1 /* 2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 4 * Copyright (c) 2004 Intel Corporation. All rights reserved. 5 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. 9 * 10 * This software is available to you under a choice of one of two 11 * licenses. You may choose to be licensed under the terms of the GNU 12 * General Public License (GPL) Version 2, available from the file 13 * COPYING in the main directory of this source tree, or the 14 * OpenIB.org BSD license below: 15 * 16 * Redistribution and use in source and binary forms, with or 17 * without modification, are permitted provided that the following 18 * conditions are met: 19 * 20 * - Redistributions of source code must retain the above 21 * copyright notice, this list of conditions and the following 22 * disclaimer. 23 * 24 * - Redistributions in binary form must reproduce the above 25 * copyright notice, this list of conditions and the following 26 * disclaimer in the documentation and/or other materials 27 * provided with the distribution. 28 * 29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 36 * SOFTWARE. 37 */ 38 39 #include <linux/errno.h> 40 #include <linux/err.h> 41 #include <linux/export.h> 42 #include <linux/string.h> 43 #include <linux/slab.h> 44 #include <linux/in.h> 45 #include <linux/in6.h> 46 #include <net/addrconf.h> 47 #include <linux/security.h> 48 49 #include <rdma/ib_verbs.h> 50 #include <rdma/ib_cache.h> 51 #include <rdma/ib_addr.h> 52 #include <rdma/rw.h> 53 54 #include "core_priv.h" 55 56 static const char * const ib_events[] = { 57 [IB_EVENT_CQ_ERR] = "CQ error", 58 [IB_EVENT_QP_FATAL] = "QP fatal error", 59 [IB_EVENT_QP_REQ_ERR] = "QP request error", 60 [IB_EVENT_QP_ACCESS_ERR] = "QP access error", 61 [IB_EVENT_COMM_EST] = "communication established", 62 [IB_EVENT_SQ_DRAINED] = "send queue drained", 63 [IB_EVENT_PATH_MIG] = "path migration successful", 64 [IB_EVENT_PATH_MIG_ERR] = "path migration error", 65 [IB_EVENT_DEVICE_FATAL] = "device fatal error", 66 [IB_EVENT_PORT_ACTIVE] = "port active", 67 [IB_EVENT_PORT_ERR] = "port error", 68 [IB_EVENT_LID_CHANGE] = "LID change", 69 [IB_EVENT_PKEY_CHANGE] = "P_key change", 70 [IB_EVENT_SM_CHANGE] = "SM change", 71 [IB_EVENT_SRQ_ERR] = "SRQ error", 72 [IB_EVENT_SRQ_LIMIT_REACHED] = "SRQ limit reached", 73 [IB_EVENT_QP_LAST_WQE_REACHED] = "last WQE reached", 74 [IB_EVENT_CLIENT_REREGISTER] = "client reregister", 75 [IB_EVENT_GID_CHANGE] = "GID changed", 76 }; 77 78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event) 79 { 80 size_t index = event; 81 82 return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ? 83 ib_events[index] : "unrecognized event"; 84 } 85 EXPORT_SYMBOL(ib_event_msg); 86 87 static const char * const wc_statuses[] = { 88 [IB_WC_SUCCESS] = "success", 89 [IB_WC_LOC_LEN_ERR] = "local length error", 90 [IB_WC_LOC_QP_OP_ERR] = "local QP operation error", 91 [IB_WC_LOC_EEC_OP_ERR] = "local EE context operation error", 92 [IB_WC_LOC_PROT_ERR] = "local protection error", 93 [IB_WC_WR_FLUSH_ERR] = "WR flushed", 94 [IB_WC_MW_BIND_ERR] = "memory management operation error", 95 [IB_WC_BAD_RESP_ERR] = "bad response error", 96 [IB_WC_LOC_ACCESS_ERR] = "local access error", 97 [IB_WC_REM_INV_REQ_ERR] = "invalid request error", 98 [IB_WC_REM_ACCESS_ERR] = "remote access error", 99 [IB_WC_REM_OP_ERR] = "remote operation error", 100 [IB_WC_RETRY_EXC_ERR] = "transport retry counter exceeded", 101 [IB_WC_RNR_RETRY_EXC_ERR] = "RNR retry counter exceeded", 102 [IB_WC_LOC_RDD_VIOL_ERR] = "local RDD violation error", 103 [IB_WC_REM_INV_RD_REQ_ERR] = "remote invalid RD request", 104 [IB_WC_REM_ABORT_ERR] = "operation aborted", 105 [IB_WC_INV_EECN_ERR] = "invalid EE context number", 106 [IB_WC_INV_EEC_STATE_ERR] = "invalid EE context state", 107 [IB_WC_FATAL_ERR] = "fatal error", 108 [IB_WC_RESP_TIMEOUT_ERR] = "response timeout error", 109 [IB_WC_GENERAL_ERR] = "general error", 110 }; 111 112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status) 113 { 114 size_t index = status; 115 116 return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ? 117 wc_statuses[index] : "unrecognized status"; 118 } 119 EXPORT_SYMBOL(ib_wc_status_msg); 120 121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate) 122 { 123 switch (rate) { 124 case IB_RATE_2_5_GBPS: return 1; 125 case IB_RATE_5_GBPS: return 2; 126 case IB_RATE_10_GBPS: return 4; 127 case IB_RATE_20_GBPS: return 8; 128 case IB_RATE_30_GBPS: return 12; 129 case IB_RATE_40_GBPS: return 16; 130 case IB_RATE_60_GBPS: return 24; 131 case IB_RATE_80_GBPS: return 32; 132 case IB_RATE_120_GBPS: return 48; 133 default: return -1; 134 } 135 } 136 EXPORT_SYMBOL(ib_rate_to_mult); 137 138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult) 139 { 140 switch (mult) { 141 case 1: return IB_RATE_2_5_GBPS; 142 case 2: return IB_RATE_5_GBPS; 143 case 4: return IB_RATE_10_GBPS; 144 case 8: return IB_RATE_20_GBPS; 145 case 12: return IB_RATE_30_GBPS; 146 case 16: return IB_RATE_40_GBPS; 147 case 24: return IB_RATE_60_GBPS; 148 case 32: return IB_RATE_80_GBPS; 149 case 48: return IB_RATE_120_GBPS; 150 default: return IB_RATE_PORT_CURRENT; 151 } 152 } 153 EXPORT_SYMBOL(mult_to_ib_rate); 154 155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate) 156 { 157 switch (rate) { 158 case IB_RATE_2_5_GBPS: return 2500; 159 case IB_RATE_5_GBPS: return 5000; 160 case IB_RATE_10_GBPS: return 10000; 161 case IB_RATE_20_GBPS: return 20000; 162 case IB_RATE_30_GBPS: return 30000; 163 case IB_RATE_40_GBPS: return 40000; 164 case IB_RATE_60_GBPS: return 60000; 165 case IB_RATE_80_GBPS: return 80000; 166 case IB_RATE_120_GBPS: return 120000; 167 case IB_RATE_14_GBPS: return 14062; 168 case IB_RATE_56_GBPS: return 56250; 169 case IB_RATE_112_GBPS: return 112500; 170 case IB_RATE_168_GBPS: return 168750; 171 case IB_RATE_25_GBPS: return 25781; 172 case IB_RATE_100_GBPS: return 103125; 173 case IB_RATE_200_GBPS: return 206250; 174 case IB_RATE_300_GBPS: return 309375; 175 default: return -1; 176 } 177 } 178 EXPORT_SYMBOL(ib_rate_to_mbps); 179 180 __attribute_const__ enum rdma_transport_type 181 rdma_node_get_transport(enum rdma_node_type node_type) 182 { 183 184 if (node_type == RDMA_NODE_USNIC) 185 return RDMA_TRANSPORT_USNIC; 186 if (node_type == RDMA_NODE_USNIC_UDP) 187 return RDMA_TRANSPORT_USNIC_UDP; 188 if (node_type == RDMA_NODE_RNIC) 189 return RDMA_TRANSPORT_IWARP; 190 191 return RDMA_TRANSPORT_IB; 192 } 193 EXPORT_SYMBOL(rdma_node_get_transport); 194 195 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num) 196 { 197 enum rdma_transport_type lt; 198 if (device->get_link_layer) 199 return device->get_link_layer(device, port_num); 200 201 lt = rdma_node_get_transport(device->node_type); 202 if (lt == RDMA_TRANSPORT_IB) 203 return IB_LINK_LAYER_INFINIBAND; 204 205 return IB_LINK_LAYER_ETHERNET; 206 } 207 EXPORT_SYMBOL(rdma_port_get_link_layer); 208 209 /* Protection domains */ 210 211 /** 212 * ib_alloc_pd - Allocates an unused protection domain. 213 * @device: The device on which to allocate the protection domain. 214 * 215 * A protection domain object provides an association between QPs, shared 216 * receive queues, address handles, memory regions, and memory windows. 217 * 218 * Every PD has a local_dma_lkey which can be used as the lkey value for local 219 * memory operations. 220 */ 221 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 222 const char *caller) 223 { 224 struct ib_pd *pd; 225 int mr_access_flags = 0; 226 227 pd = device->alloc_pd(device, NULL, NULL); 228 if (IS_ERR(pd)) 229 return pd; 230 231 pd->device = device; 232 pd->uobject = NULL; 233 pd->__internal_mr = NULL; 234 atomic_set(&pd->usecnt, 0); 235 pd->flags = flags; 236 237 if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY) 238 pd->local_dma_lkey = device->local_dma_lkey; 239 else 240 mr_access_flags |= IB_ACCESS_LOCAL_WRITE; 241 242 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) { 243 pr_warn("%s: enabling unsafe global rkey\n", caller); 244 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; 245 } 246 247 if (mr_access_flags) { 248 struct ib_mr *mr; 249 250 mr = pd->device->get_dma_mr(pd, mr_access_flags); 251 if (IS_ERR(mr)) { 252 ib_dealloc_pd(pd); 253 return ERR_CAST(mr); 254 } 255 256 mr->device = pd->device; 257 mr->pd = pd; 258 mr->uobject = NULL; 259 mr->need_inval = false; 260 261 pd->__internal_mr = mr; 262 263 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)) 264 pd->local_dma_lkey = pd->__internal_mr->lkey; 265 266 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) 267 pd->unsafe_global_rkey = pd->__internal_mr->rkey; 268 } 269 270 return pd; 271 } 272 EXPORT_SYMBOL(__ib_alloc_pd); 273 274 /** 275 * ib_dealloc_pd - Deallocates a protection domain. 276 * @pd: The protection domain to deallocate. 277 * 278 * It is an error to call this function while any resources in the pd still 279 * exist. The caller is responsible to synchronously destroy them and 280 * guarantee no new allocations will happen. 281 */ 282 void ib_dealloc_pd(struct ib_pd *pd) 283 { 284 int ret; 285 286 if (pd->__internal_mr) { 287 ret = pd->device->dereg_mr(pd->__internal_mr); 288 WARN_ON(ret); 289 pd->__internal_mr = NULL; 290 } 291 292 /* uverbs manipulates usecnt with proper locking, while the kabi 293 requires the caller to guarantee we can't race here. */ 294 WARN_ON(atomic_read(&pd->usecnt)); 295 296 /* Making delalloc_pd a void return is a WIP, no driver should return 297 an error here. */ 298 ret = pd->device->dealloc_pd(pd); 299 WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd"); 300 } 301 EXPORT_SYMBOL(ib_dealloc_pd); 302 303 /* Address handles */ 304 305 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr) 306 { 307 struct ib_ah *ah; 308 309 ah = pd->device->create_ah(pd, ah_attr, NULL); 310 311 if (!IS_ERR(ah)) { 312 ah->device = pd->device; 313 ah->pd = pd; 314 ah->uobject = NULL; 315 ah->type = ah_attr->type; 316 atomic_inc(&pd->usecnt); 317 } 318 319 return ah; 320 } 321 EXPORT_SYMBOL(rdma_create_ah); 322 323 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr) 324 { 325 const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh; 326 struct iphdr ip4h_checked; 327 const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh; 328 329 /* If it's IPv6, the version must be 6, otherwise, the first 330 * 20 bytes (before the IPv4 header) are garbled. 331 */ 332 if (ip6h->version != 6) 333 return (ip4h->version == 4) ? 4 : 0; 334 /* version may be 6 or 4 because the first 20 bytes could be garbled */ 335 336 /* RoCE v2 requires no options, thus header length 337 * must be 5 words 338 */ 339 if (ip4h->ihl != 5) 340 return 6; 341 342 /* Verify checksum. 343 * We can't write on scattered buffers so we need to copy to 344 * temp buffer. 345 */ 346 memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked)); 347 ip4h_checked.check = 0; 348 ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5); 349 /* if IPv4 header checksum is OK, believe it */ 350 if (ip4h->check == ip4h_checked.check) 351 return 4; 352 return 6; 353 } 354 EXPORT_SYMBOL(ib_get_rdma_header_version); 355 356 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device, 357 u8 port_num, 358 const struct ib_grh *grh) 359 { 360 int grh_version; 361 362 if (rdma_protocol_ib(device, port_num)) 363 return RDMA_NETWORK_IB; 364 365 grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh); 366 367 if (grh_version == 4) 368 return RDMA_NETWORK_IPV4; 369 370 if (grh->next_hdr == IPPROTO_UDP) 371 return RDMA_NETWORK_IPV6; 372 373 return RDMA_NETWORK_ROCE_V1; 374 } 375 376 struct find_gid_index_context { 377 u16 vlan_id; 378 enum ib_gid_type gid_type; 379 }; 380 381 static bool find_gid_index(const union ib_gid *gid, 382 const struct ib_gid_attr *gid_attr, 383 void *context) 384 { 385 struct find_gid_index_context *ctx = 386 (struct find_gid_index_context *)context; 387 388 if (ctx->gid_type != gid_attr->gid_type) 389 return false; 390 391 if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) || 392 (is_vlan_dev(gid_attr->ndev) && 393 vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id)) 394 return false; 395 396 return true; 397 } 398 399 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num, 400 u16 vlan_id, const union ib_gid *sgid, 401 enum ib_gid_type gid_type, 402 u16 *gid_index) 403 { 404 struct find_gid_index_context context = {.vlan_id = vlan_id, 405 .gid_type = gid_type}; 406 407 return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index, 408 &context, gid_index); 409 } 410 411 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr, 412 enum rdma_network_type net_type, 413 union ib_gid *sgid, union ib_gid *dgid) 414 { 415 struct sockaddr_in src_in; 416 struct sockaddr_in dst_in; 417 __be32 src_saddr, dst_saddr; 418 419 if (!sgid || !dgid) 420 return -EINVAL; 421 422 if (net_type == RDMA_NETWORK_IPV4) { 423 memcpy(&src_in.sin_addr.s_addr, 424 &hdr->roce4grh.saddr, 4); 425 memcpy(&dst_in.sin_addr.s_addr, 426 &hdr->roce4grh.daddr, 4); 427 src_saddr = src_in.sin_addr.s_addr; 428 dst_saddr = dst_in.sin_addr.s_addr; 429 ipv6_addr_set_v4mapped(src_saddr, 430 (struct in6_addr *)sgid); 431 ipv6_addr_set_v4mapped(dst_saddr, 432 (struct in6_addr *)dgid); 433 return 0; 434 } else if (net_type == RDMA_NETWORK_IPV6 || 435 net_type == RDMA_NETWORK_IB) { 436 *dgid = hdr->ibgrh.dgid; 437 *sgid = hdr->ibgrh.sgid; 438 return 0; 439 } else { 440 return -EINVAL; 441 } 442 } 443 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr); 444 445 /* 446 * This function creates ah from the incoming packet. 447 * Incoming packet has dgid of the receiver node on which this code is 448 * getting executed and, sgid contains the GID of the sender. 449 * 450 * When resolving mac address of destination, the arrived dgid is used 451 * as sgid and, sgid is used as dgid because sgid contains destinations 452 * GID whom to respond to. 453 * 454 * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the 455 * position of arguments dgid and sgid do not match the order of the 456 * parameters. 457 */ 458 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 459 const struct ib_wc *wc, const struct ib_grh *grh, 460 struct rdma_ah_attr *ah_attr) 461 { 462 u32 flow_class; 463 u16 gid_index; 464 int ret; 465 enum rdma_network_type net_type = RDMA_NETWORK_IB; 466 enum ib_gid_type gid_type = IB_GID_TYPE_IB; 467 int hoplimit = 0xff; 468 union ib_gid dgid; 469 union ib_gid sgid; 470 471 might_sleep(); 472 473 memset(ah_attr, 0, sizeof *ah_attr); 474 ah_attr->type = rdma_ah_find_type(device, port_num); 475 if (rdma_cap_eth_ah(device, port_num)) { 476 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE) 477 net_type = wc->network_hdr_type; 478 else 479 net_type = ib_get_net_type_by_grh(device, port_num, grh); 480 gid_type = ib_network_to_gid_type(net_type); 481 } 482 ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type, 483 &sgid, &dgid); 484 if (ret) 485 return ret; 486 487 if (rdma_protocol_roce(device, port_num)) { 488 int if_index = 0; 489 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ? 490 wc->vlan_id : 0xffff; 491 struct net_device *idev; 492 struct net_device *resolved_dev; 493 494 if (!(wc->wc_flags & IB_WC_GRH)) 495 return -EPROTOTYPE; 496 497 if (!device->get_netdev) 498 return -EOPNOTSUPP; 499 500 idev = device->get_netdev(device, port_num); 501 if (!idev) 502 return -ENODEV; 503 504 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid, 505 ah_attr->roce.dmac, 506 wc->wc_flags & IB_WC_WITH_VLAN ? 507 NULL : &vlan_id, 508 &if_index, &hoplimit); 509 if (ret) { 510 dev_put(idev); 511 return ret; 512 } 513 514 resolved_dev = dev_get_by_index(&init_net, if_index); 515 rcu_read_lock(); 516 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev, 517 resolved_dev)) 518 ret = -EHOSTUNREACH; 519 rcu_read_unlock(); 520 dev_put(idev); 521 dev_put(resolved_dev); 522 if (ret) 523 return ret; 524 525 ret = get_sgid_index_from_eth(device, port_num, vlan_id, 526 &dgid, gid_type, &gid_index); 527 if (ret) 528 return ret; 529 } 530 531 rdma_ah_set_dlid(ah_attr, wc->slid); 532 rdma_ah_set_sl(ah_attr, wc->sl); 533 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits); 534 rdma_ah_set_port_num(ah_attr, port_num); 535 536 if (wc->wc_flags & IB_WC_GRH) { 537 if (!rdma_cap_eth_ah(device, port_num)) { 538 if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) { 539 ret = ib_find_cached_gid_by_port(device, &dgid, 540 IB_GID_TYPE_IB, 541 port_num, NULL, 542 &gid_index); 543 if (ret) 544 return ret; 545 } else { 546 gid_index = 0; 547 } 548 } 549 550 flow_class = be32_to_cpu(grh->version_tclass_flow); 551 rdma_ah_set_grh(ah_attr, &sgid, 552 flow_class & 0xFFFFF, 553 (u8)gid_index, hoplimit, 554 (flow_class >> 20) & 0xFF); 555 556 } 557 return 0; 558 } 559 EXPORT_SYMBOL(ib_init_ah_from_wc); 560 561 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 562 const struct ib_grh *grh, u8 port_num) 563 { 564 struct rdma_ah_attr ah_attr; 565 int ret; 566 567 ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr); 568 if (ret) 569 return ERR_PTR(ret); 570 571 return rdma_create_ah(pd, &ah_attr); 572 } 573 EXPORT_SYMBOL(ib_create_ah_from_wc); 574 575 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 576 { 577 if (ah->type != ah_attr->type) 578 return -EINVAL; 579 580 return ah->device->modify_ah ? 581 ah->device->modify_ah(ah, ah_attr) : 582 -ENOSYS; 583 } 584 EXPORT_SYMBOL(rdma_modify_ah); 585 586 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr) 587 { 588 return ah->device->query_ah ? 589 ah->device->query_ah(ah, ah_attr) : 590 -ENOSYS; 591 } 592 EXPORT_SYMBOL(rdma_query_ah); 593 594 int rdma_destroy_ah(struct ib_ah *ah) 595 { 596 struct ib_pd *pd; 597 int ret; 598 599 pd = ah->pd; 600 ret = ah->device->destroy_ah(ah); 601 if (!ret) 602 atomic_dec(&pd->usecnt); 603 604 return ret; 605 } 606 EXPORT_SYMBOL(rdma_destroy_ah); 607 608 /* Shared receive queues */ 609 610 struct ib_srq *ib_create_srq(struct ib_pd *pd, 611 struct ib_srq_init_attr *srq_init_attr) 612 { 613 struct ib_srq *srq; 614 615 if (!pd->device->create_srq) 616 return ERR_PTR(-ENOSYS); 617 618 srq = pd->device->create_srq(pd, srq_init_attr, NULL); 619 620 if (!IS_ERR(srq)) { 621 srq->device = pd->device; 622 srq->pd = pd; 623 srq->uobject = NULL; 624 srq->event_handler = srq_init_attr->event_handler; 625 srq->srq_context = srq_init_attr->srq_context; 626 srq->srq_type = srq_init_attr->srq_type; 627 if (ib_srq_has_cq(srq->srq_type)) { 628 srq->ext.cq = srq_init_attr->ext.cq; 629 atomic_inc(&srq->ext.cq->usecnt); 630 } 631 if (srq->srq_type == IB_SRQT_XRC) { 632 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd; 633 atomic_inc(&srq->ext.xrc.xrcd->usecnt); 634 } 635 atomic_inc(&pd->usecnt); 636 atomic_set(&srq->usecnt, 0); 637 } 638 639 return srq; 640 } 641 EXPORT_SYMBOL(ib_create_srq); 642 643 int ib_modify_srq(struct ib_srq *srq, 644 struct ib_srq_attr *srq_attr, 645 enum ib_srq_attr_mask srq_attr_mask) 646 { 647 return srq->device->modify_srq ? 648 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) : 649 -ENOSYS; 650 } 651 EXPORT_SYMBOL(ib_modify_srq); 652 653 int ib_query_srq(struct ib_srq *srq, 654 struct ib_srq_attr *srq_attr) 655 { 656 return srq->device->query_srq ? 657 srq->device->query_srq(srq, srq_attr) : -ENOSYS; 658 } 659 EXPORT_SYMBOL(ib_query_srq); 660 661 int ib_destroy_srq(struct ib_srq *srq) 662 { 663 struct ib_pd *pd; 664 enum ib_srq_type srq_type; 665 struct ib_xrcd *uninitialized_var(xrcd); 666 struct ib_cq *uninitialized_var(cq); 667 int ret; 668 669 if (atomic_read(&srq->usecnt)) 670 return -EBUSY; 671 672 pd = srq->pd; 673 srq_type = srq->srq_type; 674 if (ib_srq_has_cq(srq_type)) 675 cq = srq->ext.cq; 676 if (srq_type == IB_SRQT_XRC) 677 xrcd = srq->ext.xrc.xrcd; 678 679 ret = srq->device->destroy_srq(srq); 680 if (!ret) { 681 atomic_dec(&pd->usecnt); 682 if (srq_type == IB_SRQT_XRC) 683 atomic_dec(&xrcd->usecnt); 684 if (ib_srq_has_cq(srq_type)) 685 atomic_dec(&cq->usecnt); 686 } 687 688 return ret; 689 } 690 EXPORT_SYMBOL(ib_destroy_srq); 691 692 /* Queue pairs */ 693 694 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context) 695 { 696 struct ib_qp *qp = context; 697 unsigned long flags; 698 699 spin_lock_irqsave(&qp->device->event_handler_lock, flags); 700 list_for_each_entry(event->element.qp, &qp->open_list, open_list) 701 if (event->element.qp->event_handler) 702 event->element.qp->event_handler(event, event->element.qp->qp_context); 703 spin_unlock_irqrestore(&qp->device->event_handler_lock, flags); 704 } 705 706 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp) 707 { 708 mutex_lock(&xrcd->tgt_qp_mutex); 709 list_add(&qp->xrcd_list, &xrcd->tgt_qp_list); 710 mutex_unlock(&xrcd->tgt_qp_mutex); 711 } 712 713 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp, 714 void (*event_handler)(struct ib_event *, void *), 715 void *qp_context) 716 { 717 struct ib_qp *qp; 718 unsigned long flags; 719 int err; 720 721 qp = kzalloc(sizeof *qp, GFP_KERNEL); 722 if (!qp) 723 return ERR_PTR(-ENOMEM); 724 725 qp->real_qp = real_qp; 726 err = ib_open_shared_qp_security(qp, real_qp->device); 727 if (err) { 728 kfree(qp); 729 return ERR_PTR(err); 730 } 731 732 qp->real_qp = real_qp; 733 atomic_inc(&real_qp->usecnt); 734 qp->device = real_qp->device; 735 qp->event_handler = event_handler; 736 qp->qp_context = qp_context; 737 qp->qp_num = real_qp->qp_num; 738 qp->qp_type = real_qp->qp_type; 739 740 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 741 list_add(&qp->open_list, &real_qp->open_list); 742 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 743 744 return qp; 745 } 746 747 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 748 struct ib_qp_open_attr *qp_open_attr) 749 { 750 struct ib_qp *qp, *real_qp; 751 752 if (qp_open_attr->qp_type != IB_QPT_XRC_TGT) 753 return ERR_PTR(-EINVAL); 754 755 qp = ERR_PTR(-EINVAL); 756 mutex_lock(&xrcd->tgt_qp_mutex); 757 list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) { 758 if (real_qp->qp_num == qp_open_attr->qp_num) { 759 qp = __ib_open_qp(real_qp, qp_open_attr->event_handler, 760 qp_open_attr->qp_context); 761 break; 762 } 763 } 764 mutex_unlock(&xrcd->tgt_qp_mutex); 765 return qp; 766 } 767 EXPORT_SYMBOL(ib_open_qp); 768 769 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp, 770 struct ib_qp_init_attr *qp_init_attr) 771 { 772 struct ib_qp *real_qp = qp; 773 774 qp->event_handler = __ib_shared_qp_event_handler; 775 qp->qp_context = qp; 776 qp->pd = NULL; 777 qp->send_cq = qp->recv_cq = NULL; 778 qp->srq = NULL; 779 qp->xrcd = qp_init_attr->xrcd; 780 atomic_inc(&qp_init_attr->xrcd->usecnt); 781 INIT_LIST_HEAD(&qp->open_list); 782 783 qp = __ib_open_qp(real_qp, qp_init_attr->event_handler, 784 qp_init_attr->qp_context); 785 if (!IS_ERR(qp)) 786 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp); 787 else 788 real_qp->device->destroy_qp(real_qp); 789 return qp; 790 } 791 792 struct ib_qp *ib_create_qp(struct ib_pd *pd, 793 struct ib_qp_init_attr *qp_init_attr) 794 { 795 struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device; 796 struct ib_qp *qp; 797 int ret; 798 799 if (qp_init_attr->rwq_ind_tbl && 800 (qp_init_attr->recv_cq || 801 qp_init_attr->srq || qp_init_attr->cap.max_recv_wr || 802 qp_init_attr->cap.max_recv_sge)) 803 return ERR_PTR(-EINVAL); 804 805 /* 806 * If the callers is using the RDMA API calculate the resources 807 * needed for the RDMA READ/WRITE operations. 808 * 809 * Note that these callers need to pass in a port number. 810 */ 811 if (qp_init_attr->cap.max_rdma_ctxs) 812 rdma_rw_init_qp(device, qp_init_attr); 813 814 qp = device->create_qp(pd, qp_init_attr, NULL); 815 if (IS_ERR(qp)) 816 return qp; 817 818 ret = ib_create_qp_security(qp, device); 819 if (ret) { 820 ib_destroy_qp(qp); 821 return ERR_PTR(ret); 822 } 823 824 qp->device = device; 825 qp->real_qp = qp; 826 qp->uobject = NULL; 827 qp->qp_type = qp_init_attr->qp_type; 828 qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl; 829 830 atomic_set(&qp->usecnt, 0); 831 qp->mrs_used = 0; 832 spin_lock_init(&qp->mr_lock); 833 INIT_LIST_HEAD(&qp->rdma_mrs); 834 INIT_LIST_HEAD(&qp->sig_mrs); 835 qp->port = 0; 836 837 if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) 838 return ib_create_xrc_qp(qp, qp_init_attr); 839 840 qp->event_handler = qp_init_attr->event_handler; 841 qp->qp_context = qp_init_attr->qp_context; 842 if (qp_init_attr->qp_type == IB_QPT_XRC_INI) { 843 qp->recv_cq = NULL; 844 qp->srq = NULL; 845 } else { 846 qp->recv_cq = qp_init_attr->recv_cq; 847 if (qp_init_attr->recv_cq) 848 atomic_inc(&qp_init_attr->recv_cq->usecnt); 849 qp->srq = qp_init_attr->srq; 850 if (qp->srq) 851 atomic_inc(&qp_init_attr->srq->usecnt); 852 } 853 854 qp->pd = pd; 855 qp->send_cq = qp_init_attr->send_cq; 856 qp->xrcd = NULL; 857 858 atomic_inc(&pd->usecnt); 859 if (qp_init_attr->send_cq) 860 atomic_inc(&qp_init_attr->send_cq->usecnt); 861 if (qp_init_attr->rwq_ind_tbl) 862 atomic_inc(&qp->rwq_ind_tbl->usecnt); 863 864 if (qp_init_attr->cap.max_rdma_ctxs) { 865 ret = rdma_rw_init_mrs(qp, qp_init_attr); 866 if (ret) { 867 pr_err("failed to init MR pool ret= %d\n", ret); 868 ib_destroy_qp(qp); 869 return ERR_PTR(ret); 870 } 871 } 872 873 /* 874 * Note: all hw drivers guarantee that max_send_sge is lower than 875 * the device RDMA WRITE SGE limit but not all hw drivers ensure that 876 * max_send_sge <= max_sge_rd. 877 */ 878 qp->max_write_sge = qp_init_attr->cap.max_send_sge; 879 qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge, 880 device->attrs.max_sge_rd); 881 882 return qp; 883 } 884 EXPORT_SYMBOL(ib_create_qp); 885 886 static const struct { 887 int valid; 888 enum ib_qp_attr_mask req_param[IB_QPT_MAX]; 889 enum ib_qp_attr_mask opt_param[IB_QPT_MAX]; 890 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = { 891 [IB_QPS_RESET] = { 892 [IB_QPS_RESET] = { .valid = 1 }, 893 [IB_QPS_INIT] = { 894 .valid = 1, 895 .req_param = { 896 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 897 IB_QP_PORT | 898 IB_QP_QKEY), 899 [IB_QPT_RAW_PACKET] = IB_QP_PORT, 900 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 901 IB_QP_PORT | 902 IB_QP_ACCESS_FLAGS), 903 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 904 IB_QP_PORT | 905 IB_QP_ACCESS_FLAGS), 906 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 907 IB_QP_PORT | 908 IB_QP_ACCESS_FLAGS), 909 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 910 IB_QP_PORT | 911 IB_QP_ACCESS_FLAGS), 912 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 913 IB_QP_QKEY), 914 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 915 IB_QP_QKEY), 916 } 917 }, 918 }, 919 [IB_QPS_INIT] = { 920 [IB_QPS_RESET] = { .valid = 1 }, 921 [IB_QPS_ERR] = { .valid = 1 }, 922 [IB_QPS_INIT] = { 923 .valid = 1, 924 .opt_param = { 925 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 926 IB_QP_PORT | 927 IB_QP_QKEY), 928 [IB_QPT_UC] = (IB_QP_PKEY_INDEX | 929 IB_QP_PORT | 930 IB_QP_ACCESS_FLAGS), 931 [IB_QPT_RC] = (IB_QP_PKEY_INDEX | 932 IB_QP_PORT | 933 IB_QP_ACCESS_FLAGS), 934 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX | 935 IB_QP_PORT | 936 IB_QP_ACCESS_FLAGS), 937 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX | 938 IB_QP_PORT | 939 IB_QP_ACCESS_FLAGS), 940 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 941 IB_QP_QKEY), 942 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 943 IB_QP_QKEY), 944 } 945 }, 946 [IB_QPS_RTR] = { 947 .valid = 1, 948 .req_param = { 949 [IB_QPT_UC] = (IB_QP_AV | 950 IB_QP_PATH_MTU | 951 IB_QP_DEST_QPN | 952 IB_QP_RQ_PSN), 953 [IB_QPT_RC] = (IB_QP_AV | 954 IB_QP_PATH_MTU | 955 IB_QP_DEST_QPN | 956 IB_QP_RQ_PSN | 957 IB_QP_MAX_DEST_RD_ATOMIC | 958 IB_QP_MIN_RNR_TIMER), 959 [IB_QPT_XRC_INI] = (IB_QP_AV | 960 IB_QP_PATH_MTU | 961 IB_QP_DEST_QPN | 962 IB_QP_RQ_PSN), 963 [IB_QPT_XRC_TGT] = (IB_QP_AV | 964 IB_QP_PATH_MTU | 965 IB_QP_DEST_QPN | 966 IB_QP_RQ_PSN | 967 IB_QP_MAX_DEST_RD_ATOMIC | 968 IB_QP_MIN_RNR_TIMER), 969 }, 970 .opt_param = { 971 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 972 IB_QP_QKEY), 973 [IB_QPT_UC] = (IB_QP_ALT_PATH | 974 IB_QP_ACCESS_FLAGS | 975 IB_QP_PKEY_INDEX), 976 [IB_QPT_RC] = (IB_QP_ALT_PATH | 977 IB_QP_ACCESS_FLAGS | 978 IB_QP_PKEY_INDEX), 979 [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH | 980 IB_QP_ACCESS_FLAGS | 981 IB_QP_PKEY_INDEX), 982 [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH | 983 IB_QP_ACCESS_FLAGS | 984 IB_QP_PKEY_INDEX), 985 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 986 IB_QP_QKEY), 987 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 988 IB_QP_QKEY), 989 }, 990 }, 991 }, 992 [IB_QPS_RTR] = { 993 [IB_QPS_RESET] = { .valid = 1 }, 994 [IB_QPS_ERR] = { .valid = 1 }, 995 [IB_QPS_RTS] = { 996 .valid = 1, 997 .req_param = { 998 [IB_QPT_UD] = IB_QP_SQ_PSN, 999 [IB_QPT_UC] = IB_QP_SQ_PSN, 1000 [IB_QPT_RC] = (IB_QP_TIMEOUT | 1001 IB_QP_RETRY_CNT | 1002 IB_QP_RNR_RETRY | 1003 IB_QP_SQ_PSN | 1004 IB_QP_MAX_QP_RD_ATOMIC), 1005 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT | 1006 IB_QP_RETRY_CNT | 1007 IB_QP_RNR_RETRY | 1008 IB_QP_SQ_PSN | 1009 IB_QP_MAX_QP_RD_ATOMIC), 1010 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT | 1011 IB_QP_SQ_PSN), 1012 [IB_QPT_SMI] = IB_QP_SQ_PSN, 1013 [IB_QPT_GSI] = IB_QP_SQ_PSN, 1014 }, 1015 .opt_param = { 1016 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1017 IB_QP_QKEY), 1018 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1019 IB_QP_ALT_PATH | 1020 IB_QP_ACCESS_FLAGS | 1021 IB_QP_PATH_MIG_STATE), 1022 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1023 IB_QP_ALT_PATH | 1024 IB_QP_ACCESS_FLAGS | 1025 IB_QP_MIN_RNR_TIMER | 1026 IB_QP_PATH_MIG_STATE), 1027 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1028 IB_QP_ALT_PATH | 1029 IB_QP_ACCESS_FLAGS | 1030 IB_QP_PATH_MIG_STATE), 1031 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1032 IB_QP_ALT_PATH | 1033 IB_QP_ACCESS_FLAGS | 1034 IB_QP_MIN_RNR_TIMER | 1035 IB_QP_PATH_MIG_STATE), 1036 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1037 IB_QP_QKEY), 1038 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1039 IB_QP_QKEY), 1040 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1041 } 1042 } 1043 }, 1044 [IB_QPS_RTS] = { 1045 [IB_QPS_RESET] = { .valid = 1 }, 1046 [IB_QPS_ERR] = { .valid = 1 }, 1047 [IB_QPS_RTS] = { 1048 .valid = 1, 1049 .opt_param = { 1050 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1051 IB_QP_QKEY), 1052 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1053 IB_QP_ACCESS_FLAGS | 1054 IB_QP_ALT_PATH | 1055 IB_QP_PATH_MIG_STATE), 1056 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1057 IB_QP_ACCESS_FLAGS | 1058 IB_QP_ALT_PATH | 1059 IB_QP_PATH_MIG_STATE | 1060 IB_QP_MIN_RNR_TIMER), 1061 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1062 IB_QP_ACCESS_FLAGS | 1063 IB_QP_ALT_PATH | 1064 IB_QP_PATH_MIG_STATE), 1065 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1066 IB_QP_ACCESS_FLAGS | 1067 IB_QP_ALT_PATH | 1068 IB_QP_PATH_MIG_STATE | 1069 IB_QP_MIN_RNR_TIMER), 1070 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1071 IB_QP_QKEY), 1072 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1073 IB_QP_QKEY), 1074 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT, 1075 } 1076 }, 1077 [IB_QPS_SQD] = { 1078 .valid = 1, 1079 .opt_param = { 1080 [IB_QPT_UD] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1081 [IB_QPT_UC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1082 [IB_QPT_RC] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1083 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1084 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */ 1085 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY, 1086 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY 1087 } 1088 }, 1089 }, 1090 [IB_QPS_SQD] = { 1091 [IB_QPS_RESET] = { .valid = 1 }, 1092 [IB_QPS_ERR] = { .valid = 1 }, 1093 [IB_QPS_RTS] = { 1094 .valid = 1, 1095 .opt_param = { 1096 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1097 IB_QP_QKEY), 1098 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1099 IB_QP_ALT_PATH | 1100 IB_QP_ACCESS_FLAGS | 1101 IB_QP_PATH_MIG_STATE), 1102 [IB_QPT_RC] = (IB_QP_CUR_STATE | 1103 IB_QP_ALT_PATH | 1104 IB_QP_ACCESS_FLAGS | 1105 IB_QP_MIN_RNR_TIMER | 1106 IB_QP_PATH_MIG_STATE), 1107 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE | 1108 IB_QP_ALT_PATH | 1109 IB_QP_ACCESS_FLAGS | 1110 IB_QP_PATH_MIG_STATE), 1111 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE | 1112 IB_QP_ALT_PATH | 1113 IB_QP_ACCESS_FLAGS | 1114 IB_QP_MIN_RNR_TIMER | 1115 IB_QP_PATH_MIG_STATE), 1116 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1117 IB_QP_QKEY), 1118 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1119 IB_QP_QKEY), 1120 } 1121 }, 1122 [IB_QPS_SQD] = { 1123 .valid = 1, 1124 .opt_param = { 1125 [IB_QPT_UD] = (IB_QP_PKEY_INDEX | 1126 IB_QP_QKEY), 1127 [IB_QPT_UC] = (IB_QP_AV | 1128 IB_QP_ALT_PATH | 1129 IB_QP_ACCESS_FLAGS | 1130 IB_QP_PKEY_INDEX | 1131 IB_QP_PATH_MIG_STATE), 1132 [IB_QPT_RC] = (IB_QP_PORT | 1133 IB_QP_AV | 1134 IB_QP_TIMEOUT | 1135 IB_QP_RETRY_CNT | 1136 IB_QP_RNR_RETRY | 1137 IB_QP_MAX_QP_RD_ATOMIC | 1138 IB_QP_MAX_DEST_RD_ATOMIC | 1139 IB_QP_ALT_PATH | 1140 IB_QP_ACCESS_FLAGS | 1141 IB_QP_PKEY_INDEX | 1142 IB_QP_MIN_RNR_TIMER | 1143 IB_QP_PATH_MIG_STATE), 1144 [IB_QPT_XRC_INI] = (IB_QP_PORT | 1145 IB_QP_AV | 1146 IB_QP_TIMEOUT | 1147 IB_QP_RETRY_CNT | 1148 IB_QP_RNR_RETRY | 1149 IB_QP_MAX_QP_RD_ATOMIC | 1150 IB_QP_ALT_PATH | 1151 IB_QP_ACCESS_FLAGS | 1152 IB_QP_PKEY_INDEX | 1153 IB_QP_PATH_MIG_STATE), 1154 [IB_QPT_XRC_TGT] = (IB_QP_PORT | 1155 IB_QP_AV | 1156 IB_QP_TIMEOUT | 1157 IB_QP_MAX_DEST_RD_ATOMIC | 1158 IB_QP_ALT_PATH | 1159 IB_QP_ACCESS_FLAGS | 1160 IB_QP_PKEY_INDEX | 1161 IB_QP_MIN_RNR_TIMER | 1162 IB_QP_PATH_MIG_STATE), 1163 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX | 1164 IB_QP_QKEY), 1165 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX | 1166 IB_QP_QKEY), 1167 } 1168 } 1169 }, 1170 [IB_QPS_SQE] = { 1171 [IB_QPS_RESET] = { .valid = 1 }, 1172 [IB_QPS_ERR] = { .valid = 1 }, 1173 [IB_QPS_RTS] = { 1174 .valid = 1, 1175 .opt_param = { 1176 [IB_QPT_UD] = (IB_QP_CUR_STATE | 1177 IB_QP_QKEY), 1178 [IB_QPT_UC] = (IB_QP_CUR_STATE | 1179 IB_QP_ACCESS_FLAGS), 1180 [IB_QPT_SMI] = (IB_QP_CUR_STATE | 1181 IB_QP_QKEY), 1182 [IB_QPT_GSI] = (IB_QP_CUR_STATE | 1183 IB_QP_QKEY), 1184 } 1185 } 1186 }, 1187 [IB_QPS_ERR] = { 1188 [IB_QPS_RESET] = { .valid = 1 }, 1189 [IB_QPS_ERR] = { .valid = 1 } 1190 } 1191 }; 1192 1193 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 1194 enum ib_qp_type type, enum ib_qp_attr_mask mask, 1195 enum rdma_link_layer ll) 1196 { 1197 enum ib_qp_attr_mask req_param, opt_param; 1198 1199 if (cur_state < 0 || cur_state > IB_QPS_ERR || 1200 next_state < 0 || next_state > IB_QPS_ERR) 1201 return 0; 1202 1203 if (mask & IB_QP_CUR_STATE && 1204 cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS && 1205 cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE) 1206 return 0; 1207 1208 if (!qp_state_table[cur_state][next_state].valid) 1209 return 0; 1210 1211 req_param = qp_state_table[cur_state][next_state].req_param[type]; 1212 opt_param = qp_state_table[cur_state][next_state].opt_param[type]; 1213 1214 if ((mask & req_param) != req_param) 1215 return 0; 1216 1217 if (mask & ~(req_param | opt_param | IB_QP_STATE)) 1218 return 0; 1219 1220 return 1; 1221 } 1222 EXPORT_SYMBOL(ib_modify_qp_is_ok); 1223 1224 int ib_resolve_eth_dmac(struct ib_device *device, 1225 struct rdma_ah_attr *ah_attr) 1226 { 1227 int ret = 0; 1228 struct ib_global_route *grh; 1229 1230 if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr))) 1231 return -EINVAL; 1232 1233 if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE) 1234 return 0; 1235 1236 grh = rdma_ah_retrieve_grh(ah_attr); 1237 1238 if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) { 1239 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw, 1240 ah_attr->roce.dmac); 1241 return 0; 1242 } 1243 if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1244 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) { 1245 __be32 addr = 0; 1246 1247 memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4); 1248 ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac); 1249 } else { 1250 ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw, 1251 (char *)ah_attr->roce.dmac); 1252 } 1253 } else { 1254 union ib_gid sgid; 1255 struct ib_gid_attr sgid_attr; 1256 int ifindex; 1257 int hop_limit; 1258 1259 ret = ib_query_gid(device, 1260 rdma_ah_get_port_num(ah_attr), 1261 grh->sgid_index, 1262 &sgid, &sgid_attr); 1263 1264 if (ret || !sgid_attr.ndev) { 1265 if (!ret) 1266 ret = -ENXIO; 1267 goto out; 1268 } 1269 1270 ifindex = sgid_attr.ndev->ifindex; 1271 1272 ret = 1273 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid, 1274 ah_attr->roce.dmac, 1275 NULL, &ifindex, &hop_limit); 1276 1277 dev_put(sgid_attr.ndev); 1278 1279 grh->hop_limit = hop_limit; 1280 } 1281 out: 1282 return ret; 1283 } 1284 EXPORT_SYMBOL(ib_resolve_eth_dmac); 1285 1286 /** 1287 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 1288 * @qp: The QP to modify. 1289 * @attr: On input, specifies the QP attributes to modify. On output, 1290 * the current values of selected QP attributes are returned. 1291 * @attr_mask: A bit-mask used to specify which attributes of the QP 1292 * are being modified. 1293 * @udata: pointer to user's input output buffer information 1294 * are being modified. 1295 * It returns 0 on success and returns appropriate error code on error. 1296 */ 1297 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr, 1298 int attr_mask, struct ib_udata *udata) 1299 { 1300 int ret; 1301 1302 if (attr_mask & IB_QP_AV) { 1303 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr); 1304 if (ret) 1305 return ret; 1306 } 1307 ret = ib_security_modify_qp(qp, attr, attr_mask, udata); 1308 if (!ret && (attr_mask & IB_QP_PORT)) 1309 qp->port = attr->port_num; 1310 1311 return ret; 1312 } 1313 EXPORT_SYMBOL(ib_modify_qp_with_udata); 1314 1315 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width) 1316 { 1317 int rc; 1318 u32 netdev_speed; 1319 struct net_device *netdev; 1320 struct ethtool_link_ksettings lksettings; 1321 1322 if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET) 1323 return -EINVAL; 1324 1325 if (!dev->get_netdev) 1326 return -EOPNOTSUPP; 1327 1328 netdev = dev->get_netdev(dev, port_num); 1329 if (!netdev) 1330 return -ENODEV; 1331 1332 rtnl_lock(); 1333 rc = __ethtool_get_link_ksettings(netdev, &lksettings); 1334 rtnl_unlock(); 1335 1336 dev_put(netdev); 1337 1338 if (!rc) { 1339 netdev_speed = lksettings.base.speed; 1340 } else { 1341 netdev_speed = SPEED_1000; 1342 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name, 1343 netdev_speed); 1344 } 1345 1346 if (netdev_speed <= SPEED_1000) { 1347 *width = IB_WIDTH_1X; 1348 *speed = IB_SPEED_SDR; 1349 } else if (netdev_speed <= SPEED_10000) { 1350 *width = IB_WIDTH_1X; 1351 *speed = IB_SPEED_FDR10; 1352 } else if (netdev_speed <= SPEED_20000) { 1353 *width = IB_WIDTH_4X; 1354 *speed = IB_SPEED_DDR; 1355 } else if (netdev_speed <= SPEED_25000) { 1356 *width = IB_WIDTH_1X; 1357 *speed = IB_SPEED_EDR; 1358 } else if (netdev_speed <= SPEED_40000) { 1359 *width = IB_WIDTH_4X; 1360 *speed = IB_SPEED_FDR10; 1361 } else { 1362 *width = IB_WIDTH_4X; 1363 *speed = IB_SPEED_EDR; 1364 } 1365 1366 return 0; 1367 } 1368 EXPORT_SYMBOL(ib_get_eth_speed); 1369 1370 int ib_modify_qp(struct ib_qp *qp, 1371 struct ib_qp_attr *qp_attr, 1372 int qp_attr_mask) 1373 { 1374 return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL); 1375 } 1376 EXPORT_SYMBOL(ib_modify_qp); 1377 1378 int ib_query_qp(struct ib_qp *qp, 1379 struct ib_qp_attr *qp_attr, 1380 int qp_attr_mask, 1381 struct ib_qp_init_attr *qp_init_attr) 1382 { 1383 return qp->device->query_qp ? 1384 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) : 1385 -ENOSYS; 1386 } 1387 EXPORT_SYMBOL(ib_query_qp); 1388 1389 int ib_close_qp(struct ib_qp *qp) 1390 { 1391 struct ib_qp *real_qp; 1392 unsigned long flags; 1393 1394 real_qp = qp->real_qp; 1395 if (real_qp == qp) 1396 return -EINVAL; 1397 1398 spin_lock_irqsave(&real_qp->device->event_handler_lock, flags); 1399 list_del(&qp->open_list); 1400 spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags); 1401 1402 atomic_dec(&real_qp->usecnt); 1403 ib_close_shared_qp_security(qp->qp_sec); 1404 kfree(qp); 1405 1406 return 0; 1407 } 1408 EXPORT_SYMBOL(ib_close_qp); 1409 1410 static int __ib_destroy_shared_qp(struct ib_qp *qp) 1411 { 1412 struct ib_xrcd *xrcd; 1413 struct ib_qp *real_qp; 1414 int ret; 1415 1416 real_qp = qp->real_qp; 1417 xrcd = real_qp->xrcd; 1418 1419 mutex_lock(&xrcd->tgt_qp_mutex); 1420 ib_close_qp(qp); 1421 if (atomic_read(&real_qp->usecnt) == 0) 1422 list_del(&real_qp->xrcd_list); 1423 else 1424 real_qp = NULL; 1425 mutex_unlock(&xrcd->tgt_qp_mutex); 1426 1427 if (real_qp) { 1428 ret = ib_destroy_qp(real_qp); 1429 if (!ret) 1430 atomic_dec(&xrcd->usecnt); 1431 else 1432 __ib_insert_xrcd_qp(xrcd, real_qp); 1433 } 1434 1435 return 0; 1436 } 1437 1438 int ib_destroy_qp(struct ib_qp *qp) 1439 { 1440 struct ib_pd *pd; 1441 struct ib_cq *scq, *rcq; 1442 struct ib_srq *srq; 1443 struct ib_rwq_ind_table *ind_tbl; 1444 struct ib_qp_security *sec; 1445 int ret; 1446 1447 WARN_ON_ONCE(qp->mrs_used > 0); 1448 1449 if (atomic_read(&qp->usecnt)) 1450 return -EBUSY; 1451 1452 if (qp->real_qp != qp) 1453 return __ib_destroy_shared_qp(qp); 1454 1455 pd = qp->pd; 1456 scq = qp->send_cq; 1457 rcq = qp->recv_cq; 1458 srq = qp->srq; 1459 ind_tbl = qp->rwq_ind_tbl; 1460 sec = qp->qp_sec; 1461 if (sec) 1462 ib_destroy_qp_security_begin(sec); 1463 1464 if (!qp->uobject) 1465 rdma_rw_cleanup_mrs(qp); 1466 1467 ret = qp->device->destroy_qp(qp); 1468 if (!ret) { 1469 if (pd) 1470 atomic_dec(&pd->usecnt); 1471 if (scq) 1472 atomic_dec(&scq->usecnt); 1473 if (rcq) 1474 atomic_dec(&rcq->usecnt); 1475 if (srq) 1476 atomic_dec(&srq->usecnt); 1477 if (ind_tbl) 1478 atomic_dec(&ind_tbl->usecnt); 1479 if (sec) 1480 ib_destroy_qp_security_end(sec); 1481 } else { 1482 if (sec) 1483 ib_destroy_qp_security_abort(sec); 1484 } 1485 1486 return ret; 1487 } 1488 EXPORT_SYMBOL(ib_destroy_qp); 1489 1490 /* Completion queues */ 1491 1492 struct ib_cq *ib_create_cq(struct ib_device *device, 1493 ib_comp_handler comp_handler, 1494 void (*event_handler)(struct ib_event *, void *), 1495 void *cq_context, 1496 const struct ib_cq_init_attr *cq_attr) 1497 { 1498 struct ib_cq *cq; 1499 1500 cq = device->create_cq(device, cq_attr, NULL, NULL); 1501 1502 if (!IS_ERR(cq)) { 1503 cq->device = device; 1504 cq->uobject = NULL; 1505 cq->comp_handler = comp_handler; 1506 cq->event_handler = event_handler; 1507 cq->cq_context = cq_context; 1508 atomic_set(&cq->usecnt, 0); 1509 } 1510 1511 return cq; 1512 } 1513 EXPORT_SYMBOL(ib_create_cq); 1514 1515 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period) 1516 { 1517 return cq->device->modify_cq ? 1518 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS; 1519 } 1520 EXPORT_SYMBOL(ib_modify_cq); 1521 1522 int ib_destroy_cq(struct ib_cq *cq) 1523 { 1524 if (atomic_read(&cq->usecnt)) 1525 return -EBUSY; 1526 1527 return cq->device->destroy_cq(cq); 1528 } 1529 EXPORT_SYMBOL(ib_destroy_cq); 1530 1531 int ib_resize_cq(struct ib_cq *cq, int cqe) 1532 { 1533 return cq->device->resize_cq ? 1534 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS; 1535 } 1536 EXPORT_SYMBOL(ib_resize_cq); 1537 1538 /* Memory regions */ 1539 1540 int ib_dereg_mr(struct ib_mr *mr) 1541 { 1542 struct ib_pd *pd = mr->pd; 1543 int ret; 1544 1545 ret = mr->device->dereg_mr(mr); 1546 if (!ret) 1547 atomic_dec(&pd->usecnt); 1548 1549 return ret; 1550 } 1551 EXPORT_SYMBOL(ib_dereg_mr); 1552 1553 /** 1554 * ib_alloc_mr() - Allocates a memory region 1555 * @pd: protection domain associated with the region 1556 * @mr_type: memory region type 1557 * @max_num_sg: maximum sg entries available for registration. 1558 * 1559 * Notes: 1560 * Memory registeration page/sg lists must not exceed max_num_sg. 1561 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed 1562 * max_num_sg * used_page_size. 1563 * 1564 */ 1565 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 1566 enum ib_mr_type mr_type, 1567 u32 max_num_sg) 1568 { 1569 struct ib_mr *mr; 1570 1571 if (!pd->device->alloc_mr) 1572 return ERR_PTR(-ENOSYS); 1573 1574 mr = pd->device->alloc_mr(pd, mr_type, max_num_sg); 1575 if (!IS_ERR(mr)) { 1576 mr->device = pd->device; 1577 mr->pd = pd; 1578 mr->uobject = NULL; 1579 atomic_inc(&pd->usecnt); 1580 mr->need_inval = false; 1581 } 1582 1583 return mr; 1584 } 1585 EXPORT_SYMBOL(ib_alloc_mr); 1586 1587 /* "Fast" memory regions */ 1588 1589 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 1590 int mr_access_flags, 1591 struct ib_fmr_attr *fmr_attr) 1592 { 1593 struct ib_fmr *fmr; 1594 1595 if (!pd->device->alloc_fmr) 1596 return ERR_PTR(-ENOSYS); 1597 1598 fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr); 1599 if (!IS_ERR(fmr)) { 1600 fmr->device = pd->device; 1601 fmr->pd = pd; 1602 atomic_inc(&pd->usecnt); 1603 } 1604 1605 return fmr; 1606 } 1607 EXPORT_SYMBOL(ib_alloc_fmr); 1608 1609 int ib_unmap_fmr(struct list_head *fmr_list) 1610 { 1611 struct ib_fmr *fmr; 1612 1613 if (list_empty(fmr_list)) 1614 return 0; 1615 1616 fmr = list_entry(fmr_list->next, struct ib_fmr, list); 1617 return fmr->device->unmap_fmr(fmr_list); 1618 } 1619 EXPORT_SYMBOL(ib_unmap_fmr); 1620 1621 int ib_dealloc_fmr(struct ib_fmr *fmr) 1622 { 1623 struct ib_pd *pd; 1624 int ret; 1625 1626 pd = fmr->pd; 1627 ret = fmr->device->dealloc_fmr(fmr); 1628 if (!ret) 1629 atomic_dec(&pd->usecnt); 1630 1631 return ret; 1632 } 1633 EXPORT_SYMBOL(ib_dealloc_fmr); 1634 1635 /* Multicast groups */ 1636 1637 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid) 1638 { 1639 struct ib_qp_init_attr init_attr = {}; 1640 struct ib_qp_attr attr = {}; 1641 int num_eth_ports = 0; 1642 int port; 1643 1644 /* If QP state >= init, it is assigned to a port and we can check this 1645 * port only. 1646 */ 1647 if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) { 1648 if (attr.qp_state >= IB_QPS_INIT) { 1649 if (rdma_port_get_link_layer(qp->device, attr.port_num) != 1650 IB_LINK_LAYER_INFINIBAND) 1651 return true; 1652 goto lid_check; 1653 } 1654 } 1655 1656 /* Can't get a quick answer, iterate over all ports */ 1657 for (port = 0; port < qp->device->phys_port_cnt; port++) 1658 if (rdma_port_get_link_layer(qp->device, port) != 1659 IB_LINK_LAYER_INFINIBAND) 1660 num_eth_ports++; 1661 1662 /* If we have at lease one Ethernet port, RoCE annex declares that 1663 * multicast LID should be ignored. We can't tell at this step if the 1664 * QP belongs to an IB or Ethernet port. 1665 */ 1666 if (num_eth_ports) 1667 return true; 1668 1669 /* If all the ports are IB, we can check according to IB spec. */ 1670 lid_check: 1671 return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) || 1672 lid == be16_to_cpu(IB_LID_PERMISSIVE)); 1673 } 1674 1675 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1676 { 1677 int ret; 1678 1679 if (!qp->device->attach_mcast) 1680 return -ENOSYS; 1681 1682 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 1683 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 1684 return -EINVAL; 1685 1686 ret = qp->device->attach_mcast(qp, gid, lid); 1687 if (!ret) 1688 atomic_inc(&qp->usecnt); 1689 return ret; 1690 } 1691 EXPORT_SYMBOL(ib_attach_mcast); 1692 1693 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid) 1694 { 1695 int ret; 1696 1697 if (!qp->device->detach_mcast) 1698 return -ENOSYS; 1699 1700 if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) || 1701 qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid)) 1702 return -EINVAL; 1703 1704 ret = qp->device->detach_mcast(qp, gid, lid); 1705 if (!ret) 1706 atomic_dec(&qp->usecnt); 1707 return ret; 1708 } 1709 EXPORT_SYMBOL(ib_detach_mcast); 1710 1711 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device) 1712 { 1713 struct ib_xrcd *xrcd; 1714 1715 if (!device->alloc_xrcd) 1716 return ERR_PTR(-ENOSYS); 1717 1718 xrcd = device->alloc_xrcd(device, NULL, NULL); 1719 if (!IS_ERR(xrcd)) { 1720 xrcd->device = device; 1721 xrcd->inode = NULL; 1722 atomic_set(&xrcd->usecnt, 0); 1723 mutex_init(&xrcd->tgt_qp_mutex); 1724 INIT_LIST_HEAD(&xrcd->tgt_qp_list); 1725 } 1726 1727 return xrcd; 1728 } 1729 EXPORT_SYMBOL(ib_alloc_xrcd); 1730 1731 int ib_dealloc_xrcd(struct ib_xrcd *xrcd) 1732 { 1733 struct ib_qp *qp; 1734 int ret; 1735 1736 if (atomic_read(&xrcd->usecnt)) 1737 return -EBUSY; 1738 1739 while (!list_empty(&xrcd->tgt_qp_list)) { 1740 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list); 1741 ret = ib_destroy_qp(qp); 1742 if (ret) 1743 return ret; 1744 } 1745 1746 return xrcd->device->dealloc_xrcd(xrcd); 1747 } 1748 EXPORT_SYMBOL(ib_dealloc_xrcd); 1749 1750 /** 1751 * ib_create_wq - Creates a WQ associated with the specified protection 1752 * domain. 1753 * @pd: The protection domain associated with the WQ. 1754 * @wq_init_attr: A list of initial attributes required to create the 1755 * WQ. If WQ creation succeeds, then the attributes are updated to 1756 * the actual capabilities of the created WQ. 1757 * 1758 * wq_init_attr->max_wr and wq_init_attr->max_sge determine 1759 * the requested size of the WQ, and set to the actual values allocated 1760 * on return. 1761 * If ib_create_wq() succeeds, then max_wr and max_sge will always be 1762 * at least as large as the requested values. 1763 */ 1764 struct ib_wq *ib_create_wq(struct ib_pd *pd, 1765 struct ib_wq_init_attr *wq_attr) 1766 { 1767 struct ib_wq *wq; 1768 1769 if (!pd->device->create_wq) 1770 return ERR_PTR(-ENOSYS); 1771 1772 wq = pd->device->create_wq(pd, wq_attr, NULL); 1773 if (!IS_ERR(wq)) { 1774 wq->event_handler = wq_attr->event_handler; 1775 wq->wq_context = wq_attr->wq_context; 1776 wq->wq_type = wq_attr->wq_type; 1777 wq->cq = wq_attr->cq; 1778 wq->device = pd->device; 1779 wq->pd = pd; 1780 wq->uobject = NULL; 1781 atomic_inc(&pd->usecnt); 1782 atomic_inc(&wq_attr->cq->usecnt); 1783 atomic_set(&wq->usecnt, 0); 1784 } 1785 return wq; 1786 } 1787 EXPORT_SYMBOL(ib_create_wq); 1788 1789 /** 1790 * ib_destroy_wq - Destroys the specified WQ. 1791 * @wq: The WQ to destroy. 1792 */ 1793 int ib_destroy_wq(struct ib_wq *wq) 1794 { 1795 int err; 1796 struct ib_cq *cq = wq->cq; 1797 struct ib_pd *pd = wq->pd; 1798 1799 if (atomic_read(&wq->usecnt)) 1800 return -EBUSY; 1801 1802 err = wq->device->destroy_wq(wq); 1803 if (!err) { 1804 atomic_dec(&pd->usecnt); 1805 atomic_dec(&cq->usecnt); 1806 } 1807 return err; 1808 } 1809 EXPORT_SYMBOL(ib_destroy_wq); 1810 1811 /** 1812 * ib_modify_wq - Modifies the specified WQ. 1813 * @wq: The WQ to modify. 1814 * @wq_attr: On input, specifies the WQ attributes to modify. 1815 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ 1816 * are being modified. 1817 * On output, the current values of selected WQ attributes are returned. 1818 */ 1819 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr, 1820 u32 wq_attr_mask) 1821 { 1822 int err; 1823 1824 if (!wq->device->modify_wq) 1825 return -ENOSYS; 1826 1827 err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL); 1828 return err; 1829 } 1830 EXPORT_SYMBOL(ib_modify_wq); 1831 1832 /* 1833 * ib_create_rwq_ind_table - Creates a RQ Indirection Table. 1834 * @device: The device on which to create the rwq indirection table. 1835 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to 1836 * create the Indirection Table. 1837 * 1838 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less 1839 * than the created ib_rwq_ind_table object and the caller is responsible 1840 * for its memory allocation/free. 1841 */ 1842 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 1843 struct ib_rwq_ind_table_init_attr *init_attr) 1844 { 1845 struct ib_rwq_ind_table *rwq_ind_table; 1846 int i; 1847 u32 table_size; 1848 1849 if (!device->create_rwq_ind_table) 1850 return ERR_PTR(-ENOSYS); 1851 1852 table_size = (1 << init_attr->log_ind_tbl_size); 1853 rwq_ind_table = device->create_rwq_ind_table(device, 1854 init_attr, NULL); 1855 if (IS_ERR(rwq_ind_table)) 1856 return rwq_ind_table; 1857 1858 rwq_ind_table->ind_tbl = init_attr->ind_tbl; 1859 rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size; 1860 rwq_ind_table->device = device; 1861 rwq_ind_table->uobject = NULL; 1862 atomic_set(&rwq_ind_table->usecnt, 0); 1863 1864 for (i = 0; i < table_size; i++) 1865 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt); 1866 1867 return rwq_ind_table; 1868 } 1869 EXPORT_SYMBOL(ib_create_rwq_ind_table); 1870 1871 /* 1872 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table. 1873 * @wq_ind_table: The Indirection Table to destroy. 1874 */ 1875 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table) 1876 { 1877 int err, i; 1878 u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size); 1879 struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl; 1880 1881 if (atomic_read(&rwq_ind_table->usecnt)) 1882 return -EBUSY; 1883 1884 err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table); 1885 if (!err) { 1886 for (i = 0; i < table_size; i++) 1887 atomic_dec(&ind_tbl[i]->usecnt); 1888 } 1889 1890 return err; 1891 } 1892 EXPORT_SYMBOL(ib_destroy_rwq_ind_table); 1893 1894 struct ib_flow *ib_create_flow(struct ib_qp *qp, 1895 struct ib_flow_attr *flow_attr, 1896 int domain) 1897 { 1898 struct ib_flow *flow_id; 1899 if (!qp->device->create_flow) 1900 return ERR_PTR(-ENOSYS); 1901 1902 flow_id = qp->device->create_flow(qp, flow_attr, domain); 1903 if (!IS_ERR(flow_id)) { 1904 atomic_inc(&qp->usecnt); 1905 flow_id->qp = qp; 1906 } 1907 return flow_id; 1908 } 1909 EXPORT_SYMBOL(ib_create_flow); 1910 1911 int ib_destroy_flow(struct ib_flow *flow_id) 1912 { 1913 int err; 1914 struct ib_qp *qp = flow_id->qp; 1915 1916 err = qp->device->destroy_flow(flow_id); 1917 if (!err) 1918 atomic_dec(&qp->usecnt); 1919 return err; 1920 } 1921 EXPORT_SYMBOL(ib_destroy_flow); 1922 1923 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 1924 struct ib_mr_status *mr_status) 1925 { 1926 return mr->device->check_mr_status ? 1927 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS; 1928 } 1929 EXPORT_SYMBOL(ib_check_mr_status); 1930 1931 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 1932 int state) 1933 { 1934 if (!device->set_vf_link_state) 1935 return -ENOSYS; 1936 1937 return device->set_vf_link_state(device, vf, port, state); 1938 } 1939 EXPORT_SYMBOL(ib_set_vf_link_state); 1940 1941 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 1942 struct ifla_vf_info *info) 1943 { 1944 if (!device->get_vf_config) 1945 return -ENOSYS; 1946 1947 return device->get_vf_config(device, vf, port, info); 1948 } 1949 EXPORT_SYMBOL(ib_get_vf_config); 1950 1951 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 1952 struct ifla_vf_stats *stats) 1953 { 1954 if (!device->get_vf_stats) 1955 return -ENOSYS; 1956 1957 return device->get_vf_stats(device, vf, port, stats); 1958 } 1959 EXPORT_SYMBOL(ib_get_vf_stats); 1960 1961 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 1962 int type) 1963 { 1964 if (!device->set_vf_guid) 1965 return -ENOSYS; 1966 1967 return device->set_vf_guid(device, vf, port, guid, type); 1968 } 1969 EXPORT_SYMBOL(ib_set_vf_guid); 1970 1971 /** 1972 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list 1973 * and set it the memory region. 1974 * @mr: memory region 1975 * @sg: dma mapped scatterlist 1976 * @sg_nents: number of entries in sg 1977 * @sg_offset: offset in bytes into sg 1978 * @page_size: page vector desired page size 1979 * 1980 * Constraints: 1981 * - The first sg element is allowed to have an offset. 1982 * - Each sg element must either be aligned to page_size or virtually 1983 * contiguous to the previous element. In case an sg element has a 1984 * non-contiguous offset, the mapping prefix will not include it. 1985 * - The last sg element is allowed to have length less than page_size. 1986 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size 1987 * then only max_num_sg entries will be mapped. 1988 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these 1989 * constraints holds and the page_size argument is ignored. 1990 * 1991 * Returns the number of sg elements that were mapped to the memory region. 1992 * 1993 * After this completes successfully, the memory region 1994 * is ready for registration. 1995 */ 1996 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 1997 unsigned int *sg_offset, unsigned int page_size) 1998 { 1999 if (unlikely(!mr->device->map_mr_sg)) 2000 return -ENOSYS; 2001 2002 mr->page_size = page_size; 2003 2004 return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset); 2005 } 2006 EXPORT_SYMBOL(ib_map_mr_sg); 2007 2008 /** 2009 * ib_sg_to_pages() - Convert the largest prefix of a sg list 2010 * to a page vector 2011 * @mr: memory region 2012 * @sgl: dma mapped scatterlist 2013 * @sg_nents: number of entries in sg 2014 * @sg_offset_p: IN: start offset in bytes into sg 2015 * OUT: offset in bytes for element n of the sg of the first 2016 * byte that has not been processed where n is the return 2017 * value of this function. 2018 * @set_page: driver page assignment function pointer 2019 * 2020 * Core service helper for drivers to convert the largest 2021 * prefix of given sg list to a page vector. The sg list 2022 * prefix converted is the prefix that meet the requirements 2023 * of ib_map_mr_sg. 2024 * 2025 * Returns the number of sg elements that were assigned to 2026 * a page vector. 2027 */ 2028 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 2029 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64)) 2030 { 2031 struct scatterlist *sg; 2032 u64 last_end_dma_addr = 0; 2033 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; 2034 unsigned int last_page_off = 0; 2035 u64 page_mask = ~((u64)mr->page_size - 1); 2036 int i, ret; 2037 2038 if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0]))) 2039 return -EINVAL; 2040 2041 mr->iova = sg_dma_address(&sgl[0]) + sg_offset; 2042 mr->length = 0; 2043 2044 for_each_sg(sgl, sg, sg_nents, i) { 2045 u64 dma_addr = sg_dma_address(sg) + sg_offset; 2046 u64 prev_addr = dma_addr; 2047 unsigned int dma_len = sg_dma_len(sg) - sg_offset; 2048 u64 end_dma_addr = dma_addr + dma_len; 2049 u64 page_addr = dma_addr & page_mask; 2050 2051 /* 2052 * For the second and later elements, check whether either the 2053 * end of element i-1 or the start of element i is not aligned 2054 * on a page boundary. 2055 */ 2056 if (i && (last_page_off != 0 || page_addr != dma_addr)) { 2057 /* Stop mapping if there is a gap. */ 2058 if (last_end_dma_addr != dma_addr) 2059 break; 2060 2061 /* 2062 * Coalesce this element with the last. If it is small 2063 * enough just update mr->length. Otherwise start 2064 * mapping from the next page. 2065 */ 2066 goto next_page; 2067 } 2068 2069 do { 2070 ret = set_page(mr, page_addr); 2071 if (unlikely(ret < 0)) { 2072 sg_offset = prev_addr - sg_dma_address(sg); 2073 mr->length += prev_addr - dma_addr; 2074 if (sg_offset_p) 2075 *sg_offset_p = sg_offset; 2076 return i || sg_offset ? i : ret; 2077 } 2078 prev_addr = page_addr; 2079 next_page: 2080 page_addr += mr->page_size; 2081 } while (page_addr < end_dma_addr); 2082 2083 mr->length += dma_len; 2084 last_end_dma_addr = end_dma_addr; 2085 last_page_off = end_dma_addr & ~page_mask; 2086 2087 sg_offset = 0; 2088 } 2089 2090 if (sg_offset_p) 2091 *sg_offset_p = 0; 2092 return i; 2093 } 2094 EXPORT_SYMBOL(ib_sg_to_pages); 2095 2096 struct ib_drain_cqe { 2097 struct ib_cqe cqe; 2098 struct completion done; 2099 }; 2100 2101 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc) 2102 { 2103 struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe, 2104 cqe); 2105 2106 complete(&cqe->done); 2107 } 2108 2109 /* 2110 * Post a WR and block until its completion is reaped for the SQ. 2111 */ 2112 static void __ib_drain_sq(struct ib_qp *qp) 2113 { 2114 struct ib_cq *cq = qp->send_cq; 2115 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2116 struct ib_drain_cqe sdrain; 2117 struct ib_send_wr swr = {}, *bad_swr; 2118 int ret; 2119 2120 swr.wr_cqe = &sdrain.cqe; 2121 sdrain.cqe.done = ib_drain_qp_done; 2122 init_completion(&sdrain.done); 2123 2124 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2125 if (ret) { 2126 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2127 return; 2128 } 2129 2130 ret = ib_post_send(qp, &swr, &bad_swr); 2131 if (ret) { 2132 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret); 2133 return; 2134 } 2135 2136 if (cq->poll_ctx == IB_POLL_DIRECT) 2137 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0) 2138 ib_process_cq_direct(cq, -1); 2139 else 2140 wait_for_completion(&sdrain.done); 2141 } 2142 2143 /* 2144 * Post a WR and block until its completion is reaped for the RQ. 2145 */ 2146 static void __ib_drain_rq(struct ib_qp *qp) 2147 { 2148 struct ib_cq *cq = qp->recv_cq; 2149 struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR }; 2150 struct ib_drain_cqe rdrain; 2151 struct ib_recv_wr rwr = {}, *bad_rwr; 2152 int ret; 2153 2154 rwr.wr_cqe = &rdrain.cqe; 2155 rdrain.cqe.done = ib_drain_qp_done; 2156 init_completion(&rdrain.done); 2157 2158 ret = ib_modify_qp(qp, &attr, IB_QP_STATE); 2159 if (ret) { 2160 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2161 return; 2162 } 2163 2164 ret = ib_post_recv(qp, &rwr, &bad_rwr); 2165 if (ret) { 2166 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret); 2167 return; 2168 } 2169 2170 if (cq->poll_ctx == IB_POLL_DIRECT) 2171 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0) 2172 ib_process_cq_direct(cq, -1); 2173 else 2174 wait_for_completion(&rdrain.done); 2175 } 2176 2177 /** 2178 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the 2179 * application. 2180 * @qp: queue pair to drain 2181 * 2182 * If the device has a provider-specific drain function, then 2183 * call that. Otherwise call the generic drain function 2184 * __ib_drain_sq(). 2185 * 2186 * The caller must: 2187 * 2188 * ensure there is room in the CQ and SQ for the drain work request and 2189 * completion. 2190 * 2191 * allocate the CQ using ib_alloc_cq(). 2192 * 2193 * ensure that there are no other contexts that are posting WRs concurrently. 2194 * Otherwise the drain is not guaranteed. 2195 */ 2196 void ib_drain_sq(struct ib_qp *qp) 2197 { 2198 if (qp->device->drain_sq) 2199 qp->device->drain_sq(qp); 2200 else 2201 __ib_drain_sq(qp); 2202 } 2203 EXPORT_SYMBOL(ib_drain_sq); 2204 2205 /** 2206 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the 2207 * application. 2208 * @qp: queue pair to drain 2209 * 2210 * If the device has a provider-specific drain function, then 2211 * call that. Otherwise call the generic drain function 2212 * __ib_drain_rq(). 2213 * 2214 * The caller must: 2215 * 2216 * ensure there is room in the CQ and RQ for the drain work request and 2217 * completion. 2218 * 2219 * allocate the CQ using ib_alloc_cq(). 2220 * 2221 * ensure that there are no other contexts that are posting WRs concurrently. 2222 * Otherwise the drain is not guaranteed. 2223 */ 2224 void ib_drain_rq(struct ib_qp *qp) 2225 { 2226 if (qp->device->drain_rq) 2227 qp->device->drain_rq(qp); 2228 else 2229 __ib_drain_rq(qp); 2230 } 2231 EXPORT_SYMBOL(ib_drain_rq); 2232 2233 /** 2234 * ib_drain_qp() - Block until all CQEs have been consumed by the 2235 * application on both the RQ and SQ. 2236 * @qp: queue pair to drain 2237 * 2238 * The caller must: 2239 * 2240 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests 2241 * and completions. 2242 * 2243 * allocate the CQs using ib_alloc_cq(). 2244 * 2245 * ensure that there are no other contexts that are posting WRs concurrently. 2246 * Otherwise the drain is not guaranteed. 2247 */ 2248 void ib_drain_qp(struct ib_qp *qp) 2249 { 2250 ib_drain_sq(qp); 2251 if (!qp->srq) 2252 ib_drain_rq(qp); 2253 } 2254 EXPORT_SYMBOL(ib_drain_qp); 2255