr; 2112 2113 if (!pd->device->ops.alloc_fmr) 2114 return ERR_PTR(-EOPNOTSUPP); 2115 2116 fmr = pd->device->ops.alloc_fmr(pd, mr_access_flags, fmr_attr); 2117 if (!IS_ERR(fmr)) { 2118 fmr->device = pd->device; 2119 fmr->pd = pd; 2120 atomic_inc(&pd->usecnt); 2121 } 2122 2123 return fmr; 2124 } 2125 EXPORT_SYMBOL(ib_alloc_fmr); 2126 2127 int ib_unmap_fmr(struct list_head *fmr_list) 2128 { 2129 struct ib_fmr *fmr; 2130 2131 if (list_empty(fmr_list)) 2132 return 0; 2133 2134 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 2135 return fmr->device->ops.unmap_fmr(fmr_list); 2136 } 2137 EXPORT_SYMBOL(ib_unmap_fmr); 2138 2139 int ib_dealloc_fmr(struct ib_fmr *fmr) 2140 { 2141 struct ib_pd *pd; 2142 int ret; 2143 2144 pd = fmr->pd; 2145 ret = fmr->device->ops.dealloc_fmr(fmr); 2146 if (!ret) 2147 atomic_dec(&pd->usecnt); 2148 2149 return ret; 2150 } 2151 EXPORT_SYMBOL(ib_dealloc_fmr); 2152 2153 /* Multicast groups */ 2154 2155 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 2156 { 2157 struct ib_qp_init_attr init_attr = {}; 2158 struct ib_qp_attr attr = {}; 2159 int num_eth_ports = 0; 2160 int port; 2161 2162 /* If QP state >= init, it is assigned to a port and we can check this 2163 * port only. 2164 */ 2165 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 2166 if (attr.qp_state >= IB_QPS_INIT) { 2167 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 2168 IB_LINK_LAYER_INFINIBAND) 2169 return true; 2170 goto lid_check; 2171 } 2172 } 2173 2174 /* Can't get a quick answer, iterate over all ports */ 2175 for (port = 0; port < qp->device->phys_port_cnt; port++) 2176 if (rdma_port_get_link_layer(qp->device, port) != 2177 IB_LINK_LAYER_INFINIBAND) 2178 num_eth_ports++; 2179 2180 /* If we have at lease one Ethernet port, RoCE annex declares that 2181 * multicast LID should be ignored. We can't tell at this step if the 2182 * QP belongs to an IB or Ethernet port. 2183 */ 2184 if (num_eth_ports) 2185 return true; 2186 2187 /* If all the ports are IB, we can check according to IB spec. */ 2188 lid_check: 2189 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 2190 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 2191 } 2192 2193 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2194 { 2195 int ret; 2196 2197 if (!qp->device->ops.attach_mcast) 2198 return -EOPNOTSUPP; 2199 2200 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2201 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2202 return -EINVAL; 2203 2204 ret = qp->device->ops.attach_mcast(qp, gid, lid); 2205 if (!ret) 2206 atomic_inc(&qp->usecnt); 2207 return ret; 2208 } 2209 EXPORT_SYMBOL(ib_attach_mcast); 2210 2211 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 2212 { 2213 int ret; 2214 2215 if (!qp->device->ops.detach_mcast) 2216 return -EOPNOTSUPP; 2217 2218 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 2219 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 2220 return -EINVAL; 2221 2222 ret = qp->device->ops.detach_mcast(qp, gid, lid); 2223 if (!ret) 2224 atomic_dec(&qp->usecnt); 2225 return ret; 2226 } 2227 EXPORT_SYMBOL(ib_detach_mcast); 2228 2229 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller) 2230 { 2231 struct ib_xrcd *xrcd; 2232 2233 if (!device->ops.alloc_xrcd) 2234 return ERR_PTR(-EOPNOTSUPP); 2235 2236 xrcd = device->ops.alloc_xrcd(device, NULL); 2237 if (!IS_ERR(xrcd)) { 2238 xrcd->device = device; 2239 xrcd->inode = NULL; 2240 atomic_set(&xrcd->usecnt, 0); 2241 mutex_init(&xrcd->tgt_qp_mutex); 2242 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 2243 } 2244 2245 return xrcd; 2246 } 2247 EXPORT_SYMBOL(__ib_alloc_xrcd); 2248 2249 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata) 2250 { 2251 struct ib_qp *qp; 2252 int ret; 2253 2254 if (atomic_read(&xrcd->usecnt)) 2255 return -EBUSY; 2256 2257 while (!list_empty(&xrcd->tgt_qp_list)) { 2258 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 2259 ret = ib_destroy_qp(qp); 2260 if (ret) 2261 return ret; 2262 } 2263 mutex_destroy(&xrcd->tgt_qp_mutex); 2264 2265 return xrcd->device->ops.dealloc_xrcd(xrcd, udata); 2266 } 2267 EXPORT_SYMBOL(ib_dealloc_xrcd); 2268 2269 /** 2270 * ib_create_wq - Creates a WQ associated with the specified protection 2271 * domain. 2272 * @pd: The protection domain associated with the WQ. 2273 * @wq_attr: A list of initial attributes required to create the 2274 * WQ. If WQ creation succeeds, then the attributes are updated to 2275 * the actual capabilities of the created WQ. 2276 * 2277 * wq_attr->max_wr and wq_attr->max_sge determine 2278 * the requested size of the WQ, and set to the actual values allocated 2279 * on return. 2280 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 2281 * at least as large as the requested values. 2282 */ 2283 struct ib_wq *ib_create_wq(struct ib_pd *pd, 2284 struct ib_wq_init_attr *wq_attr) 2285 { 2286 struct ib_wq *wq; 2287 2288 if (!pd->device->ops.create_wq) 2289 return ERR_PTR(-EOPNOTSUPP); 2290 2291 wq = pd->device->ops.create_wq(pd, wq_attr, NULL); 2292 if (!IS_ERR(wq)) { 2293 wq->event_handler = wq_attr->event_handler; 2294 wq->wq_context = wq_attr->wq_context; 2295 wq->wq_type = wq_attr->wq_type; 2296 wq->cq = wq_attr->cq; 2297 wq->device = pd->device; 2298 wq->pd = pd; 2299 wq->uobject = NULL; 2300 atomic_inc(&pd->usecnt); 2301 atomic_inc(&wq_attr->cq->usecnt); 2302 atomic_set(&wq->usecnt, 0); 2303 } 2304 return wq; 2305 } 2306 EXPORT_SYMBOL(ib_create_wq); 2307 2308 /** 2309 * ib_destroy_wq - Destroys the specified user WQ. 2310 * @wq: The WQ to destroy. 2311 * @udata: Valid user data 2312 */ 2313 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata) 2314 { 2315 struct ib_cq *cq = wq->cq; 2316 struct ib_pd *pd = wq->pd; 2317 2318 if (atomic_read(&wq->usecnt)) 2319 return -EBUSY; 2320 2321 wq->device->ops.destroy_wq(wq, udata); 2322 atomic_dec(&pd->usecnt); 2323 atomic_dec(&cq->usecnt); 2324 2325 return 0; 2326 } 2327 EXPORT_SYMBOL(ib_destroy_wq); 2328 2329 /** 2330 * ib_modify_wq - Modifies the specified WQ. 2331 * @wq: The WQ to modify. 2332 * @wq_attr: On input, specifies the WQ attributes to modify. 2333 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 2334 * are being modified. 2335 * On output, the current values of selected WQ attributes are returned. 2336 */ 2337 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 2338 u32 wq_attr_mask) 2339 { 2340 int err; 2341 2342 if (!wq->device->ops.modify_wq) 2343 return -EOPNOTSUPP; 2344 2345 err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL); 2346 return err; 2347 } 2348 EXPORT_SYMBOL(ib_modify_wq); 2349 2350 /* 2351 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 2352 * @device: The device on which to create the rwq indirection table. 2353 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 2354 * create the Indirection Table. 2355 * 2356 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 2357 * than the created ib_rwq_ind_table object and the caller is responsible 2358 * for its memory allocation/free. 2359 */ 2360 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 2361 struct ib_rwq_ind_table_init_attr *init_attr) 2362 { 2363 struct ib_rwq_ind_table *rwq_ind_table; 2364 int i; 2365 u32 table_size; 2366 2367 if (!device->ops.create_rwq_ind_table) 2368 return ERR_PTR(-EOPNOTSUPP); 2369 2370 table_size = (1 << init_attr->log_ind_tbl_size); 2371 rwq_ind_table = device->ops.create_rwq_ind_table(device, 2372 init_attr, NULL); 2373 if (IS_ERR(rwq_ind_table)) 2374 return rwq_ind_table; 2375 2376 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 2377 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 2378 rwq_ind_table->device = device; 2379 rwq_ind_table->uobject = NULL; 2380 atomic_set(&rwq_ind_table->usecnt, 0); 2381 2382 for (i = 0; i < table_size; i++) 2383 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 2384 2385 return rwq_ind_table; 2386 } 2387 EXPORT_SYMBOL(ib_create_rwq_ind_table); 2388 2389 /* 2390 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 2391 * @wq_ind_table: The Indirection Table to destroy. 2392 */ 2393 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 2394 { 2395 int err, i; 2396 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 2397 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 2398 2399 if (atomic_read(&rwq_ind_table->usecnt)) 2400 return -EBUSY; 2401 2402 err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table); 2403 if (!err) { 2404 for (i = 0; i < table_size; i++) 2405 atomic_dec(&ind_tbl[i]->usecnt); 2406 } 2407 2408 return err; 2409 } 2410 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 2411 2412 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 2413 struct ib_mr_status *mr_status) 2414 { 2415 if (!mr->device->ops.check_mr_status) 2416 return -EOPNOTSUPP; 2417 2418 return mr->device->ops.check_mr_status(mr, check_mask, mr_status); 2419 } 2420 EXPORT_SYMBOL(ib_check_mr_status); 2421 2422 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2423 int state) 2424 { 2425 if (!device->ops.set_vf_link_state) 2426 return -EOPNOTSUPP; 2427 2428 return device->ops.set_vf_link_state(device, vf, port, state); 2429 } 2430 EXPORT_SYMBOL(ib_set_vf_link_state); 2431 2432 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2433 struct ifla_vf_info *info) 2434 { 2435 if (!device->ops.get_vf_config) 2436 return -EOPNOTSUPP; 2437 2438 return device->ops.get_vf_config(device, vf, port, info); 2439 } 2440 EXPORT_SYMBOL(ib_get_vf_config); 2441 2442 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2443 struct ifla_vf_stats *stats) 2444 { 2445 if (!device->ops.get_vf_stats) 2446 return -EOPNOTSUPP; 2447 2448 return device->ops.get_vf_stats(device, vf, port, stats); 2449 } 2450 EXPORT_SYMBOL(ib_get_vf_stats); 2451 2452 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2453 int type) 2454 { 2455 if (!device->ops.set_vf_guid) 2456 return -EOPNOTSUPP; 2457 2458 return device->ops.set_vf_guid(device, vf, port, guid, type); 2459 } 2460 EXPORT_SYMBOL(ib_set_vf_guid); 2461 2462 /** 2463 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection 2464 * information) and set an appropriate memory region for registration. 2465 * @mr: memory region 2466 * @data_sg: dma mapped scatterlist for data 2467 * @data_sg_nents: number of entries in data_sg 2468 * @data_sg_offset: offset in bytes into data_sg 2469 * @meta_sg: dma mapped scatterlist for metadata 2470 * @meta_sg_nents: number of entries in meta_sg 2471 * @meta_sg_offset: offset in bytes into meta_sg 2472 * @page_size: page vector desired page size 2473 * 2474 * Constraints: 2475 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY. 2476 * 2477 * Return: 0 on success. 2478 * 2479 * After this completes successfully, the memory region 2480 * is ready for registration. 2481 */ 2482 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg, 2483 int data_sg_nents, unsigned int *data_sg_offset, 2484 struct scatterlist *meta_sg, int meta_sg_nents, 2485 unsigned int *meta_sg_offset, unsigned int page_size) 2486 { 2487 if (unlikely(!mr->device->ops.map_mr_sg_pi || 2488 WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY))) 2489 return -EOPNOTSUPP; 2490 2491 mr->page_size = page_size; 2492 2493 return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents, 2494 data_sg_offset, meta_sg, 2495 meta_sg_nents, meta_sg_offset); 2496 } 2497 EXPORT_SYMBOL(ib_map_mr_sg_pi); 2498 2499 /** 2500 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 2501 * and set it the memory region. 2502 * @mr: memory region 2503 * @sg: dma mapped scatterlist 2504 * @sg_nents: number of entries in sg 2505 * @sg_offset: offset in bytes into sg 2506 * @page_size: page vector desired page size 2507 * 2508 * Constraints: 2509 * - The first sg element is allowed to have an offset. 2510 * - Each sg element must either be aligned to page_size or virtually 2511 * contiguous to the previous element. In case an sg element has a 2512 * non-contiguous offset, the mapping prefix will not include it. 2513 * - The last sg element is allowed to have length less than page_size. 2514 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 2515 * then only max_num_sg entries will be mapped. 2516 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 2517 * constraints holds and the page_size argument is ignored. 2518 * 2519 * Returns the number of sg elements that were mapped to the memory region. 2520 * 2521 * After this completes successfully, the memory region 2522 * is ready for registration. 2523 */ 2524 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 2525 unsigned int *sg_offset, unsigned int page_size) 2526 { 2527 if (unlikely(!mr->device->ops.map_mr_sg)) 2528 return -EOPNOTSUPP; 2529 2530 mr->page_size = page_size; 2531 2532 return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset); 2533 } 2534 EXPORT_SYMBOL(ib_map_mr_sg); 2535 2536 /** 2537 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2538 * to a page vector 2539 * @mr: memory region 2540 * @sgl: dma mapped scatterlist 2541 * @sg_nents: number of entries in sg 2542 * @sg_offset_p: IN: start offset in bytes into sg 2543 * OUT: offset in bytes for element n of the sg of the first 2544 * byte that has not been processed where n is the return 2545 * value of this function. 2546 * @set_page: driver page assignment function pointer 2547 * 2548 * Core service helper for drivers to convert the largest 2549 * prefix of given sg list to a page vector. The sg list 2550 * prefix converted is the prefix that meet the requirements 2551 * of ib_map_mr_sg. 2552 * 2553 * Returns the number of sg elements that were assigned to 2554 * a page vector. 2555 */ 2556 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2557 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2558 { 2559 struct scatterlist *sg; 2560 u64 last_end_dma_addr = 0; 2561 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2562 unsigned int last_page_off = 0; 2563 u64 page_mask = ~((u64)mr->page_size - 1); 2564 int i, ret; 2565 2566 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2567 return -EINVAL; 2568 2569 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2570 mr->length = 0; 2571 2572 for_each_sg(sgl, sg, sg_nents, i) { 2573 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2574 u64 prev_addr = dma_addr; 2575 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2576 u64 end_dma_addr = dma_addr + dma_len; 2577 u64 page_addr = dma_addr & page_mask; 2578 2579 /* 2580 * For the second and later elements, check whether either the 2581 * end of element i-1 or the start of element i is not aligned 2582 * on a page boundary. 2583 */ 2584 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2585 /* Stop mapping if there is a gap. */ 2586 if (last_end_dma_addr != dma_addr) 2587 break; 2588 2589 /* 2590 * Coalesce this element with the last. If it is small 2591 * enough just update mr->length. Otherwise start 2592 * mapping from the next page. 2593 */ 2594 goto next_page; 2595 } 2596 2597 do { 2598 ret = set_page(mr, page_addr); 2599 if (unlikely(ret < 0)) { 2600 sg_offset = prev_addr - sg_dma_address(sg); 2601 mr->length += prev_addr - dma_addr; 2602 if (sg_offset_p) 2603 *sg_offset_p = sg_offset; 2604 return i || sg_offset ? i : ret; 2605 } 2606 prev_addr = page_addr; 2607 next_page: 2608 page_addr += mr->page_size; 2609 } while (page_addr < end_dma_addr); 2610 2611 mr->length += dma_len; 2612 last_end_dma_addr = end_dma_addr; 2613 last_page_off = end_dma_addr & ~page_mask; 2614 2615 sg_offset = 0; 2616 } 2617 2618 if (sg_offset_p) 2619 *sg_offset_p = 0; 2620 return i; 2621 } 2622 EXPORT_SYMBOL(ib_sg_to_pages); 2623 2624 struct ib_drain_cqe { 2625 struct ib_cqe cqe; 2626 struct completion done; 2627 }; 2628 2629 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2630 { 2631 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2632 cqe); 2633 2634 complete(&cqe->done); 2635 } 2636 2637 /* 2638 * Post a WR and block until its completion is reaped for the SQ. 2639 */ 2640 static void __ib_drain_sq(struct ib_qp *qp) 2641 { 2642 struct ib_cq *cq = qp->send_cq; 2643 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2644 struct ib_drain_cqe sdrain; 2645 struct ib_rdma_wr swr = { 2646 .wr = { 2647 .next = NULL, 2648 { .wr_cqe = &sdrain.cqe, }, 2649 .opcode = IB_WR_RDMA_WRITE, 2650 }, 2651 }; 2652 int ret; 2653 2654 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2655 if (ret) { 2656 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2657 return; 2658 } 2659 2660 sdrain.cqe.done = ib_drain_qp_done; 2661 init_completion(&sdrain.done); 2662 2663 ret = ib_post_send(qp, &swr.wr, NULL); 2664 if (ret) { 2665 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2666 return; 2667 } 2668 2669 if (cq->poll_ctx == IB_POLL_DIRECT) 2670 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2671 ib_process_cq_direct(cq, -1); 2672 else 2673 wait_for_completion(&sdrain.done); 2674 } 2675 2676 /* 2677 * Post a WR and block until its completion is reaped for the RQ. 2678 */ 2679 static void __ib_drain_rq(struct ib_qp *qp) 2680 { 2681 struct ib_cq *cq = qp->recv_cq; 2682 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2683 struct ib_drain_cqe rdrain; 2684 struct ib_recv_wr rwr = {}; 2685 int ret; 2686 2687 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2688 if (ret) { 2689 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2690 return; 2691 } 2692 2693 rwr.wr_cqe = &rdrain.cqe; 2694 rdrain.cqe.done = ib_drain_qp_done; 2695 init_completion(&rdrain.done); 2696 2697 ret = ib_post_recv(qp, &rwr, NULL); 2698 if (ret) { 2699 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2700 return; 2701 } 2702 2703 if (cq->poll_ctx == IB_POLL_DIRECT) 2704 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2705 ib_process_cq_direct(cq, -1); 2706 else 2707 wait_for_completion(&rdrain.done); 2708 } 2709 2710 /** 2711 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2712 * application. 2713 * @qp: queue pair to drain 2714 * 2715 * If the device has a provider-specific drain function, then 2716 * call that. Otherwise call the generic drain function 2717 * __ib_drain_sq(). 2718 * 2719 * The caller must: 2720 * 2721 * ensure there is room in the CQ and SQ for the drain work request and 2722 * completion. 2723 * 2724 * allocate the CQ using ib_alloc_cq(). 2725 * 2726 * ensure that there are no other contexts that are posting WRs concurrently. 2727 * Otherwise the drain is not guaranteed. 2728 */ 2729 void ib_drain_sq(struct ib_qp *qp) 2730 { 2731 if (qp->device->ops.drain_sq) 2732 qp->device->ops.drain_sq(qp); 2733 else 2734 __ib_drain_sq(qp); 2735 } 2736 EXPORT_SYMBOL(ib_drain_sq); 2737 2738 /** 2739 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2740 * application. 2741 * @qp: queue pair to drain 2742 * 2743 * If the device has a provider-specific drain function, then 2744 * call that. Otherwise call the generic drain function 2745 * __ib_drain_rq(). 2746 * 2747 * The caller must: 2748 * 2749 * ensure there is room in the CQ and RQ for the drain work request and 2750 * completion. 2751 * 2752 * allocate the CQ using ib_alloc_cq(). 2753 * 2754 * ensure that there are no other contexts that are posting WRs concurrently. 2755 * Otherwise the drain is not guaranteed. 2756 */ 2757 void ib_drain_rq(struct ib_qp *qp) 2758 { 2759 if (qp->device->ops.drain_rq) 2760 qp->device->ops.drain_rq(qp); 2761 else 2762 __ib_drain_rq(qp); 2763 } 2764 EXPORT_SYMBOL(ib_drain_rq); 2765 2766 /** 2767 * ib_drain_qp() - Block until all CQEs have been consumed by the 2768 * application on both the RQ and SQ. 2769 * @qp: queue pair to drain 2770 * 2771 * The caller must: 2772 * 2773 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2774 * and completions. 2775 * 2776 * allocate the CQs using ib_alloc_cq(). 2777 * 2778 * ensure that there are no other contexts that are posting WRs concurrently. 2779 * Otherwise the drain is not guaranteed. 2780 */ 2781 void ib_drain_qp(struct ib_qp *qp) 2782 { 2783 ib_drain_sq(qp); 2784 if (!qp->srq) 2785 ib_drain_rq(qp); 2786 } 2787 EXPORT_SYMBOL(ib_drain_qp); 2788 2789 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num, 2790 enum rdma_netdev_t type, const char *name, 2791 unsigned char name_assign_type, 2792 void (*setup)(struct net_device *)) 2793 { 2794 struct rdma_netdev_alloc_params params; 2795 struct net_device *netdev; 2796 int rc; 2797 2798 if (!device->ops.rdma_netdev_get_params) 2799 return ERR_PTR(-EOPNOTSUPP); 2800 2801 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2802 ¶ms); 2803 if (rc) 2804 return ERR_PTR(rc); 2805 2806 netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type, 2807 setup, params.txqs, params.rxqs); 2808 if (!netdev) 2809 return ERR_PTR(-ENOMEM); 2810 2811 return netdev; 2812 } 2813 EXPORT_SYMBOL(rdma_alloc_netdev); 2814 2815 int rdma_init_netdev(struct ib_device *device, u8 port_num, 2816 enum rdma_netdev_t type, const char *name, 2817 unsigned char name_assign_type, 2818 void (*setup)(struct net_device *), 2819 struct net_device *netdev) 2820 { 2821 struct rdma_netdev_alloc_params params; 2822 int rc; 2823 2824 if (!device->ops.rdma_netdev_get_params) 2825 return -EOPNOTSUPP; 2826 2827 rc = device->ops.rdma_netdev_get_params(device, port_num, type, 2828 ¶ms); 2829 if (rc) 2830 return rc; 2831 2832 return params.initialize_rdma_netdev(device, port_num, 2833 netdev, params.param); 2834 } 2835 EXPORT_SYMBOL(rdma_init_netdev); 2836 2837 void __rdma_block_iter_start(struct ib_block_iter *biter, 2838 struct scatterlist *sglist, unsigned int nents, 2839 unsigned long pgsz) 2840 { 2841 memset(biter, 0, sizeof(struct ib_block_iter)); 2842 biter->__sg = sglist; 2843 biter->__sg_nents = nents; 2844 2845 /* Driver provides best block size to use */ 2846 biter->__pg_bit = __fls(pgsz); 2847 } 2848 EXPORT_SYMBOL(__rdma_block_iter_start); 2849 2850 bool __rdma_block_iter_next(struct ib_block_iter *biter) 2851 { 2852 unsigned int block_offset; 2853 2854 if (!biter->__sg_nents || !biter->__sg) 2855 return false; 2856 2857 biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance; 2858 block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1); 2859 biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset; 2860 2861 if (biter->__sg_advance >= sg_dma_len(biter->__sg)) { 2862 biter->__sg_advance = 0; 2863 biter->__sg = sg_next(biter->__sg); 2864 biter->__sg_nents--; 2865 } 2866 2867 return true; 2868 } 2869 EXPORT_SYMBOL(__rdma_block_iter_next); 2870